1 /* Target dependent code for ARC arhitecture, for GDB. 2 3 Copyright 2005-2017 Free Software Foundation, Inc. 4 Contributed by Synopsys Inc. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 20 21 /* GDB header files. */ 22 #include "defs.h" 23 #include "arch-utils.h" 24 #include "disasm.h" 25 #include "dwarf2-frame.h" 26 #include "frame-base.h" 27 #include "frame-unwind.h" 28 #include "gdbcore.h" 29 #include "gdbcmd.h" 30 #include "objfiles.h" 31 #include "prologue-value.h" 32 #include "trad-frame.h" 33 34 /* ARC header files. */ 35 #include "opcode/arc.h" 36 #include "opcodes/arc-dis.h" 37 #include "arc-tdep.h" 38 39 /* Standard headers. */ 40 #include <algorithm> 41 42 /* Default target descriptions. */ 43 #include "features/arc-v2.c" 44 #include "features/arc-arcompact.c" 45 46 /* The frame unwind cache for ARC. */ 47 48 struct arc_frame_cache 49 { 50 /* The stack pointer at the time this frame was created; i.e. the caller's 51 stack pointer when this function was called. It is used to identify this 52 frame. */ 53 CORE_ADDR prev_sp; 54 55 /* Register that is a base for this frame - FP for normal frame, SP for 56 non-FP frames. */ 57 int frame_base_reg; 58 59 /* Offset from the previous SP to the current frame base. If GCC uses 60 `SUB SP,SP,offset` to allocate space for local variables, then it will be 61 done after setting up a frame pointer, but it still will be considered 62 part of prologue, therefore SP will be lesser than FP at the end of the 63 prologue analysis. In this case that would be an offset from old SP to a 64 new FP. But in case of non-FP frames, frame base is an SP and thus that 65 would be an offset from old SP to new SP. What is important is that this 66 is an offset from old SP to a known register, so it can be used to find 67 old SP. 68 69 Using FP is preferable, when possible, because SP can change in function 70 body after prologue due to alloca, variadic arguments or other shenanigans. 71 If that is the case in the caller frame, then PREV_SP will point to SP at 72 the moment of function call, but it will be different from SP value at the 73 end of the caller prologue. As a result it will not be possible to 74 reconstruct caller's frame and go past it in the backtrace. Those things 75 are unlikely to happen to FP - FP value at the moment of function call (as 76 stored on stack in callee prologue) is also an FP value at the end of the 77 caller's prologue. */ 78 79 LONGEST frame_base_offset; 80 81 /* Store addresses for registers saved in prologue. During prologue analysis 82 GDB stores offsets relatively to "old SP", then after old SP is evaluated, 83 offsets are replaced with absolute addresses. */ 84 struct trad_frame_saved_reg *saved_regs; 85 }; 86 87 /* Global debug flag. */ 88 89 int arc_debug; 90 91 /* List of "maintenance print arc" commands. */ 92 93 static struct cmd_list_element *maintenance_print_arc_list = NULL; 94 95 /* XML target description features. */ 96 97 static const char core_v2_feature_name[] = "org.gnu.gdb.arc.core.v2"; 98 static const char 99 core_reduced_v2_feature_name[] = "org.gnu.gdb.arc.core-reduced.v2"; 100 static const char 101 core_arcompact_feature_name[] = "org.gnu.gdb.arc.core.arcompact"; 102 static const char aux_minimal_feature_name[] = "org.gnu.gdb.arc.aux-minimal"; 103 104 /* XML target description known registers. */ 105 106 static const char *const core_v2_register_names[] = { 107 "r0", "r1", "r2", "r3", 108 "r4", "r5", "r6", "r7", 109 "r8", "r9", "r10", "r11", 110 "r12", "r13", "r14", "r15", 111 "r16", "r17", "r18", "r19", 112 "r20", "r21", "r22", "r23", 113 "r24", "r25", "gp", "fp", 114 "sp", "ilink", "r30", "blink", 115 "r32", "r33", "r34", "r35", 116 "r36", "r37", "r38", "r39", 117 "r40", "r41", "r42", "r43", 118 "r44", "r45", "r46", "r47", 119 "r48", "r49", "r50", "r51", 120 "r52", "r53", "r54", "r55", 121 "r56", "r57", "accl", "acch", 122 "lp_count", "reserved", "limm", "pcl", 123 }; 124 125 static const char *const aux_minimal_register_names[] = { 126 "pc", "status32", 127 }; 128 129 static const char *const core_arcompact_register_names[] = { 130 "r0", "r1", "r2", "r3", 131 "r4", "r5", "r6", "r7", 132 "r8", "r9", "r10", "r11", 133 "r12", "r13", "r14", "r15", 134 "r16", "r17", "r18", "r19", 135 "r20", "r21", "r22", "r23", 136 "r24", "r25", "gp", "fp", 137 "sp", "ilink1", "ilink2", "blink", 138 "r32", "r33", "r34", "r35", 139 "r36", "r37", "r38", "r39", 140 "r40", "r41", "r42", "r43", 141 "r44", "r45", "r46", "r47", 142 "r48", "r49", "r50", "r51", 143 "r52", "r53", "r54", "r55", 144 "r56", "r57", "r58", "r59", 145 "lp_count", "reserved", "limm", "pcl", 146 }; 147 148 /* Functions are sorted in the order as they are used in the 149 _initialize_arc_tdep (), which uses the same order as gdbarch.h. Static 150 functions are defined before the first invocation. */ 151 152 /* Returns an unsigned value of OPERAND_NUM in instruction INSN. 153 For relative branch instructions returned value is an offset, not an actual 154 branch target. */ 155 156 static ULONGEST 157 arc_insn_get_operand_value (const struct arc_instruction &insn, 158 unsigned int operand_num) 159 { 160 switch (insn.operands[operand_num].kind) 161 { 162 case ARC_OPERAND_KIND_LIMM: 163 gdb_assert (insn.limm_p); 164 return insn.limm_value; 165 case ARC_OPERAND_KIND_SHIMM: 166 return insn.operands[operand_num].value; 167 default: 168 /* Value in instruction is a register number. */ 169 struct regcache *regcache = get_current_regcache (); 170 ULONGEST value; 171 regcache_cooked_read_unsigned (regcache, 172 insn.operands[operand_num].value, 173 &value); 174 return value; 175 } 176 } 177 178 /* Like arc_insn_get_operand_value, but returns a signed value. */ 179 180 static LONGEST 181 arc_insn_get_operand_value_signed (const struct arc_instruction &insn, 182 unsigned int operand_num) 183 { 184 switch (insn.operands[operand_num].kind) 185 { 186 case ARC_OPERAND_KIND_LIMM: 187 gdb_assert (insn.limm_p); 188 /* Convert unsigned raw value to signed one. This assumes 2's 189 complement arithmetic, but so is the LONG_MIN value from generic 190 defs.h and that assumption is true for ARC. */ 191 gdb_static_assert (sizeof (insn.limm_value) == sizeof (int)); 192 return (((LONGEST) insn.limm_value) ^ INT_MIN) - INT_MIN; 193 case ARC_OPERAND_KIND_SHIMM: 194 /* Sign conversion has been done by binutils. */ 195 return insn.operands[operand_num].value; 196 default: 197 /* Value in instruction is a register number. */ 198 struct regcache *regcache = get_current_regcache (); 199 LONGEST value; 200 regcache_cooked_read_signed (regcache, 201 insn.operands[operand_num].value, 202 &value); 203 return value; 204 } 205 } 206 207 /* Get register with base address of memory operation. */ 208 209 int 210 arc_insn_get_memory_base_reg (const struct arc_instruction &insn) 211 { 212 /* POP_S and PUSH_S have SP as an implicit argument in a disassembler. */ 213 if (insn.insn_class == PUSH || insn.insn_class == POP) 214 return ARC_SP_REGNUM; 215 216 gdb_assert (insn.insn_class == LOAD || insn.insn_class == STORE); 217 218 /* Other instructions all have at least two operands: operand 0 is data, 219 operand 1 is address. Operand 2 is offset from address. However, see 220 comment to arc_instruction.operands - in some cases, third operand may be 221 missing, namely if it is 0. */ 222 gdb_assert (insn.operands_count >= 2); 223 return insn.operands[1].value; 224 } 225 226 /* Get offset of a memory operation INSN. */ 227 228 CORE_ADDR 229 arc_insn_get_memory_offset (const struct arc_instruction &insn) 230 { 231 /* POP_S and PUSH_S have offset as an implicit argument in a 232 disassembler. */ 233 if (insn.insn_class == POP) 234 return 4; 235 else if (insn.insn_class == PUSH) 236 return -4; 237 238 gdb_assert (insn.insn_class == LOAD || insn.insn_class == STORE); 239 240 /* Other instructions all have at least two operands: operand 0 is data, 241 operand 1 is address. Operand 2 is offset from address. However, see 242 comment to arc_instruction.operands - in some cases, third operand may be 243 missing, namely if it is 0. */ 244 if (insn.operands_count < 3) 245 return 0; 246 247 CORE_ADDR value = arc_insn_get_operand_value (insn, 2); 248 /* Handle scaling. */ 249 if (insn.writeback_mode == ARC_WRITEBACK_AS) 250 { 251 /* Byte data size is not valid for AS. Halfword means shift by 1 bit. 252 Word and double word means shift by 2 bits. */ 253 gdb_assert (insn.data_size_mode != ARC_SCALING_B); 254 if (insn.data_size_mode == ARC_SCALING_H) 255 value <<= 1; 256 else 257 value <<= 2; 258 } 259 return value; 260 } 261 262 CORE_ADDR 263 arc_insn_get_branch_target (const struct arc_instruction &insn) 264 { 265 gdb_assert (insn.is_control_flow); 266 267 /* BI [c]: PC = nextPC + (c << 2). */ 268 if (insn.insn_class == BI) 269 { 270 ULONGEST reg_value = arc_insn_get_operand_value (insn, 0); 271 return arc_insn_get_linear_next_pc (insn) + (reg_value << 2); 272 } 273 /* BIH [c]: PC = nextPC + (c << 1). */ 274 else if (insn.insn_class == BIH) 275 { 276 ULONGEST reg_value = arc_insn_get_operand_value (insn, 0); 277 return arc_insn_get_linear_next_pc (insn) + (reg_value << 1); 278 } 279 /* JLI and EI. */ 280 /* JLI and EI depend on optional AUX registers. Not supported right now. */ 281 else if (insn.insn_class == JLI) 282 { 283 fprintf_unfiltered (gdb_stderr, 284 "JLI_S instruction is not supported by the GDB."); 285 return 0; 286 } 287 else if (insn.insn_class == EI) 288 { 289 fprintf_unfiltered (gdb_stderr, 290 "EI_S instruction is not supported by the GDB."); 291 return 0; 292 } 293 /* LEAVE_S: PC = BLINK. */ 294 else if (insn.insn_class == LEAVE) 295 { 296 struct regcache *regcache = get_current_regcache (); 297 ULONGEST value; 298 regcache_cooked_read_unsigned (regcache, ARC_BLINK_REGNUM, &value); 299 return value; 300 } 301 /* BBIT0/1, BRcc: PC = currentPC + operand. */ 302 else if (insn.insn_class == BBIT0 || insn.insn_class == BBIT1 303 || insn.insn_class == BRCC) 304 { 305 /* Most instructions has branch target as their sole argument. However 306 conditional brcc/bbit has it as a third operand. */ 307 CORE_ADDR pcrel_addr = arc_insn_get_operand_value (insn, 2); 308 309 /* Offset is relative to the 4-byte aligned address of the current 310 instruction, hence last two bits should be truncated. */ 311 return pcrel_addr + align_down (insn.address, 4); 312 } 313 /* B, Bcc, BL, BLcc, LP, LPcc: PC = currentPC + operand. */ 314 else if (insn.insn_class == BRANCH || insn.insn_class == LOOP) 315 { 316 CORE_ADDR pcrel_addr = arc_insn_get_operand_value (insn, 0); 317 318 /* Offset is relative to the 4-byte aligned address of the current 319 instruction, hence last two bits should be truncated. */ 320 return pcrel_addr + align_down (insn.address, 4); 321 } 322 /* J, Jcc, JL, JLcc: PC = operand. */ 323 else if (insn.insn_class == JUMP) 324 { 325 /* All jumps are single-operand. */ 326 return arc_insn_get_operand_value (insn, 0); 327 } 328 329 /* This is some new and unknown instruction. */ 330 gdb_assert_not_reached ("Unknown branch instruction."); 331 } 332 333 /* Dump INSN into gdb_stdlog. */ 334 335 void 336 arc_insn_dump (const struct arc_instruction &insn) 337 { 338 struct gdbarch *gdbarch = target_gdbarch (); 339 340 arc_print ("Dumping arc_instruction at %s\n", 341 paddress (gdbarch, insn.address)); 342 arc_print ("\tlength = %u\n", insn.length); 343 344 if (!insn.valid) 345 { 346 arc_print ("\tThis is not a valid ARC instruction.\n"); 347 return; 348 } 349 350 arc_print ("\tlength_with_limm = %u\n", insn.length + (insn.limm_p ? 4 : 0)); 351 arc_print ("\tcc = 0x%x\n", insn.condition_code); 352 arc_print ("\tinsn_class = %u\n", insn.insn_class); 353 arc_print ("\tis_control_flow = %i\n", insn.is_control_flow); 354 arc_print ("\thas_delay_slot = %i\n", insn.has_delay_slot); 355 356 CORE_ADDR next_pc = arc_insn_get_linear_next_pc (insn); 357 arc_print ("\tlinear_next_pc = %s\n", paddress (gdbarch, next_pc)); 358 359 if (insn.is_control_flow) 360 { 361 CORE_ADDR t = arc_insn_get_branch_target (insn); 362 arc_print ("\tbranch_target = %s\n", paddress (gdbarch, t)); 363 } 364 365 arc_print ("\tlimm_p = %i\n", insn.limm_p); 366 if (insn.limm_p) 367 arc_print ("\tlimm_value = 0x%08x\n", insn.limm_value); 368 369 if (insn.insn_class == STORE || insn.insn_class == LOAD 370 || insn.insn_class == PUSH || insn.insn_class == POP) 371 { 372 arc_print ("\twriteback_mode = %u\n", insn.writeback_mode); 373 arc_print ("\tdata_size_mode = %u\n", insn.data_size_mode); 374 arc_print ("\tmemory_base_register = %s\n", 375 gdbarch_register_name (gdbarch, 376 arc_insn_get_memory_base_reg (insn))); 377 /* get_memory_offset returns an unsigned CORE_ADDR, but treat it as a 378 LONGEST for a nicer representation. */ 379 arc_print ("\taddr_offset = %s\n", 380 plongest (arc_insn_get_memory_offset (insn))); 381 } 382 383 arc_print ("\toperands_count = %u\n", insn.operands_count); 384 for (unsigned int i = 0; i < insn.operands_count; ++i) 385 { 386 int is_reg = (insn.operands[i].kind == ARC_OPERAND_KIND_REG); 387 388 arc_print ("\toperand[%u] = {\n", i); 389 arc_print ("\t\tis_reg = %i\n", is_reg); 390 if (is_reg) 391 arc_print ("\t\tregister = %s\n", 392 gdbarch_register_name (gdbarch, insn.operands[i].value)); 393 /* Don't know if this value is signed or not, so print both 394 representations. This tends to look quite ugly, especially for big 395 numbers. */ 396 arc_print ("\t\tunsigned value = %s\n", 397 pulongest (arc_insn_get_operand_value (insn, i))); 398 arc_print ("\t\tsigned value = %s\n", 399 plongest (arc_insn_get_operand_value_signed (insn, i))); 400 arc_print ("\t}\n"); 401 } 402 } 403 404 CORE_ADDR 405 arc_insn_get_linear_next_pc (const struct arc_instruction &insn) 406 { 407 /* In ARC long immediate is always 4 bytes. */ 408 return (insn.address + insn.length + (insn.limm_p ? 4 : 0)); 409 } 410 411 /* Implement the "write_pc" gdbarch method. 412 413 In ARC PC register is a normal register so in most cases setting PC value 414 is a straightforward process: debugger just writes PC value. However it 415 gets trickier in case when current instruction is an instruction in delay 416 slot. In this case CPU will execute instruction at current PC value, then 417 will set PC to the current value of BTA register; also current instruction 418 cannot be branch/jump and some of the other instruction types. Thus if 419 debugger would try to just change PC value in this case, this instruction 420 will get executed, but then core will "jump" to the original branch target. 421 422 Whether current instruction is a delay-slot instruction or not is indicated 423 by DE bit in STATUS32 register indicates if current instruction is a delay 424 slot instruction. This bit is writable by debug host, which allows debug 425 host to prevent core from jumping after the delay slot instruction. It 426 also works in another direction: setting this bit will make core to treat 427 any current instructions as a delay slot instruction and to set PC to the 428 current value of BTA register. 429 430 To workaround issues with changing PC register while in delay slot 431 instruction, debugger should check for the STATUS32.DE bit and reset it if 432 it is set. No other change is required in this function. Most common 433 case, where this function might be required is calling inferior functions 434 from debugger. Generic GDB logic handles this pretty well: current values 435 of registers are stored, value of PC is changed (that is the job of this 436 function), and after inferior function is executed, GDB restores all 437 registers, include BTA and STATUS32, which also means that core is returned 438 to its original state of being halted on delay slot instructions. 439 440 This method is useless for ARC 600, because it doesn't have externally 441 exposed BTA register. In the case of ARC 600 it is impossible to restore 442 core to its state in all occasions thus core should never be halted (from 443 the perspective of debugger host) in the delay slot. */ 444 445 static void 446 arc_write_pc (struct regcache *regcache, CORE_ADDR new_pc) 447 { 448 struct gdbarch *gdbarch = get_regcache_arch (regcache); 449 450 if (arc_debug) 451 debug_printf ("arc: Writing PC, new value=%s\n", 452 paddress (gdbarch, new_pc)); 453 454 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), 455 new_pc); 456 457 ULONGEST status32; 458 regcache_cooked_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), 459 &status32); 460 461 /* Mask for DE bit is 0x40. */ 462 if (status32 & 0x40) 463 { 464 if (arc_debug) 465 { 466 debug_printf ("arc: Changing PC while in delay slot. Will " 467 "reset STATUS32.DE bit to zero. Value of STATUS32 " 468 "register is 0x%s\n", 469 phex (status32, ARC_REGISTER_SIZE)); 470 } 471 472 /* Reset bit and write to the cache. */ 473 status32 &= ~0x40; 474 regcache_cooked_write_unsigned (regcache, gdbarch_ps_regnum (gdbarch), 475 status32); 476 } 477 } 478 479 /* Implement the "virtual_frame_pointer" gdbarch method. 480 481 According to ABI the FP (r27) is used to point to the middle of the current 482 stack frame, just below the saved FP and before local variables, register 483 spill area and outgoing args. However for optimization levels above O2 and 484 in any case in leaf functions, the frame pointer is usually not set at all. 485 The exception being when handling nested functions. 486 487 We use this function to return a "virtual" frame pointer, marking the start 488 of the current stack frame as a register-offset pair. If the FP is not 489 being used, then it should return SP, with an offset of the frame size. 490 491 The current implementation doesn't actually know the frame size, nor 492 whether the FP is actually being used, so for now we just return SP and an 493 offset of zero. This is no worse than other architectures, but is needed 494 to avoid assertion failures. 495 496 TODO: Can we determine the frame size to get a correct offset? 497 498 PC is a program counter where we need the virtual FP. REG_PTR is the base 499 register used for the virtual FP. OFFSET_PTR is the offset used for the 500 virtual FP. */ 501 502 static void 503 arc_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc, 504 int *reg_ptr, LONGEST *offset_ptr) 505 { 506 *reg_ptr = gdbarch_sp_regnum (gdbarch); 507 *offset_ptr = 0; 508 } 509 510 /* Implement the "dummy_id" gdbarch method. 511 512 Tear down a dummy frame created by arc_push_dummy_call (). This data has 513 to be constructed manually from the data in our hand. The stack pointer 514 and program counter can be obtained from the frame info. */ 515 516 static struct frame_id 517 arc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) 518 { 519 return frame_id_build (get_frame_sp (this_frame), 520 get_frame_pc (this_frame)); 521 } 522 523 /* Implement the "push_dummy_call" gdbarch method. 524 525 Stack Frame Layout 526 527 This shows the layout of the stack frame for the general case of a 528 function call; a given function might not have a variable number of 529 arguments or local variables, or might not save any registers, so it would 530 not have the corresponding frame areas. Additionally, a leaf function 531 (i.e. one which calls no other functions) does not need to save the 532 contents of the BLINK register (which holds its return address), and a 533 function might not have a frame pointer. 534 535 The stack grows downward, so SP points below FP in memory; SP always 536 points to the last used word on the stack, not the first one. 537 538 | | | 539 | arg word N | | caller's 540 | : | | frame 541 | arg word 10 | | 542 | arg word 9 | | 543 old SP ---> +-----------------------+ --+ 544 | | | 545 | callee-saved | | 546 | registers | | 547 | including fp, blink | | 548 | | | callee's 549 new FP ---> +-----------------------+ | frame 550 | | | 551 | local | | 552 | variables | | 553 | | | 554 | register | | 555 | spill area | | 556 | | | 557 | outgoing args | | 558 | | | 559 new SP ---> +-----------------------+ --+ 560 | | 561 | unused | 562 | | 563 | 564 | 565 V 566 downwards 567 568 The list of arguments to be passed to a function is considered to be a 569 sequence of _N_ words (as though all the parameters were stored in order in 570 memory with each parameter occupying an integral number of words). Words 571 1..8 are passed in registers 0..7; if the function has more than 8 words of 572 arguments then words 9..@em N are passed on the stack in the caller's frame. 573 574 If the function has a variable number of arguments, e.g. it has a form such 575 as `function (p1, p2, ...);' and _P_ words are required to hold the values 576 of the named parameters (which are passed in registers 0..@em P -1), then 577 the remaining 8 - _P_ words passed in registers _P_..7 are spilled into the 578 top of the frame so that the anonymous parameter words occupy a continuous 579 region. 580 581 Any arguments are already in target byte order. We just need to store 582 them! 583 584 BP_ADDR is the return address where breakpoint must be placed. NARGS is 585 the number of arguments to the function. ARGS is the arguments values (in 586 target byte order). SP is the Current value of SP register. STRUCT_RETURN 587 is TRUE if structures are returned by the function. STRUCT_ADDR is the 588 hidden address for returning a struct. Returns SP of a new frame. */ 589 590 static CORE_ADDR 591 arc_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 592 struct regcache *regcache, CORE_ADDR bp_addr, int nargs, 593 struct value **args, CORE_ADDR sp, int struct_return, 594 CORE_ADDR struct_addr) 595 { 596 if (arc_debug) 597 debug_printf ("arc: push_dummy_call (nargs = %d)\n", nargs); 598 599 int arg_reg = ARC_FIRST_ARG_REGNUM; 600 601 /* Push the return address. */ 602 regcache_cooked_write_unsigned (regcache, ARC_BLINK_REGNUM, bp_addr); 603 604 /* Are we returning a value using a structure return instead of a normal 605 value return? If so, struct_addr is the address of the reserved space for 606 the return structure to be written on the stack, and that address is 607 passed to that function as a hidden first argument. */ 608 if (struct_return) 609 { 610 /* Pass the return address in the first argument register. */ 611 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr); 612 613 if (arc_debug) 614 debug_printf ("arc: struct return address %s passed in R%d", 615 print_core_address (gdbarch, struct_addr), arg_reg); 616 617 arg_reg++; 618 } 619 620 if (nargs > 0) 621 { 622 unsigned int total_space = 0; 623 624 /* How much space do the arguments occupy in total? Must round each 625 argument's size up to an integral number of words. */ 626 for (int i = 0; i < nargs; i++) 627 { 628 unsigned int len = TYPE_LENGTH (value_type (args[i])); 629 unsigned int space = align_up (len, 4); 630 631 total_space += space; 632 633 if (arc_debug) 634 debug_printf ("arc: arg %d: %u bytes -> %u\n", i, len, space); 635 } 636 637 /* Allocate a buffer to hold a memory image of the arguments. */ 638 gdb_byte *memory_image = XCNEWVEC (gdb_byte, total_space); 639 640 /* Now copy all of the arguments into the buffer, correctly aligned. */ 641 gdb_byte *data = memory_image; 642 for (int i = 0; i < nargs; i++) 643 { 644 unsigned int len = TYPE_LENGTH (value_type (args[i])); 645 unsigned int space = align_up (len, 4); 646 647 memcpy (data, value_contents (args[i]), (size_t) len); 648 if (arc_debug) 649 debug_printf ("arc: copying arg %d, val 0x%08x, len %d to mem\n", 650 i, *((int *) value_contents (args[i])), len); 651 652 data += space; 653 } 654 655 /* Now load as much as possible of the memory image into registers. */ 656 data = memory_image; 657 while (arg_reg <= ARC_LAST_ARG_REGNUM) 658 { 659 if (arc_debug) 660 debug_printf ("arc: passing 0x%02x%02x%02x%02x in register R%d\n", 661 data[0], data[1], data[2], data[3], arg_reg); 662 663 /* Note we don't use write_unsigned here, since that would convert 664 the byte order, but we are already in the correct byte order. */ 665 regcache_cooked_write (regcache, arg_reg, data); 666 667 data += ARC_REGISTER_SIZE; 668 total_space -= ARC_REGISTER_SIZE; 669 670 /* All the data is now in registers. */ 671 if (total_space == 0) 672 break; 673 674 arg_reg++; 675 } 676 677 /* If there is any data left, push it onto the stack (in a single write 678 operation). */ 679 if (total_space > 0) 680 { 681 if (arc_debug) 682 debug_printf ("arc: passing %d bytes on stack\n", total_space); 683 684 sp -= total_space; 685 write_memory (sp, data, (int) total_space); 686 } 687 688 xfree (memory_image); 689 } 690 691 /* Finally, update the SP register. */ 692 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp); 693 694 return sp; 695 } 696 697 /* Implement the "push_dummy_code" gdbarch method. 698 699 We don't actually push any code. We just identify where a breakpoint can 700 be inserted to which we are can return and the resume address where we 701 should be called. 702 703 ARC does not necessarily have an executable stack, so we can't put the 704 return breakpoint there. Instead we put it at the entry point of the 705 function. This means the SP is unchanged. 706 707 SP is a current stack pointer FUNADDR is an address of the function to be 708 called. ARGS is arguments to pass. NARGS is a number of args to pass. 709 VALUE_TYPE is a type of value returned. REAL_PC is a resume address when 710 the function is called. BP_ADDR is an address where breakpoint should be 711 set. Returns the updated stack pointer. */ 712 713 static CORE_ADDR 714 arc_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr, 715 struct value **args, int nargs, struct type *value_type, 716 CORE_ADDR *real_pc, CORE_ADDR *bp_addr, 717 struct regcache *regcache) 718 { 719 *real_pc = funaddr; 720 *bp_addr = entry_point_address (); 721 return sp; 722 } 723 724 /* Implement the "cannot_fetch_register" gdbarch method. */ 725 726 static int 727 arc_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) 728 { 729 /* Assume that register is readable if it is unknown. LIMM and RESERVED are 730 not real registers, but specific register numbers. They are available as 731 regnums to align architectural register numbers with GDB internal regnums, 732 but they shouldn't appear in target descriptions generated by 733 GDB-servers. */ 734 switch (regnum) 735 { 736 case ARC_RESERVED_REGNUM: 737 case ARC_LIMM_REGNUM: 738 return true; 739 default: 740 return false; 741 } 742 } 743 744 /* Implement the "cannot_store_register" gdbarch method. */ 745 746 static int 747 arc_cannot_store_register (struct gdbarch *gdbarch, int regnum) 748 { 749 /* Assume that register is writable if it is unknown. See comment in 750 arc_cannot_fetch_register about LIMM and RESERVED. */ 751 switch (regnum) 752 { 753 case ARC_RESERVED_REGNUM: 754 case ARC_LIMM_REGNUM: 755 case ARC_PCL_REGNUM: 756 return true; 757 default: 758 return false; 759 } 760 } 761 762 /* Get the return value of a function from the registers/memory used to 763 return it, according to the convention used by the ABI - 4-bytes values are 764 in the R0, while 8-byte values are in the R0-R1. 765 766 TODO: This implementation ignores the case of "complex double", where 767 according to ABI, value is returned in the R0-R3 registers. 768 769 TYPE is a returned value's type. VALBUF is a buffer for the returned 770 value. */ 771 772 static void 773 arc_extract_return_value (struct gdbarch *gdbarch, struct type *type, 774 struct regcache *regcache, gdb_byte *valbuf) 775 { 776 unsigned int len = TYPE_LENGTH (type); 777 778 if (arc_debug) 779 debug_printf ("arc: extract_return_value\n"); 780 781 if (len <= ARC_REGISTER_SIZE) 782 { 783 ULONGEST val; 784 785 /* Get the return value from one register. */ 786 regcache_cooked_read_unsigned (regcache, ARC_R0_REGNUM, &val); 787 store_unsigned_integer (valbuf, (int) len, 788 gdbarch_byte_order (gdbarch), val); 789 790 if (arc_debug) 791 debug_printf ("arc: returning 0x%s\n", phex (val, ARC_REGISTER_SIZE)); 792 } 793 else if (len <= ARC_REGISTER_SIZE * 2) 794 { 795 ULONGEST low, high; 796 797 /* Get the return value from two registers. */ 798 regcache_cooked_read_unsigned (regcache, ARC_R0_REGNUM, &low); 799 regcache_cooked_read_unsigned (regcache, ARC_R1_REGNUM, &high); 800 801 store_unsigned_integer (valbuf, ARC_REGISTER_SIZE, 802 gdbarch_byte_order (gdbarch), low); 803 store_unsigned_integer (valbuf + ARC_REGISTER_SIZE, 804 (int) len - ARC_REGISTER_SIZE, 805 gdbarch_byte_order (gdbarch), high); 806 807 if (arc_debug) 808 debug_printf ("arc: returning 0x%s%s\n", 809 phex (high, ARC_REGISTER_SIZE), 810 phex (low, ARC_REGISTER_SIZE)); 811 } 812 else 813 error (_("arc: extract_return_value: type length %u too large"), len); 814 } 815 816 817 /* Store the return value of a function into the registers/memory used to 818 return it, according to the convention used by the ABI. 819 820 TODO: This implementation ignores the case of "complex double", where 821 according to ABI, value is returned in the R0-R3 registers. 822 823 TYPE is a returned value's type. VALBUF is a buffer with the value to 824 return. */ 825 826 static void 827 arc_store_return_value (struct gdbarch *gdbarch, struct type *type, 828 struct regcache *regcache, const gdb_byte *valbuf) 829 { 830 unsigned int len = TYPE_LENGTH (type); 831 832 if (arc_debug) 833 debug_printf ("arc: store_return_value\n"); 834 835 if (len <= ARC_REGISTER_SIZE) 836 { 837 ULONGEST val; 838 839 /* Put the return value into one register. */ 840 val = extract_unsigned_integer (valbuf, (int) len, 841 gdbarch_byte_order (gdbarch)); 842 regcache_cooked_write_unsigned (regcache, ARC_R0_REGNUM, val); 843 844 if (arc_debug) 845 debug_printf ("arc: storing 0x%s\n", phex (val, ARC_REGISTER_SIZE)); 846 } 847 else if (len <= ARC_REGISTER_SIZE * 2) 848 { 849 ULONGEST low, high; 850 851 /* Put the return value into two registers. */ 852 low = extract_unsigned_integer (valbuf, ARC_REGISTER_SIZE, 853 gdbarch_byte_order (gdbarch)); 854 high = extract_unsigned_integer (valbuf + ARC_REGISTER_SIZE, 855 (int) len - ARC_REGISTER_SIZE, 856 gdbarch_byte_order (gdbarch)); 857 858 regcache_cooked_write_unsigned (regcache, ARC_R0_REGNUM, low); 859 regcache_cooked_write_unsigned (regcache, ARC_R1_REGNUM, high); 860 861 if (arc_debug) 862 debug_printf ("arc: storing 0x%s%s\n", 863 phex (high, ARC_REGISTER_SIZE), 864 phex (low, ARC_REGISTER_SIZE)); 865 } 866 else 867 error (_("arc_store_return_value: type length too large.")); 868 } 869 870 /* Implement the "get_longjmp_target" gdbarch method. */ 871 872 static int 873 arc_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) 874 { 875 if (arc_debug) 876 debug_printf ("arc: get_longjmp_target\n"); 877 878 struct gdbarch *gdbarch = get_frame_arch (frame); 879 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 880 int pc_offset = tdep->jb_pc * ARC_REGISTER_SIZE; 881 gdb_byte buf[ARC_REGISTER_SIZE]; 882 CORE_ADDR jb_addr = get_frame_register_unsigned (frame, ARC_FIRST_ARG_REGNUM); 883 884 if (target_read_memory (jb_addr + pc_offset, buf, ARC_REGISTER_SIZE)) 885 return 0; /* Failed to read from memory. */ 886 887 *pc = extract_unsigned_integer (buf, ARC_REGISTER_SIZE, 888 gdbarch_byte_order (gdbarch)); 889 return 1; 890 } 891 892 /* Implement the "return_value" gdbarch method. */ 893 894 static enum return_value_convention 895 arc_return_value (struct gdbarch *gdbarch, struct value *function, 896 struct type *valtype, struct regcache *regcache, 897 gdb_byte *readbuf, const gdb_byte *writebuf) 898 { 899 /* If the return type is a struct, or a union, or would occupy more than two 900 registers, the ABI uses the "struct return convention": the calling 901 function passes a hidden first parameter to the callee (in R0). That 902 parameter is the address at which the value being returned should be 903 stored. Otherwise, the result is returned in registers. */ 904 int is_struct_return = (TYPE_CODE (valtype) == TYPE_CODE_STRUCT 905 || TYPE_CODE (valtype) == TYPE_CODE_UNION 906 || TYPE_LENGTH (valtype) > 2 * ARC_REGISTER_SIZE); 907 908 if (arc_debug) 909 debug_printf ("arc: return_value (readbuf = %s, writebuf = %s)\n", 910 host_address_to_string (readbuf), 911 host_address_to_string (writebuf)); 912 913 if (writebuf != NULL) 914 { 915 /* Case 1. GDB should not ask us to set a struct return value: it 916 should know the struct return location and write the value there 917 itself. */ 918 gdb_assert (!is_struct_return); 919 arc_store_return_value (gdbarch, valtype, regcache, writebuf); 920 } 921 else if (readbuf != NULL) 922 { 923 /* Case 2. GDB should not ask us to get a struct return value: it 924 should know the struct return location and read the value from there 925 itself. */ 926 gdb_assert (!is_struct_return); 927 arc_extract_return_value (gdbarch, valtype, regcache, readbuf); 928 } 929 930 return (is_struct_return 931 ? RETURN_VALUE_STRUCT_CONVENTION 932 : RETURN_VALUE_REGISTER_CONVENTION); 933 } 934 935 /* Return the base address of the frame. For ARC, the base address is the 936 frame pointer. */ 937 938 static CORE_ADDR 939 arc_frame_base_address (struct frame_info *this_frame, void **prologue_cache) 940 { 941 return (CORE_ADDR) get_frame_register_unsigned (this_frame, ARC_FP_REGNUM); 942 } 943 944 /* Helper function that returns valid pv_t for an instruction operand: 945 either a register or a constant. */ 946 947 static pv_t 948 arc_pv_get_operand (pv_t *regs, const struct arc_instruction &insn, int operand) 949 { 950 if (insn.operands[operand].kind == ARC_OPERAND_KIND_REG) 951 return regs[insn.operands[operand].value]; 952 else 953 return pv_constant (arc_insn_get_operand_value (insn, operand)); 954 } 955 956 /* Determine whether the given disassembled instruction may be part of a 957 function prologue. If it is, the information in the frame unwind cache will 958 be updated. */ 959 960 static bool 961 arc_is_in_prologue (struct gdbarch *gdbarch, const struct arc_instruction &insn, 962 pv_t *regs, struct pv_area *stack) 963 { 964 /* It might be that currently analyzed address doesn't contain an 965 instruction, hence INSN is not valid. It likely means that address points 966 to a data, non-initialized memory, or middle of a 32-bit instruction. In 967 practice this may happen if GDB connects to a remote target that has 968 non-zeroed memory. GDB would read PC value and would try to analyze 969 prologue, but there is no guarantee that memory contents at the address 970 specified in PC is address is a valid instruction. There is not much that 971 that can be done about that. */ 972 if (!insn.valid) 973 return false; 974 975 /* Branch/jump or a predicated instruction. */ 976 if (insn.is_control_flow || insn.condition_code != ARC_CC_AL) 977 return false; 978 979 /* Store of some register. May or may not update base address register. */ 980 if (insn.insn_class == STORE || insn.insn_class == PUSH) 981 { 982 /* There is definetely at least one operand - register/value being 983 stored. */ 984 gdb_assert (insn.operands_count > 0); 985 986 /* Store at some constant address. */ 987 if (insn.operands_count > 1 988 && insn.operands[1].kind != ARC_OPERAND_KIND_REG) 989 return false; 990 991 /* Writeback modes: 992 Mode Address used Writeback value 993 -------------------------------------------------- 994 No reg + offset no 995 A/AW reg + offset reg + offset 996 AB reg reg + offset 997 AS reg + (offset << scaling) no 998 999 "PUSH reg" is an alias to "ST.AW reg, [SP, -4]" encoding. However 1000 16-bit PUSH_S is a distinct instruction encoding, where offset and 1001 base register are implied through opcode. */ 1002 1003 /* Register with base memory address. */ 1004 int base_reg = arc_insn_get_memory_base_reg (insn); 1005 1006 /* Address where to write. arc_insn_get_memory_offset returns scaled 1007 value for ARC_WRITEBACK_AS. */ 1008 pv_t addr; 1009 if (insn.writeback_mode == ARC_WRITEBACK_AB) 1010 addr = regs[base_reg]; 1011 else 1012 addr = pv_add_constant (regs[base_reg], 1013 arc_insn_get_memory_offset (insn)); 1014 1015 if (pv_area_store_would_trash (stack, addr)) 1016 return false; 1017 1018 if (insn.data_size_mode != ARC_SCALING_D) 1019 { 1020 /* Find the value being stored. */ 1021 pv_t store_value = arc_pv_get_operand (regs, insn, 0); 1022 1023 /* What is the size of a the stored value? */ 1024 CORE_ADDR size; 1025 if (insn.data_size_mode == ARC_SCALING_B) 1026 size = 1; 1027 else if (insn.data_size_mode == ARC_SCALING_H) 1028 size = 2; 1029 else 1030 size = ARC_REGISTER_SIZE; 1031 1032 pv_area_store (stack, addr, size, store_value); 1033 } 1034 else 1035 { 1036 if (insn.operands[0].kind == ARC_OPERAND_KIND_REG) 1037 { 1038 /* If this is a double store, than write N+1 register as well. */ 1039 pv_t store_value1 = regs[insn.operands[0].value]; 1040 pv_t store_value2 = regs[insn.operands[0].value + 1]; 1041 pv_area_store (stack, addr, ARC_REGISTER_SIZE, store_value1); 1042 pv_area_store (stack, 1043 pv_add_constant (addr, ARC_REGISTER_SIZE), 1044 ARC_REGISTER_SIZE, store_value2); 1045 } 1046 else 1047 { 1048 pv_t store_value 1049 = pv_constant (arc_insn_get_operand_value (insn, 0)); 1050 pv_area_store (stack, addr, ARC_REGISTER_SIZE * 2, store_value); 1051 } 1052 } 1053 1054 /* Is base register updated? */ 1055 if (insn.writeback_mode == ARC_WRITEBACK_A 1056 || insn.writeback_mode == ARC_WRITEBACK_AB) 1057 regs[base_reg] = pv_add_constant (regs[base_reg], 1058 arc_insn_get_memory_offset (insn)); 1059 1060 return true; 1061 } 1062 else if (insn.insn_class == MOVE) 1063 { 1064 gdb_assert (insn.operands_count == 2); 1065 1066 /* Destination argument can be "0", so nothing will happen. */ 1067 if (insn.operands[0].kind == ARC_OPERAND_KIND_REG) 1068 { 1069 int dst_regnum = insn.operands[0].value; 1070 regs[dst_regnum] = arc_pv_get_operand (regs, insn, 1); 1071 } 1072 return true; 1073 } 1074 else if (insn.insn_class == SUB) 1075 { 1076 gdb_assert (insn.operands_count == 3); 1077 1078 /* SUB 0,b,c. */ 1079 if (insn.operands[0].kind != ARC_OPERAND_KIND_REG) 1080 return true; 1081 1082 int dst_regnum = insn.operands[0].value; 1083 regs[dst_regnum] = pv_subtract (arc_pv_get_operand (regs, insn, 1), 1084 arc_pv_get_operand (regs, insn, 2)); 1085 return true; 1086 } 1087 else if (insn.insn_class == ENTER) 1088 { 1089 /* ENTER_S is a prologue-in-instruction - it saves all callee-saved 1090 registers according to given arguments thus greatly reducing code 1091 size. Which registers will be actually saved depends on arguments. 1092 1093 ENTER_S {R13-...,FP,BLINK} stores registers in following order: 1094 1095 new SP -> 1096 BLINK 1097 R13 1098 R14 1099 R15 1100 ... 1101 FP 1102 old SP -> 1103 1104 There are up to three arguments for this opcode, as presented by ARC 1105 disassembler: 1106 1) amount of general-purpose registers to be saved - this argument is 1107 always present even when it is 0; 1108 2) FP register number (27) if FP has to be stored, otherwise argument 1109 is not present; 1110 3) BLINK register number (31) if BLINK has to be stored, otherwise 1111 argument is not present. If both FP and BLINK are stored, then FP 1112 is present before BLINK in argument list. */ 1113 gdb_assert (insn.operands_count > 0); 1114 1115 int regs_saved = arc_insn_get_operand_value (insn, 0); 1116 1117 bool is_fp_saved; 1118 if (insn.operands_count > 1) 1119 is_fp_saved = (insn.operands[1].value == ARC_FP_REGNUM); 1120 else 1121 is_fp_saved = false; 1122 1123 bool is_blink_saved; 1124 if (insn.operands_count > 1) 1125 is_blink_saved = (insn.operands[insn.operands_count - 1].value 1126 == ARC_BLINK_REGNUM); 1127 else 1128 is_blink_saved = false; 1129 1130 /* Amount of bytes to be allocated to store specified registers. */ 1131 CORE_ADDR st_size = ((regs_saved + is_fp_saved + is_blink_saved) 1132 * ARC_REGISTER_SIZE); 1133 pv_t new_sp = pv_add_constant (regs[ARC_SP_REGNUM], -st_size); 1134 1135 /* Assume that if the last register (closest to new SP) can be written, 1136 then it is possible to write all of them. */ 1137 if (pv_area_store_would_trash (stack, new_sp)) 1138 return false; 1139 1140 /* Current store address. */ 1141 pv_t addr = regs[ARC_SP_REGNUM]; 1142 1143 if (is_fp_saved) 1144 { 1145 addr = pv_add_constant (addr, -ARC_REGISTER_SIZE); 1146 pv_area_store (stack, addr, ARC_REGISTER_SIZE, regs[ARC_FP_REGNUM]); 1147 } 1148 1149 /* Registers are stored in backward order: from GP (R26) to R13. */ 1150 for (int i = ARC_R13_REGNUM + regs_saved - 1; i >= ARC_R13_REGNUM; i--) 1151 { 1152 addr = pv_add_constant (addr, -ARC_REGISTER_SIZE); 1153 pv_area_store (stack, addr, ARC_REGISTER_SIZE, regs[i]); 1154 } 1155 1156 if (is_blink_saved) 1157 { 1158 addr = pv_add_constant (addr, -ARC_REGISTER_SIZE); 1159 pv_area_store (stack, addr, ARC_REGISTER_SIZE, 1160 regs[ARC_BLINK_REGNUM]); 1161 } 1162 1163 gdb_assert (pv_is_identical (addr, new_sp)); 1164 1165 regs[ARC_SP_REGNUM] = new_sp; 1166 1167 if (is_fp_saved) 1168 regs[ARC_FP_REGNUM] = regs[ARC_SP_REGNUM]; 1169 1170 return true; 1171 } 1172 1173 /* Some other architectures, like nds32 or arm, try to continue as far as 1174 possible when building a prologue cache (as opposed to when skipping 1175 prologue), so that cache will be as full as possible. However current 1176 code for ARC doesn't recognize some instructions that may modify SP, like 1177 ADD, AND, OR, etc, hence there is no way to guarantee that SP wasn't 1178 clobbered by the skipped instruction. Potential existence of extension 1179 instruction, which may do anything they want makes this even more complex, 1180 so it is just better to halt on a first unrecognized instruction. */ 1181 1182 return false; 1183 } 1184 1185 /* Copy of gdb_buffered_insn_length_fprintf from disasm.c. */ 1186 1187 static int ATTRIBUTE_PRINTF (2, 3) 1188 arc_fprintf_disasm (void *stream, const char *format, ...) 1189 { 1190 return 0; 1191 } 1192 1193 struct disassemble_info 1194 arc_disassemble_info (struct gdbarch *gdbarch) 1195 { 1196 struct disassemble_info di; 1197 init_disassemble_info (&di, &null_stream, arc_fprintf_disasm); 1198 di.arch = gdbarch_bfd_arch_info (gdbarch)->arch; 1199 di.mach = gdbarch_bfd_arch_info (gdbarch)->mach; 1200 di.endian = gdbarch_byte_order (gdbarch); 1201 di.read_memory_func = [](bfd_vma memaddr, gdb_byte *myaddr, 1202 unsigned int len, struct disassemble_info *info) 1203 { 1204 return target_read_code (memaddr, myaddr, len); 1205 }; 1206 return di; 1207 } 1208 1209 /* Analyze the prologue and update the corresponding frame cache for the frame 1210 unwinder for unwinding frames that doesn't have debug info. In such 1211 situation GDB attempts to parse instructions in the prologue to understand 1212 where each register is saved. 1213 1214 If CACHE is not NULL, then it will be filled with information about saved 1215 registers. 1216 1217 There are several variations of prologue which GDB may encouter. "Full" 1218 prologue looks like this: 1219 1220 sub sp,sp,<imm> ; Space for variadic arguments. 1221 push blink ; Store return address. 1222 push r13 ; Store callee saved registers (up to R26/GP). 1223 push r14 1224 push fp ; Store frame pointer. 1225 mov fp,sp ; Update frame pointer. 1226 sub sp,sp,<imm> ; Create space for local vars on the stack. 1227 1228 Depending on compiler options lots of things may change: 1229 1230 1) BLINK is not saved in leaf functions. 1231 2) Frame pointer is not saved and updated if -fomit-frame-pointer is used. 1232 3) 16-bit versions of those instructions may be used. 1233 4) Instead of a sequence of several push'es, compiler may instead prefer to 1234 do one subtract on stack pointer and then store registers using normal 1235 store, that doesn't update SP. Like this: 1236 1237 1238 sub sp,sp,8 ; Create space for calee-saved registers. 1239 st r13,[sp,4] ; Store callee saved registers (up to R26/GP). 1240 st r14,[sp,0] 1241 1242 5) ENTER_S instruction can encode most of prologue sequence in one 1243 instruction (except for those subtracts for variadic arguments and local 1244 variables). 1245 6) GCC may use "millicode" functions from libgcc to store callee-saved 1246 registers with minimal code-size requirements. This function currently 1247 doesn't support this. 1248 1249 ENTRYPOINT is a function entry point where prologue starts. 1250 1251 LIMIT_PC is a maximum possible end address of prologue (meaning address 1252 of first instruction after the prologue). It might also point to the middle 1253 of prologue if execution has been stopped by the breakpoint at this address 1254 - in this case debugger should analyze prologue only up to this address, 1255 because further instructions haven't been executed yet. 1256 1257 Returns address of the first instruction after the prologue. */ 1258 1259 static CORE_ADDR 1260 arc_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR entrypoint, 1261 const CORE_ADDR limit_pc, struct arc_frame_cache *cache) 1262 { 1263 if (arc_debug) 1264 debug_printf ("arc: analyze_prologue (entrypoint=%s, limit_pc=%s)\n", 1265 paddress (gdbarch, entrypoint), 1266 paddress (gdbarch, limit_pc)); 1267 1268 /* Prologue values. Only core registers can be stored. */ 1269 pv_t regs[ARC_LAST_CORE_REGNUM + 1]; 1270 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++) 1271 regs[i] = pv_register (i, 0); 1272 struct pv_area *stack = make_pv_area (ARC_SP_REGNUM, 1273 gdbarch_addr_bit (gdbarch)); 1274 struct cleanup *back_to = make_cleanup_free_pv_area (stack); 1275 1276 CORE_ADDR current_prologue_end = entrypoint; 1277 1278 /* Look at each instruction in the prologue. */ 1279 while (current_prologue_end < limit_pc) 1280 { 1281 struct arc_instruction insn; 1282 struct disassemble_info di = arc_disassemble_info (gdbarch); 1283 arc_insn_decode (current_prologue_end, &di, arc_delayed_print_insn, 1284 &insn); 1285 1286 if (arc_debug >= 2) 1287 arc_insn_dump (insn); 1288 1289 /* If this instruction is in the prologue, fields in the cache will be 1290 updated, and the saved registers mask may be updated. */ 1291 if (!arc_is_in_prologue (gdbarch, insn, regs, stack)) 1292 { 1293 /* Found an instruction that is not in the prologue. */ 1294 if (arc_debug) 1295 debug_printf ("arc: End of prologue reached at address %s\n", 1296 paddress (gdbarch, insn.address)); 1297 break; 1298 } 1299 1300 current_prologue_end = arc_insn_get_linear_next_pc (insn); 1301 } 1302 1303 if (cache != NULL) 1304 { 1305 /* Figure out if it is a frame pointer or just a stack pointer. */ 1306 if (pv_is_register (regs[ARC_FP_REGNUM], ARC_SP_REGNUM)) 1307 { 1308 cache->frame_base_reg = ARC_FP_REGNUM; 1309 cache->frame_base_offset = -regs[ARC_FP_REGNUM].k; 1310 } 1311 else 1312 { 1313 cache->frame_base_reg = ARC_SP_REGNUM; 1314 cache->frame_base_offset = -regs[ARC_SP_REGNUM].k; 1315 } 1316 1317 /* Assign offset from old SP to all saved registers. */ 1318 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++) 1319 { 1320 CORE_ADDR offset; 1321 if (pv_area_find_reg (stack, gdbarch, i, &offset)) 1322 cache->saved_regs[i].addr = offset; 1323 } 1324 } 1325 1326 do_cleanups (back_to); 1327 return current_prologue_end; 1328 } 1329 1330 /* Estimated maximum prologue length in bytes. This should include: 1331 1) Store instruction for each callee-saved register (R25 - R13 + 1) 1332 2) Two instructions for FP 1333 3) One for BLINK 1334 4) Three substract instructions for SP (for variadic args, for 1335 callee saved regs and for local vars) and assuming that those SUB use 1336 long-immediate (hence double length). 1337 5) Stores of arguments registers are considered part of prologue too 1338 (R7 - R1 + 1). 1339 This is quite an extreme case, because even with -O0 GCC will collapse first 1340 two SUBs into one and long immediate values are quite unlikely to appear in 1341 this case, but still better to overshoot a bit - prologue analysis will 1342 anyway stop at the first instruction that doesn't fit prologue, so this 1343 limit will be rarely reached. */ 1344 1345 const static int MAX_PROLOGUE_LENGTH 1346 = 4 * (ARC_R25_REGNUM - ARC_R13_REGNUM + 1 + 2 + 1 + 6 1347 + ARC_LAST_ARG_REGNUM - ARC_FIRST_ARG_REGNUM + 1); 1348 1349 /* Implement the "skip_prologue" gdbarch method. 1350 1351 Skip the prologue for the function at PC. This is done by checking from 1352 the line information read from the DWARF, if possible; otherwise, we scan 1353 the function prologue to find its end. */ 1354 1355 static CORE_ADDR 1356 arc_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) 1357 { 1358 if (arc_debug) 1359 debug_printf ("arc: skip_prologue\n"); 1360 1361 CORE_ADDR func_addr; 1362 const char *func_name; 1363 1364 /* See what the symbol table says. */ 1365 if (find_pc_partial_function (pc, &func_name, &func_addr, NULL)) 1366 { 1367 /* Found a function. */ 1368 CORE_ADDR postprologue_pc 1369 = skip_prologue_using_sal (gdbarch, func_addr); 1370 1371 if (postprologue_pc != 0) 1372 return std::max (pc, postprologue_pc); 1373 } 1374 1375 /* No prologue info in symbol table, have to analyze prologue. */ 1376 1377 /* Find an upper limit on the function prologue using the debug 1378 information. If there is no debug information about prologue end, then 1379 skip_prologue_using_sal will return 0. */ 1380 CORE_ADDR limit_pc = skip_prologue_using_sal (gdbarch, pc); 1381 1382 /* If there is no debug information at all, it is required to give some 1383 semi-arbitrary hard limit on amount of bytes to scan during prologue 1384 analysis. */ 1385 if (limit_pc == 0) 1386 limit_pc = pc + MAX_PROLOGUE_LENGTH; 1387 1388 /* Find the address of the first instruction after the prologue by scanning 1389 through it - no other information is needed, so pass NULL as a cache. */ 1390 return arc_analyze_prologue (gdbarch, pc, limit_pc, NULL); 1391 } 1392 1393 /* Implement the "print_insn" gdbarch method. 1394 1395 arc_get_disassembler () may return different functions depending on bfd 1396 type, so it is not possible to pass print_insn directly to 1397 set_gdbarch_print_insn (). Instead this wrapper function is used. It also 1398 may be used by other functions to get disassemble_info for address. It is 1399 important to note, that those print_insn from opcodes always print 1400 instruction to the stream specified in the INFO. If this is not desired, 1401 then either `print_insn` function in INFO should be set to some function 1402 that will not print, or `stream` should be different from standard 1403 gdb_stdlog. */ 1404 1405 int 1406 arc_delayed_print_insn (bfd_vma addr, struct disassemble_info *info) 1407 { 1408 int (*print_insn) (bfd_vma, struct disassemble_info *); 1409 /* exec_bfd may be null, if GDB is run without a target BFD file. Opcodes 1410 will handle NULL value gracefully. */ 1411 print_insn = arc_get_disassembler (exec_bfd); 1412 gdb_assert (print_insn != NULL); 1413 return print_insn (addr, info); 1414 } 1415 1416 /* Baremetal breakpoint instructions. 1417 1418 ARC supports both big- and little-endian. However, instructions for 1419 little-endian processors are encoded in the middle-endian: half-words are 1420 in big-endian, while bytes inside the half-words are in little-endian; data 1421 is represented in the "normal" little-endian. Big-endian processors treat 1422 data and code identically. 1423 1424 Assuming the number 0x01020304, it will be presented this way: 1425 1426 Address : N N+1 N+2 N+3 1427 little-endian : 0x04 0x03 0x02 0x01 1428 big-endian : 0x01 0x02 0x03 0x04 1429 ARC middle-endian : 0x02 0x01 0x04 0x03 1430 */ 1431 1432 static const gdb_byte arc_brk_s_be[] = { 0x7f, 0xff }; 1433 static const gdb_byte arc_brk_s_le[] = { 0xff, 0x7f }; 1434 static const gdb_byte arc_brk_be[] = { 0x25, 0x6f, 0x00, 0x3f }; 1435 static const gdb_byte arc_brk_le[] = { 0x6f, 0x25, 0x3f, 0x00 }; 1436 1437 /* For ARC ELF, breakpoint uses the 16-bit BRK_S instruction, which is 0x7fff 1438 (little endian) or 0xff7f (big endian). We used to insert BRK_S even 1439 instead of 32-bit instructions, which works mostly ok, unless breakpoint is 1440 inserted into delay slot instruction. In this case if branch is taken 1441 BLINK value will be set to address of instruction after delay slot, however 1442 if we replaced 32-bit instruction in delay slot with 16-bit long BRK_S, 1443 then BLINK value will have an invalid value - it will point to the address 1444 after the BRK_S (which was there at the moment of branch execution) while 1445 it should point to the address after the 32-bit long instruction. To avoid 1446 such issues this function disassembles instruction at target location and 1447 evaluates it value. 1448 1449 ARC 600 supports only 16-bit BRK_S. 1450 1451 NB: Baremetal GDB uses BRK[_S], while user-space GDB uses TRAP_S. BRK[_S] 1452 is much better because it doesn't commit unlike TRAP_S, so it can be set in 1453 delay slots; however it cannot be used in user-mode, hence usage of TRAP_S 1454 in GDB for user-space. */ 1455 1456 /* Implement the "breakpoint_kind_from_pc" gdbarch method. */ 1457 1458 static int 1459 arc_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) 1460 { 1461 size_t length_with_limm = gdb_insn_length (gdbarch, *pcptr); 1462 1463 /* Replace 16-bit instruction with BRK_S, replace 32-bit instructions with 1464 BRK. LIMM is part of instruction length, so it can be either 4 or 8 1465 bytes for 32-bit instructions. */ 1466 if ((length_with_limm == 4 || length_with_limm == 8) 1467 && !arc_mach_is_arc600 (gdbarch)) 1468 return sizeof (arc_brk_le); 1469 else 1470 return sizeof (arc_brk_s_le); 1471 } 1472 1473 /* Implement the "sw_breakpoint_from_kind" gdbarch method. */ 1474 1475 static const gdb_byte * 1476 arc_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) 1477 { 1478 *size = kind; 1479 1480 if (kind == sizeof (arc_brk_le)) 1481 { 1482 return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 1483 ? arc_brk_be 1484 : arc_brk_le); 1485 } 1486 else 1487 { 1488 return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) 1489 ? arc_brk_s_be 1490 : arc_brk_s_le); 1491 } 1492 } 1493 1494 /* Implement the "unwind_pc" gdbarch method. */ 1495 1496 static CORE_ADDR 1497 arc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) 1498 { 1499 int pc_regnum = gdbarch_pc_regnum (gdbarch); 1500 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, pc_regnum); 1501 1502 if (arc_debug) 1503 debug_printf ("arc: unwind PC: %s\n", paddress (gdbarch, pc)); 1504 1505 return pc; 1506 } 1507 1508 /* Implement the "unwind_sp" gdbarch method. */ 1509 1510 static CORE_ADDR 1511 arc_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) 1512 { 1513 int sp_regnum = gdbarch_sp_regnum (gdbarch); 1514 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, sp_regnum); 1515 1516 if (arc_debug) 1517 debug_printf ("arc: unwind SP: %s\n", paddress (gdbarch, sp)); 1518 1519 return sp; 1520 } 1521 1522 /* Implement the "frame_align" gdbarch method. */ 1523 1524 static CORE_ADDR 1525 arc_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) 1526 { 1527 return align_down (sp, 4); 1528 } 1529 1530 /* Dump the frame info. Used for internal debugging only. */ 1531 1532 static void 1533 arc_print_frame_cache (struct gdbarch *gdbarch, const char *message, 1534 struct arc_frame_cache *cache, int addresses_known) 1535 { 1536 debug_printf ("arc: frame_info %s\n", message); 1537 debug_printf ("arc: prev_sp = %s\n", paddress (gdbarch, cache->prev_sp)); 1538 debug_printf ("arc: frame_base_reg = %i\n", cache->frame_base_reg); 1539 debug_printf ("arc: frame_base_offset = %s\n", 1540 plongest (cache->frame_base_offset)); 1541 1542 for (int i = 0; i <= ARC_BLINK_REGNUM; i++) 1543 { 1544 if (trad_frame_addr_p (cache->saved_regs, i)) 1545 debug_printf ("arc: saved register %s at %s %s\n", 1546 gdbarch_register_name (gdbarch, i), 1547 (addresses_known) ? "address" : "offset", 1548 paddress (gdbarch, cache->saved_regs[i].addr)); 1549 } 1550 } 1551 1552 /* Frame unwinder for normal frames. */ 1553 1554 static struct arc_frame_cache * 1555 arc_make_frame_cache (struct frame_info *this_frame) 1556 { 1557 if (arc_debug) 1558 debug_printf ("arc: frame_cache\n"); 1559 1560 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1561 1562 CORE_ADDR block_addr = get_frame_address_in_block (this_frame); 1563 CORE_ADDR entrypoint, prologue_end; 1564 if (find_pc_partial_function (block_addr, NULL, &entrypoint, &prologue_end)) 1565 { 1566 struct symtab_and_line sal = find_pc_line (entrypoint, 0); 1567 CORE_ADDR prev_pc = get_frame_pc (this_frame); 1568 if (sal.line == 0) 1569 /* No line info so use current PC. */ 1570 prologue_end = prev_pc; 1571 else if (sal.end < prologue_end) 1572 /* The next line begins after the function end. */ 1573 prologue_end = sal.end; 1574 1575 prologue_end = std::min (prologue_end, prev_pc); 1576 } 1577 else 1578 { 1579 /* If find_pc_partial_function returned nothing then there is no symbol 1580 information at all for this PC. Currently it is assumed in this case 1581 that current PC is entrypoint to function and try to construct the 1582 frame from that. This is, probably, suboptimal, for example ARM 1583 assumes in this case that program is inside the normal frame (with 1584 frame pointer). ARC, perhaps, should try to do the same. */ 1585 entrypoint = get_frame_register_unsigned (this_frame, 1586 gdbarch_pc_regnum (gdbarch)); 1587 prologue_end = entrypoint + MAX_PROLOGUE_LENGTH; 1588 } 1589 1590 /* Allocate new frame cache instance and space for saved register info. 1591 FRAME_OBSTACK_ZALLOC will initialize fields to zeroes. */ 1592 struct arc_frame_cache *cache 1593 = FRAME_OBSTACK_ZALLOC (struct arc_frame_cache); 1594 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); 1595 1596 arc_analyze_prologue (gdbarch, entrypoint, prologue_end, cache); 1597 1598 if (arc_debug) 1599 arc_print_frame_cache (gdbarch, "after prologue", cache, false); 1600 1601 CORE_ADDR unwound_fb = get_frame_register_unsigned (this_frame, 1602 cache->frame_base_reg); 1603 if (unwound_fb == 0) 1604 return cache; 1605 cache->prev_sp = unwound_fb + cache->frame_base_offset; 1606 1607 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++) 1608 { 1609 if (trad_frame_addr_p (cache->saved_regs, i)) 1610 cache->saved_regs[i].addr += cache->prev_sp; 1611 } 1612 1613 if (arc_debug) 1614 arc_print_frame_cache (gdbarch, "after previous SP found", cache, true); 1615 1616 return cache; 1617 } 1618 1619 /* Implement the "this_id" frame_unwind method. */ 1620 1621 static void 1622 arc_frame_this_id (struct frame_info *this_frame, void **this_cache, 1623 struct frame_id *this_id) 1624 { 1625 if (arc_debug) 1626 debug_printf ("arc: frame_this_id\n"); 1627 1628 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1629 1630 if (*this_cache == NULL) 1631 *this_cache = arc_make_frame_cache (this_frame); 1632 struct arc_frame_cache *cache = (struct arc_frame_cache *) (*this_cache); 1633 1634 CORE_ADDR stack_addr = cache->prev_sp; 1635 1636 /* There are 4 possible situation which decide how frame_id->code_addr is 1637 evaluated: 1638 1639 1) Function is compiled with option -g. Then frame_id will be created 1640 in dwarf_* function and not in this function. NB: even if target 1641 binary is compiled with -g, some std functions like __start and _init 1642 are not, so they still will follow one of the following choices. 1643 1644 2) Function is compiled without -g and binary hasn't been stripped in 1645 any way. In this case GDB still has enough information to evaluate 1646 frame code_addr properly. This case is covered by call to 1647 get_frame_func (). 1648 1649 3) Binary has been striped with option -g (strip debug symbols). In 1650 this case there is still enough symbols for get_frame_func () to work 1651 properly, so this case is also covered by it. 1652 1653 4) Binary has been striped with option -s (strip all symbols). In this 1654 case GDB cannot get function start address properly, so we return current 1655 PC value instead. 1656 */ 1657 CORE_ADDR code_addr = get_frame_func (this_frame); 1658 if (code_addr == 0) 1659 code_addr = get_frame_register_unsigned (this_frame, 1660 gdbarch_pc_regnum (gdbarch)); 1661 1662 *this_id = frame_id_build (stack_addr, code_addr); 1663 } 1664 1665 /* Implement the "prev_register" frame_unwind method. */ 1666 1667 static struct value * 1668 arc_frame_prev_register (struct frame_info *this_frame, 1669 void **this_cache, int regnum) 1670 { 1671 if (*this_cache == NULL) 1672 *this_cache = arc_make_frame_cache (this_frame); 1673 struct arc_frame_cache *cache = (struct arc_frame_cache *) (*this_cache); 1674 1675 struct gdbarch *gdbarch = get_frame_arch (this_frame); 1676 1677 /* If we are asked to unwind the PC, then we need to return BLINK instead: 1678 the saved value of PC points into this frame's function's prologue, not 1679 the next frame's function's resume location. */ 1680 if (regnum == gdbarch_pc_regnum (gdbarch)) 1681 regnum = ARC_BLINK_REGNUM; 1682 1683 /* SP is a special case - we should return prev_sp, because 1684 trad_frame_get_prev_register will return _current_ SP value. 1685 Alternatively we could have stored cache->prev_sp in the cache->saved 1686 regs, but here we follow the lead of AArch64, ARM and Xtensa and will 1687 leave that logic in this function, instead of prologue analyzers. That I 1688 think is a bit more clear as `saved_regs` should contain saved regs, not 1689 computable. 1690 1691 Because value has been computed, "got_constant" should be used, so that 1692 returned value will be a "not_lval" - immutable. */ 1693 1694 if (regnum == gdbarch_sp_regnum (gdbarch)) 1695 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp); 1696 1697 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum); 1698 } 1699 1700 /* Implement the "init_reg" dwarf2_frame method. */ 1701 1702 static void 1703 arc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, 1704 struct dwarf2_frame_state_reg *reg, 1705 struct frame_info *info) 1706 { 1707 if (regnum == gdbarch_pc_regnum (gdbarch)) 1708 /* The return address column. */ 1709 reg->how = DWARF2_FRAME_REG_RA; 1710 else if (regnum == gdbarch_sp_regnum (gdbarch)) 1711 /* The call frame address. */ 1712 reg->how = DWARF2_FRAME_REG_CFA; 1713 } 1714 1715 /* Structure defining the ARC ordinary frame unwind functions. Since we are 1716 the fallback unwinder, we use the default frame sniffer, which always 1717 accepts the frame. */ 1718 1719 static const struct frame_unwind arc_frame_unwind = { 1720 NORMAL_FRAME, 1721 default_frame_unwind_stop_reason, 1722 arc_frame_this_id, 1723 arc_frame_prev_register, 1724 NULL, 1725 default_frame_sniffer, 1726 NULL, 1727 NULL 1728 }; 1729 1730 1731 static const struct frame_base arc_normal_base = { 1732 &arc_frame_unwind, 1733 arc_frame_base_address, 1734 arc_frame_base_address, 1735 arc_frame_base_address 1736 }; 1737 1738 /* Initialize target description for the ARC. 1739 1740 Returns TRUE if input tdesc was valid and in this case it will assign TDESC 1741 and TDESC_DATA output parameters. */ 1742 1743 static int 1744 arc_tdesc_init (struct gdbarch_info info, const struct target_desc **tdesc, 1745 struct tdesc_arch_data **tdesc_data) 1746 { 1747 if (arc_debug) 1748 debug_printf ("arc: Target description initialization.\n"); 1749 1750 const struct target_desc *tdesc_loc = info.target_desc; 1751 1752 /* Depending on whether this is ARCompact or ARCv2 we will assign 1753 different default registers sets (which will differ in exactly two core 1754 registers). GDB will also refuse to accept register feature from invalid 1755 ISA - v2 features can be used only with v2 ARChitecture. We read 1756 bfd_arch_info, which looks like to be a safe bet here, as it looks like it 1757 is always initialized even when we don't pass any elf file to GDB at all 1758 (it uses default arch in this case). Also GDB will call this function 1759 multiple times, and if XML target description file contains architecture 1760 specifications, then GDB will set this architecture to info.bfd_arch_info, 1761 overriding value from ELF file if they are different. That means that, 1762 where matters, this value is always our best guess on what CPU we are 1763 debugging. It has been noted that architecture specified in tdesc file 1764 has higher precedence over ELF and even "set architecture" - that is, 1765 using "set architecture" command will have no effect when tdesc has "arch" 1766 tag. */ 1767 /* Cannot use arc_mach_is_arcv2 (), because gdbarch is not created yet. */ 1768 const int is_arcv2 = (info.bfd_arch_info->mach == bfd_mach_arc_arcv2); 1769 int is_reduced_rf; 1770 const char *const *core_regs; 1771 const char *core_feature_name; 1772 1773 /* If target doesn't provide a description - use default one. */ 1774 if (!tdesc_has_registers (tdesc_loc)) 1775 { 1776 if (is_arcv2) 1777 { 1778 tdesc_loc = tdesc_arc_v2; 1779 if (arc_debug) 1780 debug_printf ("arc: Using default register set for ARC v2.\n"); 1781 } 1782 else 1783 { 1784 tdesc_loc = tdesc_arc_arcompact; 1785 if (arc_debug) 1786 debug_printf ("arc: Using default register set for ARCompact.\n"); 1787 } 1788 } 1789 else 1790 { 1791 if (arc_debug) 1792 debug_printf ("arc: Using provided register set.\n"); 1793 } 1794 gdb_assert (tdesc_loc != NULL); 1795 1796 /* Now we can search for base registers. Core registers can be either full 1797 or reduced. Summary: 1798 1799 - core.v2 + aux-minimal 1800 - core-reduced.v2 + aux-minimal 1801 - core.arcompact + aux-minimal 1802 1803 NB: It is entirely feasible to have ARCompact with reduced core regs, but 1804 we ignore that because GCC doesn't support that and at the same time 1805 ARCompact is considered obsolete, so there is not much reason to support 1806 that. */ 1807 const struct tdesc_feature *feature 1808 = tdesc_find_feature (tdesc_loc, core_v2_feature_name); 1809 if (feature != NULL) 1810 { 1811 /* Confirm that register and architecture match, to prevent accidents in 1812 some situations. This code will trigger an error if: 1813 1814 1. XML tdesc doesn't specify arch explicitly, registers are for arch 1815 X, but ELF specifies arch Y. 1816 1817 2. XML tdesc specifies arch X, but contains registers for arch Y. 1818 1819 It will not protect from case where XML or ELF specify arch X, 1820 registers are for the same arch X, but the real target is arch Y. To 1821 detect this case we need to check IDENTITY register. */ 1822 if (!is_arcv2) 1823 { 1824 arc_print (_("Error: ARC v2 target description supplied for " 1825 "non-ARCv2 target.\n")); 1826 return FALSE; 1827 } 1828 1829 is_reduced_rf = FALSE; 1830 core_feature_name = core_v2_feature_name; 1831 core_regs = core_v2_register_names; 1832 } 1833 else 1834 { 1835 feature = tdesc_find_feature (tdesc_loc, core_reduced_v2_feature_name); 1836 if (feature != NULL) 1837 { 1838 if (!is_arcv2) 1839 { 1840 arc_print (_("Error: ARC v2 target description supplied for " 1841 "non-ARCv2 target.\n")); 1842 return FALSE; 1843 } 1844 1845 is_reduced_rf = TRUE; 1846 core_feature_name = core_reduced_v2_feature_name; 1847 core_regs = core_v2_register_names; 1848 } 1849 else 1850 { 1851 feature = tdesc_find_feature (tdesc_loc, 1852 core_arcompact_feature_name); 1853 if (feature != NULL) 1854 { 1855 if (is_arcv2) 1856 { 1857 arc_print (_("Error: ARCompact target description supplied " 1858 "for non-ARCompact target.\n")); 1859 return FALSE; 1860 } 1861 1862 is_reduced_rf = FALSE; 1863 core_feature_name = core_arcompact_feature_name; 1864 core_regs = core_arcompact_register_names; 1865 } 1866 else 1867 { 1868 arc_print (_("Error: Couldn't find core register feature in " 1869 "supplied target description.")); 1870 return FALSE; 1871 } 1872 } 1873 } 1874 1875 struct tdesc_arch_data *tdesc_data_loc = tdesc_data_alloc (); 1876 1877 gdb_assert (feature != NULL); 1878 int valid_p = 1; 1879 1880 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++) 1881 { 1882 /* If rf16, then skip extra registers. */ 1883 if (is_reduced_rf && ((i >= ARC_R4_REGNUM && i <= ARC_R9_REGNUM) 1884 || (i >= ARC_R16_REGNUM && i <= ARC_R25_REGNUM))) 1885 continue; 1886 1887 valid_p = tdesc_numbered_register (feature, tdesc_data_loc, i, 1888 core_regs[i]); 1889 1890 /* - Ignore errors in extension registers - they are optional. 1891 - Ignore missing ILINK because it doesn't make sense for Linux. 1892 - Ignore missing ILINK2 when architecture is ARCompact, because it 1893 doesn't make sense for Linux targets. 1894 1895 In theory those optional registers should be in separate features, but 1896 that would create numerous but tiny features, which looks like an 1897 overengineering of a rather simple task. */ 1898 if (!valid_p && (i <= ARC_SP_REGNUM || i == ARC_BLINK_REGNUM 1899 || i == ARC_LP_COUNT_REGNUM || i == ARC_PCL_REGNUM 1900 || (i == ARC_R30_REGNUM && is_arcv2))) 1901 { 1902 arc_print (_("Error: Cannot find required register `%s' in " 1903 "feature `%s'.\n"), core_regs[i], core_feature_name); 1904 tdesc_data_cleanup (tdesc_data_loc); 1905 return FALSE; 1906 } 1907 } 1908 1909 /* Mandatory AUX registeres are intentionally few and are common between 1910 ARCompact and ARC v2, so same code can be used for both. */ 1911 feature = tdesc_find_feature (tdesc_loc, aux_minimal_feature_name); 1912 if (feature == NULL) 1913 { 1914 arc_print (_("Error: Cannot find required feature `%s' in supplied " 1915 "target description.\n"), aux_minimal_feature_name); 1916 tdesc_data_cleanup (tdesc_data_loc); 1917 return FALSE; 1918 } 1919 1920 for (int i = ARC_FIRST_AUX_REGNUM; i <= ARC_LAST_AUX_REGNUM; i++) 1921 { 1922 const char *name = aux_minimal_register_names[i - ARC_FIRST_AUX_REGNUM]; 1923 valid_p = tdesc_numbered_register (feature, tdesc_data_loc, i, name); 1924 if (!valid_p) 1925 { 1926 arc_print (_("Error: Cannot find required register `%s' " 1927 "in feature `%s'.\n"), 1928 name, tdesc_feature_name (feature)); 1929 tdesc_data_cleanup (tdesc_data_loc); 1930 return FALSE; 1931 } 1932 } 1933 1934 *tdesc = tdesc_loc; 1935 *tdesc_data = tdesc_data_loc; 1936 1937 return TRUE; 1938 } 1939 1940 /* Implement the "init" gdbarch method. */ 1941 1942 static struct gdbarch * 1943 arc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 1944 { 1945 const struct target_desc *tdesc; 1946 struct tdesc_arch_data *tdesc_data; 1947 1948 if (arc_debug) 1949 debug_printf ("arc: Architecture initialization.\n"); 1950 1951 if (!arc_tdesc_init (info, &tdesc, &tdesc_data)) 1952 return NULL; 1953 1954 /* Allocate the ARC-private target-dependent information structure, and the 1955 GDB target-independent information structure. */ 1956 struct gdbarch_tdep *tdep = XCNEW (struct gdbarch_tdep); 1957 tdep->jb_pc = -1; /* No longjmp support by default. */ 1958 struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep); 1959 1960 /* Data types. */ 1961 set_gdbarch_short_bit (gdbarch, 16); 1962 set_gdbarch_int_bit (gdbarch, 32); 1963 set_gdbarch_long_bit (gdbarch, 32); 1964 set_gdbarch_long_long_bit (gdbarch, 64); 1965 set_gdbarch_long_long_align_bit (gdbarch, 32); 1966 set_gdbarch_float_bit (gdbarch, 32); 1967 set_gdbarch_float_format (gdbarch, floatformats_ieee_single); 1968 set_gdbarch_double_bit (gdbarch, 64); 1969 set_gdbarch_double_format (gdbarch, floatformats_ieee_double); 1970 set_gdbarch_ptr_bit (gdbarch, 32); 1971 set_gdbarch_addr_bit (gdbarch, 32); 1972 set_gdbarch_char_signed (gdbarch, 0); 1973 1974 set_gdbarch_write_pc (gdbarch, arc_write_pc); 1975 1976 set_gdbarch_virtual_frame_pointer (gdbarch, arc_virtual_frame_pointer); 1977 1978 /* tdesc_use_registers expects gdbarch_num_regs to return number of registers 1979 parsed by gdbarch_init, and then it will add all of the remaining 1980 registers and will increase number of registers. */ 1981 set_gdbarch_num_regs (gdbarch, ARC_LAST_REGNUM + 1); 1982 set_gdbarch_num_pseudo_regs (gdbarch, 0); 1983 set_gdbarch_sp_regnum (gdbarch, ARC_SP_REGNUM); 1984 set_gdbarch_pc_regnum (gdbarch, ARC_PC_REGNUM); 1985 set_gdbarch_ps_regnum (gdbarch, ARC_STATUS32_REGNUM); 1986 set_gdbarch_fp0_regnum (gdbarch, -1); /* No FPU registers. */ 1987 1988 set_gdbarch_dummy_id (gdbarch, arc_dummy_id); 1989 set_gdbarch_push_dummy_call (gdbarch, arc_push_dummy_call); 1990 set_gdbarch_push_dummy_code (gdbarch, arc_push_dummy_code); 1991 1992 set_gdbarch_cannot_fetch_register (gdbarch, arc_cannot_fetch_register); 1993 set_gdbarch_cannot_store_register (gdbarch, arc_cannot_store_register); 1994 1995 set_gdbarch_believe_pcc_promotion (gdbarch, 1); 1996 1997 set_gdbarch_return_value (gdbarch, arc_return_value); 1998 1999 set_gdbarch_skip_prologue (gdbarch, arc_skip_prologue); 2000 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 2001 2002 set_gdbarch_breakpoint_kind_from_pc (gdbarch, arc_breakpoint_kind_from_pc); 2003 set_gdbarch_sw_breakpoint_from_kind (gdbarch, arc_sw_breakpoint_from_kind); 2004 2005 /* On ARC 600 BRK_S instruction advances PC, unlike other ARC cores. */ 2006 if (!arc_mach_is_arc600 (gdbarch)) 2007 set_gdbarch_decr_pc_after_break (gdbarch, 0); 2008 else 2009 set_gdbarch_decr_pc_after_break (gdbarch, 2); 2010 2011 set_gdbarch_unwind_pc (gdbarch, arc_unwind_pc); 2012 set_gdbarch_unwind_sp (gdbarch, arc_unwind_sp); 2013 2014 set_gdbarch_frame_align (gdbarch, arc_frame_align); 2015 2016 set_gdbarch_print_insn (gdbarch, arc_delayed_print_insn); 2017 2018 set_gdbarch_cannot_step_breakpoint (gdbarch, 1); 2019 2020 /* "nonsteppable" watchpoint means that watchpoint triggers before 2021 instruction is committed, therefore it is required to remove watchpoint 2022 to step though instruction that triggers it. ARC watchpoints trigger 2023 only after instruction is committed, thus there is no need to remove 2024 them. In fact on ARC watchpoint for memory writes may trigger with more 2025 significant delay, like one or two instructions, depending on type of 2026 memory where write is performed (CCM or external) and next instruction 2027 after the memory write. */ 2028 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 0); 2029 2030 /* This doesn't include possible long-immediate value. */ 2031 set_gdbarch_max_insn_length (gdbarch, 4); 2032 2033 /* Frame unwinders and sniffers. */ 2034 dwarf2_frame_set_init_reg (gdbarch, arc_dwarf2_frame_init_reg); 2035 dwarf2_append_unwinders (gdbarch); 2036 frame_unwind_append_unwinder (gdbarch, &arc_frame_unwind); 2037 frame_base_set_default (gdbarch, &arc_normal_base); 2038 2039 /* Setup stuff specific to a particular environment (baremetal or Linux). 2040 It can override functions set earlier. */ 2041 gdbarch_init_osabi (info, gdbarch); 2042 2043 if (tdep->jb_pc >= 0) 2044 set_gdbarch_get_longjmp_target (gdbarch, arc_get_longjmp_target); 2045 2046 tdesc_use_registers (gdbarch, tdesc, tdesc_data); 2047 2048 return gdbarch; 2049 } 2050 2051 /* Implement the "dump_tdep" gdbarch method. */ 2052 2053 static void 2054 arc_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) 2055 { 2056 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 2057 2058 fprintf_unfiltered (file, "arc_dump_tdep: jb_pc = %i\n", tdep->jb_pc); 2059 } 2060 2061 /* Wrapper for "maintenance print arc" list of commands. */ 2062 2063 static void 2064 maintenance_print_arc_command (char *args, int from_tty) 2065 { 2066 cmd_show_list (maintenance_print_arc_list, from_tty, ""); 2067 } 2068 2069 /* This command accepts single argument - address of instruction to 2070 disassemble. */ 2071 2072 static void 2073 dump_arc_instruction_command (char *args, int from_tty) 2074 { 2075 struct value *val; 2076 if (args != NULL && strlen (args) > 0) 2077 val = evaluate_expression (parse_expression (args).get ()); 2078 else 2079 val = access_value_history (0); 2080 record_latest_value (val); 2081 2082 CORE_ADDR address = value_as_address (val); 2083 struct arc_instruction insn; 2084 struct disassemble_info di = arc_disassemble_info (target_gdbarch ()); 2085 arc_insn_decode (address, &di, arc_delayed_print_insn, &insn); 2086 arc_insn_dump (insn); 2087 } 2088 2089 /* Suppress warning from -Wmissing-prototypes. */ 2090 extern initialize_file_ftype _initialize_arc_tdep; 2091 2092 void 2093 _initialize_arc_tdep (void) 2094 { 2095 gdbarch_register (bfd_arch_arc, arc_gdbarch_init, arc_dump_tdep); 2096 2097 initialize_tdesc_arc_v2 (); 2098 initialize_tdesc_arc_arcompact (); 2099 2100 /* Register ARC-specific commands with gdb. */ 2101 2102 /* Add root prefix command for "maintenance print arc" commands. */ 2103 add_prefix_cmd ("arc", class_maintenance, maintenance_print_arc_command, 2104 _("ARC-specific maintenance commands for printing GDB " 2105 "internal state."), 2106 &maintenance_print_arc_list, "maintenance print arc ", 0, 2107 &maintenanceprintlist); 2108 2109 add_cmd ("arc-instruction", class_maintenance, 2110 dump_arc_instruction_command, 2111 _("Dump arc_instruction structure for specified address."), 2112 &maintenance_print_arc_list); 2113 2114 /* Debug internals for ARC GDB. */ 2115 add_setshow_zinteger_cmd ("arc", class_maintenance, 2116 &arc_debug, 2117 _("Set ARC specific debugging."), 2118 _("Show ARC specific debugging."), 2119 _("Non-zero enables ARC specific debugging."), 2120 NULL, NULL, &setdebuglist, &showdebuglist); 2121 } 2122