xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/avr-tdep.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /* Target-dependent code for Atmel AVR, for GDB.
2 
3    Copyright (C) 1996-2017 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 /* Contributed by Theodore A. Roth, troth@openavr.org */
21 
22 /* Portions of this file were taken from the original gdb-4.18 patch developed
23    by Denis Chertykov, denisc@overta.ru */
24 
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdbtypes.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include <algorithm>
40 
41 /* AVR Background:
42 
43    (AVR micros are pure Harvard Architecture processors.)
44 
45    The AVR family of microcontrollers have three distinctly different memory
46    spaces: flash, sram and eeprom.  The flash is 16 bits wide and is used for
47    the most part to store program instructions.  The sram is 8 bits wide and is
48    used for the stack and the heap.  Some devices lack sram and some can have
49    an additional external sram added on as a peripheral.
50 
51    The eeprom is 8 bits wide and is used to store data when the device is
52    powered down.  Eeprom is not directly accessible, it can only be accessed
53    via io-registers using a special algorithm.  Accessing eeprom via gdb's
54    remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55    not included at this time.
56 
57    [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58    written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''.  For this to
59    work, the remote target must be able to handle eeprom accesses and perform
60    the address translation.]
61 
62    All three memory spaces have physical addresses beginning at 0x0.  In
63    addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64    bytes instead of the 16 bit wide words used by the real device for the
65    Program Counter.
66 
67    In order for remote targets to work correctly, extra bits must be added to
68    addresses before they are send to the target or received from the target
69    via the remote serial protocol.  The extra bits are the MSBs and are used to
70    decode which memory space the address is referring to.  */
71 
72 /* Constants: prefixed with AVR_ to avoid name space clashes */
73 
74 /* Address space flags */
75 
76 /* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
77    space.  */
78 
79 #define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
80 #define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH  \
81   TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
82 
83 
84 enum
85 {
86   AVR_REG_W = 24,
87   AVR_REG_X = 26,
88   AVR_REG_Y = 28,
89   AVR_FP_REGNUM = 28,
90   AVR_REG_Z = 30,
91 
92   AVR_SREG_REGNUM = 32,
93   AVR_SP_REGNUM = 33,
94   AVR_PC_REGNUM = 34,
95 
96   AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
97   AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
98 
99   /* Pseudo registers.  */
100   AVR_PSEUDO_PC_REGNUM = 35,
101   AVR_NUM_PSEUDO_REGS = 1,
102 
103   AVR_PC_REG_INDEX = 35,	/* index into array of registers */
104 
105   AVR_MAX_PROLOGUE_SIZE = 64,	/* bytes */
106 
107   /* Count of pushed registers.  From r2 to r17 (inclusively), r28, r29 */
108   AVR_MAX_PUSHES = 18,
109 
110   /* Number of the last pushed register.  r17 for current avr-gcc */
111   AVR_LAST_PUSHED_REGNUM = 17,
112 
113   AVR_ARG1_REGNUM = 24,         /* Single byte argument */
114   AVR_ARGN_REGNUM = 25,         /* Multi byte argments */
115   AVR_LAST_ARG_REGNUM = 8,      /* Last argument register */
116 
117   AVR_RET1_REGNUM = 24,         /* Single byte return value */
118   AVR_RETN_REGNUM = 25,         /* Multi byte return value */
119 
120   /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
121      bits?  Do these have to match the bfd vma values?  It sure would make
122      things easier in the future if they didn't need to match.
123 
124      Note: I chose these values so as to be consistent with bfd vma
125      addresses.
126 
127      TRoth/2002-04-08: There is already a conflict with very large programs
128      in the mega128.  The mega128 has 128K instruction bytes (64K words),
129      thus the Most Significant Bit is 0x10000 which gets masked off my
130      AVR_MEM_MASK.
131 
132      The problem manifests itself when trying to set a breakpoint in a
133      function which resides in the upper half of the instruction space and
134      thus requires a 17-bit address.
135 
136      For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
137      from 0x00ff0000 to 0x00f00000.  Eeprom is not accessible from gdb yet,
138      but could be for some remote targets by just adding the correct offset
139      to the address and letting the remote target handle the low-level
140      details of actually accessing the eeprom.  */
141 
142   AVR_IMEM_START = 0x00000000,	/* INSN memory */
143   AVR_SMEM_START = 0x00800000,	/* SRAM memory */
144 #if 1
145   /* No eeprom mask defined */
146   AVR_MEM_MASK = 0x00f00000,	/* mask to determine memory space */
147 #else
148   AVR_EMEM_START = 0x00810000,	/* EEPROM memory */
149   AVR_MEM_MASK = 0x00ff0000,	/* mask to determine memory space */
150 #endif
151 };
152 
153 /* Prologue types:
154 
155    NORMAL and CALL are the typical types (the -mcall-prologues gcc option
156    causes the generation of the CALL type prologues).  */
157 
158 enum {
159     AVR_PROLOGUE_NONE,              /* No prologue */
160     AVR_PROLOGUE_NORMAL,
161     AVR_PROLOGUE_CALL,              /* -mcall-prologues */
162     AVR_PROLOGUE_MAIN,
163     AVR_PROLOGUE_INTR,              /* interrupt handler */
164     AVR_PROLOGUE_SIG,               /* signal handler */
165 };
166 
167 /* Any function with a frame looks like this
168    .......    <-SP POINTS HERE
169    LOCALS1    <-FP POINTS HERE
170    LOCALS0
171    SAVED FP
172    SAVED R3
173    SAVED R2
174    RET PC
175    FIRST ARG
176    SECOND ARG */
177 
178 struct avr_unwind_cache
179 {
180   /* The previous frame's inner most stack address.  Used as this
181      frame ID's stack_addr.  */
182   CORE_ADDR prev_sp;
183   /* The frame's base, optionally used by the high-level debug info.  */
184   CORE_ADDR base;
185   int size;
186   int prologue_type;
187   /* Table indicating the location of each and every register.  */
188   struct trad_frame_saved_reg *saved_regs;
189 };
190 
191 struct gdbarch_tdep
192 {
193   /* Number of bytes stored to the stack by call instructions.
194      2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7.  */
195   int call_length;
196 
197   /* Type for void.  */
198   struct type *void_type;
199   /* Type for a function returning void.  */
200   struct type *func_void_type;
201   /* Type for a pointer to a function.  Used for the type of PC.  */
202   struct type *pc_type;
203 };
204 
205 /* Lookup the name of a register given it's number.  */
206 
207 static const char *
208 avr_register_name (struct gdbarch *gdbarch, int regnum)
209 {
210   static const char * const register_names[] = {
211     "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
212     "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
213     "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
214     "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
215     "SREG", "SP", "PC2",
216     "pc"
217   };
218   if (regnum < 0)
219     return NULL;
220   if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
221     return NULL;
222   return register_names[regnum];
223 }
224 
225 /* Return the GDB type object for the "standard" data type
226    of data in register N.  */
227 
228 static struct type *
229 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
230 {
231   if (reg_nr == AVR_PC_REGNUM)
232     return builtin_type (gdbarch)->builtin_uint32;
233   if (reg_nr == AVR_PSEUDO_PC_REGNUM)
234     return gdbarch_tdep (gdbarch)->pc_type;
235   if (reg_nr == AVR_SP_REGNUM)
236     return builtin_type (gdbarch)->builtin_data_ptr;
237   return builtin_type (gdbarch)->builtin_uint8;
238 }
239 
240 /* Instruction address checks and convertions.  */
241 
242 static CORE_ADDR
243 avr_make_iaddr (CORE_ADDR x)
244 {
245   return ((x) | AVR_IMEM_START);
246 }
247 
248 /* FIXME: TRoth: Really need to use a larger mask for instructions.  Some
249    devices are already up to 128KBytes of flash space.
250 
251    TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined.  */
252 
253 static CORE_ADDR
254 avr_convert_iaddr_to_raw (CORE_ADDR x)
255 {
256   return ((x) & 0xffffffff);
257 }
258 
259 /* SRAM address checks and convertions.  */
260 
261 static CORE_ADDR
262 avr_make_saddr (CORE_ADDR x)
263 {
264   /* Return 0 for NULL.  */
265   if (x == 0)
266     return 0;
267 
268   return ((x) | AVR_SMEM_START);
269 }
270 
271 static CORE_ADDR
272 avr_convert_saddr_to_raw (CORE_ADDR x)
273 {
274   return ((x) & 0xffffffff);
275 }
276 
277 /* EEPROM address checks and convertions.  I don't know if these will ever
278    actually be used, but I've added them just the same.  TRoth */
279 
280 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
281    programs in the mega128.  */
282 
283 /*  static CORE_ADDR */
284 /*  avr_make_eaddr (CORE_ADDR x) */
285 /*  { */
286 /*    return ((x) | AVR_EMEM_START); */
287 /*  } */
288 
289 /*  static int */
290 /*  avr_eaddr_p (CORE_ADDR x) */
291 /*  { */
292 /*    return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
293 /*  } */
294 
295 /*  static CORE_ADDR */
296 /*  avr_convert_eaddr_to_raw (CORE_ADDR x) */
297 /*  { */
298 /*    return ((x) & 0xffffffff); */
299 /*  } */
300 
301 /* Convert from address to pointer and vice-versa.  */
302 
303 static void
304 avr_address_to_pointer (struct gdbarch *gdbarch,
305 			struct type *type, gdb_byte *buf, CORE_ADDR addr)
306 {
307   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308 
309   /* Is it a data address in flash?  */
310   if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
311     {
312       /* A data pointer in flash is byte addressed.  */
313       store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
314 			      avr_convert_iaddr_to_raw (addr));
315     }
316   /* Is it a code address?  */
317   else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
318 	   || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD)
319     {
320       /* A code pointer is word (16 bits) addressed.  We shift the address down
321 	 by 1 bit to convert it to a pointer.  */
322       store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
323 			      avr_convert_iaddr_to_raw (addr >> 1));
324     }
325   else
326     {
327       /* Strip off any upper segment bits.  */
328       store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
329 			      avr_convert_saddr_to_raw (addr));
330     }
331 }
332 
333 static CORE_ADDR
334 avr_pointer_to_address (struct gdbarch *gdbarch,
335 			struct type *type, const gdb_byte *buf)
336 {
337   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
338   CORE_ADDR addr
339     = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
340 
341   /* Is it a data address in flash?  */
342   if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
343     {
344       /* A data pointer in flash is already byte addressed.  */
345       return avr_make_iaddr (addr);
346     }
347   /* Is it a code address?  */
348   else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC
349 	   || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD
350 	   || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
351     {
352       /* A code pointer is word (16 bits) addressed so we shift it up
353 	 by 1 bit to convert it to an address.  */
354       return avr_make_iaddr (addr << 1);
355     }
356   else
357     return avr_make_saddr (addr);
358 }
359 
360 static CORE_ADDR
361 avr_integer_to_address (struct gdbarch *gdbarch,
362 			struct type *type, const gdb_byte *buf)
363 {
364   ULONGEST addr = unpack_long (type, buf);
365 
366   return avr_make_saddr (addr);
367 }
368 
369 static CORE_ADDR
370 avr_read_pc (struct regcache *regcache)
371 {
372   ULONGEST pc;
373   regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc);
374   return avr_make_iaddr (pc);
375 }
376 
377 static void
378 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
379 {
380   regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
381                                   avr_convert_iaddr_to_raw (val));
382 }
383 
384 static enum register_status
385 avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
386                           int regnum, gdb_byte *buf)
387 {
388   ULONGEST val;
389   enum register_status status;
390 
391   switch (regnum)
392     {
393     case AVR_PSEUDO_PC_REGNUM:
394       status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val);
395       if (status != REG_VALID)
396 	return status;
397       val >>= 1;
398       store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
399       return status;
400     default:
401       internal_error (__FILE__, __LINE__, _("invalid regnum"));
402     }
403 }
404 
405 static void
406 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
407                            int regnum, const gdb_byte *buf)
408 {
409   ULONGEST val;
410 
411   switch (regnum)
412     {
413     case AVR_PSEUDO_PC_REGNUM:
414       val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
415       val <<= 1;
416       regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
417       break;
418     default:
419       internal_error (__FILE__, __LINE__, _("invalid regnum"));
420     }
421 }
422 
423 /* Function: avr_scan_prologue
424 
425    This function decodes an AVR function prologue to determine:
426      1) the size of the stack frame
427      2) which registers are saved on it
428      3) the offsets of saved regs
429    This information is stored in the avr_unwind_cache structure.
430 
431    Some devices lack the sbiw instruction, so on those replace this:
432         sbiw    r28, XX
433    with this:
434         subi    r28,lo8(XX)
435         sbci    r29,hi8(XX)
436 
437    A typical AVR function prologue with a frame pointer might look like this:
438         push    rXX        ; saved regs
439         ...
440         push    r28
441         push    r29
442         in      r28,__SP_L__
443         in      r29,__SP_H__
444         sbiw    r28,<LOCALS_SIZE>
445         in      __tmp_reg__,__SREG__
446         cli
447         out     __SP_H__,r29
448         out     __SREG__,__tmp_reg__
449         out     __SP_L__,r28
450 
451    A typical AVR function prologue without a frame pointer might look like
452    this:
453         push    rXX        ; saved regs
454         ...
455 
456    A main function prologue looks like this:
457         ldi     r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
458         ldi     r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
459         out     __SP_H__,r29
460         out     __SP_L__,r28
461 
462    A signal handler prologue looks like this:
463         push    __zero_reg__
464         push    __tmp_reg__
465         in      __tmp_reg__, __SREG__
466         push    __tmp_reg__
467         clr     __zero_reg__
468         push    rXX             ; save registers r18:r27, r30:r31
469         ...
470         push    r28             ; save frame pointer
471         push    r29
472         in      r28, __SP_L__
473         in      r29, __SP_H__
474         sbiw    r28, <LOCALS_SIZE>
475         out     __SP_H__, r29
476         out     __SP_L__, r28
477 
478    A interrupt handler prologue looks like this:
479         sei
480         push    __zero_reg__
481         push    __tmp_reg__
482         in      __tmp_reg__, __SREG__
483         push    __tmp_reg__
484         clr     __zero_reg__
485         push    rXX             ; save registers r18:r27, r30:r31
486         ...
487         push    r28             ; save frame pointer
488         push    r29
489         in      r28, __SP_L__
490         in      r29, __SP_H__
491         sbiw    r28, <LOCALS_SIZE>
492         cli
493         out     __SP_H__, r29
494         sei
495         out     __SP_L__, r28
496 
497    A `-mcall-prologues' prologue looks like this (Note that the megas use a
498    jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
499    32 bit insn and rjmp is a 16 bit insn):
500         ldi     r26,lo8(<LOCALS_SIZE>)
501         ldi     r27,hi8(<LOCALS_SIZE>)
502         ldi     r30,pm_lo8(.L_foo_body)
503         ldi     r31,pm_hi8(.L_foo_body)
504         rjmp    __prologue_saves__+RRR
505         .L_foo_body:  */
506 
507 /* Not really part of a prologue, but still need to scan for it, is when a
508    function prologue moves values passed via registers as arguments to new
509    registers.  In this case, all local variables live in registers, so there
510    may be some register saves.  This is what it looks like:
511         movw    rMM, rNN
512         ...
513 
514    There could be multiple movw's.  If the target doesn't have a movw insn, it
515    will use two mov insns.  This could be done after any of the above prologue
516    types.  */
517 
518 static CORE_ADDR
519 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
520 		   struct avr_unwind_cache *info)
521 {
522   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
523   int i;
524   unsigned short insn;
525   int scan_stage = 0;
526   struct bound_minimal_symbol msymbol;
527   unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
528   int vpc = 0;
529   int len;
530 
531   len = pc_end - pc_beg;
532   if (len > AVR_MAX_PROLOGUE_SIZE)
533     len = AVR_MAX_PROLOGUE_SIZE;
534 
535   /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
536      reading in the bytes of the prologue.  The problem is that the figuring
537      out where the end of the prologue is is a bit difficult.  The old code
538      tried to do that, but failed quite often.  */
539   read_memory (pc_beg, prologue, len);
540 
541   /* Scanning main()'s prologue
542      ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
543      ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
544      out __SP_H__,r29
545      out __SP_L__,r28 */
546 
547   if (len >= 4)
548     {
549       CORE_ADDR locals;
550       static const unsigned char img[] = {
551 	0xde, 0xbf,		/* out __SP_H__,r29 */
552 	0xcd, 0xbf		/* out __SP_L__,r28 */
553       };
554 
555       insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
556       /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
557       if ((insn & 0xf0f0) == 0xe0c0)
558 	{
559 	  locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
560 	  insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
561 	  /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
562 	  if ((insn & 0xf0f0) == 0xe0d0)
563 	    {
564 	      locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
565 	      if (vpc + 4 + sizeof (img) < len
566 		  && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
567 		{
568                   info->prologue_type = AVR_PROLOGUE_MAIN;
569                   info->base = locals;
570                   return pc_beg + 4;
571 		}
572 	    }
573 	}
574     }
575 
576   /* Scanning `-mcall-prologues' prologue
577      Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
578 
579   while (1)	/* Using a while to avoid many goto's */
580     {
581       int loc_size;
582       int body_addr;
583       unsigned num_pushes;
584       int pc_offset = 0;
585 
586       /* At least the fifth instruction must have been executed to
587 	 modify frame shape.  */
588       if (len < 10)
589 	break;
590 
591       insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
592       /* ldi r26,<LOCALS_SIZE> */
593       if ((insn & 0xf0f0) != 0xe0a0)
594 	break;
595       loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
596       pc_offset += 2;
597 
598       insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
599       /* ldi r27,<LOCALS_SIZE> / 256 */
600       if ((insn & 0xf0f0) != 0xe0b0)
601 	break;
602       loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
603       pc_offset += 2;
604 
605       insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
606       /* ldi r30,pm_lo8(.L_foo_body) */
607       if ((insn & 0xf0f0) != 0xe0e0)
608 	break;
609       body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
610       pc_offset += 2;
611 
612       insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
613       /* ldi r31,pm_hi8(.L_foo_body) */
614       if ((insn & 0xf0f0) != 0xe0f0)
615 	break;
616       body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
617       pc_offset += 2;
618 
619       msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
620       if (!msymbol.minsym)
621 	break;
622 
623       insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
624       /* rjmp __prologue_saves__+RRR */
625       if ((insn & 0xf000) == 0xc000)
626         {
627           /* Extract PC relative offset from RJMP */
628           i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
629           /* Convert offset to byte addressable mode */
630           i *= 2;
631           /* Destination address */
632           i += pc_beg + 10;
633 
634           if (body_addr != (pc_beg + 10)/2)
635             break;
636 
637           pc_offset += 2;
638         }
639       else if ((insn & 0xfe0e) == 0x940c)
640         {
641           /* Extract absolute PC address from JMP */
642           i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
643 	       | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
644 		  & 0xffff));
645           /* Convert address to byte addressable mode */
646           i *= 2;
647 
648           if (body_addr != (pc_beg + 12)/2)
649             break;
650 
651           pc_offset += 4;
652         }
653       else
654         break;
655 
656       /* Resolve offset (in words) from __prologue_saves__ symbol.
657          Which is a pushes count in `-mcall-prologues' mode */
658       num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
659 
660       if (num_pushes > AVR_MAX_PUSHES)
661         {
662           fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
663                               num_pushes);
664           num_pushes = 0;
665         }
666 
667       if (num_pushes)
668 	{
669 	  int from;
670 
671 	  info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes;
672 	  if (num_pushes >= 2)
673 	    info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1;
674 
675 	  i = 0;
676 	  for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
677 	       from <= AVR_LAST_PUSHED_REGNUM; ++from)
678 	    info->saved_regs [from].addr = ++i;
679 	}
680       info->size = loc_size + num_pushes;
681       info->prologue_type = AVR_PROLOGUE_CALL;
682 
683       return pc_beg + pc_offset;
684     }
685 
686   /* Scan for the beginning of the prologue for an interrupt or signal
687      function.  Note that we have to set the prologue type here since the
688      third stage of the prologue may not be present (e.g. no saved registered
689      or changing of the SP register).  */
690 
691   if (1)
692     {
693       static const unsigned char img[] = {
694 	0x78, 0x94,		/* sei */
695 	0x1f, 0x92,		/* push r1 */
696 	0x0f, 0x92,		/* push r0 */
697 	0x0f, 0xb6,		/* in r0,0x3f SREG */
698 	0x0f, 0x92,		/* push r0 */
699 	0x11, 0x24		/* clr r1 */
700       };
701       if (len >= sizeof (img)
702 	  && memcmp (prologue, img, sizeof (img)) == 0)
703 	{
704           info->prologue_type = AVR_PROLOGUE_INTR;
705 	  vpc += sizeof (img);
706           info->saved_regs[AVR_SREG_REGNUM].addr = 3;
707           info->saved_regs[0].addr = 2;
708           info->saved_regs[1].addr = 1;
709           info->size += 3;
710 	}
711       else if (len >= sizeof (img) - 2
712 	       && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
713 	{
714           info->prologue_type = AVR_PROLOGUE_SIG;
715           vpc += sizeof (img) - 2;
716           info->saved_regs[AVR_SREG_REGNUM].addr = 3;
717           info->saved_regs[0].addr = 2;
718           info->saved_regs[1].addr = 1;
719           info->size += 2;
720 	}
721     }
722 
723   /* First stage of the prologue scanning.
724      Scan pushes (saved registers) */
725 
726   for (; vpc < len; vpc += 2)
727     {
728       insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
729       if ((insn & 0xfe0f) == 0x920f)	/* push rXX */
730 	{
731 	  /* Bits 4-9 contain a mask for registers R0-R32.  */
732 	  int regno = (insn & 0x1f0) >> 4;
733 	  info->size++;
734 	  info->saved_regs[regno].addr = info->size;
735 	  scan_stage = 1;
736 	}
737       else
738 	break;
739     }
740 
741   gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
742 
743   /* Handle static small stack allocation using rcall or push.  */
744 
745   while (scan_stage == 1 && vpc < len)
746     {
747       insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
748       if (insn == 0xd000)	/* rcall .+0 */
749         {
750           info->size += gdbarch_tdep (gdbarch)->call_length;
751           vpc += 2;
752         }
753       else if (insn == 0x920f || insn == 0x921f)  /* push r0 or push r1 */
754         {
755           info->size += 1;
756           vpc += 2;
757         }
758       else
759         break;
760     }
761 
762   /* Second stage of the prologue scanning.
763      Scan:
764      in r28,__SP_L__
765      in r29,__SP_H__ */
766 
767   if (scan_stage == 1 && vpc < len)
768     {
769       static const unsigned char img[] = {
770 	0xcd, 0xb7,		/* in r28,__SP_L__ */
771 	0xde, 0xb7		/* in r29,__SP_H__ */
772       };
773 
774       if (vpc + sizeof (img) < len
775 	  && memcmp (prologue + vpc, img, sizeof (img)) == 0)
776 	{
777 	  vpc += 4;
778 	  scan_stage = 2;
779 	}
780     }
781 
782   /* Third stage of the prologue scanning.  (Really two stages).
783      Scan for:
784      sbiw r28,XX or subi r28,lo8(XX)
785                     sbci r29,hi8(XX)
786      in __tmp_reg__,__SREG__
787      cli
788      out __SP_H__,r29
789      out __SREG__,__tmp_reg__
790      out __SP_L__,r28 */
791 
792   if (scan_stage == 2 && vpc < len)
793     {
794       int locals_size = 0;
795       static const unsigned char img[] = {
796 	0x0f, 0xb6,		/* in r0,0x3f */
797 	0xf8, 0x94,		/* cli */
798 	0xde, 0xbf,		/* out 0x3e,r29 ; SPH */
799 	0x0f, 0xbe,		/* out 0x3f,r0  ; SREG */
800 	0xcd, 0xbf		/* out 0x3d,r28 ; SPL */
801       };
802       static const unsigned char img_sig[] = {
803 	0xde, 0xbf,		/* out 0x3e,r29 ; SPH */
804 	0xcd, 0xbf		/* out 0x3d,r28 ; SPL */
805       };
806       static const unsigned char img_int[] = {
807 	0xf8, 0x94,		/* cli */
808 	0xde, 0xbf,		/* out 0x3e,r29 ; SPH */
809 	0x78, 0x94,		/* sei */
810 	0xcd, 0xbf		/* out 0x3d,r28 ; SPL */
811       };
812 
813       insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
814       if ((insn & 0xff30) == 0x9720)	/* sbiw r28,XXX */
815         {
816           locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
817           vpc += 2;
818         }
819       else if ((insn & 0xf0f0) == 0x50c0)	/* subi r28,lo8(XX) */
820 	{
821 	  locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
822 	  vpc += 2;
823 	  insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
824 	  vpc += 2;
825 	  locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
826 	}
827       else
828         return pc_beg + vpc;
829 
830       /* Scan the last part of the prologue.  May not be present for interrupt
831          or signal handler functions, which is why we set the prologue type
832          when we saw the beginning of the prologue previously.  */
833 
834       if (vpc + sizeof (img_sig) < len
835 	  && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
836         {
837           vpc += sizeof (img_sig);
838         }
839       else if (vpc + sizeof (img_int) < len
840 	       && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
841         {
842           vpc += sizeof (img_int);
843         }
844       if (vpc + sizeof (img) < len
845 	  && memcmp (prologue + vpc, img, sizeof (img)) == 0)
846         {
847           info->prologue_type = AVR_PROLOGUE_NORMAL;
848           vpc += sizeof (img);
849         }
850 
851       info->size += locals_size;
852 
853       /* Fall through.  */
854     }
855 
856   /* If we got this far, we could not scan the prologue, so just return the pc
857      of the frame plus an adjustment for argument move insns.  */
858 
859   for (; vpc < len; vpc += 2)
860     {
861       insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
862       if ((insn & 0xff00) == 0x0100)	/* movw rXX, rYY */
863         continue;
864       else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
865         continue;
866       else
867           break;
868     }
869 
870   return pc_beg + vpc;
871 }
872 
873 static CORE_ADDR
874 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
875 {
876   CORE_ADDR func_addr, func_end;
877   CORE_ADDR post_prologue_pc;
878 
879   /* See what the symbol table says */
880 
881   if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
882     return pc;
883 
884   post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
885   if (post_prologue_pc != 0)
886     return std::max (pc, post_prologue_pc);
887 
888   {
889     CORE_ADDR prologue_end = pc;
890     struct avr_unwind_cache info = {0};
891     struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
892 
893     info.saved_regs = saved_regs;
894 
895     /* Need to run the prologue scanner to figure out if the function has a
896        prologue and possibly skip over moving arguments passed via registers
897        to other registers.  */
898 
899     prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
900 
901     if (info.prologue_type != AVR_PROLOGUE_NONE)
902       return prologue_end;
903   }
904 
905   /* Either we didn't find the start of this function (nothing we can do),
906      or there's no line info, or the line after the prologue is after
907      the end of the function (there probably isn't a prologue).  */
908 
909   return pc;
910 }
911 
912 /* Not all avr devices support the BREAK insn.  Those that don't should treat
913    it as a NOP.  Thus, it should be ok.  Since the avr is currently a remote
914    only target, this shouldn't be a problem (I hope).  TRoth/2003-05-14  */
915 
916 constexpr gdb_byte avr_break_insn [] = { 0x98, 0x95 };
917 
918 typedef BP_MANIPULATION (avr_break_insn) avr_breakpoint;
919 
920 /* Determine, for architecture GDBARCH, how a return value of TYPE
921    should be returned.  If it is supposed to be returned in registers,
922    and READBUF is non-zero, read the appropriate value from REGCACHE,
923    and copy it into READBUF.  If WRITEBUF is non-zero, write the value
924    from WRITEBUF into REGCACHE.  */
925 
926 static enum return_value_convention
927 avr_return_value (struct gdbarch *gdbarch, struct value *function,
928 		  struct type *valtype, struct regcache *regcache,
929 		  gdb_byte *readbuf, const gdb_byte *writebuf)
930 {
931   int i;
932   /* Single byte are returned in r24.
933      Otherwise, the MSB of the return value is always in r25, calculate which
934      register holds the LSB.  */
935   int lsb_reg;
936 
937   if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
938        || TYPE_CODE (valtype) == TYPE_CODE_UNION
939        || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
940       && TYPE_LENGTH (valtype) > 8)
941     return RETURN_VALUE_STRUCT_CONVENTION;
942 
943   if (TYPE_LENGTH (valtype) <= 2)
944     lsb_reg = 24;
945   else if (TYPE_LENGTH (valtype) <= 4)
946     lsb_reg = 22;
947   else if (TYPE_LENGTH (valtype) <= 8)
948     lsb_reg = 18;
949   else
950     gdb_assert_not_reached ("unexpected type length");
951 
952   if (writebuf != NULL)
953     {
954       for (i = 0; i < TYPE_LENGTH (valtype); i++)
955         regcache_cooked_write (regcache, lsb_reg + i, writebuf + i);
956     }
957 
958   if (readbuf != NULL)
959     {
960       for (i = 0; i < TYPE_LENGTH (valtype); i++)
961         regcache_cooked_read (regcache, lsb_reg + i, readbuf + i);
962     }
963 
964   return RETURN_VALUE_REGISTER_CONVENTION;
965 }
966 
967 
968 /* Put here the code to store, into fi->saved_regs, the addresses of
969    the saved registers of frame described by FRAME_INFO.  This
970    includes special registers such as pc and fp saved in special ways
971    in the stack frame.  sp is even more special: the address we return
972    for it IS the sp for the next frame.  */
973 
974 static struct avr_unwind_cache *
975 avr_frame_unwind_cache (struct frame_info *this_frame,
976                         void **this_prologue_cache)
977 {
978   CORE_ADDR start_pc, current_pc;
979   ULONGEST prev_sp;
980   ULONGEST this_base;
981   struct avr_unwind_cache *info;
982   struct gdbarch *gdbarch;
983   struct gdbarch_tdep *tdep;
984   int i;
985 
986   if (*this_prologue_cache)
987     return (struct avr_unwind_cache *) *this_prologue_cache;
988 
989   info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
990   *this_prologue_cache = info;
991   info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
992 
993   info->size = 0;
994   info->prologue_type = AVR_PROLOGUE_NONE;
995 
996   start_pc = get_frame_func (this_frame);
997   current_pc = get_frame_pc (this_frame);
998   if ((start_pc > 0) && (start_pc <= current_pc))
999     avr_scan_prologue (get_frame_arch (this_frame),
1000 		       start_pc, current_pc, info);
1001 
1002   if ((info->prologue_type != AVR_PROLOGUE_NONE)
1003       && (info->prologue_type != AVR_PROLOGUE_MAIN))
1004     {
1005       ULONGEST high_base;       /* High byte of FP */
1006 
1007       /* The SP was moved to the FP.  This indicates that a new frame
1008          was created.  Get THIS frame's FP value by unwinding it from
1009          the next frame.  */
1010       this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
1011       high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
1012       this_base += (high_base << 8);
1013 
1014       /* The FP points at the last saved register.  Adjust the FP back
1015          to before the first saved register giving the SP.  */
1016       prev_sp = this_base + info->size;
1017    }
1018   else
1019     {
1020       /* Assume that the FP is this frame's SP but with that pushed
1021          stack space added back.  */
1022       this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1023       prev_sp = this_base + info->size;
1024     }
1025 
1026   /* Add 1 here to adjust for the post-decrement nature of the push
1027      instruction.*/
1028   info->prev_sp = avr_make_saddr (prev_sp + 1);
1029   info->base = avr_make_saddr (this_base);
1030 
1031   gdbarch = get_frame_arch (this_frame);
1032 
1033   /* Adjust all the saved registers so that they contain addresses and not
1034      offsets.  */
1035   for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1036     if (info->saved_regs[i].addr > 0)
1037       info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr;
1038 
1039   /* Except for the main and startup code, the return PC is always saved on
1040      the stack and is at the base of the frame.  */
1041 
1042   if (info->prologue_type != AVR_PROLOGUE_MAIN)
1043     info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp;
1044 
1045   /* The previous frame's SP needed to be computed.  Save the computed
1046      value.  */
1047   tdep = gdbarch_tdep (gdbarch);
1048   trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM,
1049                         info->prev_sp - 1 + tdep->call_length);
1050 
1051   return info;
1052 }
1053 
1054 static CORE_ADDR
1055 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1056 {
1057   ULONGEST pc;
1058 
1059   pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1060 
1061   return avr_make_iaddr (pc);
1062 }
1063 
1064 static CORE_ADDR
1065 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1066 {
1067   ULONGEST sp;
1068 
1069   sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1070 
1071   return avr_make_saddr (sp);
1072 }
1073 
1074 /* Given a GDB frame, determine the address of the calling function's
1075    frame.  This will be used to create a new GDB frame struct.  */
1076 
1077 static void
1078 avr_frame_this_id (struct frame_info *this_frame,
1079                    void **this_prologue_cache,
1080                    struct frame_id *this_id)
1081 {
1082   struct avr_unwind_cache *info
1083     = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1084   CORE_ADDR base;
1085   CORE_ADDR func;
1086   struct frame_id id;
1087 
1088   /* The FUNC is easy.  */
1089   func = get_frame_func (this_frame);
1090 
1091   /* Hopefully the prologue analysis either correctly determined the
1092      frame's base (which is the SP from the previous frame), or set
1093      that base to "NULL".  */
1094   base = info->prev_sp;
1095   if (base == 0)
1096     return;
1097 
1098   id = frame_id_build (base, func);
1099   (*this_id) = id;
1100 }
1101 
1102 static struct value *
1103 avr_frame_prev_register (struct frame_info *this_frame,
1104 			 void **this_prologue_cache, int regnum)
1105 {
1106   struct avr_unwind_cache *info
1107     = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1108 
1109   if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1110     {
1111       if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM))
1112         {
1113 	  /* Reading the return PC from the PC register is slightly
1114 	     abnormal.  register_size(AVR_PC_REGNUM) says it is 4 bytes,
1115 	     but in reality, only two bytes (3 in upcoming mega256) are
1116 	     stored on the stack.
1117 
1118 	     Also, note that the value on the stack is an addr to a word
1119 	     not a byte, so we will need to multiply it by two at some
1120 	     point.
1121 
1122 	     And to confuse matters even more, the return address stored
1123 	     on the stack is in big endian byte order, even though most
1124 	     everything else about the avr is little endian.  Ick!  */
1125 	  ULONGEST pc;
1126 	  int i;
1127 	  gdb_byte buf[3];
1128 	  struct gdbarch *gdbarch = get_frame_arch (this_frame);
1129 	  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1130 
1131 	  read_memory (info->saved_regs[AVR_PC_REGNUM].addr,
1132                        buf, tdep->call_length);
1133 
1134 	  /* Extract the PC read from memory as a big-endian.  */
1135 	  pc = 0;
1136 	  for (i = 0; i < tdep->call_length; i++)
1137 	    pc = (pc << 8) | buf[i];
1138 
1139           if (regnum == AVR_PC_REGNUM)
1140             pc <<= 1;
1141 
1142 	  return frame_unwind_got_constant (this_frame, regnum, pc);
1143         }
1144 
1145       return frame_unwind_got_optimized (this_frame, regnum);
1146     }
1147 
1148   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1149 }
1150 
1151 static const struct frame_unwind avr_frame_unwind = {
1152   NORMAL_FRAME,
1153   default_frame_unwind_stop_reason,
1154   avr_frame_this_id,
1155   avr_frame_prev_register,
1156   NULL,
1157   default_frame_sniffer
1158 };
1159 
1160 static CORE_ADDR
1161 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1162 {
1163   struct avr_unwind_cache *info
1164     = avr_frame_unwind_cache (this_frame, this_cache);
1165 
1166   return info->base;
1167 }
1168 
1169 static const struct frame_base avr_frame_base = {
1170   &avr_frame_unwind,
1171   avr_frame_base_address,
1172   avr_frame_base_address,
1173   avr_frame_base_address
1174 };
1175 
1176 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1177    frame.  The frame ID's base needs to match the TOS value saved by
1178    save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint.  */
1179 
1180 static struct frame_id
1181 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1182 {
1183   ULONGEST base;
1184 
1185   base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1186   return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1187 }
1188 
1189 /* When arguments must be pushed onto the stack, they go on in reverse
1190    order.  The below implements a FILO (stack) to do this.  */
1191 
1192 struct stack_item
1193 {
1194   int len;
1195   struct stack_item *prev;
1196   gdb_byte *data;
1197 };
1198 
1199 static struct stack_item *
1200 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1201 {
1202   struct stack_item *si;
1203   si = XNEW (struct stack_item);
1204   si->data = (gdb_byte *) xmalloc (len);
1205   si->len = len;
1206   si->prev = prev;
1207   memcpy (si->data, contents, len);
1208   return si;
1209 }
1210 
1211 static struct stack_item *pop_stack_item (struct stack_item *si);
1212 static struct stack_item *
1213 pop_stack_item (struct stack_item *si)
1214 {
1215   struct stack_item *dead = si;
1216   si = si->prev;
1217   xfree (dead->data);
1218   xfree (dead);
1219   return si;
1220 }
1221 
1222 /* Setup the function arguments for calling a function in the inferior.
1223 
1224    On the AVR architecture, there are 18 registers (R25 to R8) which are
1225    dedicated for passing function arguments.  Up to the first 18 arguments
1226    (depending on size) may go into these registers.  The rest go on the stack.
1227 
1228    All arguments are aligned to start in even-numbered registers (odd-sized
1229    arguments, including char, have one free register above them).  For example,
1230    an int in arg1 and a char in arg2 would be passed as such:
1231 
1232       arg1 -> r25:r24
1233       arg2 -> r22
1234 
1235    Arguments that are larger than 2 bytes will be split between two or more
1236    registers as available, but will NOT be split between a register and the
1237    stack.  Arguments that go onto the stack are pushed last arg first (this is
1238    similar to the d10v).  */
1239 
1240 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1241    inaccurate.
1242 
1243    An exceptional case exists for struct arguments (and possibly other
1244    aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1245    not a multiple of WORDSIZE bytes.  In this case the argument is never split
1246    between the registers and the stack, but instead is copied in its entirety
1247    onto the stack, AND also copied into as many registers as there is room
1248    for.  In other words, space in registers permitting, two copies of the same
1249    argument are passed in.  As far as I can tell, only the one on the stack is
1250    used, although that may be a function of the level of compiler
1251    optimization.  I suspect this is a compiler bug.  Arguments of these odd
1252    sizes are left-justified within the word (as opposed to arguments smaller
1253    than WORDSIZE bytes, which are right-justified).
1254 
1255    If the function is to return an aggregate type such as a struct, the caller
1256    must allocate space into which the callee will copy the return value.  In
1257    this case, a pointer to the return value location is passed into the callee
1258    in register R0, which displaces one of the other arguments passed in via
1259    registers R0 to R2.  */
1260 
1261 static CORE_ADDR
1262 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1263                      struct regcache *regcache, CORE_ADDR bp_addr,
1264                      int nargs, struct value **args, CORE_ADDR sp,
1265                      int struct_return, CORE_ADDR struct_addr)
1266 {
1267   int i;
1268   gdb_byte buf[3];
1269   int call_length = gdbarch_tdep (gdbarch)->call_length;
1270   CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1271   int regnum = AVR_ARGN_REGNUM;
1272   struct stack_item *si = NULL;
1273 
1274   if (struct_return)
1275     {
1276       regcache_cooked_write_unsigned
1277         (regcache, regnum--, (struct_addr >> 8) & 0xff);
1278       regcache_cooked_write_unsigned
1279         (regcache, regnum--, struct_addr & 0xff);
1280       /* SP being post decremented, we need to reserve one byte so that the
1281          return address won't overwrite the result (or vice-versa).  */
1282       if (sp == struct_addr)
1283         sp--;
1284     }
1285 
1286   for (i = 0; i < nargs; i++)
1287     {
1288       int last_regnum;
1289       int j;
1290       struct value *arg = args[i];
1291       struct type *type = check_typedef (value_type (arg));
1292       const bfd_byte *contents = value_contents (arg);
1293       int len = TYPE_LENGTH (type);
1294 
1295       /* Calculate the potential last register needed.
1296          E.g. For length 2, registers regnum and regnum-1 (say 25 and 24)
1297          shall be used. So, last needed register will be regnum-1(24).  */
1298       last_regnum = regnum - (len + (len & 1)) + 1;
1299 
1300       /* If there are registers available, use them.  Once we start putting
1301          stuff on the stack, all subsequent args go on stack.  */
1302       if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM))
1303         {
1304           /* Skip a register for odd length args.  */
1305           if (len & 1)
1306             regnum--;
1307 
1308           /* Write MSB of argument into register and subsequent bytes in
1309              decreasing register numbers.  */
1310           for (j = 0; j < len; j++)
1311             regcache_cooked_write_unsigned
1312               (regcache, regnum--, contents[len - j - 1]);
1313         }
1314       /* No registers available, push the args onto the stack.  */
1315       else
1316         {
1317           /* From here on, we don't care about regnum.  */
1318           si = push_stack_item (si, contents, len);
1319         }
1320     }
1321 
1322   /* Push args onto the stack.  */
1323   while (si)
1324     {
1325       sp -= si->len;
1326       /* Add 1 to sp here to account for post decr nature of pushes.  */
1327       write_memory (sp + 1, si->data, si->len);
1328       si = pop_stack_item (si);
1329     }
1330 
1331   /* Set the return address.  For the avr, the return address is the BP_ADDR.
1332      Need to push the return address onto the stack noting that it needs to be
1333      in big-endian order on the stack.  */
1334   for (i = 1; i <= call_length; i++)
1335     {
1336       buf[call_length - i] = return_pc & 0xff;
1337       return_pc >>= 8;
1338     }
1339 
1340   sp -= call_length;
1341   /* Use 'sp + 1' since pushes are post decr ops.  */
1342   write_memory (sp + 1, buf, call_length);
1343 
1344   /* Finally, update the SP register.  */
1345   regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1346 				  avr_convert_saddr_to_raw (sp));
1347 
1348   /* Return SP value for the dummy frame, where the return address hasn't been
1349      pushed.  */
1350   return sp + call_length;
1351 }
1352 
1353 /* Unfortunately dwarf2 register for SP is 32.  */
1354 
1355 static int
1356 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1357 {
1358   if (reg >= 0 && reg < 32)
1359     return reg;
1360   if (reg == 32)
1361     return AVR_SP_REGNUM;
1362   return -1;
1363 }
1364 
1365 /* Implementation of `address_class_type_flags' gdbarch method.
1366 
1367    This method maps DW_AT_address_class attributes to a
1368    type_instance_flag_value.  */
1369 
1370 static int
1371 avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1372 {
1373   /* The value 1 of the DW_AT_address_class attribute corresponds to the
1374      __flash qualifier.  Note that this attribute is only valid with
1375      pointer types and therefore the flag is set to the pointer type and
1376      not its target type.  */
1377   if (dwarf2_addr_class == 1 && byte_size == 2)
1378     return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1379   return 0;
1380 }
1381 
1382 /* Implementation of `address_class_type_flags_to_name' gdbarch method.
1383 
1384    Convert a type_instance_flag_value to an address space qualifier.  */
1385 
1386 static const char*
1387 avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
1388 {
1389   if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
1390     return "flash";
1391   else
1392     return NULL;
1393 }
1394 
1395 /* Implementation of `address_class_name_to_type_flags' gdbarch method.
1396 
1397    Convert an address space qualifier to a type_instance_flag_value.  */
1398 
1399 static int
1400 avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
1401                                       const char* name,
1402                                       int *type_flags_ptr)
1403 {
1404   if (strcmp (name, "flash") == 0)
1405     {
1406       *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1407       return 1;
1408     }
1409   else
1410     return 0;
1411 }
1412 
1413 /* Initialize the gdbarch structure for the AVR's.  */
1414 
1415 static struct gdbarch *
1416 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1417 {
1418   struct gdbarch *gdbarch;
1419   struct gdbarch_tdep *tdep;
1420   struct gdbarch_list *best_arch;
1421   int call_length;
1422 
1423   /* Avr-6 call instructions save 3 bytes.  */
1424   switch (info.bfd_arch_info->mach)
1425     {
1426     case bfd_mach_avr1:
1427     case bfd_mach_avrxmega1:
1428     case bfd_mach_avr2:
1429     case bfd_mach_avrxmega2:
1430     case bfd_mach_avr3:
1431     case bfd_mach_avrxmega3:
1432     case bfd_mach_avr4:
1433     case bfd_mach_avrxmega4:
1434     case bfd_mach_avr5:
1435     case bfd_mach_avrxmega5:
1436     default:
1437       call_length = 2;
1438       break;
1439     case bfd_mach_avr6:
1440     case bfd_mach_avrxmega6:
1441     case bfd_mach_avrxmega7:
1442       call_length = 3;
1443       break;
1444     }
1445 
1446   /* If there is already a candidate, use it.  */
1447   for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1448        best_arch != NULL;
1449        best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1450     {
1451       if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1452 	return best_arch->gdbarch;
1453     }
1454 
1455   /* None found, create a new architecture from the information provided.  */
1456   tdep = XNEW (struct gdbarch_tdep);
1457   gdbarch = gdbarch_alloc (&info, tdep);
1458 
1459   tdep->call_length = call_length;
1460 
1461   /* Create a type for PC.  We can't use builtin types here, as they may not
1462      be defined.  */
1463   tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
1464   tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1465   tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL,
1466 				     tdep->func_void_type);
1467 
1468   set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1469   set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1470   set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1471   set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1472   set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1473   set_gdbarch_addr_bit (gdbarch, 32);
1474 
1475   set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1476   set_gdbarch_wchar_signed (gdbarch, 1);
1477 
1478   set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1479   set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1480   set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1481 
1482   set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1483   set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1484   set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1485 
1486   set_gdbarch_read_pc (gdbarch, avr_read_pc);
1487   set_gdbarch_write_pc (gdbarch, avr_write_pc);
1488 
1489   set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1490 
1491   set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1492   set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1493 
1494   set_gdbarch_register_name (gdbarch, avr_register_name);
1495   set_gdbarch_register_type (gdbarch, avr_register_type);
1496 
1497   set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1498   set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1499   set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1500 
1501   set_gdbarch_return_value (gdbarch, avr_return_value);
1502   set_gdbarch_print_insn (gdbarch, print_insn_avr);
1503 
1504   set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1505 
1506   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1507 
1508   set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1509   set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1510   set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1511 
1512   set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1513   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1514 
1515   set_gdbarch_breakpoint_kind_from_pc (gdbarch, avr_breakpoint::kind_from_pc);
1516   set_gdbarch_sw_breakpoint_from_kind (gdbarch, avr_breakpoint::bp_from_kind);
1517 
1518   frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1519   frame_base_set_default (gdbarch, &avr_frame_base);
1520 
1521   set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1522 
1523   set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1524   set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1525 
1526   set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
1527   set_gdbarch_address_class_name_to_type_flags
1528     (gdbarch, avr_address_class_name_to_type_flags);
1529   set_gdbarch_address_class_type_flags_to_name
1530     (gdbarch, avr_address_class_type_flags_to_name);
1531 
1532   return gdbarch;
1533 }
1534 
1535 /* Send a query request to the avr remote target asking for values of the io
1536    registers.  If args parameter is not NULL, then the user has requested info
1537    on a specific io register [This still needs implemented and is ignored for
1538    now].  The query string should be one of these forms:
1539 
1540    "Ravr.io_reg" -> reply is "NN" number of io registers
1541 
1542    "Ravr.io_reg:addr,len" where addr is first register and len is number of
1543    registers to be read.  The reply should be "<NAME>,VV;" for each io register
1544    where, <NAME> is a string, and VV is the hex value of the register.
1545 
1546    All io registers are 8-bit.  */
1547 
1548 static void
1549 avr_io_reg_read_command (char *args, int from_tty)
1550 {
1551   LONGEST bufsiz = 0;
1552   gdb_byte *buf;
1553   const char *bufstr;
1554   char query[400];
1555   const char *p;
1556   unsigned int nreg = 0;
1557   unsigned int val;
1558   int i, j, k, step;
1559 
1560   /* Find out how many io registers the target has.  */
1561   bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1562 			      "avr.io_reg", &buf);
1563   bufstr = (const char *) buf;
1564 
1565   if (bufsiz <= 0)
1566     {
1567       fprintf_unfiltered (gdb_stderr,
1568 			  _("ERR: info io_registers NOT supported "
1569 			    "by current target\n"));
1570       return;
1571     }
1572 
1573   if (sscanf (bufstr, "%x", &nreg) != 1)
1574     {
1575       fprintf_unfiltered (gdb_stderr,
1576 			  _("Error fetching number of io registers\n"));
1577       xfree (buf);
1578       return;
1579     }
1580 
1581   xfree (buf);
1582 
1583   reinitialize_more_filter ();
1584 
1585   printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1586 
1587   /* only fetch up to 8 registers at a time to keep the buffer small */
1588   step = 8;
1589 
1590   for (i = 0; i < nreg; i += step)
1591     {
1592       /* how many registers this round? */
1593       j = step;
1594       if ((i+j) >= nreg)
1595         j = nreg - i;           /* last block is less than 8 registers */
1596 
1597       snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1598       bufsiz = target_read_alloc (&current_target, TARGET_OBJECT_AVR,
1599 				  query, &buf);
1600 
1601       p = (const char *) buf;
1602       for (k = i; k < (i + j); k++)
1603 	{
1604 	  if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1605 	    {
1606 	      printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1607 	      while ((*p != ';') && (*p != '\0'))
1608 		p++;
1609 	      p++;		/* skip over ';' */
1610 	      if (*p == '\0')
1611 		break;
1612 	    }
1613 	}
1614 
1615       xfree (buf);
1616     }
1617 }
1618 
1619 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */
1620 
1621 void
1622 _initialize_avr_tdep (void)
1623 {
1624   register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1625 
1626   /* Add a new command to allow the user to query the avr remote target for
1627      the values of the io space registers in a saner way than just using
1628      `x/NNNb ADDR`.  */
1629 
1630   /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1631      io_registers' to signify it is not available on other platforms.  */
1632 
1633   add_info ("io_registers", avr_io_reg_read_command,
1634 	    _("query remote avr target for io space register values"));
1635 }
1636