1 /* Target-dependent code for Atmel AVR, for GDB. 2 3 Copyright (C) 1996-2016 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 /* Contributed by Theodore A. Roth, troth@openavr.org */ 21 22 /* Portions of this file were taken from the original gdb-4.18 patch developed 23 by Denis Chertykov, denisc@overta.ru */ 24 25 #include "defs.h" 26 #include "frame.h" 27 #include "frame-unwind.h" 28 #include "frame-base.h" 29 #include "trad-frame.h" 30 #include "gdbcmd.h" 31 #include "gdbcore.h" 32 #include "gdbtypes.h" 33 #include "inferior.h" 34 #include "symfile.h" 35 #include "arch-utils.h" 36 #include "regcache.h" 37 #include "dis-asm.h" 38 #include "objfiles.h" 39 40 /* AVR Background: 41 42 (AVR micros are pure Harvard Architecture processors.) 43 44 The AVR family of microcontrollers have three distinctly different memory 45 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for 46 the most part to store program instructions. The sram is 8 bits wide and is 47 used for the stack and the heap. Some devices lack sram and some can have 48 an additional external sram added on as a peripheral. 49 50 The eeprom is 8 bits wide and is used to store data when the device is 51 powered down. Eeprom is not directly accessible, it can only be accessed 52 via io-registers using a special algorithm. Accessing eeprom via gdb's 53 remote serial protocol ('m' or 'M' packets) looks difficult to do and is 54 not included at this time. 55 56 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or 57 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to 58 work, the remote target must be able to handle eeprom accesses and perform 59 the address translation.] 60 61 All three memory spaces have physical addresses beginning at 0x0. In 62 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit 63 bytes instead of the 16 bit wide words used by the real device for the 64 Program Counter. 65 66 In order for remote targets to work correctly, extra bits must be added to 67 addresses before they are send to the target or received from the target 68 via the remote serial protocol. The extra bits are the MSBs and are used to 69 decode which memory space the address is referring to. */ 70 71 /* Constants: prefixed with AVR_ to avoid name space clashes */ 72 73 /* Address space flags */ 74 75 /* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address 76 space. */ 77 78 #define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1 79 #define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \ 80 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 81 82 83 enum 84 { 85 AVR_REG_W = 24, 86 AVR_REG_X = 26, 87 AVR_REG_Y = 28, 88 AVR_FP_REGNUM = 28, 89 AVR_REG_Z = 30, 90 91 AVR_SREG_REGNUM = 32, 92 AVR_SP_REGNUM = 33, 93 AVR_PC_REGNUM = 34, 94 95 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/, 96 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/, 97 98 /* Pseudo registers. */ 99 AVR_PSEUDO_PC_REGNUM = 35, 100 AVR_NUM_PSEUDO_REGS = 1, 101 102 AVR_PC_REG_INDEX = 35, /* index into array of registers */ 103 104 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */ 105 106 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */ 107 AVR_MAX_PUSHES = 18, 108 109 /* Number of the last pushed register. r17 for current avr-gcc */ 110 AVR_LAST_PUSHED_REGNUM = 17, 111 112 AVR_ARG1_REGNUM = 24, /* Single byte argument */ 113 AVR_ARGN_REGNUM = 25, /* Multi byte argments */ 114 AVR_LAST_ARG_REGNUM = 8, /* Last argument register */ 115 116 AVR_RET1_REGNUM = 24, /* Single byte return value */ 117 AVR_RETN_REGNUM = 25, /* Multi byte return value */ 118 119 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8 120 bits? Do these have to match the bfd vma values? It sure would make 121 things easier in the future if they didn't need to match. 122 123 Note: I chose these values so as to be consistent with bfd vma 124 addresses. 125 126 TRoth/2002-04-08: There is already a conflict with very large programs 127 in the mega128. The mega128 has 128K instruction bytes (64K words), 128 thus the Most Significant Bit is 0x10000 which gets masked off my 129 AVR_MEM_MASK. 130 131 The problem manifests itself when trying to set a breakpoint in a 132 function which resides in the upper half of the instruction space and 133 thus requires a 17-bit address. 134 135 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK 136 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet, 137 but could be for some remote targets by just adding the correct offset 138 to the address and letting the remote target handle the low-level 139 details of actually accessing the eeprom. */ 140 141 AVR_IMEM_START = 0x00000000, /* INSN memory */ 142 AVR_SMEM_START = 0x00800000, /* SRAM memory */ 143 #if 1 144 /* No eeprom mask defined */ 145 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */ 146 #else 147 AVR_EMEM_START = 0x00810000, /* EEPROM memory */ 148 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */ 149 #endif 150 }; 151 152 /* Prologue types: 153 154 NORMAL and CALL are the typical types (the -mcall-prologues gcc option 155 causes the generation of the CALL type prologues). */ 156 157 enum { 158 AVR_PROLOGUE_NONE, /* No prologue */ 159 AVR_PROLOGUE_NORMAL, 160 AVR_PROLOGUE_CALL, /* -mcall-prologues */ 161 AVR_PROLOGUE_MAIN, 162 AVR_PROLOGUE_INTR, /* interrupt handler */ 163 AVR_PROLOGUE_SIG, /* signal handler */ 164 }; 165 166 /* Any function with a frame looks like this 167 ....... <-SP POINTS HERE 168 LOCALS1 <-FP POINTS HERE 169 LOCALS0 170 SAVED FP 171 SAVED R3 172 SAVED R2 173 RET PC 174 FIRST ARG 175 SECOND ARG */ 176 177 struct avr_unwind_cache 178 { 179 /* The previous frame's inner most stack address. Used as this 180 frame ID's stack_addr. */ 181 CORE_ADDR prev_sp; 182 /* The frame's base, optionally used by the high-level debug info. */ 183 CORE_ADDR base; 184 int size; 185 int prologue_type; 186 /* Table indicating the location of each and every register. */ 187 struct trad_frame_saved_reg *saved_regs; 188 }; 189 190 struct gdbarch_tdep 191 { 192 /* Number of bytes stored to the stack by call instructions. 193 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */ 194 int call_length; 195 196 /* Type for void. */ 197 struct type *void_type; 198 /* Type for a function returning void. */ 199 struct type *func_void_type; 200 /* Type for a pointer to a function. Used for the type of PC. */ 201 struct type *pc_type; 202 }; 203 204 /* Lookup the name of a register given it's number. */ 205 206 static const char * 207 avr_register_name (struct gdbarch *gdbarch, int regnum) 208 { 209 static const char * const register_names[] = { 210 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", 211 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", 212 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", 213 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", 214 "SREG", "SP", "PC2", 215 "pc" 216 }; 217 if (regnum < 0) 218 return NULL; 219 if (regnum >= (sizeof (register_names) / sizeof (*register_names))) 220 return NULL; 221 return register_names[regnum]; 222 } 223 224 /* Return the GDB type object for the "standard" data type 225 of data in register N. */ 226 227 static struct type * 228 avr_register_type (struct gdbarch *gdbarch, int reg_nr) 229 { 230 if (reg_nr == AVR_PC_REGNUM) 231 return builtin_type (gdbarch)->builtin_uint32; 232 if (reg_nr == AVR_PSEUDO_PC_REGNUM) 233 return gdbarch_tdep (gdbarch)->pc_type; 234 if (reg_nr == AVR_SP_REGNUM) 235 return builtin_type (gdbarch)->builtin_data_ptr; 236 return builtin_type (gdbarch)->builtin_uint8; 237 } 238 239 /* Instruction address checks and convertions. */ 240 241 static CORE_ADDR 242 avr_make_iaddr (CORE_ADDR x) 243 { 244 return ((x) | AVR_IMEM_START); 245 } 246 247 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some 248 devices are already up to 128KBytes of flash space. 249 250 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */ 251 252 static CORE_ADDR 253 avr_convert_iaddr_to_raw (CORE_ADDR x) 254 { 255 return ((x) & 0xffffffff); 256 } 257 258 /* SRAM address checks and convertions. */ 259 260 static CORE_ADDR 261 avr_make_saddr (CORE_ADDR x) 262 { 263 /* Return 0 for NULL. */ 264 if (x == 0) 265 return 0; 266 267 return ((x) | AVR_SMEM_START); 268 } 269 270 static CORE_ADDR 271 avr_convert_saddr_to_raw (CORE_ADDR x) 272 { 273 return ((x) & 0xffffffff); 274 } 275 276 /* EEPROM address checks and convertions. I don't know if these will ever 277 actually be used, but I've added them just the same. TRoth */ 278 279 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large 280 programs in the mega128. */ 281 282 /* static CORE_ADDR */ 283 /* avr_make_eaddr (CORE_ADDR x) */ 284 /* { */ 285 /* return ((x) | AVR_EMEM_START); */ 286 /* } */ 287 288 /* static int */ 289 /* avr_eaddr_p (CORE_ADDR x) */ 290 /* { */ 291 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */ 292 /* } */ 293 294 /* static CORE_ADDR */ 295 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */ 296 /* { */ 297 /* return ((x) & 0xffffffff); */ 298 /* } */ 299 300 /* Convert from address to pointer and vice-versa. */ 301 302 static void 303 avr_address_to_pointer (struct gdbarch *gdbarch, 304 struct type *type, gdb_byte *buf, CORE_ADDR addr) 305 { 306 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 307 308 /* Is it a data address in flash? */ 309 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type)) 310 { 311 /* A data pointer in flash is byte addressed. */ 312 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, 313 avr_convert_iaddr_to_raw (addr)); 314 } 315 /* Is it a code address? */ 316 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC 317 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD) 318 { 319 /* A code pointer is word (16 bits) addressed. We shift the address down 320 by 1 bit to convert it to a pointer. */ 321 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, 322 avr_convert_iaddr_to_raw (addr >> 1)); 323 } 324 else 325 { 326 /* Strip off any upper segment bits. */ 327 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, 328 avr_convert_saddr_to_raw (addr)); 329 } 330 } 331 332 static CORE_ADDR 333 avr_pointer_to_address (struct gdbarch *gdbarch, 334 struct type *type, const gdb_byte *buf) 335 { 336 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 337 CORE_ADDR addr 338 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order); 339 340 /* Is it a data address in flash? */ 341 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type)) 342 { 343 /* A data pointer in flash is already byte addressed. */ 344 return avr_make_iaddr (addr); 345 } 346 /* Is it a code address? */ 347 else if (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC 348 || TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_METHOD 349 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type))) 350 { 351 /* A code pointer is word (16 bits) addressed so we shift it up 352 by 1 bit to convert it to an address. */ 353 return avr_make_iaddr (addr << 1); 354 } 355 else 356 return avr_make_saddr (addr); 357 } 358 359 static CORE_ADDR 360 avr_integer_to_address (struct gdbarch *gdbarch, 361 struct type *type, const gdb_byte *buf) 362 { 363 ULONGEST addr = unpack_long (type, buf); 364 365 return avr_make_saddr (addr); 366 } 367 368 static CORE_ADDR 369 avr_read_pc (struct regcache *regcache) 370 { 371 ULONGEST pc; 372 regcache_cooked_read_unsigned (regcache, AVR_PC_REGNUM, &pc); 373 return avr_make_iaddr (pc); 374 } 375 376 static void 377 avr_write_pc (struct regcache *regcache, CORE_ADDR val) 378 { 379 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM, 380 avr_convert_iaddr_to_raw (val)); 381 } 382 383 static enum register_status 384 avr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, 385 int regnum, gdb_byte *buf) 386 { 387 ULONGEST val; 388 enum register_status status; 389 390 switch (regnum) 391 { 392 case AVR_PSEUDO_PC_REGNUM: 393 status = regcache_raw_read_unsigned (regcache, AVR_PC_REGNUM, &val); 394 if (status != REG_VALID) 395 return status; 396 val >>= 1; 397 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val); 398 return status; 399 default: 400 internal_error (__FILE__, __LINE__, _("invalid regnum")); 401 } 402 } 403 404 static void 405 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, 406 int regnum, const gdb_byte *buf) 407 { 408 ULONGEST val; 409 410 switch (regnum) 411 { 412 case AVR_PSEUDO_PC_REGNUM: 413 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch)); 414 val <<= 1; 415 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val); 416 break; 417 default: 418 internal_error (__FILE__, __LINE__, _("invalid regnum")); 419 } 420 } 421 422 /* Function: avr_scan_prologue 423 424 This function decodes an AVR function prologue to determine: 425 1) the size of the stack frame 426 2) which registers are saved on it 427 3) the offsets of saved regs 428 This information is stored in the avr_unwind_cache structure. 429 430 Some devices lack the sbiw instruction, so on those replace this: 431 sbiw r28, XX 432 with this: 433 subi r28,lo8(XX) 434 sbci r29,hi8(XX) 435 436 A typical AVR function prologue with a frame pointer might look like this: 437 push rXX ; saved regs 438 ... 439 push r28 440 push r29 441 in r28,__SP_L__ 442 in r29,__SP_H__ 443 sbiw r28,<LOCALS_SIZE> 444 in __tmp_reg__,__SREG__ 445 cli 446 out __SP_H__,r29 447 out __SREG__,__tmp_reg__ 448 out __SP_L__,r28 449 450 A typical AVR function prologue without a frame pointer might look like 451 this: 452 push rXX ; saved regs 453 ... 454 455 A main function prologue looks like this: 456 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) 457 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) 458 out __SP_H__,r29 459 out __SP_L__,r28 460 461 A signal handler prologue looks like this: 462 push __zero_reg__ 463 push __tmp_reg__ 464 in __tmp_reg__, __SREG__ 465 push __tmp_reg__ 466 clr __zero_reg__ 467 push rXX ; save registers r18:r27, r30:r31 468 ... 469 push r28 ; save frame pointer 470 push r29 471 in r28, __SP_L__ 472 in r29, __SP_H__ 473 sbiw r28, <LOCALS_SIZE> 474 out __SP_H__, r29 475 out __SP_L__, r28 476 477 A interrupt handler prologue looks like this: 478 sei 479 push __zero_reg__ 480 push __tmp_reg__ 481 in __tmp_reg__, __SREG__ 482 push __tmp_reg__ 483 clr __zero_reg__ 484 push rXX ; save registers r18:r27, r30:r31 485 ... 486 push r28 ; save frame pointer 487 push r29 488 in r28, __SP_L__ 489 in r29, __SP_H__ 490 sbiw r28, <LOCALS_SIZE> 491 cli 492 out __SP_H__, r29 493 sei 494 out __SP_L__, r28 495 496 A `-mcall-prologues' prologue looks like this (Note that the megas use a 497 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a 498 32 bit insn and rjmp is a 16 bit insn): 499 ldi r26,lo8(<LOCALS_SIZE>) 500 ldi r27,hi8(<LOCALS_SIZE>) 501 ldi r30,pm_lo8(.L_foo_body) 502 ldi r31,pm_hi8(.L_foo_body) 503 rjmp __prologue_saves__+RRR 504 .L_foo_body: */ 505 506 /* Not really part of a prologue, but still need to scan for it, is when a 507 function prologue moves values passed via registers as arguments to new 508 registers. In this case, all local variables live in registers, so there 509 may be some register saves. This is what it looks like: 510 movw rMM, rNN 511 ... 512 513 There could be multiple movw's. If the target doesn't have a movw insn, it 514 will use two mov insns. This could be done after any of the above prologue 515 types. */ 516 517 static CORE_ADDR 518 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end, 519 struct avr_unwind_cache *info) 520 { 521 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 522 int i; 523 unsigned short insn; 524 int scan_stage = 0; 525 struct bound_minimal_symbol msymbol; 526 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE]; 527 int vpc = 0; 528 int len; 529 530 len = pc_end - pc_beg; 531 if (len > AVR_MAX_PROLOGUE_SIZE) 532 len = AVR_MAX_PROLOGUE_SIZE; 533 534 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only 535 reading in the bytes of the prologue. The problem is that the figuring 536 out where the end of the prologue is is a bit difficult. The old code 537 tried to do that, but failed quite often. */ 538 read_memory (pc_beg, prologue, len); 539 540 /* Scanning main()'s prologue 541 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) 542 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) 543 out __SP_H__,r29 544 out __SP_L__,r28 */ 545 546 if (len >= 4) 547 { 548 CORE_ADDR locals; 549 static const unsigned char img[] = { 550 0xde, 0xbf, /* out __SP_H__,r29 */ 551 0xcd, 0xbf /* out __SP_L__,r28 */ 552 }; 553 554 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 555 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */ 556 if ((insn & 0xf0f0) == 0xe0c0) 557 { 558 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4); 559 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order); 560 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */ 561 if ((insn & 0xf0f0) == 0xe0d0) 562 { 563 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; 564 if (vpc + 4 + sizeof (img) < len 565 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0) 566 { 567 info->prologue_type = AVR_PROLOGUE_MAIN; 568 info->base = locals; 569 return pc_beg + 4; 570 } 571 } 572 } 573 } 574 575 /* Scanning `-mcall-prologues' prologue 576 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */ 577 578 while (1) /* Using a while to avoid many goto's */ 579 { 580 int loc_size; 581 int body_addr; 582 unsigned num_pushes; 583 int pc_offset = 0; 584 585 /* At least the fifth instruction must have been executed to 586 modify frame shape. */ 587 if (len < 10) 588 break; 589 590 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 591 /* ldi r26,<LOCALS_SIZE> */ 592 if ((insn & 0xf0f0) != 0xe0a0) 593 break; 594 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4); 595 pc_offset += 2; 596 597 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order); 598 /* ldi r27,<LOCALS_SIZE> / 256 */ 599 if ((insn & 0xf0f0) != 0xe0b0) 600 break; 601 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; 602 pc_offset += 2; 603 604 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order); 605 /* ldi r30,pm_lo8(.L_foo_body) */ 606 if ((insn & 0xf0f0) != 0xe0e0) 607 break; 608 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4); 609 pc_offset += 2; 610 611 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order); 612 /* ldi r31,pm_hi8(.L_foo_body) */ 613 if ((insn & 0xf0f0) != 0xe0f0) 614 break; 615 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; 616 pc_offset += 2; 617 618 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL); 619 if (!msymbol.minsym) 620 break; 621 622 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order); 623 /* rjmp __prologue_saves__+RRR */ 624 if ((insn & 0xf000) == 0xc000) 625 { 626 /* Extract PC relative offset from RJMP */ 627 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0); 628 /* Convert offset to byte addressable mode */ 629 i *= 2; 630 /* Destination address */ 631 i += pc_beg + 10; 632 633 if (body_addr != (pc_beg + 10)/2) 634 break; 635 636 pc_offset += 2; 637 } 638 else if ((insn & 0xfe0e) == 0x940c) 639 { 640 /* Extract absolute PC address from JMP */ 641 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16) 642 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order) 643 & 0xffff)); 644 /* Convert address to byte addressable mode */ 645 i *= 2; 646 647 if (body_addr != (pc_beg + 12)/2) 648 break; 649 650 pc_offset += 4; 651 } 652 else 653 break; 654 655 /* Resolve offset (in words) from __prologue_saves__ symbol. 656 Which is a pushes count in `-mcall-prologues' mode */ 657 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2; 658 659 if (num_pushes > AVR_MAX_PUSHES) 660 { 661 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"), 662 num_pushes); 663 num_pushes = 0; 664 } 665 666 if (num_pushes) 667 { 668 int from; 669 670 info->saved_regs[AVR_FP_REGNUM + 1].addr = num_pushes; 671 if (num_pushes >= 2) 672 info->saved_regs[AVR_FP_REGNUM].addr = num_pushes - 1; 673 674 i = 0; 675 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2); 676 from <= AVR_LAST_PUSHED_REGNUM; ++from) 677 info->saved_regs [from].addr = ++i; 678 } 679 info->size = loc_size + num_pushes; 680 info->prologue_type = AVR_PROLOGUE_CALL; 681 682 return pc_beg + pc_offset; 683 } 684 685 /* Scan for the beginning of the prologue for an interrupt or signal 686 function. Note that we have to set the prologue type here since the 687 third stage of the prologue may not be present (e.g. no saved registered 688 or changing of the SP register). */ 689 690 if (1) 691 { 692 static const unsigned char img[] = { 693 0x78, 0x94, /* sei */ 694 0x1f, 0x92, /* push r1 */ 695 0x0f, 0x92, /* push r0 */ 696 0x0f, 0xb6, /* in r0,0x3f SREG */ 697 0x0f, 0x92, /* push r0 */ 698 0x11, 0x24 /* clr r1 */ 699 }; 700 if (len >= sizeof (img) 701 && memcmp (prologue, img, sizeof (img)) == 0) 702 { 703 info->prologue_type = AVR_PROLOGUE_INTR; 704 vpc += sizeof (img); 705 info->saved_regs[AVR_SREG_REGNUM].addr = 3; 706 info->saved_regs[0].addr = 2; 707 info->saved_regs[1].addr = 1; 708 info->size += 3; 709 } 710 else if (len >= sizeof (img) - 2 711 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0) 712 { 713 info->prologue_type = AVR_PROLOGUE_SIG; 714 vpc += sizeof (img) - 2; 715 info->saved_regs[AVR_SREG_REGNUM].addr = 3; 716 info->saved_regs[0].addr = 2; 717 info->saved_regs[1].addr = 1; 718 info->size += 2; 719 } 720 } 721 722 /* First stage of the prologue scanning. 723 Scan pushes (saved registers) */ 724 725 for (; vpc < len; vpc += 2) 726 { 727 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 728 if ((insn & 0xfe0f) == 0x920f) /* push rXX */ 729 { 730 /* Bits 4-9 contain a mask for registers R0-R32. */ 731 int regno = (insn & 0x1f0) >> 4; 732 info->size++; 733 info->saved_regs[regno].addr = info->size; 734 scan_stage = 1; 735 } 736 else 737 break; 738 } 739 740 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE); 741 742 /* Handle static small stack allocation using rcall or push. */ 743 744 while (scan_stage == 1 && vpc < len) 745 { 746 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 747 if (insn == 0xd000) /* rcall .+0 */ 748 { 749 info->size += gdbarch_tdep (gdbarch)->call_length; 750 vpc += 2; 751 } 752 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */ 753 { 754 info->size += 1; 755 vpc += 2; 756 } 757 else 758 break; 759 } 760 761 /* Second stage of the prologue scanning. 762 Scan: 763 in r28,__SP_L__ 764 in r29,__SP_H__ */ 765 766 if (scan_stage == 1 && vpc < len) 767 { 768 static const unsigned char img[] = { 769 0xcd, 0xb7, /* in r28,__SP_L__ */ 770 0xde, 0xb7 /* in r29,__SP_H__ */ 771 }; 772 773 if (vpc + sizeof (img) < len 774 && memcmp (prologue + vpc, img, sizeof (img)) == 0) 775 { 776 vpc += 4; 777 scan_stage = 2; 778 } 779 } 780 781 /* Third stage of the prologue scanning. (Really two stages). 782 Scan for: 783 sbiw r28,XX or subi r28,lo8(XX) 784 sbci r29,hi8(XX) 785 in __tmp_reg__,__SREG__ 786 cli 787 out __SP_H__,r29 788 out __SREG__,__tmp_reg__ 789 out __SP_L__,r28 */ 790 791 if (scan_stage == 2 && vpc < len) 792 { 793 int locals_size = 0; 794 static const unsigned char img[] = { 795 0x0f, 0xb6, /* in r0,0x3f */ 796 0xf8, 0x94, /* cli */ 797 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ 798 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */ 799 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ 800 }; 801 static const unsigned char img_sig[] = { 802 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ 803 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ 804 }; 805 static const unsigned char img_int[] = { 806 0xf8, 0x94, /* cli */ 807 0xde, 0xbf, /* out 0x3e,r29 ; SPH */ 808 0x78, 0x94, /* sei */ 809 0xcd, 0xbf /* out 0x3d,r28 ; SPL */ 810 }; 811 812 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 813 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */ 814 { 815 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2); 816 vpc += 2; 817 } 818 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */ 819 { 820 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4); 821 vpc += 2; 822 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 823 vpc += 2; 824 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8; 825 } 826 else 827 return pc_beg + vpc; 828 829 /* Scan the last part of the prologue. May not be present for interrupt 830 or signal handler functions, which is why we set the prologue type 831 when we saw the beginning of the prologue previously. */ 832 833 if (vpc + sizeof (img_sig) < len 834 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0) 835 { 836 vpc += sizeof (img_sig); 837 } 838 else if (vpc + sizeof (img_int) < len 839 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0) 840 { 841 vpc += sizeof (img_int); 842 } 843 if (vpc + sizeof (img) < len 844 && memcmp (prologue + vpc, img, sizeof (img)) == 0) 845 { 846 info->prologue_type = AVR_PROLOGUE_NORMAL; 847 vpc += sizeof (img); 848 } 849 850 info->size += locals_size; 851 852 /* Fall through. */ 853 } 854 855 /* If we got this far, we could not scan the prologue, so just return the pc 856 of the frame plus an adjustment for argument move insns. */ 857 858 for (; vpc < len; vpc += 2) 859 { 860 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); 861 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */ 862 continue; 863 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */ 864 continue; 865 else 866 break; 867 } 868 869 return pc_beg + vpc; 870 } 871 872 static CORE_ADDR 873 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 874 { 875 CORE_ADDR func_addr, func_end; 876 CORE_ADDR post_prologue_pc; 877 878 /* See what the symbol table says */ 879 880 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) 881 return pc; 882 883 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr); 884 if (post_prologue_pc != 0) 885 return max (pc, post_prologue_pc); 886 887 { 888 CORE_ADDR prologue_end = pc; 889 struct avr_unwind_cache info = {0}; 890 struct trad_frame_saved_reg saved_regs[AVR_NUM_REGS]; 891 892 info.saved_regs = saved_regs; 893 894 /* Need to run the prologue scanner to figure out if the function has a 895 prologue and possibly skip over moving arguments passed via registers 896 to other registers. */ 897 898 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info); 899 900 if (info.prologue_type != AVR_PROLOGUE_NONE) 901 return prologue_end; 902 } 903 904 /* Either we didn't find the start of this function (nothing we can do), 905 or there's no line info, or the line after the prologue is after 906 the end of the function (there probably isn't a prologue). */ 907 908 return pc; 909 } 910 911 /* Not all avr devices support the BREAK insn. Those that don't should treat 912 it as a NOP. Thus, it should be ok. Since the avr is currently a remote 913 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */ 914 915 static const unsigned char * 916 avr_breakpoint_from_pc (struct gdbarch *gdbarch, 917 CORE_ADDR *pcptr, int *lenptr) 918 { 919 static const unsigned char avr_break_insn [] = { 0x98, 0x95 }; 920 *lenptr = sizeof (avr_break_insn); 921 return avr_break_insn; 922 } 923 924 /* Determine, for architecture GDBARCH, how a return value of TYPE 925 should be returned. If it is supposed to be returned in registers, 926 and READBUF is non-zero, read the appropriate value from REGCACHE, 927 and copy it into READBUF. If WRITEBUF is non-zero, write the value 928 from WRITEBUF into REGCACHE. */ 929 930 static enum return_value_convention 931 avr_return_value (struct gdbarch *gdbarch, struct value *function, 932 struct type *valtype, struct regcache *regcache, 933 gdb_byte *readbuf, const gdb_byte *writebuf) 934 { 935 int i; 936 /* Single byte are returned in r24. 937 Otherwise, the MSB of the return value is always in r25, calculate which 938 register holds the LSB. */ 939 int lsb_reg; 940 941 if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT 942 || TYPE_CODE (valtype) == TYPE_CODE_UNION 943 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) 944 && TYPE_LENGTH (valtype) > 8) 945 return RETURN_VALUE_STRUCT_CONVENTION; 946 947 if (TYPE_LENGTH (valtype) <= 2) 948 lsb_reg = 24; 949 else if (TYPE_LENGTH (valtype) <= 4) 950 lsb_reg = 22; 951 else if (TYPE_LENGTH (valtype) <= 8) 952 lsb_reg = 18; 953 else 954 gdb_assert_not_reached ("unexpected type length"); 955 956 if (writebuf != NULL) 957 { 958 for (i = 0; i < TYPE_LENGTH (valtype); i++) 959 regcache_cooked_write (regcache, lsb_reg + i, writebuf + i); 960 } 961 962 if (readbuf != NULL) 963 { 964 for (i = 0; i < TYPE_LENGTH (valtype); i++) 965 regcache_cooked_read (regcache, lsb_reg + i, readbuf + i); 966 } 967 968 return RETURN_VALUE_REGISTER_CONVENTION; 969 } 970 971 972 /* Put here the code to store, into fi->saved_regs, the addresses of 973 the saved registers of frame described by FRAME_INFO. This 974 includes special registers such as pc and fp saved in special ways 975 in the stack frame. sp is even more special: the address we return 976 for it IS the sp for the next frame. */ 977 978 static struct avr_unwind_cache * 979 avr_frame_unwind_cache (struct frame_info *this_frame, 980 void **this_prologue_cache) 981 { 982 CORE_ADDR start_pc, current_pc; 983 ULONGEST prev_sp; 984 ULONGEST this_base; 985 struct avr_unwind_cache *info; 986 struct gdbarch *gdbarch; 987 struct gdbarch_tdep *tdep; 988 int i; 989 990 if (*this_prologue_cache) 991 return (struct avr_unwind_cache *) *this_prologue_cache; 992 993 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache); 994 *this_prologue_cache = info; 995 info->saved_regs = trad_frame_alloc_saved_regs (this_frame); 996 997 info->size = 0; 998 info->prologue_type = AVR_PROLOGUE_NONE; 999 1000 start_pc = get_frame_func (this_frame); 1001 current_pc = get_frame_pc (this_frame); 1002 if ((start_pc > 0) && (start_pc <= current_pc)) 1003 avr_scan_prologue (get_frame_arch (this_frame), 1004 start_pc, current_pc, info); 1005 1006 if ((info->prologue_type != AVR_PROLOGUE_NONE) 1007 && (info->prologue_type != AVR_PROLOGUE_MAIN)) 1008 { 1009 ULONGEST high_base; /* High byte of FP */ 1010 1011 /* The SP was moved to the FP. This indicates that a new frame 1012 was created. Get THIS frame's FP value by unwinding it from 1013 the next frame. */ 1014 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM); 1015 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1); 1016 this_base += (high_base << 8); 1017 1018 /* The FP points at the last saved register. Adjust the FP back 1019 to before the first saved register giving the SP. */ 1020 prev_sp = this_base + info->size; 1021 } 1022 else 1023 { 1024 /* Assume that the FP is this frame's SP but with that pushed 1025 stack space added back. */ 1026 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM); 1027 prev_sp = this_base + info->size; 1028 } 1029 1030 /* Add 1 here to adjust for the post-decrement nature of the push 1031 instruction.*/ 1032 info->prev_sp = avr_make_saddr (prev_sp + 1); 1033 info->base = avr_make_saddr (this_base); 1034 1035 gdbarch = get_frame_arch (this_frame); 1036 1037 /* Adjust all the saved registers so that they contain addresses and not 1038 offsets. */ 1039 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++) 1040 if (info->saved_regs[i].addr > 0) 1041 info->saved_regs[i].addr = info->prev_sp - info->saved_regs[i].addr; 1042 1043 /* Except for the main and startup code, the return PC is always saved on 1044 the stack and is at the base of the frame. */ 1045 1046 if (info->prologue_type != AVR_PROLOGUE_MAIN) 1047 info->saved_regs[AVR_PC_REGNUM].addr = info->prev_sp; 1048 1049 /* The previous frame's SP needed to be computed. Save the computed 1050 value. */ 1051 tdep = gdbarch_tdep (gdbarch); 1052 trad_frame_set_value (info->saved_regs, AVR_SP_REGNUM, 1053 info->prev_sp - 1 + tdep->call_length); 1054 1055 return info; 1056 } 1057 1058 static CORE_ADDR 1059 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) 1060 { 1061 ULONGEST pc; 1062 1063 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM); 1064 1065 return avr_make_iaddr (pc); 1066 } 1067 1068 static CORE_ADDR 1069 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) 1070 { 1071 ULONGEST sp; 1072 1073 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM); 1074 1075 return avr_make_saddr (sp); 1076 } 1077 1078 /* Given a GDB frame, determine the address of the calling function's 1079 frame. This will be used to create a new GDB frame struct. */ 1080 1081 static void 1082 avr_frame_this_id (struct frame_info *this_frame, 1083 void **this_prologue_cache, 1084 struct frame_id *this_id) 1085 { 1086 struct avr_unwind_cache *info 1087 = avr_frame_unwind_cache (this_frame, this_prologue_cache); 1088 CORE_ADDR base; 1089 CORE_ADDR func; 1090 struct frame_id id; 1091 1092 /* The FUNC is easy. */ 1093 func = get_frame_func (this_frame); 1094 1095 /* Hopefully the prologue analysis either correctly determined the 1096 frame's base (which is the SP from the previous frame), or set 1097 that base to "NULL". */ 1098 base = info->prev_sp; 1099 if (base == 0) 1100 return; 1101 1102 id = frame_id_build (base, func); 1103 (*this_id) = id; 1104 } 1105 1106 static struct value * 1107 avr_frame_prev_register (struct frame_info *this_frame, 1108 void **this_prologue_cache, int regnum) 1109 { 1110 struct avr_unwind_cache *info 1111 = avr_frame_unwind_cache (this_frame, this_prologue_cache); 1112 1113 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM) 1114 { 1115 if (trad_frame_addr_p (info->saved_regs, AVR_PC_REGNUM)) 1116 { 1117 /* Reading the return PC from the PC register is slightly 1118 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes, 1119 but in reality, only two bytes (3 in upcoming mega256) are 1120 stored on the stack. 1121 1122 Also, note that the value on the stack is an addr to a word 1123 not a byte, so we will need to multiply it by two at some 1124 point. 1125 1126 And to confuse matters even more, the return address stored 1127 on the stack is in big endian byte order, even though most 1128 everything else about the avr is little endian. Ick! */ 1129 ULONGEST pc; 1130 int i; 1131 gdb_byte buf[3]; 1132 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1133 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 1134 1135 read_memory (info->saved_regs[AVR_PC_REGNUM].addr, 1136 buf, tdep->call_length); 1137 1138 /* Extract the PC read from memory as a big-endian. */ 1139 pc = 0; 1140 for (i = 0; i < tdep->call_length; i++) 1141 pc = (pc << 8) | buf[i]; 1142 1143 if (regnum == AVR_PC_REGNUM) 1144 pc <<= 1; 1145 1146 return frame_unwind_got_constant (this_frame, regnum, pc); 1147 } 1148 1149 return frame_unwind_got_optimized (this_frame, regnum); 1150 } 1151 1152 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); 1153 } 1154 1155 static const struct frame_unwind avr_frame_unwind = { 1156 NORMAL_FRAME, 1157 default_frame_unwind_stop_reason, 1158 avr_frame_this_id, 1159 avr_frame_prev_register, 1160 NULL, 1161 default_frame_sniffer 1162 }; 1163 1164 static CORE_ADDR 1165 avr_frame_base_address (struct frame_info *this_frame, void **this_cache) 1166 { 1167 struct avr_unwind_cache *info 1168 = avr_frame_unwind_cache (this_frame, this_cache); 1169 1170 return info->base; 1171 } 1172 1173 static const struct frame_base avr_frame_base = { 1174 &avr_frame_unwind, 1175 avr_frame_base_address, 1176 avr_frame_base_address, 1177 avr_frame_base_address 1178 }; 1179 1180 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy 1181 frame. The frame ID's base needs to match the TOS value saved by 1182 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */ 1183 1184 static struct frame_id 1185 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) 1186 { 1187 ULONGEST base; 1188 1189 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM); 1190 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame)); 1191 } 1192 1193 /* When arguments must be pushed onto the stack, they go on in reverse 1194 order. The below implements a FILO (stack) to do this. */ 1195 1196 struct stack_item 1197 { 1198 int len; 1199 struct stack_item *prev; 1200 gdb_byte *data; 1201 }; 1202 1203 static struct stack_item * 1204 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len) 1205 { 1206 struct stack_item *si; 1207 si = XNEW (struct stack_item); 1208 si->data = (gdb_byte *) xmalloc (len); 1209 si->len = len; 1210 si->prev = prev; 1211 memcpy (si->data, contents, len); 1212 return si; 1213 } 1214 1215 static struct stack_item *pop_stack_item (struct stack_item *si); 1216 static struct stack_item * 1217 pop_stack_item (struct stack_item *si) 1218 { 1219 struct stack_item *dead = si; 1220 si = si->prev; 1221 xfree (dead->data); 1222 xfree (dead); 1223 return si; 1224 } 1225 1226 /* Setup the function arguments for calling a function in the inferior. 1227 1228 On the AVR architecture, there are 18 registers (R25 to R8) which are 1229 dedicated for passing function arguments. Up to the first 18 arguments 1230 (depending on size) may go into these registers. The rest go on the stack. 1231 1232 All arguments are aligned to start in even-numbered registers (odd-sized 1233 arguments, including char, have one free register above them). For example, 1234 an int in arg1 and a char in arg2 would be passed as such: 1235 1236 arg1 -> r25:r24 1237 arg2 -> r22 1238 1239 Arguments that are larger than 2 bytes will be split between two or more 1240 registers as available, but will NOT be split between a register and the 1241 stack. Arguments that go onto the stack are pushed last arg first (this is 1242 similar to the d10v). */ 1243 1244 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be 1245 inaccurate. 1246 1247 An exceptional case exists for struct arguments (and possibly other 1248 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but 1249 not a multiple of WORDSIZE bytes. In this case the argument is never split 1250 between the registers and the stack, but instead is copied in its entirety 1251 onto the stack, AND also copied into as many registers as there is room 1252 for. In other words, space in registers permitting, two copies of the same 1253 argument are passed in. As far as I can tell, only the one on the stack is 1254 used, although that may be a function of the level of compiler 1255 optimization. I suspect this is a compiler bug. Arguments of these odd 1256 sizes are left-justified within the word (as opposed to arguments smaller 1257 than WORDSIZE bytes, which are right-justified). 1258 1259 If the function is to return an aggregate type such as a struct, the caller 1260 must allocate space into which the callee will copy the return value. In 1261 this case, a pointer to the return value location is passed into the callee 1262 in register R0, which displaces one of the other arguments passed in via 1263 registers R0 to R2. */ 1264 1265 static CORE_ADDR 1266 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 1267 struct regcache *regcache, CORE_ADDR bp_addr, 1268 int nargs, struct value **args, CORE_ADDR sp, 1269 int struct_return, CORE_ADDR struct_addr) 1270 { 1271 int i; 1272 gdb_byte buf[3]; 1273 int call_length = gdbarch_tdep (gdbarch)->call_length; 1274 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr); 1275 int regnum = AVR_ARGN_REGNUM; 1276 struct stack_item *si = NULL; 1277 1278 if (struct_return) 1279 { 1280 regcache_cooked_write_unsigned 1281 (regcache, regnum--, (struct_addr >> 8) & 0xff); 1282 regcache_cooked_write_unsigned 1283 (regcache, regnum--, struct_addr & 0xff); 1284 /* SP being post decremented, we need to reserve one byte so that the 1285 return address won't overwrite the result (or vice-versa). */ 1286 if (sp == struct_addr) 1287 sp--; 1288 } 1289 1290 for (i = 0; i < nargs; i++) 1291 { 1292 int last_regnum; 1293 int j; 1294 struct value *arg = args[i]; 1295 struct type *type = check_typedef (value_type (arg)); 1296 const bfd_byte *contents = value_contents (arg); 1297 int len = TYPE_LENGTH (type); 1298 1299 /* Calculate the potential last register needed. 1300 E.g. For length 2, registers regnum and regnum-1 (say 25 and 24) 1301 shall be used. So, last needed register will be regnum-1(24). */ 1302 last_regnum = regnum - (len + (len & 1)) + 1; 1303 1304 /* If there are registers available, use them. Once we start putting 1305 stuff on the stack, all subsequent args go on stack. */ 1306 if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM)) 1307 { 1308 /* Skip a register for odd length args. */ 1309 if (len & 1) 1310 regnum--; 1311 1312 /* Write MSB of argument into register and subsequent bytes in 1313 decreasing register numbers. */ 1314 for (j = 0; j < len; j++) 1315 regcache_cooked_write_unsigned 1316 (regcache, regnum--, contents[len - j - 1]); 1317 } 1318 /* No registers available, push the args onto the stack. */ 1319 else 1320 { 1321 /* From here on, we don't care about regnum. */ 1322 si = push_stack_item (si, contents, len); 1323 } 1324 } 1325 1326 /* Push args onto the stack. */ 1327 while (si) 1328 { 1329 sp -= si->len; 1330 /* Add 1 to sp here to account for post decr nature of pushes. */ 1331 write_memory (sp + 1, si->data, si->len); 1332 si = pop_stack_item (si); 1333 } 1334 1335 /* Set the return address. For the avr, the return address is the BP_ADDR. 1336 Need to push the return address onto the stack noting that it needs to be 1337 in big-endian order on the stack. */ 1338 for (i = 1; i <= call_length; i++) 1339 { 1340 buf[call_length - i] = return_pc & 0xff; 1341 return_pc >>= 8; 1342 } 1343 1344 sp -= call_length; 1345 /* Use 'sp + 1' since pushes are post decr ops. */ 1346 write_memory (sp + 1, buf, call_length); 1347 1348 /* Finally, update the SP register. */ 1349 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM, 1350 avr_convert_saddr_to_raw (sp)); 1351 1352 /* Return SP value for the dummy frame, where the return address hasn't been 1353 pushed. */ 1354 return sp + call_length; 1355 } 1356 1357 /* Unfortunately dwarf2 register for SP is 32. */ 1358 1359 static int 1360 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) 1361 { 1362 if (reg >= 0 && reg < 32) 1363 return reg; 1364 if (reg == 32) 1365 return AVR_SP_REGNUM; 1366 return -1; 1367 } 1368 1369 /* Implementation of `address_class_type_flags' gdbarch method. 1370 1371 This method maps DW_AT_address_class attributes to a 1372 type_instance_flag_value. */ 1373 1374 static int 1375 avr_address_class_type_flags (int byte_size, int dwarf2_addr_class) 1376 { 1377 /* The value 1 of the DW_AT_address_class attribute corresponds to the 1378 __flash qualifier. Note that this attribute is only valid with 1379 pointer types and therefore the flag is set to the pointer type and 1380 not its target type. */ 1381 if (dwarf2_addr_class == 1 && byte_size == 2) 1382 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH; 1383 return 0; 1384 } 1385 1386 /* Implementation of `address_class_type_flags_to_name' gdbarch method. 1387 1388 Convert a type_instance_flag_value to an address space qualifier. */ 1389 1390 static const char* 1391 avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags) 1392 { 1393 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH) 1394 return "flash"; 1395 else 1396 return NULL; 1397 } 1398 1399 /* Implementation of `address_class_name_to_type_flags' gdbarch method. 1400 1401 Convert an address space qualifier to a type_instance_flag_value. */ 1402 1403 static int 1404 avr_address_class_name_to_type_flags (struct gdbarch *gdbarch, 1405 const char* name, 1406 int *type_flags_ptr) 1407 { 1408 if (strcmp (name, "flash") == 0) 1409 { 1410 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH; 1411 return 1; 1412 } 1413 else 1414 return 0; 1415 } 1416 1417 /* Initialize the gdbarch structure for the AVR's. */ 1418 1419 static struct gdbarch * 1420 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 1421 { 1422 struct gdbarch *gdbarch; 1423 struct gdbarch_tdep *tdep; 1424 struct gdbarch_list *best_arch; 1425 int call_length; 1426 1427 /* Avr-6 call instructions save 3 bytes. */ 1428 switch (info.bfd_arch_info->mach) 1429 { 1430 case bfd_mach_avr1: 1431 case bfd_mach_avrxmega1: 1432 case bfd_mach_avr2: 1433 case bfd_mach_avrxmega2: 1434 case bfd_mach_avr3: 1435 case bfd_mach_avrxmega3: 1436 case bfd_mach_avr4: 1437 case bfd_mach_avrxmega4: 1438 case bfd_mach_avr5: 1439 case bfd_mach_avrxmega5: 1440 default: 1441 call_length = 2; 1442 break; 1443 case bfd_mach_avr6: 1444 case bfd_mach_avrxmega6: 1445 case bfd_mach_avrxmega7: 1446 call_length = 3; 1447 break; 1448 } 1449 1450 /* If there is already a candidate, use it. */ 1451 for (best_arch = gdbarch_list_lookup_by_info (arches, &info); 1452 best_arch != NULL; 1453 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) 1454 { 1455 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length) 1456 return best_arch->gdbarch; 1457 } 1458 1459 /* None found, create a new architecture from the information provided. */ 1460 tdep = XNEW (struct gdbarch_tdep); 1461 gdbarch = gdbarch_alloc (&info, tdep); 1462 1463 tdep->call_length = call_length; 1464 1465 /* Create a type for PC. We can't use builtin types here, as they may not 1466 be defined. */ 1467 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"); 1468 tdep->func_void_type = make_function_type (tdep->void_type, NULL); 1469 tdep->pc_type = arch_type (gdbarch, TYPE_CODE_PTR, 4, NULL); 1470 TYPE_TARGET_TYPE (tdep->pc_type) = tdep->func_void_type; 1471 TYPE_UNSIGNED (tdep->pc_type) = 1; 1472 1473 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1474 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1475 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1476 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); 1477 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); 1478 set_gdbarch_addr_bit (gdbarch, 32); 1479 1480 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1481 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1482 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); 1483 1484 set_gdbarch_float_format (gdbarch, floatformats_ieee_single); 1485 set_gdbarch_double_format (gdbarch, floatformats_ieee_single); 1486 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single); 1487 1488 set_gdbarch_read_pc (gdbarch, avr_read_pc); 1489 set_gdbarch_write_pc (gdbarch, avr_write_pc); 1490 1491 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS); 1492 1493 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM); 1494 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM); 1495 1496 set_gdbarch_register_name (gdbarch, avr_register_name); 1497 set_gdbarch_register_type (gdbarch, avr_register_type); 1498 1499 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS); 1500 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read); 1501 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write); 1502 1503 set_gdbarch_return_value (gdbarch, avr_return_value); 1504 set_gdbarch_print_insn (gdbarch, print_insn_avr); 1505 1506 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call); 1507 1508 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum); 1509 1510 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer); 1511 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address); 1512 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address); 1513 1514 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue); 1515 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 1516 1517 set_gdbarch_breakpoint_from_pc (gdbarch, avr_breakpoint_from_pc); 1518 1519 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind); 1520 frame_base_set_default (gdbarch, &avr_frame_base); 1521 1522 set_gdbarch_dummy_id (gdbarch, avr_dummy_id); 1523 1524 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc); 1525 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp); 1526 1527 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags); 1528 set_gdbarch_address_class_name_to_type_flags 1529 (gdbarch, avr_address_class_name_to_type_flags); 1530 set_gdbarch_address_class_type_flags_to_name 1531 (gdbarch, avr_address_class_type_flags_to_name); 1532 1533 return gdbarch; 1534 } 1535 1536 /* Send a query request to the avr remote target asking for values of the io 1537 registers. If args parameter is not NULL, then the user has requested info 1538 on a specific io register [This still needs implemented and is ignored for 1539 now]. The query string should be one of these forms: 1540 1541 "Ravr.io_reg" -> reply is "NN" number of io registers 1542 1543 "Ravr.io_reg:addr,len" where addr is first register and len is number of 1544 registers to be read. The reply should be "<NAME>,VV;" for each io register 1545 where, <NAME> is a string, and VV is the hex value of the register. 1546 1547 All io registers are 8-bit. */ 1548 1549 static void 1550 avr_io_reg_read_command (char *args, int from_tty) 1551 { 1552 LONGEST bufsiz = 0; 1553 gdb_byte *buf; 1554 const char *bufstr; 1555 char query[400]; 1556 const char *p; 1557 unsigned int nreg = 0; 1558 unsigned int val; 1559 int i, j, k, step; 1560 1561 /* Find out how many io registers the target has. */ 1562 bufsiz = target_read_alloc (¤t_target, TARGET_OBJECT_AVR, 1563 "avr.io_reg", &buf); 1564 bufstr = (const char *) buf; 1565 1566 if (bufsiz <= 0) 1567 { 1568 fprintf_unfiltered (gdb_stderr, 1569 _("ERR: info io_registers NOT supported " 1570 "by current target\n")); 1571 return; 1572 } 1573 1574 if (sscanf (bufstr, "%x", &nreg) != 1) 1575 { 1576 fprintf_unfiltered (gdb_stderr, 1577 _("Error fetching number of io registers\n")); 1578 xfree (buf); 1579 return; 1580 } 1581 1582 xfree (buf); 1583 1584 reinitialize_more_filter (); 1585 1586 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg); 1587 1588 /* only fetch up to 8 registers at a time to keep the buffer small */ 1589 step = 8; 1590 1591 for (i = 0; i < nreg; i += step) 1592 { 1593 /* how many registers this round? */ 1594 j = step; 1595 if ((i+j) >= nreg) 1596 j = nreg - i; /* last block is less than 8 registers */ 1597 1598 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j); 1599 bufsiz = target_read_alloc (¤t_target, TARGET_OBJECT_AVR, 1600 query, &buf); 1601 1602 p = (const char *) buf; 1603 for (k = i; k < (i + j); k++) 1604 { 1605 if (sscanf (p, "%[^,],%x;", query, &val) == 2) 1606 { 1607 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val); 1608 while ((*p != ';') && (*p != '\0')) 1609 p++; 1610 p++; /* skip over ';' */ 1611 if (*p == '\0') 1612 break; 1613 } 1614 } 1615 1616 xfree (buf); 1617 } 1618 } 1619 1620 extern initialize_file_ftype _initialize_avr_tdep; /* -Wmissing-prototypes */ 1621 1622 void 1623 _initialize_avr_tdep (void) 1624 { 1625 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init); 1626 1627 /* Add a new command to allow the user to query the avr remote target for 1628 the values of the io space registers in a saner way than just using 1629 `x/NNNb ADDR`. */ 1630 1631 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr 1632 io_registers' to signify it is not available on other platforms. */ 1633 1634 add_info ("io_registers", avr_io_reg_read_command, 1635 _("query remote avr target for io space register values")); 1636 } 1637