1 /* GNU/Linux on ARM native support. 2 Copyright (C) 1999-2016 Free Software Foundation, Inc. 3 4 This file is part of GDB. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 18 19 #include "defs.h" 20 #include "inferior.h" 21 #include "gdbcore.h" 22 #include "regcache.h" 23 #include "target.h" 24 #include "linux-nat.h" 25 #include "target-descriptions.h" 26 #include "auxv.h" 27 #include "observer.h" 28 #include "gdbthread.h" 29 30 #include "arm-tdep.h" 31 #include "arm-linux-tdep.h" 32 #include "aarch32-linux-nat.h" 33 34 #include <elf/common.h> 35 #include <sys/user.h> 36 #include "nat/gdb_ptrace.h" 37 #include <sys/utsname.h> 38 #include <sys/procfs.h> 39 40 #include "nat/linux-ptrace.h" 41 42 /* Prototypes for supply_gregset etc. */ 43 #include "gregset.h" 44 45 /* Defines ps_err_e, struct ps_prochandle. */ 46 #include "gdb_proc_service.h" 47 48 #ifndef PTRACE_GET_THREAD_AREA 49 #define PTRACE_GET_THREAD_AREA 22 50 #endif 51 52 #ifndef PTRACE_GETWMMXREGS 53 #define PTRACE_GETWMMXREGS 18 54 #define PTRACE_SETWMMXREGS 19 55 #endif 56 57 #ifndef PTRACE_GETVFPREGS 58 #define PTRACE_GETVFPREGS 27 59 #define PTRACE_SETVFPREGS 28 60 #endif 61 62 #ifndef PTRACE_GETHBPREGS 63 #define PTRACE_GETHBPREGS 29 64 #define PTRACE_SETHBPREGS 30 65 #endif 66 67 extern int arm_apcs_32; 68 69 /* Get the whole floating point state of the process and store it 70 into regcache. */ 71 72 static void 73 fetch_fpregs (struct regcache *regcache) 74 { 75 int ret, regno, tid; 76 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE]; 77 78 /* Get the thread id for the ptrace call. */ 79 tid = ptid_get_lwp (inferior_ptid); 80 81 /* Read the floating point state. */ 82 if (have_ptrace_getregset == TRIBOOL_TRUE) 83 { 84 struct iovec iov; 85 86 iov.iov_base = &fp; 87 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE; 88 89 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov); 90 } 91 else 92 ret = ptrace (PT_GETFPREGS, tid, 0, fp); 93 94 if (ret < 0) 95 perror_with_name (_("Unable to fetch the floating point registers.")); 96 97 /* Fetch fpsr. */ 98 regcache_raw_supply (regcache, ARM_FPS_REGNUM, 99 fp + NWFPE_FPSR_OFFSET); 100 101 /* Fetch the floating point registers. */ 102 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++) 103 supply_nwfpe_register (regcache, regno, fp); 104 } 105 106 /* Save the whole floating point state of the process using 107 the contents from regcache. */ 108 109 static void 110 store_fpregs (const struct regcache *regcache) 111 { 112 int ret, regno, tid; 113 gdb_byte fp[ARM_LINUX_SIZEOF_NWFPE]; 114 115 /* Get the thread id for the ptrace call. */ 116 tid = ptid_get_lwp (inferior_ptid); 117 118 /* Read the floating point state. */ 119 if (have_ptrace_getregset == TRIBOOL_TRUE) 120 { 121 elf_fpregset_t fpregs; 122 struct iovec iov; 123 124 iov.iov_base = &fpregs; 125 iov.iov_len = sizeof (fpregs); 126 127 ret = ptrace (PTRACE_GETREGSET, tid, NT_FPREGSET, &iov); 128 } 129 else 130 ret = ptrace (PT_GETFPREGS, tid, 0, fp); 131 132 if (ret < 0) 133 perror_with_name (_("Unable to fetch the floating point registers.")); 134 135 /* Store fpsr. */ 136 if (REG_VALID == regcache_register_status (regcache, ARM_FPS_REGNUM)) 137 regcache_raw_collect (regcache, ARM_FPS_REGNUM, fp + NWFPE_FPSR_OFFSET); 138 139 /* Store the floating point registers. */ 140 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++) 141 if (REG_VALID == regcache_register_status (regcache, regno)) 142 collect_nwfpe_register (regcache, regno, fp); 143 144 if (have_ptrace_getregset == TRIBOOL_TRUE) 145 { 146 struct iovec iov; 147 148 iov.iov_base = &fp; 149 iov.iov_len = ARM_LINUX_SIZEOF_NWFPE; 150 151 ret = ptrace (PTRACE_SETREGSET, tid, NT_FPREGSET, &iov); 152 } 153 else 154 ret = ptrace (PTRACE_SETFPREGS, tid, 0, fp); 155 156 if (ret < 0) 157 perror_with_name (_("Unable to store floating point registers.")); 158 } 159 160 /* Fetch all general registers of the process and store into 161 regcache. */ 162 163 static void 164 fetch_regs (struct regcache *regcache) 165 { 166 int ret, regno, tid; 167 elf_gregset_t regs; 168 169 /* Get the thread id for the ptrace call. */ 170 tid = ptid_get_lwp (inferior_ptid); 171 172 if (have_ptrace_getregset == TRIBOOL_TRUE) 173 { 174 struct iovec iov; 175 176 iov.iov_base = ®s; 177 iov.iov_len = sizeof (regs); 178 179 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov); 180 } 181 else 182 ret = ptrace (PTRACE_GETREGS, tid, 0, ®s); 183 184 if (ret < 0) 185 perror_with_name (_("Unable to fetch general registers.")); 186 187 aarch32_gp_regcache_supply (regcache, (uint32_t *) regs, arm_apcs_32); 188 } 189 190 static void 191 store_regs (const struct regcache *regcache) 192 { 193 int ret, regno, tid; 194 elf_gregset_t regs; 195 196 /* Get the thread id for the ptrace call. */ 197 tid = ptid_get_lwp (inferior_ptid); 198 199 /* Fetch the general registers. */ 200 if (have_ptrace_getregset == TRIBOOL_TRUE) 201 { 202 struct iovec iov; 203 204 iov.iov_base = ®s; 205 iov.iov_len = sizeof (regs); 206 207 ret = ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov); 208 } 209 else 210 ret = ptrace (PTRACE_GETREGS, tid, 0, ®s); 211 212 if (ret < 0) 213 perror_with_name (_("Unable to fetch general registers.")); 214 215 aarch32_gp_regcache_collect (regcache, (uint32_t *) regs, arm_apcs_32); 216 217 if (have_ptrace_getregset == TRIBOOL_TRUE) 218 { 219 struct iovec iov; 220 221 iov.iov_base = ®s; 222 iov.iov_len = sizeof (regs); 223 224 ret = ptrace (PTRACE_SETREGSET, tid, NT_PRSTATUS, &iov); 225 } 226 else 227 ret = ptrace (PTRACE_SETREGS, tid, 0, ®s); 228 229 if (ret < 0) 230 perror_with_name (_("Unable to store general registers.")); 231 } 232 233 /* Fetch all WMMX registers of the process and store into 234 regcache. */ 235 236 #define IWMMXT_REGS_SIZE (16 * 8 + 6 * 4) 237 238 static void 239 fetch_wmmx_regs (struct regcache *regcache) 240 { 241 char regbuf[IWMMXT_REGS_SIZE]; 242 int ret, regno, tid; 243 244 /* Get the thread id for the ptrace call. */ 245 tid = ptid_get_lwp (inferior_ptid); 246 247 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf); 248 if (ret < 0) 249 perror_with_name (_("Unable to fetch WMMX registers.")); 250 251 for (regno = 0; regno < 16; regno++) 252 regcache_raw_supply (regcache, regno + ARM_WR0_REGNUM, 253 ®buf[regno * 8]); 254 255 for (regno = 0; regno < 2; regno++) 256 regcache_raw_supply (regcache, regno + ARM_WCSSF_REGNUM, 257 ®buf[16 * 8 + regno * 4]); 258 259 for (regno = 0; regno < 4; regno++) 260 regcache_raw_supply (regcache, regno + ARM_WCGR0_REGNUM, 261 ®buf[16 * 8 + 2 * 4 + regno * 4]); 262 } 263 264 static void 265 store_wmmx_regs (const struct regcache *regcache) 266 { 267 char regbuf[IWMMXT_REGS_SIZE]; 268 int ret, regno, tid; 269 270 /* Get the thread id for the ptrace call. */ 271 tid = ptid_get_lwp (inferior_ptid); 272 273 ret = ptrace (PTRACE_GETWMMXREGS, tid, 0, regbuf); 274 if (ret < 0) 275 perror_with_name (_("Unable to fetch WMMX registers.")); 276 277 for (regno = 0; regno < 16; regno++) 278 if (REG_VALID == regcache_register_status (regcache, 279 regno + ARM_WR0_REGNUM)) 280 regcache_raw_collect (regcache, regno + ARM_WR0_REGNUM, 281 ®buf[regno * 8]); 282 283 for (regno = 0; regno < 2; regno++) 284 if (REG_VALID == regcache_register_status (regcache, 285 regno + ARM_WCSSF_REGNUM)) 286 regcache_raw_collect (regcache, regno + ARM_WCSSF_REGNUM, 287 ®buf[16 * 8 + regno * 4]); 288 289 for (regno = 0; regno < 4; regno++) 290 if (REG_VALID == regcache_register_status (regcache, 291 regno + ARM_WCGR0_REGNUM)) 292 regcache_raw_collect (regcache, regno + ARM_WCGR0_REGNUM, 293 ®buf[16 * 8 + 2 * 4 + regno * 4]); 294 295 ret = ptrace (PTRACE_SETWMMXREGS, tid, 0, regbuf); 296 297 if (ret < 0) 298 perror_with_name (_("Unable to store WMMX registers.")); 299 } 300 301 static void 302 fetch_vfp_regs (struct regcache *regcache) 303 { 304 gdb_byte regbuf[VFP_REGS_SIZE]; 305 int ret, regno, tid; 306 struct gdbarch *gdbarch = get_regcache_arch (regcache); 307 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 308 309 /* Get the thread id for the ptrace call. */ 310 tid = ptid_get_lwp (inferior_ptid); 311 312 if (have_ptrace_getregset == TRIBOOL_TRUE) 313 { 314 struct iovec iov; 315 316 iov.iov_base = regbuf; 317 iov.iov_len = VFP_REGS_SIZE; 318 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov); 319 } 320 else 321 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf); 322 323 if (ret < 0) 324 perror_with_name (_("Unable to fetch VFP registers.")); 325 326 aarch32_vfp_regcache_supply (regcache, regbuf, 327 tdep->vfp_register_count); 328 } 329 330 static void 331 store_vfp_regs (const struct regcache *regcache) 332 { 333 gdb_byte regbuf[VFP_REGS_SIZE]; 334 int ret, regno, tid; 335 struct gdbarch *gdbarch = get_regcache_arch (regcache); 336 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 337 338 /* Get the thread id for the ptrace call. */ 339 tid = ptid_get_lwp (inferior_ptid); 340 341 if (have_ptrace_getregset == TRIBOOL_TRUE) 342 { 343 struct iovec iov; 344 345 iov.iov_base = regbuf; 346 iov.iov_len = VFP_REGS_SIZE; 347 ret = ptrace (PTRACE_GETREGSET, tid, NT_ARM_VFP, &iov); 348 } 349 else 350 ret = ptrace (PTRACE_GETVFPREGS, tid, 0, regbuf); 351 352 if (ret < 0) 353 perror_with_name (_("Unable to fetch VFP registers (for update).")); 354 355 aarch32_vfp_regcache_collect (regcache, regbuf, 356 tdep->vfp_register_count); 357 358 if (have_ptrace_getregset == TRIBOOL_TRUE) 359 { 360 struct iovec iov; 361 362 iov.iov_base = regbuf; 363 iov.iov_len = VFP_REGS_SIZE; 364 ret = ptrace (PTRACE_SETREGSET, tid, NT_ARM_VFP, &iov); 365 } 366 else 367 ret = ptrace (PTRACE_SETVFPREGS, tid, 0, regbuf); 368 369 if (ret < 0) 370 perror_with_name (_("Unable to store VFP registers.")); 371 } 372 373 /* Fetch registers from the child process. Fetch all registers if 374 regno == -1, otherwise fetch all general registers or all floating 375 point registers depending upon the value of regno. */ 376 377 static void 378 arm_linux_fetch_inferior_registers (struct target_ops *ops, 379 struct regcache *regcache, int regno) 380 { 381 struct gdbarch *gdbarch = get_regcache_arch (regcache); 382 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 383 384 if (-1 == regno) 385 { 386 fetch_regs (regcache); 387 fetch_fpregs (regcache); 388 if (tdep->have_wmmx_registers) 389 fetch_wmmx_regs (regcache); 390 if (tdep->vfp_register_count > 0) 391 fetch_vfp_regs (regcache); 392 } 393 else 394 { 395 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM) 396 fetch_regs (regcache); 397 else if (regno >= ARM_F0_REGNUM && regno <= ARM_FPS_REGNUM) 398 fetch_fpregs (regcache); 399 else if (tdep->have_wmmx_registers 400 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM) 401 fetch_wmmx_regs (regcache); 402 else if (tdep->vfp_register_count > 0 403 && regno >= ARM_D0_REGNUM 404 && regno <= ARM_D0_REGNUM + tdep->vfp_register_count) 405 fetch_vfp_regs (regcache); 406 } 407 } 408 409 /* Store registers back into the inferior. Store all registers if 410 regno == -1, otherwise store all general registers or all floating 411 point registers depending upon the value of regno. */ 412 413 static void 414 arm_linux_store_inferior_registers (struct target_ops *ops, 415 struct regcache *regcache, int regno) 416 { 417 struct gdbarch *gdbarch = get_regcache_arch (regcache); 418 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 419 420 if (-1 == regno) 421 { 422 store_regs (regcache); 423 store_fpregs (regcache); 424 if (tdep->have_wmmx_registers) 425 store_wmmx_regs (regcache); 426 if (tdep->vfp_register_count > 0) 427 store_vfp_regs (regcache); 428 } 429 else 430 { 431 if (regno < ARM_F0_REGNUM || regno == ARM_PS_REGNUM) 432 store_regs (regcache); 433 else if ((regno >= ARM_F0_REGNUM) && (regno <= ARM_FPS_REGNUM)) 434 store_fpregs (regcache); 435 else if (tdep->have_wmmx_registers 436 && regno >= ARM_WR0_REGNUM && regno <= ARM_WCGR7_REGNUM) 437 store_wmmx_regs (regcache); 438 else if (tdep->vfp_register_count > 0 439 && regno >= ARM_D0_REGNUM 440 && regno <= ARM_D0_REGNUM + tdep->vfp_register_count) 441 store_vfp_regs (regcache); 442 } 443 } 444 445 /* Wrapper functions for the standard regset handling, used by 446 thread debugging. */ 447 448 void 449 fill_gregset (const struct regcache *regcache, 450 gdb_gregset_t *gregsetp, int regno) 451 { 452 arm_linux_collect_gregset (NULL, regcache, regno, gregsetp, 0); 453 } 454 455 void 456 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp) 457 { 458 arm_linux_supply_gregset (NULL, regcache, -1, gregsetp, 0); 459 } 460 461 void 462 fill_fpregset (const struct regcache *regcache, 463 gdb_fpregset_t *fpregsetp, int regno) 464 { 465 arm_linux_collect_nwfpe (NULL, regcache, regno, fpregsetp, 0); 466 } 467 468 /* Fill GDB's register array with the floating-point register values 469 in *fpregsetp. */ 470 471 void 472 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp) 473 { 474 arm_linux_supply_nwfpe (NULL, regcache, -1, fpregsetp, 0); 475 } 476 477 /* Fetch the thread-local storage pointer for libthread_db. */ 478 479 ps_err_e 480 ps_get_thread_area (struct ps_prochandle *ph, 481 lwpid_t lwpid, int idx, void **base) 482 { 483 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0) 484 return PS_ERR; 485 486 /* IDX is the bias from the thread pointer to the beginning of the 487 thread descriptor. It has to be subtracted due to implementation 488 quirks in libthread_db. */ 489 *base = (void *) ((char *)*base - idx); 490 491 return PS_OK; 492 } 493 494 static const struct target_desc * 495 arm_linux_read_description (struct target_ops *ops) 496 { 497 CORE_ADDR arm_hwcap = 0; 498 499 if (have_ptrace_getregset == TRIBOOL_UNKNOWN) 500 { 501 elf_gregset_t gpregs; 502 struct iovec iov; 503 int tid = ptid_get_lwp (inferior_ptid); 504 505 iov.iov_base = &gpregs; 506 iov.iov_len = sizeof (gpregs); 507 508 /* Check if PTRACE_GETREGSET works. */ 509 if (ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov) < 0) 510 have_ptrace_getregset = TRIBOOL_FALSE; 511 else 512 have_ptrace_getregset = TRIBOOL_TRUE; 513 } 514 515 if (target_auxv_search (ops, AT_HWCAP, &arm_hwcap) != 1) 516 { 517 return ops->beneath->to_read_description (ops->beneath); 518 } 519 520 if (arm_hwcap & HWCAP_IWMMXT) 521 return tdesc_arm_with_iwmmxt; 522 523 if (arm_hwcap & HWCAP_VFP) 524 { 525 int pid; 526 char *buf; 527 const struct target_desc * result = NULL; 528 529 /* NEON implies VFPv3-D32 or no-VFP unit. Say that we only support 530 Neon with VFPv3-D32. */ 531 if (arm_hwcap & HWCAP_NEON) 532 result = tdesc_arm_with_neon; 533 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3) 534 result = tdesc_arm_with_vfpv3; 535 else 536 result = tdesc_arm_with_vfpv2; 537 538 /* Now make sure that the kernel supports reading these 539 registers. Support was added in 2.6.30. */ 540 pid = ptid_get_lwp (inferior_ptid); 541 errno = 0; 542 buf = (char *) alloca (VFP_REGS_SIZE); 543 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0 544 && errno == EIO) 545 result = NULL; 546 547 return result; 548 } 549 550 return ops->beneath->to_read_description (ops->beneath); 551 } 552 553 /* Information describing the hardware breakpoint capabilities. */ 554 struct arm_linux_hwbp_cap 555 { 556 gdb_byte arch; 557 gdb_byte max_wp_length; 558 gdb_byte wp_count; 559 gdb_byte bp_count; 560 }; 561 562 /* Since we cannot dynamically allocate subfields of arm_linux_process_info, 563 assume a maximum number of supported break-/watchpoints. */ 564 #define MAX_BPTS 16 565 #define MAX_WPTS 16 566 567 /* Get hold of the Hardware Breakpoint information for the target we are 568 attached to. Returns NULL if the kernel doesn't support Hardware 569 breakpoints at all, or a pointer to the information structure. */ 570 static const struct arm_linux_hwbp_cap * 571 arm_linux_get_hwbp_cap (void) 572 { 573 /* The info structure we return. */ 574 static struct arm_linux_hwbp_cap info; 575 576 /* Is INFO in a good state? -1 means that no attempt has been made to 577 initialize INFO; 0 means an attempt has been made, but it failed; 1 578 means INFO is in an initialized state. */ 579 static int available = -1; 580 581 if (available == -1) 582 { 583 int tid; 584 unsigned int val; 585 586 tid = ptid_get_lwp (inferior_ptid); 587 if (ptrace (PTRACE_GETHBPREGS, tid, 0, &val) < 0) 588 available = 0; 589 else 590 { 591 info.arch = (gdb_byte)((val >> 24) & 0xff); 592 info.max_wp_length = (gdb_byte)((val >> 16) & 0xff); 593 info.wp_count = (gdb_byte)((val >> 8) & 0xff); 594 info.bp_count = (gdb_byte)(val & 0xff); 595 596 if (info.wp_count > MAX_WPTS) 597 { 598 warning (_("arm-linux-gdb supports %d hardware watchpoints but target \ 599 supports %d"), MAX_WPTS, info.wp_count); 600 info.wp_count = MAX_WPTS; 601 } 602 603 if (info.bp_count > MAX_BPTS) 604 { 605 warning (_("arm-linux-gdb supports %d hardware breakpoints but target \ 606 supports %d"), MAX_BPTS, info.bp_count); 607 info.bp_count = MAX_BPTS; 608 } 609 available = (info.arch != 0); 610 } 611 } 612 613 return available == 1 ? &info : NULL; 614 } 615 616 /* How many hardware breakpoints are available? */ 617 static int 618 arm_linux_get_hw_breakpoint_count (void) 619 { 620 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 621 return cap != NULL ? cap->bp_count : 0; 622 } 623 624 /* How many hardware watchpoints are available? */ 625 static int 626 arm_linux_get_hw_watchpoint_count (void) 627 { 628 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 629 return cap != NULL ? cap->wp_count : 0; 630 } 631 632 /* Have we got a free break-/watch-point available for use? Returns -1 if 633 there is not an appropriate resource available, otherwise returns 1. */ 634 static int 635 arm_linux_can_use_hw_breakpoint (struct target_ops *self, 636 enum bptype type, 637 int cnt, int ot) 638 { 639 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint 640 || type == bp_access_watchpoint || type == bp_watchpoint) 641 { 642 int count = arm_linux_get_hw_watchpoint_count (); 643 644 if (count == 0) 645 return 0; 646 else if (cnt + ot > count) 647 return -1; 648 } 649 else if (type == bp_hardware_breakpoint) 650 { 651 int count = arm_linux_get_hw_breakpoint_count (); 652 653 if (count == 0) 654 return 0; 655 else if (cnt > count) 656 return -1; 657 } 658 else 659 gdb_assert (FALSE); 660 661 return 1; 662 } 663 664 /* Enum describing the different types of ARM hardware break-/watch-points. */ 665 typedef enum 666 { 667 arm_hwbp_break = 0, 668 arm_hwbp_load = 1, 669 arm_hwbp_store = 2, 670 arm_hwbp_access = 3 671 } arm_hwbp_type; 672 673 /* Type describing an ARM Hardware Breakpoint Control register value. */ 674 typedef unsigned int arm_hwbp_control_t; 675 676 /* Structure used to keep track of hardware break-/watch-points. */ 677 struct arm_linux_hw_breakpoint 678 { 679 /* Address to break on, or being watched. */ 680 unsigned int address; 681 /* Control register for break-/watch- point. */ 682 arm_hwbp_control_t control; 683 }; 684 685 /* Structure containing arrays of per process hardware break-/watchpoints 686 for caching address and control information. 687 688 The Linux ptrace interface to hardware break-/watch-points presents the 689 values in a vector centred around 0 (which is used fo generic information). 690 Positive indicies refer to breakpoint addresses/control registers, negative 691 indices to watchpoint addresses/control registers. 692 693 The Linux vector is indexed as follows: 694 -((i << 1) + 2): Control register for watchpoint i. 695 -((i << 1) + 1): Address register for watchpoint i. 696 0: Information register. 697 ((i << 1) + 1): Address register for breakpoint i. 698 ((i << 1) + 2): Control register for breakpoint i. 699 700 This structure is used as a per-thread cache of the state stored by the 701 kernel, so that we don't need to keep calling into the kernel to find a 702 free breakpoint. 703 704 We treat break-/watch-points with their enable bit clear as being deleted. 705 */ 706 struct arm_linux_debug_reg_state 707 { 708 /* Hardware breakpoints for this process. */ 709 struct arm_linux_hw_breakpoint bpts[MAX_BPTS]; 710 /* Hardware watchpoints for this process. */ 711 struct arm_linux_hw_breakpoint wpts[MAX_WPTS]; 712 }; 713 714 /* Per-process arch-specific data we want to keep. */ 715 struct arm_linux_process_info 716 { 717 /* Linked list. */ 718 struct arm_linux_process_info *next; 719 /* The process identifier. */ 720 pid_t pid; 721 /* Hardware break-/watchpoints state information. */ 722 struct arm_linux_debug_reg_state state; 723 724 }; 725 726 /* Per-thread arch-specific data we want to keep. */ 727 struct arch_lwp_info 728 { 729 /* Non-zero if our copy differs from what's recorded in the thread. */ 730 char bpts_changed[MAX_BPTS]; 731 char wpts_changed[MAX_WPTS]; 732 }; 733 734 static struct arm_linux_process_info *arm_linux_process_list = NULL; 735 736 /* Find process data for process PID. */ 737 738 static struct arm_linux_process_info * 739 arm_linux_find_process_pid (pid_t pid) 740 { 741 struct arm_linux_process_info *proc; 742 743 for (proc = arm_linux_process_list; proc; proc = proc->next) 744 if (proc->pid == pid) 745 return proc; 746 747 return NULL; 748 } 749 750 /* Add process data for process PID. Returns newly allocated info 751 object. */ 752 753 static struct arm_linux_process_info * 754 arm_linux_add_process (pid_t pid) 755 { 756 struct arm_linux_process_info *proc; 757 758 proc = XCNEW (struct arm_linux_process_info); 759 proc->pid = pid; 760 761 proc->next = arm_linux_process_list; 762 arm_linux_process_list = proc; 763 764 return proc; 765 } 766 767 /* Get data specific info for process PID, creating it if necessary. 768 Never returns NULL. */ 769 770 static struct arm_linux_process_info * 771 arm_linux_process_info_get (pid_t pid) 772 { 773 struct arm_linux_process_info *proc; 774 775 proc = arm_linux_find_process_pid (pid); 776 if (proc == NULL) 777 proc = arm_linux_add_process (pid); 778 779 return proc; 780 } 781 782 /* Called whenever GDB is no longer debugging process PID. It deletes 783 data structures that keep track of debug register state. */ 784 785 static void 786 arm_linux_forget_process (pid_t pid) 787 { 788 struct arm_linux_process_info *proc, **proc_link; 789 790 proc = arm_linux_process_list; 791 proc_link = &arm_linux_process_list; 792 793 while (proc != NULL) 794 { 795 if (proc->pid == pid) 796 { 797 *proc_link = proc->next; 798 799 xfree (proc); 800 return; 801 } 802 803 proc_link = &proc->next; 804 proc = *proc_link; 805 } 806 } 807 808 /* Get hardware break-/watchpoint state for process PID. */ 809 810 static struct arm_linux_debug_reg_state * 811 arm_linux_get_debug_reg_state (pid_t pid) 812 { 813 return &arm_linux_process_info_get (pid)->state; 814 } 815 816 /* Initialize an ARM hardware break-/watch-point control register value. 817 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the 818 type of break-/watch-point; ENABLE indicates whether the point is enabled. 819 */ 820 static arm_hwbp_control_t 821 arm_hwbp_control_initialize (unsigned byte_address_select, 822 arm_hwbp_type hwbp_type, 823 int enable) 824 { 825 gdb_assert ((byte_address_select & ~0xffU) == 0); 826 gdb_assert (hwbp_type != arm_hwbp_break 827 || ((byte_address_select & 0xfU) != 0)); 828 829 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable; 830 } 831 832 /* Does the breakpoint control value CONTROL have the enable bit set? */ 833 static int 834 arm_hwbp_control_is_enabled (arm_hwbp_control_t control) 835 { 836 return control & 0x1; 837 } 838 839 /* Change a breakpoint control word so that it is in the disabled state. */ 840 static arm_hwbp_control_t 841 arm_hwbp_control_disable (arm_hwbp_control_t control) 842 { 843 return control & ~0x1; 844 } 845 846 /* Initialise the hardware breakpoint structure P. The breakpoint will be 847 enabled, and will point to the placed address of BP_TGT. */ 848 static void 849 arm_linux_hw_breakpoint_initialize (struct gdbarch *gdbarch, 850 struct bp_target_info *bp_tgt, 851 struct arm_linux_hw_breakpoint *p) 852 { 853 unsigned mask; 854 CORE_ADDR address = bp_tgt->placed_address = bp_tgt->reqstd_address; 855 856 /* We have to create a mask for the control register which says which bits 857 of the word pointed to by address to break on. */ 858 if (arm_pc_is_thumb (gdbarch, address)) 859 { 860 mask = 0x3; 861 address &= ~1; 862 } 863 else 864 { 865 mask = 0xf; 866 address &= ~3; 867 } 868 869 p->address = (unsigned int) address; 870 p->control = arm_hwbp_control_initialize (mask, arm_hwbp_break, 1); 871 } 872 873 /* Get the ARM hardware breakpoint type from the TYPE value we're 874 given when asked to set a watchpoint. */ 875 static arm_hwbp_type 876 arm_linux_get_hwbp_type (enum target_hw_bp_type type) 877 { 878 if (type == hw_read) 879 return arm_hwbp_load; 880 else if (type == hw_write) 881 return arm_hwbp_store; 882 else 883 return arm_hwbp_access; 884 } 885 886 /* Initialize the hardware breakpoint structure P for a watchpoint at ADDR 887 to LEN. The type of watchpoint is given in RW. */ 888 static void 889 arm_linux_hw_watchpoint_initialize (CORE_ADDR addr, int len, 890 enum target_hw_bp_type type, 891 struct arm_linux_hw_breakpoint *p) 892 { 893 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 894 unsigned mask; 895 896 gdb_assert (cap != NULL); 897 gdb_assert (cap->max_wp_length != 0); 898 899 mask = (1 << len) - 1; 900 901 p->address = (unsigned int) addr; 902 p->control = arm_hwbp_control_initialize (mask, 903 arm_linux_get_hwbp_type (type), 1); 904 } 905 906 /* Are two break-/watch-points equal? */ 907 static int 908 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1, 909 const struct arm_linux_hw_breakpoint *p2) 910 { 911 return p1->address == p2->address && p1->control == p2->control; 912 } 913 914 /* Callback to mark a watch-/breakpoint to be updated in all threads of 915 the current process. */ 916 917 struct update_registers_data 918 { 919 int watch; 920 int index; 921 }; 922 923 static int 924 update_registers_callback (struct lwp_info *lwp, void *arg) 925 { 926 struct update_registers_data *data = (struct update_registers_data *) arg; 927 928 if (lwp->arch_private == NULL) 929 lwp->arch_private = XCNEW (struct arch_lwp_info); 930 931 /* The actual update is done later just before resuming the lwp, 932 we just mark that the registers need updating. */ 933 if (data->watch) 934 lwp->arch_private->wpts_changed[data->index] = 1; 935 else 936 lwp->arch_private->bpts_changed[data->index] = 1; 937 938 /* If the lwp isn't stopped, force it to momentarily pause, so 939 we can update its breakpoint registers. */ 940 if (!lwp->stopped) 941 linux_stop_lwp (lwp); 942 943 return 0; 944 } 945 946 /* Insert the hardware breakpoint (WATCHPOINT = 0) or watchpoint (WATCHPOINT 947 =1) BPT for thread TID. */ 948 static void 949 arm_linux_insert_hw_breakpoint1 (const struct arm_linux_hw_breakpoint* bpt, 950 int watchpoint) 951 { 952 int pid; 953 ptid_t pid_ptid; 954 gdb_byte count, i; 955 struct arm_linux_hw_breakpoint* bpts; 956 struct update_registers_data data; 957 958 pid = ptid_get_pid (inferior_ptid); 959 pid_ptid = pid_to_ptid (pid); 960 961 if (watchpoint) 962 { 963 count = arm_linux_get_hw_watchpoint_count (); 964 bpts = arm_linux_get_debug_reg_state (pid)->wpts; 965 } 966 else 967 { 968 count = arm_linux_get_hw_breakpoint_count (); 969 bpts = arm_linux_get_debug_reg_state (pid)->bpts; 970 } 971 972 for (i = 0; i < count; ++i) 973 if (!arm_hwbp_control_is_enabled (bpts[i].control)) 974 { 975 data.watch = watchpoint; 976 data.index = i; 977 bpts[i] = *bpt; 978 iterate_over_lwps (pid_ptid, update_registers_callback, &data); 979 break; 980 } 981 982 gdb_assert (i != count); 983 } 984 985 /* Remove the hardware breakpoint (WATCHPOINT = 0) or watchpoint 986 (WATCHPOINT = 1) BPT for thread TID. */ 987 static void 988 arm_linux_remove_hw_breakpoint1 (const struct arm_linux_hw_breakpoint *bpt, 989 int watchpoint) 990 { 991 int pid; 992 gdb_byte count, i; 993 ptid_t pid_ptid; 994 struct arm_linux_hw_breakpoint* bpts; 995 struct update_registers_data data; 996 997 pid = ptid_get_pid (inferior_ptid); 998 pid_ptid = pid_to_ptid (pid); 999 1000 if (watchpoint) 1001 { 1002 count = arm_linux_get_hw_watchpoint_count (); 1003 bpts = arm_linux_get_debug_reg_state (pid)->wpts; 1004 } 1005 else 1006 { 1007 count = arm_linux_get_hw_breakpoint_count (); 1008 bpts = arm_linux_get_debug_reg_state (pid)->bpts; 1009 } 1010 1011 for (i = 0; i < count; ++i) 1012 if (arm_linux_hw_breakpoint_equal (bpt, bpts + i)) 1013 { 1014 data.watch = watchpoint; 1015 data.index = i; 1016 bpts[i].control = arm_hwbp_control_disable (bpts[i].control); 1017 iterate_over_lwps (pid_ptid, update_registers_callback, &data); 1018 break; 1019 } 1020 1021 gdb_assert (i != count); 1022 } 1023 1024 /* Insert a Hardware breakpoint. */ 1025 static int 1026 arm_linux_insert_hw_breakpoint (struct target_ops *self, 1027 struct gdbarch *gdbarch, 1028 struct bp_target_info *bp_tgt) 1029 { 1030 struct lwp_info *lp; 1031 struct arm_linux_hw_breakpoint p; 1032 1033 if (arm_linux_get_hw_breakpoint_count () == 0) 1034 return -1; 1035 1036 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p); 1037 1038 arm_linux_insert_hw_breakpoint1 (&p, 0); 1039 1040 return 0; 1041 } 1042 1043 /* Remove a hardware breakpoint. */ 1044 static int 1045 arm_linux_remove_hw_breakpoint (struct target_ops *self, 1046 struct gdbarch *gdbarch, 1047 struct bp_target_info *bp_tgt) 1048 { 1049 struct lwp_info *lp; 1050 struct arm_linux_hw_breakpoint p; 1051 1052 if (arm_linux_get_hw_breakpoint_count () == 0) 1053 return -1; 1054 1055 arm_linux_hw_breakpoint_initialize (gdbarch, bp_tgt, &p); 1056 1057 arm_linux_remove_hw_breakpoint1 (&p, 0); 1058 1059 return 0; 1060 } 1061 1062 /* Are we able to use a hardware watchpoint for the LEN bytes starting at 1063 ADDR? */ 1064 static int 1065 arm_linux_region_ok_for_hw_watchpoint (struct target_ops *self, 1066 CORE_ADDR addr, int len) 1067 { 1068 const struct arm_linux_hwbp_cap *cap = arm_linux_get_hwbp_cap (); 1069 CORE_ADDR max_wp_length, aligned_addr; 1070 1071 /* Can not set watchpoints for zero or negative lengths. */ 1072 if (len <= 0) 1073 return 0; 1074 1075 /* Need to be able to use the ptrace interface. */ 1076 if (cap == NULL || cap->wp_count == 0) 1077 return 0; 1078 1079 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address 1080 range covered by a watchpoint. */ 1081 max_wp_length = (CORE_ADDR)cap->max_wp_length; 1082 aligned_addr = addr & ~(max_wp_length - 1); 1083 1084 if (aligned_addr + max_wp_length < addr + len) 1085 return 0; 1086 1087 /* The current ptrace interface can only handle watchpoints that are a 1088 power of 2. */ 1089 if ((len & (len - 1)) != 0) 1090 return 0; 1091 1092 /* All tests passed so we must be able to set a watchpoint. */ 1093 return 1; 1094 } 1095 1096 /* Insert a Hardware breakpoint. */ 1097 static int 1098 arm_linux_insert_watchpoint (struct target_ops *self, 1099 CORE_ADDR addr, int len, 1100 enum target_hw_bp_type rw, 1101 struct expression *cond) 1102 { 1103 struct lwp_info *lp; 1104 struct arm_linux_hw_breakpoint p; 1105 1106 if (arm_linux_get_hw_watchpoint_count () == 0) 1107 return -1; 1108 1109 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p); 1110 1111 arm_linux_insert_hw_breakpoint1 (&p, 1); 1112 1113 return 0; 1114 } 1115 1116 /* Remove a hardware breakpoint. */ 1117 static int 1118 arm_linux_remove_watchpoint (struct target_ops *self, CORE_ADDR addr, 1119 int len, enum target_hw_bp_type rw, 1120 struct expression *cond) 1121 { 1122 struct lwp_info *lp; 1123 struct arm_linux_hw_breakpoint p; 1124 1125 if (arm_linux_get_hw_watchpoint_count () == 0) 1126 return -1; 1127 1128 arm_linux_hw_watchpoint_initialize (addr, len, rw, &p); 1129 1130 arm_linux_remove_hw_breakpoint1 (&p, 1); 1131 1132 return 0; 1133 } 1134 1135 /* What was the data address the target was stopped on accessing. */ 1136 static int 1137 arm_linux_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p) 1138 { 1139 siginfo_t siginfo; 1140 int slot; 1141 1142 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo)) 1143 return 0; 1144 1145 /* This must be a hardware breakpoint. */ 1146 if (siginfo.si_signo != SIGTRAP 1147 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */) 1148 return 0; 1149 1150 /* We must be able to set hardware watchpoints. */ 1151 if (arm_linux_get_hw_watchpoint_count () == 0) 1152 return 0; 1153 1154 slot = siginfo.si_errno; 1155 1156 /* If we are in a positive slot then we're looking at a breakpoint and not 1157 a watchpoint. */ 1158 if (slot >= 0) 1159 return 0; 1160 1161 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr; 1162 return 1; 1163 } 1164 1165 /* Has the target been stopped by hitting a watchpoint? */ 1166 static int 1167 arm_linux_stopped_by_watchpoint (struct target_ops *ops) 1168 { 1169 CORE_ADDR addr; 1170 return arm_linux_stopped_data_address (ops, &addr); 1171 } 1172 1173 static int 1174 arm_linux_watchpoint_addr_within_range (struct target_ops *target, 1175 CORE_ADDR addr, 1176 CORE_ADDR start, int length) 1177 { 1178 return start <= addr && start + length - 1 >= addr; 1179 } 1180 1181 /* Handle thread creation. We need to copy the breakpoints and watchpoints 1182 in the parent thread to the child thread. */ 1183 static void 1184 arm_linux_new_thread (struct lwp_info *lp) 1185 { 1186 int i; 1187 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info); 1188 1189 /* Mark that all the hardware breakpoint/watchpoint register pairs 1190 for this thread need to be initialized. */ 1191 1192 for (i = 0; i < MAX_BPTS; i++) 1193 { 1194 info->bpts_changed[i] = 1; 1195 info->wpts_changed[i] = 1; 1196 } 1197 1198 lp->arch_private = info; 1199 } 1200 1201 /* Called when resuming a thread. 1202 The hardware debug registers are updated when there is any change. */ 1203 1204 static void 1205 arm_linux_prepare_to_resume (struct lwp_info *lwp) 1206 { 1207 int pid, i; 1208 struct arm_linux_hw_breakpoint *bpts, *wpts; 1209 struct arch_lwp_info *arm_lwp_info = lwp->arch_private; 1210 1211 pid = ptid_get_lwp (lwp->ptid); 1212 bpts = arm_linux_get_debug_reg_state (ptid_get_pid (lwp->ptid))->bpts; 1213 wpts = arm_linux_get_debug_reg_state (ptid_get_pid (lwp->ptid))->wpts; 1214 1215 /* NULL means this is the main thread still going through the shell, 1216 or, no watchpoint has been set yet. In that case, there's 1217 nothing to do. */ 1218 if (arm_lwp_info == NULL) 1219 return; 1220 1221 for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++) 1222 if (arm_lwp_info->bpts_changed[i]) 1223 { 1224 errno = 0; 1225 if (arm_hwbp_control_is_enabled (bpts[i].control)) 1226 if (ptrace (PTRACE_SETHBPREGS, pid, 1227 (PTRACE_TYPE_ARG3) ((i << 1) + 1), &bpts[i].address) < 0) 1228 perror_with_name (_("Unexpected error setting breakpoint")); 1229 1230 if (bpts[i].control != 0) 1231 if (ptrace (PTRACE_SETHBPREGS, pid, 1232 (PTRACE_TYPE_ARG3) ((i << 1) + 2), &bpts[i].control) < 0) 1233 perror_with_name (_("Unexpected error setting breakpoint")); 1234 1235 arm_lwp_info->bpts_changed[i] = 0; 1236 } 1237 1238 for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++) 1239 if (arm_lwp_info->wpts_changed[i]) 1240 { 1241 errno = 0; 1242 if (arm_hwbp_control_is_enabled (wpts[i].control)) 1243 if (ptrace (PTRACE_SETHBPREGS, pid, 1244 (PTRACE_TYPE_ARG3) -((i << 1) + 1), &wpts[i].address) < 0) 1245 perror_with_name (_("Unexpected error setting watchpoint")); 1246 1247 if (wpts[i].control != 0) 1248 if (ptrace (PTRACE_SETHBPREGS, pid, 1249 (PTRACE_TYPE_ARG3) -((i << 1) + 2), &wpts[i].control) < 0) 1250 perror_with_name (_("Unexpected error setting watchpoint")); 1251 1252 arm_lwp_info->wpts_changed[i] = 0; 1253 } 1254 } 1255 1256 /* linux_nat_new_fork hook. */ 1257 1258 static void 1259 arm_linux_new_fork (struct lwp_info *parent, pid_t child_pid) 1260 { 1261 pid_t parent_pid; 1262 struct arm_linux_debug_reg_state *parent_state; 1263 struct arm_linux_debug_reg_state *child_state; 1264 1265 /* NULL means no watchpoint has ever been set in the parent. In 1266 that case, there's nothing to do. */ 1267 if (parent->arch_private == NULL) 1268 return; 1269 1270 /* GDB core assumes the child inherits the watchpoints/hw 1271 breakpoints of the parent, and will remove them all from the 1272 forked off process. Copy the debug registers mirrors into the 1273 new process so that all breakpoints and watchpoints can be 1274 removed together. */ 1275 1276 parent_pid = ptid_get_pid (parent->ptid); 1277 parent_state = arm_linux_get_debug_reg_state (parent_pid); 1278 child_state = arm_linux_get_debug_reg_state (child_pid); 1279 *child_state = *parent_state; 1280 } 1281 1282 void _initialize_arm_linux_nat (void); 1283 1284 void 1285 _initialize_arm_linux_nat (void) 1286 { 1287 struct target_ops *t; 1288 1289 /* Fill in the generic GNU/Linux methods. */ 1290 t = linux_target (); 1291 1292 /* Add our register access methods. */ 1293 t->to_fetch_registers = arm_linux_fetch_inferior_registers; 1294 t->to_store_registers = arm_linux_store_inferior_registers; 1295 1296 /* Add our hardware breakpoint and watchpoint implementation. */ 1297 t->to_can_use_hw_breakpoint = arm_linux_can_use_hw_breakpoint; 1298 t->to_insert_hw_breakpoint = arm_linux_insert_hw_breakpoint; 1299 t->to_remove_hw_breakpoint = arm_linux_remove_hw_breakpoint; 1300 t->to_region_ok_for_hw_watchpoint = arm_linux_region_ok_for_hw_watchpoint; 1301 t->to_insert_watchpoint = arm_linux_insert_watchpoint; 1302 t->to_remove_watchpoint = arm_linux_remove_watchpoint; 1303 t->to_stopped_by_watchpoint = arm_linux_stopped_by_watchpoint; 1304 t->to_stopped_data_address = arm_linux_stopped_data_address; 1305 t->to_watchpoint_addr_within_range = arm_linux_watchpoint_addr_within_range; 1306 1307 t->to_read_description = arm_linux_read_description; 1308 1309 /* Register the target. */ 1310 linux_nat_add_target (t); 1311 1312 /* Handle thread creation and exit. */ 1313 linux_nat_set_new_thread (t, arm_linux_new_thread); 1314 linux_nat_set_prepare_to_resume (t, arm_linux_prepare_to_resume); 1315 1316 /* Handle process creation and exit. */ 1317 linux_nat_set_new_fork (t, arm_linux_new_fork); 1318 linux_nat_set_forget_process (t, arm_linux_forget_process); 1319 } 1320