1 /* Dynamic architecture support for GDB, the GNU debugger. 2 3 Copyright (C) 1998-2015 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 22 #include "arch-utils.h" 23 #include "buildsym.h" 24 #include "gdbcmd.h" 25 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et al. */ 26 #include "infrun.h" 27 #include "regcache.h" 28 #include "sim-regno.h" 29 #include "gdbcore.h" 30 #include "osabi.h" 31 #include "target-descriptions.h" 32 #include "objfiles.h" 33 #include "language.h" 34 #include "symtab.h" 35 36 #include "version.h" 37 38 #include "floatformat.h" 39 40 41 struct displaced_step_closure * 42 simple_displaced_step_copy_insn (struct gdbarch *gdbarch, 43 CORE_ADDR from, CORE_ADDR to, 44 struct regcache *regs) 45 { 46 size_t len = gdbarch_max_insn_length (gdbarch); 47 gdb_byte *buf = xmalloc (len); 48 49 read_memory (from, buf, len); 50 write_memory (to, buf, len); 51 52 if (debug_displaced) 53 { 54 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ", 55 paddress (gdbarch, from), paddress (gdbarch, to)); 56 displaced_step_dump_bytes (gdb_stdlog, buf, len); 57 } 58 59 return (struct displaced_step_closure *) buf; 60 } 61 62 63 void 64 simple_displaced_step_free_closure (struct gdbarch *gdbarch, 65 struct displaced_step_closure *closure) 66 { 67 xfree (closure); 68 } 69 70 int 71 default_displaced_step_hw_singlestep (struct gdbarch *gdbarch, 72 struct displaced_step_closure *closure) 73 { 74 return !gdbarch_software_single_step_p (gdbarch); 75 } 76 77 CORE_ADDR 78 displaced_step_at_entry_point (struct gdbarch *gdbarch) 79 { 80 CORE_ADDR addr; 81 int bp_len; 82 83 addr = entry_point_address (); 84 85 /* Inferior calls also use the entry point as a breakpoint location. 86 We don't want displaced stepping to interfere with those 87 breakpoints, so leave space. */ 88 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len); 89 addr += bp_len * 2; 90 91 return addr; 92 } 93 94 int 95 legacy_register_sim_regno (struct gdbarch *gdbarch, int regnum) 96 { 97 /* Only makes sense to supply raw registers. */ 98 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)); 99 /* NOTE: cagney/2002-05-13: The old code did it this way and it is 100 suspected that some GDB/SIM combinations may rely on this 101 behavour. The default should be one2one_register_sim_regno 102 (below). */ 103 if (gdbarch_register_name (gdbarch, regnum) != NULL 104 && gdbarch_register_name (gdbarch, regnum)[0] != '\0') 105 return regnum; 106 else 107 return LEGACY_SIM_REGNO_IGNORE; 108 } 109 110 CORE_ADDR 111 generic_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) 112 { 113 return 0; 114 } 115 116 CORE_ADDR 117 generic_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc) 118 { 119 return 0; 120 } 121 122 int 123 generic_in_solib_return_trampoline (struct gdbarch *gdbarch, 124 CORE_ADDR pc, const char *name) 125 { 126 return 0; 127 } 128 129 int 130 generic_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) 131 { 132 return 0; 133 } 134 135 /* Helper functions for gdbarch_inner_than */ 136 137 int 138 core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs) 139 { 140 return (lhs < rhs); 141 } 142 143 int 144 core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs) 145 { 146 return (lhs > rhs); 147 } 148 149 /* Misc helper functions for targets. */ 150 151 CORE_ADDR 152 core_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr) 153 { 154 return addr; 155 } 156 157 CORE_ADDR 158 convert_from_func_ptr_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr, 159 struct target_ops *targ) 160 { 161 return addr; 162 } 163 164 int 165 no_op_reg_to_regnum (struct gdbarch *gdbarch, int reg) 166 { 167 return reg; 168 } 169 170 void 171 default_coff_make_msymbol_special (int val, struct minimal_symbol *msym) 172 { 173 return; 174 } 175 176 /* See arch-utils.h. */ 177 178 void 179 default_make_symbol_special (struct symbol *sym, struct objfile *objfile) 180 { 181 return; 182 } 183 184 /* See arch-utils.h. */ 185 186 CORE_ADDR 187 default_adjust_dwarf2_addr (CORE_ADDR pc) 188 { 189 return pc; 190 } 191 192 /* See arch-utils.h. */ 193 194 CORE_ADDR 195 default_adjust_dwarf2_line (CORE_ADDR addr, int rel) 196 { 197 return addr; 198 } 199 200 int 201 cannot_register_not (struct gdbarch *gdbarch, int regnum) 202 { 203 return 0; 204 } 205 206 /* Legacy version of target_virtual_frame_pointer(). Assumes that 207 there is an gdbarch_deprecated_fp_regnum and that it is the same, 208 cooked or raw. */ 209 210 void 211 legacy_virtual_frame_pointer (struct gdbarch *gdbarch, 212 CORE_ADDR pc, 213 int *frame_regnum, 214 LONGEST *frame_offset) 215 { 216 /* FIXME: cagney/2002-09-13: This code is used when identifying the 217 frame pointer of the current PC. It is assuming that a single 218 register and an offset can determine this. I think it should 219 instead generate a byte code expression as that would work better 220 with things like Dwarf2's CFI. */ 221 if (gdbarch_deprecated_fp_regnum (gdbarch) >= 0 222 && gdbarch_deprecated_fp_regnum (gdbarch) 223 < gdbarch_num_regs (gdbarch)) 224 *frame_regnum = gdbarch_deprecated_fp_regnum (gdbarch); 225 else if (gdbarch_sp_regnum (gdbarch) >= 0 226 && gdbarch_sp_regnum (gdbarch) 227 < gdbarch_num_regs (gdbarch)) 228 *frame_regnum = gdbarch_sp_regnum (gdbarch); 229 else 230 /* Should this be an internal error? I guess so, it is reflecting 231 an architectural limitation in the current design. */ 232 internal_error (__FILE__, __LINE__, 233 _("No virtual frame pointer available")); 234 *frame_offset = 0; 235 } 236 237 238 int 239 generic_convert_register_p (struct gdbarch *gdbarch, int regnum, 240 struct type *type) 241 { 242 return 0; 243 } 244 245 int 246 default_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type) 247 { 248 return 0; 249 } 250 251 int 252 generic_instruction_nullified (struct gdbarch *gdbarch, 253 struct regcache *regcache) 254 { 255 return 0; 256 } 257 258 int 259 default_remote_register_number (struct gdbarch *gdbarch, 260 int regno) 261 { 262 return regno; 263 } 264 265 /* See arch-utils.h. */ 266 267 int 268 default_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range) 269 { 270 return 0; 271 } 272 273 274 /* Functions to manipulate the endianness of the target. */ 275 276 static int target_byte_order_user = BFD_ENDIAN_UNKNOWN; 277 278 static const char endian_big[] = "big"; 279 static const char endian_little[] = "little"; 280 static const char endian_auto[] = "auto"; 281 static const char *const endian_enum[] = 282 { 283 endian_big, 284 endian_little, 285 endian_auto, 286 NULL, 287 }; 288 static const char *set_endian_string; 289 290 enum bfd_endian 291 selected_byte_order (void) 292 { 293 return target_byte_order_user; 294 } 295 296 /* Called by ``show endian''. */ 297 298 static void 299 show_endian (struct ui_file *file, int from_tty, struct cmd_list_element *c, 300 const char *value) 301 { 302 if (target_byte_order_user == BFD_ENDIAN_UNKNOWN) 303 if (gdbarch_byte_order (get_current_arch ()) == BFD_ENDIAN_BIG) 304 fprintf_unfiltered (file, _("The target endianness is set automatically " 305 "(currently big endian)\n")); 306 else 307 fprintf_unfiltered (file, _("The target endianness is set automatically " 308 "(currently little endian)\n")); 309 else 310 if (target_byte_order_user == BFD_ENDIAN_BIG) 311 fprintf_unfiltered (file, 312 _("The target is assumed to be big endian\n")); 313 else 314 fprintf_unfiltered (file, 315 _("The target is assumed to be little endian\n")); 316 } 317 318 static void 319 set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c) 320 { 321 struct gdbarch_info info; 322 323 gdbarch_info_init (&info); 324 325 if (set_endian_string == endian_auto) 326 { 327 target_byte_order_user = BFD_ENDIAN_UNKNOWN; 328 if (! gdbarch_update_p (info)) 329 internal_error (__FILE__, __LINE__, 330 _("set_endian: architecture update failed")); 331 } 332 else if (set_endian_string == endian_little) 333 { 334 info.byte_order = BFD_ENDIAN_LITTLE; 335 if (! gdbarch_update_p (info)) 336 printf_unfiltered (_("Little endian target not supported by GDB\n")); 337 else 338 target_byte_order_user = BFD_ENDIAN_LITTLE; 339 } 340 else if (set_endian_string == endian_big) 341 { 342 info.byte_order = BFD_ENDIAN_BIG; 343 if (! gdbarch_update_p (info)) 344 printf_unfiltered (_("Big endian target not supported by GDB\n")); 345 else 346 target_byte_order_user = BFD_ENDIAN_BIG; 347 } 348 else 349 internal_error (__FILE__, __LINE__, 350 _("set_endian: bad value")); 351 352 show_endian (gdb_stdout, from_tty, NULL, NULL); 353 } 354 355 /* Given SELECTED, a currently selected BFD architecture, and 356 TARGET_DESC, the current target description, return what 357 architecture to use. 358 359 SELECTED may be NULL, in which case we return the architecture 360 associated with TARGET_DESC. If SELECTED specifies a variant 361 of the architecture associtated with TARGET_DESC, return the 362 more specific of the two. 363 364 If SELECTED is a different architecture, but it is accepted as 365 compatible by the target, we can use the target architecture. 366 367 If SELECTED is obviously incompatible, warn the user. */ 368 369 static const struct bfd_arch_info * 370 choose_architecture_for_target (const struct target_desc *target_desc, 371 const struct bfd_arch_info *selected) 372 { 373 const struct bfd_arch_info *from_target = tdesc_architecture (target_desc); 374 const struct bfd_arch_info *compat1, *compat2; 375 376 if (selected == NULL) 377 return from_target; 378 379 if (from_target == NULL) 380 return selected; 381 382 /* struct bfd_arch_info objects are singletons: that is, there's 383 supposed to be exactly one instance for a given machine. So you 384 can tell whether two are equivalent by comparing pointers. */ 385 if (from_target == selected) 386 return selected; 387 388 /* BFD's 'A->compatible (A, B)' functions return zero if A and B are 389 incompatible. But if they are compatible, it returns the 'more 390 featureful' of the two arches. That is, if A can run code 391 written for B, but B can't run code written for A, then it'll 392 return A. 393 394 Some targets (e.g. MIPS as of 2006-12-04) don't fully 395 implement this, instead always returning NULL or the first 396 argument. We detect that case by checking both directions. */ 397 398 compat1 = selected->compatible (selected, from_target); 399 compat2 = from_target->compatible (from_target, selected); 400 401 if (compat1 == NULL && compat2 == NULL) 402 { 403 /* BFD considers the architectures incompatible. Check our 404 target description whether it accepts SELECTED as compatible 405 anyway. */ 406 if (tdesc_compatible_p (target_desc, selected)) 407 return from_target; 408 409 warning (_("Selected architecture %s is not compatible " 410 "with reported target architecture %s"), 411 selected->printable_name, from_target->printable_name); 412 return selected; 413 } 414 415 if (compat1 == NULL) 416 return compat2; 417 if (compat2 == NULL) 418 return compat1; 419 if (compat1 == compat2) 420 return compat1; 421 422 /* If the two didn't match, but one of them was a default 423 architecture, assume the more specific one is correct. This 424 handles the case where an executable or target description just 425 says "mips", but the other knows which MIPS variant. */ 426 if (compat1->the_default) 427 return compat2; 428 if (compat2->the_default) 429 return compat1; 430 431 /* We have no idea which one is better. This is a bug, but not 432 a critical problem; warn the user. */ 433 warning (_("Selected architecture %s is ambiguous with " 434 "reported target architecture %s"), 435 selected->printable_name, from_target->printable_name); 436 return selected; 437 } 438 439 /* Functions to manipulate the architecture of the target. */ 440 441 enum set_arch { set_arch_auto, set_arch_manual }; 442 443 static const struct bfd_arch_info *target_architecture_user; 444 445 static const char *set_architecture_string; 446 447 const char * 448 selected_architecture_name (void) 449 { 450 if (target_architecture_user == NULL) 451 return NULL; 452 else 453 return set_architecture_string; 454 } 455 456 /* Called if the user enters ``show architecture'' without an 457 argument. */ 458 459 static void 460 show_architecture (struct ui_file *file, int from_tty, 461 struct cmd_list_element *c, const char *value) 462 { 463 if (target_architecture_user == NULL) 464 fprintf_filtered (file, _("The target architecture is set " 465 "automatically (currently %s)\n"), 466 gdbarch_bfd_arch_info (get_current_arch ())->printable_name); 467 else 468 fprintf_filtered (file, _("The target architecture is assumed to be %s\n"), 469 set_architecture_string); 470 } 471 472 473 /* Called if the user enters ``set architecture'' with or without an 474 argument. */ 475 476 static void 477 set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c) 478 { 479 struct gdbarch_info info; 480 481 gdbarch_info_init (&info); 482 483 if (strcmp (set_architecture_string, "auto") == 0) 484 { 485 target_architecture_user = NULL; 486 if (!gdbarch_update_p (info)) 487 internal_error (__FILE__, __LINE__, 488 _("could not select an architecture automatically")); 489 } 490 else 491 { 492 info.bfd_arch_info = bfd_scan_arch (set_architecture_string); 493 if (info.bfd_arch_info == NULL) 494 internal_error (__FILE__, __LINE__, 495 _("set_architecture: bfd_scan_arch failed")); 496 if (gdbarch_update_p (info)) 497 target_architecture_user = info.bfd_arch_info; 498 else 499 printf_unfiltered (_("Architecture `%s' not recognized.\n"), 500 set_architecture_string); 501 } 502 show_architecture (gdb_stdout, from_tty, NULL, NULL); 503 } 504 505 /* Try to select a global architecture that matches "info". Return 506 non-zero if the attempt succeeds. */ 507 int 508 gdbarch_update_p (struct gdbarch_info info) 509 { 510 struct gdbarch *new_gdbarch; 511 512 /* Check for the current file. */ 513 if (info.abfd == NULL) 514 info.abfd = exec_bfd; 515 if (info.abfd == NULL) 516 info.abfd = core_bfd; 517 518 /* Check for the current target description. */ 519 if (info.target_desc == NULL) 520 info.target_desc = target_current_description (); 521 522 new_gdbarch = gdbarch_find_by_info (info); 523 524 /* If there no architecture by that name, reject the request. */ 525 if (new_gdbarch == NULL) 526 { 527 if (gdbarch_debug) 528 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: " 529 "Architecture not found\n"); 530 return 0; 531 } 532 533 /* If it is the same old architecture, accept the request (but don't 534 swap anything). */ 535 if (new_gdbarch == target_gdbarch ()) 536 { 537 if (gdbarch_debug) 538 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: " 539 "Architecture %s (%s) unchanged\n", 540 host_address_to_string (new_gdbarch), 541 gdbarch_bfd_arch_info (new_gdbarch)->printable_name); 542 return 1; 543 } 544 545 /* It's a new architecture, swap it in. */ 546 if (gdbarch_debug) 547 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: " 548 "New architecture %s (%s) selected\n", 549 host_address_to_string (new_gdbarch), 550 gdbarch_bfd_arch_info (new_gdbarch)->printable_name); 551 set_target_gdbarch (new_gdbarch); 552 553 return 1; 554 } 555 556 /* Return the architecture for ABFD. If no suitable architecture 557 could be find, return NULL. */ 558 559 struct gdbarch * 560 gdbarch_from_bfd (bfd *abfd) 561 { 562 struct gdbarch_info info; 563 gdbarch_info_init (&info); 564 565 info.abfd = abfd; 566 return gdbarch_find_by_info (info); 567 } 568 569 /* Set the dynamic target-system-dependent parameters (architecture, 570 byte-order) using information found in the BFD */ 571 572 void 573 set_gdbarch_from_file (bfd *abfd) 574 { 575 struct gdbarch_info info; 576 struct gdbarch *gdbarch; 577 578 gdbarch_info_init (&info); 579 info.abfd = abfd; 580 info.target_desc = target_current_description (); 581 gdbarch = gdbarch_find_by_info (info); 582 583 if (gdbarch == NULL) 584 error (_("Architecture of file not recognized.")); 585 set_target_gdbarch (gdbarch); 586 } 587 588 /* Initialize the current architecture. Update the ``set 589 architecture'' command so that it specifies a list of valid 590 architectures. */ 591 592 #ifdef DEFAULT_BFD_ARCH 593 extern const bfd_arch_info_type DEFAULT_BFD_ARCH; 594 static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH; 595 #else 596 static const bfd_arch_info_type *default_bfd_arch; 597 #endif 598 599 #ifdef DEFAULT_BFD_VEC 600 extern const bfd_target DEFAULT_BFD_VEC; 601 static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC; 602 #else 603 static const bfd_target *default_bfd_vec; 604 #endif 605 606 static int default_byte_order = BFD_ENDIAN_UNKNOWN; 607 608 void 609 initialize_current_architecture (void) 610 { 611 const char **arches = gdbarch_printable_names (); 612 struct gdbarch_info info; 613 614 /* determine a default architecture and byte order. */ 615 gdbarch_info_init (&info); 616 617 /* Find a default architecture. */ 618 if (default_bfd_arch == NULL) 619 { 620 /* Choose the architecture by taking the first one 621 alphabetically. */ 622 const char *chosen = arches[0]; 623 const char **arch; 624 for (arch = arches; *arch != NULL; arch++) 625 { 626 if (strcmp (*arch, chosen) < 0) 627 chosen = *arch; 628 } 629 if (chosen == NULL) 630 internal_error (__FILE__, __LINE__, 631 _("initialize_current_architecture: No arch")); 632 default_bfd_arch = bfd_scan_arch (chosen); 633 if (default_bfd_arch == NULL) 634 internal_error (__FILE__, __LINE__, 635 _("initialize_current_architecture: Arch not found")); 636 } 637 638 info.bfd_arch_info = default_bfd_arch; 639 640 /* Take several guesses at a byte order. */ 641 if (default_byte_order == BFD_ENDIAN_UNKNOWN 642 && default_bfd_vec != NULL) 643 { 644 /* Extract BFD's default vector's byte order. */ 645 switch (default_bfd_vec->byteorder) 646 { 647 case BFD_ENDIAN_BIG: 648 default_byte_order = BFD_ENDIAN_BIG; 649 break; 650 case BFD_ENDIAN_LITTLE: 651 default_byte_order = BFD_ENDIAN_LITTLE; 652 break; 653 default: 654 break; 655 } 656 } 657 if (default_byte_order == BFD_ENDIAN_UNKNOWN) 658 { 659 /* look for ``*el-*'' in the target name. */ 660 const char *chp; 661 chp = strchr (target_name, '-'); 662 if (chp != NULL 663 && chp - 2 >= target_name 664 && strncmp (chp - 2, "el", 2) == 0) 665 default_byte_order = BFD_ENDIAN_LITTLE; 666 } 667 if (default_byte_order == BFD_ENDIAN_UNKNOWN) 668 { 669 /* Wire it to big-endian!!! */ 670 default_byte_order = BFD_ENDIAN_BIG; 671 } 672 673 info.byte_order = default_byte_order; 674 info.byte_order_for_code = info.byte_order; 675 676 if (! gdbarch_update_p (info)) 677 internal_error (__FILE__, __LINE__, 678 _("initialize_current_architecture: Selection of " 679 "initial architecture failed")); 680 681 /* Create the ``set architecture'' command appending ``auto'' to the 682 list of architectures. */ 683 { 684 /* Append ``auto''. */ 685 int nr; 686 for (nr = 0; arches[nr] != NULL; nr++); 687 arches = xrealloc (arches, sizeof (char*) * (nr + 2)); 688 arches[nr + 0] = "auto"; 689 arches[nr + 1] = NULL; 690 add_setshow_enum_cmd ("architecture", class_support, 691 arches, &set_architecture_string, 692 _("Set architecture of target."), 693 _("Show architecture of target."), NULL, 694 set_architecture, show_architecture, 695 &setlist, &showlist); 696 add_alias_cmd ("processor", "architecture", class_support, 1, &setlist); 697 } 698 } 699 700 701 /* Initialize a gdbarch info to values that will be automatically 702 overridden. Note: Originally, this ``struct info'' was initialized 703 using memset(0). Unfortunately, that ran into problems, namely 704 BFD_ENDIAN_BIG is zero. An explicit initialization function that 705 can explicitly set each field to a well defined value is used. */ 706 707 void 708 gdbarch_info_init (struct gdbarch_info *info) 709 { 710 memset (info, 0, sizeof (struct gdbarch_info)); 711 info->byte_order = BFD_ENDIAN_UNKNOWN; 712 info->byte_order_for_code = info->byte_order; 713 info->osabi = GDB_OSABI_UNINITIALIZED; 714 } 715 716 /* Similar to init, but this time fill in the blanks. Information is 717 obtained from the global "set ..." options and explicitly 718 initialized INFO fields. */ 719 720 void 721 gdbarch_info_fill (struct gdbarch_info *info) 722 { 723 /* "(gdb) set architecture ...". */ 724 if (info->bfd_arch_info == NULL 725 && target_architecture_user) 726 info->bfd_arch_info = target_architecture_user; 727 /* From the file. */ 728 if (info->bfd_arch_info == NULL 729 && info->abfd != NULL 730 && bfd_get_arch (info->abfd) != bfd_arch_unknown 731 && bfd_get_arch (info->abfd) != bfd_arch_obscure) 732 info->bfd_arch_info = bfd_get_arch_info (info->abfd); 733 /* From the target. */ 734 if (info->target_desc != NULL) 735 info->bfd_arch_info = choose_architecture_for_target 736 (info->target_desc, info->bfd_arch_info); 737 /* From the default. */ 738 if (info->bfd_arch_info == NULL) 739 info->bfd_arch_info = default_bfd_arch; 740 741 /* "(gdb) set byte-order ...". */ 742 if (info->byte_order == BFD_ENDIAN_UNKNOWN 743 && target_byte_order_user != BFD_ENDIAN_UNKNOWN) 744 info->byte_order = target_byte_order_user; 745 /* From the INFO struct. */ 746 if (info->byte_order == BFD_ENDIAN_UNKNOWN 747 && info->abfd != NULL) 748 info->byte_order = (bfd_big_endian (info->abfd) ? BFD_ENDIAN_BIG 749 : bfd_little_endian (info->abfd) ? BFD_ENDIAN_LITTLE 750 : BFD_ENDIAN_UNKNOWN); 751 /* From the default. */ 752 if (info->byte_order == BFD_ENDIAN_UNKNOWN) 753 info->byte_order = default_byte_order; 754 info->byte_order_for_code = info->byte_order; 755 756 /* "(gdb) set osabi ...". Handled by gdbarch_lookup_osabi. */ 757 /* From the manual override, or from file. */ 758 if (info->osabi == GDB_OSABI_UNINITIALIZED) 759 info->osabi = gdbarch_lookup_osabi (info->abfd); 760 /* From the target. */ 761 if (info->osabi == GDB_OSABI_UNKNOWN && info->target_desc != NULL) 762 info->osabi = tdesc_osabi (info->target_desc); 763 /* From the configured default. */ 764 #ifdef GDB_OSABI_DEFAULT 765 if (info->osabi == GDB_OSABI_UNKNOWN) 766 info->osabi = GDB_OSABI_DEFAULT; 767 #endif 768 769 /* Must have at least filled in the architecture. */ 770 gdb_assert (info->bfd_arch_info != NULL); 771 } 772 773 /* Return "current" architecture. If the target is running, this is 774 the architecture of the selected frame. Otherwise, the "current" 775 architecture defaults to the target architecture. 776 777 This function should normally be called solely by the command 778 interpreter routines to determine the architecture to execute a 779 command in. */ 780 struct gdbarch * 781 get_current_arch (void) 782 { 783 if (has_stack_frames ()) 784 return get_frame_arch (get_selected_frame (NULL)); 785 else 786 return target_gdbarch (); 787 } 788 789 int 790 default_has_shared_address_space (struct gdbarch *gdbarch) 791 { 792 /* Simply say no. In most unix-like targets each inferior/process 793 has its own address space. */ 794 return 0; 795 } 796 797 int 798 default_fast_tracepoint_valid_at (struct gdbarch *gdbarch, 799 CORE_ADDR addr, int *isize, char **msg) 800 { 801 /* We don't know if maybe the target has some way to do fast 802 tracepoints that doesn't need gdbarch, so always say yes. */ 803 if (msg) 804 *msg = NULL; 805 return 1; 806 } 807 808 void 809 default_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, 810 int *kindptr) 811 { 812 gdbarch_breakpoint_from_pc (gdbarch, pcptr, kindptr); 813 } 814 815 void 816 default_gen_return_address (struct gdbarch *gdbarch, 817 struct agent_expr *ax, struct axs_value *value, 818 CORE_ADDR scope) 819 { 820 error (_("This architecture has no method to collect a return address.")); 821 } 822 823 int 824 default_return_in_first_hidden_param_p (struct gdbarch *gdbarch, 825 struct type *type) 826 { 827 /* Usually, the return value's address is stored the in the "first hidden" 828 parameter if the return value should be passed by reference, as 829 specified in ABI. */ 830 return language_pass_by_reference (type); 831 } 832 833 int default_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr) 834 { 835 return 0; 836 } 837 838 int default_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr) 839 { 840 return 0; 841 } 842 843 int default_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr) 844 { 845 return 0; 846 } 847 848 void 849 default_skip_permanent_breakpoint (struct regcache *regcache) 850 { 851 struct gdbarch *gdbarch = get_regcache_arch (regcache); 852 CORE_ADDR current_pc = regcache_read_pc (regcache); 853 const gdb_byte *bp_insn; 854 int bp_len; 855 856 bp_insn = gdbarch_breakpoint_from_pc (gdbarch, ¤t_pc, &bp_len); 857 current_pc += bp_len; 858 regcache_write_pc (regcache, current_pc); 859 } 860 861 CORE_ADDR 862 default_infcall_mmap (CORE_ADDR size, unsigned prot) 863 { 864 error (_("This target does not support inferior memory allocation by mmap.")); 865 } 866 867 /* -mcmodel=large is used so that no GOT (Global Offset Table) is needed to be 868 created in inferior memory by GDB (normally it is set by ld.so). */ 869 870 char * 871 default_gcc_target_options (struct gdbarch *gdbarch) 872 { 873 return xstrprintf ("-m%d%s", gdbarch_ptr_bit (gdbarch), 874 gdbarch_ptr_bit (gdbarch) == 64 ? " -mcmodel=large" : ""); 875 } 876 877 /* gdbarch gnu_triplet_regexp method. */ 878 879 const char * 880 default_gnu_triplet_regexp (struct gdbarch *gdbarch) 881 { 882 return gdbarch_bfd_arch_info (gdbarch)->arch_name; 883 } 884 885 /* -Wmissing-prototypes */ 886 extern initialize_file_ftype _initialize_gdbarch_utils; 887 888 void 889 _initialize_gdbarch_utils (void) 890 { 891 add_setshow_enum_cmd ("endian", class_support, 892 endian_enum, &set_endian_string, 893 _("Set endianness of target."), 894 _("Show endianness of target."), 895 NULL, set_endian, show_endian, 896 &setlist, &showlist); 897 } 898