1 /* Target-dependent code for Atmel AVR, for GDB. 2 3 Copyright (C) 1996-2017 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 /* Contributed by Theodore A. Roth, troth@openavr.org */ 21 22 /* Portions of this file were taken from the original gdb-4.18 patch developed 23 by Denis Chertykov, denisc@overta.ru */ 24 25 #include "defs.h" 26 #include "frame.h" 27 #include "frame-unwind.h" 28 #include "frame-base.h" 29 #include "trad-frame.h" 30 #include "gdbcmd.h" 31 #include "gdbcore.h" 32 #include "gdbtypes.h" 33 #include "inferior.h" 34 #include "symfile.h" 35 #include "arch-utils.h" 36 #include "regcache.h" 37 #include "dis-asm.h" 38 #include "objfiles.h" 39 #include <algorithm> 40 41 /* AVR Background: 42 43 (AVR micros are pure Harvard Architecture processors.) 44 45 The AVR family of microcontrollers have three distinctly different memory 46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for 47 the most part to store program instructions. The sram is 8 bits wide and is 48 used for the stack and the heap. Some devices lack sram and some can have 49 an additional external sram added on as a peripheral. 50 51 The eeprom is 8 bits wide and is used to store data when the device is 52 powered down. Eeprom is not directly accessible, it can only be accessed 53 via io-registers using a special algorithm. Accessing eeprom via gdb's 54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is 55 not included at this time. 56 57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or 58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to 59 work, the remote target must be able to handle eeprom accesses and perform 60 the address translation.] 61 62 All three memory spaces have physical addresses beginning at 0x0. In 63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit 64 bytes instead of the 16 bit wide words used by the real device for the 65 Program Counter. 66 67 In order for remote targets to work correctly, extra bits must be added to 68 addresses before they are send to the target or received from the target 69 via the remote serial protocol. The extra bits are the MSBs and are used to 70 decode which memory space the address is referring to. */ 71 72 /* Constants: prefixed with AVR_ to avoid name space clashes */ 73 74 /* Address space flags */ 75 76 /* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address 77 space. */ 78 79 #define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1 80 #define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \ 81 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 82 83 84 enum 85 { 86 AVR_REG_W = 24, 87 AVR_REG_X = 26, 88 AVR_REG_Y = 28, 89 AVR_FP_REGNUM = 28, 90 AVR_REG_Z = 30, 91 92 AVR_SREG_REGNUM = 32, 93 AVR_SP_REGNUM = 33, 94 AVR_PC_REGNUM = 34, 95 96 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/, 97 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/, 98 99 /* Pseudo registers. */ 100 AVR_PSEUDO_PC_REGNUM = 35, 101 AVR_NUM_PSEUDO_REGS = 1, 102 103 AVR_PC_REG_INDEX = 35, /* index into array of registers */ 104 105 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */ 106 107 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */ 108 AVR_MAX_PUSHES = 18, 109 110 /* Number of the last pushed register. r17 for current avr-gcc */ 111 AVR_LAST_PUSHED_REGNUM = 17, 112 113 AVR_ARG1_REGNUM = 24, /* Single byte argument */ 114 AVR_ARGN_REGNUM = 25, /* Multi byte argments */ 115 AVR_LAST_ARG_REGNUM = 8, /* Last argument register */ 116 117 AVR_RET1_REGNUM = 24, /* Single byte return value */ 118 AVR_RETN_REGNUM = 25, /* Multi byte return value */ 119 120 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8 121 bits? Do these have to match the bfd vma values? It sure would make 122 things easier in the future if they didn't need to match. 123 124 Note: I chose these values so as to be consistent with bfd vma 125 addresses. 126 127 TRoth/2002-04-08: There is already a conflict with very large programs 128 in the mega128. The mega128 has 128K instruction bytes (64K words), 129 thus the Most Significant Bit is 0x10000 which gets masked off my 130 AVR_MEM_MASK. 131 132 The problem manifests itself when trying to set a breakpoint in a 133 function which resides in the upper half of the instruction space and 134 thus requires a 17-bit address. 135 136 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK 137 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet, 138 but could be for some remote targets by just adding the correct offset 139 to the address and letting the remote target handle the low-level 140 details of actually accessing the eeprom. */ 141 142 AVR_IMEM_START = 0x00000000, /* INSN memory */ 143 AVR_SMEM_START = 0x00800000, /* SRAM memory */ 144 #if 1 145 /* No eeprom mask defined */ 146 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */ 147 #else 148 AVR_EMEM_START = 0x00810000, /* EEPROM memory */ 149 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */ 150 #endif 151 }; 152 153 /* Prologue types: 154 155 NORMAL and CALL are the typical types (the -mcall-prologues gcc option 156 causes the generation of the CALL type prologues). */ 157 158 enum { 159 AVR_PROLOGUE_NONE, /* No prologue */ 160 AVR_PROLOGUE_NORMAL, 161 AVR_PROLOGUE_CALL, /* -mcall-prologues */ 162 AVR_PROLOGUE_MAIN, 163 AVR_PROLOGUE_INTR, /* interrupt handler */ 164 AVR_PROLOGUE_SIG, /* signal handler */ 165 }; 166 167 /* Any function with a frame looks like this 168 ....... <-SP POINTS HERE 169 LOCALS1 <-FP POINTS HERE 170 LOCALS0 171 SAVED FP 172 SAVED R3 173 SAVED R2 174 RET PC 175 FIRST ARG 176 SECOND ARG */ 177 178 struct avr_unwind_cache 179 { 180 /* The previous frame's inner most stack address. Used as this 181 frame ID's stack_addr. */ 182 CORE_ADDR prev_sp; 183 /* The frame's base, optionally used by the high-level debug info. */ 184 CORE_ADDR base; 185 int size; 186 int prologue_type; 187 /* Table indicating the location of each and every register. */ 188 struct trad_frame_saved_reg *saved_regs; 189 }; 190 191 struct gdbarch_tdep 192 { 193 /* Number of bytes stored to the stack by call instructions. 194 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */ 195 int call_length; 196 197 /* Type for void. */ 198 struct type *void_type; 199 /* Type for a function returning void. */ 200 struct type *func_void_type; 201 /* Type for a pointer to a function. Used for the type of PC. */ 202 struct type *pc_type; 203 }; 204 205 /* Lookup the name of a register given it's number. */ 206 207 static const char * 208 avr_register_name (struct gdbarch *gdbarch, int regnum) 209 { 210 static const char * const register_names[] = { 211 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 212 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 213 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", 214 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", 215 "SREG", "SP", "PC2", 216 "pc" 217 }; 218 if (regnum < 0) 219 return NULL; 220 if (regnum >= (sizeof (register_names) / sizeof (*register_names))) 221 return NULL; 222 return register_names[regnum]; 223 } 224 225 /* Return the GDB type object for the "standard" data type 226 of data in register N. */ 227 228 static struct type * 229 avr_register_type (struct gdbarch *gdbarch, int reg_nr) 230 { 231 if (reg_nr == AVR_PC_REGNUM) 232 return builtin_type (gdbarch)->builtin_uint32; 233 if (reg_nr == AVR_PSEUDO_PC_REGNUM) 234 return gdbarch_tdep (gdbarch)->pc_type; 235 if (reg_nr == AVR_SP_REGNUM) 236 return builtin_type (gdbarch)->builtin_data_ptr; 237 return builtin_type (gdbarch)->builtin_uint8; 238 } 239 240 /* Instruction address checks and convertions. */ 241 242 static CORE_ADDR 243 avr_make_iaddr (CORE_ADDR x) 244 { 245 return ((x) | AVR_IMEM_START); 246 } 247 248 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some 249 devices are already up to 128KBytes of flash space. 250 251 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */ 252 253 static CORE_ADDR 254 avr_convert_iaddr_to_raw (CORE_ADDR x) 255 { 256 return ((x) & 0xffffffff); 257 } 258 259 /* SRAM address checks and convertions. */ 260 261 static CORE_ADDR 262 avr_make_saddr (CORE_ADDR x) 263 { 264 /* Return 0 for NULL. */ 265 if (x == 0) 266 return 0; 267 268 return ((x) | AVR_SMEM_START); 269 } 270 271 static CORE_ADDR 272 avr_convert_saddr_to_raw (CORE_ADDR x) 273 { 274 return ((x) & 0xffffffff); 275 } 276 277 /* EEPROM address checks and convertions. I don't know if these will ever 278 actually be used, but I've added them just the same. TRoth */ 279 280 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large 281 programs in the mega128. */ 282 283 /* static CORE_ADDR */ 284 /* avr_make_eaddr (CORE_ADDR x) */ 285 /* { */ 286 /* return ((x) | AVR_EMEM_START); */ 287 /* } */ 288 289 /* static int */ 290 /* avr_eaddr_p (CORE_ADDR x) */ 291 /* { */ 292 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */ 293 /* } */ 294 295 /* static CORE_ADDR */ 296 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */ 297 /* { */ 298 /* return ((x) & 0xffffffff); */ 299 /* } */ 300 301 /* Convert from address to pointer and vice-versa. */ 302 303 static void 304 avr_address_to_pointer (struct gdbarch *gdbarch, 305 struct type *type, gdb_byte *buf, CORE_ADDR addr) 306 { 307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 308 309 /* Is it a data address in flash? */ 310 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type)) 311 { 312 /* A data pointer in flash is byte addressed. */ 313 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, 314 avr_convert_iaddr_to_raw (addr)); 315 } 316 /* Is it a code address? */ 317 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC 318 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD) 319 { 320 /* A code pointer is word (16 bits) addressed. We shift the address down 321 by 1 bit to convert it to a pointer. */ 322 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, 323 avr_convert_iaddr_to_raw (addr >> 1)); 324 } 325 else 326 { 327 /* Strip off any upper segment bits. */ 328 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, 329 avr_convert_saddr_to_raw (addr)); 330 } 331 } 332 333 static CORE_ADDR 334 avr_pointer_to_address (struct gdbarch *gdbarch, 335 struct type *type, const gdb_byte *buf) 336 { 337 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 338 CORE_ADDR addr 339 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order); 340 341 /* Is it a data address in flash? */ 342 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type)) 343 { 344 /* A data pointer in flash is already byte addressed. */ 345 return avr_make_iaddr (addr); 346 } 347 /* Is it a code address? */ 348 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC 349 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD 350 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))) 351 { 352 /* A code pointer is word (16 bits) addressed so we shift it up 353 by 1 bit to convert it to an address. */ 354 return avr_make_iaddr (addr << 1); 355 } 356 else 357 return avr_make_saddr (addr); 358 } 359 360 static CORE_ADDR 361 avr_integer_to_address (struct gdbarch *gdbarch, 362 struct type *type, const gdb_byte *buf) 363 { 364 ULONGEST addr = unpack_long (type, buf); 365 366 return avr_make_saddr (addr); 367 } 368 369 static CORE_ADDR 370 avr_read_pc (struct regcache *regcache) 371 { 372 ULONGEST pc; 373 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc); 374 return avr_make_iaddr (pc); 375 } 376 377 static void 378 avr_write_pc (struct regcache *regcache, CORE_ADDR val) 379 { 380 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM, 381 avr_convert_iaddr_to_raw (val)); 382 } 383 384 static enum register_status 385 avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, 386 int regnum, gdb_byte *buf) 387 { 388 ULONGEST val; 389 enum register_status status; 390 391 switch (regnum) 392 { 393 case AVR_PSEUDO_PC_REGNUM: 394 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val); 395 if (status != REG_VALID) 396 return status; 397 val >>= 1; 398 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val); 399 return status; 400 default: 401 internal_error (__FILE__, __LINE__, _("invalid regnum")); 402 } 403 } 404 405 static void 406 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, 407 int regnum, const gdb_byte *buf) 408 { 409 ULONGEST val; 410 411 switch (regnum) 412 { 413 case AVR_PSEUDO_PC_REGNUM: 414 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch)); 415 val <<= 1; 416 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val); 417 break; 418 default: 419 internal_error (__FILE__, __LINE__, _("invalid regnum")); 420 } 421 } 422 423 /* Function: avr_scan_prologue 424 425 This function decodes an AVR function prologue to determine: 426 1) the size of the stack frame 427 2) which registers are saved on it 428 3) the offsets of saved regs 429 This information is stored in the avr_unwind_cache structure. 430 431 Some devices lack the sbiw instruction, so on those replace this: 432 sbiw r28, XX 433 with this: 434 subi r28,lo8(XX) 435 sbci r29,hi8(XX) 436 437 A typical AVR function prologue with a frame pointer might look like this: 438 push rXX ; saved regs 439 ... 440 push r28 441 push r29 442 in r28,__SP_L__ 443 in r29,__SP_H__ 444 sbiw r28,<LOCALS_SIZE> 445 in __tmp_reg__,__SREG__ 446 cli 447 out __SP_H__,r29 448 out __SREG__,__tmp_reg__ 449 out __SP_L__,r28 450 451 A typical AVR function prologue without a frame pointer might look like 452 this: 453 push rXX ; saved regs 454 ... 455 456 A main function prologue looks like this: 457 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) 458 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) 459 out __SP_H__,r29 460 out __SP_L__,r28 461 462 A signal handler prologue looks like this: 463 push __zero_reg__ 464 push __tmp_reg__ 465 in __tmp_reg__, __SREG__ 466 push __tmp_reg__ 467 clr __zero_reg__ 468 push rXX ; save registers r18:r27, r30:r31 469 ... 470 push r28 ; save frame pointer 471 push r29 472 in r28, __SP_L__ 473 in r29, __SP_H__ 474 sbiw r28, <LOCALS_SIZE> 475 out __SP_H__, r29 476 out __SP_L__, r28 477 478 A interrupt handler prologue looks like this: 479 sei 480 push __zero_reg__ 481 push __tmp_reg__ 482 in __tmp_reg__, __SREG__ 483 push __tmp_reg__ 484 clr __zero_reg__ 485 push rXX ; save registers r18:r27, r30:r31 486 ... 487 push r28 ; save frame pointer 488 push r29 489 in r28, __SP_L__ 490 in r29, __SP_H__ 491 sbiw r28, <LOCALS_SIZE> 492 cli 493 out __SP_H__, r29 494 sei 495 out __SP_L__, r28 496 497 A `-mcall-prologues' prologue looks like this (Note that the megas use a 498 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a 499 32 bit insn and rjmp is a 16 bit insn): 500 ldi r26,lo8(<LOCALS_SIZE>) 501 ldi r27,hi8(<LOCALS_SIZE>) 502 ldi r30,pm_lo8(.L_foo_body) 503 ldi r31,pm_hi8(.L_foo_body) 504 rjmp __prologue_saves__+RRR 505 .L_foo_body: */ 506 507 /* Not really part of a prologue, but still need to scan for it, is when a 508 function prologue moves values passed via registers as arguments to new 509 registers. In this case, all local variables live in registers, so there 510 may be some register saves. This is what it looks like: 511 movw rMM, rNN 512 ... 513 514 There could be multiple movw's. If the target doesn't have a movw insn, it 515 will use two mov insns. This could be done after any of the above prologue 516 types. */ 517 518 static CORE_ADDR 519 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end, 520 struct avr_unwind_cache *info) 521 { 522 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 523 int i; 524 unsigned short insn; 525 int scan_stage = 0; 526 struct bound_minimal_symbol msymbol; 527 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE]; 528 int vpc = 0; 529 int len; 530 531 len = pc_end - pc_beg; 532 if (len > AVR_MAX_PROLOGUE_SIZE) 533 len = AVR_MAX_PROLOGUE_SIZE; 534 535 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only 536 reading in the bytes of the prologue. The problem is that the figuring 537 out where the end of the prologue is is a bit difficult. The old code 538 tried to do that, but failed quite often. */ 539 read_memory (pc_beg, prologue, len); 540 541 /* Scanning main()'s prologue 542 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) 543 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) 544 out __SP_H__,r29 545 out __SP_L__,r28 */ 546 547 if (len >= 4) 548 { 549 CORE_ADDR locals; 550 static const unsigned char img[] = { 551 0xde, 0xbf, /* out __SP_H__,r29 */ 552 0xcd, 0xbf /* out __SP_L__,r28 */ 553 }; 554 555 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 556 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */ 557 if ((insn & 0xf0f0) == 0xe0c0) 558 { 559 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4); 560 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order); 561 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */ 562 if ((insn & 0xf0f0) == 0xe0d0) 563 { 564 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; 565 if (vpc + 4 + sizeof (img) < len 566 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0) 567 { 568 info->prologue_type = AVR_PROLOGUE_MAIN; 569 info->base = locals; 570 return pc_beg + 4; 571 } 572 } 573 } 574 } 575 576 /* Scanning `-mcall-prologues' prologue 577 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */ 578 579 while (1) /* Using a while to avoid many goto's */ 580 { 581 int loc_size; 582 int body_addr; 583 unsigned num_pushes; 584 int pc_offset = 0; 585 586 /* At least the fifth instruction must have been executed to 587 modify frame shape. */ 588 if (len < 10) 589 break; 590 591 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 592 /* ldi r26,<LOCALS_SIZE> */ 593 if ((insn & 0xf0f0) != 0xe0a0) 594 break; 595 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4); 596 pc_offset += 2; 597 598 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order); 599 /* ldi r27,<LOCALS_SIZE> / 256 */ 600 if ((insn & 0xf0f0) != 0xe0b0) 601 break; 602 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; 603 pc_offset += 2; 604 605 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order); 606 /* ldi r30,pm_lo8(.L_foo_body) */ 607 if ((insn & 0xf0f0) != 0xe0e0) 608 break; 609 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4); 610 pc_offset += 2; 611 612 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order); 613 /* ldi r31,pm_hi8(.L_foo_body) */ 614 if ((insn & 0xf0f0) != 0xe0f0) 615 break; 616 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; 617 pc_offset += 2; 618 619 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL); 620 if (!msymbol.minsym) 621 break; 622 623 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order); 624 /* rjmp __prologue_saves__+RRR */ 625 if ((insn & 0xf000) == 0xc000) 626 { 627 /* Extract PC relative offset from RJMP */ 628 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0); 629 /* Convert offset to byte addressable mode */ 630 i *= 2; 631 /* Destination address */ 632 i += pc_beg + 10; 633 634 if (body_addr != (pc_beg + 10)/2) 635 break; 636 637 pc_offset += 2; 638 } 639 else if ((insn & 0xfe0e) == 0x940c) 640 { 641 /* Extract absolute PC address from JMP */ 642 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16) 643 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order) 644 & 0xffff)); 645 /* Convert address to byte addressable mode */ 646 i *= 2; 647 648 if (body_addr != (pc_beg + 12)/2) 649 break; 650 651 pc_offset += 4; 652 } 653 else 654 break; 655 656 /* Resolve offset (in words) from __prologue_saves__ symbol. 657 Which is a pushes count in `-mcall-prologues' mode */ 658 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2; 659 660 if (num_pushes > AVR_MAX_PUSHES) 661 { 662 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"), 663 num_pushes); 664 num_pushes = 0; 665 } 666 667 if (num_pushes) 668 { 669 int from; 670 671 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes; 672 if (num_pushes >= 2) 673 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1; 674 675 i = 0; 676 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2); 677 from <= AVR_LAST_PUSHED_REGNUM; ++from) 678 info->saved_regs [from].addr = ++i; 679 } 680 info->size = loc_size + num_pushes; 681 info->prologue_type = AVR_PROLOGUE_CALL; 682 683 return pc_beg + pc_offset; 684 } 685 686 /* Scan for the beginning of the prologue for an interrupt or signal 687 function. Note that we have to set the prologue type here since the 688 third stage of the prologue may not be present (e.g. no saved registered 689 or changing of the SP register). */ 690 691 if (1) 692 { 693 static const unsigned char img[] = { 694 0x78, 0x94, /* sei */ 695 0x1f, 0x92, /* push r1 */ 696 0x0f, 0x92, /* push r0 */ 697 0x0f, 0xb6, /* in r0,0x3f SREG */ 698 0x0f, 0x92, /* push r0 */ 699 0x11, 0x24 /* clr r1 */ 700 }; 701 if (len >= sizeof (img) 702 && memcmp (prologue, img, sizeof (img)) == 0) 703 { 704 info->prologue_type = AVR_PROLOGUE_INTR; 705 vpc += sizeof (img); 706 info->saved_regs[AVR_SREG_REGNUM].addr = 3; 707 info->saved_regs[0].addr = 2; 708 info->saved_regs[1].addr = 1; 709 info->size += 3; 710 } 711 else if (len >= sizeof (img) - 2 712 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0) 713 { 714 info->prologue_type = AVR_PROLOGUE_SIG; 715 vpc += sizeof (img) - 2; 716 info->saved_regs[AVR_SREG_REGNUM].addr = 3; 717 info->saved_regs[0].addr = 2; 718 info->saved_regs[1].addr = 1; 719 info->size += 2; 720 } 721 } 722 723 /* First stage of the prologue scanning. 724 Scan pushes (saved registers) */ 725 726 for (; vpc < len; vpc += 2) 727 { 728 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 729 if ((insn & 0xfe0f) == 0x920f) /* push rXX */ 730 { 731 /* Bits 4-9 contain a mask for registers R0-R32. */ 732 int regno = (insn & 0x1f0) >> 4; 733 info->size++; 734 info->saved_regs[regno].addr = info->size; 735 scan_stage = 1; 736 } 737 else 738 break; 739 } 740 741 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE); 742 743 /* Handle static small stack allocation using rcall or push. */ 744 745 while (scan_stage == 1 && vpc < len) 746 { 747 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 748 if (insn == 0xd000) /* rcall .+0 */ 749 { 750 info->size += gdbarch_tdep (gdbarch)->call_length; 751 vpc += 2; 752 } 753 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */ 754 { 755 info->size += 1; 756 vpc += 2; 757 } 758 else 759 break; 760 } 761 762 /* Second stage of the prologue scanning. 763 Scan: 764 in r28,__SP_L__ 765 in r29,__SP_H__ */ 766 767 if (scan_stage == 1 && vpc < len) 768 { 769 static const unsigned char img[] = { 770 0xcd, 0xb7, /* in r28,__SP_L__ */ 771 0xde, 0xb7 /* in r29,__SP_H__ */ 772 }; 773 774 if (vpc + sizeof (img) < len 775 && memcmp (prologue + vpc, img, sizeof (img)) == 0) 776 { 777 vpc += 4; 778 scan_stage = 2; 779 } 780 } 781 782 /* Third stage of the prologue scanning. (Really two stages). 783 Scan for: 784 sbiw r28,XX or subi r28,lo8(XX) 785 sbci r29,hi8(XX) 786 in __tmp_reg__,__SREG__ 787 cli 788 out __SP_H__,r29 789 out __SREG__,__tmp_reg__ 790 out __SP_L__,r28 */ 791 792 if (scan_stage == 2 && vpc < len) 793 { 794 int locals_size = 0; 795 static const unsigned char img[] = { 796 0x0f, 0xb6, /* in r0,0x3f */ 797 0xf8, 0x94, /* cli */ 798 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ 799 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */ 800 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ 801 }; 802 static const unsigned char img_sig[] = { 803 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ 804 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ 805 }; 806 static const unsigned char img_int[] = { 807 0xf8, 0x94, /* cli */ 808 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ 809 0x78, 0x94, /* sei */ 810 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ 811 }; 812 813 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 814 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */ 815 { 816 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2); 817 vpc += 2; 818 } 819 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */ 820 { 821 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4); 822 vpc += 2; 823 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 824 vpc += 2; 825 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8; 826 } 827 else 828 return pc_beg + vpc; 829 830 /* Scan the last part of the prologue. May not be present for interrupt 831 or signal handler functions, which is why we set the prologue type 832 when we saw the beginning of the prologue previously. */ 833 834 if (vpc + sizeof (img_sig) < len 835 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0) 836 { 837 vpc += sizeof (img_sig); 838 } 839 else if (vpc + sizeof (img_int) < len 840 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0) 841 { 842 vpc += sizeof (img_int); 843 } 844 if (vpc + sizeof (img) < len 845 && memcmp (prologue + vpc, img, sizeof (img)) == 0) 846 { 847 info->prologue_type = AVR_PROLOGUE_NORMAL; 848 vpc += sizeof (img); 849 } 850 851 info->size += locals_size; 852 853 /* Fall through. */ 854 } 855 856 /* If we got this far, we could not scan the prologue, so just return the pc 857 of the frame plus an adjustment for argument move insns. */ 858 859 for (; vpc < len; vpc += 2) 860 { 861 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 862 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */ 863 continue; 864 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */ 865 continue; 866 else 867 break; 868 } 869 870 return pc_beg + vpc; 871 } 872 873 static CORE_ADDR 874 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 875 { 876 CORE_ADDR func_addr, func_end; 877 CORE_ADDR post_prologue_pc; 878 879 /* See what the symbol table says */ 880 881 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) 882 return pc; 883 884 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr); 885 if (post_prologue_pc != 0) 886 return std::max (pc, post_prologue_pc); 887 888 { 889 CORE_ADDR prologue_end = pc; 890 struct avr_unwind_cache info = {0}; 891 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS]; 892 893 info.saved_regs = saved_regs; 894 895 /* Need to run the prologue scanner to figure out if the function has a 896 prologue and possibly skip over moving arguments passed via registers 897 to other registers. */ 898 899 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info); 900 901 if (info.prologue_type != AVR_PROLOGUE_NONE) 902 return prologue_end; 903 } 904 905 /* Either we didn't find the start of this function (nothing we can do), 906 or there's no line info, or the line after the prologue is after 907 the end of the function (there probably isn't a prologue). */ 908 909 return pc; 910 } 911 912 /* Not all avr devices support the BREAK insn. Those that don't should treat 913 it as a NOP. Thus, it should be ok. Since the avr is currently a remote 914 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */ 915 916 constexpr gdb_byte avr_break_insn [] = { 0x98, 0x95 }; 917 918 typedef BP_MANIPULATION (avr_break_insn) avr_breakpoint; 919 920 /* Determine, for architecture GDBARCH, how a return value of TYPE 921 should be returned. If it is supposed to be returned in registers, 922 and READBUF is non-zero, read the appropriate value from REGCACHE, 923 and copy it into READBUF. If WRITEBUF is non-zero, write the value 924 from WRITEBUF into REGCACHE. */ 925 926 static enum return_value_convention 927 avr_return_value (struct gdbarch *gdbarch, struct value *function, 928 struct type *valtype, struct regcache *regcache, 929 gdb_byte *readbuf, const gdb_byte *writebuf) 930 { 931 int i; 932 /* Single byte are returned in r24. 933 Otherwise, the MSB of the return value is always in r25, calculate which 934 register holds the LSB. */ 935 int lsb_reg; 936 937 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT 938 || TYPE_CODE (valtype) == TYPE_CODE_UNION 939 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) 940 && TYPE_LENGTH (valtype) > 8) 941 return RETURN_VALUE_STRUCT_CONVENTION; 942 943 if (TYPE_LENGTH (valtype) <= 2) 944 lsb_reg = 24; 945 else if (TYPE_LENGTH (valtype) <= 4) 946 lsb_reg = 22; 947 else if (TYPE_LENGTH (valtype) <= 8) 948 lsb_reg = 18; 949 else 950 gdb_assert_not_reached ("unexpected type length"); 951 952 if (writebuf != NULL) 953 { 954 for (i = 0; i < TYPE_LENGTH (valtype); i++) 955 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i); 956 } 957 958 if (readbuf != NULL) 959 { 960 for (i = 0; i < TYPE_LENGTH (valtype); i++) 961 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i); 962 } 963 964 return RETURN_VALUE_REGISTER_CONVENTION; 965 } 966 967 968 /* Put here the code to store, into fi->saved_regs, the addresses of 969 the saved registers of frame described by FRAME_INFO. This 970 includes special registers such as pc and fp saved in special ways 971 in the stack frame. sp is even more special: the address we return 972 for it IS the sp for the next frame. */ 973 974 static struct avr_unwind_cache * 975 avr_frame_unwind_cache (struct frame_info *this_frame, 976 void **this_prologue_cache) 977 { 978 CORE_ADDR start_pc, current_pc; 979 ULONGEST prev_sp; 980 ULONGEST this_base; 981 struct avr_unwind_cache *info; 982 struct gdbarch *gdbarch; 983 struct gdbarch_tdep *tdep; 984 int i; 985 986 if (*this_prologue_cache) 987 return (struct avr_unwind_cache *) *this_prologue_cache; 988 989 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache); 990 *this_prologue_cache = info; 991 info->saved_regs = trad_frame_alloc_saved_regs (this_frame); 992 993 info->size = 0; 994 info->prologue_type = AVR_PROLOGUE_NONE; 995 996 start_pc = get_frame_func (this_frame); 997 current_pc = get_frame_pc (this_frame); 998 if ((start_pc > 0) && (start_pc <= current_pc)) 999 avr_scan_prologue (get_frame_arch (this_frame), 1000 start_pc, current_pc, info); 1001 1002 if ((info->prologue_type != AVR_PROLOGUE_NONE) 1003 && (info->prologue_type != AVR_PROLOGUE_MAIN)) 1004 { 1005 ULONGEST high_base; /* High byte of FP */ 1006 1007 /* The SP was moved to the FP. This indicates that a new frame 1008 was created. Get THIS frame's FP value by unwinding it from 1009 the next frame. */ 1010 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM); 1011 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1); 1012 this_base += (high_base << 8); 1013 1014 /* The FP points at the last saved register. Adjust the FP back 1015 to before the first saved register giving the SP. */ 1016 prev_sp = this_base + info->size; 1017 } 1018 else 1019 { 1020 /* Assume that the FP is this frame's SP but with that pushed 1021 stack space added back. */ 1022 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM); 1023 prev_sp = this_base + info->size; 1024 } 1025 1026 /* Add 1 here to adjust for the post-decrement nature of the push 1027 instruction.*/ 1028 info->prev_sp = avr_make_saddr (prev_sp + 1); 1029 info->base = avr_make_saddr (this_base); 1030 1031 gdbarch = get_frame_arch (this_frame); 1032 1033 /* Adjust all the saved registers so that they contain addresses and not 1034 offsets. */ 1035 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++) 1036 if (info->saved_regs[i].addr > 0) 1037 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr; 1038 1039 /* Except for the main and startup code, the return PC is always saved on 1040 the stack and is at the base of the frame. */ 1041 1042 if (info->prologue_type != AVR_PROLOGUE_MAIN) 1043 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp; 1044 1045 /* The previous frame's SP needed to be computed. Save the computed 1046 value. */ 1047 tdep = gdbarch_tdep (gdbarch); 1048 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM, 1049 info->prev_sp - 1 + tdep->call_length); 1050 1051 return info; 1052 } 1053 1054 static CORE_ADDR 1055 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) 1056 { 1057 ULONGEST pc; 1058 1059 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM); 1060 1061 return avr_make_iaddr (pc); 1062 } 1063 1064 static CORE_ADDR 1065 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) 1066 { 1067 ULONGEST sp; 1068 1069 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM); 1070 1071 return avr_make_saddr (sp); 1072 } 1073 1074 /* Given a GDB frame, determine the address of the calling function's 1075 frame. This will be used to create a new GDB frame struct. */ 1076 1077 static void 1078 avr_frame_this_id (struct frame_info *this_frame, 1079 void **this_prologue_cache, 1080 struct frame_id *this_id) 1081 { 1082 struct avr_unwind_cache *info 1083 = avr_frame_unwind_cache (this_frame, this_prologue_cache); 1084 CORE_ADDR base; 1085 CORE_ADDR func; 1086 struct frame_id id; 1087 1088 /* The FUNC is easy. */ 1089 func = get_frame_func (this_frame); 1090 1091 /* Hopefully the prologue analysis either correctly determined the 1092 frame's base (which is the SP from the previous frame), or set 1093 that base to "NULL". */ 1094 base = info->prev_sp; 1095 if (base == 0) 1096 return; 1097 1098 id = frame_id_build (base, func); 1099 (*this_id) = id; 1100 } 1101 1102 static struct value * 1103 avr_frame_prev_register (struct frame_info *this_frame, 1104 void **this_prologue_cache, int regnum) 1105 { 1106 struct avr_unwind_cache *info 1107 = avr_frame_unwind_cache (this_frame, this_prologue_cache); 1108 1109 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM) 1110 { 1111 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM)) 1112 { 1113 /* Reading the return PC from the PC register is slightly 1114 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes, 1115 but in reality, only two bytes (3 in upcoming mega256) are 1116 stored on the stack. 1117 1118 Also, note that the value on the stack is an addr to a word 1119 not a byte, so we will need to multiply it by two at some 1120 point. 1121 1122 And to confuse matters even more, the return address stored 1123 on the stack is in big endian byte order, even though most 1124 everything else about the avr is little endian. Ick! */ 1125 ULONGEST pc; 1126 int i; 1127 gdb_byte buf[3]; 1128 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1129 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 1130 1131 read_memory (info->saved_regs[AVR_PC_REGNUM].addr, 1132 buf, tdep->call_length); 1133 1134 /* Extract the PC read from memory as a big-endian. */ 1135 pc = 0; 1136 for (i = 0; i < tdep->call_length; i++) 1137 pc = (pc << 8) | buf[i]; 1138 1139 if (regnum == AVR_PC_REGNUM) 1140 pc <<= 1; 1141 1142 return frame_unwind_got_constant (this_frame, regnum, pc); 1143 } 1144 1145 return frame_unwind_got_optimized (this_frame, regnum); 1146 } 1147 1148 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); 1149 } 1150 1151 static const struct frame_unwind avr_frame_unwind = { 1152 NORMAL_FRAME, 1153 default_frame_unwind_stop_reason, 1154 avr_frame_this_id, 1155 avr_frame_prev_register, 1156 NULL, 1157 default_frame_sniffer 1158 }; 1159 1160 static CORE_ADDR 1161 avr_frame_base_address (struct frame_info *this_frame, void **this_cache) 1162 { 1163 struct avr_unwind_cache *info 1164 = avr_frame_unwind_cache (this_frame, this_cache); 1165 1166 return info->base; 1167 } 1168 1169 static const struct frame_base avr_frame_base = { 1170 &avr_frame_unwind, 1171 avr_frame_base_address, 1172 avr_frame_base_address, 1173 avr_frame_base_address 1174 }; 1175 1176 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy 1177 frame. The frame ID's base needs to match the TOS value saved by 1178 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ 1179 1180 static struct frame_id 1181 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) 1182 { 1183 ULONGEST base; 1184 1185 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM); 1186 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame)); 1187 } 1188 1189 /* When arguments must be pushed onto the stack, they go on in reverse 1190 order. The below implements a FILO (stack) to do this. */ 1191 1192 struct stack_item 1193 { 1194 int len; 1195 struct stack_item *prev; 1196 gdb_byte *data; 1197 }; 1198 1199 static struct stack_item * 1200 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len) 1201 { 1202 struct stack_item *si; 1203 si = XNEW (struct stack_item); 1204 si->data = (gdb_byte *) xmalloc (len); 1205 si->len = len; 1206 si->prev = prev; 1207 memcpy (si->data, contents, len); 1208 return si; 1209 } 1210 1211 static struct stack_item *pop_stack_item (struct stack_item *si); 1212 static struct stack_item * 1213 pop_stack_item (struct stack_item *si) 1214 { 1215 struct stack_item *dead = si; 1216 si = si->prev; 1217 xfree (dead->data); 1218 xfree (dead); 1219 return si; 1220 } 1221 1222 /* Setup the function arguments for calling a function in the inferior. 1223 1224 On the AVR architecture, there are 18 registers (R25 to R8) which are 1225 dedicated for passing function arguments. Up to the first 18 arguments 1226 (depending on size) may go into these registers. The rest go on the stack. 1227 1228 All arguments are aligned to start in even-numbered registers (odd-sized 1229 arguments, including char, have one free register above them). For example, 1230 an int in arg1 and a char in arg2 would be passed as such: 1231 1232 arg1 -> r25:r24 1233 arg2 -> r22 1234 1235 Arguments that are larger than 2 bytes will be split between two or more 1236 registers as available, but will NOT be split between a register and the 1237 stack. Arguments that go onto the stack are pushed last arg first (this is 1238 similar to the d10v). */ 1239 1240 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be 1241 inaccurate. 1242 1243 An exceptional case exists for struct arguments (and possibly other 1244 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but 1245 not a multiple of WORDSIZE bytes. In this case the argument is never split 1246 between the registers and the stack, but instead is copied in its entirety 1247 onto the stack, AND also copied into as many registers as there is room 1248 for. In other words, space in registers permitting, two copies of the same 1249 argument are passed in. As far as I can tell, only the one on the stack is 1250 used, although that may be a function of the level of compiler 1251 optimization. I suspect this is a compiler bug. Arguments of these odd 1252 sizes are left-justified within the word (as opposed to arguments smaller 1253 than WORDSIZE bytes, which are right-justified). 1254 1255 If the function is to return an aggregate type such as a struct, the caller 1256 must allocate space into which the callee will copy the return value. In 1257 this case, a pointer to the return value location is passed into the callee 1258 in register R0, which displaces one of the other arguments passed in via 1259 registers R0 to R2. */ 1260 1261 static CORE_ADDR 1262 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 1263 struct regcache *regcache, CORE_ADDR bp_addr, 1264 int nargs, struct value **args, CORE_ADDR sp, 1265 int struct_return, CORE_ADDR struct_addr) 1266 { 1267 int i; 1268 gdb_byte buf[3]; 1269 int call_length = gdbarch_tdep (gdbarch)->call_length; 1270 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr); 1271 int regnum = AVR_ARGN_REGNUM; 1272 struct stack_item *si = NULL; 1273 1274 if (struct_return) 1275 { 1276 regcache_cooked_write_unsigned 1277 (regcache, regnum--, (struct_addr >> 8) & 0xff); 1278 regcache_cooked_write_unsigned 1279 (regcache, regnum--, struct_addr & 0xff); 1280 /* SP being post decremented, we need to reserve one byte so that the 1281 return address won't overwrite the result (or vice-versa). */ 1282 if (sp == struct_addr) 1283 sp--; 1284 } 1285 1286 for (i = 0; i < nargs; i++) 1287 { 1288 int last_regnum; 1289 int j; 1290 struct value *arg = args[i]; 1291 struct type *type = check_typedef (value_type (arg)); 1292 const bfd_byte *contents = value_contents (arg); 1293 int len = TYPE_LENGTH (type); 1294 1295 /* Calculate the potential last register needed. 1296 E.g. For length 2, registers regnum and regnum-1 (say 25 and 24) 1297 shall be used. So, last needed register will be regnum-1(24). */ 1298 last_regnum = regnum - (len + (len & 1)) + 1; 1299 1300 /* If there are registers available, use them. Once we start putting 1301 stuff on the stack, all subsequent args go on stack. */ 1302 if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM)) 1303 { 1304 /* Skip a register for odd length args. */ 1305 if (len & 1) 1306 regnum--; 1307 1308 /* Write MSB of argument into register and subsequent bytes in 1309 decreasing register numbers. */ 1310 for (j = 0; j < len; j++) 1311 regcache_cooked_write_unsigned 1312 (regcache, regnum--, contents[len - j - 1]); 1313 } 1314 /* No registers available, push the args onto the stack. */ 1315 else 1316 { 1317 /* From here on, we don't care about regnum. */ 1318 si = push_stack_item (si, contents, len); 1319 } 1320 } 1321 1322 /* Push args onto the stack. */ 1323 while (si) 1324 { 1325 sp -= si->len; 1326 /* Add 1 to sp here to account for post decr nature of pushes. */ 1327 write_memory (sp + 1, si->data, si->len); 1328 si = pop_stack_item (si); 1329 } 1330 1331 /* Set the return address. For the avr, the return address is the BP_ADDR. 1332 Need to push the return address onto the stack noting that it needs to be 1333 in big-endian order on the stack. */ 1334 for (i = 1; i <= call_length; i++) 1335 { 1336 buf[call_length - i] = return_pc & 0xff; 1337 return_pc >>= 8; 1338 } 1339 1340 sp -= call_length; 1341 /* Use 'sp + 1' since pushes are post decr ops. */ 1342 write_memory (sp + 1, buf, call_length); 1343 1344 /* Finally, update the SP register. */ 1345 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM, 1346 avr_convert_saddr_to_raw (sp)); 1347 1348 /* Return SP value for the dummy frame, where the return address hasn't been 1349 pushed. */ 1350 return sp + call_length; 1351 } 1352 1353 /* Unfortunately dwarf2 register for SP is 32. */ 1354 1355 static int 1356 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) 1357 { 1358 if (reg >= 0 && reg < 32) 1359 return reg; 1360 if (reg == 32) 1361 return AVR_SP_REGNUM; 1362 return -1; 1363 } 1364 1365 /* Implementation of `address_class_type_flags' gdbarch method. 1366 1367 This method maps DW_AT_address_class attributes to a 1368 type_instance_flag_value. */ 1369 1370 static int 1371 avr_address_class_type_flags (int byte_size, int dwarf2_addr_class) 1372 { 1373 /* The value 1 of the DW_AT_address_class attribute corresponds to the 1374 __flash qualifier. Note that this attribute is only valid with 1375 pointer types and therefore the flag is set to the pointer type and 1376 not its target type. */ 1377 if (dwarf2_addr_class == 1 && byte_size == 2) 1378 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH; 1379 return 0; 1380 } 1381 1382 /* Implementation of `address_class_type_flags_to_name' gdbarch method. 1383 1384 Convert a type_instance_flag_value to an address space qualifier. */ 1385 1386 static const char* 1387 avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags) 1388 { 1389 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH) 1390 return "flash"; 1391 else 1392 return NULL; 1393 } 1394 1395 /* Implementation of `address_class_name_to_type_flags' gdbarch method. 1396 1397 Convert an address space qualifier to a type_instance_flag_value. */ 1398 1399 static int 1400 avr_address_class_name_to_type_flags (struct gdbarch *gdbarch, 1401 const char* name, 1402 int *type_flags_ptr) 1403 { 1404 if (strcmp (name, "flash") == 0) 1405 { 1406 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH; 1407 return 1; 1408 } 1409 else 1410 return 0; 1411 } 1412 1413 /* Initialize the gdbarch structure for the AVR's. */ 1414 1415 static struct gdbarch * 1416 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 1417 { 1418 struct gdbarch *gdbarch; 1419 struct gdbarch_tdep *tdep; 1420 struct gdbarch_list *best_arch; 1421 int call_length; 1422 1423 /* Avr-6 call instructions save 3 bytes. */ 1424 switch (info.bfd_arch_info->mach) 1425 { 1426 case bfd_mach_avr1: 1427 case bfd_mach_avrxmega1: 1428 case bfd_mach_avr2: 1429 case bfd_mach_avrxmega2: 1430 case bfd_mach_avr3: 1431 case bfd_mach_avrxmega3: 1432 case bfd_mach_avr4: 1433 case bfd_mach_avrxmega4: 1434 case bfd_mach_avr5: 1435 case bfd_mach_avrxmega5: 1436 default: 1437 call_length = 2; 1438 break; 1439 case bfd_mach_avr6: 1440 case bfd_mach_avrxmega6: 1441 case bfd_mach_avrxmega7: 1442 call_length = 3; 1443 break; 1444 } 1445 1446 /* If there is already a candidate, use it. */ 1447 for (best_arch = gdbarch_list_lookup_by_info (arches, &info); 1448 best_arch != NULL; 1449 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) 1450 { 1451 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length) 1452 return best_arch->gdbarch; 1453 } 1454 1455 /* None found, create a new architecture from the information provided. */ 1456 tdep = XNEW (struct gdbarch_tdep); 1457 gdbarch = gdbarch_alloc (&info, tdep); 1458 1459 tdep->call_length = call_length; 1460 1461 /* Create a type for PC. We can't use builtin types here, as they may not 1462 be defined. */ 1463 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"); 1464 tdep->func_void_type = make_function_type (tdep->void_type, NULL); 1465 tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL, 1466 tdep->func_void_type); 1467 1468 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1469 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1470 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1471 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); 1472 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1473 set_gdbarch_addr_bit (gdbarch, 32); 1474 1475 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1476 set_gdbarch_wchar_signed (gdbarch, 1); 1477 1478 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1479 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1480 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1481 1482 set_gdbarch_float_format (gdbarch, floatformats_ieee_single); 1483 set_gdbarch_double_format (gdbarch, floatformats_ieee_single); 1484 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single); 1485 1486 set_gdbarch_read_pc (gdbarch, avr_read_pc); 1487 set_gdbarch_write_pc (gdbarch, avr_write_pc); 1488 1489 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS); 1490 1491 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM); 1492 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM); 1493 1494 set_gdbarch_register_name (gdbarch, avr_register_name); 1495 set_gdbarch_register_type (gdbarch, avr_register_type); 1496 1497 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS); 1498 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read); 1499 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write); 1500 1501 set_gdbarch_return_value (gdbarch, avr_return_value); 1502 set_gdbarch_print_insn (gdbarch, print_insn_avr); 1503 1504 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call); 1505 1506 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum); 1507 1508 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer); 1509 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address); 1510 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address); 1511 1512 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue); 1513 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 1514 1515 set_gdbarch_breakpoint_kind_from_pc (gdbarch, avr_breakpoint::kind_from_pc); 1516 set_gdbarch_sw_breakpoint_from_kind (gdbarch, avr_breakpoint::bp_from_kind); 1517 1518 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind); 1519 frame_base_set_default (gdbarch, &avr_frame_base); 1520 1521 set_gdbarch_dummy_id (gdbarch, avr_dummy_id); 1522 1523 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc); 1524 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp); 1525 1526 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags); 1527 set_gdbarch_address_class_name_to_type_flags 1528 (gdbarch, avr_address_class_name_to_type_flags); 1529 set_gdbarch_address_class_type_flags_to_name 1530 (gdbarch, avr_address_class_type_flags_to_name); 1531 1532 return gdbarch; 1533 } 1534 1535 /* Send a query request to the avr remote target asking for values of the io 1536 registers. If args parameter is not NULL, then the user has requested info 1537 on a specific io register [This still needs implemented and is ignored for 1538 now]. The query string should be one of these forms: 1539 1540 "Ravr.io_reg" -> reply is "NN" number of io registers 1541 1542 "Ravr.io_reg:addr,len" where addr is first register and len is number of 1543 registers to be read. The reply should be "<NAME>,VV;" for each io register 1544 where, <NAME> is a string, and VV is the hex value of the register. 1545 1546 All io registers are 8-bit. */ 1547 1548 static void 1549 avr_io_reg_read_command (char *args, int from_tty) 1550 { 1551 LONGEST bufsiz = 0; 1552 gdb_byte *buf; 1553 const char *bufstr; 1554 char query[400]; 1555 const char *p; 1556 unsigned int nreg = 0; 1557 unsigned int val; 1558 int i, j, k, step; 1559 1560 /* Find out how many io registers the target has. */ 1561 bufsiz = target_read_alloc (¤t_target, TARGET_OBJECT_AVR, 1562 "avr.io_reg", &buf); 1563 bufstr = (const char *) buf; 1564 1565 if (bufsiz <= 0) 1566 { 1567 fprintf_unfiltered (gdb_stderr, 1568 _("ERR: info io_registers NOT supported " 1569 "by current target\n")); 1570 return; 1571 } 1572 1573 if (sscanf (bufstr, "%x", &nreg) != 1) 1574 { 1575 fprintf_unfiltered (gdb_stderr, 1576 _("Error fetching number of io registers\n")); 1577 xfree (buf); 1578 return; 1579 } 1580 1581 xfree (buf); 1582 1583 reinitialize_more_filter (); 1584 1585 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg); 1586 1587 /* only fetch up to 8 registers at a time to keep the buffer small */ 1588 step = 8; 1589 1590 for (i = 0; i < nreg; i += step) 1591 { 1592 /* how many registers this round? */ 1593 j = step; 1594 if ((i+j) >= nreg) 1595 j = nreg - i; /* last block is less than 8 registers */ 1596 1597 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j); 1598 bufsiz = target_read_alloc (¤t_target, TARGET_OBJECT_AVR, 1599 query, &buf); 1600 1601 p = (const char *) buf; 1602 for (k = i; k < (i + j); k++) 1603 { 1604 if (sscanf (p, "%[^,],%x;", query, &val) == 2) 1605 { 1606 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val); 1607 while ((*p != ';') && (*p != '\0')) 1608 p++; 1609 p++; /* skip over ';' */ 1610 if (*p == '\0') 1611 break; 1612 } 1613 } 1614 1615 xfree (buf); 1616 } 1617 } 1618 1619 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */ 1620 1621 void 1622 _initialize_avr_tdep (void) 1623 { 1624 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init); 1625 1626 /* Add a new command to allow the user to query the avr remote target for 1627 the values of the io space registers in a saner way than just using 1628 `x/NNNb ADDR`. */ 1629 1630 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr 1631 io_registers' to signify it is not available on other platforms. */ 1632 1633 add_info ("io_registers", avr_io_reg_read_command, 1634 _("query remote avr target for io space register values")); 1635 } 1636