1 /* Dynamic architecture support for GDB, the GNU debugger. 2 3 Copyright (C) 1998-2017 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 22 #include "arch-utils.h" 23 #include "buildsym.h" 24 #include "gdbcmd.h" 25 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et al. */ 26 #include "infrun.h" 27 #include "regcache.h" 28 #include "sim-regno.h" 29 #include "gdbcore.h" 30 #include "osabi.h" 31 #include "target-descriptions.h" 32 #include "objfiles.h" 33 #include "language.h" 34 #include "symtab.h" 35 36 #include "version.h" 37 38 #include "floatformat.h" 39 40 41 struct displaced_step_closure * 42 simple_displaced_step_copy_insn (struct gdbarch *gdbarch, 43 CORE_ADDR from, CORE_ADDR to, 44 struct regcache *regs) 45 { 46 size_t len = gdbarch_max_insn_length (gdbarch); 47 gdb_byte *buf = (gdb_byte *) xmalloc (len); 48 49 read_memory (from, buf, len); 50 write_memory (to, buf, len); 51 52 if (debug_displaced) 53 { 54 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ", 55 paddress (gdbarch, from), paddress (gdbarch, to)); 56 displaced_step_dump_bytes (gdb_stdlog, buf, len); 57 } 58 59 return (struct displaced_step_closure *) buf; 60 } 61 62 63 void 64 simple_displaced_step_free_closure (struct gdbarch *gdbarch, 65 struct displaced_step_closure *closure) 66 { 67 xfree (closure); 68 } 69 70 int 71 default_displaced_step_hw_singlestep (struct gdbarch *gdbarch, 72 struct displaced_step_closure *closure) 73 { 74 return !gdbarch_software_single_step_p (gdbarch); 75 } 76 77 CORE_ADDR 78 displaced_step_at_entry_point (struct gdbarch *gdbarch) 79 { 80 CORE_ADDR addr; 81 int bp_len; 82 83 addr = entry_point_address (); 84 85 /* Inferior calls also use the entry point as a breakpoint location. 86 We don't want displaced stepping to interfere with those 87 breakpoints, so leave space. */ 88 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len); 89 addr += bp_len * 2; 90 91 return addr; 92 } 93 94 int 95 legacy_register_sim_regno (struct gdbarch *gdbarch, int regnum) 96 { 97 /* Only makes sense to supply raw registers. */ 98 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)); 99 /* NOTE: cagney/2002-05-13: The old code did it this way and it is 100 suspected that some GDB/SIM combinations may rely on this 101 behavour. The default should be one2one_register_sim_regno 102 (below). */ 103 if (gdbarch_register_name (gdbarch, regnum) != NULL 104 && gdbarch_register_name (gdbarch, regnum)[0] != '\0') 105 return regnum; 106 else 107 return LEGACY_SIM_REGNO_IGNORE; 108 } 109 110 CORE_ADDR 111 generic_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) 112 { 113 return 0; 114 } 115 116 CORE_ADDR 117 generic_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc) 118 { 119 return 0; 120 } 121 122 int 123 generic_in_solib_return_trampoline (struct gdbarch *gdbarch, 124 CORE_ADDR pc, const char *name) 125 { 126 return 0; 127 } 128 129 int 130 generic_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) 131 { 132 return 0; 133 } 134 135 int 136 default_code_of_frame_writable (struct gdbarch *gdbarch, 137 struct frame_info *frame) 138 { 139 return 1; 140 } 141 142 /* Helper functions for gdbarch_inner_than */ 143 144 int 145 core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs) 146 { 147 return (lhs < rhs); 148 } 149 150 int 151 core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs) 152 { 153 return (lhs > rhs); 154 } 155 156 /* Misc helper functions for targets. */ 157 158 CORE_ADDR 159 core_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr) 160 { 161 return addr; 162 } 163 164 CORE_ADDR 165 convert_from_func_ptr_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr, 166 struct target_ops *targ) 167 { 168 return addr; 169 } 170 171 int 172 no_op_reg_to_regnum (struct gdbarch *gdbarch, int reg) 173 { 174 return reg; 175 } 176 177 void 178 default_coff_make_msymbol_special (int val, struct minimal_symbol *msym) 179 { 180 return; 181 } 182 183 /* See arch-utils.h. */ 184 185 void 186 default_make_symbol_special (struct symbol *sym, struct objfile *objfile) 187 { 188 return; 189 } 190 191 /* See arch-utils.h. */ 192 193 CORE_ADDR 194 default_adjust_dwarf2_addr (CORE_ADDR pc) 195 { 196 return pc; 197 } 198 199 /* See arch-utils.h. */ 200 201 CORE_ADDR 202 default_adjust_dwarf2_line (CORE_ADDR addr, int rel) 203 { 204 return addr; 205 } 206 207 int 208 cannot_register_not (struct gdbarch *gdbarch, int regnum) 209 { 210 return 0; 211 } 212 213 /* Legacy version of target_virtual_frame_pointer(). Assumes that 214 there is an gdbarch_deprecated_fp_regnum and that it is the same, 215 cooked or raw. */ 216 217 void 218 legacy_virtual_frame_pointer (struct gdbarch *gdbarch, 219 CORE_ADDR pc, 220 int *frame_regnum, 221 LONGEST *frame_offset) 222 { 223 /* FIXME: cagney/2002-09-13: This code is used when identifying the 224 frame pointer of the current PC. It is assuming that a single 225 register and an offset can determine this. I think it should 226 instead generate a byte code expression as that would work better 227 with things like Dwarf2's CFI. */ 228 if (gdbarch_deprecated_fp_regnum (gdbarch) >= 0 229 && gdbarch_deprecated_fp_regnum (gdbarch) 230 < gdbarch_num_regs (gdbarch)) 231 *frame_regnum = gdbarch_deprecated_fp_regnum (gdbarch); 232 else if (gdbarch_sp_regnum (gdbarch) >= 0 233 && gdbarch_sp_regnum (gdbarch) 234 < gdbarch_num_regs (gdbarch)) 235 *frame_regnum = gdbarch_sp_regnum (gdbarch); 236 else 237 /* Should this be an internal error? I guess so, it is reflecting 238 an architectural limitation in the current design. */ 239 internal_error (__FILE__, __LINE__, 240 _("No virtual frame pointer available")); 241 *frame_offset = 0; 242 } 243 244 /* Return a floating-point format for a floating-point variable of 245 length LEN in bits. If non-NULL, NAME is the name of its type. 246 If no suitable type is found, return NULL. */ 247 248 const struct floatformat ** 249 default_floatformat_for_type (struct gdbarch *gdbarch, 250 const char *name, int len) 251 { 252 const struct floatformat **format = NULL; 253 254 if (len == gdbarch_half_bit (gdbarch)) 255 format = gdbarch_half_format (gdbarch); 256 else if (len == gdbarch_float_bit (gdbarch)) 257 format = gdbarch_float_format (gdbarch); 258 else if (len == gdbarch_double_bit (gdbarch)) 259 format = gdbarch_double_format (gdbarch); 260 else if (len == gdbarch_long_double_bit (gdbarch)) 261 format = gdbarch_long_double_format (gdbarch); 262 /* On i386 the 'long double' type takes 96 bits, 263 while the real number of used bits is only 80, 264 both in processor and in memory. 265 The code below accepts the real bit size. */ 266 else if (gdbarch_long_double_format (gdbarch) != NULL 267 && len == gdbarch_long_double_format (gdbarch)[0]->totalsize) 268 format = gdbarch_long_double_format (gdbarch); 269 270 return format; 271 } 272 273 int 274 generic_convert_register_p (struct gdbarch *gdbarch, int regnum, 275 struct type *type) 276 { 277 return 0; 278 } 279 280 int 281 default_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type) 282 { 283 return 0; 284 } 285 286 int 287 generic_instruction_nullified (struct gdbarch *gdbarch, 288 struct regcache *regcache) 289 { 290 return 0; 291 } 292 293 int 294 default_remote_register_number (struct gdbarch *gdbarch, 295 int regno) 296 { 297 return regno; 298 } 299 300 /* See arch-utils.h. */ 301 302 int 303 default_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range) 304 { 305 return 0; 306 } 307 308 309 /* Functions to manipulate the endianness of the target. */ 310 311 static enum bfd_endian target_byte_order_user = BFD_ENDIAN_UNKNOWN; 312 313 static const char endian_big[] = "big"; 314 static const char endian_little[] = "little"; 315 static const char endian_auto[] = "auto"; 316 static const char *const endian_enum[] = 317 { 318 endian_big, 319 endian_little, 320 endian_auto, 321 NULL, 322 }; 323 static const char *set_endian_string; 324 325 enum bfd_endian 326 selected_byte_order (void) 327 { 328 return target_byte_order_user; 329 } 330 331 /* Called by ``show endian''. */ 332 333 static void 334 show_endian (struct ui_file *file, int from_tty, struct cmd_list_element *c, 335 const char *value) 336 { 337 if (target_byte_order_user == BFD_ENDIAN_UNKNOWN) 338 if (gdbarch_byte_order (get_current_arch ()) == BFD_ENDIAN_BIG) 339 fprintf_unfiltered (file, _("The target endianness is set automatically " 340 "(currently big endian)\n")); 341 else 342 fprintf_unfiltered (file, _("The target endianness is set automatically " 343 "(currently little endian)\n")); 344 else 345 if (target_byte_order_user == BFD_ENDIAN_BIG) 346 fprintf_unfiltered (file, 347 _("The target is assumed to be big endian\n")); 348 else 349 fprintf_unfiltered (file, 350 _("The target is assumed to be little endian\n")); 351 } 352 353 static void 354 set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c) 355 { 356 struct gdbarch_info info; 357 358 gdbarch_info_init (&info); 359 360 if (set_endian_string == endian_auto) 361 { 362 target_byte_order_user = BFD_ENDIAN_UNKNOWN; 363 if (! gdbarch_update_p (info)) 364 internal_error (__FILE__, __LINE__, 365 _("set_endian: architecture update failed")); 366 } 367 else if (set_endian_string == endian_little) 368 { 369 info.byte_order = BFD_ENDIAN_LITTLE; 370 if (! gdbarch_update_p (info)) 371 printf_unfiltered (_("Little endian target not supported by GDB\n")); 372 else 373 target_byte_order_user = BFD_ENDIAN_LITTLE; 374 } 375 else if (set_endian_string == endian_big) 376 { 377 info.byte_order = BFD_ENDIAN_BIG; 378 if (! gdbarch_update_p (info)) 379 printf_unfiltered (_("Big endian target not supported by GDB\n")); 380 else 381 target_byte_order_user = BFD_ENDIAN_BIG; 382 } 383 else 384 internal_error (__FILE__, __LINE__, 385 _("set_endian: bad value")); 386 387 show_endian (gdb_stdout, from_tty, NULL, NULL); 388 } 389 390 /* Given SELECTED, a currently selected BFD architecture, and 391 TARGET_DESC, the current target description, return what 392 architecture to use. 393 394 SELECTED may be NULL, in which case we return the architecture 395 associated with TARGET_DESC. If SELECTED specifies a variant 396 of the architecture associtated with TARGET_DESC, return the 397 more specific of the two. 398 399 If SELECTED is a different architecture, but it is accepted as 400 compatible by the target, we can use the target architecture. 401 402 If SELECTED is obviously incompatible, warn the user. */ 403 404 static const struct bfd_arch_info * 405 choose_architecture_for_target (const struct target_desc *target_desc, 406 const struct bfd_arch_info *selected) 407 { 408 const struct bfd_arch_info *from_target = tdesc_architecture (target_desc); 409 const struct bfd_arch_info *compat1, *compat2; 410 411 if (selected == NULL) 412 return from_target; 413 414 if (from_target == NULL) 415 return selected; 416 417 /* struct bfd_arch_info objects are singletons: that is, there's 418 supposed to be exactly one instance for a given machine. So you 419 can tell whether two are equivalent by comparing pointers. */ 420 if (from_target == selected) 421 return selected; 422 423 /* BFD's 'A->compatible (A, B)' functions return zero if A and B are 424 incompatible. But if they are compatible, it returns the 'more 425 featureful' of the two arches. That is, if A can run code 426 written for B, but B can't run code written for A, then it'll 427 return A. 428 429 Some targets (e.g. MIPS as of 2006-12-04) don't fully 430 implement this, instead always returning NULL or the first 431 argument. We detect that case by checking both directions. */ 432 433 compat1 = selected->compatible (selected, from_target); 434 compat2 = from_target->compatible (from_target, selected); 435 436 if (compat1 == NULL && compat2 == NULL) 437 { 438 /* BFD considers the architectures incompatible. Check our 439 target description whether it accepts SELECTED as compatible 440 anyway. */ 441 if (tdesc_compatible_p (target_desc, selected)) 442 return from_target; 443 444 warning (_("Selected architecture %s is not compatible " 445 "with reported target architecture %s"), 446 selected->printable_name, from_target->printable_name); 447 return selected; 448 } 449 450 if (compat1 == NULL) 451 return compat2; 452 if (compat2 == NULL) 453 return compat1; 454 if (compat1 == compat2) 455 return compat1; 456 457 /* If the two didn't match, but one of them was a default 458 architecture, assume the more specific one is correct. This 459 handles the case where an executable or target description just 460 says "mips", but the other knows which MIPS variant. */ 461 if (compat1->the_default) 462 return compat2; 463 if (compat2->the_default) 464 return compat1; 465 466 /* We have no idea which one is better. This is a bug, but not 467 a critical problem; warn the user. */ 468 warning (_("Selected architecture %s is ambiguous with " 469 "reported target architecture %s"), 470 selected->printable_name, from_target->printable_name); 471 return selected; 472 } 473 474 /* Functions to manipulate the architecture of the target. */ 475 476 enum set_arch { set_arch_auto, set_arch_manual }; 477 478 static const struct bfd_arch_info *target_architecture_user; 479 480 static const char *set_architecture_string; 481 482 const char * 483 selected_architecture_name (void) 484 { 485 if (target_architecture_user == NULL) 486 return NULL; 487 else 488 return set_architecture_string; 489 } 490 491 /* Called if the user enters ``show architecture'' without an 492 argument. */ 493 494 static void 495 show_architecture (struct ui_file *file, int from_tty, 496 struct cmd_list_element *c, const char *value) 497 { 498 if (target_architecture_user == NULL) 499 fprintf_filtered (file, _("The target architecture is set " 500 "automatically (currently %s)\n"), 501 gdbarch_bfd_arch_info (get_current_arch ())->printable_name); 502 else 503 fprintf_filtered (file, _("The target architecture is assumed to be %s\n"), 504 set_architecture_string); 505 } 506 507 508 /* Called if the user enters ``set architecture'' with or without an 509 argument. */ 510 511 static void 512 set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c) 513 { 514 struct gdbarch_info info; 515 516 gdbarch_info_init (&info); 517 518 if (strcmp (set_architecture_string, "auto") == 0) 519 { 520 target_architecture_user = NULL; 521 if (!gdbarch_update_p (info)) 522 internal_error (__FILE__, __LINE__, 523 _("could not select an architecture automatically")); 524 } 525 else 526 { 527 info.bfd_arch_info = bfd_scan_arch (set_architecture_string); 528 if (info.bfd_arch_info == NULL) 529 internal_error (__FILE__, __LINE__, 530 _("set_architecture: bfd_scan_arch failed")); 531 if (gdbarch_update_p (info)) 532 target_architecture_user = info.bfd_arch_info; 533 else 534 printf_unfiltered (_("Architecture `%s' not recognized.\n"), 535 set_architecture_string); 536 } 537 show_architecture (gdb_stdout, from_tty, NULL, NULL); 538 } 539 540 /* Try to select a global architecture that matches "info". Return 541 non-zero if the attempt succeeds. */ 542 int 543 gdbarch_update_p (struct gdbarch_info info) 544 { 545 struct gdbarch *new_gdbarch; 546 547 /* Check for the current file. */ 548 if (info.abfd == NULL) 549 info.abfd = exec_bfd; 550 if (info.abfd == NULL) 551 info.abfd = core_bfd; 552 553 /* Check for the current target description. */ 554 if (info.target_desc == NULL) 555 info.target_desc = target_current_description (); 556 557 new_gdbarch = gdbarch_find_by_info (info); 558 559 /* If there no architecture by that name, reject the request. */ 560 if (new_gdbarch == NULL) 561 { 562 if (gdbarch_debug) 563 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: " 564 "Architecture not found\n"); 565 return 0; 566 } 567 568 /* If it is the same old architecture, accept the request (but don't 569 swap anything). */ 570 if (new_gdbarch == target_gdbarch ()) 571 { 572 if (gdbarch_debug) 573 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: " 574 "Architecture %s (%s) unchanged\n", 575 host_address_to_string (new_gdbarch), 576 gdbarch_bfd_arch_info (new_gdbarch)->printable_name); 577 return 1; 578 } 579 580 /* It's a new architecture, swap it in. */ 581 if (gdbarch_debug) 582 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: " 583 "New architecture %s (%s) selected\n", 584 host_address_to_string (new_gdbarch), 585 gdbarch_bfd_arch_info (new_gdbarch)->printable_name); 586 set_target_gdbarch (new_gdbarch); 587 588 return 1; 589 } 590 591 /* Return the architecture for ABFD. If no suitable architecture 592 could be find, return NULL. */ 593 594 struct gdbarch * 595 gdbarch_from_bfd (bfd *abfd) 596 { 597 struct gdbarch_info info; 598 gdbarch_info_init (&info); 599 600 info.abfd = abfd; 601 return gdbarch_find_by_info (info); 602 } 603 604 /* Set the dynamic target-system-dependent parameters (architecture, 605 byte-order) using information found in the BFD */ 606 607 void 608 set_gdbarch_from_file (bfd *abfd) 609 { 610 struct gdbarch_info info; 611 struct gdbarch *gdbarch; 612 613 gdbarch_info_init (&info); 614 info.abfd = abfd; 615 info.target_desc = target_current_description (); 616 gdbarch = gdbarch_find_by_info (info); 617 618 if (gdbarch == NULL) 619 error (_("Architecture of file not recognized.")); 620 set_target_gdbarch (gdbarch); 621 } 622 623 /* Initialize the current architecture. Update the ``set 624 architecture'' command so that it specifies a list of valid 625 architectures. */ 626 627 #ifdef DEFAULT_BFD_ARCH 628 extern const bfd_arch_info_type DEFAULT_BFD_ARCH; 629 static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH; 630 #else 631 static const bfd_arch_info_type *default_bfd_arch; 632 #endif 633 634 #ifdef DEFAULT_BFD_VEC 635 extern const bfd_target DEFAULT_BFD_VEC; 636 static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC; 637 #else 638 static const bfd_target *default_bfd_vec; 639 #endif 640 641 static enum bfd_endian default_byte_order = BFD_ENDIAN_UNKNOWN; 642 643 void 644 initialize_current_architecture (void) 645 { 646 const char **arches = gdbarch_printable_names (); 647 struct gdbarch_info info; 648 649 /* determine a default architecture and byte order. */ 650 gdbarch_info_init (&info); 651 652 /* Find a default architecture. */ 653 if (default_bfd_arch == NULL) 654 { 655 /* Choose the architecture by taking the first one 656 alphabetically. */ 657 const char *chosen = arches[0]; 658 const char **arch; 659 for (arch = arches; *arch != NULL; arch++) 660 { 661 if (strcmp (*arch, chosen) < 0) 662 chosen = *arch; 663 } 664 if (chosen == NULL) 665 internal_error (__FILE__, __LINE__, 666 _("initialize_current_architecture: No arch")); 667 default_bfd_arch = bfd_scan_arch (chosen); 668 if (default_bfd_arch == NULL) 669 internal_error (__FILE__, __LINE__, 670 _("initialize_current_architecture: Arch not found")); 671 } 672 673 info.bfd_arch_info = default_bfd_arch; 674 675 /* Take several guesses at a byte order. */ 676 if (default_byte_order == BFD_ENDIAN_UNKNOWN 677 && default_bfd_vec != NULL) 678 { 679 /* Extract BFD's default vector's byte order. */ 680 switch (default_bfd_vec->byteorder) 681 { 682 case BFD_ENDIAN_BIG: 683 default_byte_order = BFD_ENDIAN_BIG; 684 break; 685 case BFD_ENDIAN_LITTLE: 686 default_byte_order = BFD_ENDIAN_LITTLE; 687 break; 688 default: 689 break; 690 } 691 } 692 if (default_byte_order == BFD_ENDIAN_UNKNOWN) 693 { 694 /* look for ``*el-*'' in the target name. */ 695 const char *chp; 696 chp = strchr (target_name, '-'); 697 if (chp != NULL 698 && chp - 2 >= target_name 699 && startswith (chp - 2, "el")) 700 default_byte_order = BFD_ENDIAN_LITTLE; 701 } 702 if (default_byte_order == BFD_ENDIAN_UNKNOWN) 703 { 704 /* Wire it to big-endian!!! */ 705 default_byte_order = BFD_ENDIAN_BIG; 706 } 707 708 info.byte_order = default_byte_order; 709 info.byte_order_for_code = info.byte_order; 710 711 if (! gdbarch_update_p (info)) 712 internal_error (__FILE__, __LINE__, 713 _("initialize_current_architecture: Selection of " 714 "initial architecture failed")); 715 716 /* Create the ``set architecture'' command appending ``auto'' to the 717 list of architectures. */ 718 { 719 /* Append ``auto''. */ 720 int nr; 721 for (nr = 0; arches[nr] != NULL; nr++); 722 arches = XRESIZEVEC (const char *, arches, nr + 2); 723 arches[nr + 0] = "auto"; 724 arches[nr + 1] = NULL; 725 add_setshow_enum_cmd ("architecture", class_support, 726 arches, &set_architecture_string, 727 _("Set architecture of target."), 728 _("Show architecture of target."), NULL, 729 set_architecture, show_architecture, 730 &setlist, &showlist); 731 add_alias_cmd ("processor", "architecture", class_support, 1, &setlist); 732 } 733 } 734 735 736 /* Initialize a gdbarch info to values that will be automatically 737 overridden. Note: Originally, this ``struct info'' was initialized 738 using memset(0). Unfortunately, that ran into problems, namely 739 BFD_ENDIAN_BIG is zero. An explicit initialization function that 740 can explicitly set each field to a well defined value is used. */ 741 742 void 743 gdbarch_info_init (struct gdbarch_info *info) 744 { 745 memset (info, 0, sizeof (struct gdbarch_info)); 746 info->byte_order = BFD_ENDIAN_UNKNOWN; 747 info->byte_order_for_code = info->byte_order; 748 info->osabi = GDB_OSABI_UNINITIALIZED; 749 } 750 751 /* Similar to init, but this time fill in the blanks. Information is 752 obtained from the global "set ..." options and explicitly 753 initialized INFO fields. */ 754 755 void 756 gdbarch_info_fill (struct gdbarch_info *info) 757 { 758 /* "(gdb) set architecture ...". */ 759 if (info->bfd_arch_info == NULL 760 && target_architecture_user) 761 info->bfd_arch_info = target_architecture_user; 762 /* From the file. */ 763 if (info->bfd_arch_info == NULL 764 && info->abfd != NULL 765 && bfd_get_arch (info->abfd) != bfd_arch_unknown 766 && bfd_get_arch (info->abfd) != bfd_arch_obscure) 767 info->bfd_arch_info = bfd_get_arch_info (info->abfd); 768 /* From the target. */ 769 if (info->target_desc != NULL) 770 info->bfd_arch_info = choose_architecture_for_target 771 (info->target_desc, info->bfd_arch_info); 772 /* From the default. */ 773 if (info->bfd_arch_info == NULL) 774 info->bfd_arch_info = default_bfd_arch; 775 776 /* "(gdb) set byte-order ...". */ 777 if (info->byte_order == BFD_ENDIAN_UNKNOWN 778 && target_byte_order_user != BFD_ENDIAN_UNKNOWN) 779 info->byte_order = target_byte_order_user; 780 /* From the INFO struct. */ 781 if (info->byte_order == BFD_ENDIAN_UNKNOWN 782 && info->abfd != NULL) 783 info->byte_order = (bfd_big_endian (info->abfd) ? BFD_ENDIAN_BIG 784 : bfd_little_endian (info->abfd) ? BFD_ENDIAN_LITTLE 785 : BFD_ENDIAN_UNKNOWN); 786 /* From the default. */ 787 if (info->byte_order == BFD_ENDIAN_UNKNOWN) 788 info->byte_order = default_byte_order; 789 info->byte_order_for_code = info->byte_order; 790 791 /* "(gdb) set osabi ...". Handled by gdbarch_lookup_osabi. */ 792 /* From the manual override, or from file. */ 793 if (info->osabi == GDB_OSABI_UNINITIALIZED) 794 info->osabi = gdbarch_lookup_osabi (info->abfd); 795 /* From the target. */ 796 if (info->osabi == GDB_OSABI_UNKNOWN && info->target_desc != NULL) 797 info->osabi = tdesc_osabi (info->target_desc); 798 /* From the configured default. */ 799 #ifdef GDB_OSABI_DEFAULT 800 if (info->osabi == GDB_OSABI_UNKNOWN) 801 info->osabi = GDB_OSABI_DEFAULT; 802 #endif 803 804 /* Must have at least filled in the architecture. */ 805 gdb_assert (info->bfd_arch_info != NULL); 806 } 807 808 /* Return "current" architecture. If the target is running, this is 809 the architecture of the selected frame. Otherwise, the "current" 810 architecture defaults to the target architecture. 811 812 This function should normally be called solely by the command 813 interpreter routines to determine the architecture to execute a 814 command in. */ 815 struct gdbarch * 816 get_current_arch (void) 817 { 818 if (has_stack_frames ()) 819 return get_frame_arch (get_selected_frame (NULL)); 820 else 821 return target_gdbarch (); 822 } 823 824 int 825 default_has_shared_address_space (struct gdbarch *gdbarch) 826 { 827 /* Simply say no. In most unix-like targets each inferior/process 828 has its own address space. */ 829 return 0; 830 } 831 832 int 833 default_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr, 834 char **msg) 835 { 836 /* We don't know if maybe the target has some way to do fast 837 tracepoints that doesn't need gdbarch, so always say yes. */ 838 if (msg) 839 *msg = NULL; 840 return 1; 841 } 842 843 const gdb_byte * 844 default_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, 845 int *lenptr) 846 { 847 int kind = gdbarch_breakpoint_kind_from_pc (gdbarch, pcptr); 848 849 return gdbarch_sw_breakpoint_from_kind (gdbarch, kind, lenptr); 850 } 851 int 852 default_breakpoint_kind_from_current_state (struct gdbarch *gdbarch, 853 struct regcache *regcache, 854 CORE_ADDR *pcptr) 855 { 856 return gdbarch_breakpoint_kind_from_pc (gdbarch, pcptr); 857 } 858 859 860 void 861 default_gen_return_address (struct gdbarch *gdbarch, 862 struct agent_expr *ax, struct axs_value *value, 863 CORE_ADDR scope) 864 { 865 error (_("This architecture has no method to collect a return address.")); 866 } 867 868 int 869 default_return_in_first_hidden_param_p (struct gdbarch *gdbarch, 870 struct type *type) 871 { 872 /* Usually, the return value's address is stored the in the "first hidden" 873 parameter if the return value should be passed by reference, as 874 specified in ABI. */ 875 return language_pass_by_reference (type); 876 } 877 878 int default_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr) 879 { 880 return 0; 881 } 882 883 int default_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr) 884 { 885 return 0; 886 } 887 888 int default_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr) 889 { 890 return 0; 891 } 892 893 void 894 default_skip_permanent_breakpoint (struct regcache *regcache) 895 { 896 struct gdbarch *gdbarch = get_regcache_arch (regcache); 897 CORE_ADDR current_pc = regcache_read_pc (regcache); 898 int bp_len; 899 900 gdbarch_breakpoint_from_pc (gdbarch, ¤t_pc, &bp_len); 901 current_pc += bp_len; 902 regcache_write_pc (regcache, current_pc); 903 } 904 905 CORE_ADDR 906 default_infcall_mmap (CORE_ADDR size, unsigned prot) 907 { 908 error (_("This target does not support inferior memory allocation by mmap.")); 909 } 910 911 void 912 default_infcall_munmap (CORE_ADDR addr, CORE_ADDR size) 913 { 914 /* Memory reserved by inferior mmap is kept leaked. */ 915 } 916 917 /* -mcmodel=large is used so that no GOT (Global Offset Table) is needed to be 918 created in inferior memory by GDB (normally it is set by ld.so). */ 919 920 char * 921 default_gcc_target_options (struct gdbarch *gdbarch) 922 { 923 return xstrprintf ("-m%d%s", gdbarch_ptr_bit (gdbarch), 924 gdbarch_ptr_bit (gdbarch) == 64 ? " -mcmodel=large" : ""); 925 } 926 927 /* gdbarch gnu_triplet_regexp method. */ 928 929 const char * 930 default_gnu_triplet_regexp (struct gdbarch *gdbarch) 931 { 932 return gdbarch_bfd_arch_info (gdbarch)->arch_name; 933 } 934 935 /* Default method for gdbarch_addressable_memory_unit_size. By default, a memory byte has 936 a size of 1 octet. */ 937 938 int 939 default_addressable_memory_unit_size (struct gdbarch *gdbarch) 940 { 941 return 1; 942 } 943 944 void 945 default_guess_tracepoint_registers (struct gdbarch *gdbarch, 946 struct regcache *regcache, 947 CORE_ADDR addr) 948 { 949 int pc_regno = gdbarch_pc_regnum (gdbarch); 950 gdb_byte *regs; 951 952 /* This guessing code below only works if the PC register isn't 953 a pseudo-register. The value of a pseudo-register isn't stored 954 in the (non-readonly) regcache -- instead it's recomputed 955 (probably from some other cached raw register) whenever the 956 register is read. In this case, a custom method implementation 957 should be used by the architecture. */ 958 if (pc_regno < 0 || pc_regno >= gdbarch_num_regs (gdbarch)) 959 return; 960 961 regs = (gdb_byte *) alloca (register_size (gdbarch, pc_regno)); 962 store_unsigned_integer (regs, register_size (gdbarch, pc_regno), 963 gdbarch_byte_order (gdbarch), addr); 964 regcache_raw_supply (regcache, pc_regno, regs); 965 } 966 967 /* See arch-utils.h. */ 968 969 CORE_ADDR 970 gdbarch_skip_prologue_noexcept (gdbarch *gdbarch, CORE_ADDR pc) noexcept 971 { 972 CORE_ADDR new_pc = pc; 973 974 TRY 975 { 976 new_pc = gdbarch_skip_prologue (gdbarch, pc); 977 } 978 CATCH (ex, RETURN_MASK_ALL) 979 {} 980 END_CATCH 981 982 return new_pc; 983 } 984 985 /* -Wmissing-prototypes */ 986 extern initialize_file_ftype _initialize_gdbarch_utils; 987 988 void 989 _initialize_gdbarch_utils (void) 990 { 991 add_setshow_enum_cmd ("endian", class_support, 992 endian_enum, &set_endian_string, 993 _("Set endianness of target."), 994 _("Show endianness of target."), 995 NULL, set_endian, show_endian, 996 &setlist, &showlist); 997 } 998