xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/ada-lang.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /* Ada language support routines for GDB, the GNU debugger.
2 
3    Copyright (C) 1992-2016 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57 
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 
64 /* Define whether or not the C operator '/' truncates towards zero for
65    differently signed operands (truncation direction is undefined in C).
66    Copied from valarith.c.  */
67 
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71 
72 static struct type *desc_base_type (struct type *);
73 
74 static struct type *desc_bounds_type (struct type *);
75 
76 static struct value *desc_bounds (struct value *);
77 
78 static int fat_pntr_bounds_bitpos (struct type *);
79 
80 static int fat_pntr_bounds_bitsize (struct type *);
81 
82 static struct type *desc_data_target_type (struct type *);
83 
84 static struct value *desc_data (struct value *);
85 
86 static int fat_pntr_data_bitpos (struct type *);
87 
88 static int fat_pntr_data_bitsize (struct type *);
89 
90 static struct value *desc_one_bound (struct value *, int, int);
91 
92 static int desc_bound_bitpos (struct type *, int, int);
93 
94 static int desc_bound_bitsize (struct type *, int, int);
95 
96 static struct type *desc_index_type (struct type *, int);
97 
98 static int desc_arity (struct type *);
99 
100 static int ada_type_match (struct type *, struct type *, int);
101 
102 static int ada_args_match (struct symbol *, struct value **, int);
103 
104 static int full_match (const char *, const char *);
105 
106 static struct value *make_array_descriptor (struct type *, struct value *);
107 
108 static void ada_add_block_symbols (struct obstack *,
109                                    const struct block *, const char *,
110                                    domain_enum, struct objfile *, int);
111 
112 static void ada_add_all_symbols (struct obstack *, const struct block *,
113 				 const char *, domain_enum, int, int *);
114 
115 static int is_nonfunction (struct block_symbol *, int);
116 
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118                              const struct block *);
119 
120 static int num_defns_collected (struct obstack *);
121 
122 static struct block_symbol *defns_collected (struct obstack *, int);
123 
124 static struct value *resolve_subexp (struct expression **, int *, int,
125                                      struct type *);
126 
127 static void replace_operator_with_call (struct expression **, int, int, int,
128                                         struct symbol *, const struct block *);
129 
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131 
132 static char *ada_op_name (enum exp_opcode);
133 
134 static const char *ada_decoded_op_name (enum exp_opcode);
135 
136 static int numeric_type_p (struct type *);
137 
138 static int integer_type_p (struct type *);
139 
140 static int scalar_type_p (struct type *);
141 
142 static int discrete_type_p (struct type *);
143 
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 							    const char **,
146 							    int *,
147 							    const char **);
148 
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 						      const struct block *);
151 
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153                                                 int, int, int *);
154 
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156 
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158                                                       const char *);
159 
160 static int is_dynamic_field (struct type *, int);
161 
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 						  const gdb_byte *,
164                                                   CORE_ADDR, struct value *);
165 
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167 
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169 
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172 
173 static struct value *unwrap_value (struct value *);
174 
175 static struct type *constrained_packed_array_type (struct type *, long *);
176 
177 static struct type *decode_constrained_packed_array_type (struct type *);
178 
179 static long decode_packed_array_bitsize (struct type *);
180 
181 static struct value *decode_constrained_packed_array (struct value *);
182 
183 static int ada_is_packed_array_type  (struct type *);
184 
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186 
187 static struct value *value_subscript_packed (struct value *, int,
188                                              struct value **);
189 
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191 
192 static struct value *coerce_unspec_val_to_type (struct value *,
193                                                 struct type *);
194 
195 static struct value *get_var_value (char *, char *);
196 
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198 
199 static int equiv_types (struct type *, struct type *);
200 
201 static int is_name_suffix (const char *);
202 
203 static int advance_wild_match (const char **, const char *, int);
204 
205 static int wild_match (const char *, const char *);
206 
207 static struct value *ada_coerce_ref (struct value *);
208 
209 static LONGEST pos_atr (struct value *);
210 
211 static struct value *value_pos_atr (struct type *, struct value *);
212 
213 static struct value *value_val_atr (struct type *, struct value *);
214 
215 static struct symbol *standard_lookup (const char *, const struct block *,
216                                        domain_enum);
217 
218 static struct value *ada_search_struct_field (const char *, struct value *, int,
219                                               struct type *);
220 
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222                                                 struct type *);
223 
224 static int find_struct_field (const char *, struct type *, int,
225                               struct type **, int *, int *, int *, int *);
226 
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228                                                 struct value *);
229 
230 static int ada_resolve_function (struct block_symbol *, int,
231                                  struct value **, int, const char *,
232                                  struct type *);
233 
234 static int ada_is_direct_array_type (struct type *);
235 
236 static void ada_language_arch_info (struct gdbarch *,
237 				    struct language_arch_info *);
238 
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 					     struct type *);
241 
242 static struct value *assign_aggregate (struct value *, struct value *,
243 				       struct expression *,
244 				       int *, enum noside);
245 
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 					   struct expression *,
248 					   int *, LONGEST *, int *,
249 					   int, LONGEST, LONGEST);
250 
251 static void aggregate_assign_positional (struct value *, struct value *,
252 					 struct expression *,
253 					 int *, LONGEST *, int *, int,
254 					 LONGEST, LONGEST);
255 
256 
257 static void aggregate_assign_others (struct value *, struct value *,
258 				     struct expression *,
259 				     int *, LONGEST *, int, LONGEST, LONGEST);
260 
261 
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263 
264 
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 					  int *, enum noside);
267 
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 					 int *);
270 
271 static struct type *ada_find_any_type (const char *name);
272 
273 
274 /* The result of a symbol lookup to be stored in our symbol cache.  */
275 
276 struct cache_entry
277 {
278   /* The name used to perform the lookup.  */
279   const char *name;
280   /* The namespace used during the lookup.  */
281   domain_enum domain;
282   /* The symbol returned by the lookup, or NULL if no matching symbol
283      was found.  */
284   struct symbol *sym;
285   /* The block where the symbol was found, or NULL if no matching
286      symbol was found.  */
287   const struct block *block;
288   /* A pointer to the next entry with the same hash.  */
289   struct cache_entry *next;
290 };
291 
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293    lookups in the course of executing the user's commands.
294 
295    The cache is implemented using a simple, fixed-sized hash.
296    The size is fixed on the grounds that there are not likely to be
297    all that many symbols looked up during any given session, regardless
298    of the size of the symbol table.  If we decide to go to a resizable
299    table, let's just use the stuff from libiberty instead.  */
300 
301 #define HASH_SIZE 1009
302 
303 struct ada_symbol_cache
304 {
305   /* An obstack used to store the entries in our cache.  */
306   struct obstack cache_space;
307 
308   /* The root of the hash table used to implement our symbol cache.  */
309   struct cache_entry *root[HASH_SIZE];
310 };
311 
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313 
314 /* Maximum-sized dynamic type.  */
315 static unsigned int varsize_limit;
316 
317 /* FIXME: brobecker/2003-09-17: No longer a const because it is
318    returned by a function that does not return a const char *.  */
319 static char *ada_completer_word_break_characters =
320 #ifdef VMS
321   " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323   " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325 
326 /* The name of the symbol to use to get the name of the main subprogram.  */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328   = "__gnat_ada_main_program_name";
329 
330 /* Limit on the number of warnings to raise per expression evaluation.  */
331 static int warning_limit = 2;
332 
333 /* Number of warning messages issued; reset to 0 by cleanups after
334    expression evaluation.  */
335 static int warnings_issued = 0;
336 
337 static const char *known_runtime_file_name_patterns[] = {
338   ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340 
341 static const char *known_auxiliary_function_name_patterns[] = {
342   ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344 
345 /* Space for allocating results of ada_lookup_symbol_list.  */
346 static struct obstack symbol_list_obstack;
347 
348 /* Maintenance-related settings for this module.  */
349 
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352 
353 /* Implement the "maintenance set ada" (prefix) command.  */
354 
355 static void
356 maint_set_ada_cmd (char *args, int from_tty)
357 {
358   help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 	     gdb_stdout);
360 }
361 
362 /* Implement the "maintenance show ada" (prefix) command.  */
363 
364 static void
365 maint_show_ada_cmd (char *args, int from_tty)
366 {
367   cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369 
370 /* The "maintenance ada set/show ignore-descriptive-type" value.  */
371 
372 static int ada_ignore_descriptive_types_p = 0;
373 
374 			/* Inferior-specific data.  */
375 
376 /* Per-inferior data for this module.  */
377 
378 struct ada_inferior_data
379 {
380   /* The ada__tags__type_specific_data type, which is used when decoding
381      tagged types.  With older versions of GNAT, this type was directly
382      accessible through a component ("tsd") in the object tag.  But this
383      is no longer the case, so we cache it for each inferior.  */
384   struct type *tsd_type;
385 
386   /* The exception_support_info data.  This data is used to determine
387      how to implement support for Ada exception catchpoints in a given
388      inferior.  */
389   const struct exception_support_info *exception_info;
390 };
391 
392 /* Our key to this module's inferior data.  */
393 static const struct inferior_data *ada_inferior_data;
394 
395 /* A cleanup routine for our inferior data.  */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399   struct ada_inferior_data *data;
400 
401   data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402   if (data != NULL)
403     xfree (data);
404 }
405 
406 /* Return our inferior data for the given inferior (INF).
407 
408    This function always returns a valid pointer to an allocated
409    ada_inferior_data structure.  If INF's inferior data has not
410    been previously set, this functions creates a new one with all
411    fields set to zero, sets INF's inferior to it, and then returns
412    a pointer to that newly allocated ada_inferior_data.  */
413 
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417   struct ada_inferior_data *data;
418 
419   data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420   if (data == NULL)
421     {
422       data = XCNEW (struct ada_inferior_data);
423       set_inferior_data (inf, ada_inferior_data, data);
424     }
425 
426   return data;
427 }
428 
429 /* Perform all necessary cleanups regarding our module's inferior data
430    that is required after the inferior INF just exited.  */
431 
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435   ada_inferior_data_cleanup (inf, NULL);
436   set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438 
439 
440 			/* program-space-specific data.  */
441 
442 /* This module's per-program-space data.  */
443 struct ada_pspace_data
444 {
445   /* The Ada symbol cache.  */
446   struct ada_symbol_cache *sym_cache;
447 };
448 
449 /* Key to our per-program-space data.  */
450 static const struct program_space_data *ada_pspace_data_handle;
451 
452 /* Return this module's data for the given program space (PSPACE).
453    If not is found, add a zero'ed one now.
454 
455    This function always returns a valid object.  */
456 
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460   struct ada_pspace_data *data;
461 
462   data = ((struct ada_pspace_data *)
463 	  program_space_data (pspace, ada_pspace_data_handle));
464   if (data == NULL)
465     {
466       data = XCNEW (struct ada_pspace_data);
467       set_program_space_data (pspace, ada_pspace_data_handle, data);
468     }
469 
470   return data;
471 }
472 
473 /* The cleanup callback for this module's per-program-space data.  */
474 
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478   struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479 
480   if (pspace_data->sym_cache != NULL)
481     ada_free_symbol_cache (pspace_data->sym_cache);
482   xfree (pspace_data);
483 }
484 
485                         /* Utilities */
486 
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488    all typedef layers have been peeled.  Otherwise, return TYPE.
489 
490    Normally, we really expect a typedef type to only have 1 typedef layer.
491    In other words, we really expect the target type of a typedef type to be
492    a non-typedef type.  This is particularly true for Ada units, because
493    the language does not have a typedef vs not-typedef distinction.
494    In that respect, the Ada compiler has been trying to eliminate as many
495    typedef definitions in the debugging information, since they generally
496    do not bring any extra information (we still use typedef under certain
497    circumstances related mostly to the GNAT encoding).
498 
499    Unfortunately, we have seen situations where the debugging information
500    generated by the compiler leads to such multiple typedef layers.  For
501    instance, consider the following example with stabs:
502 
503      .stabs  "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504      .stabs  "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505 
506    This is an error in the debugging information which causes type
507    pck__float_array___XUP to be defined twice, and the second time,
508    it is defined as a typedef of a typedef.
509 
510    This is on the fringe of legality as far as debugging information is
511    concerned, and certainly unexpected.  But it is easy to handle these
512    situations correctly, so we can afford to be lenient in this case.  */
513 
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517   while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518     type = TYPE_TARGET_TYPE (type);
519   return type;
520 }
521 
522 /* Given DECODED_NAME a string holding a symbol name in its
523    decoded form (ie using the Ada dotted notation), returns
524    its unqualified name.  */
525 
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529   const char *result;
530 
531   /* If the decoded name starts with '<', it means that the encoded
532      name does not follow standard naming conventions, and thus that
533      it is not your typical Ada symbol name.  Trying to unqualify it
534      is therefore pointless and possibly erroneous.  */
535   if (decoded_name[0] == '<')
536     return decoded_name;
537 
538   result = strrchr (decoded_name, '.');
539   if (result != NULL)
540     result++;                   /* Skip the dot...  */
541   else
542     result = decoded_name;
543 
544   return result;
545 }
546 
547 /* Return a string starting with '<', followed by STR, and '>'.
548    The result is good until the next call.  */
549 
550 static char *
551 add_angle_brackets (const char *str)
552 {
553   static char *result = NULL;
554 
555   xfree (result);
556   result = xstrprintf ("<%s>", str);
557   return result;
558 }
559 
560 static char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563   return ada_completer_word_break_characters;
564 }
565 
566 /* Print an array element index using the Ada syntax.  */
567 
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570                        const struct value_print_options *options)
571 {
572   LA_VALUE_PRINT (index_value, stream, options);
573   fprintf_filtered (stream, " => ");
574 }
575 
576 /* Assuming VECT points to an array of *SIZE objects of size
577    ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578    updating *SIZE as necessary and returning the (new) array.  */
579 
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583   if (*size < min_size)
584     {
585       *size *= 2;
586       if (*size < min_size)
587         *size = min_size;
588       vect = xrealloc (vect, *size * element_size);
589     }
590   return vect;
591 }
592 
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594    suffix of FIELD_NAME beginning "___".  */
595 
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599   int len = strlen (target);
600 
601   return
602     (strncmp (field_name, target, len) == 0
603      && (field_name[len] == '\0'
604          || (startswith (field_name + len, "___")
605              && strcmp (field_name + strlen (field_name) - 6,
606                         "___XVN") != 0)));
607 }
608 
609 
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611    a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612    and return its index.  This function also handles fields whose name
613    have ___ suffixes because the compiler sometimes alters their name
614    by adding such a suffix to represent fields with certain constraints.
615    If the field could not be found, return a negative number if
616    MAYBE_MISSING is set.  Otherwise raise an error.  */
617 
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620                      int maybe_missing)
621 {
622   int fieldno;
623   struct type *struct_type = check_typedef ((struct type *) type);
624 
625   for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626     if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627       return fieldno;
628 
629   if (!maybe_missing)
630     error (_("Unable to find field %s in struct %s.  Aborting"),
631            field_name, TYPE_NAME (struct_type));
632 
633   return -1;
634 }
635 
636 /* The length of the prefix of NAME prior to any "___" suffix.  */
637 
638 int
639 ada_name_prefix_len (const char *name)
640 {
641   if (name == NULL)
642     return 0;
643   else
644     {
645       const char *p = strstr (name, "___");
646 
647       if (p == NULL)
648         return strlen (name);
649       else
650         return p - name;
651     }
652 }
653 
654 /* Return non-zero if SUFFIX is a suffix of STR.
655    Return zero if STR is null.  */
656 
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660   int len1, len2;
661 
662   if (str == NULL)
663     return 0;
664   len1 = strlen (str);
665   len2 = strlen (suffix);
666   return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668 
669 /* The contents of value VAL, treated as a value of type TYPE.  The
670    result is an lval in memory if VAL is.  */
671 
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675   type = ada_check_typedef (type);
676   if (value_type (val) == type)
677     return val;
678   else
679     {
680       struct value *result;
681 
682       /* Make sure that the object size is not unreasonable before
683          trying to allocate some memory for it.  */
684       ada_ensure_varsize_limit (type);
685 
686       if (value_lazy (val)
687           || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 	result = allocate_value_lazy (type);
689       else
690 	{
691 	  result = allocate_value (type);
692 	  value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 	}
694       set_value_component_location (result, val);
695       set_value_bitsize (result, value_bitsize (val));
696       set_value_bitpos (result, value_bitpos (val));
697       set_value_address (result, value_address (val));
698       return result;
699     }
700 }
701 
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705   if (valaddr == NULL)
706     return NULL;
707   else
708     return valaddr + offset;
709 }
710 
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714   if (address == 0)
715     return 0;
716   else
717     return address + offset;
718 }
719 
720 /* Issue a warning (as for the definition of warning in utils.c, but
721    with exactly one argument rather than ...), unless the limit on the
722    number of warnings has passed during the evaluation of the current
723    expression.  */
724 
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726    provided by "complaint".  */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728 
729 static void
730 lim_warning (const char *format, ...)
731 {
732   va_list args;
733 
734   va_start (args, format);
735   warnings_issued += 1;
736   if (warnings_issued <= warning_limit)
737     vwarning (format, args);
738 
739   va_end (args);
740 }
741 
742 /* Issue an error if the size of an object of type T is unreasonable,
743    i.e. if it would be a bad idea to allocate a value of this type in
744    GDB.  */
745 
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749   if (TYPE_LENGTH (type) > varsize_limit)
750     error (_("object size is larger than varsize-limit"));
751 }
752 
753 /* Maximum value of a SIZE-byte signed integer type.  */
754 static LONGEST
755 max_of_size (int size)
756 {
757   LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758 
759   return top_bit | (top_bit - 1);
760 }
761 
762 /* Minimum value of a SIZE-byte signed integer type.  */
763 static LONGEST
764 min_of_size (int size)
765 {
766   return -max_of_size (size) - 1;
767 }
768 
769 /* Maximum value of a SIZE-byte unsigned integer type.  */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773   ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774 
775   return top_bit | (top_bit - 1);
776 }
777 
778 /* Maximum value of integral type T, as a signed quantity.  */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782   if (TYPE_UNSIGNED (t))
783     return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784   else
785     return max_of_size (TYPE_LENGTH (t));
786 }
787 
788 /* Minimum value of integral type T, as a signed quantity.  */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792   if (TYPE_UNSIGNED (t))
793     return 0;
794   else
795     return min_of_size (TYPE_LENGTH (t));
796 }
797 
798 /* The largest value in the domain of TYPE, a discrete type, as an integer.  */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802   type = resolve_dynamic_type (type, NULL, 0);
803   switch (TYPE_CODE (type))
804     {
805     case TYPE_CODE_RANGE:
806       return TYPE_HIGH_BOUND (type);
807     case TYPE_CODE_ENUM:
808       return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809     case TYPE_CODE_BOOL:
810       return 1;
811     case TYPE_CODE_CHAR:
812     case TYPE_CODE_INT:
813       return max_of_type (type);
814     default:
815       error (_("Unexpected type in ada_discrete_type_high_bound."));
816     }
817 }
818 
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer.  */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823   type = resolve_dynamic_type (type, NULL, 0);
824   switch (TYPE_CODE (type))
825     {
826     case TYPE_CODE_RANGE:
827       return TYPE_LOW_BOUND (type);
828     case TYPE_CODE_ENUM:
829       return TYPE_FIELD_ENUMVAL (type, 0);
830     case TYPE_CODE_BOOL:
831       return 0;
832     case TYPE_CODE_CHAR:
833     case TYPE_CODE_INT:
834       return min_of_type (type);
835     default:
836       error (_("Unexpected type in ada_discrete_type_low_bound."));
837     }
838 }
839 
840 /* The identity on non-range types.  For range types, the underlying
841    non-range scalar type.  */
842 
843 static struct type *
844 get_base_type (struct type *type)
845 {
846   while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847     {
848       if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849         return type;
850       type = TYPE_TARGET_TYPE (type);
851     }
852   return type;
853 }
854 
855 /* Return a decoded version of the given VALUE.  This means returning
856    a value whose type is obtained by applying all the GNAT-specific
857    encondings, making the resulting type a static but standard description
858    of the initial type.  */
859 
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863   struct type *type = ada_check_typedef (value_type (value));
864 
865   if (ada_is_array_descriptor_type (type)
866       || (ada_is_constrained_packed_array_type (type)
867           && TYPE_CODE (type) != TYPE_CODE_PTR))
868     {
869       if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)  /* array access type.  */
870         value = ada_coerce_to_simple_array_ptr (value);
871       else
872         value = ada_coerce_to_simple_array (value);
873     }
874   else
875     value = ada_to_fixed_value (value);
876 
877   return value;
878 }
879 
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881    Because there is no associated actual value for this type,
882    the resulting type might be a best-effort approximation in
883    the case of dynamic types.  */
884 
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888   type = to_static_fixed_type (type);
889   if (ada_is_constrained_packed_array_type (type))
890     type = ada_coerce_to_simple_array_type (type);
891   return type;
892 }
893 
894 
895 
896                                 /* Language Selection */
897 
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899    (the main program is in Ada iif the adainit symbol is found).  */
900 
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904   if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905                              (struct objfile *) NULL).minsym != NULL)
906     return language_ada;
907 
908   return lang;
909 }
910 
911 /* If the main procedure is written in Ada, then return its name.
912    The result is good until the next call.  Return NULL if the main
913    procedure doesn't appear to be in Ada.  */
914 
915 char *
916 ada_main_name (void)
917 {
918   struct bound_minimal_symbol msym;
919   static char *main_program_name = NULL;
920 
921   /* For Ada, the name of the main procedure is stored in a specific
922      string constant, generated by the binder.  Look for that symbol,
923      extract its address, and then read that string.  If we didn't find
924      that string, then most probably the main procedure is not written
925      in Ada.  */
926   msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927 
928   if (msym.minsym != NULL)
929     {
930       CORE_ADDR main_program_name_addr;
931       int err_code;
932 
933       main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934       if (main_program_name_addr == 0)
935         error (_("Invalid address for Ada main program name."));
936 
937       xfree (main_program_name);
938       target_read_string (main_program_name_addr, &main_program_name,
939                           1024, &err_code);
940 
941       if (err_code != 0)
942         return NULL;
943       return main_program_name;
944     }
945 
946   /* The main procedure doesn't seem to be in Ada.  */
947   return NULL;
948 }
949 
950                                 /* Symbols */
951 
952 /* Table of Ada operators and their GNAT-encoded names.  Last entry is pair
953    of NULLs.  */
954 
955 const struct ada_opname_map ada_opname_table[] = {
956   {"Oadd", "\"+\"", BINOP_ADD},
957   {"Osubtract", "\"-\"", BINOP_SUB},
958   {"Omultiply", "\"*\"", BINOP_MUL},
959   {"Odivide", "\"/\"", BINOP_DIV},
960   {"Omod", "\"mod\"", BINOP_MOD},
961   {"Orem", "\"rem\"", BINOP_REM},
962   {"Oexpon", "\"**\"", BINOP_EXP},
963   {"Olt", "\"<\"", BINOP_LESS},
964   {"Ole", "\"<=\"", BINOP_LEQ},
965   {"Ogt", "\">\"", BINOP_GTR},
966   {"Oge", "\">=\"", BINOP_GEQ},
967   {"Oeq", "\"=\"", BINOP_EQUAL},
968   {"One", "\"/=\"", BINOP_NOTEQUAL},
969   {"Oand", "\"and\"", BINOP_BITWISE_AND},
970   {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971   {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972   {"Oconcat", "\"&\"", BINOP_CONCAT},
973   {"Oabs", "\"abs\"", UNOP_ABS},
974   {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975   {"Oadd", "\"+\"", UNOP_PLUS},
976   {"Osubtract", "\"-\"", UNOP_NEG},
977   {NULL, NULL}
978 };
979 
980 /* The "encoded" form of DECODED, according to GNAT conventions.
981    The result is valid until the next call to ada_encode.  */
982 
983 char *
984 ada_encode (const char *decoded)
985 {
986   static char *encoding_buffer = NULL;
987   static size_t encoding_buffer_size = 0;
988   const char *p;
989   int k;
990 
991   if (decoded == NULL)
992     return NULL;
993 
994   GROW_VECT (encoding_buffer, encoding_buffer_size,
995              2 * strlen (decoded) + 10);
996 
997   k = 0;
998   for (p = decoded; *p != '\0'; p += 1)
999     {
1000       if (*p == '.')
1001         {
1002           encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003           k += 2;
1004         }
1005       else if (*p == '"')
1006         {
1007           const struct ada_opname_map *mapping;
1008 
1009           for (mapping = ada_opname_table;
1010                mapping->encoded != NULL
1011                && !startswith (p, mapping->decoded); mapping += 1)
1012             ;
1013           if (mapping->encoded == NULL)
1014             error (_("invalid Ada operator name: %s"), p);
1015           strcpy (encoding_buffer + k, mapping->encoded);
1016           k += strlen (mapping->encoded);
1017           break;
1018         }
1019       else
1020         {
1021           encoding_buffer[k] = *p;
1022           k += 1;
1023         }
1024     }
1025 
1026   encoding_buffer[k] = '\0';
1027   return encoding_buffer;
1028 }
1029 
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031    quotes, unfolded, but with the quotes stripped away.  Result good
1032    to next call.  */
1033 
1034 char *
1035 ada_fold_name (const char *name)
1036 {
1037   static char *fold_buffer = NULL;
1038   static size_t fold_buffer_size = 0;
1039 
1040   int len = strlen (name);
1041   GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1042 
1043   if (name[0] == '\'')
1044     {
1045       strncpy (fold_buffer, name + 1, len - 2);
1046       fold_buffer[len - 2] = '\000';
1047     }
1048   else
1049     {
1050       int i;
1051 
1052       for (i = 0; i <= len; i += 1)
1053         fold_buffer[i] = tolower (name[i]);
1054     }
1055 
1056   return fold_buffer;
1057 }
1058 
1059 /* Return nonzero if C is either a digit or a lowercase alphabet character.  */
1060 
1061 static int
1062 is_lower_alphanum (const char c)
1063 {
1064   return (isdigit (c) || (isalpha (c) && islower (c)));
1065 }
1066 
1067 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1068    This function saves in LEN the length of that same symbol name but
1069    without either of these suffixes:
1070      . .{DIGIT}+
1071      . ${DIGIT}+
1072      . ___{DIGIT}+
1073      . __{DIGIT}+.
1074 
1075    These are suffixes introduced by the compiler for entities such as
1076    nested subprogram for instance, in order to avoid name clashes.
1077    They do not serve any purpose for the debugger.  */
1078 
1079 static void
1080 ada_remove_trailing_digits (const char *encoded, int *len)
1081 {
1082   if (*len > 1 && isdigit (encoded[*len - 1]))
1083     {
1084       int i = *len - 2;
1085 
1086       while (i > 0 && isdigit (encoded[i]))
1087         i--;
1088       if (i >= 0 && encoded[i] == '.')
1089         *len = i;
1090       else if (i >= 0 && encoded[i] == '$')
1091         *len = i;
1092       else if (i >= 2 && startswith (encoded + i - 2, "___"))
1093         *len = i - 2;
1094       else if (i >= 1 && startswith (encoded + i - 1, "__"))
1095         *len = i - 1;
1096     }
1097 }
1098 
1099 /* Remove the suffix introduced by the compiler for protected object
1100    subprograms.  */
1101 
1102 static void
1103 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104 {
1105   /* Remove trailing N.  */
1106 
1107   /* Protected entry subprograms are broken into two
1108      separate subprograms: The first one is unprotected, and has
1109      a 'N' suffix; the second is the protected version, and has
1110      the 'P' suffix.  The second calls the first one after handling
1111      the protection.  Since the P subprograms are internally generated,
1112      we leave these names undecoded, giving the user a clue that this
1113      entity is internal.  */
1114 
1115   if (*len > 1
1116       && encoded[*len - 1] == 'N'
1117       && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118     *len = *len - 1;
1119 }
1120 
1121 /* Remove trailing X[bn]* suffixes (indicating names in package bodies).  */
1122 
1123 static void
1124 ada_remove_Xbn_suffix (const char *encoded, int *len)
1125 {
1126   int i = *len - 1;
1127 
1128   while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129     i--;
1130 
1131   if (encoded[i] != 'X')
1132     return;
1133 
1134   if (i == 0)
1135     return;
1136 
1137   if (isalnum (encoded[i-1]))
1138     *len = i;
1139 }
1140 
1141 /* If ENCODED follows the GNAT entity encoding conventions, then return
1142    the decoded form of ENCODED.  Otherwise, return "<%s>" where "%s" is
1143    replaced by ENCODED.
1144 
1145    The resulting string is valid until the next call of ada_decode.
1146    If the string is unchanged by decoding, the original string pointer
1147    is returned.  */
1148 
1149 const char *
1150 ada_decode (const char *encoded)
1151 {
1152   int i, j;
1153   int len0;
1154   const char *p;
1155   char *decoded;
1156   int at_start_name;
1157   static char *decoding_buffer = NULL;
1158   static size_t decoding_buffer_size = 0;
1159 
1160   /* The name of the Ada main procedure starts with "_ada_".
1161      This prefix is not part of the decoded name, so skip this part
1162      if we see this prefix.  */
1163   if (startswith (encoded, "_ada_"))
1164     encoded += 5;
1165 
1166   /* If the name starts with '_', then it is not a properly encoded
1167      name, so do not attempt to decode it.  Similarly, if the name
1168      starts with '<', the name should not be decoded.  */
1169   if (encoded[0] == '_' || encoded[0] == '<')
1170     goto Suppress;
1171 
1172   len0 = strlen (encoded);
1173 
1174   ada_remove_trailing_digits (encoded, &len0);
1175   ada_remove_po_subprogram_suffix (encoded, &len0);
1176 
1177   /* Remove the ___X.* suffix if present.  Do not forget to verify that
1178      the suffix is located before the current "end" of ENCODED.  We want
1179      to avoid re-matching parts of ENCODED that have previously been
1180      marked as discarded (by decrementing LEN0).  */
1181   p = strstr (encoded, "___");
1182   if (p != NULL && p - encoded < len0 - 3)
1183     {
1184       if (p[3] == 'X')
1185         len0 = p - encoded;
1186       else
1187         goto Suppress;
1188     }
1189 
1190   /* Remove any trailing TKB suffix.  It tells us that this symbol
1191      is for the body of a task, but that information does not actually
1192      appear in the decoded name.  */
1193 
1194   if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1195     len0 -= 3;
1196 
1197   /* Remove any trailing TB suffix.  The TB suffix is slightly different
1198      from the TKB suffix because it is used for non-anonymous task
1199      bodies.  */
1200 
1201   if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1202     len0 -= 2;
1203 
1204   /* Remove trailing "B" suffixes.  */
1205   /* FIXME: brobecker/2006-04-19: Not sure what this are used for...  */
1206 
1207   if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1208     len0 -= 1;
1209 
1210   /* Make decoded big enough for possible expansion by operator name.  */
1211 
1212   GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213   decoded = decoding_buffer;
1214 
1215   /* Remove trailing __{digit}+ or trailing ${digit}+.  */
1216 
1217   if (len0 > 1 && isdigit (encoded[len0 - 1]))
1218     {
1219       i = len0 - 2;
1220       while ((i >= 0 && isdigit (encoded[i]))
1221              || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222         i -= 1;
1223       if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224         len0 = i - 1;
1225       else if (encoded[i] == '$')
1226         len0 = i;
1227     }
1228 
1229   /* The first few characters that are not alphabetic are not part
1230      of any encoding we use, so we can copy them over verbatim.  */
1231 
1232   for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233     decoded[j] = encoded[i];
1234 
1235   at_start_name = 1;
1236   while (i < len0)
1237     {
1238       /* Is this a symbol function?  */
1239       if (at_start_name && encoded[i] == 'O')
1240         {
1241           int k;
1242 
1243           for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244             {
1245               int op_len = strlen (ada_opname_table[k].encoded);
1246               if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247                             op_len - 1) == 0)
1248                   && !isalnum (encoded[i + op_len]))
1249                 {
1250                   strcpy (decoded + j, ada_opname_table[k].decoded);
1251                   at_start_name = 0;
1252                   i += op_len;
1253                   j += strlen (ada_opname_table[k].decoded);
1254                   break;
1255                 }
1256             }
1257           if (ada_opname_table[k].encoded != NULL)
1258             continue;
1259         }
1260       at_start_name = 0;
1261 
1262       /* Replace "TK__" with "__", which will eventually be translated
1263          into "." (just below).  */
1264 
1265       if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1266         i += 2;
1267 
1268       /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269          be translated into "." (just below).  These are internal names
1270          generated for anonymous blocks inside which our symbol is nested.  */
1271 
1272       if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273           && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274           && isdigit (encoded [i+4]))
1275         {
1276           int k = i + 5;
1277 
1278           while (k < len0 && isdigit (encoded[k]))
1279             k++;  /* Skip any extra digit.  */
1280 
1281           /* Double-check that the "__B_{DIGITS}+" sequence we found
1282              is indeed followed by "__".  */
1283           if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284             i = k;
1285         }
1286 
1287       /* Remove _E{DIGITS}+[sb] */
1288 
1289       /* Just as for protected object subprograms, there are 2 categories
1290          of subprograms created by the compiler for each entry.  The first
1291          one implements the actual entry code, and has a suffix following
1292          the convention above; the second one implements the barrier and
1293          uses the same convention as above, except that the 'E' is replaced
1294          by a 'B'.
1295 
1296          Just as above, we do not decode the name of barrier functions
1297          to give the user a clue that the code he is debugging has been
1298          internally generated.  */
1299 
1300       if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301           && isdigit (encoded[i+2]))
1302         {
1303           int k = i + 3;
1304 
1305           while (k < len0 && isdigit (encoded[k]))
1306             k++;
1307 
1308           if (k < len0
1309               && (encoded[k] == 'b' || encoded[k] == 's'))
1310             {
1311               k++;
1312               /* Just as an extra precaution, make sure that if this
1313                  suffix is followed by anything else, it is a '_'.
1314                  Otherwise, we matched this sequence by accident.  */
1315               if (k == len0
1316                   || (k < len0 && encoded[k] == '_'))
1317                 i = k;
1318             }
1319         }
1320 
1321       /* Remove trailing "N" in [a-z0-9]+N__.  The N is added by
1322          the GNAT front-end in protected object subprograms.  */
1323 
1324       if (i < len0 + 3
1325           && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326         {
1327           /* Backtrack a bit up until we reach either the begining of
1328              the encoded name, or "__".  Make sure that we only find
1329              digits or lowercase characters.  */
1330           const char *ptr = encoded + i - 1;
1331 
1332           while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333             ptr--;
1334           if (ptr < encoded
1335               || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336             i++;
1337         }
1338 
1339       if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340         {
1341           /* This is a X[bn]* sequence not separated from the previous
1342              part of the name with a non-alpha-numeric character (in other
1343              words, immediately following an alpha-numeric character), then
1344              verify that it is placed at the end of the encoded name.  If
1345              not, then the encoding is not valid and we should abort the
1346              decoding.  Otherwise, just skip it, it is used in body-nested
1347              package names.  */
1348           do
1349             i += 1;
1350           while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351           if (i < len0)
1352             goto Suppress;
1353         }
1354       else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1355         {
1356          /* Replace '__' by '.'.  */
1357           decoded[j] = '.';
1358           at_start_name = 1;
1359           i += 2;
1360           j += 1;
1361         }
1362       else
1363         {
1364           /* It's a character part of the decoded name, so just copy it
1365              over.  */
1366           decoded[j] = encoded[i];
1367           i += 1;
1368           j += 1;
1369         }
1370     }
1371   decoded[j] = '\000';
1372 
1373   /* Decoded names should never contain any uppercase character.
1374      Double-check this, and abort the decoding if we find one.  */
1375 
1376   for (i = 0; decoded[i] != '\0'; i += 1)
1377     if (isupper (decoded[i]) || decoded[i] == ' ')
1378       goto Suppress;
1379 
1380   if (strcmp (decoded, encoded) == 0)
1381     return encoded;
1382   else
1383     return decoded;
1384 
1385 Suppress:
1386   GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387   decoded = decoding_buffer;
1388   if (encoded[0] == '<')
1389     strcpy (decoded, encoded);
1390   else
1391     xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1392   return decoded;
1393 
1394 }
1395 
1396 /* Table for keeping permanent unique copies of decoded names.  Once
1397    allocated, names in this table are never released.  While this is a
1398    storage leak, it should not be significant unless there are massive
1399    changes in the set of decoded names in successive versions of a
1400    symbol table loaded during a single session.  */
1401 static struct htab *decoded_names_store;
1402 
1403 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404    in the language-specific part of GSYMBOL, if it has not been
1405    previously computed.  Tries to save the decoded name in the same
1406    obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407    in any case, the decoded symbol has a lifetime at least that of
1408    GSYMBOL).
1409    The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410    const, but nevertheless modified to a semantically equivalent form
1411    when a decoded name is cached in it.  */
1412 
1413 const char *
1414 ada_decode_symbol (const struct general_symbol_info *arg)
1415 {
1416   struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417   const char **resultp =
1418     &gsymbol->language_specific.demangled_name;
1419 
1420   if (!gsymbol->ada_mangled)
1421     {
1422       const char *decoded = ada_decode (gsymbol->name);
1423       struct obstack *obstack = gsymbol->language_specific.obstack;
1424 
1425       gsymbol->ada_mangled = 1;
1426 
1427       if (obstack != NULL)
1428 	*resultp
1429 	  = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1430       else
1431         {
1432 	  /* Sometimes, we can't find a corresponding objfile, in
1433 	     which case, we put the result on the heap.  Since we only
1434 	     decode when needed, we hope this usually does not cause a
1435 	     significant memory leak (FIXME).  */
1436 
1437           char **slot = (char **) htab_find_slot (decoded_names_store,
1438                                                   decoded, INSERT);
1439 
1440           if (*slot == NULL)
1441             *slot = xstrdup (decoded);
1442           *resultp = *slot;
1443         }
1444     }
1445 
1446   return *resultp;
1447 }
1448 
1449 static char *
1450 ada_la_decode (const char *encoded, int options)
1451 {
1452   return xstrdup (ada_decode (encoded));
1453 }
1454 
1455 /* Implement la_sniff_from_mangled_name for Ada.  */
1456 
1457 static int
1458 ada_sniff_from_mangled_name (const char *mangled, char **out)
1459 {
1460   const char *demangled = ada_decode (mangled);
1461 
1462   *out = NULL;
1463 
1464   if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1465     {
1466       /* Set the gsymbol language to Ada, but still return 0.
1467 	 Two reasons for that:
1468 
1469 	 1. For Ada, we prefer computing the symbol's decoded name
1470 	 on the fly rather than pre-compute it, in order to save
1471 	 memory (Ada projects are typically very large).
1472 
1473 	 2. There are some areas in the definition of the GNAT
1474 	 encoding where, with a bit of bad luck, we might be able
1475 	 to decode a non-Ada symbol, generating an incorrect
1476 	 demangled name (Eg: names ending with "TB" for instance
1477 	 are identified as task bodies and so stripped from
1478 	 the decoded name returned).
1479 
1480 	 Returning 1, here, but not setting *DEMANGLED, helps us get a
1481 	 little bit of the best of both worlds.  Because we're last,
1482 	 we should not affect any of the other languages that were
1483 	 able to demangle the symbol before us; we get to correctly
1484 	 tag Ada symbols as such; and even if we incorrectly tagged a
1485 	 non-Ada symbol, which should be rare, any routing through the
1486 	 Ada language should be transparent (Ada tries to behave much
1487 	 like C/C++ with non-Ada symbols).  */
1488       return 1;
1489     }
1490 
1491   return 0;
1492 }
1493 
1494 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1495    suffixes that encode debugging information or leading _ada_ on
1496    SYM_NAME (see is_name_suffix commentary for the debugging
1497    information that is ignored).  If WILD, then NAME need only match a
1498    suffix of SYM_NAME minus the same suffixes.  Also returns 0 if
1499    either argument is NULL.  */
1500 
1501 static int
1502 match_name (const char *sym_name, const char *name, int wild)
1503 {
1504   if (sym_name == NULL || name == NULL)
1505     return 0;
1506   else if (wild)
1507     return wild_match (sym_name, name) == 0;
1508   else
1509     {
1510       int len_name = strlen (name);
1511 
1512       return (strncmp (sym_name, name, len_name) == 0
1513               && is_name_suffix (sym_name + len_name))
1514         || (startswith (sym_name, "_ada_")
1515             && strncmp (sym_name + 5, name, len_name) == 0
1516             && is_name_suffix (sym_name + len_name + 5));
1517     }
1518 }
1519 
1520 
1521                                 /* Arrays */
1522 
1523 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1524    generated by the GNAT compiler to describe the index type used
1525    for each dimension of an array, check whether it follows the latest
1526    known encoding.  If not, fix it up to conform to the latest encoding.
1527    Otherwise, do nothing.  This function also does nothing if
1528    INDEX_DESC_TYPE is NULL.
1529 
1530    The GNAT encoding used to describle the array index type evolved a bit.
1531    Initially, the information would be provided through the name of each
1532    field of the structure type only, while the type of these fields was
1533    described as unspecified and irrelevant.  The debugger was then expected
1534    to perform a global type lookup using the name of that field in order
1535    to get access to the full index type description.  Because these global
1536    lookups can be very expensive, the encoding was later enhanced to make
1537    the global lookup unnecessary by defining the field type as being
1538    the full index type description.
1539 
1540    The purpose of this routine is to allow us to support older versions
1541    of the compiler by detecting the use of the older encoding, and by
1542    fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1543    we essentially replace each field's meaningless type by the associated
1544    index subtype).  */
1545 
1546 void
1547 ada_fixup_array_indexes_type (struct type *index_desc_type)
1548 {
1549   int i;
1550 
1551   if (index_desc_type == NULL)
1552     return;
1553   gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1554 
1555   /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1556      to check one field only, no need to check them all).  If not, return
1557      now.
1558 
1559      If our INDEX_DESC_TYPE was generated using the older encoding,
1560      the field type should be a meaningless integer type whose name
1561      is not equal to the field name.  */
1562   if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1563       && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1564                  TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1565     return;
1566 
1567   /* Fixup each field of INDEX_DESC_TYPE.  */
1568   for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1569    {
1570      const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1571      struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1572 
1573      if (raw_type)
1574        TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1575    }
1576 }
1577 
1578 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors.  */
1579 
1580 static char *bound_name[] = {
1581   "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1582   "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1583 };
1584 
1585 /* Maximum number of array dimensions we are prepared to handle.  */
1586 
1587 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1588 
1589 
1590 /* The desc_* routines return primitive portions of array descriptors
1591    (fat pointers).  */
1592 
1593 /* The descriptor or array type, if any, indicated by TYPE; removes
1594    level of indirection, if needed.  */
1595 
1596 static struct type *
1597 desc_base_type (struct type *type)
1598 {
1599   if (type == NULL)
1600     return NULL;
1601   type = ada_check_typedef (type);
1602   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1603     type = ada_typedef_target_type (type);
1604 
1605   if (type != NULL
1606       && (TYPE_CODE (type) == TYPE_CODE_PTR
1607           || TYPE_CODE (type) == TYPE_CODE_REF))
1608     return ada_check_typedef (TYPE_TARGET_TYPE (type));
1609   else
1610     return type;
1611 }
1612 
1613 /* True iff TYPE indicates a "thin" array pointer type.  */
1614 
1615 static int
1616 is_thin_pntr (struct type *type)
1617 {
1618   return
1619     is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1620     || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1621 }
1622 
1623 /* The descriptor type for thin pointer type TYPE.  */
1624 
1625 static struct type *
1626 thin_descriptor_type (struct type *type)
1627 {
1628   struct type *base_type = desc_base_type (type);
1629 
1630   if (base_type == NULL)
1631     return NULL;
1632   if (is_suffix (ada_type_name (base_type), "___XVE"))
1633     return base_type;
1634   else
1635     {
1636       struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1637 
1638       if (alt_type == NULL)
1639         return base_type;
1640       else
1641         return alt_type;
1642     }
1643 }
1644 
1645 /* A pointer to the array data for thin-pointer value VAL.  */
1646 
1647 static struct value *
1648 thin_data_pntr (struct value *val)
1649 {
1650   struct type *type = ada_check_typedef (value_type (val));
1651   struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1652 
1653   data_type = lookup_pointer_type (data_type);
1654 
1655   if (TYPE_CODE (type) == TYPE_CODE_PTR)
1656     return value_cast (data_type, value_copy (val));
1657   else
1658     return value_from_longest (data_type, value_address (val));
1659 }
1660 
1661 /* True iff TYPE indicates a "thick" array pointer type.  */
1662 
1663 static int
1664 is_thick_pntr (struct type *type)
1665 {
1666   type = desc_base_type (type);
1667   return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1668           && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1669 }
1670 
1671 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1672    pointer to one, the type of its bounds data; otherwise, NULL.  */
1673 
1674 static struct type *
1675 desc_bounds_type (struct type *type)
1676 {
1677   struct type *r;
1678 
1679   type = desc_base_type (type);
1680 
1681   if (type == NULL)
1682     return NULL;
1683   else if (is_thin_pntr (type))
1684     {
1685       type = thin_descriptor_type (type);
1686       if (type == NULL)
1687         return NULL;
1688       r = lookup_struct_elt_type (type, "BOUNDS", 1);
1689       if (r != NULL)
1690         return ada_check_typedef (r);
1691     }
1692   else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693     {
1694       r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1695       if (r != NULL)
1696         return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1697     }
1698   return NULL;
1699 }
1700 
1701 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1702    one, a pointer to its bounds data.   Otherwise NULL.  */
1703 
1704 static struct value *
1705 desc_bounds (struct value *arr)
1706 {
1707   struct type *type = ada_check_typedef (value_type (arr));
1708 
1709   if (is_thin_pntr (type))
1710     {
1711       struct type *bounds_type =
1712         desc_bounds_type (thin_descriptor_type (type));
1713       LONGEST addr;
1714 
1715       if (bounds_type == NULL)
1716         error (_("Bad GNAT array descriptor"));
1717 
1718       /* NOTE: The following calculation is not really kosher, but
1719          since desc_type is an XVE-encoded type (and shouldn't be),
1720          the correct calculation is a real pain.  FIXME (and fix GCC).  */
1721       if (TYPE_CODE (type) == TYPE_CODE_PTR)
1722         addr = value_as_long (arr);
1723       else
1724         addr = value_address (arr);
1725 
1726       return
1727         value_from_longest (lookup_pointer_type (bounds_type),
1728                             addr - TYPE_LENGTH (bounds_type));
1729     }
1730 
1731   else if (is_thick_pntr (type))
1732     {
1733       struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1734 					       _("Bad GNAT array descriptor"));
1735       struct type *p_bounds_type = value_type (p_bounds);
1736 
1737       if (p_bounds_type
1738 	  && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1739 	{
1740 	  struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1741 
1742 	  if (TYPE_STUB (target_type))
1743 	    p_bounds = value_cast (lookup_pointer_type
1744 				   (ada_check_typedef (target_type)),
1745 				   p_bounds);
1746 	}
1747       else
1748 	error (_("Bad GNAT array descriptor"));
1749 
1750       return p_bounds;
1751     }
1752   else
1753     return NULL;
1754 }
1755 
1756 /* If TYPE is the type of an array-descriptor (fat pointer),  the bit
1757    position of the field containing the address of the bounds data.  */
1758 
1759 static int
1760 fat_pntr_bounds_bitpos (struct type *type)
1761 {
1762   return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1763 }
1764 
1765 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1766    size of the field containing the address of the bounds data.  */
1767 
1768 static int
1769 fat_pntr_bounds_bitsize (struct type *type)
1770 {
1771   type = desc_base_type (type);
1772 
1773   if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1774     return TYPE_FIELD_BITSIZE (type, 1);
1775   else
1776     return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1777 }
1778 
1779 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1780    pointer to one, the type of its array data (a array-with-no-bounds type);
1781    otherwise, NULL.  Use ada_type_of_array to get an array type with bounds
1782    data.  */
1783 
1784 static struct type *
1785 desc_data_target_type (struct type *type)
1786 {
1787   type = desc_base_type (type);
1788 
1789   /* NOTE: The following is bogus; see comment in desc_bounds.  */
1790   if (is_thin_pntr (type))
1791     return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1792   else if (is_thick_pntr (type))
1793     {
1794       struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1795 
1796       if (data_type
1797 	  && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1798 	return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1799     }
1800 
1801   return NULL;
1802 }
1803 
1804 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1805    its array data.  */
1806 
1807 static struct value *
1808 desc_data (struct value *arr)
1809 {
1810   struct type *type = value_type (arr);
1811 
1812   if (is_thin_pntr (type))
1813     return thin_data_pntr (arr);
1814   else if (is_thick_pntr (type))
1815     return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1816                              _("Bad GNAT array descriptor"));
1817   else
1818     return NULL;
1819 }
1820 
1821 
1822 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1823    position of the field containing the address of the data.  */
1824 
1825 static int
1826 fat_pntr_data_bitpos (struct type *type)
1827 {
1828   return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1829 }
1830 
1831 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1832    size of the field containing the address of the data.  */
1833 
1834 static int
1835 fat_pntr_data_bitsize (struct type *type)
1836 {
1837   type = desc_base_type (type);
1838 
1839   if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1840     return TYPE_FIELD_BITSIZE (type, 0);
1841   else
1842     return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1843 }
1844 
1845 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1846    the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1847    bound, if WHICH is 1.  The first bound is I=1.  */
1848 
1849 static struct value *
1850 desc_one_bound (struct value *bounds, int i, int which)
1851 {
1852   return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1853                            _("Bad GNAT array descriptor bounds"));
1854 }
1855 
1856 /* If BOUNDS is an array-bounds structure type, return the bit position
1857    of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1858    bound, if WHICH is 1.  The first bound is I=1.  */
1859 
1860 static int
1861 desc_bound_bitpos (struct type *type, int i, int which)
1862 {
1863   return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1864 }
1865 
1866 /* If BOUNDS is an array-bounds structure type, return the bit field size
1867    of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1868    bound, if WHICH is 1.  The first bound is I=1.  */
1869 
1870 static int
1871 desc_bound_bitsize (struct type *type, int i, int which)
1872 {
1873   type = desc_base_type (type);
1874 
1875   if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1876     return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1877   else
1878     return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1879 }
1880 
1881 /* If TYPE is the type of an array-bounds structure, the type of its
1882    Ith bound (numbering from 1).  Otherwise, NULL.  */
1883 
1884 static struct type *
1885 desc_index_type (struct type *type, int i)
1886 {
1887   type = desc_base_type (type);
1888 
1889   if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1890     return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1891   else
1892     return NULL;
1893 }
1894 
1895 /* The number of index positions in the array-bounds type TYPE.
1896    Return 0 if TYPE is NULL.  */
1897 
1898 static int
1899 desc_arity (struct type *type)
1900 {
1901   type = desc_base_type (type);
1902 
1903   if (type != NULL)
1904     return TYPE_NFIELDS (type) / 2;
1905   return 0;
1906 }
1907 
1908 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1909    an array descriptor type (representing an unconstrained array
1910    type).  */
1911 
1912 static int
1913 ada_is_direct_array_type (struct type *type)
1914 {
1915   if (type == NULL)
1916     return 0;
1917   type = ada_check_typedef (type);
1918   return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1919           || ada_is_array_descriptor_type (type));
1920 }
1921 
1922 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1923  * to one.  */
1924 
1925 static int
1926 ada_is_array_type (struct type *type)
1927 {
1928   while (type != NULL
1929 	 && (TYPE_CODE (type) == TYPE_CODE_PTR
1930 	     || TYPE_CODE (type) == TYPE_CODE_REF))
1931     type = TYPE_TARGET_TYPE (type);
1932   return ada_is_direct_array_type (type);
1933 }
1934 
1935 /* Non-zero iff TYPE is a simple array type or pointer to one.  */
1936 
1937 int
1938 ada_is_simple_array_type (struct type *type)
1939 {
1940   if (type == NULL)
1941     return 0;
1942   type = ada_check_typedef (type);
1943   return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1944           || (TYPE_CODE (type) == TYPE_CODE_PTR
1945               && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1946                  == TYPE_CODE_ARRAY));
1947 }
1948 
1949 /* Non-zero iff TYPE belongs to a GNAT array descriptor.  */
1950 
1951 int
1952 ada_is_array_descriptor_type (struct type *type)
1953 {
1954   struct type *data_type = desc_data_target_type (type);
1955 
1956   if (type == NULL)
1957     return 0;
1958   type = ada_check_typedef (type);
1959   return (data_type != NULL
1960 	  && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1961 	  && desc_arity (desc_bounds_type (type)) > 0);
1962 }
1963 
1964 /* Non-zero iff type is a partially mal-formed GNAT array
1965    descriptor.  FIXME: This is to compensate for some problems with
1966    debugging output from GNAT.  Re-examine periodically to see if it
1967    is still needed.  */
1968 
1969 int
1970 ada_is_bogus_array_descriptor (struct type *type)
1971 {
1972   return
1973     type != NULL
1974     && TYPE_CODE (type) == TYPE_CODE_STRUCT
1975     && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1976         || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1977     && !ada_is_array_descriptor_type (type);
1978 }
1979 
1980 
1981 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1982    (fat pointer) returns the type of the array data described---specifically,
1983    a pointer-to-array type.  If BOUNDS is non-zero, the bounds data are filled
1984    in from the descriptor; otherwise, they are left unspecified.  If
1985    the ARR denotes a null array descriptor and BOUNDS is non-zero,
1986    returns NULL.  The result is simply the type of ARR if ARR is not
1987    a descriptor.  */
1988 struct type *
1989 ada_type_of_array (struct value *arr, int bounds)
1990 {
1991   if (ada_is_constrained_packed_array_type (value_type (arr)))
1992     return decode_constrained_packed_array_type (value_type (arr));
1993 
1994   if (!ada_is_array_descriptor_type (value_type (arr)))
1995     return value_type (arr);
1996 
1997   if (!bounds)
1998     {
1999       struct type *array_type =
2000 	ada_check_typedef (desc_data_target_type (value_type (arr)));
2001 
2002       if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2003 	TYPE_FIELD_BITSIZE (array_type, 0) =
2004 	  decode_packed_array_bitsize (value_type (arr));
2005 
2006       return array_type;
2007     }
2008   else
2009     {
2010       struct type *elt_type;
2011       int arity;
2012       struct value *descriptor;
2013 
2014       elt_type = ada_array_element_type (value_type (arr), -1);
2015       arity = ada_array_arity (value_type (arr));
2016 
2017       if (elt_type == NULL || arity == 0)
2018         return ada_check_typedef (value_type (arr));
2019 
2020       descriptor = desc_bounds (arr);
2021       if (value_as_long (descriptor) == 0)
2022         return NULL;
2023       while (arity > 0)
2024         {
2025           struct type *range_type = alloc_type_copy (value_type (arr));
2026           struct type *array_type = alloc_type_copy (value_type (arr));
2027           struct value *low = desc_one_bound (descriptor, arity, 0);
2028           struct value *high = desc_one_bound (descriptor, arity, 1);
2029 
2030           arity -= 1;
2031           create_static_range_type (range_type, value_type (low),
2032 				    longest_to_int (value_as_long (low)),
2033 				    longest_to_int (value_as_long (high)));
2034           elt_type = create_array_type (array_type, elt_type, range_type);
2035 
2036 	  if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2037 	    {
2038 	      /* We need to store the element packed bitsize, as well as
2039 	         recompute the array size, because it was previously
2040 		 computed based on the unpacked element size.  */
2041 	      LONGEST lo = value_as_long (low);
2042 	      LONGEST hi = value_as_long (high);
2043 
2044 	      TYPE_FIELD_BITSIZE (elt_type, 0) =
2045 		decode_packed_array_bitsize (value_type (arr));
2046 	      /* If the array has no element, then the size is already
2047 	         zero, and does not need to be recomputed.  */
2048 	      if (lo < hi)
2049 		{
2050 		  int array_bitsize =
2051 		        (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2052 
2053 		  TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2054 		}
2055 	    }
2056         }
2057 
2058       return lookup_pointer_type (elt_type);
2059     }
2060 }
2061 
2062 /* If ARR does not represent an array, returns ARR unchanged.
2063    Otherwise, returns either a standard GDB array with bounds set
2064    appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2065    GDB array.  Returns NULL if ARR is a null fat pointer.  */
2066 
2067 struct value *
2068 ada_coerce_to_simple_array_ptr (struct value *arr)
2069 {
2070   if (ada_is_array_descriptor_type (value_type (arr)))
2071     {
2072       struct type *arrType = ada_type_of_array (arr, 1);
2073 
2074       if (arrType == NULL)
2075         return NULL;
2076       return value_cast (arrType, value_copy (desc_data (arr)));
2077     }
2078   else if (ada_is_constrained_packed_array_type (value_type (arr)))
2079     return decode_constrained_packed_array (arr);
2080   else
2081     return arr;
2082 }
2083 
2084 /* If ARR does not represent an array, returns ARR unchanged.
2085    Otherwise, returns a standard GDB array describing ARR (which may
2086    be ARR itself if it already is in the proper form).  */
2087 
2088 struct value *
2089 ada_coerce_to_simple_array (struct value *arr)
2090 {
2091   if (ada_is_array_descriptor_type (value_type (arr)))
2092     {
2093       struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2094 
2095       if (arrVal == NULL)
2096         error (_("Bounds unavailable for null array pointer."));
2097       ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2098       return value_ind (arrVal);
2099     }
2100   else if (ada_is_constrained_packed_array_type (value_type (arr)))
2101     return decode_constrained_packed_array (arr);
2102   else
2103     return arr;
2104 }
2105 
2106 /* If TYPE represents a GNAT array type, return it translated to an
2107    ordinary GDB array type (possibly with BITSIZE fields indicating
2108    packing).  For other types, is the identity.  */
2109 
2110 struct type *
2111 ada_coerce_to_simple_array_type (struct type *type)
2112 {
2113   if (ada_is_constrained_packed_array_type (type))
2114     return decode_constrained_packed_array_type (type);
2115 
2116   if (ada_is_array_descriptor_type (type))
2117     return ada_check_typedef (desc_data_target_type (type));
2118 
2119   return type;
2120 }
2121 
2122 /* Non-zero iff TYPE represents a standard GNAT packed-array type.  */
2123 
2124 static int
2125 ada_is_packed_array_type  (struct type *type)
2126 {
2127   if (type == NULL)
2128     return 0;
2129   type = desc_base_type (type);
2130   type = ada_check_typedef (type);
2131   return
2132     ada_type_name (type) != NULL
2133     && strstr (ada_type_name (type), "___XP") != NULL;
2134 }
2135 
2136 /* Non-zero iff TYPE represents a standard GNAT constrained
2137    packed-array type.  */
2138 
2139 int
2140 ada_is_constrained_packed_array_type (struct type *type)
2141 {
2142   return ada_is_packed_array_type (type)
2143     && !ada_is_array_descriptor_type (type);
2144 }
2145 
2146 /* Non-zero iff TYPE represents an array descriptor for a
2147    unconstrained packed-array type.  */
2148 
2149 static int
2150 ada_is_unconstrained_packed_array_type (struct type *type)
2151 {
2152   return ada_is_packed_array_type (type)
2153     && ada_is_array_descriptor_type (type);
2154 }
2155 
2156 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2157    return the size of its elements in bits.  */
2158 
2159 static long
2160 decode_packed_array_bitsize (struct type *type)
2161 {
2162   const char *raw_name;
2163   const char *tail;
2164   long bits;
2165 
2166   /* Access to arrays implemented as fat pointers are encoded as a typedef
2167      of the fat pointer type.  We need the name of the fat pointer type
2168      to do the decoding, so strip the typedef layer.  */
2169   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2170     type = ada_typedef_target_type (type);
2171 
2172   raw_name = ada_type_name (ada_check_typedef (type));
2173   if (!raw_name)
2174     raw_name = ada_type_name (desc_base_type (type));
2175 
2176   if (!raw_name)
2177     return 0;
2178 
2179   tail = strstr (raw_name, "___XP");
2180   gdb_assert (tail != NULL);
2181 
2182   if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2183     {
2184       lim_warning
2185 	(_("could not understand bit size information on packed array"));
2186       return 0;
2187     }
2188 
2189   return bits;
2190 }
2191 
2192 /* Given that TYPE is a standard GDB array type with all bounds filled
2193    in, and that the element size of its ultimate scalar constituents
2194    (that is, either its elements, or, if it is an array of arrays, its
2195    elements' elements, etc.) is *ELT_BITS, return an identical type,
2196    but with the bit sizes of its elements (and those of any
2197    constituent arrays) recorded in the BITSIZE components of its
2198    TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2199    in bits.
2200 
2201    Note that, for arrays whose index type has an XA encoding where
2202    a bound references a record discriminant, getting that discriminant,
2203    and therefore the actual value of that bound, is not possible
2204    because none of the given parameters gives us access to the record.
2205    This function assumes that it is OK in the context where it is being
2206    used to return an array whose bounds are still dynamic and where
2207    the length is arbitrary.  */
2208 
2209 static struct type *
2210 constrained_packed_array_type (struct type *type, long *elt_bits)
2211 {
2212   struct type *new_elt_type;
2213   struct type *new_type;
2214   struct type *index_type_desc;
2215   struct type *index_type;
2216   LONGEST low_bound, high_bound;
2217 
2218   type = ada_check_typedef (type);
2219   if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2220     return type;
2221 
2222   index_type_desc = ada_find_parallel_type (type, "___XA");
2223   if (index_type_desc)
2224     index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2225 				      NULL);
2226   else
2227     index_type = TYPE_INDEX_TYPE (type);
2228 
2229   new_type = alloc_type_copy (type);
2230   new_elt_type =
2231     constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2232 				   elt_bits);
2233   create_array_type (new_type, new_elt_type, index_type);
2234   TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2235   TYPE_NAME (new_type) = ada_type_name (type);
2236 
2237   if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2238        && is_dynamic_type (check_typedef (index_type)))
2239       || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2240     low_bound = high_bound = 0;
2241   if (high_bound < low_bound)
2242     *elt_bits = TYPE_LENGTH (new_type) = 0;
2243   else
2244     {
2245       *elt_bits *= (high_bound - low_bound + 1);
2246       TYPE_LENGTH (new_type) =
2247         (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2248     }
2249 
2250   TYPE_FIXED_INSTANCE (new_type) = 1;
2251   return new_type;
2252 }
2253 
2254 /* The array type encoded by TYPE, where
2255    ada_is_constrained_packed_array_type (TYPE).  */
2256 
2257 static struct type *
2258 decode_constrained_packed_array_type (struct type *type)
2259 {
2260   const char *raw_name = ada_type_name (ada_check_typedef (type));
2261   char *name;
2262   const char *tail;
2263   struct type *shadow_type;
2264   long bits;
2265 
2266   if (!raw_name)
2267     raw_name = ada_type_name (desc_base_type (type));
2268 
2269   if (!raw_name)
2270     return NULL;
2271 
2272   name = (char *) alloca (strlen (raw_name) + 1);
2273   tail = strstr (raw_name, "___XP");
2274   type = desc_base_type (type);
2275 
2276   memcpy (name, raw_name, tail - raw_name);
2277   name[tail - raw_name] = '\000';
2278 
2279   shadow_type = ada_find_parallel_type_with_name (type, name);
2280 
2281   if (shadow_type == NULL)
2282     {
2283       lim_warning (_("could not find bounds information on packed array"));
2284       return NULL;
2285     }
2286   shadow_type = check_typedef (shadow_type);
2287 
2288   if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2289     {
2290       lim_warning (_("could not understand bounds "
2291 		     "information on packed array"));
2292       return NULL;
2293     }
2294 
2295   bits = decode_packed_array_bitsize (type);
2296   return constrained_packed_array_type (shadow_type, &bits);
2297 }
2298 
2299 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2300    array, returns a simple array that denotes that array.  Its type is a
2301    standard GDB array type except that the BITSIZEs of the array
2302    target types are set to the number of bits in each element, and the
2303    type length is set appropriately.  */
2304 
2305 static struct value *
2306 decode_constrained_packed_array (struct value *arr)
2307 {
2308   struct type *type;
2309 
2310   /* If our value is a pointer, then dereference it. Likewise if
2311      the value is a reference.  Make sure that this operation does not
2312      cause the target type to be fixed, as this would indirectly cause
2313      this array to be decoded.  The rest of the routine assumes that
2314      the array hasn't been decoded yet, so we use the basic "coerce_ref"
2315      and "value_ind" routines to perform the dereferencing, as opposed
2316      to using "ada_coerce_ref" or "ada_value_ind".  */
2317   arr = coerce_ref (arr);
2318   if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2319     arr = value_ind (arr);
2320 
2321   type = decode_constrained_packed_array_type (value_type (arr));
2322   if (type == NULL)
2323     {
2324       error (_("can't unpack array"));
2325       return NULL;
2326     }
2327 
2328   if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2329       && ada_is_modular_type (value_type (arr)))
2330     {
2331        /* This is a (right-justified) modular type representing a packed
2332  	 array with no wrapper.  In order to interpret the value through
2333  	 the (left-justified) packed array type we just built, we must
2334  	 first left-justify it.  */
2335       int bit_size, bit_pos;
2336       ULONGEST mod;
2337 
2338       mod = ada_modulus (value_type (arr)) - 1;
2339       bit_size = 0;
2340       while (mod > 0)
2341 	{
2342 	  bit_size += 1;
2343 	  mod >>= 1;
2344 	}
2345       bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2346       arr = ada_value_primitive_packed_val (arr, NULL,
2347 					    bit_pos / HOST_CHAR_BIT,
2348 					    bit_pos % HOST_CHAR_BIT,
2349 					    bit_size,
2350 					    type);
2351     }
2352 
2353   return coerce_unspec_val_to_type (arr, type);
2354 }
2355 
2356 
2357 /* The value of the element of packed array ARR at the ARITY indices
2358    given in IND.   ARR must be a simple array.  */
2359 
2360 static struct value *
2361 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2362 {
2363   int i;
2364   int bits, elt_off, bit_off;
2365   long elt_total_bit_offset;
2366   struct type *elt_type;
2367   struct value *v;
2368 
2369   bits = 0;
2370   elt_total_bit_offset = 0;
2371   elt_type = ada_check_typedef (value_type (arr));
2372   for (i = 0; i < arity; i += 1)
2373     {
2374       if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2375           || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2376         error
2377           (_("attempt to do packed indexing of "
2378 	     "something other than a packed array"));
2379       else
2380         {
2381           struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2382           LONGEST lowerbound, upperbound;
2383           LONGEST idx;
2384 
2385           if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2386             {
2387               lim_warning (_("don't know bounds of array"));
2388               lowerbound = upperbound = 0;
2389             }
2390 
2391           idx = pos_atr (ind[i]);
2392           if (idx < lowerbound || idx > upperbound)
2393             lim_warning (_("packed array index %ld out of bounds"),
2394 			 (long) idx);
2395           bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2396           elt_total_bit_offset += (idx - lowerbound) * bits;
2397           elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2398         }
2399     }
2400   elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2401   bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2402 
2403   v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2404                                       bits, elt_type);
2405   return v;
2406 }
2407 
2408 /* Non-zero iff TYPE includes negative integer values.  */
2409 
2410 static int
2411 has_negatives (struct type *type)
2412 {
2413   switch (TYPE_CODE (type))
2414     {
2415     default:
2416       return 0;
2417     case TYPE_CODE_INT:
2418       return !TYPE_UNSIGNED (type);
2419     case TYPE_CODE_RANGE:
2420       return TYPE_LOW_BOUND (type) < 0;
2421     }
2422 }
2423 
2424 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2425    unpack that data into UNPACKED.  UNPACKED_LEN is the size in bytes of
2426    the unpacked buffer.
2427 
2428    The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2429    enough to contain at least BIT_OFFSET bits.  If not, an error is raised.
2430 
2431    IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2432    zero otherwise.
2433 
2434    IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2435 
2436    IS_SCALAR is nonzero if the data corresponds to a signed type.  */
2437 
2438 static void
2439 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2440 			  gdb_byte *unpacked, int unpacked_len,
2441 			  int is_big_endian, int is_signed_type,
2442 			  int is_scalar)
2443 {
2444   int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2445   int src_idx;                  /* Index into the source area */
2446   int src_bytes_left;           /* Number of source bytes left to process.  */
2447   int srcBitsLeft;              /* Number of source bits left to move */
2448   int unusedLS;                 /* Number of bits in next significant
2449                                    byte of source that are unused */
2450 
2451   int unpacked_idx;             /* Index into the unpacked buffer */
2452   int unpacked_bytes_left;      /* Number of bytes left to set in unpacked.  */
2453 
2454   unsigned long accum;          /* Staging area for bits being transferred */
2455   int accumSize;                /* Number of meaningful bits in accum */
2456   unsigned char sign;
2457 
2458   /* Transmit bytes from least to most significant; delta is the direction
2459      the indices move.  */
2460   int delta = is_big_endian ? -1 : 1;
2461 
2462   /* Make sure that unpacked is large enough to receive the BIT_SIZE
2463      bits from SRC.  .*/
2464   if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2465     error (_("Cannot unpack %d bits into buffer of %d bytes"),
2466 	   bit_size, unpacked_len);
2467 
2468   srcBitsLeft = bit_size;
2469   src_bytes_left = src_len;
2470   unpacked_bytes_left = unpacked_len;
2471   sign = 0;
2472 
2473   if (is_big_endian)
2474     {
2475       src_idx = src_len - 1;
2476       if (is_signed_type
2477 	  && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2478         sign = ~0;
2479 
2480       unusedLS =
2481         (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2482         % HOST_CHAR_BIT;
2483 
2484       if (is_scalar)
2485 	{
2486           accumSize = 0;
2487           unpacked_idx = unpacked_len - 1;
2488 	}
2489       else
2490 	{
2491           /* Non-scalar values must be aligned at a byte boundary...  */
2492           accumSize =
2493             (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2494           /* ... And are placed at the beginning (most-significant) bytes
2495              of the target.  */
2496           unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2497           unpacked_bytes_left = unpacked_idx + 1;
2498 	}
2499     }
2500   else
2501     {
2502       int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2503 
2504       src_idx = unpacked_idx = 0;
2505       unusedLS = bit_offset;
2506       accumSize = 0;
2507 
2508       if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2509         sign = ~0;
2510     }
2511 
2512   accum = 0;
2513   while (src_bytes_left > 0)
2514     {
2515       /* Mask for removing bits of the next source byte that are not
2516          part of the value.  */
2517       unsigned int unusedMSMask =
2518         (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2519         1;
2520       /* Sign-extend bits for this byte.  */
2521       unsigned int signMask = sign & ~unusedMSMask;
2522 
2523       accum |=
2524         (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2525       accumSize += HOST_CHAR_BIT - unusedLS;
2526       if (accumSize >= HOST_CHAR_BIT)
2527         {
2528           unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2529           accumSize -= HOST_CHAR_BIT;
2530           accum >>= HOST_CHAR_BIT;
2531           unpacked_bytes_left -= 1;
2532           unpacked_idx += delta;
2533         }
2534       srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2535       unusedLS = 0;
2536       src_bytes_left -= 1;
2537       src_idx += delta;
2538     }
2539   while (unpacked_bytes_left > 0)
2540     {
2541       accum |= sign << accumSize;
2542       unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2543       accumSize -= HOST_CHAR_BIT;
2544       if (accumSize < 0)
2545 	accumSize = 0;
2546       accum >>= HOST_CHAR_BIT;
2547       unpacked_bytes_left -= 1;
2548       unpacked_idx += delta;
2549     }
2550 }
2551 
2552 /* Create a new value of type TYPE from the contents of OBJ starting
2553    at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2554    proceeding for BIT_SIZE bits.  If OBJ is an lval in memory, then
2555    assigning through the result will set the field fetched from.
2556    VALADDR is ignored unless OBJ is NULL, in which case,
2557    VALADDR+OFFSET must address the start of storage containing the
2558    packed value.  The value returned  in this case is never an lval.
2559    Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT.  */
2560 
2561 struct value *
2562 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2563 				long offset, int bit_offset, int bit_size,
2564                                 struct type *type)
2565 {
2566   struct value *v;
2567   const gdb_byte *src;                /* First byte containing data to unpack */
2568   gdb_byte *unpacked;
2569   const int is_scalar = is_scalar_type (type);
2570   const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2571   gdb_byte *staging = NULL;
2572   int staging_len = 0;
2573   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2574 
2575   type = ada_check_typedef (type);
2576 
2577   if (obj == NULL)
2578     src = valaddr + offset;
2579   else
2580     src = value_contents (obj) + offset;
2581 
2582   if (is_dynamic_type (type))
2583     {
2584       /* The length of TYPE might by dynamic, so we need to resolve
2585 	 TYPE in order to know its actual size, which we then use
2586 	 to create the contents buffer of the value we return.
2587 	 The difficulty is that the data containing our object is
2588 	 packed, and therefore maybe not at a byte boundary.  So, what
2589 	 we do, is unpack the data into a byte-aligned buffer, and then
2590 	 use that buffer as our object's value for resolving the type.  */
2591       staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2592       staging = (gdb_byte *) malloc (staging_len);
2593       make_cleanup (xfree, staging);
2594 
2595       ada_unpack_from_contents (src, bit_offset, bit_size,
2596 			        staging, staging_len,
2597 				is_big_endian, has_negatives (type),
2598 				is_scalar);
2599       type = resolve_dynamic_type (type, staging, 0);
2600       if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2601 	{
2602 	  /* This happens when the length of the object is dynamic,
2603 	     and is actually smaller than the space reserved for it.
2604 	     For instance, in an array of variant records, the bit_size
2605 	     we're given is the array stride, which is constant and
2606 	     normally equal to the maximum size of its element.
2607 	     But, in reality, each element only actually spans a portion
2608 	     of that stride.  */
2609 	  bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2610 	}
2611     }
2612 
2613   if (obj == NULL)
2614     {
2615       v = allocate_value (type);
2616       src = valaddr + offset;
2617     }
2618   else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2619     {
2620       int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2621       gdb_byte *buf;
2622 
2623       v = value_at (type, value_address (obj) + offset);
2624       buf = (gdb_byte *) alloca (src_len);
2625       read_memory (value_address (v), buf, src_len);
2626       src = buf;
2627     }
2628   else
2629     {
2630       v = allocate_value (type);
2631       src = value_contents (obj) + offset;
2632     }
2633 
2634   if (obj != NULL)
2635     {
2636       long new_offset = offset;
2637 
2638       set_value_component_location (v, obj);
2639       set_value_bitpos (v, bit_offset + value_bitpos (obj));
2640       set_value_bitsize (v, bit_size);
2641       if (value_bitpos (v) >= HOST_CHAR_BIT)
2642         {
2643 	  ++new_offset;
2644           set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2645         }
2646       set_value_offset (v, new_offset);
2647 
2648       /* Also set the parent value.  This is needed when trying to
2649 	 assign a new value (in inferior memory).  */
2650       set_value_parent (v, obj);
2651     }
2652   else
2653     set_value_bitsize (v, bit_size);
2654   unpacked = value_contents_writeable (v);
2655 
2656   if (bit_size == 0)
2657     {
2658       memset (unpacked, 0, TYPE_LENGTH (type));
2659       do_cleanups (old_chain);
2660       return v;
2661     }
2662 
2663   if (staging != NULL && staging_len == TYPE_LENGTH (type))
2664     {
2665       /* Small short-cut: If we've unpacked the data into a buffer
2666 	 of the same size as TYPE's length, then we can reuse that,
2667 	 instead of doing the unpacking again.  */
2668       memcpy (unpacked, staging, staging_len);
2669     }
2670   else
2671     ada_unpack_from_contents (src, bit_offset, bit_size,
2672 			      unpacked, TYPE_LENGTH (type),
2673 			      is_big_endian, has_negatives (type), is_scalar);
2674 
2675   do_cleanups (old_chain);
2676   return v;
2677 }
2678 
2679 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2680    TARGET, starting at bit offset TARG_OFFSET.  SOURCE and TARGET must
2681    not overlap.  */
2682 static void
2683 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2684 	   int src_offset, int n, int bits_big_endian_p)
2685 {
2686   unsigned int accum, mask;
2687   int accum_bits, chunk_size;
2688 
2689   target += targ_offset / HOST_CHAR_BIT;
2690   targ_offset %= HOST_CHAR_BIT;
2691   source += src_offset / HOST_CHAR_BIT;
2692   src_offset %= HOST_CHAR_BIT;
2693   if (bits_big_endian_p)
2694     {
2695       accum = (unsigned char) *source;
2696       source += 1;
2697       accum_bits = HOST_CHAR_BIT - src_offset;
2698 
2699       while (n > 0)
2700         {
2701           int unused_right;
2702 
2703           accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2704           accum_bits += HOST_CHAR_BIT;
2705           source += 1;
2706           chunk_size = HOST_CHAR_BIT - targ_offset;
2707           if (chunk_size > n)
2708             chunk_size = n;
2709           unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2710           mask = ((1 << chunk_size) - 1) << unused_right;
2711           *target =
2712             (*target & ~mask)
2713             | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2714           n -= chunk_size;
2715           accum_bits -= chunk_size;
2716           target += 1;
2717           targ_offset = 0;
2718         }
2719     }
2720   else
2721     {
2722       accum = (unsigned char) *source >> src_offset;
2723       source += 1;
2724       accum_bits = HOST_CHAR_BIT - src_offset;
2725 
2726       while (n > 0)
2727         {
2728           accum = accum + ((unsigned char) *source << accum_bits);
2729           accum_bits += HOST_CHAR_BIT;
2730           source += 1;
2731           chunk_size = HOST_CHAR_BIT - targ_offset;
2732           if (chunk_size > n)
2733             chunk_size = n;
2734           mask = ((1 << chunk_size) - 1) << targ_offset;
2735           *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2736           n -= chunk_size;
2737           accum_bits -= chunk_size;
2738           accum >>= chunk_size;
2739           target += 1;
2740           targ_offset = 0;
2741         }
2742     }
2743 }
2744 
2745 /* Store the contents of FROMVAL into the location of TOVAL.
2746    Return a new value with the location of TOVAL and contents of
2747    FROMVAL.   Handles assignment into packed fields that have
2748    floating-point or non-scalar types.  */
2749 
2750 static struct value *
2751 ada_value_assign (struct value *toval, struct value *fromval)
2752 {
2753   struct type *type = value_type (toval);
2754   int bits = value_bitsize (toval);
2755 
2756   toval = ada_coerce_ref (toval);
2757   fromval = ada_coerce_ref (fromval);
2758 
2759   if (ada_is_direct_array_type (value_type (toval)))
2760     toval = ada_coerce_to_simple_array (toval);
2761   if (ada_is_direct_array_type (value_type (fromval)))
2762     fromval = ada_coerce_to_simple_array (fromval);
2763 
2764   if (!deprecated_value_modifiable (toval))
2765     error (_("Left operand of assignment is not a modifiable lvalue."));
2766 
2767   if (VALUE_LVAL (toval) == lval_memory
2768       && bits > 0
2769       && (TYPE_CODE (type) == TYPE_CODE_FLT
2770           || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2771     {
2772       int len = (value_bitpos (toval)
2773 		 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2774       int from_size;
2775       gdb_byte *buffer = (gdb_byte *) alloca (len);
2776       struct value *val;
2777       CORE_ADDR to_addr = value_address (toval);
2778 
2779       if (TYPE_CODE (type) == TYPE_CODE_FLT)
2780         fromval = value_cast (type, fromval);
2781 
2782       read_memory (to_addr, buffer, len);
2783       from_size = value_bitsize (fromval);
2784       if (from_size == 0)
2785 	from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2786       if (gdbarch_bits_big_endian (get_type_arch (type)))
2787         move_bits (buffer, value_bitpos (toval),
2788 		   value_contents (fromval), from_size - bits, bits, 1);
2789       else
2790         move_bits (buffer, value_bitpos (toval),
2791 		   value_contents (fromval), 0, bits, 0);
2792       write_memory_with_notification (to_addr, buffer, len);
2793 
2794       val = value_copy (toval);
2795       memcpy (value_contents_raw (val), value_contents (fromval),
2796               TYPE_LENGTH (type));
2797       deprecated_set_value_type (val, type);
2798 
2799       return val;
2800     }
2801 
2802   return value_assign (toval, fromval);
2803 }
2804 
2805 
2806 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2807    CONTAINER, assign the contents of VAL to COMPONENTS's place in
2808    CONTAINER.  Modifies the VALUE_CONTENTS of CONTAINER only, not
2809    COMPONENT, and not the inferior's memory.  The current contents
2810    of COMPONENT are ignored.
2811 
2812    Although not part of the initial design, this function also works
2813    when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2814    had a null address, and COMPONENT had an address which is equal to
2815    its offset inside CONTAINER.  */
2816 
2817 static void
2818 value_assign_to_component (struct value *container, struct value *component,
2819 			   struct value *val)
2820 {
2821   LONGEST offset_in_container =
2822     (LONGEST)  (value_address (component) - value_address (container));
2823   int bit_offset_in_container =
2824     value_bitpos (component) - value_bitpos (container);
2825   int bits;
2826 
2827   val = value_cast (value_type (component), val);
2828 
2829   if (value_bitsize (component) == 0)
2830     bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2831   else
2832     bits = value_bitsize (component);
2833 
2834   if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2835     move_bits (value_contents_writeable (container) + offset_in_container,
2836 	       value_bitpos (container) + bit_offset_in_container,
2837 	       value_contents (val),
2838 	       TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2839 	       bits, 1);
2840   else
2841     move_bits (value_contents_writeable (container) + offset_in_container,
2842 	       value_bitpos (container) + bit_offset_in_container,
2843 	       value_contents (val), 0, bits, 0);
2844 }
2845 
2846 /* The value of the element of array ARR at the ARITY indices given in IND.
2847    ARR may be either a simple array, GNAT array descriptor, or pointer
2848    thereto.  */
2849 
2850 struct value *
2851 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2852 {
2853   int k;
2854   struct value *elt;
2855   struct type *elt_type;
2856 
2857   elt = ada_coerce_to_simple_array (arr);
2858 
2859   elt_type = ada_check_typedef (value_type (elt));
2860   if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2861       && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2862     return value_subscript_packed (elt, arity, ind);
2863 
2864   for (k = 0; k < arity; k += 1)
2865     {
2866       if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2867         error (_("too many subscripts (%d expected)"), k);
2868       elt = value_subscript (elt, pos_atr (ind[k]));
2869     }
2870   return elt;
2871 }
2872 
2873 /* Assuming ARR is a pointer to a GDB array, the value of the element
2874    of *ARR at the ARITY indices given in IND.
2875    Does not read the entire array into memory.
2876 
2877    Note: Unlike what one would expect, this function is used instead of
2878    ada_value_subscript for basically all non-packed array types.  The reason
2879    for this is that a side effect of doing our own pointer arithmetics instead
2880    of relying on value_subscript is that there is no implicit typedef peeling.
2881    This is important for arrays of array accesses, where it allows us to
2882    preserve the fact that the array's element is an array access, where the
2883    access part os encoded in a typedef layer.  */
2884 
2885 static struct value *
2886 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2887 {
2888   int k;
2889   struct value *array_ind = ada_value_ind (arr);
2890   struct type *type
2891     = check_typedef (value_enclosing_type (array_ind));
2892 
2893   if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2894       && TYPE_FIELD_BITSIZE (type, 0) > 0)
2895     return value_subscript_packed (array_ind, arity, ind);
2896 
2897   for (k = 0; k < arity; k += 1)
2898     {
2899       LONGEST lwb, upb;
2900       struct value *lwb_value;
2901 
2902       if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2903         error (_("too many subscripts (%d expected)"), k);
2904       arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2905                         value_copy (arr));
2906       get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2907       lwb_value = value_from_longest (value_type(ind[k]), lwb);
2908       arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2909       type = TYPE_TARGET_TYPE (type);
2910     }
2911 
2912   return value_ind (arr);
2913 }
2914 
2915 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2916    actual type of ARRAY_PTR is ignored), returns the Ada slice of
2917    HIGH'Pos-LOW'Pos+1 elements starting at index LOW.  The lower bound of
2918    this array is LOW, as per Ada rules.  */
2919 static struct value *
2920 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2921                           int low, int high)
2922 {
2923   struct type *type0 = ada_check_typedef (type);
2924   struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2925   struct type *index_type
2926     = create_static_range_type (NULL, base_index_type, low, high);
2927   struct type *slice_type =
2928     create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2929   int base_low =  ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2930   LONGEST base_low_pos, low_pos;
2931   CORE_ADDR base;
2932 
2933   if (!discrete_position (base_index_type, low, &low_pos)
2934       || !discrete_position (base_index_type, base_low, &base_low_pos))
2935     {
2936       warning (_("unable to get positions in slice, use bounds instead"));
2937       low_pos = low;
2938       base_low_pos = base_low;
2939     }
2940 
2941   base = value_as_address (array_ptr)
2942     + ((low_pos - base_low_pos)
2943        * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2944   return value_at_lazy (slice_type, base);
2945 }
2946 
2947 
2948 static struct value *
2949 ada_value_slice (struct value *array, int low, int high)
2950 {
2951   struct type *type = ada_check_typedef (value_type (array));
2952   struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2953   struct type *index_type
2954     = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2955   struct type *slice_type =
2956     create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2957   LONGEST low_pos, high_pos;
2958 
2959   if (!discrete_position (base_index_type, low, &low_pos)
2960       || !discrete_position (base_index_type, high, &high_pos))
2961     {
2962       warning (_("unable to get positions in slice, use bounds instead"));
2963       low_pos = low;
2964       high_pos = high;
2965     }
2966 
2967   return value_cast (slice_type,
2968 		     value_slice (array, low, high_pos - low_pos + 1));
2969 }
2970 
2971 /* If type is a record type in the form of a standard GNAT array
2972    descriptor, returns the number of dimensions for type.  If arr is a
2973    simple array, returns the number of "array of"s that prefix its
2974    type designation.  Otherwise, returns 0.  */
2975 
2976 int
2977 ada_array_arity (struct type *type)
2978 {
2979   int arity;
2980 
2981   if (type == NULL)
2982     return 0;
2983 
2984   type = desc_base_type (type);
2985 
2986   arity = 0;
2987   if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2988     return desc_arity (desc_bounds_type (type));
2989   else
2990     while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2991       {
2992         arity += 1;
2993         type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2994       }
2995 
2996   return arity;
2997 }
2998 
2999 /* If TYPE is a record type in the form of a standard GNAT array
3000    descriptor or a simple array type, returns the element type for
3001    TYPE after indexing by NINDICES indices, or by all indices if
3002    NINDICES is -1.  Otherwise, returns NULL.  */
3003 
3004 struct type *
3005 ada_array_element_type (struct type *type, int nindices)
3006 {
3007   type = desc_base_type (type);
3008 
3009   if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3010     {
3011       int k;
3012       struct type *p_array_type;
3013 
3014       p_array_type = desc_data_target_type (type);
3015 
3016       k = ada_array_arity (type);
3017       if (k == 0)
3018         return NULL;
3019 
3020       /* Initially p_array_type = elt_type(*)[]...(k times)...[].  */
3021       if (nindices >= 0 && k > nindices)
3022         k = nindices;
3023       while (k > 0 && p_array_type != NULL)
3024         {
3025           p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3026           k -= 1;
3027         }
3028       return p_array_type;
3029     }
3030   else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3031     {
3032       while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3033         {
3034           type = TYPE_TARGET_TYPE (type);
3035           nindices -= 1;
3036         }
3037       return type;
3038     }
3039 
3040   return NULL;
3041 }
3042 
3043 /* The type of nth index in arrays of given type (n numbering from 1).
3044    Does not examine memory.  Throws an error if N is invalid or TYPE
3045    is not an array type.  NAME is the name of the Ada attribute being
3046    evaluated ('range, 'first, 'last, or 'length); it is used in building
3047    the error message.  */
3048 
3049 static struct type *
3050 ada_index_type (struct type *type, int n, const char *name)
3051 {
3052   struct type *result_type;
3053 
3054   type = desc_base_type (type);
3055 
3056   if (n < 0 || n > ada_array_arity (type))
3057     error (_("invalid dimension number to '%s"), name);
3058 
3059   if (ada_is_simple_array_type (type))
3060     {
3061       int i;
3062 
3063       for (i = 1; i < n; i += 1)
3064         type = TYPE_TARGET_TYPE (type);
3065       result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3066       /* FIXME: The stabs type r(0,0);bound;bound in an array type
3067          has a target type of TYPE_CODE_UNDEF.  We compensate here, but
3068          perhaps stabsread.c would make more sense.  */
3069       if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3070         result_type = NULL;
3071     }
3072   else
3073     {
3074       result_type = desc_index_type (desc_bounds_type (type), n);
3075       if (result_type == NULL)
3076 	error (_("attempt to take bound of something that is not an array"));
3077     }
3078 
3079   return result_type;
3080 }
3081 
3082 /* Given that arr is an array type, returns the lower bound of the
3083    Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3084    WHICH is 1.  This returns bounds 0 .. -1 if ARR_TYPE is an
3085    array-descriptor type.  It works for other arrays with bounds supplied
3086    by run-time quantities other than discriminants.  */
3087 
3088 static LONGEST
3089 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3090 {
3091   struct type *type, *index_type_desc, *index_type;
3092   int i;
3093 
3094   gdb_assert (which == 0 || which == 1);
3095 
3096   if (ada_is_constrained_packed_array_type (arr_type))
3097     arr_type = decode_constrained_packed_array_type (arr_type);
3098 
3099   if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3100     return (LONGEST) - which;
3101 
3102   if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3103     type = TYPE_TARGET_TYPE (arr_type);
3104   else
3105     type = arr_type;
3106 
3107   if (TYPE_FIXED_INSTANCE (type))
3108     {
3109       /* The array has already been fixed, so we do not need to
3110 	 check the parallel ___XA type again.  That encoding has
3111 	 already been applied, so ignore it now.  */
3112       index_type_desc = NULL;
3113     }
3114   else
3115     {
3116       index_type_desc = ada_find_parallel_type (type, "___XA");
3117       ada_fixup_array_indexes_type (index_type_desc);
3118     }
3119 
3120   if (index_type_desc != NULL)
3121     index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3122 				      NULL);
3123   else
3124     {
3125       struct type *elt_type = check_typedef (type);
3126 
3127       for (i = 1; i < n; i++)
3128 	elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3129 
3130       index_type = TYPE_INDEX_TYPE (elt_type);
3131     }
3132 
3133   return
3134     (LONGEST) (which == 0
3135                ? ada_discrete_type_low_bound (index_type)
3136                : ada_discrete_type_high_bound (index_type));
3137 }
3138 
3139 /* Given that arr is an array value, returns the lower bound of the
3140    nth index (numbering from 1) if WHICH is 0, and the upper bound if
3141    WHICH is 1.  This routine will also work for arrays with bounds
3142    supplied by run-time quantities other than discriminants.  */
3143 
3144 static LONGEST
3145 ada_array_bound (struct value *arr, int n, int which)
3146 {
3147   struct type *arr_type;
3148 
3149   if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3150     arr = value_ind (arr);
3151   arr_type = value_enclosing_type (arr);
3152 
3153   if (ada_is_constrained_packed_array_type (arr_type))
3154     return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3155   else if (ada_is_simple_array_type (arr_type))
3156     return ada_array_bound_from_type (arr_type, n, which);
3157   else
3158     return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3159 }
3160 
3161 /* Given that arr is an array value, returns the length of the
3162    nth index.  This routine will also work for arrays with bounds
3163    supplied by run-time quantities other than discriminants.
3164    Does not work for arrays indexed by enumeration types with representation
3165    clauses at the moment.  */
3166 
3167 static LONGEST
3168 ada_array_length (struct value *arr, int n)
3169 {
3170   struct type *arr_type, *index_type;
3171   int low, high;
3172 
3173   if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3174     arr = value_ind (arr);
3175   arr_type = value_enclosing_type (arr);
3176 
3177   if (ada_is_constrained_packed_array_type (arr_type))
3178     return ada_array_length (decode_constrained_packed_array (arr), n);
3179 
3180   if (ada_is_simple_array_type (arr_type))
3181     {
3182       low = ada_array_bound_from_type (arr_type, n, 0);
3183       high = ada_array_bound_from_type (arr_type, n, 1);
3184     }
3185   else
3186     {
3187       low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3188       high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3189     }
3190 
3191   arr_type = check_typedef (arr_type);
3192   index_type = TYPE_INDEX_TYPE (arr_type);
3193   if (index_type != NULL)
3194     {
3195       struct type *base_type;
3196       if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3197 	base_type = TYPE_TARGET_TYPE (index_type);
3198       else
3199 	base_type = index_type;
3200 
3201       low = pos_atr (value_from_longest (base_type, low));
3202       high = pos_atr (value_from_longest (base_type, high));
3203     }
3204   return high - low + 1;
3205 }
3206 
3207 /* An empty array whose type is that of ARR_TYPE (an array type),
3208    with bounds LOW to LOW-1.  */
3209 
3210 static struct value *
3211 empty_array (struct type *arr_type, int low)
3212 {
3213   struct type *arr_type0 = ada_check_typedef (arr_type);
3214   struct type *index_type
3215     = create_static_range_type
3216         (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),  low, low - 1);
3217   struct type *elt_type = ada_array_element_type (arr_type0, 1);
3218 
3219   return allocate_value (create_array_type (NULL, elt_type, index_type));
3220 }
3221 
3222 
3223                                 /* Name resolution */
3224 
3225 /* The "decoded" name for the user-definable Ada operator corresponding
3226    to OP.  */
3227 
3228 static const char *
3229 ada_decoded_op_name (enum exp_opcode op)
3230 {
3231   int i;
3232 
3233   for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3234     {
3235       if (ada_opname_table[i].op == op)
3236         return ada_opname_table[i].decoded;
3237     }
3238   error (_("Could not find operator name for opcode"));
3239 }
3240 
3241 
3242 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3243    references (marked by OP_VAR_VALUE nodes in which the symbol has an
3244    undefined namespace) and converts operators that are
3245    user-defined into appropriate function calls.  If CONTEXT_TYPE is
3246    non-null, it provides a preferred result type [at the moment, only
3247    type void has any effect---causing procedures to be preferred over
3248    functions in calls].  A null CONTEXT_TYPE indicates that a non-void
3249    return type is preferred.  May change (expand) *EXP.  */
3250 
3251 static void
3252 resolve (struct expression **expp, int void_context_p)
3253 {
3254   struct type *context_type = NULL;
3255   int pc = 0;
3256 
3257   if (void_context_p)
3258     context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3259 
3260   resolve_subexp (expp, &pc, 1, context_type);
3261 }
3262 
3263 /* Resolve the operator of the subexpression beginning at
3264    position *POS of *EXPP.  "Resolving" consists of replacing
3265    the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3266    with their resolutions, replacing built-in operators with
3267    function calls to user-defined operators, where appropriate, and,
3268    when DEPROCEDURE_P is non-zero, converting function-valued variables
3269    into parameterless calls.  May expand *EXPP.  The CONTEXT_TYPE functions
3270    are as in ada_resolve, above.  */
3271 
3272 static struct value *
3273 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3274                 struct type *context_type)
3275 {
3276   int pc = *pos;
3277   int i;
3278   struct expression *exp;       /* Convenience: == *expp.  */
3279   enum exp_opcode op = (*expp)->elts[pc].opcode;
3280   struct value **argvec;        /* Vector of operand types (alloca'ed).  */
3281   int nargs;                    /* Number of operands.  */
3282   int oplen;
3283 
3284   argvec = NULL;
3285   nargs = 0;
3286   exp = *expp;
3287 
3288   /* Pass one: resolve operands, saving their types and updating *pos,
3289      if needed.  */
3290   switch (op)
3291     {
3292     case OP_FUNCALL:
3293       if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3294           && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3295         *pos += 7;
3296       else
3297         {
3298           *pos += 3;
3299           resolve_subexp (expp, pos, 0, NULL);
3300         }
3301       nargs = longest_to_int (exp->elts[pc + 1].longconst);
3302       break;
3303 
3304     case UNOP_ADDR:
3305       *pos += 1;
3306       resolve_subexp (expp, pos, 0, NULL);
3307       break;
3308 
3309     case UNOP_QUAL:
3310       *pos += 3;
3311       resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3312       break;
3313 
3314     case OP_ATR_MODULUS:
3315     case OP_ATR_SIZE:
3316     case OP_ATR_TAG:
3317     case OP_ATR_FIRST:
3318     case OP_ATR_LAST:
3319     case OP_ATR_LENGTH:
3320     case OP_ATR_POS:
3321     case OP_ATR_VAL:
3322     case OP_ATR_MIN:
3323     case OP_ATR_MAX:
3324     case TERNOP_IN_RANGE:
3325     case BINOP_IN_BOUNDS:
3326     case UNOP_IN_RANGE:
3327     case OP_AGGREGATE:
3328     case OP_OTHERS:
3329     case OP_CHOICES:
3330     case OP_POSITIONAL:
3331     case OP_DISCRETE_RANGE:
3332     case OP_NAME:
3333       ada_forward_operator_length (exp, pc, &oplen, &nargs);
3334       *pos += oplen;
3335       break;
3336 
3337     case BINOP_ASSIGN:
3338       {
3339         struct value *arg1;
3340 
3341         *pos += 1;
3342         arg1 = resolve_subexp (expp, pos, 0, NULL);
3343         if (arg1 == NULL)
3344           resolve_subexp (expp, pos, 1, NULL);
3345         else
3346           resolve_subexp (expp, pos, 1, value_type (arg1));
3347         break;
3348       }
3349 
3350     case UNOP_CAST:
3351       *pos += 3;
3352       nargs = 1;
3353       break;
3354 
3355     case BINOP_ADD:
3356     case BINOP_SUB:
3357     case BINOP_MUL:
3358     case BINOP_DIV:
3359     case BINOP_REM:
3360     case BINOP_MOD:
3361     case BINOP_EXP:
3362     case BINOP_CONCAT:
3363     case BINOP_LOGICAL_AND:
3364     case BINOP_LOGICAL_OR:
3365     case BINOP_BITWISE_AND:
3366     case BINOP_BITWISE_IOR:
3367     case BINOP_BITWISE_XOR:
3368 
3369     case BINOP_EQUAL:
3370     case BINOP_NOTEQUAL:
3371     case BINOP_LESS:
3372     case BINOP_GTR:
3373     case BINOP_LEQ:
3374     case BINOP_GEQ:
3375 
3376     case BINOP_REPEAT:
3377     case BINOP_SUBSCRIPT:
3378     case BINOP_COMMA:
3379       *pos += 1;
3380       nargs = 2;
3381       break;
3382 
3383     case UNOP_NEG:
3384     case UNOP_PLUS:
3385     case UNOP_LOGICAL_NOT:
3386     case UNOP_ABS:
3387     case UNOP_IND:
3388       *pos += 1;
3389       nargs = 1;
3390       break;
3391 
3392     case OP_LONG:
3393     case OP_DOUBLE:
3394     case OP_VAR_VALUE:
3395       *pos += 4;
3396       break;
3397 
3398     case OP_TYPE:
3399     case OP_BOOL:
3400     case OP_LAST:
3401     case OP_INTERNALVAR:
3402       *pos += 3;
3403       break;
3404 
3405     case UNOP_MEMVAL:
3406       *pos += 3;
3407       nargs = 1;
3408       break;
3409 
3410     case OP_REGISTER:
3411       *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3412       break;
3413 
3414     case STRUCTOP_STRUCT:
3415       *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3416       nargs = 1;
3417       break;
3418 
3419     case TERNOP_SLICE:
3420       *pos += 1;
3421       nargs = 3;
3422       break;
3423 
3424     case OP_STRING:
3425       break;
3426 
3427     default:
3428       error (_("Unexpected operator during name resolution"));
3429     }
3430 
3431   argvec = XALLOCAVEC (struct value *, nargs + 1);
3432   for (i = 0; i < nargs; i += 1)
3433     argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3434   argvec[i] = NULL;
3435   exp = *expp;
3436 
3437   /* Pass two: perform any resolution on principal operator.  */
3438   switch (op)
3439     {
3440     default:
3441       break;
3442 
3443     case OP_VAR_VALUE:
3444       if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3445         {
3446           struct block_symbol *candidates;
3447           int n_candidates;
3448 
3449           n_candidates =
3450             ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3451                                     (exp->elts[pc + 2].symbol),
3452                                     exp->elts[pc + 1].block, VAR_DOMAIN,
3453                                     &candidates);
3454 
3455           if (n_candidates > 1)
3456             {
3457               /* Types tend to get re-introduced locally, so if there
3458                  are any local symbols that are not types, first filter
3459                  out all types.  */
3460               int j;
3461               for (j = 0; j < n_candidates; j += 1)
3462                 switch (SYMBOL_CLASS (candidates[j].symbol))
3463                   {
3464                   case LOC_REGISTER:
3465                   case LOC_ARG:
3466                   case LOC_REF_ARG:
3467                   case LOC_REGPARM_ADDR:
3468                   case LOC_LOCAL:
3469                   case LOC_COMPUTED:
3470                     goto FoundNonType;
3471                   default:
3472                     break;
3473                   }
3474             FoundNonType:
3475               if (j < n_candidates)
3476                 {
3477                   j = 0;
3478                   while (j < n_candidates)
3479                     {
3480                       if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3481                         {
3482                           candidates[j] = candidates[n_candidates - 1];
3483                           n_candidates -= 1;
3484                         }
3485                       else
3486                         j += 1;
3487                     }
3488                 }
3489             }
3490 
3491           if (n_candidates == 0)
3492             error (_("No definition found for %s"),
3493                    SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3494           else if (n_candidates == 1)
3495             i = 0;
3496           else if (deprocedure_p
3497                    && !is_nonfunction (candidates, n_candidates))
3498             {
3499               i = ada_resolve_function
3500                 (candidates, n_candidates, NULL, 0,
3501                  SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3502                  context_type);
3503               if (i < 0)
3504                 error (_("Could not find a match for %s"),
3505                        SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3506             }
3507           else
3508             {
3509               printf_filtered (_("Multiple matches for %s\n"),
3510                                SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3511               user_select_syms (candidates, n_candidates, 1);
3512               i = 0;
3513             }
3514 
3515           exp->elts[pc + 1].block = candidates[i].block;
3516           exp->elts[pc + 2].symbol = candidates[i].symbol;
3517           if (innermost_block == NULL
3518               || contained_in (candidates[i].block, innermost_block))
3519             innermost_block = candidates[i].block;
3520         }
3521 
3522       if (deprocedure_p
3523           && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3524               == TYPE_CODE_FUNC))
3525         {
3526           replace_operator_with_call (expp, pc, 0, 0,
3527                                       exp->elts[pc + 2].symbol,
3528                                       exp->elts[pc + 1].block);
3529           exp = *expp;
3530         }
3531       break;
3532 
3533     case OP_FUNCALL:
3534       {
3535         if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3536             && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3537           {
3538             struct block_symbol *candidates;
3539             int n_candidates;
3540 
3541             n_candidates =
3542               ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3543                                       (exp->elts[pc + 5].symbol),
3544                                       exp->elts[pc + 4].block, VAR_DOMAIN,
3545                                       &candidates);
3546             if (n_candidates == 1)
3547               i = 0;
3548             else
3549               {
3550                 i = ada_resolve_function
3551                   (candidates, n_candidates,
3552                    argvec, nargs,
3553                    SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3554                    context_type);
3555                 if (i < 0)
3556                   error (_("Could not find a match for %s"),
3557                          SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3558               }
3559 
3560             exp->elts[pc + 4].block = candidates[i].block;
3561             exp->elts[pc + 5].symbol = candidates[i].symbol;
3562             if (innermost_block == NULL
3563                 || contained_in (candidates[i].block, innermost_block))
3564               innermost_block = candidates[i].block;
3565           }
3566       }
3567       break;
3568     case BINOP_ADD:
3569     case BINOP_SUB:
3570     case BINOP_MUL:
3571     case BINOP_DIV:
3572     case BINOP_REM:
3573     case BINOP_MOD:
3574     case BINOP_CONCAT:
3575     case BINOP_BITWISE_AND:
3576     case BINOP_BITWISE_IOR:
3577     case BINOP_BITWISE_XOR:
3578     case BINOP_EQUAL:
3579     case BINOP_NOTEQUAL:
3580     case BINOP_LESS:
3581     case BINOP_GTR:
3582     case BINOP_LEQ:
3583     case BINOP_GEQ:
3584     case BINOP_EXP:
3585     case UNOP_NEG:
3586     case UNOP_PLUS:
3587     case UNOP_LOGICAL_NOT:
3588     case UNOP_ABS:
3589       if (possible_user_operator_p (op, argvec))
3590         {
3591           struct block_symbol *candidates;
3592           int n_candidates;
3593 
3594           n_candidates =
3595             ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3596                                     (struct block *) NULL, VAR_DOMAIN,
3597                                     &candidates);
3598           i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3599                                     ada_decoded_op_name (op), NULL);
3600           if (i < 0)
3601             break;
3602 
3603 	  replace_operator_with_call (expp, pc, nargs, 1,
3604 				      candidates[i].symbol,
3605 				      candidates[i].block);
3606           exp = *expp;
3607         }
3608       break;
3609 
3610     case OP_TYPE:
3611     case OP_REGISTER:
3612       return NULL;
3613     }
3614 
3615   *pos = pc;
3616   return evaluate_subexp_type (exp, pos);
3617 }
3618 
3619 /* Return non-zero if formal type FTYPE matches actual type ATYPE.  If
3620    MAY_DEREF is non-zero, the formal may be a pointer and the actual
3621    a non-pointer.  */
3622 /* The term "match" here is rather loose.  The match is heuristic and
3623    liberal.  */
3624 
3625 static int
3626 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3627 {
3628   ftype = ada_check_typedef (ftype);
3629   atype = ada_check_typedef (atype);
3630 
3631   if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632     ftype = TYPE_TARGET_TYPE (ftype);
3633   if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634     atype = TYPE_TARGET_TYPE (atype);
3635 
3636   switch (TYPE_CODE (ftype))
3637     {
3638     default:
3639       return TYPE_CODE (ftype) == TYPE_CODE (atype);
3640     case TYPE_CODE_PTR:
3641       if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3642         return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643                                TYPE_TARGET_TYPE (atype), 0);
3644       else
3645         return (may_deref
3646                 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3647     case TYPE_CODE_INT:
3648     case TYPE_CODE_ENUM:
3649     case TYPE_CODE_RANGE:
3650       switch (TYPE_CODE (atype))
3651         {
3652         case TYPE_CODE_INT:
3653         case TYPE_CODE_ENUM:
3654         case TYPE_CODE_RANGE:
3655           return 1;
3656         default:
3657           return 0;
3658         }
3659 
3660     case TYPE_CODE_ARRAY:
3661       return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662               || ada_is_array_descriptor_type (atype));
3663 
3664     case TYPE_CODE_STRUCT:
3665       if (ada_is_array_descriptor_type (ftype))
3666         return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667                 || ada_is_array_descriptor_type (atype));
3668       else
3669         return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670                 && !ada_is_array_descriptor_type (atype));
3671 
3672     case TYPE_CODE_UNION:
3673     case TYPE_CODE_FLT:
3674       return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3675     }
3676 }
3677 
3678 /* Return non-zero if the formals of FUNC "sufficiently match" the
3679    vector of actual argument types ACTUALS of size N_ACTUALS.  FUNC
3680    may also be an enumeral, in which case it is treated as a 0-
3681    argument function.  */
3682 
3683 static int
3684 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3685 {
3686   int i;
3687   struct type *func_type = SYMBOL_TYPE (func);
3688 
3689   if (SYMBOL_CLASS (func) == LOC_CONST
3690       && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3691     return (n_actuals == 0);
3692   else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3693     return 0;
3694 
3695   if (TYPE_NFIELDS (func_type) != n_actuals)
3696     return 0;
3697 
3698   for (i = 0; i < n_actuals; i += 1)
3699     {
3700       if (actuals[i] == NULL)
3701         return 0;
3702       else
3703         {
3704           struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3705 								   i));
3706           struct type *atype = ada_check_typedef (value_type (actuals[i]));
3707 
3708           if (!ada_type_match (ftype, atype, 1))
3709             return 0;
3710         }
3711     }
3712   return 1;
3713 }
3714 
3715 /* False iff function type FUNC_TYPE definitely does not produce a value
3716    compatible with type CONTEXT_TYPE.  Conservatively returns 1 if
3717    FUNC_TYPE is not a valid function type with a non-null return type
3718    or an enumerated type.  A null CONTEXT_TYPE indicates any non-void type.  */
3719 
3720 static int
3721 return_match (struct type *func_type, struct type *context_type)
3722 {
3723   struct type *return_type;
3724 
3725   if (func_type == NULL)
3726     return 1;
3727 
3728   if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3729     return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3730   else
3731     return_type = get_base_type (func_type);
3732   if (return_type == NULL)
3733     return 1;
3734 
3735   context_type = get_base_type (context_type);
3736 
3737   if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738     return context_type == NULL || return_type == context_type;
3739   else if (context_type == NULL)
3740     return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3741   else
3742     return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3743 }
3744 
3745 
3746 /* Returns the index in SYMS[0..NSYMS-1] that contains  the symbol for the
3747    function (if any) that matches the types of the NARGS arguments in
3748    ARGS.  If CONTEXT_TYPE is non-null and there is at least one match
3749    that returns that type, then eliminate matches that don't.  If
3750    CONTEXT_TYPE is void and there is at least one match that does not
3751    return void, eliminate all matches that do.
3752 
3753    Asks the user if there is more than one match remaining.  Returns -1
3754    if there is no such symbol or none is selected.  NAME is used
3755    solely for messages.  May re-arrange and modify SYMS in
3756    the process; the index returned is for the modified vector.  */
3757 
3758 static int
3759 ada_resolve_function (struct block_symbol syms[],
3760                       int nsyms, struct value **args, int nargs,
3761                       const char *name, struct type *context_type)
3762 {
3763   int fallback;
3764   int k;
3765   int m;                        /* Number of hits */
3766 
3767   m = 0;
3768   /* In the first pass of the loop, we only accept functions matching
3769      context_type.  If none are found, we add a second pass of the loop
3770      where every function is accepted.  */
3771   for (fallback = 0; m == 0 && fallback < 2; fallback++)
3772     {
3773       for (k = 0; k < nsyms; k += 1)
3774         {
3775           struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3776 
3777           if (ada_args_match (syms[k].symbol, args, nargs)
3778               && (fallback || return_match (type, context_type)))
3779             {
3780               syms[m] = syms[k];
3781               m += 1;
3782             }
3783         }
3784     }
3785 
3786   /* If we got multiple matches, ask the user which one to use.  Don't do this
3787      interactive thing during completion, though, as the purpose of the
3788      completion is providing a list of all possible matches.  Prompting the
3789      user to filter it down would be completely unexpected in this case.  */
3790   if (m == 0)
3791     return -1;
3792   else if (m > 1 && !parse_completion)
3793     {
3794       printf_filtered (_("Multiple matches for %s\n"), name);
3795       user_select_syms (syms, m, 1);
3796       return 0;
3797     }
3798   return 0;
3799 }
3800 
3801 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3802    in a listing of choices during disambiguation (see sort_choices, below).
3803    The idea is that overloadings of a subprogram name from the
3804    same package should sort in their source order.  We settle for ordering
3805    such symbols by their trailing number (__N  or $N).  */
3806 
3807 static int
3808 encoded_ordered_before (const char *N0, const char *N1)
3809 {
3810   if (N1 == NULL)
3811     return 0;
3812   else if (N0 == NULL)
3813     return 1;
3814   else
3815     {
3816       int k0, k1;
3817 
3818       for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3819         ;
3820       for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3821         ;
3822       if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3823           && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3824         {
3825           int n0, n1;
3826 
3827           n0 = k0;
3828           while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3829             n0 -= 1;
3830           n1 = k1;
3831           while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3832             n1 -= 1;
3833           if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834             return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3835         }
3836       return (strcmp (N0, N1) < 0);
3837     }
3838 }
3839 
3840 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3841    encoded names.  */
3842 
3843 static void
3844 sort_choices (struct block_symbol syms[], int nsyms)
3845 {
3846   int i;
3847 
3848   for (i = 1; i < nsyms; i += 1)
3849     {
3850       struct block_symbol sym = syms[i];
3851       int j;
3852 
3853       for (j = i - 1; j >= 0; j -= 1)
3854         {
3855           if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856                                       SYMBOL_LINKAGE_NAME (sym.symbol)))
3857             break;
3858           syms[j + 1] = syms[j];
3859         }
3860       syms[j + 1] = sym;
3861     }
3862 }
3863 
3864 /* Whether GDB should display formals and return types for functions in the
3865    overloads selection menu.  */
3866 static int print_signatures = 1;
3867 
3868 /* Print the signature for SYM on STREAM according to the FLAGS options.  For
3869    all but functions, the signature is just the name of the symbol.  For
3870    functions, this is the name of the function, the list of types for formals
3871    and the return type (if any).  */
3872 
3873 static void
3874 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 			    const struct type_print_options *flags)
3876 {
3877   struct type *type = SYMBOL_TYPE (sym);
3878 
3879   fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880   if (!print_signatures
3881       || type == NULL
3882       || TYPE_CODE (type) != TYPE_CODE_FUNC)
3883     return;
3884 
3885   if (TYPE_NFIELDS (type) > 0)
3886     {
3887       int i;
3888 
3889       fprintf_filtered (stream, " (");
3890       for (i = 0; i < TYPE_NFIELDS (type); ++i)
3891 	{
3892 	  if (i > 0)
3893 	    fprintf_filtered (stream, "; ");
3894 	  ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3895 			  flags);
3896 	}
3897       fprintf_filtered (stream, ")");
3898     }
3899   if (TYPE_TARGET_TYPE (type) != NULL
3900       && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3901     {
3902       fprintf_filtered (stream, " return ");
3903       ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3904     }
3905 }
3906 
3907 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908    by asking the user (if necessary), returning the number selected,
3909    and setting the first elements of SYMS items.  Error if no symbols
3910    selected.  */
3911 
3912 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3913    to be re-integrated one of these days.  */
3914 
3915 int
3916 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3917 {
3918   int i;
3919   int *chosen = XALLOCAVEC (int , nsyms);
3920   int n_chosen;
3921   int first_choice = (max_results == 1) ? 1 : 2;
3922   const char *select_mode = multiple_symbols_select_mode ();
3923 
3924   if (max_results < 1)
3925     error (_("Request to select 0 symbols!"));
3926   if (nsyms <= 1)
3927     return nsyms;
3928 
3929   if (select_mode == multiple_symbols_cancel)
3930     error (_("\
3931 canceled because the command is ambiguous\n\
3932 See set/show multiple-symbol."));
3933 
3934   /* If select_mode is "all", then return all possible symbols.
3935      Only do that if more than one symbol can be selected, of course.
3936      Otherwise, display the menu as usual.  */
3937   if (select_mode == multiple_symbols_all && max_results > 1)
3938     return nsyms;
3939 
3940   printf_unfiltered (_("[0] cancel\n"));
3941   if (max_results > 1)
3942     printf_unfiltered (_("[1] all\n"));
3943 
3944   sort_choices (syms, nsyms);
3945 
3946   for (i = 0; i < nsyms; i += 1)
3947     {
3948       if (syms[i].symbol == NULL)
3949         continue;
3950 
3951       if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3952         {
3953           struct symtab_and_line sal =
3954             find_function_start_sal (syms[i].symbol, 1);
3955 
3956 	  printf_unfiltered ("[%d] ", i + first_choice);
3957 	  ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 				      &type_print_raw_options);
3959 	  if (sal.symtab == NULL)
3960 	    printf_unfiltered (_(" at <no source file available>:%d\n"),
3961 			       sal.line);
3962 	  else
3963 	    printf_unfiltered (_(" at %s:%d\n"),
3964 			       symtab_to_filename_for_display (sal.symtab),
3965 			       sal.line);
3966           continue;
3967         }
3968       else
3969         {
3970           int is_enumeral =
3971             (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972              && SYMBOL_TYPE (syms[i].symbol) != NULL
3973              && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3974 	  struct symtab *symtab = NULL;
3975 
3976 	  if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 	    symtab = symbol_symtab (syms[i].symbol);
3978 
3979           if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3980 	    {
3981 	      printf_unfiltered ("[%d] ", i + first_choice);
3982 	      ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 					  &type_print_raw_options);
3984 	      printf_unfiltered (_(" at %s:%d\n"),
3985 				 symtab_to_filename_for_display (symtab),
3986 				 SYMBOL_LINE (syms[i].symbol));
3987 	    }
3988           else if (is_enumeral
3989                    && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3990             {
3991               printf_unfiltered (("[%d] "), i + first_choice);
3992               ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3993                               gdb_stdout, -1, 0, &type_print_raw_options);
3994               printf_unfiltered (_("'(%s) (enumeral)\n"),
3995                                  SYMBOL_PRINT_NAME (syms[i].symbol));
3996             }
3997 	  else
3998 	    {
3999 	      printf_unfiltered ("[%d] ", i + first_choice);
4000 	      ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 					  &type_print_raw_options);
4002 
4003 	      if (symtab != NULL)
4004 		printf_unfiltered (is_enumeral
4005 				   ? _(" in %s (enumeral)\n")
4006 				   : _(" at %s:?\n"),
4007 				   symtab_to_filename_for_display (symtab));
4008 	      else
4009 		printf_unfiltered (is_enumeral
4010 				   ? _(" (enumeral)\n")
4011 				   : _(" at ?\n"));
4012 	    }
4013         }
4014     }
4015 
4016   n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4017                              "overload-choice");
4018 
4019   for (i = 0; i < n_chosen; i += 1)
4020     syms[i] = syms[chosen[i]];
4021 
4022   return n_chosen;
4023 }
4024 
4025 /* Read and validate a set of numeric choices from the user in the
4026    range 0 .. N_CHOICES-1.  Place the results in increasing
4027    order in CHOICES[0 .. N-1], and return N.
4028 
4029    The user types choices as a sequence of numbers on one line
4030    separated by blanks, encoding them as follows:
4031 
4032      + A choice of 0 means to cancel the selection, throwing an error.
4033      + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034      + The user chooses k by typing k+IS_ALL_CHOICE+1.
4035 
4036    The user is not allowed to choose more than MAX_RESULTS values.
4037 
4038    ANNOTATION_SUFFIX, if present, is used to annotate the input
4039    prompts (for use with the -f switch).  */
4040 
4041 int
4042 get_selections (int *choices, int n_choices, int max_results,
4043                 int is_all_choice, char *annotation_suffix)
4044 {
4045   char *args;
4046   char *prompt;
4047   int n_chosen;
4048   int first_choice = is_all_choice ? 2 : 1;
4049 
4050   prompt = getenv ("PS2");
4051   if (prompt == NULL)
4052     prompt = "> ";
4053 
4054   args = command_line_input (prompt, 0, annotation_suffix);
4055 
4056   if (args == NULL)
4057     error_no_arg (_("one or more choice numbers"));
4058 
4059   n_chosen = 0;
4060 
4061   /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062      order, as given in args.  Choices are validated.  */
4063   while (1)
4064     {
4065       char *args2;
4066       int choice, j;
4067 
4068       args = skip_spaces (args);
4069       if (*args == '\0' && n_chosen == 0)
4070         error_no_arg (_("one or more choice numbers"));
4071       else if (*args == '\0')
4072         break;
4073 
4074       choice = strtol (args, &args2, 10);
4075       if (args == args2 || choice < 0
4076           || choice > n_choices + first_choice - 1)
4077         error (_("Argument must be choice number"));
4078       args = args2;
4079 
4080       if (choice == 0)
4081         error (_("cancelled"));
4082 
4083       if (choice < first_choice)
4084         {
4085           n_chosen = n_choices;
4086           for (j = 0; j < n_choices; j += 1)
4087             choices[j] = j;
4088           break;
4089         }
4090       choice -= first_choice;
4091 
4092       for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4093         {
4094         }
4095 
4096       if (j < 0 || choice != choices[j])
4097         {
4098           int k;
4099 
4100           for (k = n_chosen - 1; k > j; k -= 1)
4101             choices[k + 1] = choices[k];
4102           choices[j + 1] = choice;
4103           n_chosen += 1;
4104         }
4105     }
4106 
4107   if (n_chosen > max_results)
4108     error (_("Select no more than %d of the above"), max_results);
4109 
4110   return n_chosen;
4111 }
4112 
4113 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114    on the function identified by SYM and BLOCK, and taking NARGS
4115    arguments.  Update *EXPP as needed to hold more space.  */
4116 
4117 static void
4118 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4119                             int oplen, struct symbol *sym,
4120                             const struct block *block)
4121 {
4122   /* A new expression, with 6 more elements (3 for funcall, 4 for function
4123      symbol, -oplen for operator being replaced).  */
4124   struct expression *newexp = (struct expression *)
4125     xzalloc (sizeof (struct expression)
4126              + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4127   struct expression *exp = *expp;
4128 
4129   newexp->nelts = exp->nelts + 7 - oplen;
4130   newexp->language_defn = exp->language_defn;
4131   newexp->gdbarch = exp->gdbarch;
4132   memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4133   memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4134           EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4135 
4136   newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137   newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4138 
4139   newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140   newexp->elts[pc + 4].block = block;
4141   newexp->elts[pc + 5].symbol = sym;
4142 
4143   *expp = newexp;
4144   xfree (exp);
4145 }
4146 
4147 /* Type-class predicates */
4148 
4149 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4150    or FLOAT).  */
4151 
4152 static int
4153 numeric_type_p (struct type *type)
4154 {
4155   if (type == NULL)
4156     return 0;
4157   else
4158     {
4159       switch (TYPE_CODE (type))
4160         {
4161         case TYPE_CODE_INT:
4162         case TYPE_CODE_FLT:
4163           return 1;
4164         case TYPE_CODE_RANGE:
4165           return (type == TYPE_TARGET_TYPE (type)
4166                   || numeric_type_p (TYPE_TARGET_TYPE (type)));
4167         default:
4168           return 0;
4169         }
4170     }
4171 }
4172 
4173 /* True iff TYPE is integral (an INT or RANGE of INTs).  */
4174 
4175 static int
4176 integer_type_p (struct type *type)
4177 {
4178   if (type == NULL)
4179     return 0;
4180   else
4181     {
4182       switch (TYPE_CODE (type))
4183         {
4184         case TYPE_CODE_INT:
4185           return 1;
4186         case TYPE_CODE_RANGE:
4187           return (type == TYPE_TARGET_TYPE (type)
4188                   || integer_type_p (TYPE_TARGET_TYPE (type)));
4189         default:
4190           return 0;
4191         }
4192     }
4193 }
4194 
4195 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM).  */
4196 
4197 static int
4198 scalar_type_p (struct type *type)
4199 {
4200   if (type == NULL)
4201     return 0;
4202   else
4203     {
4204       switch (TYPE_CODE (type))
4205         {
4206         case TYPE_CODE_INT:
4207         case TYPE_CODE_RANGE:
4208         case TYPE_CODE_ENUM:
4209         case TYPE_CODE_FLT:
4210           return 1;
4211         default:
4212           return 0;
4213         }
4214     }
4215 }
4216 
4217 /* True iff TYPE is discrete (INT, RANGE, ENUM).  */
4218 
4219 static int
4220 discrete_type_p (struct type *type)
4221 {
4222   if (type == NULL)
4223     return 0;
4224   else
4225     {
4226       switch (TYPE_CODE (type))
4227         {
4228         case TYPE_CODE_INT:
4229         case TYPE_CODE_RANGE:
4230         case TYPE_CODE_ENUM:
4231         case TYPE_CODE_BOOL:
4232           return 1;
4233         default:
4234           return 0;
4235         }
4236     }
4237 }
4238 
4239 /* Returns non-zero if OP with operands in the vector ARGS could be
4240    a user-defined function.  Errs on the side of pre-defined operators
4241    (i.e., result 0).  */
4242 
4243 static int
4244 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4245 {
4246   struct type *type0 =
4247     (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4248   struct type *type1 =
4249     (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4250 
4251   if (type0 == NULL)
4252     return 0;
4253 
4254   switch (op)
4255     {
4256     default:
4257       return 0;
4258 
4259     case BINOP_ADD:
4260     case BINOP_SUB:
4261     case BINOP_MUL:
4262     case BINOP_DIV:
4263       return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4264 
4265     case BINOP_REM:
4266     case BINOP_MOD:
4267     case BINOP_BITWISE_AND:
4268     case BINOP_BITWISE_IOR:
4269     case BINOP_BITWISE_XOR:
4270       return (!(integer_type_p (type0) && integer_type_p (type1)));
4271 
4272     case BINOP_EQUAL:
4273     case BINOP_NOTEQUAL:
4274     case BINOP_LESS:
4275     case BINOP_GTR:
4276     case BINOP_LEQ:
4277     case BINOP_GEQ:
4278       return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4279 
4280     case BINOP_CONCAT:
4281       return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4282 
4283     case BINOP_EXP:
4284       return (!(numeric_type_p (type0) && integer_type_p (type1)));
4285 
4286     case UNOP_NEG:
4287     case UNOP_PLUS:
4288     case UNOP_LOGICAL_NOT:
4289     case UNOP_ABS:
4290       return (!numeric_type_p (type0));
4291 
4292     }
4293 }
4294 
4295                                 /* Renaming */
4296 
4297 /* NOTES:
4298 
4299    1. In the following, we assume that a renaming type's name may
4300       have an ___XD suffix.  It would be nice if this went away at some
4301       point.
4302    2. We handle both the (old) purely type-based representation of
4303       renamings and the (new) variable-based encoding.  At some point,
4304       it is devoutly to be hoped that the former goes away
4305       (FIXME: hilfinger-2007-07-09).
4306    3. Subprogram renamings are not implemented, although the XRS
4307       suffix is recognized (FIXME: hilfinger-2007-07-09).  */
4308 
4309 /* If SYM encodes a renaming,
4310 
4311        <renaming> renames <renamed entity>,
4312 
4313    sets *LEN to the length of the renamed entity's name,
4314    *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4315    the string describing the subcomponent selected from the renamed
4316    entity.  Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4317    (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4318    are undefined).  Otherwise, returns a value indicating the category
4319    of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4320    (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4321    subprogram (ADA_SUBPROGRAM_RENAMING).  Does no allocation; the
4322    strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4323    deallocated.  The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4324    may be NULL, in which case they are not assigned.
4325 
4326    [Currently, however, GCC does not generate subprogram renamings.]  */
4327 
4328 enum ada_renaming_category
4329 ada_parse_renaming (struct symbol *sym,
4330 		    const char **renamed_entity, int *len,
4331 		    const char **renaming_expr)
4332 {
4333   enum ada_renaming_category kind;
4334   const char *info;
4335   const char *suffix;
4336 
4337   if (sym == NULL)
4338     return ADA_NOT_RENAMING;
4339   switch (SYMBOL_CLASS (sym))
4340     {
4341     default:
4342       return ADA_NOT_RENAMING;
4343     case LOC_TYPEDEF:
4344       return parse_old_style_renaming (SYMBOL_TYPE (sym),
4345 				       renamed_entity, len, renaming_expr);
4346     case LOC_LOCAL:
4347     case LOC_STATIC:
4348     case LOC_COMPUTED:
4349     case LOC_OPTIMIZED_OUT:
4350       info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4351       if (info == NULL)
4352 	return ADA_NOT_RENAMING;
4353       switch (info[5])
4354 	{
4355 	case '_':
4356 	  kind = ADA_OBJECT_RENAMING;
4357 	  info += 6;
4358 	  break;
4359 	case 'E':
4360 	  kind = ADA_EXCEPTION_RENAMING;
4361 	  info += 7;
4362 	  break;
4363 	case 'P':
4364 	  kind = ADA_PACKAGE_RENAMING;
4365 	  info += 7;
4366 	  break;
4367 	case 'S':
4368 	  kind = ADA_SUBPROGRAM_RENAMING;
4369 	  info += 7;
4370 	  break;
4371 	default:
4372 	  return ADA_NOT_RENAMING;
4373 	}
4374     }
4375 
4376   if (renamed_entity != NULL)
4377     *renamed_entity = info;
4378   suffix = strstr (info, "___XE");
4379   if (suffix == NULL || suffix == info)
4380     return ADA_NOT_RENAMING;
4381   if (len != NULL)
4382     *len = strlen (info) - strlen (suffix);
4383   suffix += 5;
4384   if (renaming_expr != NULL)
4385     *renaming_expr = suffix;
4386   return kind;
4387 }
4388 
4389 /* Assuming TYPE encodes a renaming according to the old encoding in
4390    exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4391    *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above.  Returns
4392    ADA_NOT_RENAMING otherwise.  */
4393 static enum ada_renaming_category
4394 parse_old_style_renaming (struct type *type,
4395 			  const char **renamed_entity, int *len,
4396 			  const char **renaming_expr)
4397 {
4398   enum ada_renaming_category kind;
4399   const char *name;
4400   const char *info;
4401   const char *suffix;
4402 
4403   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4404       || TYPE_NFIELDS (type) != 1)
4405     return ADA_NOT_RENAMING;
4406 
4407   name = type_name_no_tag (type);
4408   if (name == NULL)
4409     return ADA_NOT_RENAMING;
4410 
4411   name = strstr (name, "___XR");
4412   if (name == NULL)
4413     return ADA_NOT_RENAMING;
4414   switch (name[5])
4415     {
4416     case '\0':
4417     case '_':
4418       kind = ADA_OBJECT_RENAMING;
4419       break;
4420     case 'E':
4421       kind = ADA_EXCEPTION_RENAMING;
4422       break;
4423     case 'P':
4424       kind = ADA_PACKAGE_RENAMING;
4425       break;
4426     case 'S':
4427       kind = ADA_SUBPROGRAM_RENAMING;
4428       break;
4429     default:
4430       return ADA_NOT_RENAMING;
4431     }
4432 
4433   info = TYPE_FIELD_NAME (type, 0);
4434   if (info == NULL)
4435     return ADA_NOT_RENAMING;
4436   if (renamed_entity != NULL)
4437     *renamed_entity = info;
4438   suffix = strstr (info, "___XE");
4439   if (renaming_expr != NULL)
4440     *renaming_expr = suffix + 5;
4441   if (suffix == NULL || suffix == info)
4442     return ADA_NOT_RENAMING;
4443   if (len != NULL)
4444     *len = suffix - info;
4445   return kind;
4446 }
4447 
4448 /* Compute the value of the given RENAMING_SYM, which is expected to
4449    be a symbol encoding a renaming expression.  BLOCK is the block
4450    used to evaluate the renaming.  */
4451 
4452 static struct value *
4453 ada_read_renaming_var_value (struct symbol *renaming_sym,
4454 			     const struct block *block)
4455 {
4456   const char *sym_name;
4457   struct expression *expr;
4458   struct value *value;
4459   struct cleanup *old_chain = NULL;
4460 
4461   sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4462   expr = parse_exp_1 (&sym_name, 0, block, 0);
4463   old_chain = make_cleanup (free_current_contents, &expr);
4464   value = evaluate_expression (expr);
4465 
4466   do_cleanups (old_chain);
4467   return value;
4468 }
4469 
4470 
4471                                 /* Evaluation: Function Calls */
4472 
4473 /* Return an lvalue containing the value VAL.  This is the identity on
4474    lvalues, and otherwise has the side-effect of allocating memory
4475    in the inferior where a copy of the value contents is copied.  */
4476 
4477 static struct value *
4478 ensure_lval (struct value *val)
4479 {
4480   if (VALUE_LVAL (val) == not_lval
4481       || VALUE_LVAL (val) == lval_internalvar)
4482     {
4483       int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4484       const CORE_ADDR addr =
4485         value_as_long (value_allocate_space_in_inferior (len));
4486 
4487       set_value_address (val, addr);
4488       VALUE_LVAL (val) = lval_memory;
4489       write_memory (addr, value_contents (val), len);
4490     }
4491 
4492   return val;
4493 }
4494 
4495 /* Return the value ACTUAL, converted to be an appropriate value for a
4496    formal of type FORMAL_TYPE.  Use *SP as a stack pointer for
4497    allocating any necessary descriptors (fat pointers), or copies of
4498    values not residing in memory, updating it as needed.  */
4499 
4500 struct value *
4501 ada_convert_actual (struct value *actual, struct type *formal_type0)
4502 {
4503   struct type *actual_type = ada_check_typedef (value_type (actual));
4504   struct type *formal_type = ada_check_typedef (formal_type0);
4505   struct type *formal_target =
4506     TYPE_CODE (formal_type) == TYPE_CODE_PTR
4507     ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4508   struct type *actual_target =
4509     TYPE_CODE (actual_type) == TYPE_CODE_PTR
4510     ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4511 
4512   if (ada_is_array_descriptor_type (formal_target)
4513       && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4514     return make_array_descriptor (formal_type, actual);
4515   else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4516 	   || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4517     {
4518       struct value *result;
4519 
4520       if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4521           && ada_is_array_descriptor_type (actual_target))
4522 	result = desc_data (actual);
4523       else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4524         {
4525           if (VALUE_LVAL (actual) != lval_memory)
4526             {
4527               struct value *val;
4528 
4529               actual_type = ada_check_typedef (value_type (actual));
4530               val = allocate_value (actual_type);
4531               memcpy ((char *) value_contents_raw (val),
4532                       (char *) value_contents (actual),
4533                       TYPE_LENGTH (actual_type));
4534               actual = ensure_lval (val);
4535             }
4536           result = value_addr (actual);
4537         }
4538       else
4539 	return actual;
4540       return value_cast_pointers (formal_type, result, 0);
4541     }
4542   else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4543     return ada_value_ind (actual);
4544   else if (ada_is_aligner_type (formal_type))
4545     {
4546       /* We need to turn this parameter into an aligner type
4547 	 as well.  */
4548       struct value *aligner = allocate_value (formal_type);
4549       struct value *component = ada_value_struct_elt (aligner, "F", 0);
4550 
4551       value_assign_to_component (aligner, component, actual);
4552       return aligner;
4553     }
4554 
4555   return actual;
4556 }
4557 
4558 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4559    type TYPE.  This is usually an inefficient no-op except on some targets
4560    (such as AVR) where the representation of a pointer and an address
4561    differs.  */
4562 
4563 static CORE_ADDR
4564 value_pointer (struct value *value, struct type *type)
4565 {
4566   struct gdbarch *gdbarch = get_type_arch (type);
4567   unsigned len = TYPE_LENGTH (type);
4568   gdb_byte *buf = (gdb_byte *) alloca (len);
4569   CORE_ADDR addr;
4570 
4571   addr = value_address (value);
4572   gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4573   addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4574   return addr;
4575 }
4576 
4577 
4578 /* Push a descriptor of type TYPE for array value ARR on the stack at
4579    *SP, updating *SP to reflect the new descriptor.  Return either
4580    an lvalue representing the new descriptor, or (if TYPE is a pointer-
4581    to-descriptor type rather than a descriptor type), a struct value *
4582    representing a pointer to this descriptor.  */
4583 
4584 static struct value *
4585 make_array_descriptor (struct type *type, struct value *arr)
4586 {
4587   struct type *bounds_type = desc_bounds_type (type);
4588   struct type *desc_type = desc_base_type (type);
4589   struct value *descriptor = allocate_value (desc_type);
4590   struct value *bounds = allocate_value (bounds_type);
4591   int i;
4592 
4593   for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4594        i > 0; i -= 1)
4595     {
4596       modify_field (value_type (bounds), value_contents_writeable (bounds),
4597 		    ada_array_bound (arr, i, 0),
4598 		    desc_bound_bitpos (bounds_type, i, 0),
4599 		    desc_bound_bitsize (bounds_type, i, 0));
4600       modify_field (value_type (bounds), value_contents_writeable (bounds),
4601 		    ada_array_bound (arr, i, 1),
4602 		    desc_bound_bitpos (bounds_type, i, 1),
4603 		    desc_bound_bitsize (bounds_type, i, 1));
4604     }
4605 
4606   bounds = ensure_lval (bounds);
4607 
4608   modify_field (value_type (descriptor),
4609 		value_contents_writeable (descriptor),
4610 		value_pointer (ensure_lval (arr),
4611 			       TYPE_FIELD_TYPE (desc_type, 0)),
4612 		fat_pntr_data_bitpos (desc_type),
4613 		fat_pntr_data_bitsize (desc_type));
4614 
4615   modify_field (value_type (descriptor),
4616 		value_contents_writeable (descriptor),
4617 		value_pointer (bounds,
4618 			       TYPE_FIELD_TYPE (desc_type, 1)),
4619 		fat_pntr_bounds_bitpos (desc_type),
4620 		fat_pntr_bounds_bitsize (desc_type));
4621 
4622   descriptor = ensure_lval (descriptor);
4623 
4624   if (TYPE_CODE (type) == TYPE_CODE_PTR)
4625     return value_addr (descriptor);
4626   else
4627     return descriptor;
4628 }
4629 
4630                                 /* Symbol Cache Module */
4631 
4632 /* Performance measurements made as of 2010-01-15 indicate that
4633    this cache does bring some noticeable improvements.  Depending
4634    on the type of entity being printed, the cache can make it as much
4635    as an order of magnitude faster than without it.
4636 
4637    The descriptive type DWARF extension has significantly reduced
4638    the need for this cache, at least when DWARF is being used.  However,
4639    even in this case, some expensive name-based symbol searches are still
4640    sometimes necessary - to find an XVZ variable, mostly.  */
4641 
4642 /* Initialize the contents of SYM_CACHE.  */
4643 
4644 static void
4645 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4646 {
4647   obstack_init (&sym_cache->cache_space);
4648   memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4649 }
4650 
4651 /* Free the memory used by SYM_CACHE.  */
4652 
4653 static void
4654 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4655 {
4656   obstack_free (&sym_cache->cache_space, NULL);
4657   xfree (sym_cache);
4658 }
4659 
4660 /* Return the symbol cache associated to the given program space PSPACE.
4661    If not allocated for this PSPACE yet, allocate and initialize one.  */
4662 
4663 static struct ada_symbol_cache *
4664 ada_get_symbol_cache (struct program_space *pspace)
4665 {
4666   struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4667 
4668   if (pspace_data->sym_cache == NULL)
4669     {
4670       pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4671       ada_init_symbol_cache (pspace_data->sym_cache);
4672     }
4673 
4674   return pspace_data->sym_cache;
4675 }
4676 
4677 /* Clear all entries from the symbol cache.  */
4678 
4679 static void
4680 ada_clear_symbol_cache (void)
4681 {
4682   struct ada_symbol_cache *sym_cache
4683     = ada_get_symbol_cache (current_program_space);
4684 
4685   obstack_free (&sym_cache->cache_space, NULL);
4686   ada_init_symbol_cache (sym_cache);
4687 }
4688 
4689 /* Search our cache for an entry matching NAME and DOMAIN.
4690    Return it if found, or NULL otherwise.  */
4691 
4692 static struct cache_entry **
4693 find_entry (const char *name, domain_enum domain)
4694 {
4695   struct ada_symbol_cache *sym_cache
4696     = ada_get_symbol_cache (current_program_space);
4697   int h = msymbol_hash (name) % HASH_SIZE;
4698   struct cache_entry **e;
4699 
4700   for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4701     {
4702       if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4703         return e;
4704     }
4705   return NULL;
4706 }
4707 
4708 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4709    Return 1 if found, 0 otherwise.
4710 
4711    If an entry was found and SYM is not NULL, set *SYM to the entry's
4712    SYM.  Same principle for BLOCK if not NULL.  */
4713 
4714 static int
4715 lookup_cached_symbol (const char *name, domain_enum domain,
4716                       struct symbol **sym, const struct block **block)
4717 {
4718   struct cache_entry **e = find_entry (name, domain);
4719 
4720   if (e == NULL)
4721     return 0;
4722   if (sym != NULL)
4723     *sym = (*e)->sym;
4724   if (block != NULL)
4725     *block = (*e)->block;
4726   return 1;
4727 }
4728 
4729 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4730    in domain DOMAIN, save this result in our symbol cache.  */
4731 
4732 static void
4733 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4734               const struct block *block)
4735 {
4736   struct ada_symbol_cache *sym_cache
4737     = ada_get_symbol_cache (current_program_space);
4738   int h;
4739   char *copy;
4740   struct cache_entry *e;
4741 
4742   /* Symbols for builtin types don't have a block.
4743      For now don't cache such symbols.  */
4744   if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4745     return;
4746 
4747   /* If the symbol is a local symbol, then do not cache it, as a search
4748      for that symbol depends on the context.  To determine whether
4749      the symbol is local or not, we check the block where we found it
4750      against the global and static blocks of its associated symtab.  */
4751   if (sym
4752       && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4753 			    GLOBAL_BLOCK) != block
4754       && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4755 			    STATIC_BLOCK) != block)
4756     return;
4757 
4758   h = msymbol_hash (name) % HASH_SIZE;
4759   e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4760 					    sizeof (*e));
4761   e->next = sym_cache->root[h];
4762   sym_cache->root[h] = e;
4763   e->name = copy
4764     = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4765   strcpy (copy, name);
4766   e->sym = sym;
4767   e->domain = domain;
4768   e->block = block;
4769 }
4770 
4771                                 /* Symbol Lookup */
4772 
4773 /* Return nonzero if wild matching should be used when searching for
4774    all symbols matching LOOKUP_NAME.
4775 
4776    LOOKUP_NAME is expected to be a symbol name after transformation
4777    for Ada lookups (see ada_name_for_lookup).  */
4778 
4779 static int
4780 should_use_wild_match (const char *lookup_name)
4781 {
4782   return (strstr (lookup_name, "__") == NULL);
4783 }
4784 
4785 /* Return the result of a standard (literal, C-like) lookup of NAME in
4786    given DOMAIN, visible from lexical block BLOCK.  */
4787 
4788 static struct symbol *
4789 standard_lookup (const char *name, const struct block *block,
4790                  domain_enum domain)
4791 {
4792   /* Initialize it just to avoid a GCC false warning.  */
4793   struct block_symbol sym = {NULL, NULL};
4794 
4795   if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4796     return sym.symbol;
4797   sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4798   cache_symbol (name, domain, sym.symbol, sym.block);
4799   return sym.symbol;
4800 }
4801 
4802 
4803 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4804    in the symbol fields of SYMS[0..N-1].  We treat enumerals as functions,
4805    since they contend in overloading in the same way.  */
4806 static int
4807 is_nonfunction (struct block_symbol syms[], int n)
4808 {
4809   int i;
4810 
4811   for (i = 0; i < n; i += 1)
4812     if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4813         && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4814             || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4815       return 1;
4816 
4817   return 0;
4818 }
4819 
4820 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4821    struct types.  Otherwise, they may not.  */
4822 
4823 static int
4824 equiv_types (struct type *type0, struct type *type1)
4825 {
4826   if (type0 == type1)
4827     return 1;
4828   if (type0 == NULL || type1 == NULL
4829       || TYPE_CODE (type0) != TYPE_CODE (type1))
4830     return 0;
4831   if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4832        || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4833       && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4834       && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4835     return 1;
4836 
4837   return 0;
4838 }
4839 
4840 /* True iff SYM0 represents the same entity as SYM1, or one that is
4841    no more defined than that of SYM1.  */
4842 
4843 static int
4844 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4845 {
4846   if (sym0 == sym1)
4847     return 1;
4848   if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4849       || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4850     return 0;
4851 
4852   switch (SYMBOL_CLASS (sym0))
4853     {
4854     case LOC_UNDEF:
4855       return 1;
4856     case LOC_TYPEDEF:
4857       {
4858         struct type *type0 = SYMBOL_TYPE (sym0);
4859         struct type *type1 = SYMBOL_TYPE (sym1);
4860         const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4861         const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4862         int len0 = strlen (name0);
4863 
4864         return
4865           TYPE_CODE (type0) == TYPE_CODE (type1)
4866           && (equiv_types (type0, type1)
4867               || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4868                   && startswith (name1 + len0, "___XV")));
4869       }
4870     case LOC_CONST:
4871       return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4872         && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4873     default:
4874       return 0;
4875     }
4876 }
4877 
4878 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4879    records in OBSTACKP.  Do nothing if SYM is a duplicate.  */
4880 
4881 static void
4882 add_defn_to_vec (struct obstack *obstackp,
4883                  struct symbol *sym,
4884                  const struct block *block)
4885 {
4886   int i;
4887   struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4888 
4889   /* Do not try to complete stub types, as the debugger is probably
4890      already scanning all symbols matching a certain name at the
4891      time when this function is called.  Trying to replace the stub
4892      type by its associated full type will cause us to restart a scan
4893      which may lead to an infinite recursion.  Instead, the client
4894      collecting the matching symbols will end up collecting several
4895      matches, with at least one of them complete.  It can then filter
4896      out the stub ones if needed.  */
4897 
4898   for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4899     {
4900       if (lesseq_defined_than (sym, prevDefns[i].symbol))
4901         return;
4902       else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4903         {
4904           prevDefns[i].symbol = sym;
4905           prevDefns[i].block = block;
4906           return;
4907         }
4908     }
4909 
4910   {
4911     struct block_symbol info;
4912 
4913     info.symbol = sym;
4914     info.block = block;
4915     obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4916   }
4917 }
4918 
4919 /* Number of block_symbol structures currently collected in current vector in
4920    OBSTACKP.  */
4921 
4922 static int
4923 num_defns_collected (struct obstack *obstackp)
4924 {
4925   return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4926 }
4927 
4928 /* Vector of block_symbol structures currently collected in current vector in
4929    OBSTACKP.  If FINISH, close off the vector and return its final address.  */
4930 
4931 static struct block_symbol *
4932 defns_collected (struct obstack *obstackp, int finish)
4933 {
4934   if (finish)
4935     return (struct block_symbol *) obstack_finish (obstackp);
4936   else
4937     return (struct block_symbol *) obstack_base (obstackp);
4938 }
4939 
4940 /* Return a bound minimal symbol matching NAME according to Ada
4941    decoding rules.  Returns an invalid symbol if there is no such
4942    minimal symbol.  Names prefixed with "standard__" are handled
4943    specially: "standard__" is first stripped off, and only static and
4944    global symbols are searched.  */
4945 
4946 struct bound_minimal_symbol
4947 ada_lookup_simple_minsym (const char *name)
4948 {
4949   struct bound_minimal_symbol result;
4950   struct objfile *objfile;
4951   struct minimal_symbol *msymbol;
4952   const int wild_match_p = should_use_wild_match (name);
4953 
4954   memset (&result, 0, sizeof (result));
4955 
4956   /* Special case: If the user specifies a symbol name inside package
4957      Standard, do a non-wild matching of the symbol name without
4958      the "standard__" prefix.  This was primarily introduced in order
4959      to allow the user to specifically access the standard exceptions
4960      using, for instance, Standard.Constraint_Error when Constraint_Error
4961      is ambiguous (due to the user defining its own Constraint_Error
4962      entity inside its program).  */
4963   if (startswith (name, "standard__"))
4964     name += sizeof ("standard__") - 1;
4965 
4966   ALL_MSYMBOLS (objfile, msymbol)
4967   {
4968     if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4969         && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4970       {
4971 	result.minsym = msymbol;
4972 	result.objfile = objfile;
4973 	break;
4974       }
4975   }
4976 
4977   return result;
4978 }
4979 
4980 /* For all subprograms that statically enclose the subprogram of the
4981    selected frame, add symbols matching identifier NAME in DOMAIN
4982    and their blocks to the list of data in OBSTACKP, as for
4983    ada_add_block_symbols (q.v.).   If WILD_MATCH_P, treat as NAME
4984    with a wildcard prefix.  */
4985 
4986 static void
4987 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4988                                   const char *name, domain_enum domain,
4989                                   int wild_match_p)
4990 {
4991 }
4992 
4993 /* True if TYPE is definitely an artificial type supplied to a symbol
4994    for which no debugging information was given in the symbol file.  */
4995 
4996 static int
4997 is_nondebugging_type (struct type *type)
4998 {
4999   const char *name = ada_type_name (type);
5000 
5001   return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
5002 }
5003 
5004 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
5005    that are deemed "identical" for practical purposes.
5006 
5007    This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
5008    types and that their number of enumerals is identical (in other
5009    words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)).  */
5010 
5011 static int
5012 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5013 {
5014   int i;
5015 
5016   /* The heuristic we use here is fairly conservative.  We consider
5017      that 2 enumerate types are identical if they have the same
5018      number of enumerals and that all enumerals have the same
5019      underlying value and name.  */
5020 
5021   /* All enums in the type should have an identical underlying value.  */
5022   for (i = 0; i < TYPE_NFIELDS (type1); i++)
5023     if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5024       return 0;
5025 
5026   /* All enumerals should also have the same name (modulo any numerical
5027      suffix).  */
5028   for (i = 0; i < TYPE_NFIELDS (type1); i++)
5029     {
5030       const char *name_1 = TYPE_FIELD_NAME (type1, i);
5031       const char *name_2 = TYPE_FIELD_NAME (type2, i);
5032       int len_1 = strlen (name_1);
5033       int len_2 = strlen (name_2);
5034 
5035       ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5036       ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5037       if (len_1 != len_2
5038           || strncmp (TYPE_FIELD_NAME (type1, i),
5039 		      TYPE_FIELD_NAME (type2, i),
5040 		      len_1) != 0)
5041 	return 0;
5042     }
5043 
5044   return 1;
5045 }
5046 
5047 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5048    that are deemed "identical" for practical purposes.  Sometimes,
5049    enumerals are not strictly identical, but their types are so similar
5050    that they can be considered identical.
5051 
5052    For instance, consider the following code:
5053 
5054       type Color is (Black, Red, Green, Blue, White);
5055       type RGB_Color is new Color range Red .. Blue;
5056 
5057    Type RGB_Color is a subrange of an implicit type which is a copy
5058    of type Color. If we call that implicit type RGB_ColorB ("B" is
5059    for "Base Type"), then type RGB_ColorB is a copy of type Color.
5060    As a result, when an expression references any of the enumeral
5061    by name (Eg. "print green"), the expression is technically
5062    ambiguous and the user should be asked to disambiguate. But
5063    doing so would only hinder the user, since it wouldn't matter
5064    what choice he makes, the outcome would always be the same.
5065    So, for practical purposes, we consider them as the same.  */
5066 
5067 static int
5068 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5069 {
5070   int i;
5071 
5072   /* Before performing a thorough comparison check of each type,
5073      we perform a series of inexpensive checks.  We expect that these
5074      checks will quickly fail in the vast majority of cases, and thus
5075      help prevent the unnecessary use of a more expensive comparison.
5076      Said comparison also expects us to make some of these checks
5077      (see ada_identical_enum_types_p).  */
5078 
5079   /* Quick check: All symbols should have an enum type.  */
5080   for (i = 0; i < nsyms; i++)
5081     if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5082       return 0;
5083 
5084   /* Quick check: They should all have the same value.  */
5085   for (i = 1; i < nsyms; i++)
5086     if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5087       return 0;
5088 
5089   /* Quick check: They should all have the same number of enumerals.  */
5090   for (i = 1; i < nsyms; i++)
5091     if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5092         != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5093       return 0;
5094 
5095   /* All the sanity checks passed, so we might have a set of
5096      identical enumeration types.  Perform a more complete
5097      comparison of the type of each symbol.  */
5098   for (i = 1; i < nsyms; i++)
5099     if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5100                                      SYMBOL_TYPE (syms[0].symbol)))
5101       return 0;
5102 
5103   return 1;
5104 }
5105 
5106 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5107    duplicate other symbols in the list (The only case I know of where
5108    this happens is when object files containing stabs-in-ecoff are
5109    linked with files containing ordinary ecoff debugging symbols (or no
5110    debugging symbols)).  Modifies SYMS to squeeze out deleted entries.
5111    Returns the number of items in the modified list.  */
5112 
5113 static int
5114 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5115 {
5116   int i, j;
5117 
5118   /* We should never be called with less than 2 symbols, as there
5119      cannot be any extra symbol in that case.  But it's easy to
5120      handle, since we have nothing to do in that case.  */
5121   if (nsyms < 2)
5122     return nsyms;
5123 
5124   i = 0;
5125   while (i < nsyms)
5126     {
5127       int remove_p = 0;
5128 
5129       /* If two symbols have the same name and one of them is a stub type,
5130          the get rid of the stub.  */
5131 
5132       if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5133           && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5134         {
5135           for (j = 0; j < nsyms; j++)
5136             {
5137               if (j != i
5138                   && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5139                   && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5140                   && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5141                              SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5142                 remove_p = 1;
5143             }
5144         }
5145 
5146       /* Two symbols with the same name, same class and same address
5147          should be identical.  */
5148 
5149       else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5150           && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5151           && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5152         {
5153           for (j = 0; j < nsyms; j += 1)
5154             {
5155               if (i != j
5156                   && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5157                   && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5158                              SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5159                   && SYMBOL_CLASS (syms[i].symbol)
5160 		       == SYMBOL_CLASS (syms[j].symbol)
5161                   && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5162                   == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5163                 remove_p = 1;
5164             }
5165         }
5166 
5167       if (remove_p)
5168         {
5169           for (j = i + 1; j < nsyms; j += 1)
5170             syms[j - 1] = syms[j];
5171           nsyms -= 1;
5172         }
5173 
5174       i += 1;
5175     }
5176 
5177   /* If all the remaining symbols are identical enumerals, then
5178      just keep the first one and discard the rest.
5179 
5180      Unlike what we did previously, we do not discard any entry
5181      unless they are ALL identical.  This is because the symbol
5182      comparison is not a strict comparison, but rather a practical
5183      comparison.  If all symbols are considered identical, then
5184      we can just go ahead and use the first one and discard the rest.
5185      But if we cannot reduce the list to a single element, we have
5186      to ask the user to disambiguate anyways.  And if we have to
5187      present a multiple-choice menu, it's less confusing if the list
5188      isn't missing some choices that were identical and yet distinct.  */
5189   if (symbols_are_identical_enums (syms, nsyms))
5190     nsyms = 1;
5191 
5192   return nsyms;
5193 }
5194 
5195 /* Given a type that corresponds to a renaming entity, use the type name
5196    to extract the scope (package name or function name, fully qualified,
5197    and following the GNAT encoding convention) where this renaming has been
5198    defined.  The string returned needs to be deallocated after use.  */
5199 
5200 static char *
5201 xget_renaming_scope (struct type *renaming_type)
5202 {
5203   /* The renaming types adhere to the following convention:
5204      <scope>__<rename>___<XR extension>.
5205      So, to extract the scope, we search for the "___XR" extension,
5206      and then backtrack until we find the first "__".  */
5207 
5208   const char *name = type_name_no_tag (renaming_type);
5209   const char *suffix = strstr (name, "___XR");
5210   const char *last;
5211   int scope_len;
5212   char *scope;
5213 
5214   /* Now, backtrack a bit until we find the first "__".  Start looking
5215      at suffix - 3, as the <rename> part is at least one character long.  */
5216 
5217   for (last = suffix - 3; last > name; last--)
5218     if (last[0] == '_' && last[1] == '_')
5219       break;
5220 
5221   /* Make a copy of scope and return it.  */
5222 
5223   scope_len = last - name;
5224   scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5225 
5226   strncpy (scope, name, scope_len);
5227   scope[scope_len] = '\0';
5228 
5229   return scope;
5230 }
5231 
5232 /* Return nonzero if NAME corresponds to a package name.  */
5233 
5234 static int
5235 is_package_name (const char *name)
5236 {
5237   /* Here, We take advantage of the fact that no symbols are generated
5238      for packages, while symbols are generated for each function.
5239      So the condition for NAME represent a package becomes equivalent
5240      to NAME not existing in our list of symbols.  There is only one
5241      small complication with library-level functions (see below).  */
5242 
5243   char *fun_name;
5244 
5245   /* If it is a function that has not been defined at library level,
5246      then we should be able to look it up in the symbols.  */
5247   if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5248     return 0;
5249 
5250   /* Library-level function names start with "_ada_".  See if function
5251      "_ada_" followed by NAME can be found.  */
5252 
5253   /* Do a quick check that NAME does not contain "__", since library-level
5254      functions names cannot contain "__" in them.  */
5255   if (strstr (name, "__") != NULL)
5256     return 0;
5257 
5258   fun_name = xstrprintf ("_ada_%s", name);
5259 
5260   return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5261 }
5262 
5263 /* Return nonzero if SYM corresponds to a renaming entity that is
5264    not visible from FUNCTION_NAME.  */
5265 
5266 static int
5267 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5268 {
5269   char *scope;
5270   struct cleanup *old_chain;
5271 
5272   if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5273     return 0;
5274 
5275   scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5276   old_chain = make_cleanup (xfree, scope);
5277 
5278   /* If the rename has been defined in a package, then it is visible.  */
5279   if (is_package_name (scope))
5280     {
5281       do_cleanups (old_chain);
5282       return 0;
5283     }
5284 
5285   /* Check that the rename is in the current function scope by checking
5286      that its name starts with SCOPE.  */
5287 
5288   /* If the function name starts with "_ada_", it means that it is
5289      a library-level function.  Strip this prefix before doing the
5290      comparison, as the encoding for the renaming does not contain
5291      this prefix.  */
5292   if (startswith (function_name, "_ada_"))
5293     function_name += 5;
5294 
5295   {
5296     int is_invisible = !startswith (function_name, scope);
5297 
5298     do_cleanups (old_chain);
5299     return is_invisible;
5300   }
5301 }
5302 
5303 /* Remove entries from SYMS that corresponds to a renaming entity that
5304    is not visible from the function associated with CURRENT_BLOCK or
5305    that is superfluous due to the presence of more specific renaming
5306    information.  Places surviving symbols in the initial entries of
5307    SYMS and returns the number of surviving symbols.
5308 
5309    Rationale:
5310    First, in cases where an object renaming is implemented as a
5311    reference variable, GNAT may produce both the actual reference
5312    variable and the renaming encoding.  In this case, we discard the
5313    latter.
5314 
5315    Second, GNAT emits a type following a specified encoding for each renaming
5316    entity.  Unfortunately, STABS currently does not support the definition
5317    of types that are local to a given lexical block, so all renamings types
5318    are emitted at library level.  As a consequence, if an application
5319    contains two renaming entities using the same name, and a user tries to
5320    print the value of one of these entities, the result of the ada symbol
5321    lookup will also contain the wrong renaming type.
5322 
5323    This function partially covers for this limitation by attempting to
5324    remove from the SYMS list renaming symbols that should be visible
5325    from CURRENT_BLOCK.  However, there does not seem be a 100% reliable
5326    method with the current information available.  The implementation
5327    below has a couple of limitations (FIXME: brobecker-2003-05-12):
5328 
5329       - When the user tries to print a rename in a function while there
5330         is another rename entity defined in a package:  Normally, the
5331         rename in the function has precedence over the rename in the
5332         package, so the latter should be removed from the list.  This is
5333         currently not the case.
5334 
5335       - This function will incorrectly remove valid renames if
5336         the CURRENT_BLOCK corresponds to a function which symbol name
5337         has been changed by an "Export" pragma.  As a consequence,
5338         the user will be unable to print such rename entities.  */
5339 
5340 static int
5341 remove_irrelevant_renamings (struct block_symbol *syms,
5342 			     int nsyms, const struct block *current_block)
5343 {
5344   struct symbol *current_function;
5345   const char *current_function_name;
5346   int i;
5347   int is_new_style_renaming;
5348 
5349   /* If there is both a renaming foo___XR... encoded as a variable and
5350      a simple variable foo in the same block, discard the latter.
5351      First, zero out such symbols, then compress.  */
5352   is_new_style_renaming = 0;
5353   for (i = 0; i < nsyms; i += 1)
5354     {
5355       struct symbol *sym = syms[i].symbol;
5356       const struct block *block = syms[i].block;
5357       const char *name;
5358       const char *suffix;
5359 
5360       if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5361 	continue;
5362       name = SYMBOL_LINKAGE_NAME (sym);
5363       suffix = strstr (name, "___XR");
5364 
5365       if (suffix != NULL)
5366 	{
5367 	  int name_len = suffix - name;
5368 	  int j;
5369 
5370 	  is_new_style_renaming = 1;
5371 	  for (j = 0; j < nsyms; j += 1)
5372 	    if (i != j && syms[j].symbol != NULL
5373 		&& strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5374 			    name_len) == 0
5375 		&& block == syms[j].block)
5376 	      syms[j].symbol = NULL;
5377 	}
5378     }
5379   if (is_new_style_renaming)
5380     {
5381       int j, k;
5382 
5383       for (j = k = 0; j < nsyms; j += 1)
5384 	if (syms[j].symbol != NULL)
5385 	    {
5386 	      syms[k] = syms[j];
5387 	      k += 1;
5388 	    }
5389       return k;
5390     }
5391 
5392   /* Extract the function name associated to CURRENT_BLOCK.
5393      Abort if unable to do so.  */
5394 
5395   if (current_block == NULL)
5396     return nsyms;
5397 
5398   current_function = block_linkage_function (current_block);
5399   if (current_function == NULL)
5400     return nsyms;
5401 
5402   current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5403   if (current_function_name == NULL)
5404     return nsyms;
5405 
5406   /* Check each of the symbols, and remove it from the list if it is
5407      a type corresponding to a renaming that is out of the scope of
5408      the current block.  */
5409 
5410   i = 0;
5411   while (i < nsyms)
5412     {
5413       if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5414           == ADA_OBJECT_RENAMING
5415           && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5416         {
5417           int j;
5418 
5419           for (j = i + 1; j < nsyms; j += 1)
5420             syms[j - 1] = syms[j];
5421           nsyms -= 1;
5422         }
5423       else
5424         i += 1;
5425     }
5426 
5427   return nsyms;
5428 }
5429 
5430 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5431    whose name and domain match NAME and DOMAIN respectively.
5432    If no match was found, then extend the search to "enclosing"
5433    routines (in other words, if we're inside a nested function,
5434    search the symbols defined inside the enclosing functions).
5435    If WILD_MATCH_P is nonzero, perform the naming matching in
5436    "wild" mode (see function "wild_match" for more info).
5437 
5438    Note: This function assumes that OBSTACKP has 0 (zero) element in it.  */
5439 
5440 static void
5441 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5442                        const struct block *block, domain_enum domain,
5443                        int wild_match_p)
5444 {
5445   int block_depth = 0;
5446 
5447   while (block != NULL)
5448     {
5449       block_depth += 1;
5450       ada_add_block_symbols (obstackp, block, name, domain, NULL,
5451 			     wild_match_p);
5452 
5453       /* If we found a non-function match, assume that's the one.  */
5454       if (is_nonfunction (defns_collected (obstackp, 0),
5455                           num_defns_collected (obstackp)))
5456         return;
5457 
5458       block = BLOCK_SUPERBLOCK (block);
5459     }
5460 
5461   /* If no luck so far, try to find NAME as a local symbol in some lexically
5462      enclosing subprogram.  */
5463   if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5464     add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5465 }
5466 
5467 /* An object of this type is used as the user_data argument when
5468    calling the map_matching_symbols method.  */
5469 
5470 struct match_data
5471 {
5472   struct objfile *objfile;
5473   struct obstack *obstackp;
5474   struct symbol *arg_sym;
5475   int found_sym;
5476 };
5477 
5478 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5479    to a list of symbols.  DATA0 is a pointer to a struct match_data *
5480    containing the obstack that collects the symbol list, the file that SYM
5481    must come from, a flag indicating whether a non-argument symbol has
5482    been found in the current block, and the last argument symbol
5483    passed in SYM within the current block (if any).  When SYM is null,
5484    marking the end of a block, the argument symbol is added if no
5485    other has been found.  */
5486 
5487 static int
5488 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5489 {
5490   struct match_data *data = (struct match_data *) data0;
5491 
5492   if (sym == NULL)
5493     {
5494       if (!data->found_sym && data->arg_sym != NULL)
5495 	add_defn_to_vec (data->obstackp,
5496 			 fixup_symbol_section (data->arg_sym, data->objfile),
5497 			 block);
5498       data->found_sym = 0;
5499       data->arg_sym = NULL;
5500     }
5501   else
5502     {
5503       if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5504 	return 0;
5505       else if (SYMBOL_IS_ARGUMENT (sym))
5506 	data->arg_sym = sym;
5507       else
5508 	{
5509 	  data->found_sym = 1;
5510 	  add_defn_to_vec (data->obstackp,
5511 			   fixup_symbol_section (sym, data->objfile),
5512 			   block);
5513 	}
5514     }
5515   return 0;
5516 }
5517 
5518 /* Helper for add_nonlocal_symbols.  Find symbols in DOMAIN which are targetted
5519    by renamings matching NAME in BLOCK.  Add these symbols to OBSTACKP.  If
5520    WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5521    function "wild_match" for more information).  Return whether we found such
5522    symbols.  */
5523 
5524 static int
5525 ada_add_block_renamings (struct obstack *obstackp,
5526 			 const struct block *block,
5527 			 const char *name,
5528 			 domain_enum domain,
5529 			 int wild_match_p)
5530 {
5531   struct using_direct *renaming;
5532   int defns_mark = num_defns_collected (obstackp);
5533 
5534   for (renaming = block_using (block);
5535        renaming != NULL;
5536        renaming = renaming->next)
5537     {
5538       const char *r_name;
5539       int name_match;
5540 
5541       /* Avoid infinite recursions: skip this renaming if we are actually
5542 	 already traversing it.
5543 
5544 	 Currently, symbol lookup in Ada don't use the namespace machinery from
5545 	 C++/Fortran support: skip namespace imports that use them.  */
5546       if (renaming->searched
5547 	  || (renaming->import_src != NULL
5548 	      && renaming->import_src[0] != '\0')
5549 	  || (renaming->import_dest != NULL
5550 	      && renaming->import_dest[0] != '\0'))
5551 	continue;
5552       renaming->searched = 1;
5553 
5554       /* TODO: here, we perform another name-based symbol lookup, which can
5555 	 pull its own multiple overloads.  In theory, we should be able to do
5556 	 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5557 	 not a simple name.  But in order to do this, we would need to enhance
5558 	 the DWARF reader to associate a symbol to this renaming, instead of a
5559 	 name.  So, for now, we do something simpler: re-use the C++/Fortran
5560 	 namespace machinery.  */
5561       r_name = (renaming->alias != NULL
5562 		? renaming->alias
5563 		: renaming->declaration);
5564       name_match
5565 	= wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5566       if (name_match == 0)
5567 	ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5568 			     1, NULL);
5569       renaming->searched = 0;
5570     }
5571   return num_defns_collected (obstackp) != defns_mark;
5572 }
5573 
5574 /* Implements compare_names, but only applying the comparision using
5575    the given CASING.  */
5576 
5577 static int
5578 compare_names_with_case (const char *string1, const char *string2,
5579 			 enum case_sensitivity casing)
5580 {
5581   while (*string1 != '\0' && *string2 != '\0')
5582     {
5583       char c1, c2;
5584 
5585       if (isspace (*string1) || isspace (*string2))
5586 	return strcmp_iw_ordered (string1, string2);
5587 
5588       if (casing == case_sensitive_off)
5589 	{
5590 	  c1 = tolower (*string1);
5591 	  c2 = tolower (*string2);
5592 	}
5593       else
5594 	{
5595 	  c1 = *string1;
5596 	  c2 = *string2;
5597 	}
5598       if (c1 != c2)
5599 	break;
5600 
5601       string1 += 1;
5602       string2 += 1;
5603     }
5604 
5605   switch (*string1)
5606     {
5607     case '(':
5608       return strcmp_iw_ordered (string1, string2);
5609     case '_':
5610       if (*string2 == '\0')
5611 	{
5612 	  if (is_name_suffix (string1))
5613 	    return 0;
5614 	  else
5615 	    return 1;
5616 	}
5617       /* FALLTHROUGH */
5618     default:
5619       if (*string2 == '(')
5620 	return strcmp_iw_ordered (string1, string2);
5621       else
5622 	{
5623 	  if (casing == case_sensitive_off)
5624 	    return tolower (*string1) - tolower (*string2);
5625 	  else
5626 	    return *string1 - *string2;
5627 	}
5628     }
5629 }
5630 
5631 /* Compare STRING1 to STRING2, with results as for strcmp.
5632    Compatible with strcmp_iw_ordered in that...
5633 
5634        strcmp_iw_ordered (STRING1, STRING2) <= 0
5635 
5636    ... implies...
5637 
5638        compare_names (STRING1, STRING2) <= 0
5639 
5640    (they may differ as to what symbols compare equal).  */
5641 
5642 static int
5643 compare_names (const char *string1, const char *string2)
5644 {
5645   int result;
5646 
5647   /* Similar to what strcmp_iw_ordered does, we need to perform
5648      a case-insensitive comparison first, and only resort to
5649      a second, case-sensitive, comparison if the first one was
5650      not sufficient to differentiate the two strings.  */
5651 
5652   result = compare_names_with_case (string1, string2, case_sensitive_off);
5653   if (result == 0)
5654     result = compare_names_with_case (string1, string2, case_sensitive_on);
5655 
5656   return result;
5657 }
5658 
5659 /* Add to OBSTACKP all non-local symbols whose name and domain match
5660    NAME and DOMAIN respectively.  The search is performed on GLOBAL_BLOCK
5661    symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise.  */
5662 
5663 static void
5664 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5665 		      domain_enum domain, int global,
5666 		      int is_wild_match)
5667 {
5668   struct objfile *objfile;
5669   struct compunit_symtab *cu;
5670   struct match_data data;
5671 
5672   memset (&data, 0, sizeof data);
5673   data.obstackp = obstackp;
5674 
5675   ALL_OBJFILES (objfile)
5676     {
5677       data.objfile = objfile;
5678 
5679       if (is_wild_match)
5680 	objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5681 					       aux_add_nonlocal_symbols, &data,
5682 					       wild_match, NULL);
5683       else
5684 	objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5685 					       aux_add_nonlocal_symbols, &data,
5686 					       full_match, compare_names);
5687 
5688       ALL_OBJFILE_COMPUNITS (objfile, cu)
5689 	{
5690 	  const struct block *global_block
5691 	    = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5692 
5693 	  if (ada_add_block_renamings (obstackp, global_block , name, domain,
5694 				       is_wild_match))
5695 	    data.found_sym = 1;
5696 	}
5697     }
5698 
5699   if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5700     {
5701       ALL_OBJFILES (objfile)
5702         {
5703 	  char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5704 	  strcpy (name1, "_ada_");
5705 	  strcpy (name1 + sizeof ("_ada_") - 1, name);
5706 	  data.objfile = objfile;
5707 	  objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5708 						 global,
5709 						 aux_add_nonlocal_symbols,
5710 						 &data,
5711 						 full_match, compare_names);
5712 	}
5713     }
5714 }
5715 
5716 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5717    non-zero, enclosing scope and in global scopes, returning the number of
5718    matches.  Add these to OBSTACKP.
5719 
5720    When FULL_SEARCH is non-zero, any non-function/non-enumeral
5721    symbol match within the nest of blocks whose innermost member is BLOCK,
5722    is the one match returned (no other matches in that or
5723    enclosing blocks is returned).  If there are any matches in or
5724    surrounding BLOCK, then these alone are returned.
5725 
5726    Names prefixed with "standard__" are handled specially: "standard__"
5727    is first stripped off, and only static and global symbols are searched.
5728 
5729    If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5730    to lookup global symbols.  */
5731 
5732 static void
5733 ada_add_all_symbols (struct obstack *obstackp,
5734 		     const struct block *block,
5735 		     const char *name,
5736 		     domain_enum domain,
5737 		     int full_search,
5738 		     int *made_global_lookup_p)
5739 {
5740   struct symbol *sym;
5741   const int wild_match_p = should_use_wild_match (name);
5742 
5743   if (made_global_lookup_p)
5744     *made_global_lookup_p = 0;
5745 
5746   /* Special case: If the user specifies a symbol name inside package
5747      Standard, do a non-wild matching of the symbol name without
5748      the "standard__" prefix.  This was primarily introduced in order
5749      to allow the user to specifically access the standard exceptions
5750      using, for instance, Standard.Constraint_Error when Constraint_Error
5751      is ambiguous (due to the user defining its own Constraint_Error
5752      entity inside its program).  */
5753   if (startswith (name, "standard__"))
5754     {
5755       block = NULL;
5756       name = name + sizeof ("standard__") - 1;
5757     }
5758 
5759   /* Check the non-global symbols.  If we have ANY match, then we're done.  */
5760 
5761   if (block != NULL)
5762     {
5763       if (full_search)
5764 	ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5765       else
5766 	{
5767 	  /* In the !full_search case we're are being called by
5768 	     ada_iterate_over_symbols, and we don't want to search
5769 	     superblocks.  */
5770 	  ada_add_block_symbols (obstackp, block, name, domain, NULL,
5771 				 wild_match_p);
5772 	}
5773       if (num_defns_collected (obstackp) > 0 || !full_search)
5774 	return;
5775     }
5776 
5777   /* No non-global symbols found.  Check our cache to see if we have
5778      already performed this search before.  If we have, then return
5779      the same result.  */
5780 
5781   if (lookup_cached_symbol (name, domain, &sym, &block))
5782     {
5783       if (sym != NULL)
5784         add_defn_to_vec (obstackp, sym, block);
5785       return;
5786     }
5787 
5788   if (made_global_lookup_p)
5789     *made_global_lookup_p = 1;
5790 
5791   /* Search symbols from all global blocks.  */
5792 
5793   add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5794 
5795   /* Now add symbols from all per-file blocks if we've gotten no hits
5796      (not strictly correct, but perhaps better than an error).  */
5797 
5798   if (num_defns_collected (obstackp) == 0)
5799     add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5800 }
5801 
5802 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5803    non-zero, enclosing scope and in global scopes, returning the number of
5804    matches.
5805    Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5806    indicating the symbols found and the blocks and symbol tables (if
5807    any) in which they were found.  This vector is transient---good only to
5808    the next call of ada_lookup_symbol_list.
5809 
5810    When full_search is non-zero, any non-function/non-enumeral
5811    symbol match within the nest of blocks whose innermost member is BLOCK,
5812    is the one match returned (no other matches in that or
5813    enclosing blocks is returned).  If there are any matches in or
5814    surrounding BLOCK, then these alone are returned.
5815 
5816    Names prefixed with "standard__" are handled specially: "standard__"
5817    is first stripped off, and only static and global symbols are searched.  */
5818 
5819 static int
5820 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5821 			       domain_enum domain,
5822 			       struct block_symbol **results,
5823 			       int full_search)
5824 {
5825   const int wild_match_p = should_use_wild_match (name);
5826   int syms_from_global_search;
5827   int ndefns;
5828 
5829   obstack_free (&symbol_list_obstack, NULL);
5830   obstack_init (&symbol_list_obstack);
5831   ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5832 		       full_search, &syms_from_global_search);
5833 
5834   ndefns = num_defns_collected (&symbol_list_obstack);
5835   *results = defns_collected (&symbol_list_obstack, 1);
5836 
5837   ndefns = remove_extra_symbols (*results, ndefns);
5838 
5839   if (ndefns == 0 && full_search && syms_from_global_search)
5840     cache_symbol (name, domain, NULL, NULL);
5841 
5842   if (ndefns == 1 && full_search && syms_from_global_search)
5843     cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5844 
5845   ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5846   return ndefns;
5847 }
5848 
5849 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5850    in global scopes, returning the number of matches, and setting *RESULTS
5851    to a vector of (SYM,BLOCK) tuples.
5852    See ada_lookup_symbol_list_worker for further details.  */
5853 
5854 int
5855 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5856 			domain_enum domain, struct block_symbol **results)
5857 {
5858   return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5859 }
5860 
5861 /* Implementation of the la_iterate_over_symbols method.  */
5862 
5863 static void
5864 ada_iterate_over_symbols (const struct block *block,
5865 			  const char *name, domain_enum domain,
5866 			  symbol_found_callback_ftype *callback,
5867 			  void *data)
5868 {
5869   int ndefs, i;
5870   struct block_symbol *results;
5871 
5872   ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5873   for (i = 0; i < ndefs; ++i)
5874     {
5875       if (! (*callback) (results[i].symbol, data))
5876 	break;
5877     }
5878 }
5879 
5880 /* If NAME is the name of an entity, return a string that should
5881    be used to look that entity up in Ada units.  This string should
5882    be deallocated after use using xfree.
5883 
5884    NAME can have any form that the "break" or "print" commands might
5885    recognize.  In other words, it does not have to be the "natural"
5886    name, or the "encoded" name.  */
5887 
5888 char *
5889 ada_name_for_lookup (const char *name)
5890 {
5891   char *canon;
5892   int nlen = strlen (name);
5893 
5894   if (name[0] == '<' && name[nlen - 1] == '>')
5895     {
5896       canon = (char *) xmalloc (nlen - 1);
5897       memcpy (canon, name + 1, nlen - 2);
5898       canon[nlen - 2] = '\0';
5899     }
5900   else
5901     canon = xstrdup (ada_encode (ada_fold_name (name)));
5902   return canon;
5903 }
5904 
5905 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5906    to 1, but choosing the first symbol found if there are multiple
5907    choices.
5908 
5909    The result is stored in *INFO, which must be non-NULL.
5910    If no match is found, INFO->SYM is set to NULL.  */
5911 
5912 void
5913 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5914 			   domain_enum domain,
5915 			   struct block_symbol *info)
5916 {
5917   struct block_symbol *candidates;
5918   int n_candidates;
5919 
5920   gdb_assert (info != NULL);
5921   memset (info, 0, sizeof (struct block_symbol));
5922 
5923   n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5924   if (n_candidates == 0)
5925     return;
5926 
5927   *info = candidates[0];
5928   info->symbol = fixup_symbol_section (info->symbol, NULL);
5929 }
5930 
5931 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5932    scope and in global scopes, or NULL if none.  NAME is folded and
5933    encoded first.  Otherwise, the result is as for ada_lookup_symbol_list,
5934    choosing the first symbol if there are multiple choices.
5935    If IS_A_FIELD_OF_THIS is not NULL, it is set to zero.  */
5936 
5937 struct block_symbol
5938 ada_lookup_symbol (const char *name, const struct block *block0,
5939                    domain_enum domain, int *is_a_field_of_this)
5940 {
5941   struct block_symbol info;
5942 
5943   if (is_a_field_of_this != NULL)
5944     *is_a_field_of_this = 0;
5945 
5946   ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5947 			     block0, domain, &info);
5948   return info;
5949 }
5950 
5951 static struct block_symbol
5952 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5953 			    const char *name,
5954                             const struct block *block,
5955                             const domain_enum domain)
5956 {
5957   struct block_symbol sym;
5958 
5959   sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5960   if (sym.symbol != NULL)
5961     return sym;
5962 
5963   /* If we haven't found a match at this point, try the primitive
5964      types.  In other languages, this search is performed before
5965      searching for global symbols in order to short-circuit that
5966      global-symbol search if it happens that the name corresponds
5967      to a primitive type.  But we cannot do the same in Ada, because
5968      it is perfectly legitimate for a program to declare a type which
5969      has the same name as a standard type.  If looking up a type in
5970      that situation, we have traditionally ignored the primitive type
5971      in favor of user-defined types.  This is why, unlike most other
5972      languages, we search the primitive types this late and only after
5973      having searched the global symbols without success.  */
5974 
5975   if (domain == VAR_DOMAIN)
5976     {
5977       struct gdbarch *gdbarch;
5978 
5979       if (block == NULL)
5980 	gdbarch = target_gdbarch ();
5981       else
5982 	gdbarch = block_gdbarch (block);
5983       sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5984       if (sym.symbol != NULL)
5985 	return sym;
5986     }
5987 
5988   return (struct block_symbol) {NULL, NULL};
5989 }
5990 
5991 
5992 /* True iff STR is a possible encoded suffix of a normal Ada name
5993    that is to be ignored for matching purposes.  Suffixes of parallel
5994    names (e.g., XVE) are not included here.  Currently, the possible suffixes
5995    are given by any of the regular expressions:
5996 
5997    [.$][0-9]+       [nested subprogram suffix, on platforms such as GNU/Linux]
5998    ___[0-9]+        [nested subprogram suffix, on platforms such as HP/UX]
5999    TKB              [subprogram suffix for task bodies]
6000    _E[0-9]+[bs]$    [protected object entry suffixes]
6001    (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
6002 
6003    Also, any leading "__[0-9]+" sequence is skipped before the suffix
6004    match is performed.  This sequence is used to differentiate homonyms,
6005    is an optional part of a valid name suffix.  */
6006 
6007 static int
6008 is_name_suffix (const char *str)
6009 {
6010   int k;
6011   const char *matching;
6012   const int len = strlen (str);
6013 
6014   /* Skip optional leading __[0-9]+.  */
6015 
6016   if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6017     {
6018       str += 3;
6019       while (isdigit (str[0]))
6020         str += 1;
6021     }
6022 
6023   /* [.$][0-9]+ */
6024 
6025   if (str[0] == '.' || str[0] == '$')
6026     {
6027       matching = str + 1;
6028       while (isdigit (matching[0]))
6029         matching += 1;
6030       if (matching[0] == '\0')
6031         return 1;
6032     }
6033 
6034   /* ___[0-9]+ */
6035 
6036   if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6037     {
6038       matching = str + 3;
6039       while (isdigit (matching[0]))
6040         matching += 1;
6041       if (matching[0] == '\0')
6042         return 1;
6043     }
6044 
6045   /* "TKB" suffixes are used for subprograms implementing task bodies.  */
6046 
6047   if (strcmp (str, "TKB") == 0)
6048     return 1;
6049 
6050 #if 0
6051   /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6052      with a N at the end.  Unfortunately, the compiler uses the same
6053      convention for other internal types it creates.  So treating
6054      all entity names that end with an "N" as a name suffix causes
6055      some regressions.  For instance, consider the case of an enumerated
6056      type.  To support the 'Image attribute, it creates an array whose
6057      name ends with N.
6058      Having a single character like this as a suffix carrying some
6059      information is a bit risky.  Perhaps we should change the encoding
6060      to be something like "_N" instead.  In the meantime, do not do
6061      the following check.  */
6062   /* Protected Object Subprograms */
6063   if (len == 1 && str [0] == 'N')
6064     return 1;
6065 #endif
6066 
6067   /* _E[0-9]+[bs]$ */
6068   if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6069     {
6070       matching = str + 3;
6071       while (isdigit (matching[0]))
6072         matching += 1;
6073       if ((matching[0] == 'b' || matching[0] == 's')
6074           && matching [1] == '\0')
6075         return 1;
6076     }
6077 
6078   /* ??? We should not modify STR directly, as we are doing below.  This
6079      is fine in this case, but may become problematic later if we find
6080      that this alternative did not work, and want to try matching
6081      another one from the begining of STR.  Since we modified it, we
6082      won't be able to find the begining of the string anymore!  */
6083   if (str[0] == 'X')
6084     {
6085       str += 1;
6086       while (str[0] != '_' && str[0] != '\0')
6087         {
6088           if (str[0] != 'n' && str[0] != 'b')
6089             return 0;
6090           str += 1;
6091         }
6092     }
6093 
6094   if (str[0] == '\000')
6095     return 1;
6096 
6097   if (str[0] == '_')
6098     {
6099       if (str[1] != '_' || str[2] == '\000')
6100         return 0;
6101       if (str[2] == '_')
6102         {
6103           if (strcmp (str + 3, "JM") == 0)
6104             return 1;
6105           /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6106              the LJM suffix in favor of the JM one.  But we will
6107              still accept LJM as a valid suffix for a reasonable
6108              amount of time, just to allow ourselves to debug programs
6109              compiled using an older version of GNAT.  */
6110           if (strcmp (str + 3, "LJM") == 0)
6111             return 1;
6112           if (str[3] != 'X')
6113             return 0;
6114           if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6115               || str[4] == 'U' || str[4] == 'P')
6116             return 1;
6117           if (str[4] == 'R' && str[5] != 'T')
6118             return 1;
6119           return 0;
6120         }
6121       if (!isdigit (str[2]))
6122         return 0;
6123       for (k = 3; str[k] != '\0'; k += 1)
6124         if (!isdigit (str[k]) && str[k] != '_')
6125           return 0;
6126       return 1;
6127     }
6128   if (str[0] == '$' && isdigit (str[1]))
6129     {
6130       for (k = 2; str[k] != '\0'; k += 1)
6131         if (!isdigit (str[k]) && str[k] != '_')
6132           return 0;
6133       return 1;
6134     }
6135   return 0;
6136 }
6137 
6138 /* Return non-zero if the string starting at NAME and ending before
6139    NAME_END contains no capital letters.  */
6140 
6141 static int
6142 is_valid_name_for_wild_match (const char *name0)
6143 {
6144   const char *decoded_name = ada_decode (name0);
6145   int i;
6146 
6147   /* If the decoded name starts with an angle bracket, it means that
6148      NAME0 does not follow the GNAT encoding format.  It should then
6149      not be allowed as a possible wild match.  */
6150   if (decoded_name[0] == '<')
6151     return 0;
6152 
6153   for (i=0; decoded_name[i] != '\0'; i++)
6154     if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6155       return 0;
6156 
6157   return 1;
6158 }
6159 
6160 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6161    that could start a simple name.  Assumes that *NAMEP points into
6162    the string beginning at NAME0.  */
6163 
6164 static int
6165 advance_wild_match (const char **namep, const char *name0, int target0)
6166 {
6167   const char *name = *namep;
6168 
6169   while (1)
6170     {
6171       int t0, t1;
6172 
6173       t0 = *name;
6174       if (t0 == '_')
6175 	{
6176 	  t1 = name[1];
6177 	  if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6178 	    {
6179 	      name += 1;
6180 	      if (name == name0 + 5 && startswith (name0, "_ada"))
6181 		break;
6182 	      else
6183 		name += 1;
6184 	    }
6185 	  else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6186 				 || name[2] == target0))
6187 	    {
6188 	      name += 2;
6189 	      break;
6190 	    }
6191 	  else
6192 	    return 0;
6193 	}
6194       else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6195 	name += 1;
6196       else
6197 	return 0;
6198     }
6199 
6200   *namep = name;
6201   return 1;
6202 }
6203 
6204 /* Return 0 iff NAME encodes a name of the form prefix.PATN.  Ignores any
6205    informational suffixes of NAME (i.e., for which is_name_suffix is
6206    true).  Assumes that PATN is a lower-cased Ada simple name.  */
6207 
6208 static int
6209 wild_match (const char *name, const char *patn)
6210 {
6211   const char *p;
6212   const char *name0 = name;
6213 
6214   while (1)
6215     {
6216       const char *match = name;
6217 
6218       if (*name == *patn)
6219 	{
6220 	  for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6221 	    if (*p != *name)
6222 	      break;
6223 	  if (*p == '\0' && is_name_suffix (name))
6224 	    return match != name0 && !is_valid_name_for_wild_match (name0);
6225 
6226 	  if (name[-1] == '_')
6227 	    name -= 1;
6228 	}
6229       if (!advance_wild_match (&name, name0, *patn))
6230 	return 1;
6231     }
6232 }
6233 
6234 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6235    informational suffix.  */
6236 
6237 static int
6238 full_match (const char *sym_name, const char *search_name)
6239 {
6240   return !match_name (sym_name, search_name, 0);
6241 }
6242 
6243 
6244 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6245    vector *defn_symbols, updating the list of symbols in OBSTACKP
6246    (if necessary).  If WILD, treat as NAME with a wildcard prefix.
6247    OBJFILE is the section containing BLOCK.  */
6248 
6249 static void
6250 ada_add_block_symbols (struct obstack *obstackp,
6251                        const struct block *block, const char *name,
6252                        domain_enum domain, struct objfile *objfile,
6253                        int wild)
6254 {
6255   struct block_iterator iter;
6256   int name_len = strlen (name);
6257   /* A matching argument symbol, if any.  */
6258   struct symbol *arg_sym;
6259   /* Set true when we find a matching non-argument symbol.  */
6260   int found_sym;
6261   struct symbol *sym;
6262 
6263   arg_sym = NULL;
6264   found_sym = 0;
6265   if (wild)
6266     {
6267       for (sym = block_iter_match_first (block, name, wild_match, &iter);
6268 	   sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6269       {
6270         if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6271                                    SYMBOL_DOMAIN (sym), domain)
6272             && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6273           {
6274 	    if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6275 	      continue;
6276 	    else if (SYMBOL_IS_ARGUMENT (sym))
6277 	      arg_sym = sym;
6278 	    else
6279 	      {
6280                 found_sym = 1;
6281                 add_defn_to_vec (obstackp,
6282                                  fixup_symbol_section (sym, objfile),
6283                                  block);
6284               }
6285           }
6286       }
6287     }
6288   else
6289     {
6290      for (sym = block_iter_match_first (block, name, full_match, &iter);
6291 	  sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6292       {
6293         if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6294                                    SYMBOL_DOMAIN (sym), domain))
6295           {
6296 	    if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6297 	      {
6298 		if (SYMBOL_IS_ARGUMENT (sym))
6299 		  arg_sym = sym;
6300 		else
6301 		  {
6302 		    found_sym = 1;
6303 		    add_defn_to_vec (obstackp,
6304 				     fixup_symbol_section (sym, objfile),
6305 				     block);
6306 		  }
6307 	      }
6308           }
6309       }
6310     }
6311 
6312   /* Handle renamings.  */
6313 
6314   if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6315     found_sym = 1;
6316 
6317   if (!found_sym && arg_sym != NULL)
6318     {
6319       add_defn_to_vec (obstackp,
6320                        fixup_symbol_section (arg_sym, objfile),
6321                        block);
6322     }
6323 
6324   if (!wild)
6325     {
6326       arg_sym = NULL;
6327       found_sym = 0;
6328 
6329       ALL_BLOCK_SYMBOLS (block, iter, sym)
6330       {
6331         if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6332                                    SYMBOL_DOMAIN (sym), domain))
6333           {
6334             int cmp;
6335 
6336             cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6337             if (cmp == 0)
6338               {
6339                 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6340                 if (cmp == 0)
6341                   cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6342                                  name_len);
6343               }
6344 
6345             if (cmp == 0
6346                 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6347               {
6348 		if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6349 		  {
6350 		    if (SYMBOL_IS_ARGUMENT (sym))
6351 		      arg_sym = sym;
6352 		    else
6353 		      {
6354 			found_sym = 1;
6355 			add_defn_to_vec (obstackp,
6356 					 fixup_symbol_section (sym, objfile),
6357 					 block);
6358 		      }
6359 		  }
6360               }
6361           }
6362       }
6363 
6364       /* NOTE: This really shouldn't be needed for _ada_ symbols.
6365          They aren't parameters, right?  */
6366       if (!found_sym && arg_sym != NULL)
6367         {
6368           add_defn_to_vec (obstackp,
6369                            fixup_symbol_section (arg_sym, objfile),
6370                            block);
6371         }
6372     }
6373 }
6374 
6375 
6376                                 /* Symbol Completion */
6377 
6378 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6379    name in a form that's appropriate for the completion.  The result
6380    does not need to be deallocated, but is only good until the next call.
6381 
6382    TEXT_LEN is equal to the length of TEXT.
6383    Perform a wild match if WILD_MATCH_P is set.
6384    ENCODED_P should be set if TEXT represents the start of a symbol name
6385    in its encoded form.  */
6386 
6387 static const char *
6388 symbol_completion_match (const char *sym_name,
6389                          const char *text, int text_len,
6390                          int wild_match_p, int encoded_p)
6391 {
6392   const int verbatim_match = (text[0] == '<');
6393   int match = 0;
6394 
6395   if (verbatim_match)
6396     {
6397       /* Strip the leading angle bracket.  */
6398       text = text + 1;
6399       text_len--;
6400     }
6401 
6402   /* First, test against the fully qualified name of the symbol.  */
6403 
6404   if (strncmp (sym_name, text, text_len) == 0)
6405     match = 1;
6406 
6407   if (match && !encoded_p)
6408     {
6409       /* One needed check before declaring a positive match is to verify
6410          that iff we are doing a verbatim match, the decoded version
6411          of the symbol name starts with '<'.  Otherwise, this symbol name
6412          is not a suitable completion.  */
6413       const char *sym_name_copy = sym_name;
6414       int has_angle_bracket;
6415 
6416       sym_name = ada_decode (sym_name);
6417       has_angle_bracket = (sym_name[0] == '<');
6418       match = (has_angle_bracket == verbatim_match);
6419       sym_name = sym_name_copy;
6420     }
6421 
6422   if (match && !verbatim_match)
6423     {
6424       /* When doing non-verbatim match, another check that needs to
6425          be done is to verify that the potentially matching symbol name
6426          does not include capital letters, because the ada-mode would
6427          not be able to understand these symbol names without the
6428          angle bracket notation.  */
6429       const char *tmp;
6430 
6431       for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6432       if (*tmp != '\0')
6433         match = 0;
6434     }
6435 
6436   /* Second: Try wild matching...  */
6437 
6438   if (!match && wild_match_p)
6439     {
6440       /* Since we are doing wild matching, this means that TEXT
6441          may represent an unqualified symbol name.  We therefore must
6442          also compare TEXT against the unqualified name of the symbol.  */
6443       sym_name = ada_unqualified_name (ada_decode (sym_name));
6444 
6445       if (strncmp (sym_name, text, text_len) == 0)
6446         match = 1;
6447     }
6448 
6449   /* Finally: If we found a mach, prepare the result to return.  */
6450 
6451   if (!match)
6452     return NULL;
6453 
6454   if (verbatim_match)
6455     sym_name = add_angle_brackets (sym_name);
6456 
6457   if (!encoded_p)
6458     sym_name = ada_decode (sym_name);
6459 
6460   return sym_name;
6461 }
6462 
6463 /* A companion function to ada_make_symbol_completion_list().
6464    Check if SYM_NAME represents a symbol which name would be suitable
6465    to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6466    it is appended at the end of the given string vector SV.
6467 
6468    ORIG_TEXT is the string original string from the user command
6469    that needs to be completed.  WORD is the entire command on which
6470    completion should be performed.  These two parameters are used to
6471    determine which part of the symbol name should be added to the
6472    completion vector.
6473    if WILD_MATCH_P is set, then wild matching is performed.
6474    ENCODED_P should be set if TEXT represents a symbol name in its
6475    encoded formed (in which case the completion should also be
6476    encoded).  */
6477 
6478 static void
6479 symbol_completion_add (VEC(char_ptr) **sv,
6480                        const char *sym_name,
6481                        const char *text, int text_len,
6482                        const char *orig_text, const char *word,
6483                        int wild_match_p, int encoded_p)
6484 {
6485   const char *match = symbol_completion_match (sym_name, text, text_len,
6486                                                wild_match_p, encoded_p);
6487   char *completion;
6488 
6489   if (match == NULL)
6490     return;
6491 
6492   /* We found a match, so add the appropriate completion to the given
6493      string vector.  */
6494 
6495   if (word == orig_text)
6496     {
6497       completion = (char *) xmalloc (strlen (match) + 5);
6498       strcpy (completion, match);
6499     }
6500   else if (word > orig_text)
6501     {
6502       /* Return some portion of sym_name.  */
6503       completion = (char *) xmalloc (strlen (match) + 5);
6504       strcpy (completion, match + (word - orig_text));
6505     }
6506   else
6507     {
6508       /* Return some of ORIG_TEXT plus sym_name.  */
6509       completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6510       strncpy (completion, word, orig_text - word);
6511       completion[orig_text - word] = '\0';
6512       strcat (completion, match);
6513     }
6514 
6515   VEC_safe_push (char_ptr, *sv, completion);
6516 }
6517 
6518 /* An object of this type is passed as the user_data argument to the
6519    expand_symtabs_matching method.  */
6520 struct add_partial_datum
6521 {
6522   VEC(char_ptr) **completions;
6523   const char *text;
6524   int text_len;
6525   const char *text0;
6526   const char *word;
6527   int wild_match;
6528   int encoded;
6529 };
6530 
6531 /* A callback for expand_symtabs_matching.  */
6532 
6533 static int
6534 ada_complete_symbol_matcher (const char *name, void *user_data)
6535 {
6536   struct add_partial_datum *data = (struct add_partial_datum *) user_data;
6537 
6538   return symbol_completion_match (name, data->text, data->text_len,
6539                                   data->wild_match, data->encoded) != NULL;
6540 }
6541 
6542 /* Return a list of possible symbol names completing TEXT0.  WORD is
6543    the entire command on which completion is made.  */
6544 
6545 static VEC (char_ptr) *
6546 ada_make_symbol_completion_list (const char *text0, const char *word,
6547 				 enum type_code code)
6548 {
6549   char *text;
6550   int text_len;
6551   int wild_match_p;
6552   int encoded_p;
6553   VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6554   struct symbol *sym;
6555   struct compunit_symtab *s;
6556   struct minimal_symbol *msymbol;
6557   struct objfile *objfile;
6558   const struct block *b, *surrounding_static_block = 0;
6559   int i;
6560   struct block_iterator iter;
6561   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6562 
6563   gdb_assert (code == TYPE_CODE_UNDEF);
6564 
6565   if (text0[0] == '<')
6566     {
6567       text = xstrdup (text0);
6568       make_cleanup (xfree, text);
6569       text_len = strlen (text);
6570       wild_match_p = 0;
6571       encoded_p = 1;
6572     }
6573   else
6574     {
6575       text = xstrdup (ada_encode (text0));
6576       make_cleanup (xfree, text);
6577       text_len = strlen (text);
6578       for (i = 0; i < text_len; i++)
6579         text[i] = tolower (text[i]);
6580 
6581       encoded_p = (strstr (text0, "__") != NULL);
6582       /* If the name contains a ".", then the user is entering a fully
6583          qualified entity name, and the match must not be done in wild
6584          mode.  Similarly, if the user wants to complete what looks like
6585          an encoded name, the match must not be done in wild mode.  */
6586       wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6587     }
6588 
6589   /* First, look at the partial symtab symbols.  */
6590   {
6591     struct add_partial_datum data;
6592 
6593     data.completions = &completions;
6594     data.text = text;
6595     data.text_len = text_len;
6596     data.text0 = text0;
6597     data.word = word;
6598     data.wild_match = wild_match_p;
6599     data.encoded = encoded_p;
6600     expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6601 			     ALL_DOMAIN, &data);
6602   }
6603 
6604   /* At this point scan through the misc symbol vectors and add each
6605      symbol you find to the list.  Eventually we want to ignore
6606      anything that isn't a text symbol (everything else will be
6607      handled by the psymtab code above).  */
6608 
6609   ALL_MSYMBOLS (objfile, msymbol)
6610   {
6611     QUIT;
6612     symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6613 			   text, text_len, text0, word, wild_match_p,
6614 			   encoded_p);
6615   }
6616 
6617   /* Search upwards from currently selected frame (so that we can
6618      complete on local vars.  */
6619 
6620   for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6621     {
6622       if (!BLOCK_SUPERBLOCK (b))
6623         surrounding_static_block = b;   /* For elmin of dups */
6624 
6625       ALL_BLOCK_SYMBOLS (b, iter, sym)
6626       {
6627         symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6628                                text, text_len, text0, word,
6629                                wild_match_p, encoded_p);
6630       }
6631     }
6632 
6633   /* Go through the symtabs and check the externs and statics for
6634      symbols which match.  */
6635 
6636   ALL_COMPUNITS (objfile, s)
6637   {
6638     QUIT;
6639     b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6640     ALL_BLOCK_SYMBOLS (b, iter, sym)
6641     {
6642       symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6643                              text, text_len, text0, word,
6644                              wild_match_p, encoded_p);
6645     }
6646   }
6647 
6648   ALL_COMPUNITS (objfile, s)
6649   {
6650     QUIT;
6651     b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6652     /* Don't do this block twice.  */
6653     if (b == surrounding_static_block)
6654       continue;
6655     ALL_BLOCK_SYMBOLS (b, iter, sym)
6656     {
6657       symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6658                              text, text_len, text0, word,
6659                              wild_match_p, encoded_p);
6660     }
6661   }
6662 
6663   do_cleanups (old_chain);
6664   return completions;
6665 }
6666 
6667                                 /* Field Access */
6668 
6669 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6670    for tagged types.  */
6671 
6672 static int
6673 ada_is_dispatch_table_ptr_type (struct type *type)
6674 {
6675   const char *name;
6676 
6677   if (TYPE_CODE (type) != TYPE_CODE_PTR)
6678     return 0;
6679 
6680   name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6681   if (name == NULL)
6682     return 0;
6683 
6684   return (strcmp (name, "ada__tags__dispatch_table") == 0);
6685 }
6686 
6687 /* Return non-zero if TYPE is an interface tag.  */
6688 
6689 static int
6690 ada_is_interface_tag (struct type *type)
6691 {
6692   const char *name = TYPE_NAME (type);
6693 
6694   if (name == NULL)
6695     return 0;
6696 
6697   return (strcmp (name, "ada__tags__interface_tag") == 0);
6698 }
6699 
6700 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6701    to be invisible to users.  */
6702 
6703 int
6704 ada_is_ignored_field (struct type *type, int field_num)
6705 {
6706   if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6707     return 1;
6708 
6709   /* Check the name of that field.  */
6710   {
6711     const char *name = TYPE_FIELD_NAME (type, field_num);
6712 
6713     /* Anonymous field names should not be printed.
6714        brobecker/2007-02-20: I don't think this can actually happen
6715        but we don't want to print the value of annonymous fields anyway.  */
6716     if (name == NULL)
6717       return 1;
6718 
6719     /* Normally, fields whose name start with an underscore ("_")
6720        are fields that have been internally generated by the compiler,
6721        and thus should not be printed.  The "_parent" field is special,
6722        however: This is a field internally generated by the compiler
6723        for tagged types, and it contains the components inherited from
6724        the parent type.  This field should not be printed as is, but
6725        should not be ignored either.  */
6726     if (name[0] == '_' && !startswith (name, "_parent"))
6727       return 1;
6728   }
6729 
6730   /* If this is the dispatch table of a tagged type or an interface tag,
6731      then ignore.  */
6732   if (ada_is_tagged_type (type, 1)
6733       && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6734 	  || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6735     return 1;
6736 
6737   /* Not a special field, so it should not be ignored.  */
6738   return 0;
6739 }
6740 
6741 /* True iff TYPE has a tag field.  If REFOK, then TYPE may also be a
6742    pointer or reference type whose ultimate target has a tag field.  */
6743 
6744 int
6745 ada_is_tagged_type (struct type *type, int refok)
6746 {
6747   return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6748 }
6749 
6750 /* True iff TYPE represents the type of X'Tag */
6751 
6752 int
6753 ada_is_tag_type (struct type *type)
6754 {
6755   type = ada_check_typedef (type);
6756 
6757   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6758     return 0;
6759   else
6760     {
6761       const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6762 
6763       return (name != NULL
6764               && strcmp (name, "ada__tags__dispatch_table") == 0);
6765     }
6766 }
6767 
6768 /* The type of the tag on VAL.  */
6769 
6770 struct type *
6771 ada_tag_type (struct value *val)
6772 {
6773   return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6774 }
6775 
6776 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6777    retired at Ada 05).  */
6778 
6779 static int
6780 is_ada95_tag (struct value *tag)
6781 {
6782   return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6783 }
6784 
6785 /* The value of the tag on VAL.  */
6786 
6787 struct value *
6788 ada_value_tag (struct value *val)
6789 {
6790   return ada_value_struct_elt (val, "_tag", 0);
6791 }
6792 
6793 /* The value of the tag on the object of type TYPE whose contents are
6794    saved at VALADDR, if it is non-null, or is at memory address
6795    ADDRESS.  */
6796 
6797 static struct value *
6798 value_tag_from_contents_and_address (struct type *type,
6799 				     const gdb_byte *valaddr,
6800                                      CORE_ADDR address)
6801 {
6802   int tag_byte_offset;
6803   struct type *tag_type;
6804 
6805   if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6806                          NULL, NULL, NULL))
6807     {
6808       const gdb_byte *valaddr1 = ((valaddr == NULL)
6809 				  ? NULL
6810 				  : valaddr + tag_byte_offset);
6811       CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6812 
6813       return value_from_contents_and_address (tag_type, valaddr1, address1);
6814     }
6815   return NULL;
6816 }
6817 
6818 static struct type *
6819 type_from_tag (struct value *tag)
6820 {
6821   const char *type_name = ada_tag_name (tag);
6822 
6823   if (type_name != NULL)
6824     return ada_find_any_type (ada_encode (type_name));
6825   return NULL;
6826 }
6827 
6828 /* Given a value OBJ of a tagged type, return a value of this
6829    type at the base address of the object.  The base address, as
6830    defined in Ada.Tags, it is the address of the primary tag of
6831    the object, and therefore where the field values of its full
6832    view can be fetched.  */
6833 
6834 struct value *
6835 ada_tag_value_at_base_address (struct value *obj)
6836 {
6837   struct value *val;
6838   LONGEST offset_to_top = 0;
6839   struct type *ptr_type, *obj_type;
6840   struct value *tag;
6841   CORE_ADDR base_address;
6842 
6843   obj_type = value_type (obj);
6844 
6845   /* It is the responsability of the caller to deref pointers.  */
6846 
6847   if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6848       || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6849     return obj;
6850 
6851   tag = ada_value_tag (obj);
6852   if (!tag)
6853     return obj;
6854 
6855   /* Base addresses only appeared with Ada 05 and multiple inheritance.  */
6856 
6857   if (is_ada95_tag (tag))
6858     return obj;
6859 
6860   ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6861   ptr_type = lookup_pointer_type (ptr_type);
6862   val = value_cast (ptr_type, tag);
6863   if (!val)
6864     return obj;
6865 
6866   /* It is perfectly possible that an exception be raised while
6867      trying to determine the base address, just like for the tag;
6868      see ada_tag_name for more details.  We do not print the error
6869      message for the same reason.  */
6870 
6871   TRY
6872     {
6873       offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6874     }
6875 
6876   CATCH (e, RETURN_MASK_ERROR)
6877     {
6878       return obj;
6879     }
6880   END_CATCH
6881 
6882   /* If offset is null, nothing to do.  */
6883 
6884   if (offset_to_top == 0)
6885     return obj;
6886 
6887   /* -1 is a special case in Ada.Tags; however, what should be done
6888      is not quite clear from the documentation.  So do nothing for
6889      now.  */
6890 
6891   if (offset_to_top == -1)
6892     return obj;
6893 
6894   base_address = value_address (obj) - offset_to_top;
6895   tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6896 
6897   /* Make sure that we have a proper tag at the new address.
6898      Otherwise, offset_to_top is bogus (which can happen when
6899      the object is not initialized yet).  */
6900 
6901   if (!tag)
6902     return obj;
6903 
6904   obj_type = type_from_tag (tag);
6905 
6906   if (!obj_type)
6907     return obj;
6908 
6909   return value_from_contents_and_address (obj_type, NULL, base_address);
6910 }
6911 
6912 /* Return the "ada__tags__type_specific_data" type.  */
6913 
6914 static struct type *
6915 ada_get_tsd_type (struct inferior *inf)
6916 {
6917   struct ada_inferior_data *data = get_ada_inferior_data (inf);
6918 
6919   if (data->tsd_type == 0)
6920     data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6921   return data->tsd_type;
6922 }
6923 
6924 /* Return the TSD (type-specific data) associated to the given TAG.
6925    TAG is assumed to be the tag of a tagged-type entity.
6926 
6927    May return NULL if we are unable to get the TSD.  */
6928 
6929 static struct value *
6930 ada_get_tsd_from_tag (struct value *tag)
6931 {
6932   struct value *val;
6933   struct type *type;
6934 
6935   /* First option: The TSD is simply stored as a field of our TAG.
6936      Only older versions of GNAT would use this format, but we have
6937      to test it first, because there are no visible markers for
6938      the current approach except the absence of that field.  */
6939 
6940   val = ada_value_struct_elt (tag, "tsd", 1);
6941   if (val)
6942     return val;
6943 
6944   /* Try the second representation for the dispatch table (in which
6945      there is no explicit 'tsd' field in the referent of the tag pointer,
6946      and instead the tsd pointer is stored just before the dispatch
6947      table.  */
6948 
6949   type = ada_get_tsd_type (current_inferior());
6950   if (type == NULL)
6951     return NULL;
6952   type = lookup_pointer_type (lookup_pointer_type (type));
6953   val = value_cast (type, tag);
6954   if (val == NULL)
6955     return NULL;
6956   return value_ind (value_ptradd (val, -1));
6957 }
6958 
6959 /* Given the TSD of a tag (type-specific data), return a string
6960    containing the name of the associated type.
6961 
6962    The returned value is good until the next call.  May return NULL
6963    if we are unable to determine the tag name.  */
6964 
6965 static char *
6966 ada_tag_name_from_tsd (struct value *tsd)
6967 {
6968   static char name[1024];
6969   char *p;
6970   struct value *val;
6971 
6972   val = ada_value_struct_elt (tsd, "expanded_name", 1);
6973   if (val == NULL)
6974     return NULL;
6975   read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6976   for (p = name; *p != '\0'; p += 1)
6977     if (isalpha (*p))
6978       *p = tolower (*p);
6979   return name;
6980 }
6981 
6982 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6983    a C string.
6984 
6985    Return NULL if the TAG is not an Ada tag, or if we were unable to
6986    determine the name of that tag.  The result is good until the next
6987    call.  */
6988 
6989 const char *
6990 ada_tag_name (struct value *tag)
6991 {
6992   char *name = NULL;
6993 
6994   if (!ada_is_tag_type (value_type (tag)))
6995     return NULL;
6996 
6997   /* It is perfectly possible that an exception be raised while trying
6998      to determine the TAG's name, even under normal circumstances:
6999      The associated variable may be uninitialized or corrupted, for
7000      instance. We do not let any exception propagate past this point.
7001      instead we return NULL.
7002 
7003      We also do not print the error message either (which often is very
7004      low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
7005      the caller print a more meaningful message if necessary.  */
7006   TRY
7007     {
7008       struct value *tsd = ada_get_tsd_from_tag (tag);
7009 
7010       if (tsd != NULL)
7011 	name = ada_tag_name_from_tsd (tsd);
7012     }
7013   CATCH (e, RETURN_MASK_ERROR)
7014     {
7015     }
7016   END_CATCH
7017 
7018   return name;
7019 }
7020 
7021 /* The parent type of TYPE, or NULL if none.  */
7022 
7023 struct type *
7024 ada_parent_type (struct type *type)
7025 {
7026   int i;
7027 
7028   type = ada_check_typedef (type);
7029 
7030   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7031     return NULL;
7032 
7033   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7034     if (ada_is_parent_field (type, i))
7035       {
7036         struct type *parent_type = TYPE_FIELD_TYPE (type, i);
7037 
7038         /* If the _parent field is a pointer, then dereference it.  */
7039         if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
7040           parent_type = TYPE_TARGET_TYPE (parent_type);
7041         /* If there is a parallel XVS type, get the actual base type.  */
7042         parent_type = ada_get_base_type (parent_type);
7043 
7044         return ada_check_typedef (parent_type);
7045       }
7046 
7047   return NULL;
7048 }
7049 
7050 /* True iff field number FIELD_NUM of structure type TYPE contains the
7051    parent-type (inherited) fields of a derived type.  Assumes TYPE is
7052    a structure type with at least FIELD_NUM+1 fields.  */
7053 
7054 int
7055 ada_is_parent_field (struct type *type, int field_num)
7056 {
7057   const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
7058 
7059   return (name != NULL
7060           && (startswith (name, "PARENT")
7061               || startswith (name, "_parent")));
7062 }
7063 
7064 /* True iff field number FIELD_NUM of structure type TYPE is a
7065    transparent wrapper field (which should be silently traversed when doing
7066    field selection and flattened when printing).  Assumes TYPE is a
7067    structure type with at least FIELD_NUM+1 fields.  Such fields are always
7068    structures.  */
7069 
7070 int
7071 ada_is_wrapper_field (struct type *type, int field_num)
7072 {
7073   const char *name = TYPE_FIELD_NAME (type, field_num);
7074 
7075   if (name != NULL && strcmp (name, "RETVAL") == 0)
7076     {
7077       /* This happens in functions with "out" or "in out" parameters
7078 	 which are passed by copy.  For such functions, GNAT describes
7079 	 the function's return type as being a struct where the return
7080 	 value is in a field called RETVAL, and where the other "out"
7081 	 or "in out" parameters are fields of that struct.  This is not
7082 	 a wrapper.  */
7083       return 0;
7084     }
7085 
7086   return (name != NULL
7087           && (startswith (name, "PARENT")
7088               || strcmp (name, "REP") == 0
7089               || startswith (name, "_parent")
7090               || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7091 }
7092 
7093 /* True iff field number FIELD_NUM of structure or union type TYPE
7094    is a variant wrapper.  Assumes TYPE is a structure type with at least
7095    FIELD_NUM+1 fields.  */
7096 
7097 int
7098 ada_is_variant_part (struct type *type, int field_num)
7099 {
7100   struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7101 
7102   return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7103           || (is_dynamic_field (type, field_num)
7104               && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7105 		  == TYPE_CODE_UNION)));
7106 }
7107 
7108 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7109    whose discriminants are contained in the record type OUTER_TYPE,
7110    returns the type of the controlling discriminant for the variant.
7111    May return NULL if the type could not be found.  */
7112 
7113 struct type *
7114 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7115 {
7116   char *name = ada_variant_discrim_name (var_type);
7117 
7118   return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
7119 }
7120 
7121 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7122    valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7123    represents a 'when others' clause; otherwise 0.  */
7124 
7125 int
7126 ada_is_others_clause (struct type *type, int field_num)
7127 {
7128   const char *name = TYPE_FIELD_NAME (type, field_num);
7129 
7130   return (name != NULL && name[0] == 'O');
7131 }
7132 
7133 /* Assuming that TYPE0 is the type of the variant part of a record,
7134    returns the name of the discriminant controlling the variant.
7135    The value is valid until the next call to ada_variant_discrim_name.  */
7136 
7137 char *
7138 ada_variant_discrim_name (struct type *type0)
7139 {
7140   static char *result = NULL;
7141   static size_t result_len = 0;
7142   struct type *type;
7143   const char *name;
7144   const char *discrim_end;
7145   const char *discrim_start;
7146 
7147   if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7148     type = TYPE_TARGET_TYPE (type0);
7149   else
7150     type = type0;
7151 
7152   name = ada_type_name (type);
7153 
7154   if (name == NULL || name[0] == '\000')
7155     return "";
7156 
7157   for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7158        discrim_end -= 1)
7159     {
7160       if (startswith (discrim_end, "___XVN"))
7161         break;
7162     }
7163   if (discrim_end == name)
7164     return "";
7165 
7166   for (discrim_start = discrim_end; discrim_start != name + 3;
7167        discrim_start -= 1)
7168     {
7169       if (discrim_start == name + 1)
7170         return "";
7171       if ((discrim_start > name + 3
7172            && startswith (discrim_start - 3, "___"))
7173           || discrim_start[-1] == '.')
7174         break;
7175     }
7176 
7177   GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7178   strncpy (result, discrim_start, discrim_end - discrim_start);
7179   result[discrim_end - discrim_start] = '\0';
7180   return result;
7181 }
7182 
7183 /* Scan STR for a subtype-encoded number, beginning at position K.
7184    Put the position of the character just past the number scanned in
7185    *NEW_K, if NEW_K!=NULL.  Put the scanned number in *R, if R!=NULL.
7186    Return 1 if there was a valid number at the given position, and 0
7187    otherwise.  A "subtype-encoded" number consists of the absolute value
7188    in decimal, followed by the letter 'm' to indicate a negative number.
7189    Assumes 0m does not occur.  */
7190 
7191 int
7192 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7193 {
7194   ULONGEST RU;
7195 
7196   if (!isdigit (str[k]))
7197     return 0;
7198 
7199   /* Do it the hard way so as not to make any assumption about
7200      the relationship of unsigned long (%lu scan format code) and
7201      LONGEST.  */
7202   RU = 0;
7203   while (isdigit (str[k]))
7204     {
7205       RU = RU * 10 + (str[k] - '0');
7206       k += 1;
7207     }
7208 
7209   if (str[k] == 'm')
7210     {
7211       if (R != NULL)
7212         *R = (-(LONGEST) (RU - 1)) - 1;
7213       k += 1;
7214     }
7215   else if (R != NULL)
7216     *R = (LONGEST) RU;
7217 
7218   /* NOTE on the above: Technically, C does not say what the results of
7219      - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7220      number representable as a LONGEST (although either would probably work
7221      in most implementations).  When RU>0, the locution in the then branch
7222      above is always equivalent to the negative of RU.  */
7223 
7224   if (new_k != NULL)
7225     *new_k = k;
7226   return 1;
7227 }
7228 
7229 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7230    and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7231    in the range encoded by field FIELD_NUM of TYPE; otherwise 0.  */
7232 
7233 int
7234 ada_in_variant (LONGEST val, struct type *type, int field_num)
7235 {
7236   const char *name = TYPE_FIELD_NAME (type, field_num);
7237   int p;
7238 
7239   p = 0;
7240   while (1)
7241     {
7242       switch (name[p])
7243         {
7244         case '\0':
7245           return 0;
7246         case 'S':
7247           {
7248             LONGEST W;
7249 
7250             if (!ada_scan_number (name, p + 1, &W, &p))
7251               return 0;
7252             if (val == W)
7253               return 1;
7254             break;
7255           }
7256         case 'R':
7257           {
7258             LONGEST L, U;
7259 
7260             if (!ada_scan_number (name, p + 1, &L, &p)
7261                 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7262               return 0;
7263             if (val >= L && val <= U)
7264               return 1;
7265             break;
7266           }
7267         case 'O':
7268           return 1;
7269         default:
7270           return 0;
7271         }
7272     }
7273 }
7274 
7275 /* FIXME: Lots of redundancy below.  Try to consolidate.  */
7276 
7277 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7278    ARG_TYPE, extract and return the value of one of its (non-static)
7279    fields.  FIELDNO says which field.   Differs from value_primitive_field
7280    only in that it can handle packed values of arbitrary type.  */
7281 
7282 static struct value *
7283 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7284                            struct type *arg_type)
7285 {
7286   struct type *type;
7287 
7288   arg_type = ada_check_typedef (arg_type);
7289   type = TYPE_FIELD_TYPE (arg_type, fieldno);
7290 
7291   /* Handle packed fields.  */
7292 
7293   if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7294     {
7295       int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7296       int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7297 
7298       return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7299                                              offset + bit_pos / 8,
7300                                              bit_pos % 8, bit_size, type);
7301     }
7302   else
7303     return value_primitive_field (arg1, offset, fieldno, arg_type);
7304 }
7305 
7306 /* Find field with name NAME in object of type TYPE.  If found,
7307    set the following for each argument that is non-null:
7308     - *FIELD_TYPE_P to the field's type;
7309     - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7310       an object of that type;
7311     - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7312     - *BIT_SIZE_P to its size in bits if the field is packed, and
7313       0 otherwise;
7314    If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7315    fields up to but not including the desired field, or by the total
7316    number of fields if not found.   A NULL value of NAME never
7317    matches; the function just counts visible fields in this case.
7318 
7319    Returns 1 if found, 0 otherwise.  */
7320 
7321 static int
7322 find_struct_field (const char *name, struct type *type, int offset,
7323                    struct type **field_type_p,
7324                    int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7325 		   int *index_p)
7326 {
7327   int i;
7328 
7329   type = ada_check_typedef (type);
7330 
7331   if (field_type_p != NULL)
7332     *field_type_p = NULL;
7333   if (byte_offset_p != NULL)
7334     *byte_offset_p = 0;
7335   if (bit_offset_p != NULL)
7336     *bit_offset_p = 0;
7337   if (bit_size_p != NULL)
7338     *bit_size_p = 0;
7339 
7340   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7341     {
7342       int bit_pos = TYPE_FIELD_BITPOS (type, i);
7343       int fld_offset = offset + bit_pos / 8;
7344       const char *t_field_name = TYPE_FIELD_NAME (type, i);
7345 
7346       if (t_field_name == NULL)
7347         continue;
7348 
7349       else if (name != NULL && field_name_match (t_field_name, name))
7350         {
7351           int bit_size = TYPE_FIELD_BITSIZE (type, i);
7352 
7353 	  if (field_type_p != NULL)
7354 	    *field_type_p = TYPE_FIELD_TYPE (type, i);
7355 	  if (byte_offset_p != NULL)
7356 	    *byte_offset_p = fld_offset;
7357 	  if (bit_offset_p != NULL)
7358 	    *bit_offset_p = bit_pos % 8;
7359 	  if (bit_size_p != NULL)
7360 	    *bit_size_p = bit_size;
7361           return 1;
7362         }
7363       else if (ada_is_wrapper_field (type, i))
7364         {
7365 	  if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7366 				 field_type_p, byte_offset_p, bit_offset_p,
7367 				 bit_size_p, index_p))
7368             return 1;
7369         }
7370       else if (ada_is_variant_part (type, i))
7371         {
7372 	  /* PNH: Wait.  Do we ever execute this section, or is ARG always of
7373 	     fixed type?? */
7374           int j;
7375           struct type *field_type
7376 	    = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7377 
7378           for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7379             {
7380               if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7381                                      fld_offset
7382                                      + TYPE_FIELD_BITPOS (field_type, j) / 8,
7383                                      field_type_p, byte_offset_p,
7384                                      bit_offset_p, bit_size_p, index_p))
7385                 return 1;
7386             }
7387         }
7388       else if (index_p != NULL)
7389 	*index_p += 1;
7390     }
7391   return 0;
7392 }
7393 
7394 /* Number of user-visible fields in record type TYPE.  */
7395 
7396 static int
7397 num_visible_fields (struct type *type)
7398 {
7399   int n;
7400 
7401   n = 0;
7402   find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7403   return n;
7404 }
7405 
7406 /* Look for a field NAME in ARG.  Adjust the address of ARG by OFFSET bytes,
7407    and search in it assuming it has (class) type TYPE.
7408    If found, return value, else return NULL.
7409 
7410    Searches recursively through wrapper fields (e.g., '_parent').  */
7411 
7412 static struct value *
7413 ada_search_struct_field (const char *name, struct value *arg, int offset,
7414                          struct type *type)
7415 {
7416   int i;
7417 
7418   type = ada_check_typedef (type);
7419   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7420     {
7421       const char *t_field_name = TYPE_FIELD_NAME (type, i);
7422 
7423       if (t_field_name == NULL)
7424         continue;
7425 
7426       else if (field_name_match (t_field_name, name))
7427         return ada_value_primitive_field (arg, offset, i, type);
7428 
7429       else if (ada_is_wrapper_field (type, i))
7430         {
7431           struct value *v =     /* Do not let indent join lines here.  */
7432             ada_search_struct_field (name, arg,
7433                                      offset + TYPE_FIELD_BITPOS (type, i) / 8,
7434                                      TYPE_FIELD_TYPE (type, i));
7435 
7436           if (v != NULL)
7437             return v;
7438         }
7439 
7440       else if (ada_is_variant_part (type, i))
7441         {
7442 	  /* PNH: Do we ever get here?  See find_struct_field.  */
7443           int j;
7444           struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7445 									i));
7446           int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7447 
7448           for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7449             {
7450               struct value *v = ada_search_struct_field /* Force line
7451 							   break.  */
7452                 (name, arg,
7453                  var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7454                  TYPE_FIELD_TYPE (field_type, j));
7455 
7456               if (v != NULL)
7457                 return v;
7458             }
7459         }
7460     }
7461   return NULL;
7462 }
7463 
7464 static struct value *ada_index_struct_field_1 (int *, struct value *,
7465 					       int, struct type *);
7466 
7467 
7468 /* Return field #INDEX in ARG, where the index is that returned by
7469  * find_struct_field through its INDEX_P argument.  Adjust the address
7470  * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7471  * If found, return value, else return NULL.  */
7472 
7473 static struct value *
7474 ada_index_struct_field (int index, struct value *arg, int offset,
7475 			struct type *type)
7476 {
7477   return ada_index_struct_field_1 (&index, arg, offset, type);
7478 }
7479 
7480 
7481 /* Auxiliary function for ada_index_struct_field.  Like
7482  * ada_index_struct_field, but takes index from *INDEX_P and modifies
7483  * *INDEX_P.  */
7484 
7485 static struct value *
7486 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7487 			  struct type *type)
7488 {
7489   int i;
7490   type = ada_check_typedef (type);
7491 
7492   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7493     {
7494       if (TYPE_FIELD_NAME (type, i) == NULL)
7495         continue;
7496       else if (ada_is_wrapper_field (type, i))
7497         {
7498           struct value *v =     /* Do not let indent join lines here.  */
7499             ada_index_struct_field_1 (index_p, arg,
7500 				      offset + TYPE_FIELD_BITPOS (type, i) / 8,
7501 				      TYPE_FIELD_TYPE (type, i));
7502 
7503           if (v != NULL)
7504             return v;
7505         }
7506 
7507       else if (ada_is_variant_part (type, i))
7508         {
7509 	  /* PNH: Do we ever get here?  See ada_search_struct_field,
7510 	     find_struct_field.  */
7511 	  error (_("Cannot assign this kind of variant record"));
7512         }
7513       else if (*index_p == 0)
7514         return ada_value_primitive_field (arg, offset, i, type);
7515       else
7516 	*index_p -= 1;
7517     }
7518   return NULL;
7519 }
7520 
7521 /* Given ARG, a value of type (pointer or reference to a)*
7522    structure/union, extract the component named NAME from the ultimate
7523    target structure/union and return it as a value with its
7524    appropriate type.
7525 
7526    The routine searches for NAME among all members of the structure itself
7527    and (recursively) among all members of any wrapper members
7528    (e.g., '_parent').
7529 
7530    If NO_ERR, then simply return NULL in case of error, rather than
7531    calling error.  */
7532 
7533 struct value *
7534 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7535 {
7536   struct type *t, *t1;
7537   struct value *v;
7538 
7539   v = NULL;
7540   t1 = t = ada_check_typedef (value_type (arg));
7541   if (TYPE_CODE (t) == TYPE_CODE_REF)
7542     {
7543       t1 = TYPE_TARGET_TYPE (t);
7544       if (t1 == NULL)
7545 	goto BadValue;
7546       t1 = ada_check_typedef (t1);
7547       if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7548         {
7549           arg = coerce_ref (arg);
7550           t = t1;
7551         }
7552     }
7553 
7554   while (TYPE_CODE (t) == TYPE_CODE_PTR)
7555     {
7556       t1 = TYPE_TARGET_TYPE (t);
7557       if (t1 == NULL)
7558 	goto BadValue;
7559       t1 = ada_check_typedef (t1);
7560       if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7561         {
7562           arg = value_ind (arg);
7563           t = t1;
7564         }
7565       else
7566         break;
7567     }
7568 
7569   if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7570     goto BadValue;
7571 
7572   if (t1 == t)
7573     v = ada_search_struct_field (name, arg, 0, t);
7574   else
7575     {
7576       int bit_offset, bit_size, byte_offset;
7577       struct type *field_type;
7578       CORE_ADDR address;
7579 
7580       if (TYPE_CODE (t) == TYPE_CODE_PTR)
7581 	address = value_address (ada_value_ind (arg));
7582       else
7583 	address = value_address (ada_coerce_ref (arg));
7584 
7585       t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7586       if (find_struct_field (name, t1, 0,
7587                              &field_type, &byte_offset, &bit_offset,
7588                              &bit_size, NULL))
7589         {
7590           if (bit_size != 0)
7591             {
7592               if (TYPE_CODE (t) == TYPE_CODE_REF)
7593                 arg = ada_coerce_ref (arg);
7594               else
7595                 arg = ada_value_ind (arg);
7596               v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7597                                                   bit_offset, bit_size,
7598                                                   field_type);
7599             }
7600           else
7601             v = value_at_lazy (field_type, address + byte_offset);
7602         }
7603     }
7604 
7605   if (v != NULL || no_err)
7606     return v;
7607   else
7608     error (_("There is no member named %s."), name);
7609 
7610  BadValue:
7611   if (no_err)
7612     return NULL;
7613   else
7614     error (_("Attempt to extract a component of "
7615 	     "a value that is not a record."));
7616 }
7617 
7618 /* Return a string representation of type TYPE.  Caller must free
7619    result.  */
7620 
7621 static char *
7622 type_as_string (struct type *type)
7623 {
7624   struct ui_file *tmp_stream = mem_fileopen ();
7625   struct cleanup *old_chain;
7626   char *str;
7627 
7628   tmp_stream = mem_fileopen ();
7629   old_chain = make_cleanup_ui_file_delete (tmp_stream);
7630 
7631   type_print (type, "", tmp_stream, -1);
7632   str = ui_file_xstrdup (tmp_stream, NULL);
7633 
7634   do_cleanups (old_chain);
7635   return str;
7636 }
7637 
7638 /* Return a string representation of type TYPE, and install a cleanup
7639    that releases it.  */
7640 
7641 static char *
7642 type_as_string_and_cleanup (struct type *type)
7643 {
7644   char *str;
7645 
7646   str = type_as_string (type);
7647   make_cleanup (xfree, str);
7648   return str;
7649 }
7650 
7651 /* Given a type TYPE, look up the type of the component of type named NAME.
7652    If DISPP is non-null, add its byte displacement from the beginning of a
7653    structure (pointed to by a value) of type TYPE to *DISPP (does not
7654    work for packed fields).
7655 
7656    Matches any field whose name has NAME as a prefix, possibly
7657    followed by "___".
7658 
7659    TYPE can be either a struct or union.  If REFOK, TYPE may also
7660    be a (pointer or reference)+ to a struct or union, and the
7661    ultimate target type will be searched.
7662 
7663    Looks recursively into variant clauses and parent types.
7664 
7665    If NOERR is nonzero, return NULL if NAME is not suitably defined or
7666    TYPE is not a type of the right kind.  */
7667 
7668 static struct type *
7669 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7670                             int noerr, int *dispp)
7671 {
7672   int i;
7673 
7674   if (name == NULL)
7675     goto BadName;
7676 
7677   if (refok && type != NULL)
7678     while (1)
7679       {
7680         type = ada_check_typedef (type);
7681         if (TYPE_CODE (type) != TYPE_CODE_PTR
7682             && TYPE_CODE (type) != TYPE_CODE_REF)
7683           break;
7684         type = TYPE_TARGET_TYPE (type);
7685       }
7686 
7687   if (type == NULL
7688       || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7689           && TYPE_CODE (type) != TYPE_CODE_UNION))
7690     {
7691       const char *type_str;
7692 
7693       if (noerr)
7694         return NULL;
7695 
7696       type_str = (type != NULL
7697 		  ? type_as_string_and_cleanup (type)
7698 		  : _("(null)"));
7699       error (_("Type %s is not a structure or union type"), type_str);
7700     }
7701 
7702   type = to_static_fixed_type (type);
7703 
7704   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7705     {
7706       const char *t_field_name = TYPE_FIELD_NAME (type, i);
7707       struct type *t;
7708       int disp;
7709 
7710       if (t_field_name == NULL)
7711         continue;
7712 
7713       else if (field_name_match (t_field_name, name))
7714         {
7715           if (dispp != NULL)
7716             *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7717           return TYPE_FIELD_TYPE (type, i);
7718         }
7719 
7720       else if (ada_is_wrapper_field (type, i))
7721         {
7722           disp = 0;
7723           t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7724                                           0, 1, &disp);
7725           if (t != NULL)
7726             {
7727               if (dispp != NULL)
7728                 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7729               return t;
7730             }
7731         }
7732 
7733       else if (ada_is_variant_part (type, i))
7734         {
7735           int j;
7736           struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7737 									i));
7738 
7739           for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7740             {
7741 	      /* FIXME pnh 2008/01/26: We check for a field that is
7742 	         NOT wrapped in a struct, since the compiler sometimes
7743 		 generates these for unchecked variant types.  Revisit
7744 	         if the compiler changes this practice.  */
7745 	      const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7746               disp = 0;
7747 	      if (v_field_name != NULL
7748 		  && field_name_match (v_field_name, name))
7749 		t = TYPE_FIELD_TYPE (field_type, j);
7750 	      else
7751 		t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7752 								 j),
7753 						name, 0, 1, &disp);
7754 
7755               if (t != NULL)
7756                 {
7757                   if (dispp != NULL)
7758                     *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7759                   return t;
7760                 }
7761             }
7762         }
7763 
7764     }
7765 
7766 BadName:
7767   if (!noerr)
7768     {
7769       const char *name_str = name != NULL ? name : _("<null>");
7770 
7771       error (_("Type %s has no component named %s"),
7772 	     type_as_string_and_cleanup (type), name_str);
7773     }
7774 
7775   return NULL;
7776 }
7777 
7778 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7779    within a value of type OUTER_TYPE, return true iff VAR_TYPE
7780    represents an unchecked union (that is, the variant part of a
7781    record that is named in an Unchecked_Union pragma).  */
7782 
7783 static int
7784 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7785 {
7786   char *discrim_name = ada_variant_discrim_name (var_type);
7787 
7788   return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7789 	  == NULL);
7790 }
7791 
7792 
7793 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7794    within a value of type OUTER_TYPE that is stored in GDB at
7795    OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7796    numbering from 0) is applicable.  Returns -1 if none are.  */
7797 
7798 int
7799 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7800                            const gdb_byte *outer_valaddr)
7801 {
7802   int others_clause;
7803   int i;
7804   char *discrim_name = ada_variant_discrim_name (var_type);
7805   struct value *outer;
7806   struct value *discrim;
7807   LONGEST discrim_val;
7808 
7809   /* Using plain value_from_contents_and_address here causes problems
7810      because we will end up trying to resolve a type that is currently
7811      being constructed.  */
7812   outer = value_from_contents_and_address_unresolved (outer_type,
7813 						      outer_valaddr, 0);
7814   discrim = ada_value_struct_elt (outer, discrim_name, 1);
7815   if (discrim == NULL)
7816     return -1;
7817   discrim_val = value_as_long (discrim);
7818 
7819   others_clause = -1;
7820   for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7821     {
7822       if (ada_is_others_clause (var_type, i))
7823         others_clause = i;
7824       else if (ada_in_variant (discrim_val, var_type, i))
7825         return i;
7826     }
7827 
7828   return others_clause;
7829 }
7830 
7831 
7832 
7833                                 /* Dynamic-Sized Records */
7834 
7835 /* Strategy: The type ostensibly attached to a value with dynamic size
7836    (i.e., a size that is not statically recorded in the debugging
7837    data) does not accurately reflect the size or layout of the value.
7838    Our strategy is to convert these values to values with accurate,
7839    conventional types that are constructed on the fly.  */
7840 
7841 /* There is a subtle and tricky problem here.  In general, we cannot
7842    determine the size of dynamic records without its data.  However,
7843    the 'struct value' data structure, which GDB uses to represent
7844    quantities in the inferior process (the target), requires the size
7845    of the type at the time of its allocation in order to reserve space
7846    for GDB's internal copy of the data.  That's why the
7847    'to_fixed_xxx_type' routines take (target) addresses as parameters,
7848    rather than struct value*s.
7849 
7850    However, GDB's internal history variables ($1, $2, etc.) are
7851    struct value*s containing internal copies of the data that are not, in
7852    general, the same as the data at their corresponding addresses in
7853    the target.  Fortunately, the types we give to these values are all
7854    conventional, fixed-size types (as per the strategy described
7855    above), so that we don't usually have to perform the
7856    'to_fixed_xxx_type' conversions to look at their values.
7857    Unfortunately, there is one exception: if one of the internal
7858    history variables is an array whose elements are unconstrained
7859    records, then we will need to create distinct fixed types for each
7860    element selected.  */
7861 
7862 /* The upshot of all of this is that many routines take a (type, host
7863    address, target address) triple as arguments to represent a value.
7864    The host address, if non-null, is supposed to contain an internal
7865    copy of the relevant data; otherwise, the program is to consult the
7866    target at the target address.  */
7867 
7868 /* Assuming that VAL0 represents a pointer value, the result of
7869    dereferencing it.  Differs from value_ind in its treatment of
7870    dynamic-sized types.  */
7871 
7872 struct value *
7873 ada_value_ind (struct value *val0)
7874 {
7875   struct value *val = value_ind (val0);
7876 
7877   if (ada_is_tagged_type (value_type (val), 0))
7878     val = ada_tag_value_at_base_address (val);
7879 
7880   return ada_to_fixed_value (val);
7881 }
7882 
7883 /* The value resulting from dereferencing any "reference to"
7884    qualifiers on VAL0.  */
7885 
7886 static struct value *
7887 ada_coerce_ref (struct value *val0)
7888 {
7889   if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7890     {
7891       struct value *val = val0;
7892 
7893       val = coerce_ref (val);
7894 
7895       if (ada_is_tagged_type (value_type (val), 0))
7896 	val = ada_tag_value_at_base_address (val);
7897 
7898       return ada_to_fixed_value (val);
7899     }
7900   else
7901     return val0;
7902 }
7903 
7904 /* Return OFF rounded upward if necessary to a multiple of
7905    ALIGNMENT (a power of 2).  */
7906 
7907 static unsigned int
7908 align_value (unsigned int off, unsigned int alignment)
7909 {
7910   return (off + alignment - 1) & ~(alignment - 1);
7911 }
7912 
7913 /* Return the bit alignment required for field #F of template type TYPE.  */
7914 
7915 static unsigned int
7916 field_alignment (struct type *type, int f)
7917 {
7918   const char *name = TYPE_FIELD_NAME (type, f);
7919   int len;
7920   int align_offset;
7921 
7922   /* The field name should never be null, unless the debugging information
7923      is somehow malformed.  In this case, we assume the field does not
7924      require any alignment.  */
7925   if (name == NULL)
7926     return 1;
7927 
7928   len = strlen (name);
7929 
7930   if (!isdigit (name[len - 1]))
7931     return 1;
7932 
7933   if (isdigit (name[len - 2]))
7934     align_offset = len - 2;
7935   else
7936     align_offset = len - 1;
7937 
7938   if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7939     return TARGET_CHAR_BIT;
7940 
7941   return atoi (name + align_offset) * TARGET_CHAR_BIT;
7942 }
7943 
7944 /* Find a typedef or tag symbol named NAME.  Ignores ambiguity.  */
7945 
7946 static struct symbol *
7947 ada_find_any_type_symbol (const char *name)
7948 {
7949   struct symbol *sym;
7950 
7951   sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7952   if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7953     return sym;
7954 
7955   sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7956   return sym;
7957 }
7958 
7959 /* Find a type named NAME.  Ignores ambiguity.  This routine will look
7960    solely for types defined by debug info, it will not search the GDB
7961    primitive types.  */
7962 
7963 static struct type *
7964 ada_find_any_type (const char *name)
7965 {
7966   struct symbol *sym = ada_find_any_type_symbol (name);
7967 
7968   if (sym != NULL)
7969     return SYMBOL_TYPE (sym);
7970 
7971   return NULL;
7972 }
7973 
7974 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7975    associated with NAME_SYM's name.  NAME_SYM may itself be a renaming
7976    symbol, in which case it is returned.  Otherwise, this looks for
7977    symbols whose name is that of NAME_SYM suffixed with  "___XR".
7978    Return symbol if found, and NULL otherwise.  */
7979 
7980 struct symbol *
7981 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7982 {
7983   const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7984   struct symbol *sym;
7985 
7986   if (strstr (name, "___XR") != NULL)
7987      return name_sym;
7988 
7989   sym = find_old_style_renaming_symbol (name, block);
7990 
7991   if (sym != NULL)
7992     return sym;
7993 
7994   /* Not right yet.  FIXME pnh 7/20/2007.  */
7995   sym = ada_find_any_type_symbol (name);
7996   if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7997     return sym;
7998   else
7999     return NULL;
8000 }
8001 
8002 static struct symbol *
8003 find_old_style_renaming_symbol (const char *name, const struct block *block)
8004 {
8005   const struct symbol *function_sym = block_linkage_function (block);
8006   char *rename;
8007 
8008   if (function_sym != NULL)
8009     {
8010       /* If the symbol is defined inside a function, NAME is not fully
8011          qualified.  This means we need to prepend the function name
8012          as well as adding the ``___XR'' suffix to build the name of
8013          the associated renaming symbol.  */
8014       const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8015       /* Function names sometimes contain suffixes used
8016          for instance to qualify nested subprograms.  When building
8017          the XR type name, we need to make sure that this suffix is
8018          not included.  So do not include any suffix in the function
8019          name length below.  */
8020       int function_name_len = ada_name_prefix_len (function_name);
8021       const int rename_len = function_name_len + 2      /*  "__" */
8022         + strlen (name) + 6 /* "___XR\0" */ ;
8023 
8024       /* Strip the suffix if necessary.  */
8025       ada_remove_trailing_digits (function_name, &function_name_len);
8026       ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8027       ada_remove_Xbn_suffix (function_name, &function_name_len);
8028 
8029       /* Library-level functions are a special case, as GNAT adds
8030          a ``_ada_'' prefix to the function name to avoid namespace
8031          pollution.  However, the renaming symbols themselves do not
8032          have this prefix, so we need to skip this prefix if present.  */
8033       if (function_name_len > 5 /* "_ada_" */
8034           && strstr (function_name, "_ada_") == function_name)
8035         {
8036 	  function_name += 5;
8037 	  function_name_len -= 5;
8038         }
8039 
8040       rename = (char *) alloca (rename_len * sizeof (char));
8041       strncpy (rename, function_name, function_name_len);
8042       xsnprintf (rename + function_name_len, rename_len - function_name_len,
8043 		 "__%s___XR", name);
8044     }
8045   else
8046     {
8047       const int rename_len = strlen (name) + 6;
8048 
8049       rename = (char *) alloca (rename_len * sizeof (char));
8050       xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8051     }
8052 
8053   return ada_find_any_type_symbol (rename);
8054 }
8055 
8056 /* Because of GNAT encoding conventions, several GDB symbols may match a
8057    given type name.  If the type denoted by TYPE0 is to be preferred to
8058    that of TYPE1 for purposes of type printing, return non-zero;
8059    otherwise return 0.  */
8060 
8061 int
8062 ada_prefer_type (struct type *type0, struct type *type1)
8063 {
8064   if (type1 == NULL)
8065     return 1;
8066   else if (type0 == NULL)
8067     return 0;
8068   else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8069     return 1;
8070   else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8071     return 0;
8072   else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8073     return 1;
8074   else if (ada_is_constrained_packed_array_type (type0))
8075     return 1;
8076   else if (ada_is_array_descriptor_type (type0)
8077            && !ada_is_array_descriptor_type (type1))
8078     return 1;
8079   else
8080     {
8081       const char *type0_name = type_name_no_tag (type0);
8082       const char *type1_name = type_name_no_tag (type1);
8083 
8084       if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8085 	  && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8086 	return 1;
8087     }
8088   return 0;
8089 }
8090 
8091 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8092    null, its TYPE_TAG_NAME.  Null if TYPE is null.  */
8093 
8094 const char *
8095 ada_type_name (struct type *type)
8096 {
8097   if (type == NULL)
8098     return NULL;
8099   else if (TYPE_NAME (type) != NULL)
8100     return TYPE_NAME (type);
8101   else
8102     return TYPE_TAG_NAME (type);
8103 }
8104 
8105 /* Search the list of "descriptive" types associated to TYPE for a type
8106    whose name is NAME.  */
8107 
8108 static struct type *
8109 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8110 {
8111   struct type *result, *tmp;
8112 
8113   if (ada_ignore_descriptive_types_p)
8114     return NULL;
8115 
8116   /* If there no descriptive-type info, then there is no parallel type
8117      to be found.  */
8118   if (!HAVE_GNAT_AUX_INFO (type))
8119     return NULL;
8120 
8121   result = TYPE_DESCRIPTIVE_TYPE (type);
8122   while (result != NULL)
8123     {
8124       const char *result_name = ada_type_name (result);
8125 
8126       if (result_name == NULL)
8127         {
8128           warning (_("unexpected null name on descriptive type"));
8129           return NULL;
8130         }
8131 
8132       /* If the names match, stop.  */
8133       if (strcmp (result_name, name) == 0)
8134 	break;
8135 
8136       /* Otherwise, look at the next item on the list, if any.  */
8137       if (HAVE_GNAT_AUX_INFO (result))
8138 	tmp = TYPE_DESCRIPTIVE_TYPE (result);
8139       else
8140 	tmp = NULL;
8141 
8142       /* If not found either, try after having resolved the typedef.  */
8143       if (tmp != NULL)
8144 	result = tmp;
8145       else
8146 	{
8147 	  result = check_typedef (result);
8148 	  if (HAVE_GNAT_AUX_INFO (result))
8149 	    result = TYPE_DESCRIPTIVE_TYPE (result);
8150 	  else
8151 	    result = NULL;
8152 	}
8153     }
8154 
8155   /* If we didn't find a match, see whether this is a packed array.  With
8156      older compilers, the descriptive type information is either absent or
8157      irrelevant when it comes to packed arrays so the above lookup fails.
8158      Fall back to using a parallel lookup by name in this case.  */
8159   if (result == NULL && ada_is_constrained_packed_array_type (type))
8160     return ada_find_any_type (name);
8161 
8162   return result;
8163 }
8164 
8165 /* Find a parallel type to TYPE with the specified NAME, using the
8166    descriptive type taken from the debugging information, if available,
8167    and otherwise using the (slower) name-based method.  */
8168 
8169 static struct type *
8170 ada_find_parallel_type_with_name (struct type *type, const char *name)
8171 {
8172   struct type *result = NULL;
8173 
8174   if (HAVE_GNAT_AUX_INFO (type))
8175     result = find_parallel_type_by_descriptive_type (type, name);
8176   else
8177     result = ada_find_any_type (name);
8178 
8179   return result;
8180 }
8181 
8182 /* Same as above, but specify the name of the parallel type by appending
8183    SUFFIX to the name of TYPE.  */
8184 
8185 struct type *
8186 ada_find_parallel_type (struct type *type, const char *suffix)
8187 {
8188   char *name;
8189   const char *type_name = ada_type_name (type);
8190   int len;
8191 
8192   if (type_name == NULL)
8193     return NULL;
8194 
8195   len = strlen (type_name);
8196 
8197   name = (char *) alloca (len + strlen (suffix) + 1);
8198 
8199   strcpy (name, type_name);
8200   strcpy (name + len, suffix);
8201 
8202   return ada_find_parallel_type_with_name (type, name);
8203 }
8204 
8205 /* If TYPE is a variable-size record type, return the corresponding template
8206    type describing its fields.  Otherwise, return NULL.  */
8207 
8208 static struct type *
8209 dynamic_template_type (struct type *type)
8210 {
8211   type = ada_check_typedef (type);
8212 
8213   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8214       || ada_type_name (type) == NULL)
8215     return NULL;
8216   else
8217     {
8218       int len = strlen (ada_type_name (type));
8219 
8220       if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8221         return type;
8222       else
8223         return ada_find_parallel_type (type, "___XVE");
8224     }
8225 }
8226 
8227 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8228    non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size.  */
8229 
8230 static int
8231 is_dynamic_field (struct type *templ_type, int field_num)
8232 {
8233   const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8234 
8235   return name != NULL
8236     && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8237     && strstr (name, "___XVL") != NULL;
8238 }
8239 
8240 /* The index of the variant field of TYPE, or -1 if TYPE does not
8241    represent a variant record type.  */
8242 
8243 static int
8244 variant_field_index (struct type *type)
8245 {
8246   int f;
8247 
8248   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8249     return -1;
8250 
8251   for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8252     {
8253       if (ada_is_variant_part (type, f))
8254         return f;
8255     }
8256   return -1;
8257 }
8258 
8259 /* A record type with no fields.  */
8260 
8261 static struct type *
8262 empty_record (struct type *templ)
8263 {
8264   struct type *type = alloc_type_copy (templ);
8265 
8266   TYPE_CODE (type) = TYPE_CODE_STRUCT;
8267   TYPE_NFIELDS (type) = 0;
8268   TYPE_FIELDS (type) = NULL;
8269   INIT_CPLUS_SPECIFIC (type);
8270   TYPE_NAME (type) = "<empty>";
8271   TYPE_TAG_NAME (type) = NULL;
8272   TYPE_LENGTH (type) = 0;
8273   return type;
8274 }
8275 
8276 /* An ordinary record type (with fixed-length fields) that describes
8277    the value of type TYPE at VALADDR or ADDRESS (see comments at
8278    the beginning of this section) VAL according to GNAT conventions.
8279    DVAL0 should describe the (portion of a) record that contains any
8280    necessary discriminants.  It should be NULL if value_type (VAL) is
8281    an outer-level type (i.e., as opposed to a branch of a variant.)  A
8282    variant field (unless unchecked) is replaced by a particular branch
8283    of the variant.
8284 
8285    If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8286    length are not statically known are discarded.  As a consequence,
8287    VALADDR, ADDRESS and DVAL0 are ignored.
8288 
8289    NOTE: Limitations: For now, we assume that dynamic fields and
8290    variants occupy whole numbers of bytes.  However, they need not be
8291    byte-aligned.  */
8292 
8293 struct type *
8294 ada_template_to_fixed_record_type_1 (struct type *type,
8295 				     const gdb_byte *valaddr,
8296                                      CORE_ADDR address, struct value *dval0,
8297                                      int keep_dynamic_fields)
8298 {
8299   struct value *mark = value_mark ();
8300   struct value *dval;
8301   struct type *rtype;
8302   int nfields, bit_len;
8303   int variant_field;
8304   long off;
8305   int fld_bit_len;
8306   int f;
8307 
8308   /* Compute the number of fields in this record type that are going
8309      to be processed: unless keep_dynamic_fields, this includes only
8310      fields whose position and length are static will be processed.  */
8311   if (keep_dynamic_fields)
8312     nfields = TYPE_NFIELDS (type);
8313   else
8314     {
8315       nfields = 0;
8316       while (nfields < TYPE_NFIELDS (type)
8317              && !ada_is_variant_part (type, nfields)
8318              && !is_dynamic_field (type, nfields))
8319         nfields++;
8320     }
8321 
8322   rtype = alloc_type_copy (type);
8323   TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8324   INIT_CPLUS_SPECIFIC (rtype);
8325   TYPE_NFIELDS (rtype) = nfields;
8326   TYPE_FIELDS (rtype) = (struct field *)
8327     TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8328   memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8329   TYPE_NAME (rtype) = ada_type_name (type);
8330   TYPE_TAG_NAME (rtype) = NULL;
8331   TYPE_FIXED_INSTANCE (rtype) = 1;
8332 
8333   off = 0;
8334   bit_len = 0;
8335   variant_field = -1;
8336 
8337   for (f = 0; f < nfields; f += 1)
8338     {
8339       off = align_value (off, field_alignment (type, f))
8340 	+ TYPE_FIELD_BITPOS (type, f);
8341       SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8342       TYPE_FIELD_BITSIZE (rtype, f) = 0;
8343 
8344       if (ada_is_variant_part (type, f))
8345         {
8346           variant_field = f;
8347           fld_bit_len = 0;
8348         }
8349       else if (is_dynamic_field (type, f))
8350         {
8351 	  const gdb_byte *field_valaddr = valaddr;
8352 	  CORE_ADDR field_address = address;
8353 	  struct type *field_type =
8354 	    TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8355 
8356           if (dval0 == NULL)
8357 	    {
8358 	      /* rtype's length is computed based on the run-time
8359 		 value of discriminants.  If the discriminants are not
8360 		 initialized, the type size may be completely bogus and
8361 		 GDB may fail to allocate a value for it.  So check the
8362 		 size first before creating the value.  */
8363 	      ada_ensure_varsize_limit (rtype);
8364 	      /* Using plain value_from_contents_and_address here
8365 		 causes problems because we will end up trying to
8366 		 resolve a type that is currently being
8367 		 constructed.  */
8368 	      dval = value_from_contents_and_address_unresolved (rtype,
8369 								 valaddr,
8370 								 address);
8371 	      rtype = value_type (dval);
8372 	    }
8373           else
8374             dval = dval0;
8375 
8376 	  /* If the type referenced by this field is an aligner type, we need
8377 	     to unwrap that aligner type, because its size might not be set.
8378 	     Keeping the aligner type would cause us to compute the wrong
8379 	     size for this field, impacting the offset of the all the fields
8380 	     that follow this one.  */
8381 	  if (ada_is_aligner_type (field_type))
8382 	    {
8383 	      long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8384 
8385 	      field_valaddr = cond_offset_host (field_valaddr, field_offset);
8386 	      field_address = cond_offset_target (field_address, field_offset);
8387 	      field_type = ada_aligned_type (field_type);
8388 	    }
8389 
8390 	  field_valaddr = cond_offset_host (field_valaddr,
8391 					    off / TARGET_CHAR_BIT);
8392 	  field_address = cond_offset_target (field_address,
8393 					      off / TARGET_CHAR_BIT);
8394 
8395 	  /* Get the fixed type of the field.  Note that, in this case,
8396 	     we do not want to get the real type out of the tag: if
8397 	     the current field is the parent part of a tagged record,
8398 	     we will get the tag of the object.  Clearly wrong: the real
8399 	     type of the parent is not the real type of the child.  We
8400 	     would end up in an infinite loop.	*/
8401 	  field_type = ada_get_base_type (field_type);
8402 	  field_type = ada_to_fixed_type (field_type, field_valaddr,
8403 					  field_address, dval, 0);
8404 	  /* If the field size is already larger than the maximum
8405 	     object size, then the record itself will necessarily
8406 	     be larger than the maximum object size.  We need to make
8407 	     this check now, because the size might be so ridiculously
8408 	     large (due to an uninitialized variable in the inferior)
8409 	     that it would cause an overflow when adding it to the
8410 	     record size.  */
8411 	  ada_ensure_varsize_limit (field_type);
8412 
8413 	  TYPE_FIELD_TYPE (rtype, f) = field_type;
8414           TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8415 	  /* The multiplication can potentially overflow.  But because
8416 	     the field length has been size-checked just above, and
8417 	     assuming that the maximum size is a reasonable value,
8418 	     an overflow should not happen in practice.  So rather than
8419 	     adding overflow recovery code to this already complex code,
8420 	     we just assume that it's not going to happen.  */
8421           fld_bit_len =
8422             TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8423         }
8424       else
8425         {
8426 	  /* Note: If this field's type is a typedef, it is important
8427 	     to preserve the typedef layer.
8428 
8429 	     Otherwise, we might be transforming a typedef to a fat
8430 	     pointer (encoding a pointer to an unconstrained array),
8431 	     into a basic fat pointer (encoding an unconstrained
8432 	     array).  As both types are implemented using the same
8433 	     structure, the typedef is the only clue which allows us
8434 	     to distinguish between the two options.  Stripping it
8435 	     would prevent us from printing this field appropriately.  */
8436           TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8437           TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8438           if (TYPE_FIELD_BITSIZE (type, f) > 0)
8439             fld_bit_len =
8440               TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8441           else
8442 	    {
8443 	      struct type *field_type = TYPE_FIELD_TYPE (type, f);
8444 
8445 	      /* We need to be careful of typedefs when computing
8446 		 the length of our field.  If this is a typedef,
8447 		 get the length of the target type, not the length
8448 		 of the typedef.  */
8449 	      if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8450 		field_type = ada_typedef_target_type (field_type);
8451 
8452               fld_bit_len =
8453                 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8454 	    }
8455         }
8456       if (off + fld_bit_len > bit_len)
8457         bit_len = off + fld_bit_len;
8458       off += fld_bit_len;
8459       TYPE_LENGTH (rtype) =
8460         align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8461     }
8462 
8463   /* We handle the variant part, if any, at the end because of certain
8464      odd cases in which it is re-ordered so as NOT to be the last field of
8465      the record.  This can happen in the presence of representation
8466      clauses.  */
8467   if (variant_field >= 0)
8468     {
8469       struct type *branch_type;
8470 
8471       off = TYPE_FIELD_BITPOS (rtype, variant_field);
8472 
8473       if (dval0 == NULL)
8474 	{
8475 	  /* Using plain value_from_contents_and_address here causes
8476 	     problems because we will end up trying to resolve a type
8477 	     that is currently being constructed.  */
8478 	  dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8479 							     address);
8480 	  rtype = value_type (dval);
8481 	}
8482       else
8483         dval = dval0;
8484 
8485       branch_type =
8486         to_fixed_variant_branch_type
8487         (TYPE_FIELD_TYPE (type, variant_field),
8488          cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8489          cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8490       if (branch_type == NULL)
8491         {
8492           for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8493             TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8494           TYPE_NFIELDS (rtype) -= 1;
8495         }
8496       else
8497         {
8498           TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8499           TYPE_FIELD_NAME (rtype, variant_field) = "S";
8500           fld_bit_len =
8501             TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8502             TARGET_CHAR_BIT;
8503           if (off + fld_bit_len > bit_len)
8504             bit_len = off + fld_bit_len;
8505           TYPE_LENGTH (rtype) =
8506             align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8507         }
8508     }
8509 
8510   /* According to exp_dbug.ads, the size of TYPE for variable-size records
8511      should contain the alignment of that record, which should be a strictly
8512      positive value.  If null or negative, then something is wrong, most
8513      probably in the debug info.  In that case, we don't round up the size
8514      of the resulting type.  If this record is not part of another structure,
8515      the current RTYPE length might be good enough for our purposes.  */
8516   if (TYPE_LENGTH (type) <= 0)
8517     {
8518       if (TYPE_NAME (rtype))
8519 	warning (_("Invalid type size for `%s' detected: %d."),
8520 		 TYPE_NAME (rtype), TYPE_LENGTH (type));
8521       else
8522 	warning (_("Invalid type size for <unnamed> detected: %d."),
8523 		 TYPE_LENGTH (type));
8524     }
8525   else
8526     {
8527       TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8528                                          TYPE_LENGTH (type));
8529     }
8530 
8531   value_free_to_mark (mark);
8532   if (TYPE_LENGTH (rtype) > varsize_limit)
8533     error (_("record type with dynamic size is larger than varsize-limit"));
8534   return rtype;
8535 }
8536 
8537 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8538    of 1.  */
8539 
8540 static struct type *
8541 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8542                                CORE_ADDR address, struct value *dval0)
8543 {
8544   return ada_template_to_fixed_record_type_1 (type, valaddr,
8545                                               address, dval0, 1);
8546 }
8547 
8548 /* An ordinary record type in which ___XVL-convention fields and
8549    ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8550    static approximations, containing all possible fields.  Uses
8551    no runtime values.  Useless for use in values, but that's OK,
8552    since the results are used only for type determinations.   Works on both
8553    structs and unions.  Representation note: to save space, we memorize
8554    the result of this function in the TYPE_TARGET_TYPE of the
8555    template type.  */
8556 
8557 static struct type *
8558 template_to_static_fixed_type (struct type *type0)
8559 {
8560   struct type *type;
8561   int nfields;
8562   int f;
8563 
8564   /* No need no do anything if the input type is already fixed.  */
8565   if (TYPE_FIXED_INSTANCE (type0))
8566     return type0;
8567 
8568   /* Likewise if we already have computed the static approximation.  */
8569   if (TYPE_TARGET_TYPE (type0) != NULL)
8570     return TYPE_TARGET_TYPE (type0);
8571 
8572   /* Don't clone TYPE0 until we are sure we are going to need a copy.  */
8573   type = type0;
8574   nfields = TYPE_NFIELDS (type0);
8575 
8576   /* Whether or not we cloned TYPE0, cache the result so that we don't do
8577      recompute all over next time.  */
8578   TYPE_TARGET_TYPE (type0) = type;
8579 
8580   for (f = 0; f < nfields; f += 1)
8581     {
8582       struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8583       struct type *new_type;
8584 
8585       if (is_dynamic_field (type0, f))
8586 	{
8587 	  field_type = ada_check_typedef (field_type);
8588           new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8589 	}
8590       else
8591         new_type = static_unwrap_type (field_type);
8592 
8593       if (new_type != field_type)
8594 	{
8595 	  /* Clone TYPE0 only the first time we get a new field type.  */
8596 	  if (type == type0)
8597 	    {
8598 	      TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8599 	      TYPE_CODE (type) = TYPE_CODE (type0);
8600 	      INIT_CPLUS_SPECIFIC (type);
8601 	      TYPE_NFIELDS (type) = nfields;
8602 	      TYPE_FIELDS (type) = (struct field *)
8603 		TYPE_ALLOC (type, nfields * sizeof (struct field));
8604 	      memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8605 		      sizeof (struct field) * nfields);
8606 	      TYPE_NAME (type) = ada_type_name (type0);
8607 	      TYPE_TAG_NAME (type) = NULL;
8608 	      TYPE_FIXED_INSTANCE (type) = 1;
8609 	      TYPE_LENGTH (type) = 0;
8610 	    }
8611 	  TYPE_FIELD_TYPE (type, f) = new_type;
8612 	  TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8613 	}
8614     }
8615 
8616   return type;
8617 }
8618 
8619 /* Given an object of type TYPE whose contents are at VALADDR and
8620    whose address in memory is ADDRESS, returns a revision of TYPE,
8621    which should be a non-dynamic-sized record, in which the variant
8622    part, if any, is replaced with the appropriate branch.  Looks
8623    for discriminant values in DVAL0, which can be NULL if the record
8624    contains the necessary discriminant values.  */
8625 
8626 static struct type *
8627 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8628                                    CORE_ADDR address, struct value *dval0)
8629 {
8630   struct value *mark = value_mark ();
8631   struct value *dval;
8632   struct type *rtype;
8633   struct type *branch_type;
8634   int nfields = TYPE_NFIELDS (type);
8635   int variant_field = variant_field_index (type);
8636 
8637   if (variant_field == -1)
8638     return type;
8639 
8640   if (dval0 == NULL)
8641     {
8642       dval = value_from_contents_and_address (type, valaddr, address);
8643       type = value_type (dval);
8644     }
8645   else
8646     dval = dval0;
8647 
8648   rtype = alloc_type_copy (type);
8649   TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8650   INIT_CPLUS_SPECIFIC (rtype);
8651   TYPE_NFIELDS (rtype) = nfields;
8652   TYPE_FIELDS (rtype) =
8653     (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8654   memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8655           sizeof (struct field) * nfields);
8656   TYPE_NAME (rtype) = ada_type_name (type);
8657   TYPE_TAG_NAME (rtype) = NULL;
8658   TYPE_FIXED_INSTANCE (rtype) = 1;
8659   TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8660 
8661   branch_type = to_fixed_variant_branch_type
8662     (TYPE_FIELD_TYPE (type, variant_field),
8663      cond_offset_host (valaddr,
8664                        TYPE_FIELD_BITPOS (type, variant_field)
8665                        / TARGET_CHAR_BIT),
8666      cond_offset_target (address,
8667                          TYPE_FIELD_BITPOS (type, variant_field)
8668                          / TARGET_CHAR_BIT), dval);
8669   if (branch_type == NULL)
8670     {
8671       int f;
8672 
8673       for (f = variant_field + 1; f < nfields; f += 1)
8674         TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8675       TYPE_NFIELDS (rtype) -= 1;
8676     }
8677   else
8678     {
8679       TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8680       TYPE_FIELD_NAME (rtype, variant_field) = "S";
8681       TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8682       TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8683     }
8684   TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8685 
8686   value_free_to_mark (mark);
8687   return rtype;
8688 }
8689 
8690 /* An ordinary record type (with fixed-length fields) that describes
8691    the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8692    beginning of this section].   Any necessary discriminants' values
8693    should be in DVAL, a record value; it may be NULL if the object
8694    at ADDR itself contains any necessary discriminant values.
8695    Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8696    values from the record are needed.  Except in the case that DVAL,
8697    VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8698    unchecked) is replaced by a particular branch of the variant.
8699 
8700    NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8701    is questionable and may be removed.  It can arise during the
8702    processing of an unconstrained-array-of-record type where all the
8703    variant branches have exactly the same size.  This is because in
8704    such cases, the compiler does not bother to use the XVS convention
8705    when encoding the record.  I am currently dubious of this
8706    shortcut and suspect the compiler should be altered.  FIXME.  */
8707 
8708 static struct type *
8709 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8710                       CORE_ADDR address, struct value *dval)
8711 {
8712   struct type *templ_type;
8713 
8714   if (TYPE_FIXED_INSTANCE (type0))
8715     return type0;
8716 
8717   templ_type = dynamic_template_type (type0);
8718 
8719   if (templ_type != NULL)
8720     return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8721   else if (variant_field_index (type0) >= 0)
8722     {
8723       if (dval == NULL && valaddr == NULL && address == 0)
8724         return type0;
8725       return to_record_with_fixed_variant_part (type0, valaddr, address,
8726                                                 dval);
8727     }
8728   else
8729     {
8730       TYPE_FIXED_INSTANCE (type0) = 1;
8731       return type0;
8732     }
8733 
8734 }
8735 
8736 /* An ordinary record type (with fixed-length fields) that describes
8737    the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8738    union type.  Any necessary discriminants' values should be in DVAL,
8739    a record value.  That is, this routine selects the appropriate
8740    branch of the union at ADDR according to the discriminant value
8741    indicated in the union's type name.  Returns VAR_TYPE0 itself if
8742    it represents a variant subject to a pragma Unchecked_Union.  */
8743 
8744 static struct type *
8745 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8746                               CORE_ADDR address, struct value *dval)
8747 {
8748   int which;
8749   struct type *templ_type;
8750   struct type *var_type;
8751 
8752   if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8753     var_type = TYPE_TARGET_TYPE (var_type0);
8754   else
8755     var_type = var_type0;
8756 
8757   templ_type = ada_find_parallel_type (var_type, "___XVU");
8758 
8759   if (templ_type != NULL)
8760     var_type = templ_type;
8761 
8762   if (is_unchecked_variant (var_type, value_type (dval)))
8763       return var_type0;
8764   which =
8765     ada_which_variant_applies (var_type,
8766                                value_type (dval), value_contents (dval));
8767 
8768   if (which < 0)
8769     return empty_record (var_type);
8770   else if (is_dynamic_field (var_type, which))
8771     return to_fixed_record_type
8772       (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8773        valaddr, address, dval);
8774   else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8775     return
8776       to_fixed_record_type
8777       (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8778   else
8779     return TYPE_FIELD_TYPE (var_type, which);
8780 }
8781 
8782 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8783    ENCODING_TYPE, a type following the GNAT conventions for discrete
8784    type encodings, only carries redundant information.  */
8785 
8786 static int
8787 ada_is_redundant_range_encoding (struct type *range_type,
8788 				 struct type *encoding_type)
8789 {
8790   struct type *fixed_range_type;
8791   const char *bounds_str;
8792   int n;
8793   LONGEST lo, hi;
8794 
8795   gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8796 
8797   if (TYPE_CODE (get_base_type (range_type))
8798       != TYPE_CODE (get_base_type (encoding_type)))
8799     {
8800       /* The compiler probably used a simple base type to describe
8801 	 the range type instead of the range's actual base type,
8802 	 expecting us to get the real base type from the encoding
8803 	 anyway.  In this situation, the encoding cannot be ignored
8804 	 as redundant.  */
8805       return 0;
8806     }
8807 
8808   if (is_dynamic_type (range_type))
8809     return 0;
8810 
8811   if (TYPE_NAME (encoding_type) == NULL)
8812     return 0;
8813 
8814   bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8815   if (bounds_str == NULL)
8816     return 0;
8817 
8818   n = 8; /* Skip "___XDLU_".  */
8819   if (!ada_scan_number (bounds_str, n, &lo, &n))
8820     return 0;
8821   if (TYPE_LOW_BOUND (range_type) != lo)
8822     return 0;
8823 
8824   n += 2; /* Skip the "__" separator between the two bounds.  */
8825   if (!ada_scan_number (bounds_str, n, &hi, &n))
8826     return 0;
8827   if (TYPE_HIGH_BOUND (range_type) != hi)
8828     return 0;
8829 
8830   return 1;
8831 }
8832 
8833 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8834    a type following the GNAT encoding for describing array type
8835    indices, only carries redundant information.  */
8836 
8837 static int
8838 ada_is_redundant_index_type_desc (struct type *array_type,
8839 				  struct type *desc_type)
8840 {
8841   struct type *this_layer = check_typedef (array_type);
8842   int i;
8843 
8844   for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8845     {
8846       if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8847 					    TYPE_FIELD_TYPE (desc_type, i)))
8848 	return 0;
8849       this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8850     }
8851 
8852   return 1;
8853 }
8854 
8855 /* Assuming that TYPE0 is an array type describing the type of a value
8856    at ADDR, and that DVAL describes a record containing any
8857    discriminants used in TYPE0, returns a type for the value that
8858    contains no dynamic components (that is, no components whose sizes
8859    are determined by run-time quantities).  Unless IGNORE_TOO_BIG is
8860    true, gives an error message if the resulting type's size is over
8861    varsize_limit.  */
8862 
8863 static struct type *
8864 to_fixed_array_type (struct type *type0, struct value *dval,
8865                      int ignore_too_big)
8866 {
8867   struct type *index_type_desc;
8868   struct type *result;
8869   int constrained_packed_array_p;
8870   static const char *xa_suffix = "___XA";
8871 
8872   type0 = ada_check_typedef (type0);
8873   if (TYPE_FIXED_INSTANCE (type0))
8874     return type0;
8875 
8876   constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8877   if (constrained_packed_array_p)
8878     type0 = decode_constrained_packed_array_type (type0);
8879 
8880   index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8881 
8882   /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8883      encoding suffixed with 'P' may still be generated.  If so,
8884      it should be used to find the XA type.  */
8885 
8886   if (index_type_desc == NULL)
8887     {
8888       const char *type_name = ada_type_name (type0);
8889 
8890       if (type_name != NULL)
8891 	{
8892 	  const int len = strlen (type_name);
8893 	  char *name = (char *) alloca (len + strlen (xa_suffix));
8894 
8895 	  if (type_name[len - 1] == 'P')
8896 	    {
8897 	      strcpy (name, type_name);
8898 	      strcpy (name + len - 1, xa_suffix);
8899 	      index_type_desc = ada_find_parallel_type_with_name (type0, name);
8900 	    }
8901 	}
8902     }
8903 
8904   ada_fixup_array_indexes_type (index_type_desc);
8905   if (index_type_desc != NULL
8906       && ada_is_redundant_index_type_desc (type0, index_type_desc))
8907     {
8908       /* Ignore this ___XA parallel type, as it does not bring any
8909 	 useful information.  This allows us to avoid creating fixed
8910 	 versions of the array's index types, which would be identical
8911 	 to the original ones.  This, in turn, can also help avoid
8912 	 the creation of fixed versions of the array itself.  */
8913       index_type_desc = NULL;
8914     }
8915 
8916   if (index_type_desc == NULL)
8917     {
8918       struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8919 
8920       /* NOTE: elt_type---the fixed version of elt_type0---should never
8921          depend on the contents of the array in properly constructed
8922          debugging data.  */
8923       /* Create a fixed version of the array element type.
8924          We're not providing the address of an element here,
8925          and thus the actual object value cannot be inspected to do
8926          the conversion.  This should not be a problem, since arrays of
8927          unconstrained objects are not allowed.  In particular, all
8928          the elements of an array of a tagged type should all be of
8929          the same type specified in the debugging info.  No need to
8930          consult the object tag.  */
8931       struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8932 
8933       /* Make sure we always create a new array type when dealing with
8934 	 packed array types, since we're going to fix-up the array
8935 	 type length and element bitsize a little further down.  */
8936       if (elt_type0 == elt_type && !constrained_packed_array_p)
8937         result = type0;
8938       else
8939         result = create_array_type (alloc_type_copy (type0),
8940                                     elt_type, TYPE_INDEX_TYPE (type0));
8941     }
8942   else
8943     {
8944       int i;
8945       struct type *elt_type0;
8946 
8947       elt_type0 = type0;
8948       for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8949         elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8950 
8951       /* NOTE: result---the fixed version of elt_type0---should never
8952          depend on the contents of the array in properly constructed
8953          debugging data.  */
8954       /* Create a fixed version of the array element type.
8955          We're not providing the address of an element here,
8956          and thus the actual object value cannot be inspected to do
8957          the conversion.  This should not be a problem, since arrays of
8958          unconstrained objects are not allowed.  In particular, all
8959          the elements of an array of a tagged type should all be of
8960          the same type specified in the debugging info.  No need to
8961          consult the object tag.  */
8962       result =
8963         ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8964 
8965       elt_type0 = type0;
8966       for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8967         {
8968           struct type *range_type =
8969             to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8970 
8971           result = create_array_type (alloc_type_copy (elt_type0),
8972                                       result, range_type);
8973 	  elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8974         }
8975       if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8976         error (_("array type with dynamic size is larger than varsize-limit"));
8977     }
8978 
8979   /* We want to preserve the type name.  This can be useful when
8980      trying to get the type name of a value that has already been
8981      printed (for instance, if the user did "print VAR; whatis $".  */
8982   TYPE_NAME (result) = TYPE_NAME (type0);
8983 
8984   if (constrained_packed_array_p)
8985     {
8986       /* So far, the resulting type has been created as if the original
8987 	 type was a regular (non-packed) array type.  As a result, the
8988 	 bitsize of the array elements needs to be set again, and the array
8989 	 length needs to be recomputed based on that bitsize.  */
8990       int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8991       int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8992 
8993       TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8994       TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8995       if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8996         TYPE_LENGTH (result)++;
8997     }
8998 
8999   TYPE_FIXED_INSTANCE (result) = 1;
9000   return result;
9001 }
9002 
9003 
9004 /* A standard type (containing no dynamically sized components)
9005    corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9006    DVAL describes a record containing any discriminants used in TYPE0,
9007    and may be NULL if there are none, or if the object of type TYPE at
9008    ADDRESS or in VALADDR contains these discriminants.
9009 
9010    If CHECK_TAG is not null, in the case of tagged types, this function
9011    attempts to locate the object's tag and use it to compute the actual
9012    type.  However, when ADDRESS is null, we cannot use it to determine the
9013    location of the tag, and therefore compute the tagged type's actual type.
9014    So we return the tagged type without consulting the tag.  */
9015 
9016 static struct type *
9017 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9018                    CORE_ADDR address, struct value *dval, int check_tag)
9019 {
9020   type = ada_check_typedef (type);
9021   switch (TYPE_CODE (type))
9022     {
9023     default:
9024       return type;
9025     case TYPE_CODE_STRUCT:
9026       {
9027         struct type *static_type = to_static_fixed_type (type);
9028         struct type *fixed_record_type =
9029           to_fixed_record_type (type, valaddr, address, NULL);
9030 
9031         /* If STATIC_TYPE is a tagged type and we know the object's address,
9032            then we can determine its tag, and compute the object's actual
9033            type from there.  Note that we have to use the fixed record
9034            type (the parent part of the record may have dynamic fields
9035            and the way the location of _tag is expressed may depend on
9036            them).  */
9037 
9038         if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9039           {
9040 	    struct value *tag =
9041 	      value_tag_from_contents_and_address
9042 	      (fixed_record_type,
9043 	       valaddr,
9044 	       address);
9045 	    struct type *real_type = type_from_tag (tag);
9046 	    struct value *obj =
9047 	      value_from_contents_and_address (fixed_record_type,
9048 					       valaddr,
9049 					       address);
9050             fixed_record_type = value_type (obj);
9051             if (real_type != NULL)
9052               return to_fixed_record_type
9053 		(real_type, NULL,
9054 		 value_address (ada_tag_value_at_base_address (obj)), NULL);
9055           }
9056 
9057         /* Check to see if there is a parallel ___XVZ variable.
9058            If there is, then it provides the actual size of our type.  */
9059         else if (ada_type_name (fixed_record_type) != NULL)
9060           {
9061             const char *name = ada_type_name (fixed_record_type);
9062             char *xvz_name
9063 	      = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9064             int xvz_found = 0;
9065             LONGEST size;
9066 
9067             xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9068             size = get_int_var_value (xvz_name, &xvz_found);
9069             if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9070               {
9071                 fixed_record_type = copy_type (fixed_record_type);
9072                 TYPE_LENGTH (fixed_record_type) = size;
9073 
9074                 /* The FIXED_RECORD_TYPE may have be a stub.  We have
9075                    observed this when the debugging info is STABS, and
9076                    apparently it is something that is hard to fix.
9077 
9078                    In practice, we don't need the actual type definition
9079                    at all, because the presence of the XVZ variable allows us
9080                    to assume that there must be a XVS type as well, which we
9081                    should be able to use later, when we need the actual type
9082                    definition.
9083 
9084                    In the meantime, pretend that the "fixed" type we are
9085                    returning is NOT a stub, because this can cause trouble
9086                    when using this type to create new types targeting it.
9087                    Indeed, the associated creation routines often check
9088                    whether the target type is a stub and will try to replace
9089                    it, thus using a type with the wrong size.  This, in turn,
9090                    might cause the new type to have the wrong size too.
9091                    Consider the case of an array, for instance, where the size
9092                    of the array is computed from the number of elements in
9093                    our array multiplied by the size of its element.  */
9094                 TYPE_STUB (fixed_record_type) = 0;
9095               }
9096           }
9097         return fixed_record_type;
9098       }
9099     case TYPE_CODE_ARRAY:
9100       return to_fixed_array_type (type, dval, 1);
9101     case TYPE_CODE_UNION:
9102       if (dval == NULL)
9103         return type;
9104       else
9105         return to_fixed_variant_branch_type (type, valaddr, address, dval);
9106     }
9107 }
9108 
9109 /* The same as ada_to_fixed_type_1, except that it preserves the type
9110    if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9111 
9112    The typedef layer needs be preserved in order to differentiate between
9113    arrays and array pointers when both types are implemented using the same
9114    fat pointer.  In the array pointer case, the pointer is encoded as
9115    a typedef of the pointer type.  For instance, considering:
9116 
9117 	  type String_Access is access String;
9118 	  S1 : String_Access := null;
9119 
9120    To the debugger, S1 is defined as a typedef of type String.  But
9121    to the user, it is a pointer.  So if the user tries to print S1,
9122    we should not dereference the array, but print the array address
9123    instead.
9124 
9125    If we didn't preserve the typedef layer, we would lose the fact that
9126    the type is to be presented as a pointer (needs de-reference before
9127    being printed).  And we would also use the source-level type name.  */
9128 
9129 struct type *
9130 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9131                    CORE_ADDR address, struct value *dval, int check_tag)
9132 
9133 {
9134   struct type *fixed_type =
9135     ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9136 
9137   /*  If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9138       then preserve the typedef layer.
9139 
9140       Implementation note: We can only check the main-type portion of
9141       the TYPE and FIXED_TYPE, because eliminating the typedef layer
9142       from TYPE now returns a type that has the same instance flags
9143       as TYPE.  For instance, if TYPE is a "typedef const", and its
9144       target type is a "struct", then the typedef elimination will return
9145       a "const" version of the target type.  See check_typedef for more
9146       details about how the typedef layer elimination is done.
9147 
9148       brobecker/2010-11-19: It seems to me that the only case where it is
9149       useful to preserve the typedef layer is when dealing with fat pointers.
9150       Perhaps, we could add a check for that and preserve the typedef layer
9151       only in that situation.  But this seems unecessary so far, probably
9152       because we call check_typedef/ada_check_typedef pretty much everywhere.
9153       */
9154   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9155       && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9156 	  == TYPE_MAIN_TYPE (fixed_type)))
9157     return type;
9158 
9159   return fixed_type;
9160 }
9161 
9162 /* A standard (static-sized) type corresponding as well as possible to
9163    TYPE0, but based on no runtime data.  */
9164 
9165 static struct type *
9166 to_static_fixed_type (struct type *type0)
9167 {
9168   struct type *type;
9169 
9170   if (type0 == NULL)
9171     return NULL;
9172 
9173   if (TYPE_FIXED_INSTANCE (type0))
9174     return type0;
9175 
9176   type0 = ada_check_typedef (type0);
9177 
9178   switch (TYPE_CODE (type0))
9179     {
9180     default:
9181       return type0;
9182     case TYPE_CODE_STRUCT:
9183       type = dynamic_template_type (type0);
9184       if (type != NULL)
9185         return template_to_static_fixed_type (type);
9186       else
9187         return template_to_static_fixed_type (type0);
9188     case TYPE_CODE_UNION:
9189       type = ada_find_parallel_type (type0, "___XVU");
9190       if (type != NULL)
9191         return template_to_static_fixed_type (type);
9192       else
9193         return template_to_static_fixed_type (type0);
9194     }
9195 }
9196 
9197 /* A static approximation of TYPE with all type wrappers removed.  */
9198 
9199 static struct type *
9200 static_unwrap_type (struct type *type)
9201 {
9202   if (ada_is_aligner_type (type))
9203     {
9204       struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9205       if (ada_type_name (type1) == NULL)
9206         TYPE_NAME (type1) = ada_type_name (type);
9207 
9208       return static_unwrap_type (type1);
9209     }
9210   else
9211     {
9212       struct type *raw_real_type = ada_get_base_type (type);
9213 
9214       if (raw_real_type == type)
9215         return type;
9216       else
9217         return to_static_fixed_type (raw_real_type);
9218     }
9219 }
9220 
9221 /* In some cases, incomplete and private types require
9222    cross-references that are not resolved as records (for example,
9223       type Foo;
9224       type FooP is access Foo;
9225       V: FooP;
9226       type Foo is array ...;
9227    ).  In these cases, since there is no mechanism for producing
9228    cross-references to such types, we instead substitute for FooP a
9229    stub enumeration type that is nowhere resolved, and whose tag is
9230    the name of the actual type.  Call these types "non-record stubs".  */
9231 
9232 /* A type equivalent to TYPE that is not a non-record stub, if one
9233    exists, otherwise TYPE.  */
9234 
9235 struct type *
9236 ada_check_typedef (struct type *type)
9237 {
9238   if (type == NULL)
9239     return NULL;
9240 
9241   /* If our type is a typedef type of a fat pointer, then we're done.
9242      We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9243      what allows us to distinguish between fat pointers that represent
9244      array types, and fat pointers that represent array access types
9245      (in both cases, the compiler implements them as fat pointers).  */
9246   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9247       && is_thick_pntr (ada_typedef_target_type (type)))
9248     return type;
9249 
9250   type = check_typedef (type);
9251   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9252       || !TYPE_STUB (type)
9253       || TYPE_TAG_NAME (type) == NULL)
9254     return type;
9255   else
9256     {
9257       const char *name = TYPE_TAG_NAME (type);
9258       struct type *type1 = ada_find_any_type (name);
9259 
9260       if (type1 == NULL)
9261         return type;
9262 
9263       /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9264 	 stubs pointing to arrays, as we don't create symbols for array
9265 	 types, only for the typedef-to-array types).  If that's the case,
9266 	 strip the typedef layer.  */
9267       if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9268 	type1 = ada_check_typedef (type1);
9269 
9270       return type1;
9271     }
9272 }
9273 
9274 /* A value representing the data at VALADDR/ADDRESS as described by
9275    type TYPE0, but with a standard (static-sized) type that correctly
9276    describes it.  If VAL0 is not NULL and TYPE0 already is a standard
9277    type, then return VAL0 [this feature is simply to avoid redundant
9278    creation of struct values].  */
9279 
9280 static struct value *
9281 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9282                            struct value *val0)
9283 {
9284   struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9285 
9286   if (type == type0 && val0 != NULL)
9287     return val0;
9288   else
9289     return value_from_contents_and_address (type, 0, address);
9290 }
9291 
9292 /* A value representing VAL, but with a standard (static-sized) type
9293    that correctly describes it.  Does not necessarily create a new
9294    value.  */
9295 
9296 struct value *
9297 ada_to_fixed_value (struct value *val)
9298 {
9299   val = unwrap_value (val);
9300   val = ada_to_fixed_value_create (value_type (val),
9301 				      value_address (val),
9302 				      val);
9303   return val;
9304 }
9305 
9306 
9307 /* Attributes */
9308 
9309 /* Table mapping attribute numbers to names.
9310    NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h.  */
9311 
9312 static const char *attribute_names[] = {
9313   "<?>",
9314 
9315   "first",
9316   "last",
9317   "length",
9318   "image",
9319   "max",
9320   "min",
9321   "modulus",
9322   "pos",
9323   "size",
9324   "tag",
9325   "val",
9326   0
9327 };
9328 
9329 const char *
9330 ada_attribute_name (enum exp_opcode n)
9331 {
9332   if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9333     return attribute_names[n - OP_ATR_FIRST + 1];
9334   else
9335     return attribute_names[0];
9336 }
9337 
9338 /* Evaluate the 'POS attribute applied to ARG.  */
9339 
9340 static LONGEST
9341 pos_atr (struct value *arg)
9342 {
9343   struct value *val = coerce_ref (arg);
9344   struct type *type = value_type (val);
9345   LONGEST result;
9346 
9347   if (!discrete_type_p (type))
9348     error (_("'POS only defined on discrete types"));
9349 
9350   if (!discrete_position (type, value_as_long (val), &result))
9351     error (_("enumeration value is invalid: can't find 'POS"));
9352 
9353   return result;
9354 }
9355 
9356 static struct value *
9357 value_pos_atr (struct type *type, struct value *arg)
9358 {
9359   return value_from_longest (type, pos_atr (arg));
9360 }
9361 
9362 /* Evaluate the TYPE'VAL attribute applied to ARG.  */
9363 
9364 static struct value *
9365 value_val_atr (struct type *type, struct value *arg)
9366 {
9367   if (!discrete_type_p (type))
9368     error (_("'VAL only defined on discrete types"));
9369   if (!integer_type_p (value_type (arg)))
9370     error (_("'VAL requires integral argument"));
9371 
9372   if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9373     {
9374       long pos = value_as_long (arg);
9375 
9376       if (pos < 0 || pos >= TYPE_NFIELDS (type))
9377         error (_("argument to 'VAL out of range"));
9378       return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9379     }
9380   else
9381     return value_from_longest (type, value_as_long (arg));
9382 }
9383 
9384 
9385                                 /* Evaluation */
9386 
9387 /* True if TYPE appears to be an Ada character type.
9388    [At the moment, this is true only for Character and Wide_Character;
9389    It is a heuristic test that could stand improvement].  */
9390 
9391 int
9392 ada_is_character_type (struct type *type)
9393 {
9394   const char *name;
9395 
9396   /* If the type code says it's a character, then assume it really is,
9397      and don't check any further.  */
9398   if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9399     return 1;
9400 
9401   /* Otherwise, assume it's a character type iff it is a discrete type
9402      with a known character type name.  */
9403   name = ada_type_name (type);
9404   return (name != NULL
9405           && (TYPE_CODE (type) == TYPE_CODE_INT
9406               || TYPE_CODE (type) == TYPE_CODE_RANGE)
9407           && (strcmp (name, "character") == 0
9408               || strcmp (name, "wide_character") == 0
9409               || strcmp (name, "wide_wide_character") == 0
9410               || strcmp (name, "unsigned char") == 0));
9411 }
9412 
9413 /* True if TYPE appears to be an Ada string type.  */
9414 
9415 int
9416 ada_is_string_type (struct type *type)
9417 {
9418   type = ada_check_typedef (type);
9419   if (type != NULL
9420       && TYPE_CODE (type) != TYPE_CODE_PTR
9421       && (ada_is_simple_array_type (type)
9422           || ada_is_array_descriptor_type (type))
9423       && ada_array_arity (type) == 1)
9424     {
9425       struct type *elttype = ada_array_element_type (type, 1);
9426 
9427       return ada_is_character_type (elttype);
9428     }
9429   else
9430     return 0;
9431 }
9432 
9433 /* The compiler sometimes provides a parallel XVS type for a given
9434    PAD type.  Normally, it is safe to follow the PAD type directly,
9435    but older versions of the compiler have a bug that causes the offset
9436    of its "F" field to be wrong.  Following that field in that case
9437    would lead to incorrect results, but this can be worked around
9438    by ignoring the PAD type and using the associated XVS type instead.
9439 
9440    Set to True if the debugger should trust the contents of PAD types.
9441    Otherwise, ignore the PAD type if there is a parallel XVS type.  */
9442 static int trust_pad_over_xvs = 1;
9443 
9444 /* True if TYPE is a struct type introduced by the compiler to force the
9445    alignment of a value.  Such types have a single field with a
9446    distinctive name.  */
9447 
9448 int
9449 ada_is_aligner_type (struct type *type)
9450 {
9451   type = ada_check_typedef (type);
9452 
9453   if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9454     return 0;
9455 
9456   return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9457           && TYPE_NFIELDS (type) == 1
9458           && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9459 }
9460 
9461 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9462    the parallel type.  */
9463 
9464 struct type *
9465 ada_get_base_type (struct type *raw_type)
9466 {
9467   struct type *real_type_namer;
9468   struct type *raw_real_type;
9469 
9470   if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9471     return raw_type;
9472 
9473   if (ada_is_aligner_type (raw_type))
9474     /* The encoding specifies that we should always use the aligner type.
9475        So, even if this aligner type has an associated XVS type, we should
9476        simply ignore it.
9477 
9478        According to the compiler gurus, an XVS type parallel to an aligner
9479        type may exist because of a stabs limitation.  In stabs, aligner
9480        types are empty because the field has a variable-sized type, and
9481        thus cannot actually be used as an aligner type.  As a result,
9482        we need the associated parallel XVS type to decode the type.
9483        Since the policy in the compiler is to not change the internal
9484        representation based on the debugging info format, we sometimes
9485        end up having a redundant XVS type parallel to the aligner type.  */
9486     return raw_type;
9487 
9488   real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9489   if (real_type_namer == NULL
9490       || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9491       || TYPE_NFIELDS (real_type_namer) != 1)
9492     return raw_type;
9493 
9494   if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9495     {
9496       /* This is an older encoding form where the base type needs to be
9497 	 looked up by name.  We prefer the newer enconding because it is
9498 	 more efficient.  */
9499       raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9500       if (raw_real_type == NULL)
9501 	return raw_type;
9502       else
9503 	return raw_real_type;
9504     }
9505 
9506   /* The field in our XVS type is a reference to the base type.  */
9507   return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9508 }
9509 
9510 /* The type of value designated by TYPE, with all aligners removed.  */
9511 
9512 struct type *
9513 ada_aligned_type (struct type *type)
9514 {
9515   if (ada_is_aligner_type (type))
9516     return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9517   else
9518     return ada_get_base_type (type);
9519 }
9520 
9521 
9522 /* The address of the aligned value in an object at address VALADDR
9523    having type TYPE.  Assumes ada_is_aligner_type (TYPE).  */
9524 
9525 const gdb_byte *
9526 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9527 {
9528   if (ada_is_aligner_type (type))
9529     return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9530                                    valaddr +
9531                                    TYPE_FIELD_BITPOS (type,
9532                                                       0) / TARGET_CHAR_BIT);
9533   else
9534     return valaddr;
9535 }
9536 
9537 
9538 
9539 /* The printed representation of an enumeration literal with encoded
9540    name NAME.  The value is good to the next call of ada_enum_name.  */
9541 const char *
9542 ada_enum_name (const char *name)
9543 {
9544   static char *result;
9545   static size_t result_len = 0;
9546   const char *tmp;
9547 
9548   /* First, unqualify the enumeration name:
9549      1. Search for the last '.' character.  If we find one, then skip
9550      all the preceding characters, the unqualified name starts
9551      right after that dot.
9552      2. Otherwise, we may be debugging on a target where the compiler
9553      translates dots into "__".  Search forward for double underscores,
9554      but stop searching when we hit an overloading suffix, which is
9555      of the form "__" followed by digits.  */
9556 
9557   tmp = strrchr (name, '.');
9558   if (tmp != NULL)
9559     name = tmp + 1;
9560   else
9561     {
9562       while ((tmp = strstr (name, "__")) != NULL)
9563         {
9564           if (isdigit (tmp[2]))
9565             break;
9566           else
9567             name = tmp + 2;
9568         }
9569     }
9570 
9571   if (name[0] == 'Q')
9572     {
9573       int v;
9574 
9575       if (name[1] == 'U' || name[1] == 'W')
9576         {
9577           if (sscanf (name + 2, "%x", &v) != 1)
9578             return name;
9579         }
9580       else
9581         return name;
9582 
9583       GROW_VECT (result, result_len, 16);
9584       if (isascii (v) && isprint (v))
9585         xsnprintf (result, result_len, "'%c'", v);
9586       else if (name[1] == 'U')
9587         xsnprintf (result, result_len, "[\"%02x\"]", v);
9588       else
9589         xsnprintf (result, result_len, "[\"%04x\"]", v);
9590 
9591       return result;
9592     }
9593   else
9594     {
9595       tmp = strstr (name, "__");
9596       if (tmp == NULL)
9597 	tmp = strstr (name, "$");
9598       if (tmp != NULL)
9599         {
9600           GROW_VECT (result, result_len, tmp - name + 1);
9601           strncpy (result, name, tmp - name);
9602           result[tmp - name] = '\0';
9603           return result;
9604         }
9605 
9606       return name;
9607     }
9608 }
9609 
9610 /* Evaluate the subexpression of EXP starting at *POS as for
9611    evaluate_type, updating *POS to point just past the evaluated
9612    expression.  */
9613 
9614 static struct value *
9615 evaluate_subexp_type (struct expression *exp, int *pos)
9616 {
9617   return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9618 }
9619 
9620 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9621    value it wraps.  */
9622 
9623 static struct value *
9624 unwrap_value (struct value *val)
9625 {
9626   struct type *type = ada_check_typedef (value_type (val));
9627 
9628   if (ada_is_aligner_type (type))
9629     {
9630       struct value *v = ada_value_struct_elt (val, "F", 0);
9631       struct type *val_type = ada_check_typedef (value_type (v));
9632 
9633       if (ada_type_name (val_type) == NULL)
9634         TYPE_NAME (val_type) = ada_type_name (type);
9635 
9636       return unwrap_value (v);
9637     }
9638   else
9639     {
9640       struct type *raw_real_type =
9641         ada_check_typedef (ada_get_base_type (type));
9642 
9643       /* If there is no parallel XVS or XVE type, then the value is
9644 	 already unwrapped.  Return it without further modification.  */
9645       if ((type == raw_real_type)
9646 	  && ada_find_parallel_type (type, "___XVE") == NULL)
9647 	return val;
9648 
9649       return
9650         coerce_unspec_val_to_type
9651         (val, ada_to_fixed_type (raw_real_type, 0,
9652                                  value_address (val),
9653                                  NULL, 1));
9654     }
9655 }
9656 
9657 static struct value *
9658 cast_to_fixed (struct type *type, struct value *arg)
9659 {
9660   LONGEST val;
9661 
9662   if (type == value_type (arg))
9663     return arg;
9664   else if (ada_is_fixed_point_type (value_type (arg)))
9665     val = ada_float_to_fixed (type,
9666                               ada_fixed_to_float (value_type (arg),
9667                                                   value_as_long (arg)));
9668   else
9669     {
9670       DOUBLEST argd = value_as_double (arg);
9671 
9672       val = ada_float_to_fixed (type, argd);
9673     }
9674 
9675   return value_from_longest (type, val);
9676 }
9677 
9678 static struct value *
9679 cast_from_fixed (struct type *type, struct value *arg)
9680 {
9681   DOUBLEST val = ada_fixed_to_float (value_type (arg),
9682                                      value_as_long (arg));
9683 
9684   return value_from_double (type, val);
9685 }
9686 
9687 /* Given two array types T1 and T2, return nonzero iff both arrays
9688    contain the same number of elements.  */
9689 
9690 static int
9691 ada_same_array_size_p (struct type *t1, struct type *t2)
9692 {
9693   LONGEST lo1, hi1, lo2, hi2;
9694 
9695   /* Get the array bounds in order to verify that the size of
9696      the two arrays match.  */
9697   if (!get_array_bounds (t1, &lo1, &hi1)
9698       || !get_array_bounds (t2, &lo2, &hi2))
9699     error (_("unable to determine array bounds"));
9700 
9701   /* To make things easier for size comparison, normalize a bit
9702      the case of empty arrays by making sure that the difference
9703      between upper bound and lower bound is always -1.  */
9704   if (lo1 > hi1)
9705     hi1 = lo1 - 1;
9706   if (lo2 > hi2)
9707     hi2 = lo2 - 1;
9708 
9709   return (hi1 - lo1 == hi2 - lo2);
9710 }
9711 
9712 /* Assuming that VAL is an array of integrals, and TYPE represents
9713    an array with the same number of elements, but with wider integral
9714    elements, return an array "casted" to TYPE.  In practice, this
9715    means that the returned array is built by casting each element
9716    of the original array into TYPE's (wider) element type.  */
9717 
9718 static struct value *
9719 ada_promote_array_of_integrals (struct type *type, struct value *val)
9720 {
9721   struct type *elt_type = TYPE_TARGET_TYPE (type);
9722   LONGEST lo, hi;
9723   struct value *res;
9724   LONGEST i;
9725 
9726   /* Verify that both val and type are arrays of scalars, and
9727      that the size of val's elements is smaller than the size
9728      of type's element.  */
9729   gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9730   gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9731   gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9732   gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9733   gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9734 	      > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9735 
9736   if (!get_array_bounds (type, &lo, &hi))
9737     error (_("unable to determine array bounds"));
9738 
9739   res = allocate_value (type);
9740 
9741   /* Promote each array element.  */
9742   for (i = 0; i < hi - lo + 1; i++)
9743     {
9744       struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9745 
9746       memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9747 	      value_contents_all (elt), TYPE_LENGTH (elt_type));
9748     }
9749 
9750   return res;
9751 }
9752 
9753 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9754    return the converted value.  */
9755 
9756 static struct value *
9757 coerce_for_assign (struct type *type, struct value *val)
9758 {
9759   struct type *type2 = value_type (val);
9760 
9761   if (type == type2)
9762     return val;
9763 
9764   type2 = ada_check_typedef (type2);
9765   type = ada_check_typedef (type);
9766 
9767   if (TYPE_CODE (type2) == TYPE_CODE_PTR
9768       && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9769     {
9770       val = ada_value_ind (val);
9771       type2 = value_type (val);
9772     }
9773 
9774   if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9775       && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9776     {
9777       if (!ada_same_array_size_p (type, type2))
9778 	error (_("cannot assign arrays of different length"));
9779 
9780       if (is_integral_type (TYPE_TARGET_TYPE (type))
9781 	  && is_integral_type (TYPE_TARGET_TYPE (type2))
9782 	  && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9783 	       < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9784 	{
9785 	  /* Allow implicit promotion of the array elements to
9786 	     a wider type.  */
9787 	  return ada_promote_array_of_integrals (type, val);
9788 	}
9789 
9790       if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9791           != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9792         error (_("Incompatible types in assignment"));
9793       deprecated_set_value_type (val, type);
9794     }
9795   return val;
9796 }
9797 
9798 static struct value *
9799 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9800 {
9801   struct value *val;
9802   struct type *type1, *type2;
9803   LONGEST v, v1, v2;
9804 
9805   arg1 = coerce_ref (arg1);
9806   arg2 = coerce_ref (arg2);
9807   type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9808   type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9809 
9810   if (TYPE_CODE (type1) != TYPE_CODE_INT
9811       || TYPE_CODE (type2) != TYPE_CODE_INT)
9812     return value_binop (arg1, arg2, op);
9813 
9814   switch (op)
9815     {
9816     case BINOP_MOD:
9817     case BINOP_DIV:
9818     case BINOP_REM:
9819       break;
9820     default:
9821       return value_binop (arg1, arg2, op);
9822     }
9823 
9824   v2 = value_as_long (arg2);
9825   if (v2 == 0)
9826     error (_("second operand of %s must not be zero."), op_string (op));
9827 
9828   if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9829     return value_binop (arg1, arg2, op);
9830 
9831   v1 = value_as_long (arg1);
9832   switch (op)
9833     {
9834     case BINOP_DIV:
9835       v = v1 / v2;
9836       if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9837         v += v > 0 ? -1 : 1;
9838       break;
9839     case BINOP_REM:
9840       v = v1 % v2;
9841       if (v * v1 < 0)
9842         v -= v2;
9843       break;
9844     default:
9845       /* Should not reach this point.  */
9846       v = 0;
9847     }
9848 
9849   val = allocate_value (type1);
9850   store_unsigned_integer (value_contents_raw (val),
9851                           TYPE_LENGTH (value_type (val)),
9852 			  gdbarch_byte_order (get_type_arch (type1)), v);
9853   return val;
9854 }
9855 
9856 static int
9857 ada_value_equal (struct value *arg1, struct value *arg2)
9858 {
9859   if (ada_is_direct_array_type (value_type (arg1))
9860       || ada_is_direct_array_type (value_type (arg2)))
9861     {
9862       /* Automatically dereference any array reference before
9863          we attempt to perform the comparison.  */
9864       arg1 = ada_coerce_ref (arg1);
9865       arg2 = ada_coerce_ref (arg2);
9866 
9867       arg1 = ada_coerce_to_simple_array (arg1);
9868       arg2 = ada_coerce_to_simple_array (arg2);
9869       if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9870           || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9871         error (_("Attempt to compare array with non-array"));
9872       /* FIXME: The following works only for types whose
9873          representations use all bits (no padding or undefined bits)
9874          and do not have user-defined equality.  */
9875       return
9876         TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9877         && memcmp (value_contents (arg1), value_contents (arg2),
9878                    TYPE_LENGTH (value_type (arg1))) == 0;
9879     }
9880   return value_equal (arg1, arg2);
9881 }
9882 
9883 /* Total number of component associations in the aggregate starting at
9884    index PC in EXP.  Assumes that index PC is the start of an
9885    OP_AGGREGATE.  */
9886 
9887 static int
9888 num_component_specs (struct expression *exp, int pc)
9889 {
9890   int n, m, i;
9891 
9892   m = exp->elts[pc + 1].longconst;
9893   pc += 3;
9894   n = 0;
9895   for (i = 0; i < m; i += 1)
9896     {
9897       switch (exp->elts[pc].opcode)
9898 	{
9899 	default:
9900 	  n += 1;
9901 	  break;
9902 	case OP_CHOICES:
9903 	  n += exp->elts[pc + 1].longconst;
9904 	  break;
9905 	}
9906       ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9907     }
9908   return n;
9909 }
9910 
9911 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9912    component of LHS (a simple array or a record), updating *POS past
9913    the expression, assuming that LHS is contained in CONTAINER.  Does
9914    not modify the inferior's memory, nor does it modify LHS (unless
9915    LHS == CONTAINER).  */
9916 
9917 static void
9918 assign_component (struct value *container, struct value *lhs, LONGEST index,
9919 		  struct expression *exp, int *pos)
9920 {
9921   struct value *mark = value_mark ();
9922   struct value *elt;
9923 
9924   if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9925     {
9926       struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9927       struct value *index_val = value_from_longest (index_type, index);
9928 
9929       elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9930     }
9931   else
9932     {
9933       elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9934       elt = ada_to_fixed_value (elt);
9935     }
9936 
9937   if (exp->elts[*pos].opcode == OP_AGGREGATE)
9938     assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9939   else
9940     value_assign_to_component (container, elt,
9941 			       ada_evaluate_subexp (NULL, exp, pos,
9942 						    EVAL_NORMAL));
9943 
9944   value_free_to_mark (mark);
9945 }
9946 
9947 /* Assuming that LHS represents an lvalue having a record or array
9948    type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9949    of that aggregate's value to LHS, advancing *POS past the
9950    aggregate.  NOSIDE is as for evaluate_subexp.  CONTAINER is an
9951    lvalue containing LHS (possibly LHS itself).  Does not modify
9952    the inferior's memory, nor does it modify the contents of
9953    LHS (unless == CONTAINER).  Returns the modified CONTAINER.  */
9954 
9955 static struct value *
9956 assign_aggregate (struct value *container,
9957 		  struct value *lhs, struct expression *exp,
9958 		  int *pos, enum noside noside)
9959 {
9960   struct type *lhs_type;
9961   int n = exp->elts[*pos+1].longconst;
9962   LONGEST low_index, high_index;
9963   int num_specs;
9964   LONGEST *indices;
9965   int max_indices, num_indices;
9966   int i;
9967 
9968   *pos += 3;
9969   if (noside != EVAL_NORMAL)
9970     {
9971       for (i = 0; i < n; i += 1)
9972 	ada_evaluate_subexp (NULL, exp, pos, noside);
9973       return container;
9974     }
9975 
9976   container = ada_coerce_ref (container);
9977   if (ada_is_direct_array_type (value_type (container)))
9978     container = ada_coerce_to_simple_array (container);
9979   lhs = ada_coerce_ref (lhs);
9980   if (!deprecated_value_modifiable (lhs))
9981     error (_("Left operand of assignment is not a modifiable lvalue."));
9982 
9983   lhs_type = value_type (lhs);
9984   if (ada_is_direct_array_type (lhs_type))
9985     {
9986       lhs = ada_coerce_to_simple_array (lhs);
9987       lhs_type = value_type (lhs);
9988       low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9989       high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9990     }
9991   else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9992     {
9993       low_index = 0;
9994       high_index = num_visible_fields (lhs_type) - 1;
9995     }
9996   else
9997     error (_("Left-hand side must be array or record."));
9998 
9999   num_specs = num_component_specs (exp, *pos - 3);
10000   max_indices = 4 * num_specs + 4;
10001   indices = XALLOCAVEC (LONGEST, max_indices);
10002   indices[0] = indices[1] = low_index - 1;
10003   indices[2] = indices[3] = high_index + 1;
10004   num_indices = 4;
10005 
10006   for (i = 0; i < n; i += 1)
10007     {
10008       switch (exp->elts[*pos].opcode)
10009 	{
10010 	  case OP_CHOICES:
10011 	    aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10012 					   &num_indices, max_indices,
10013 					   low_index, high_index);
10014 	    break;
10015 	  case OP_POSITIONAL:
10016 	    aggregate_assign_positional (container, lhs, exp, pos, indices,
10017 					 &num_indices, max_indices,
10018 					 low_index, high_index);
10019 	    break;
10020 	  case OP_OTHERS:
10021 	    if (i != n-1)
10022 	      error (_("Misplaced 'others' clause"));
10023 	    aggregate_assign_others (container, lhs, exp, pos, indices,
10024 				     num_indices, low_index, high_index);
10025 	    break;
10026 	  default:
10027 	    error (_("Internal error: bad aggregate clause"));
10028 	}
10029     }
10030 
10031   return container;
10032 }
10033 
10034 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10035    construct at *POS, updating *POS past the construct, given that
10036    the positions are relative to lower bound LOW, where HIGH is the
10037    upper bound.  Record the position in INDICES[0 .. MAX_INDICES-1]
10038    updating *NUM_INDICES as needed.  CONTAINER is as for
10039    assign_aggregate.  */
10040 static void
10041 aggregate_assign_positional (struct value *container,
10042 			     struct value *lhs, struct expression *exp,
10043 			     int *pos, LONGEST *indices, int *num_indices,
10044 			     int max_indices, LONGEST low, LONGEST high)
10045 {
10046   LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10047 
10048   if (ind - 1 == high)
10049     warning (_("Extra components in aggregate ignored."));
10050   if (ind <= high)
10051     {
10052       add_component_interval (ind, ind, indices, num_indices, max_indices);
10053       *pos += 3;
10054       assign_component (container, lhs, ind, exp, pos);
10055     }
10056   else
10057     ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10058 }
10059 
10060 /* Assign into the components of LHS indexed by the OP_CHOICES
10061    construct at *POS, updating *POS past the construct, given that
10062    the allowable indices are LOW..HIGH.  Record the indices assigned
10063    to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10064    needed.  CONTAINER is as for assign_aggregate.  */
10065 static void
10066 aggregate_assign_from_choices (struct value *container,
10067 			       struct value *lhs, struct expression *exp,
10068 			       int *pos, LONGEST *indices, int *num_indices,
10069 			       int max_indices, LONGEST low, LONGEST high)
10070 {
10071   int j;
10072   int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10073   int choice_pos, expr_pc;
10074   int is_array = ada_is_direct_array_type (value_type (lhs));
10075 
10076   choice_pos = *pos += 3;
10077 
10078   for (j = 0; j < n_choices; j += 1)
10079     ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10080   expr_pc = *pos;
10081   ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10082 
10083   for (j = 0; j < n_choices; j += 1)
10084     {
10085       LONGEST lower, upper;
10086       enum exp_opcode op = exp->elts[choice_pos].opcode;
10087 
10088       if (op == OP_DISCRETE_RANGE)
10089 	{
10090 	  choice_pos += 1;
10091 	  lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10092 						      EVAL_NORMAL));
10093 	  upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10094 						      EVAL_NORMAL));
10095 	}
10096       else if (is_array)
10097 	{
10098 	  lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10099 						      EVAL_NORMAL));
10100 	  upper = lower;
10101 	}
10102       else
10103 	{
10104 	  int ind;
10105 	  const char *name;
10106 
10107 	  switch (op)
10108 	    {
10109 	    case OP_NAME:
10110 	      name = &exp->elts[choice_pos + 2].string;
10111 	      break;
10112 	    case OP_VAR_VALUE:
10113 	      name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10114 	      break;
10115 	    default:
10116 	      error (_("Invalid record component association."));
10117 	    }
10118 	  ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10119 	  ind = 0;
10120 	  if (! find_struct_field (name, value_type (lhs), 0,
10121 				   NULL, NULL, NULL, NULL, &ind))
10122 	    error (_("Unknown component name: %s."), name);
10123 	  lower = upper = ind;
10124 	}
10125 
10126       if (lower <= upper && (lower < low || upper > high))
10127 	error (_("Index in component association out of bounds."));
10128 
10129       add_component_interval (lower, upper, indices, num_indices,
10130 			      max_indices);
10131       while (lower <= upper)
10132 	{
10133 	  int pos1;
10134 
10135 	  pos1 = expr_pc;
10136 	  assign_component (container, lhs, lower, exp, &pos1);
10137 	  lower += 1;
10138 	}
10139     }
10140 }
10141 
10142 /* Assign the value of the expression in the OP_OTHERS construct in
10143    EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10144    have not been previously assigned.  The index intervals already assigned
10145    are in INDICES[0 .. NUM_INDICES-1].  Updates *POS to after the
10146    OP_OTHERS clause.  CONTAINER is as for assign_aggregate.  */
10147 static void
10148 aggregate_assign_others (struct value *container,
10149 			 struct value *lhs, struct expression *exp,
10150 			 int *pos, LONGEST *indices, int num_indices,
10151 			 LONGEST low, LONGEST high)
10152 {
10153   int i;
10154   int expr_pc = *pos + 1;
10155 
10156   for (i = 0; i < num_indices - 2; i += 2)
10157     {
10158       LONGEST ind;
10159 
10160       for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10161 	{
10162 	  int localpos;
10163 
10164 	  localpos = expr_pc;
10165 	  assign_component (container, lhs, ind, exp, &localpos);
10166 	}
10167     }
10168   ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10169 }
10170 
10171 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10172    [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10173    modifying *SIZE as needed.  It is an error if *SIZE exceeds
10174    MAX_SIZE.  The resulting intervals do not overlap.  */
10175 static void
10176 add_component_interval (LONGEST low, LONGEST high,
10177 			LONGEST* indices, int *size, int max_size)
10178 {
10179   int i, j;
10180 
10181   for (i = 0; i < *size; i += 2) {
10182     if (high >= indices[i] && low <= indices[i + 1])
10183       {
10184 	int kh;
10185 
10186 	for (kh = i + 2; kh < *size; kh += 2)
10187 	  if (high < indices[kh])
10188 	    break;
10189 	if (low < indices[i])
10190 	  indices[i] = low;
10191 	indices[i + 1] = indices[kh - 1];
10192 	if (high > indices[i + 1])
10193 	  indices[i + 1] = high;
10194 	memcpy (indices + i + 2, indices + kh, *size - kh);
10195 	*size -= kh - i - 2;
10196 	return;
10197       }
10198     else if (high < indices[i])
10199       break;
10200   }
10201 
10202   if (*size == max_size)
10203     error (_("Internal error: miscounted aggregate components."));
10204   *size += 2;
10205   for (j = *size-1; j >= i+2; j -= 1)
10206     indices[j] = indices[j - 2];
10207   indices[i] = low;
10208   indices[i + 1] = high;
10209 }
10210 
10211 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10212    is different.  */
10213 
10214 static struct value *
10215 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10216 {
10217   if (type == ada_check_typedef (value_type (arg2)))
10218     return arg2;
10219 
10220   if (ada_is_fixed_point_type (type))
10221     return (cast_to_fixed (type, arg2));
10222 
10223   if (ada_is_fixed_point_type (value_type (arg2)))
10224     return cast_from_fixed (type, arg2);
10225 
10226   return value_cast (type, arg2);
10227 }
10228 
10229 /*  Evaluating Ada expressions, and printing their result.
10230     ------------------------------------------------------
10231 
10232     1. Introduction:
10233     ----------------
10234 
10235     We usually evaluate an Ada expression in order to print its value.
10236     We also evaluate an expression in order to print its type, which
10237     happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10238     but we'll focus mostly on the EVAL_NORMAL phase.  In practice, the
10239     EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10240     the evaluation compared to the EVAL_NORMAL, but is otherwise very
10241     similar.
10242 
10243     Evaluating expressions is a little more complicated for Ada entities
10244     than it is for entities in languages such as C.  The main reason for
10245     this is that Ada provides types whose definition might be dynamic.
10246     One example of such types is variant records.  Or another example
10247     would be an array whose bounds can only be known at run time.
10248 
10249     The following description is a general guide as to what should be
10250     done (and what should NOT be done) in order to evaluate an expression
10251     involving such types, and when.  This does not cover how the semantic
10252     information is encoded by GNAT as this is covered separatly.  For the
10253     document used as the reference for the GNAT encoding, see exp_dbug.ads
10254     in the GNAT sources.
10255 
10256     Ideally, we should embed each part of this description next to its
10257     associated code.  Unfortunately, the amount of code is so vast right
10258     now that it's hard to see whether the code handling a particular
10259     situation might be duplicated or not.  One day, when the code is
10260     cleaned up, this guide might become redundant with the comments
10261     inserted in the code, and we might want to remove it.
10262 
10263     2. ``Fixing'' an Entity, the Simple Case:
10264     -----------------------------------------
10265 
10266     When evaluating Ada expressions, the tricky issue is that they may
10267     reference entities whose type contents and size are not statically
10268     known.  Consider for instance a variant record:
10269 
10270        type Rec (Empty : Boolean := True) is record
10271           case Empty is
10272              when True => null;
10273              when False => Value : Integer;
10274           end case;
10275        end record;
10276        Yes : Rec := (Empty => False, Value => 1);
10277        No  : Rec := (empty => True);
10278 
10279     The size and contents of that record depends on the value of the
10280     descriminant (Rec.Empty).  At this point, neither the debugging
10281     information nor the associated type structure in GDB are able to
10282     express such dynamic types.  So what the debugger does is to create
10283     "fixed" versions of the type that applies to the specific object.
10284     We also informally refer to this opperation as "fixing" an object,
10285     which means creating its associated fixed type.
10286 
10287     Example: when printing the value of variable "Yes" above, its fixed
10288     type would look like this:
10289 
10290        type Rec is record
10291           Empty : Boolean;
10292           Value : Integer;
10293        end record;
10294 
10295     On the other hand, if we printed the value of "No", its fixed type
10296     would become:
10297 
10298        type Rec is record
10299           Empty : Boolean;
10300        end record;
10301 
10302     Things become a little more complicated when trying to fix an entity
10303     with a dynamic type that directly contains another dynamic type,
10304     such as an array of variant records, for instance.  There are
10305     two possible cases: Arrays, and records.
10306 
10307     3. ``Fixing'' Arrays:
10308     ---------------------
10309 
10310     The type structure in GDB describes an array in terms of its bounds,
10311     and the type of its elements.  By design, all elements in the array
10312     have the same type and we cannot represent an array of variant elements
10313     using the current type structure in GDB.  When fixing an array,
10314     we cannot fix the array element, as we would potentially need one
10315     fixed type per element of the array.  As a result, the best we can do
10316     when fixing an array is to produce an array whose bounds and size
10317     are correct (allowing us to read it from memory), but without having
10318     touched its element type.  Fixing each element will be done later,
10319     when (if) necessary.
10320 
10321     Arrays are a little simpler to handle than records, because the same
10322     amount of memory is allocated for each element of the array, even if
10323     the amount of space actually used by each element differs from element
10324     to element.  Consider for instance the following array of type Rec:
10325 
10326        type Rec_Array is array (1 .. 2) of Rec;
10327 
10328     The actual amount of memory occupied by each element might be different
10329     from element to element, depending on the value of their discriminant.
10330     But the amount of space reserved for each element in the array remains
10331     fixed regardless.  So we simply need to compute that size using
10332     the debugging information available, from which we can then determine
10333     the array size (we multiply the number of elements of the array by
10334     the size of each element).
10335 
10336     The simplest case is when we have an array of a constrained element
10337     type. For instance, consider the following type declarations:
10338 
10339         type Bounded_String (Max_Size : Integer) is
10340            Length : Integer;
10341            Buffer : String (1 .. Max_Size);
10342         end record;
10343         type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10344 
10345     In this case, the compiler describes the array as an array of
10346     variable-size elements (identified by its XVS suffix) for which
10347     the size can be read in the parallel XVZ variable.
10348 
10349     In the case of an array of an unconstrained element type, the compiler
10350     wraps the array element inside a private PAD type.  This type should not
10351     be shown to the user, and must be "unwrap"'ed before printing.  Note
10352     that we also use the adjective "aligner" in our code to designate
10353     these wrapper types.
10354 
10355     In some cases, the size allocated for each element is statically
10356     known.  In that case, the PAD type already has the correct size,
10357     and the array element should remain unfixed.
10358 
10359     But there are cases when this size is not statically known.
10360     For instance, assuming that "Five" is an integer variable:
10361 
10362         type Dynamic is array (1 .. Five) of Integer;
10363         type Wrapper (Has_Length : Boolean := False) is record
10364            Data : Dynamic;
10365            case Has_Length is
10366               when True => Length : Integer;
10367               when False => null;
10368            end case;
10369         end record;
10370         type Wrapper_Array is array (1 .. 2) of Wrapper;
10371 
10372         Hello : Wrapper_Array := (others => (Has_Length => True,
10373                                              Data => (others => 17),
10374                                              Length => 1));
10375 
10376 
10377     The debugging info would describe variable Hello as being an
10378     array of a PAD type.  The size of that PAD type is not statically
10379     known, but can be determined using a parallel XVZ variable.
10380     In that case, a copy of the PAD type with the correct size should
10381     be used for the fixed array.
10382 
10383     3. ``Fixing'' record type objects:
10384     ----------------------------------
10385 
10386     Things are slightly different from arrays in the case of dynamic
10387     record types.  In this case, in order to compute the associated
10388     fixed type, we need to determine the size and offset of each of
10389     its components.  This, in turn, requires us to compute the fixed
10390     type of each of these components.
10391 
10392     Consider for instance the example:
10393 
10394         type Bounded_String (Max_Size : Natural) is record
10395            Str : String (1 .. Max_Size);
10396            Length : Natural;
10397         end record;
10398         My_String : Bounded_String (Max_Size => 10);
10399 
10400     In that case, the position of field "Length" depends on the size
10401     of field Str, which itself depends on the value of the Max_Size
10402     discriminant.  In order to fix the type of variable My_String,
10403     we need to fix the type of field Str.  Therefore, fixing a variant
10404     record requires us to fix each of its components.
10405 
10406     However, if a component does not have a dynamic size, the component
10407     should not be fixed.  In particular, fields that use a PAD type
10408     should not fixed.  Here is an example where this might happen
10409     (assuming type Rec above):
10410 
10411        type Container (Big : Boolean) is record
10412           First : Rec;
10413           After : Integer;
10414           case Big is
10415              when True => Another : Integer;
10416              when False => null;
10417           end case;
10418        end record;
10419        My_Container : Container := (Big => False,
10420                                     First => (Empty => True),
10421                                     After => 42);
10422 
10423     In that example, the compiler creates a PAD type for component First,
10424     whose size is constant, and then positions the component After just
10425     right after it.  The offset of component After is therefore constant
10426     in this case.
10427 
10428     The debugger computes the position of each field based on an algorithm
10429     that uses, among other things, the actual position and size of the field
10430     preceding it.  Let's now imagine that the user is trying to print
10431     the value of My_Container.  If the type fixing was recursive, we would
10432     end up computing the offset of field After based on the size of the
10433     fixed version of field First.  And since in our example First has
10434     only one actual field, the size of the fixed type is actually smaller
10435     than the amount of space allocated to that field, and thus we would
10436     compute the wrong offset of field After.
10437 
10438     To make things more complicated, we need to watch out for dynamic
10439     components of variant records (identified by the ___XVL suffix in
10440     the component name).  Even if the target type is a PAD type, the size
10441     of that type might not be statically known.  So the PAD type needs
10442     to be unwrapped and the resulting type needs to be fixed.  Otherwise,
10443     we might end up with the wrong size for our component.  This can be
10444     observed with the following type declarations:
10445 
10446         type Octal is new Integer range 0 .. 7;
10447         type Octal_Array is array (Positive range <>) of Octal;
10448         pragma Pack (Octal_Array);
10449 
10450         type Octal_Buffer (Size : Positive) is record
10451            Buffer : Octal_Array (1 .. Size);
10452            Length : Integer;
10453         end record;
10454 
10455     In that case, Buffer is a PAD type whose size is unset and needs
10456     to be computed by fixing the unwrapped type.
10457 
10458     4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10459     ----------------------------------------------------------
10460 
10461     Lastly, when should the sub-elements of an entity that remained unfixed
10462     thus far, be actually fixed?
10463 
10464     The answer is: Only when referencing that element.  For instance
10465     when selecting one component of a record, this specific component
10466     should be fixed at that point in time.  Or when printing the value
10467     of a record, each component should be fixed before its value gets
10468     printed.  Similarly for arrays, the element of the array should be
10469     fixed when printing each element of the array, or when extracting
10470     one element out of that array.  On the other hand, fixing should
10471     not be performed on the elements when taking a slice of an array!
10472 
10473     Note that one of the side-effects of miscomputing the offset and
10474     size of each field is that we end up also miscomputing the size
10475     of the containing type.  This can have adverse results when computing
10476     the value of an entity.  GDB fetches the value of an entity based
10477     on the size of its type, and thus a wrong size causes GDB to fetch
10478     the wrong amount of memory.  In the case where the computed size is
10479     too small, GDB fetches too little data to print the value of our
10480     entiry.  Results in this case as unpredicatble, as we usually read
10481     past the buffer containing the data =:-o.  */
10482 
10483 /* Implement the evaluate_exp routine in the exp_descriptor structure
10484    for the Ada language.  */
10485 
10486 static struct value *
10487 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10488                      int *pos, enum noside noside)
10489 {
10490   enum exp_opcode op;
10491   int tem;
10492   int pc;
10493   int preeval_pos;
10494   struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10495   struct type *type;
10496   int nargs, oplen;
10497   struct value **argvec;
10498 
10499   pc = *pos;
10500   *pos += 1;
10501   op = exp->elts[pc].opcode;
10502 
10503   switch (op)
10504     {
10505     default:
10506       *pos -= 1;
10507       arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10508 
10509       if (noside == EVAL_NORMAL)
10510 	arg1 = unwrap_value (arg1);
10511 
10512       /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10513          then we need to perform the conversion manually, because
10514          evaluate_subexp_standard doesn't do it.  This conversion is
10515          necessary in Ada because the different kinds of float/fixed
10516          types in Ada have different representations.
10517 
10518          Similarly, we need to perform the conversion from OP_LONG
10519          ourselves.  */
10520       if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10521         arg1 = ada_value_cast (expect_type, arg1, noside);
10522 
10523       return arg1;
10524 
10525     case OP_STRING:
10526       {
10527         struct value *result;
10528 
10529         *pos -= 1;
10530         result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10531         /* The result type will have code OP_STRING, bashed there from
10532            OP_ARRAY.  Bash it back.  */
10533         if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10534           TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10535         return result;
10536       }
10537 
10538     case UNOP_CAST:
10539       (*pos) += 2;
10540       type = exp->elts[pc + 1].type;
10541       arg1 = evaluate_subexp (type, exp, pos, noside);
10542       if (noside == EVAL_SKIP)
10543         goto nosideret;
10544       arg1 = ada_value_cast (type, arg1, noside);
10545       return arg1;
10546 
10547     case UNOP_QUAL:
10548       (*pos) += 2;
10549       type = exp->elts[pc + 1].type;
10550       return ada_evaluate_subexp (type, exp, pos, noside);
10551 
10552     case BINOP_ASSIGN:
10553       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10554       if (exp->elts[*pos].opcode == OP_AGGREGATE)
10555 	{
10556 	  arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10557 	  if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10558 	    return arg1;
10559 	  return ada_value_assign (arg1, arg1);
10560 	}
10561       /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10562          except if the lhs of our assignment is a convenience variable.
10563          In the case of assigning to a convenience variable, the lhs
10564          should be exactly the result of the evaluation of the rhs.  */
10565       type = value_type (arg1);
10566       if (VALUE_LVAL (arg1) == lval_internalvar)
10567          type = NULL;
10568       arg2 = evaluate_subexp (type, exp, pos, noside);
10569       if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10570         return arg1;
10571       if (ada_is_fixed_point_type (value_type (arg1)))
10572         arg2 = cast_to_fixed (value_type (arg1), arg2);
10573       else if (ada_is_fixed_point_type (value_type (arg2)))
10574         error
10575           (_("Fixed-point values must be assigned to fixed-point variables"));
10576       else
10577         arg2 = coerce_for_assign (value_type (arg1), arg2);
10578       return ada_value_assign (arg1, arg2);
10579 
10580     case BINOP_ADD:
10581       arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10582       arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10583       if (noside == EVAL_SKIP)
10584         goto nosideret;
10585       if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10586         return (value_from_longest
10587                  (value_type (arg1),
10588                   value_as_long (arg1) + value_as_long (arg2)));
10589       if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10590         return (value_from_longest
10591                  (value_type (arg2),
10592                   value_as_long (arg1) + value_as_long (arg2)));
10593       if ((ada_is_fixed_point_type (value_type (arg1))
10594            || ada_is_fixed_point_type (value_type (arg2)))
10595           && value_type (arg1) != value_type (arg2))
10596         error (_("Operands of fixed-point addition must have the same type"));
10597       /* Do the addition, and cast the result to the type of the first
10598          argument.  We cannot cast the result to a reference type, so if
10599          ARG1 is a reference type, find its underlying type.  */
10600       type = value_type (arg1);
10601       while (TYPE_CODE (type) == TYPE_CODE_REF)
10602         type = TYPE_TARGET_TYPE (type);
10603       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10604       return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10605 
10606     case BINOP_SUB:
10607       arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10608       arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10609       if (noside == EVAL_SKIP)
10610         goto nosideret;
10611       if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10612         return (value_from_longest
10613                  (value_type (arg1),
10614                   value_as_long (arg1) - value_as_long (arg2)));
10615       if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10616         return (value_from_longest
10617                  (value_type (arg2),
10618                   value_as_long (arg1) - value_as_long (arg2)));
10619       if ((ada_is_fixed_point_type (value_type (arg1))
10620            || ada_is_fixed_point_type (value_type (arg2)))
10621           && value_type (arg1) != value_type (arg2))
10622         error (_("Operands of fixed-point subtraction "
10623 		 "must have the same type"));
10624       /* Do the substraction, and cast the result to the type of the first
10625          argument.  We cannot cast the result to a reference type, so if
10626          ARG1 is a reference type, find its underlying type.  */
10627       type = value_type (arg1);
10628       while (TYPE_CODE (type) == TYPE_CODE_REF)
10629         type = TYPE_TARGET_TYPE (type);
10630       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10631       return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10632 
10633     case BINOP_MUL:
10634     case BINOP_DIV:
10635     case BINOP_REM:
10636     case BINOP_MOD:
10637       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10638       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10639       if (noside == EVAL_SKIP)
10640         goto nosideret;
10641       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10642         {
10643           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10644           return value_zero (value_type (arg1), not_lval);
10645         }
10646       else
10647         {
10648           type = builtin_type (exp->gdbarch)->builtin_double;
10649           if (ada_is_fixed_point_type (value_type (arg1)))
10650             arg1 = cast_from_fixed (type, arg1);
10651           if (ada_is_fixed_point_type (value_type (arg2)))
10652             arg2 = cast_from_fixed (type, arg2);
10653           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10654           return ada_value_binop (arg1, arg2, op);
10655         }
10656 
10657     case BINOP_EQUAL:
10658     case BINOP_NOTEQUAL:
10659       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10660       arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10661       if (noside == EVAL_SKIP)
10662         goto nosideret;
10663       if (noside == EVAL_AVOID_SIDE_EFFECTS)
10664         tem = 0;
10665       else
10666 	{
10667 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10668 	  tem = ada_value_equal (arg1, arg2);
10669 	}
10670       if (op == BINOP_NOTEQUAL)
10671         tem = !tem;
10672       type = language_bool_type (exp->language_defn, exp->gdbarch);
10673       return value_from_longest (type, (LONGEST) tem);
10674 
10675     case UNOP_NEG:
10676       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10677       if (noside == EVAL_SKIP)
10678         goto nosideret;
10679       else if (ada_is_fixed_point_type (value_type (arg1)))
10680         return value_cast (value_type (arg1), value_neg (arg1));
10681       else
10682 	{
10683 	  unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10684 	  return value_neg (arg1);
10685 	}
10686 
10687     case BINOP_LOGICAL_AND:
10688     case BINOP_LOGICAL_OR:
10689     case UNOP_LOGICAL_NOT:
10690       {
10691         struct value *val;
10692 
10693         *pos -= 1;
10694         val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10695 	type = language_bool_type (exp->language_defn, exp->gdbarch);
10696         return value_cast (type, val);
10697       }
10698 
10699     case BINOP_BITWISE_AND:
10700     case BINOP_BITWISE_IOR:
10701     case BINOP_BITWISE_XOR:
10702       {
10703         struct value *val;
10704 
10705         arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10706         *pos = pc;
10707         val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10708 
10709         return value_cast (value_type (arg1), val);
10710       }
10711 
10712     case OP_VAR_VALUE:
10713       *pos -= 1;
10714 
10715       if (noside == EVAL_SKIP)
10716         {
10717           *pos += 4;
10718           goto nosideret;
10719         }
10720 
10721       if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10722         /* Only encountered when an unresolved symbol occurs in a
10723            context other than a function call, in which case, it is
10724            invalid.  */
10725         error (_("Unexpected unresolved symbol, %s, during evaluation"),
10726                SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10727 
10728       if (noside == EVAL_AVOID_SIDE_EFFECTS)
10729         {
10730           type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10731           /* Check to see if this is a tagged type.  We also need to handle
10732              the case where the type is a reference to a tagged type, but
10733              we have to be careful to exclude pointers to tagged types.
10734              The latter should be shown as usual (as a pointer), whereas
10735              a reference should mostly be transparent to the user.  */
10736           if (ada_is_tagged_type (type, 0)
10737               || (TYPE_CODE (type) == TYPE_CODE_REF
10738                   && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10739 	    {
10740 	      /* Tagged types are a little special in the fact that the real
10741 		 type is dynamic and can only be determined by inspecting the
10742 		 object's tag.  This means that we need to get the object's
10743 		 value first (EVAL_NORMAL) and then extract the actual object
10744 		 type from its tag.
10745 
10746 		 Note that we cannot skip the final step where we extract
10747 		 the object type from its tag, because the EVAL_NORMAL phase
10748 		 results in dynamic components being resolved into fixed ones.
10749 		 This can cause problems when trying to print the type
10750 		 description of tagged types whose parent has a dynamic size:
10751 		 We use the type name of the "_parent" component in order
10752 		 to print the name of the ancestor type in the type description.
10753 		 If that component had a dynamic size, the resolution into
10754 		 a fixed type would result in the loss of that type name,
10755 		 thus preventing us from printing the name of the ancestor
10756 		 type in the type description.  */
10757 	      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10758 
10759 	      if (TYPE_CODE (type) != TYPE_CODE_REF)
10760 		{
10761 		  struct type *actual_type;
10762 
10763 		  actual_type = type_from_tag (ada_value_tag (arg1));
10764 		  if (actual_type == NULL)
10765 		    /* If, for some reason, we were unable to determine
10766 		       the actual type from the tag, then use the static
10767 		       approximation that we just computed as a fallback.
10768 		       This can happen if the debugging information is
10769 		       incomplete, for instance.  */
10770 		    actual_type = type;
10771 		  return value_zero (actual_type, not_lval);
10772 		}
10773 	      else
10774 		{
10775 		  /* In the case of a ref, ada_coerce_ref takes care
10776 		     of determining the actual type.  But the evaluation
10777 		     should return a ref as it should be valid to ask
10778 		     for its address; so rebuild a ref after coerce.  */
10779 		  arg1 = ada_coerce_ref (arg1);
10780 		  return value_ref (arg1);
10781 		}
10782 	    }
10783 
10784 	  /* Records and unions for which GNAT encodings have been
10785 	     generated need to be statically fixed as well.
10786 	     Otherwise, non-static fixing produces a type where
10787 	     all dynamic properties are removed, which prevents "ptype"
10788 	     from being able to completely describe the type.
10789 	     For instance, a case statement in a variant record would be
10790 	     replaced by the relevant components based on the actual
10791 	     value of the discriminants.  */
10792 	  if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10793 	       && dynamic_template_type (type) != NULL)
10794 	      || (TYPE_CODE (type) == TYPE_CODE_UNION
10795 		  && ada_find_parallel_type (type, "___XVU") != NULL))
10796 	    {
10797 	      *pos += 4;
10798 	      return value_zero (to_static_fixed_type (type), not_lval);
10799 	    }
10800         }
10801 
10802       arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10803       return ada_to_fixed_value (arg1);
10804 
10805     case OP_FUNCALL:
10806       (*pos) += 2;
10807 
10808       /* Allocate arg vector, including space for the function to be
10809          called in argvec[0] and a terminating NULL.  */
10810       nargs = longest_to_int (exp->elts[pc + 1].longconst);
10811       argvec = XALLOCAVEC (struct value *, nargs + 2);
10812 
10813       if (exp->elts[*pos].opcode == OP_VAR_VALUE
10814           && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10815         error (_("Unexpected unresolved symbol, %s, during evaluation"),
10816                SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10817       else
10818         {
10819           for (tem = 0; tem <= nargs; tem += 1)
10820             argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10821           argvec[tem] = 0;
10822 
10823           if (noside == EVAL_SKIP)
10824             goto nosideret;
10825         }
10826 
10827       if (ada_is_constrained_packed_array_type
10828 	  (desc_base_type (value_type (argvec[0]))))
10829         argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10830       else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10831                && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10832         /* This is a packed array that has already been fixed, and
10833 	   therefore already coerced to a simple array.  Nothing further
10834 	   to do.  */
10835         ;
10836       else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10837 	{
10838 	  /* Make sure we dereference references so that all the code below
10839 	     feels like it's really handling the referenced value.  Wrapping
10840 	     types (for alignment) may be there, so make sure we strip them as
10841 	     well.  */
10842 	  argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10843 	}
10844       else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10845 	       && VALUE_LVAL (argvec[0]) == lval_memory)
10846 	argvec[0] = value_addr (argvec[0]);
10847 
10848       type = ada_check_typedef (value_type (argvec[0]));
10849 
10850       /* Ada allows us to implicitly dereference arrays when subscripting
10851 	 them.  So, if this is an array typedef (encoding use for array
10852 	 access types encoded as fat pointers), strip it now.  */
10853       if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10854 	type = ada_typedef_target_type (type);
10855 
10856       if (TYPE_CODE (type) == TYPE_CODE_PTR)
10857         {
10858           switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10859             {
10860             case TYPE_CODE_FUNC:
10861               type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10862               break;
10863             case TYPE_CODE_ARRAY:
10864               break;
10865             case TYPE_CODE_STRUCT:
10866               if (noside != EVAL_AVOID_SIDE_EFFECTS)
10867                 argvec[0] = ada_value_ind (argvec[0]);
10868               type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10869               break;
10870             default:
10871               error (_("cannot subscript or call something of type `%s'"),
10872                      ada_type_name (value_type (argvec[0])));
10873               break;
10874             }
10875         }
10876 
10877       switch (TYPE_CODE (type))
10878         {
10879         case TYPE_CODE_FUNC:
10880           if (noside == EVAL_AVOID_SIDE_EFFECTS)
10881 	    {
10882 	      struct type *rtype = TYPE_TARGET_TYPE (type);
10883 
10884 	      if (TYPE_GNU_IFUNC (type))
10885 		return allocate_value (TYPE_TARGET_TYPE (rtype));
10886 	      return allocate_value (rtype);
10887 	    }
10888           return call_function_by_hand (argvec[0], nargs, argvec + 1);
10889 	case TYPE_CODE_INTERNAL_FUNCTION:
10890 	  if (noside == EVAL_AVOID_SIDE_EFFECTS)
10891 	    /* We don't know anything about what the internal
10892 	       function might return, but we have to return
10893 	       something.  */
10894 	    return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10895 			       not_lval);
10896 	  else
10897 	    return call_internal_function (exp->gdbarch, exp->language_defn,
10898 					   argvec[0], nargs, argvec + 1);
10899 
10900         case TYPE_CODE_STRUCT:
10901           {
10902             int arity;
10903 
10904             arity = ada_array_arity (type);
10905             type = ada_array_element_type (type, nargs);
10906             if (type == NULL)
10907               error (_("cannot subscript or call a record"));
10908             if (arity != nargs)
10909               error (_("wrong number of subscripts; expecting %d"), arity);
10910             if (noside == EVAL_AVOID_SIDE_EFFECTS)
10911               return value_zero (ada_aligned_type (type), lval_memory);
10912             return
10913               unwrap_value (ada_value_subscript
10914                             (argvec[0], nargs, argvec + 1));
10915           }
10916         case TYPE_CODE_ARRAY:
10917           if (noside == EVAL_AVOID_SIDE_EFFECTS)
10918             {
10919               type = ada_array_element_type (type, nargs);
10920               if (type == NULL)
10921                 error (_("element type of array unknown"));
10922               else
10923                 return value_zero (ada_aligned_type (type), lval_memory);
10924             }
10925           return
10926             unwrap_value (ada_value_subscript
10927                           (ada_coerce_to_simple_array (argvec[0]),
10928                            nargs, argvec + 1));
10929         case TYPE_CODE_PTR:     /* Pointer to array */
10930           if (noside == EVAL_AVOID_SIDE_EFFECTS)
10931             {
10932 	      type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10933               type = ada_array_element_type (type, nargs);
10934               if (type == NULL)
10935                 error (_("element type of array unknown"));
10936               else
10937                 return value_zero (ada_aligned_type (type), lval_memory);
10938             }
10939           return
10940             unwrap_value (ada_value_ptr_subscript (argvec[0],
10941 						   nargs, argvec + 1));
10942 
10943         default:
10944           error (_("Attempt to index or call something other than an "
10945 		   "array or function"));
10946         }
10947 
10948     case TERNOP_SLICE:
10949       {
10950         struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10951         struct value *low_bound_val =
10952           evaluate_subexp (NULL_TYPE, exp, pos, noside);
10953         struct value *high_bound_val =
10954           evaluate_subexp (NULL_TYPE, exp, pos, noside);
10955         LONGEST low_bound;
10956         LONGEST high_bound;
10957 
10958         low_bound_val = coerce_ref (low_bound_val);
10959         high_bound_val = coerce_ref (high_bound_val);
10960         low_bound = value_as_long (low_bound_val);
10961         high_bound = value_as_long (high_bound_val);
10962 
10963         if (noside == EVAL_SKIP)
10964           goto nosideret;
10965 
10966         /* If this is a reference to an aligner type, then remove all
10967            the aligners.  */
10968         if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10969             && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10970           TYPE_TARGET_TYPE (value_type (array)) =
10971             ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10972 
10973         if (ada_is_constrained_packed_array_type (value_type (array)))
10974           error (_("cannot slice a packed array"));
10975 
10976         /* If this is a reference to an array or an array lvalue,
10977            convert to a pointer.  */
10978         if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10979             || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10980                 && VALUE_LVAL (array) == lval_memory))
10981           array = value_addr (array);
10982 
10983         if (noside == EVAL_AVOID_SIDE_EFFECTS
10984             && ada_is_array_descriptor_type (ada_check_typedef
10985                                              (value_type (array))))
10986           return empty_array (ada_type_of_array (array, 0), low_bound);
10987 
10988         array = ada_coerce_to_simple_array_ptr (array);
10989 
10990         /* If we have more than one level of pointer indirection,
10991            dereference the value until we get only one level.  */
10992         while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10993                && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10994                      == TYPE_CODE_PTR))
10995           array = value_ind (array);
10996 
10997         /* Make sure we really do have an array type before going further,
10998            to avoid a SEGV when trying to get the index type or the target
10999            type later down the road if the debug info generated by
11000            the compiler is incorrect or incomplete.  */
11001         if (!ada_is_simple_array_type (value_type (array)))
11002           error (_("cannot take slice of non-array"));
11003 
11004         if (TYPE_CODE (ada_check_typedef (value_type (array)))
11005             == TYPE_CODE_PTR)
11006           {
11007             struct type *type0 = ada_check_typedef (value_type (array));
11008 
11009             if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11010               return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11011             else
11012               {
11013                 struct type *arr_type0 =
11014                   to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11015 
11016                 return ada_value_slice_from_ptr (array, arr_type0,
11017                                                  longest_to_int (low_bound),
11018                                                  longest_to_int (high_bound));
11019               }
11020           }
11021         else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11022           return array;
11023         else if (high_bound < low_bound)
11024           return empty_array (value_type (array), low_bound);
11025         else
11026           return ada_value_slice (array, longest_to_int (low_bound),
11027 				  longest_to_int (high_bound));
11028       }
11029 
11030     case UNOP_IN_RANGE:
11031       (*pos) += 2;
11032       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11033       type = check_typedef (exp->elts[pc + 1].type);
11034 
11035       if (noside == EVAL_SKIP)
11036         goto nosideret;
11037 
11038       switch (TYPE_CODE (type))
11039         {
11040         default:
11041           lim_warning (_("Membership test incompletely implemented; "
11042 			 "always returns true"));
11043 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
11044 	  return value_from_longest (type, (LONGEST) 1);
11045 
11046         case TYPE_CODE_RANGE:
11047 	  arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11048 	  arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11049 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11050 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11051 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
11052 	  return
11053 	    value_from_longest (type,
11054                                 (value_less (arg1, arg3)
11055                                  || value_equal (arg1, arg3))
11056                                 && (value_less (arg2, arg1)
11057                                     || value_equal (arg2, arg1)));
11058         }
11059 
11060     case BINOP_IN_BOUNDS:
11061       (*pos) += 2;
11062       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11063       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11064 
11065       if (noside == EVAL_SKIP)
11066         goto nosideret;
11067 
11068       if (noside == EVAL_AVOID_SIDE_EFFECTS)
11069 	{
11070 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
11071 	  return value_zero (type, not_lval);
11072 	}
11073 
11074       tem = longest_to_int (exp->elts[pc + 1].longconst);
11075 
11076       type = ada_index_type (value_type (arg2), tem, "range");
11077       if (!type)
11078 	type = value_type (arg1);
11079 
11080       arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11081       arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11082 
11083       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11084       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11085       type = language_bool_type (exp->language_defn, exp->gdbarch);
11086       return
11087         value_from_longest (type,
11088                             (value_less (arg1, arg3)
11089                              || value_equal (arg1, arg3))
11090                             && (value_less (arg2, arg1)
11091                                 || value_equal (arg2, arg1)));
11092 
11093     case TERNOP_IN_RANGE:
11094       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11095       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11096       arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11097 
11098       if (noside == EVAL_SKIP)
11099         goto nosideret;
11100 
11101       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11102       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11103       type = language_bool_type (exp->language_defn, exp->gdbarch);
11104       return
11105         value_from_longest (type,
11106                             (value_less (arg1, arg3)
11107                              || value_equal (arg1, arg3))
11108                             && (value_less (arg2, arg1)
11109                                 || value_equal (arg2, arg1)));
11110 
11111     case OP_ATR_FIRST:
11112     case OP_ATR_LAST:
11113     case OP_ATR_LENGTH:
11114       {
11115         struct type *type_arg;
11116 
11117         if (exp->elts[*pos].opcode == OP_TYPE)
11118           {
11119             evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11120             arg1 = NULL;
11121             type_arg = check_typedef (exp->elts[pc + 2].type);
11122           }
11123         else
11124           {
11125             arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11126             type_arg = NULL;
11127           }
11128 
11129         if (exp->elts[*pos].opcode != OP_LONG)
11130           error (_("Invalid operand to '%s"), ada_attribute_name (op));
11131         tem = longest_to_int (exp->elts[*pos + 2].longconst);
11132         *pos += 4;
11133 
11134         if (noside == EVAL_SKIP)
11135           goto nosideret;
11136 
11137         if (type_arg == NULL)
11138           {
11139             arg1 = ada_coerce_ref (arg1);
11140 
11141             if (ada_is_constrained_packed_array_type (value_type (arg1)))
11142               arg1 = ada_coerce_to_simple_array (arg1);
11143 
11144             if (op == OP_ATR_LENGTH)
11145 	      type = builtin_type (exp->gdbarch)->builtin_int;
11146 	    else
11147 	      {
11148 		type = ada_index_type (value_type (arg1), tem,
11149 				       ada_attribute_name (op));
11150 		if (type == NULL)
11151 		  type = builtin_type (exp->gdbarch)->builtin_int;
11152 	      }
11153 
11154             if (noside == EVAL_AVOID_SIDE_EFFECTS)
11155               return allocate_value (type);
11156 
11157             switch (op)
11158               {
11159               default:          /* Should never happen.  */
11160                 error (_("unexpected attribute encountered"));
11161               case OP_ATR_FIRST:
11162                 return value_from_longest
11163 			(type, ada_array_bound (arg1, tem, 0));
11164               case OP_ATR_LAST:
11165                 return value_from_longest
11166 			(type, ada_array_bound (arg1, tem, 1));
11167               case OP_ATR_LENGTH:
11168                 return value_from_longest
11169 			(type, ada_array_length (arg1, tem));
11170               }
11171           }
11172         else if (discrete_type_p (type_arg))
11173           {
11174             struct type *range_type;
11175             const char *name = ada_type_name (type_arg);
11176 
11177             range_type = NULL;
11178             if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11179               range_type = to_fixed_range_type (type_arg, NULL);
11180             if (range_type == NULL)
11181               range_type = type_arg;
11182             switch (op)
11183               {
11184               default:
11185                 error (_("unexpected attribute encountered"));
11186               case OP_ATR_FIRST:
11187 		return value_from_longest
11188 		  (range_type, ada_discrete_type_low_bound (range_type));
11189               case OP_ATR_LAST:
11190                 return value_from_longest
11191 		  (range_type, ada_discrete_type_high_bound (range_type));
11192               case OP_ATR_LENGTH:
11193                 error (_("the 'length attribute applies only to array types"));
11194               }
11195           }
11196         else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11197           error (_("unimplemented type attribute"));
11198         else
11199           {
11200             LONGEST low, high;
11201 
11202             if (ada_is_constrained_packed_array_type (type_arg))
11203               type_arg = decode_constrained_packed_array_type (type_arg);
11204 
11205 	    if (op == OP_ATR_LENGTH)
11206 	      type = builtin_type (exp->gdbarch)->builtin_int;
11207 	    else
11208 	      {
11209 		type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11210 		if (type == NULL)
11211 		  type = builtin_type (exp->gdbarch)->builtin_int;
11212 	      }
11213 
11214             if (noside == EVAL_AVOID_SIDE_EFFECTS)
11215               return allocate_value (type);
11216 
11217             switch (op)
11218               {
11219               default:
11220                 error (_("unexpected attribute encountered"));
11221               case OP_ATR_FIRST:
11222                 low = ada_array_bound_from_type (type_arg, tem, 0);
11223                 return value_from_longest (type, low);
11224               case OP_ATR_LAST:
11225                 high = ada_array_bound_from_type (type_arg, tem, 1);
11226                 return value_from_longest (type, high);
11227               case OP_ATR_LENGTH:
11228                 low = ada_array_bound_from_type (type_arg, tem, 0);
11229                 high = ada_array_bound_from_type (type_arg, tem, 1);
11230                 return value_from_longest (type, high - low + 1);
11231               }
11232           }
11233       }
11234 
11235     case OP_ATR_TAG:
11236       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11237       if (noside == EVAL_SKIP)
11238         goto nosideret;
11239 
11240       if (noside == EVAL_AVOID_SIDE_EFFECTS)
11241         return value_zero (ada_tag_type (arg1), not_lval);
11242 
11243       return ada_value_tag (arg1);
11244 
11245     case OP_ATR_MIN:
11246     case OP_ATR_MAX:
11247       evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11248       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11249       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11250       if (noside == EVAL_SKIP)
11251         goto nosideret;
11252       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11253         return value_zero (value_type (arg1), not_lval);
11254       else
11255 	{
11256 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11257 	  return value_binop (arg1, arg2,
11258 			      op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11259 	}
11260 
11261     case OP_ATR_MODULUS:
11262       {
11263         struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11264 
11265         evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11266         if (noside == EVAL_SKIP)
11267           goto nosideret;
11268 
11269         if (!ada_is_modular_type (type_arg))
11270           error (_("'modulus must be applied to modular type"));
11271 
11272         return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11273                                    ada_modulus (type_arg));
11274       }
11275 
11276 
11277     case OP_ATR_POS:
11278       evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11279       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11280       if (noside == EVAL_SKIP)
11281         goto nosideret;
11282       type = builtin_type (exp->gdbarch)->builtin_int;
11283       if (noside == EVAL_AVOID_SIDE_EFFECTS)
11284 	return value_zero (type, not_lval);
11285       else
11286 	return value_pos_atr (type, arg1);
11287 
11288     case OP_ATR_SIZE:
11289       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11290       type = value_type (arg1);
11291 
11292       /* If the argument is a reference, then dereference its type, since
11293          the user is really asking for the size of the actual object,
11294          not the size of the pointer.  */
11295       if (TYPE_CODE (type) == TYPE_CODE_REF)
11296         type = TYPE_TARGET_TYPE (type);
11297 
11298       if (noside == EVAL_SKIP)
11299         goto nosideret;
11300       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11301         return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11302       else
11303         return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11304                                    TARGET_CHAR_BIT * TYPE_LENGTH (type));
11305 
11306     case OP_ATR_VAL:
11307       evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11308       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11309       type = exp->elts[pc + 2].type;
11310       if (noside == EVAL_SKIP)
11311         goto nosideret;
11312       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11313         return value_zero (type, not_lval);
11314       else
11315         return value_val_atr (type, arg1);
11316 
11317     case BINOP_EXP:
11318       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11319       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11320       if (noside == EVAL_SKIP)
11321         goto nosideret;
11322       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11323         return value_zero (value_type (arg1), not_lval);
11324       else
11325 	{
11326 	  /* For integer exponentiation operations,
11327 	     only promote the first argument.  */
11328 	  if (is_integral_type (value_type (arg2)))
11329 	    unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11330 	  else
11331 	    binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11332 
11333 	  return value_binop (arg1, arg2, op);
11334 	}
11335 
11336     case UNOP_PLUS:
11337       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11338       if (noside == EVAL_SKIP)
11339         goto nosideret;
11340       else
11341         return arg1;
11342 
11343     case UNOP_ABS:
11344       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11345       if (noside == EVAL_SKIP)
11346         goto nosideret;
11347       unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11348       if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11349         return value_neg (arg1);
11350       else
11351         return arg1;
11352 
11353     case UNOP_IND:
11354       preeval_pos = *pos;
11355       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11356       if (noside == EVAL_SKIP)
11357         goto nosideret;
11358       type = ada_check_typedef (value_type (arg1));
11359       if (noside == EVAL_AVOID_SIDE_EFFECTS)
11360         {
11361           if (ada_is_array_descriptor_type (type))
11362             /* GDB allows dereferencing GNAT array descriptors.  */
11363             {
11364               struct type *arrType = ada_type_of_array (arg1, 0);
11365 
11366               if (arrType == NULL)
11367                 error (_("Attempt to dereference null array pointer."));
11368               return value_at_lazy (arrType, 0);
11369             }
11370           else if (TYPE_CODE (type) == TYPE_CODE_PTR
11371                    || TYPE_CODE (type) == TYPE_CODE_REF
11372                    /* In C you can dereference an array to get the 1st elt.  */
11373                    || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11374             {
11375             /* As mentioned in the OP_VAR_VALUE case, tagged types can
11376                only be determined by inspecting the object's tag.
11377                This means that we need to evaluate completely the
11378                expression in order to get its type.  */
11379 
11380 	      if ((TYPE_CODE (type) == TYPE_CODE_REF
11381 		   || TYPE_CODE (type) == TYPE_CODE_PTR)
11382 		  && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11383 		{
11384 		  arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11385 					  EVAL_NORMAL);
11386 		  type = value_type (ada_value_ind (arg1));
11387 		}
11388 	      else
11389 		{
11390 		  type = to_static_fixed_type
11391 		    (ada_aligned_type
11392 		     (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11393 		}
11394 	      ada_ensure_varsize_limit (type);
11395               return value_zero (type, lval_memory);
11396             }
11397           else if (TYPE_CODE (type) == TYPE_CODE_INT)
11398 	    {
11399 	      /* GDB allows dereferencing an int.  */
11400 	      if (expect_type == NULL)
11401 		return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11402 				   lval_memory);
11403 	      else
11404 		{
11405 		  expect_type =
11406 		    to_static_fixed_type (ada_aligned_type (expect_type));
11407 		  return value_zero (expect_type, lval_memory);
11408 		}
11409 	    }
11410           else
11411             error (_("Attempt to take contents of a non-pointer value."));
11412         }
11413       arg1 = ada_coerce_ref (arg1);     /* FIXME: What is this for??  */
11414       type = ada_check_typedef (value_type (arg1));
11415 
11416       if (TYPE_CODE (type) == TYPE_CODE_INT)
11417           /* GDB allows dereferencing an int.  If we were given
11418              the expect_type, then use that as the target type.
11419              Otherwise, assume that the target type is an int.  */
11420         {
11421           if (expect_type != NULL)
11422 	    return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11423 					      arg1));
11424 	  else
11425 	    return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11426 				  (CORE_ADDR) value_as_address (arg1));
11427         }
11428 
11429       if (ada_is_array_descriptor_type (type))
11430         /* GDB allows dereferencing GNAT array descriptors.  */
11431         return ada_coerce_to_simple_array (arg1);
11432       else
11433         return ada_value_ind (arg1);
11434 
11435     case STRUCTOP_STRUCT:
11436       tem = longest_to_int (exp->elts[pc + 1].longconst);
11437       (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11438       preeval_pos = *pos;
11439       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11440       if (noside == EVAL_SKIP)
11441         goto nosideret;
11442       if (noside == EVAL_AVOID_SIDE_EFFECTS)
11443         {
11444           struct type *type1 = value_type (arg1);
11445 
11446           if (ada_is_tagged_type (type1, 1))
11447             {
11448               type = ada_lookup_struct_elt_type (type1,
11449                                                  &exp->elts[pc + 2].string,
11450                                                  1, 1, NULL);
11451 
11452 	      /* If the field is not found, check if it exists in the
11453 		 extension of this object's type. This means that we
11454 		 need to evaluate completely the expression.  */
11455 
11456               if (type == NULL)
11457 		{
11458 		  arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11459 					  EVAL_NORMAL);
11460 		  arg1 = ada_value_struct_elt (arg1,
11461 					       &exp->elts[pc + 2].string,
11462 					       0);
11463 		  arg1 = unwrap_value (arg1);
11464 		  type = value_type (ada_to_fixed_value (arg1));
11465 		}
11466             }
11467           else
11468             type =
11469               ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11470                                           0, NULL);
11471 
11472           return value_zero (ada_aligned_type (type), lval_memory);
11473         }
11474       else
11475 	{
11476 	  arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11477 	  arg1 = unwrap_value (arg1);
11478 	  return ada_to_fixed_value (arg1);
11479 	}
11480 
11481     case OP_TYPE:
11482       /* The value is not supposed to be used.  This is here to make it
11483          easier to accommodate expressions that contain types.  */
11484       (*pos) += 2;
11485       if (noside == EVAL_SKIP)
11486         goto nosideret;
11487       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11488         return allocate_value (exp->elts[pc + 1].type);
11489       else
11490         error (_("Attempt to use a type name as an expression"));
11491 
11492     case OP_AGGREGATE:
11493     case OP_CHOICES:
11494     case OP_OTHERS:
11495     case OP_DISCRETE_RANGE:
11496     case OP_POSITIONAL:
11497     case OP_NAME:
11498       if (noside == EVAL_NORMAL)
11499 	switch (op)
11500 	  {
11501 	  case OP_NAME:
11502 	    error (_("Undefined name, ambiguous name, or renaming used in "
11503 		     "component association: %s."), &exp->elts[pc+2].string);
11504 	  case OP_AGGREGATE:
11505 	    error (_("Aggregates only allowed on the right of an assignment"));
11506 	  default:
11507 	    internal_error (__FILE__, __LINE__,
11508 			    _("aggregate apparently mangled"));
11509 	  }
11510 
11511       ada_forward_operator_length (exp, pc, &oplen, &nargs);
11512       *pos += oplen - 1;
11513       for (tem = 0; tem < nargs; tem += 1)
11514 	ada_evaluate_subexp (NULL, exp, pos, noside);
11515       goto nosideret;
11516     }
11517 
11518 nosideret:
11519   return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11520 }
11521 
11522 
11523                                 /* Fixed point */
11524 
11525 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11526    type name that encodes the 'small and 'delta information.
11527    Otherwise, return NULL.  */
11528 
11529 static const char *
11530 fixed_type_info (struct type *type)
11531 {
11532   const char *name = ada_type_name (type);
11533   enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11534 
11535   if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11536     {
11537       const char *tail = strstr (name, "___XF_");
11538 
11539       if (tail == NULL)
11540         return NULL;
11541       else
11542         return tail + 5;
11543     }
11544   else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11545     return fixed_type_info (TYPE_TARGET_TYPE (type));
11546   else
11547     return NULL;
11548 }
11549 
11550 /* Returns non-zero iff TYPE represents an Ada fixed-point type.  */
11551 
11552 int
11553 ada_is_fixed_point_type (struct type *type)
11554 {
11555   return fixed_type_info (type) != NULL;
11556 }
11557 
11558 /* Return non-zero iff TYPE represents a System.Address type.  */
11559 
11560 int
11561 ada_is_system_address_type (struct type *type)
11562 {
11563   return (TYPE_NAME (type)
11564           && strcmp (TYPE_NAME (type), "system__address") == 0);
11565 }
11566 
11567 /* Assuming that TYPE is the representation of an Ada fixed-point
11568    type, return its delta, or -1 if the type is malformed and the
11569    delta cannot be determined.  */
11570 
11571 DOUBLEST
11572 ada_delta (struct type *type)
11573 {
11574   const char *encoding = fixed_type_info (type);
11575   DOUBLEST num, den;
11576 
11577   /* Strictly speaking, num and den are encoded as integer.  However,
11578      they may not fit into a long, and they will have to be converted
11579      to DOUBLEST anyway.  So scan them as DOUBLEST.  */
11580   if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11581 	      &num, &den) < 2)
11582     return -1.0;
11583   else
11584     return num / den;
11585 }
11586 
11587 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11588    factor ('SMALL value) associated with the type.  */
11589 
11590 static DOUBLEST
11591 scaling_factor (struct type *type)
11592 {
11593   const char *encoding = fixed_type_info (type);
11594   DOUBLEST num0, den0, num1, den1;
11595   int n;
11596 
11597   /* Strictly speaking, num's and den's are encoded as integer.  However,
11598      they may not fit into a long, and they will have to be converted
11599      to DOUBLEST anyway.  So scan them as DOUBLEST.  */
11600   n = sscanf (encoding,
11601 	      "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11602 	      "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11603 	      &num0, &den0, &num1, &den1);
11604 
11605   if (n < 2)
11606     return 1.0;
11607   else if (n == 4)
11608     return num1 / den1;
11609   else
11610     return num0 / den0;
11611 }
11612 
11613 
11614 /* Assuming that X is the representation of a value of fixed-point
11615    type TYPE, return its floating-point equivalent.  */
11616 
11617 DOUBLEST
11618 ada_fixed_to_float (struct type *type, LONGEST x)
11619 {
11620   return (DOUBLEST) x *scaling_factor (type);
11621 }
11622 
11623 /* The representation of a fixed-point value of type TYPE
11624    corresponding to the value X.  */
11625 
11626 LONGEST
11627 ada_float_to_fixed (struct type *type, DOUBLEST x)
11628 {
11629   return (LONGEST) (x / scaling_factor (type) + 0.5);
11630 }
11631 
11632 
11633 
11634                                 /* Range types */
11635 
11636 /* Scan STR beginning at position K for a discriminant name, and
11637    return the value of that discriminant field of DVAL in *PX.  If
11638    PNEW_K is not null, put the position of the character beyond the
11639    name scanned in *PNEW_K.  Return 1 if successful; return 0 and do
11640    not alter *PX and *PNEW_K if unsuccessful.  */
11641 
11642 static int
11643 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11644                     int *pnew_k)
11645 {
11646   static char *bound_buffer = NULL;
11647   static size_t bound_buffer_len = 0;
11648   const char *pstart, *pend, *bound;
11649   struct value *bound_val;
11650 
11651   if (dval == NULL || str == NULL || str[k] == '\0')
11652     return 0;
11653 
11654   pstart = str + k;
11655   pend = strstr (pstart, "__");
11656   if (pend == NULL)
11657     {
11658       bound = pstart;
11659       k += strlen (bound);
11660     }
11661   else
11662     {
11663       int len = pend - pstart;
11664 
11665       /* Strip __ and beyond.  */
11666       GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11667       strncpy (bound_buffer, pstart, len);
11668       bound_buffer[len] = '\0';
11669 
11670       bound = bound_buffer;
11671       k = pend - str;
11672     }
11673 
11674   bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11675   if (bound_val == NULL)
11676     return 0;
11677 
11678   *px = value_as_long (bound_val);
11679   if (pnew_k != NULL)
11680     *pnew_k = k;
11681   return 1;
11682 }
11683 
11684 /* Value of variable named NAME in the current environment.  If
11685    no such variable found, then if ERR_MSG is null, returns 0, and
11686    otherwise causes an error with message ERR_MSG.  */
11687 
11688 static struct value *
11689 get_var_value (char *name, char *err_msg)
11690 {
11691   struct block_symbol *syms;
11692   int nsyms;
11693 
11694   nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11695                                   &syms);
11696 
11697   if (nsyms != 1)
11698     {
11699       if (err_msg == NULL)
11700         return 0;
11701       else
11702         error (("%s"), err_msg);
11703     }
11704 
11705   return value_of_variable (syms[0].symbol, syms[0].block);
11706 }
11707 
11708 /* Value of integer variable named NAME in the current environment.  If
11709    no such variable found, returns 0, and sets *FLAG to 0.  If
11710    successful, sets *FLAG to 1.  */
11711 
11712 LONGEST
11713 get_int_var_value (char *name, int *flag)
11714 {
11715   struct value *var_val = get_var_value (name, 0);
11716 
11717   if (var_val == 0)
11718     {
11719       if (flag != NULL)
11720         *flag = 0;
11721       return 0;
11722     }
11723   else
11724     {
11725       if (flag != NULL)
11726         *flag = 1;
11727       return value_as_long (var_val);
11728     }
11729 }
11730 
11731 
11732 /* Return a range type whose base type is that of the range type named
11733    NAME in the current environment, and whose bounds are calculated
11734    from NAME according to the GNAT range encoding conventions.
11735    Extract discriminant values, if needed, from DVAL.  ORIG_TYPE is the
11736    corresponding range type from debug information; fall back to using it
11737    if symbol lookup fails.  If a new type must be created, allocate it
11738    like ORIG_TYPE was.  The bounds information, in general, is encoded
11739    in NAME, the base type given in the named range type.  */
11740 
11741 static struct type *
11742 to_fixed_range_type (struct type *raw_type, struct value *dval)
11743 {
11744   const char *name;
11745   struct type *base_type;
11746   const char *subtype_info;
11747 
11748   gdb_assert (raw_type != NULL);
11749   gdb_assert (TYPE_NAME (raw_type) != NULL);
11750 
11751   if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11752     base_type = TYPE_TARGET_TYPE (raw_type);
11753   else
11754     base_type = raw_type;
11755 
11756   name = TYPE_NAME (raw_type);
11757   subtype_info = strstr (name, "___XD");
11758   if (subtype_info == NULL)
11759     {
11760       LONGEST L = ada_discrete_type_low_bound (raw_type);
11761       LONGEST U = ada_discrete_type_high_bound (raw_type);
11762 
11763       if (L < INT_MIN || U > INT_MAX)
11764 	return raw_type;
11765       else
11766 	return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11767 					 L, U);
11768     }
11769   else
11770     {
11771       static char *name_buf = NULL;
11772       static size_t name_len = 0;
11773       int prefix_len = subtype_info - name;
11774       LONGEST L, U;
11775       struct type *type;
11776       const char *bounds_str;
11777       int n;
11778 
11779       GROW_VECT (name_buf, name_len, prefix_len + 5);
11780       strncpy (name_buf, name, prefix_len);
11781       name_buf[prefix_len] = '\0';
11782 
11783       subtype_info += 5;
11784       bounds_str = strchr (subtype_info, '_');
11785       n = 1;
11786 
11787       if (*subtype_info == 'L')
11788         {
11789           if (!ada_scan_number (bounds_str, n, &L, &n)
11790               && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11791             return raw_type;
11792           if (bounds_str[n] == '_')
11793             n += 2;
11794           else if (bounds_str[n] == '.')     /* FIXME? SGI Workshop kludge.  */
11795             n += 1;
11796           subtype_info += 1;
11797         }
11798       else
11799         {
11800           int ok;
11801 
11802           strcpy (name_buf + prefix_len, "___L");
11803           L = get_int_var_value (name_buf, &ok);
11804           if (!ok)
11805             {
11806               lim_warning (_("Unknown lower bound, using 1."));
11807               L = 1;
11808             }
11809         }
11810 
11811       if (*subtype_info == 'U')
11812         {
11813           if (!ada_scan_number (bounds_str, n, &U, &n)
11814               && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11815             return raw_type;
11816         }
11817       else
11818         {
11819           int ok;
11820 
11821           strcpy (name_buf + prefix_len, "___U");
11822           U = get_int_var_value (name_buf, &ok);
11823           if (!ok)
11824             {
11825               lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11826               U = L;
11827             }
11828         }
11829 
11830       type = create_static_range_type (alloc_type_copy (raw_type),
11831 				       base_type, L, U);
11832       TYPE_NAME (type) = name;
11833       return type;
11834     }
11835 }
11836 
11837 /* True iff NAME is the name of a range type.  */
11838 
11839 int
11840 ada_is_range_type_name (const char *name)
11841 {
11842   return (name != NULL && strstr (name, "___XD"));
11843 }
11844 
11845 
11846                                 /* Modular types */
11847 
11848 /* True iff TYPE is an Ada modular type.  */
11849 
11850 int
11851 ada_is_modular_type (struct type *type)
11852 {
11853   struct type *subranged_type = get_base_type (type);
11854 
11855   return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11856           && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11857           && TYPE_UNSIGNED (subranged_type));
11858 }
11859 
11860 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE.  */
11861 
11862 ULONGEST
11863 ada_modulus (struct type *type)
11864 {
11865   return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11866 }
11867 
11868 
11869 /* Ada exception catchpoint support:
11870    ---------------------------------
11871 
11872    We support 3 kinds of exception catchpoints:
11873      . catchpoints on Ada exceptions
11874      . catchpoints on unhandled Ada exceptions
11875      . catchpoints on failed assertions
11876 
11877    Exceptions raised during failed assertions, or unhandled exceptions
11878    could perfectly be caught with the general catchpoint on Ada exceptions.
11879    However, we can easily differentiate these two special cases, and having
11880    the option to distinguish these two cases from the rest can be useful
11881    to zero-in on certain situations.
11882 
11883    Exception catchpoints are a specialized form of breakpoint,
11884    since they rely on inserting breakpoints inside known routines
11885    of the GNAT runtime.  The implementation therefore uses a standard
11886    breakpoint structure of the BP_BREAKPOINT type, but with its own set
11887    of breakpoint_ops.
11888 
11889    Support in the runtime for exception catchpoints have been changed
11890    a few times already, and these changes affect the implementation
11891    of these catchpoints.  In order to be able to support several
11892    variants of the runtime, we use a sniffer that will determine
11893    the runtime variant used by the program being debugged.  */
11894 
11895 /* Ada's standard exceptions.
11896 
11897    The Ada 83 standard also defined Numeric_Error.  But there so many
11898    situations where it was unclear from the Ada 83 Reference Manual
11899    (RM) whether Constraint_Error or Numeric_Error should be raised,
11900    that the ARG (Ada Rapporteur Group) eventually issued a Binding
11901    Interpretation saying that anytime the RM says that Numeric_Error
11902    should be raised, the implementation may raise Constraint_Error.
11903    Ada 95 went one step further and pretty much removed Numeric_Error
11904    from the list of standard exceptions (it made it a renaming of
11905    Constraint_Error, to help preserve compatibility when compiling
11906    an Ada83 compiler). As such, we do not include Numeric_Error from
11907    this list of standard exceptions.  */
11908 
11909 static char *standard_exc[] = {
11910   "constraint_error",
11911   "program_error",
11912   "storage_error",
11913   "tasking_error"
11914 };
11915 
11916 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11917 
11918 /* A structure that describes how to support exception catchpoints
11919    for a given executable.  */
11920 
11921 struct exception_support_info
11922 {
11923    /* The name of the symbol to break on in order to insert
11924       a catchpoint on exceptions.  */
11925    const char *catch_exception_sym;
11926 
11927    /* The name of the symbol to break on in order to insert
11928       a catchpoint on unhandled exceptions.  */
11929    const char *catch_exception_unhandled_sym;
11930 
11931    /* The name of the symbol to break on in order to insert
11932       a catchpoint on failed assertions.  */
11933    const char *catch_assert_sym;
11934 
11935    /* Assuming that the inferior just triggered an unhandled exception
11936       catchpoint, this function is responsible for returning the address
11937       in inferior memory where the name of that exception is stored.
11938       Return zero if the address could not be computed.  */
11939    ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11940 };
11941 
11942 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11943 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11944 
11945 /* The following exception support info structure describes how to
11946    implement exception catchpoints with the latest version of the
11947    Ada runtime (as of 2007-03-06).  */
11948 
11949 static const struct exception_support_info default_exception_support_info =
11950 {
11951   "__gnat_debug_raise_exception", /* catch_exception_sym */
11952   "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11953   "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11954   ada_unhandled_exception_name_addr
11955 };
11956 
11957 /* The following exception support info structure describes how to
11958    implement exception catchpoints with a slightly older version
11959    of the Ada runtime.  */
11960 
11961 static const struct exception_support_info exception_support_info_fallback =
11962 {
11963   "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11964   "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11965   "system__assertions__raise_assert_failure",  /* catch_assert_sym */
11966   ada_unhandled_exception_name_addr_from_raise
11967 };
11968 
11969 /* Return nonzero if we can detect the exception support routines
11970    described in EINFO.
11971 
11972    This function errors out if an abnormal situation is detected
11973    (for instance, if we find the exception support routines, but
11974    that support is found to be incomplete).  */
11975 
11976 static int
11977 ada_has_this_exception_support (const struct exception_support_info *einfo)
11978 {
11979   struct symbol *sym;
11980 
11981   /* The symbol we're looking up is provided by a unit in the GNAT runtime
11982      that should be compiled with debugging information.  As a result, we
11983      expect to find that symbol in the symtabs.  */
11984 
11985   sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11986   if (sym == NULL)
11987     {
11988       /* Perhaps we did not find our symbol because the Ada runtime was
11989 	 compiled without debugging info, or simply stripped of it.
11990 	 It happens on some GNU/Linux distributions for instance, where
11991 	 users have to install a separate debug package in order to get
11992 	 the runtime's debugging info.  In that situation, let the user
11993 	 know why we cannot insert an Ada exception catchpoint.
11994 
11995 	 Note: Just for the purpose of inserting our Ada exception
11996 	 catchpoint, we could rely purely on the associated minimal symbol.
11997 	 But we would be operating in degraded mode anyway, since we are
11998 	 still lacking the debugging info needed later on to extract
11999 	 the name of the exception being raised (this name is printed in
12000 	 the catchpoint message, and is also used when trying to catch
12001 	 a specific exception).  We do not handle this case for now.  */
12002       struct bound_minimal_symbol msym
12003 	= lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12004 
12005       if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12006 	error (_("Your Ada runtime appears to be missing some debugging "
12007 		 "information.\nCannot insert Ada exception catchpoint "
12008 		 "in this configuration."));
12009 
12010       return 0;
12011     }
12012 
12013   /* Make sure that the symbol we found corresponds to a function.  */
12014 
12015   if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12016     error (_("Symbol \"%s\" is not a function (class = %d)"),
12017            SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12018 
12019   return 1;
12020 }
12021 
12022 /* Inspect the Ada runtime and determine which exception info structure
12023    should be used to provide support for exception catchpoints.
12024 
12025    This function will always set the per-inferior exception_info,
12026    or raise an error.  */
12027 
12028 static void
12029 ada_exception_support_info_sniffer (void)
12030 {
12031   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12032 
12033   /* If the exception info is already known, then no need to recompute it.  */
12034   if (data->exception_info != NULL)
12035     return;
12036 
12037   /* Check the latest (default) exception support info.  */
12038   if (ada_has_this_exception_support (&default_exception_support_info))
12039     {
12040       data->exception_info = &default_exception_support_info;
12041       return;
12042     }
12043 
12044   /* Try our fallback exception suport info.  */
12045   if (ada_has_this_exception_support (&exception_support_info_fallback))
12046     {
12047       data->exception_info = &exception_support_info_fallback;
12048       return;
12049     }
12050 
12051   /* Sometimes, it is normal for us to not be able to find the routine
12052      we are looking for.  This happens when the program is linked with
12053      the shared version of the GNAT runtime, and the program has not been
12054      started yet.  Inform the user of these two possible causes if
12055      applicable.  */
12056 
12057   if (ada_update_initial_language (language_unknown) != language_ada)
12058     error (_("Unable to insert catchpoint.  Is this an Ada main program?"));
12059 
12060   /* If the symbol does not exist, then check that the program is
12061      already started, to make sure that shared libraries have been
12062      loaded.  If it is not started, this may mean that the symbol is
12063      in a shared library.  */
12064 
12065   if (ptid_get_pid (inferior_ptid) == 0)
12066     error (_("Unable to insert catchpoint. Try to start the program first."));
12067 
12068   /* At this point, we know that we are debugging an Ada program and
12069      that the inferior has been started, but we still are not able to
12070      find the run-time symbols.  That can mean that we are in
12071      configurable run time mode, or that a-except as been optimized
12072      out by the linker...  In any case, at this point it is not worth
12073      supporting this feature.  */
12074 
12075   error (_("Cannot insert Ada exception catchpoints in this configuration."));
12076 }
12077 
12078 /* True iff FRAME is very likely to be that of a function that is
12079    part of the runtime system.  This is all very heuristic, but is
12080    intended to be used as advice as to what frames are uninteresting
12081    to most users.  */
12082 
12083 static int
12084 is_known_support_routine (struct frame_info *frame)
12085 {
12086   struct symtab_and_line sal;
12087   char *func_name;
12088   enum language func_lang;
12089   int i;
12090   const char *fullname;
12091 
12092   /* If this code does not have any debugging information (no symtab),
12093      This cannot be any user code.  */
12094 
12095   find_frame_sal (frame, &sal);
12096   if (sal.symtab == NULL)
12097     return 1;
12098 
12099   /* If there is a symtab, but the associated source file cannot be
12100      located, then assume this is not user code:  Selecting a frame
12101      for which we cannot display the code would not be very helpful
12102      for the user.  This should also take care of case such as VxWorks
12103      where the kernel has some debugging info provided for a few units.  */
12104 
12105   fullname = symtab_to_fullname (sal.symtab);
12106   if (access (fullname, R_OK) != 0)
12107     return 1;
12108 
12109   /* Check the unit filename againt the Ada runtime file naming.
12110      We also check the name of the objfile against the name of some
12111      known system libraries that sometimes come with debugging info
12112      too.  */
12113 
12114   for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12115     {
12116       re_comp (known_runtime_file_name_patterns[i]);
12117       if (re_exec (lbasename (sal.symtab->filename)))
12118         return 1;
12119       if (SYMTAB_OBJFILE (sal.symtab) != NULL
12120           && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12121         return 1;
12122     }
12123 
12124   /* Check whether the function is a GNAT-generated entity.  */
12125 
12126   find_frame_funname (frame, &func_name, &func_lang, NULL);
12127   if (func_name == NULL)
12128     return 1;
12129 
12130   for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12131     {
12132       re_comp (known_auxiliary_function_name_patterns[i]);
12133       if (re_exec (func_name))
12134 	{
12135 	  xfree (func_name);
12136 	  return 1;
12137 	}
12138     }
12139 
12140   xfree (func_name);
12141   return 0;
12142 }
12143 
12144 /* Find the first frame that contains debugging information and that is not
12145    part of the Ada run-time, starting from FI and moving upward.  */
12146 
12147 void
12148 ada_find_printable_frame (struct frame_info *fi)
12149 {
12150   for (; fi != NULL; fi = get_prev_frame (fi))
12151     {
12152       if (!is_known_support_routine (fi))
12153         {
12154           select_frame (fi);
12155           break;
12156         }
12157     }
12158 
12159 }
12160 
12161 /* Assuming that the inferior just triggered an unhandled exception
12162    catchpoint, return the address in inferior memory where the name
12163    of the exception is stored.
12164 
12165    Return zero if the address could not be computed.  */
12166 
12167 static CORE_ADDR
12168 ada_unhandled_exception_name_addr (void)
12169 {
12170   return parse_and_eval_address ("e.full_name");
12171 }
12172 
12173 /* Same as ada_unhandled_exception_name_addr, except that this function
12174    should be used when the inferior uses an older version of the runtime,
12175    where the exception name needs to be extracted from a specific frame
12176    several frames up in the callstack.  */
12177 
12178 static CORE_ADDR
12179 ada_unhandled_exception_name_addr_from_raise (void)
12180 {
12181   int frame_level;
12182   struct frame_info *fi;
12183   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12184   struct cleanup *old_chain;
12185 
12186   /* To determine the name of this exception, we need to select
12187      the frame corresponding to RAISE_SYM_NAME.  This frame is
12188      at least 3 levels up, so we simply skip the first 3 frames
12189      without checking the name of their associated function.  */
12190   fi = get_current_frame ();
12191   for (frame_level = 0; frame_level < 3; frame_level += 1)
12192     if (fi != NULL)
12193       fi = get_prev_frame (fi);
12194 
12195   old_chain = make_cleanup (null_cleanup, NULL);
12196   while (fi != NULL)
12197     {
12198       char *func_name;
12199       enum language func_lang;
12200 
12201       find_frame_funname (fi, &func_name, &func_lang, NULL);
12202       if (func_name != NULL)
12203 	{
12204 	  make_cleanup (xfree, func_name);
12205 
12206           if (strcmp (func_name,
12207 		      data->exception_info->catch_exception_sym) == 0)
12208 	    break; /* We found the frame we were looking for...  */
12209 	  fi = get_prev_frame (fi);
12210 	}
12211     }
12212   do_cleanups (old_chain);
12213 
12214   if (fi == NULL)
12215     return 0;
12216 
12217   select_frame (fi);
12218   return parse_and_eval_address ("id.full_name");
12219 }
12220 
12221 /* Assuming the inferior just triggered an Ada exception catchpoint
12222    (of any type), return the address in inferior memory where the name
12223    of the exception is stored, if applicable.
12224 
12225    Assumes the selected frame is the current frame.
12226 
12227    Return zero if the address could not be computed, or if not relevant.  */
12228 
12229 static CORE_ADDR
12230 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12231                            struct breakpoint *b)
12232 {
12233   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12234 
12235   switch (ex)
12236     {
12237       case ada_catch_exception:
12238         return (parse_and_eval_address ("e.full_name"));
12239         break;
12240 
12241       case ada_catch_exception_unhandled:
12242         return data->exception_info->unhandled_exception_name_addr ();
12243         break;
12244 
12245       case ada_catch_assert:
12246         return 0;  /* Exception name is not relevant in this case.  */
12247         break;
12248 
12249       default:
12250         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12251         break;
12252     }
12253 
12254   return 0; /* Should never be reached.  */
12255 }
12256 
12257 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12258    any error that ada_exception_name_addr_1 might cause to be thrown.
12259    When an error is intercepted, a warning with the error message is printed,
12260    and zero is returned.  */
12261 
12262 static CORE_ADDR
12263 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12264                          struct breakpoint *b)
12265 {
12266   CORE_ADDR result = 0;
12267 
12268   TRY
12269     {
12270       result = ada_exception_name_addr_1 (ex, b);
12271     }
12272 
12273   CATCH (e, RETURN_MASK_ERROR)
12274     {
12275       warning (_("failed to get exception name: %s"), e.message);
12276       return 0;
12277     }
12278   END_CATCH
12279 
12280   return result;
12281 }
12282 
12283 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12284 
12285 /* Ada catchpoints.
12286 
12287    In the case of catchpoints on Ada exceptions, the catchpoint will
12288    stop the target on every exception the program throws.  When a user
12289    specifies the name of a specific exception, we translate this
12290    request into a condition expression (in text form), and then parse
12291    it into an expression stored in each of the catchpoint's locations.
12292    We then use this condition to check whether the exception that was
12293    raised is the one the user is interested in.  If not, then the
12294    target is resumed again.  We store the name of the requested
12295    exception, in order to be able to re-set the condition expression
12296    when symbols change.  */
12297 
12298 /* An instance of this type is used to represent an Ada catchpoint
12299    breakpoint location.  It includes a "struct bp_location" as a kind
12300    of base class; users downcast to "struct bp_location *" when
12301    needed.  */
12302 
12303 struct ada_catchpoint_location
12304 {
12305   /* The base class.  */
12306   struct bp_location base;
12307 
12308   /* The condition that checks whether the exception that was raised
12309      is the specific exception the user specified on catchpoint
12310      creation.  */
12311   struct expression *excep_cond_expr;
12312 };
12313 
12314 /* Implement the DTOR method in the bp_location_ops structure for all
12315    Ada exception catchpoint kinds.  */
12316 
12317 static void
12318 ada_catchpoint_location_dtor (struct bp_location *bl)
12319 {
12320   struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12321 
12322   xfree (al->excep_cond_expr);
12323 }
12324 
12325 /* The vtable to be used in Ada catchpoint locations.  */
12326 
12327 static const struct bp_location_ops ada_catchpoint_location_ops =
12328 {
12329   ada_catchpoint_location_dtor
12330 };
12331 
12332 /* An instance of this type is used to represent an Ada catchpoint.
12333    It includes a "struct breakpoint" as a kind of base class; users
12334    downcast to "struct breakpoint *" when needed.  */
12335 
12336 struct ada_catchpoint
12337 {
12338   /* The base class.  */
12339   struct breakpoint base;
12340 
12341   /* The name of the specific exception the user specified.  */
12342   char *excep_string;
12343 };
12344 
12345 /* Parse the exception condition string in the context of each of the
12346    catchpoint's locations, and store them for later evaluation.  */
12347 
12348 static void
12349 create_excep_cond_exprs (struct ada_catchpoint *c)
12350 {
12351   struct cleanup *old_chain;
12352   struct bp_location *bl;
12353   char *cond_string;
12354 
12355   /* Nothing to do if there's no specific exception to catch.  */
12356   if (c->excep_string == NULL)
12357     return;
12358 
12359   /* Same if there are no locations... */
12360   if (c->base.loc == NULL)
12361     return;
12362 
12363   /* Compute the condition expression in text form, from the specific
12364      expection we want to catch.  */
12365   cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12366   old_chain = make_cleanup (xfree, cond_string);
12367 
12368   /* Iterate over all the catchpoint's locations, and parse an
12369      expression for each.  */
12370   for (bl = c->base.loc; bl != NULL; bl = bl->next)
12371     {
12372       struct ada_catchpoint_location *ada_loc
12373 	= (struct ada_catchpoint_location *) bl;
12374       struct expression *exp = NULL;
12375 
12376       if (!bl->shlib_disabled)
12377 	{
12378 	  const char *s;
12379 
12380 	  s = cond_string;
12381 	  TRY
12382 	    {
12383 	      exp = parse_exp_1 (&s, bl->address,
12384 				 block_for_pc (bl->address), 0);
12385 	    }
12386 	  CATCH (e, RETURN_MASK_ERROR)
12387 	    {
12388 	      warning (_("failed to reevaluate internal exception condition "
12389 			 "for catchpoint %d: %s"),
12390 		       c->base.number, e.message);
12391 	      /* There is a bug in GCC on sparc-solaris when building with
12392 		 optimization which causes EXP to change unexpectedly
12393 		 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12394 		 The problem should be fixed starting with GCC 4.9.
12395 		 In the meantime, work around it by forcing EXP back
12396 		 to NULL.  */
12397 	      exp = NULL;
12398 	    }
12399 	  END_CATCH
12400 	}
12401 
12402       ada_loc->excep_cond_expr = exp;
12403     }
12404 
12405   do_cleanups (old_chain);
12406 }
12407 
12408 /* Implement the DTOR method in the breakpoint_ops structure for all
12409    exception catchpoint kinds.  */
12410 
12411 static void
12412 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12413 {
12414   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12415 
12416   xfree (c->excep_string);
12417 
12418   bkpt_breakpoint_ops.dtor (b);
12419 }
12420 
12421 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12422    structure for all exception catchpoint kinds.  */
12423 
12424 static struct bp_location *
12425 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12426 			     struct breakpoint *self)
12427 {
12428   struct ada_catchpoint_location *loc;
12429 
12430   loc = XNEW (struct ada_catchpoint_location);
12431   init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12432   loc->excep_cond_expr = NULL;
12433   return &loc->base;
12434 }
12435 
12436 /* Implement the RE_SET method in the breakpoint_ops structure for all
12437    exception catchpoint kinds.  */
12438 
12439 static void
12440 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12441 {
12442   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12443 
12444   /* Call the base class's method.  This updates the catchpoint's
12445      locations.  */
12446   bkpt_breakpoint_ops.re_set (b);
12447 
12448   /* Reparse the exception conditional expressions.  One for each
12449      location.  */
12450   create_excep_cond_exprs (c);
12451 }
12452 
12453 /* Returns true if we should stop for this breakpoint hit.  If the
12454    user specified a specific exception, we only want to cause a stop
12455    if the program thrown that exception.  */
12456 
12457 static int
12458 should_stop_exception (const struct bp_location *bl)
12459 {
12460   struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12461   const struct ada_catchpoint_location *ada_loc
12462     = (const struct ada_catchpoint_location *) bl;
12463   int stop;
12464 
12465   /* With no specific exception, should always stop.  */
12466   if (c->excep_string == NULL)
12467     return 1;
12468 
12469   if (ada_loc->excep_cond_expr == NULL)
12470     {
12471       /* We will have a NULL expression if back when we were creating
12472 	 the expressions, this location's had failed to parse.  */
12473       return 1;
12474     }
12475 
12476   stop = 1;
12477   TRY
12478     {
12479       struct value *mark;
12480 
12481       mark = value_mark ();
12482       stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12483       value_free_to_mark (mark);
12484     }
12485   CATCH (ex, RETURN_MASK_ALL)
12486     {
12487       exception_fprintf (gdb_stderr, ex,
12488 			 _("Error in testing exception condition:\n"));
12489     }
12490   END_CATCH
12491 
12492   return stop;
12493 }
12494 
12495 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12496    for all exception catchpoint kinds.  */
12497 
12498 static void
12499 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12500 {
12501   bs->stop = should_stop_exception (bs->bp_location_at);
12502 }
12503 
12504 /* Implement the PRINT_IT method in the breakpoint_ops structure
12505    for all exception catchpoint kinds.  */
12506 
12507 static enum print_stop_action
12508 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12509 {
12510   struct ui_out *uiout = current_uiout;
12511   struct breakpoint *b = bs->breakpoint_at;
12512 
12513   annotate_catchpoint (b->number);
12514 
12515   if (ui_out_is_mi_like_p (uiout))
12516     {
12517       ui_out_field_string (uiout, "reason",
12518 			   async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12519       ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12520     }
12521 
12522   ui_out_text (uiout,
12523                b->disposition == disp_del ? "\nTemporary catchpoint "
12524 	                                  : "\nCatchpoint ");
12525   ui_out_field_int (uiout, "bkptno", b->number);
12526   ui_out_text (uiout, ", ");
12527 
12528   /* ada_exception_name_addr relies on the selected frame being the
12529      current frame.  Need to do this here because this function may be
12530      called more than once when printing a stop, and below, we'll
12531      select the first frame past the Ada run-time (see
12532      ada_find_printable_frame).  */
12533   select_frame (get_current_frame ());
12534 
12535   switch (ex)
12536     {
12537       case ada_catch_exception:
12538       case ada_catch_exception_unhandled:
12539 	{
12540 	  const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12541 	  char exception_name[256];
12542 
12543 	  if (addr != 0)
12544 	    {
12545 	      read_memory (addr, (gdb_byte *) exception_name,
12546 			   sizeof (exception_name) - 1);
12547 	      exception_name [sizeof (exception_name) - 1] = '\0';
12548 	    }
12549 	  else
12550 	    {
12551 	      /* For some reason, we were unable to read the exception
12552 		 name.  This could happen if the Runtime was compiled
12553 		 without debugging info, for instance.  In that case,
12554 		 just replace the exception name by the generic string
12555 		 "exception" - it will read as "an exception" in the
12556 		 notification we are about to print.  */
12557 	      memcpy (exception_name, "exception", sizeof ("exception"));
12558 	    }
12559 	  /* In the case of unhandled exception breakpoints, we print
12560 	     the exception name as "unhandled EXCEPTION_NAME", to make
12561 	     it clearer to the user which kind of catchpoint just got
12562 	     hit.  We used ui_out_text to make sure that this extra
12563 	     info does not pollute the exception name in the MI case.  */
12564 	  if (ex == ada_catch_exception_unhandled)
12565 	    ui_out_text (uiout, "unhandled ");
12566 	  ui_out_field_string (uiout, "exception-name", exception_name);
12567 	}
12568 	break;
12569       case ada_catch_assert:
12570 	/* In this case, the name of the exception is not really
12571 	   important.  Just print "failed assertion" to make it clearer
12572 	   that his program just hit an assertion-failure catchpoint.
12573 	   We used ui_out_text because this info does not belong in
12574 	   the MI output.  */
12575 	ui_out_text (uiout, "failed assertion");
12576 	break;
12577     }
12578   ui_out_text (uiout, " at ");
12579   ada_find_printable_frame (get_current_frame ());
12580 
12581   return PRINT_SRC_AND_LOC;
12582 }
12583 
12584 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12585    for all exception catchpoint kinds.  */
12586 
12587 static void
12588 print_one_exception (enum ada_exception_catchpoint_kind ex,
12589                      struct breakpoint *b, struct bp_location **last_loc)
12590 {
12591   struct ui_out *uiout = current_uiout;
12592   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12593   struct value_print_options opts;
12594 
12595   get_user_print_options (&opts);
12596   if (opts.addressprint)
12597     {
12598       annotate_field (4);
12599       ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12600     }
12601 
12602   annotate_field (5);
12603   *last_loc = b->loc;
12604   switch (ex)
12605     {
12606       case ada_catch_exception:
12607         if (c->excep_string != NULL)
12608           {
12609             char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12610 
12611             ui_out_field_string (uiout, "what", msg);
12612             xfree (msg);
12613           }
12614         else
12615           ui_out_field_string (uiout, "what", "all Ada exceptions");
12616 
12617         break;
12618 
12619       case ada_catch_exception_unhandled:
12620         ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12621         break;
12622 
12623       case ada_catch_assert:
12624         ui_out_field_string (uiout, "what", "failed Ada assertions");
12625         break;
12626 
12627       default:
12628         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12629         break;
12630     }
12631 }
12632 
12633 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12634    for all exception catchpoint kinds.  */
12635 
12636 static void
12637 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12638                          struct breakpoint *b)
12639 {
12640   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12641   struct ui_out *uiout = current_uiout;
12642 
12643   ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12644                                                  : _("Catchpoint "));
12645   ui_out_field_int (uiout, "bkptno", b->number);
12646   ui_out_text (uiout, ": ");
12647 
12648   switch (ex)
12649     {
12650       case ada_catch_exception:
12651         if (c->excep_string != NULL)
12652 	  {
12653 	    char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12654 	    struct cleanup *old_chain = make_cleanup (xfree, info);
12655 
12656 	    ui_out_text (uiout, info);
12657 	    do_cleanups (old_chain);
12658 	  }
12659         else
12660           ui_out_text (uiout, _("all Ada exceptions"));
12661         break;
12662 
12663       case ada_catch_exception_unhandled:
12664         ui_out_text (uiout, _("unhandled Ada exceptions"));
12665         break;
12666 
12667       case ada_catch_assert:
12668         ui_out_text (uiout, _("failed Ada assertions"));
12669         break;
12670 
12671       default:
12672         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12673         break;
12674     }
12675 }
12676 
12677 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12678    for all exception catchpoint kinds.  */
12679 
12680 static void
12681 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12682 			  struct breakpoint *b, struct ui_file *fp)
12683 {
12684   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12685 
12686   switch (ex)
12687     {
12688       case ada_catch_exception:
12689 	fprintf_filtered (fp, "catch exception");
12690 	if (c->excep_string != NULL)
12691 	  fprintf_filtered (fp, " %s", c->excep_string);
12692 	break;
12693 
12694       case ada_catch_exception_unhandled:
12695 	fprintf_filtered (fp, "catch exception unhandled");
12696 	break;
12697 
12698       case ada_catch_assert:
12699 	fprintf_filtered (fp, "catch assert");
12700 	break;
12701 
12702       default:
12703 	internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12704     }
12705   print_recreate_thread (b, fp);
12706 }
12707 
12708 /* Virtual table for "catch exception" breakpoints.  */
12709 
12710 static void
12711 dtor_catch_exception (struct breakpoint *b)
12712 {
12713   dtor_exception (ada_catch_exception, b);
12714 }
12715 
12716 static struct bp_location *
12717 allocate_location_catch_exception (struct breakpoint *self)
12718 {
12719   return allocate_location_exception (ada_catch_exception, self);
12720 }
12721 
12722 static void
12723 re_set_catch_exception (struct breakpoint *b)
12724 {
12725   re_set_exception (ada_catch_exception, b);
12726 }
12727 
12728 static void
12729 check_status_catch_exception (bpstat bs)
12730 {
12731   check_status_exception (ada_catch_exception, bs);
12732 }
12733 
12734 static enum print_stop_action
12735 print_it_catch_exception (bpstat bs)
12736 {
12737   return print_it_exception (ada_catch_exception, bs);
12738 }
12739 
12740 static void
12741 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12742 {
12743   print_one_exception (ada_catch_exception, b, last_loc);
12744 }
12745 
12746 static void
12747 print_mention_catch_exception (struct breakpoint *b)
12748 {
12749   print_mention_exception (ada_catch_exception, b);
12750 }
12751 
12752 static void
12753 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12754 {
12755   print_recreate_exception (ada_catch_exception, b, fp);
12756 }
12757 
12758 static struct breakpoint_ops catch_exception_breakpoint_ops;
12759 
12760 /* Virtual table for "catch exception unhandled" breakpoints.  */
12761 
12762 static void
12763 dtor_catch_exception_unhandled (struct breakpoint *b)
12764 {
12765   dtor_exception (ada_catch_exception_unhandled, b);
12766 }
12767 
12768 static struct bp_location *
12769 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12770 {
12771   return allocate_location_exception (ada_catch_exception_unhandled, self);
12772 }
12773 
12774 static void
12775 re_set_catch_exception_unhandled (struct breakpoint *b)
12776 {
12777   re_set_exception (ada_catch_exception_unhandled, b);
12778 }
12779 
12780 static void
12781 check_status_catch_exception_unhandled (bpstat bs)
12782 {
12783   check_status_exception (ada_catch_exception_unhandled, bs);
12784 }
12785 
12786 static enum print_stop_action
12787 print_it_catch_exception_unhandled (bpstat bs)
12788 {
12789   return print_it_exception (ada_catch_exception_unhandled, bs);
12790 }
12791 
12792 static void
12793 print_one_catch_exception_unhandled (struct breakpoint *b,
12794 				     struct bp_location **last_loc)
12795 {
12796   print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12797 }
12798 
12799 static void
12800 print_mention_catch_exception_unhandled (struct breakpoint *b)
12801 {
12802   print_mention_exception (ada_catch_exception_unhandled, b);
12803 }
12804 
12805 static void
12806 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12807 					  struct ui_file *fp)
12808 {
12809   print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12810 }
12811 
12812 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12813 
12814 /* Virtual table for "catch assert" breakpoints.  */
12815 
12816 static void
12817 dtor_catch_assert (struct breakpoint *b)
12818 {
12819   dtor_exception (ada_catch_assert, b);
12820 }
12821 
12822 static struct bp_location *
12823 allocate_location_catch_assert (struct breakpoint *self)
12824 {
12825   return allocate_location_exception (ada_catch_assert, self);
12826 }
12827 
12828 static void
12829 re_set_catch_assert (struct breakpoint *b)
12830 {
12831   re_set_exception (ada_catch_assert, b);
12832 }
12833 
12834 static void
12835 check_status_catch_assert (bpstat bs)
12836 {
12837   check_status_exception (ada_catch_assert, bs);
12838 }
12839 
12840 static enum print_stop_action
12841 print_it_catch_assert (bpstat bs)
12842 {
12843   return print_it_exception (ada_catch_assert, bs);
12844 }
12845 
12846 static void
12847 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12848 {
12849   print_one_exception (ada_catch_assert, b, last_loc);
12850 }
12851 
12852 static void
12853 print_mention_catch_assert (struct breakpoint *b)
12854 {
12855   print_mention_exception (ada_catch_assert, b);
12856 }
12857 
12858 static void
12859 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12860 {
12861   print_recreate_exception (ada_catch_assert, b, fp);
12862 }
12863 
12864 static struct breakpoint_ops catch_assert_breakpoint_ops;
12865 
12866 /* Return a newly allocated copy of the first space-separated token
12867    in ARGSP, and then adjust ARGSP to point immediately after that
12868    token.
12869 
12870    Return NULL if ARGPS does not contain any more tokens.  */
12871 
12872 static char *
12873 ada_get_next_arg (char **argsp)
12874 {
12875   char *args = *argsp;
12876   char *end;
12877   char *result;
12878 
12879   args = skip_spaces (args);
12880   if (args[0] == '\0')
12881     return NULL; /* No more arguments.  */
12882 
12883   /* Find the end of the current argument.  */
12884 
12885   end = skip_to_space (args);
12886 
12887   /* Adjust ARGSP to point to the start of the next argument.  */
12888 
12889   *argsp = end;
12890 
12891   /* Make a copy of the current argument and return it.  */
12892 
12893   result = (char *) xmalloc (end - args + 1);
12894   strncpy (result, args, end - args);
12895   result[end - args] = '\0';
12896 
12897   return result;
12898 }
12899 
12900 /* Split the arguments specified in a "catch exception" command.
12901    Set EX to the appropriate catchpoint type.
12902    Set EXCEP_STRING to the name of the specific exception if
12903    specified by the user.
12904    If a condition is found at the end of the arguments, the condition
12905    expression is stored in COND_STRING (memory must be deallocated
12906    after use).  Otherwise COND_STRING is set to NULL.  */
12907 
12908 static void
12909 catch_ada_exception_command_split (char *args,
12910                                    enum ada_exception_catchpoint_kind *ex,
12911 				   char **excep_string,
12912 				   char **cond_string)
12913 {
12914   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12915   char *exception_name;
12916   char *cond = NULL;
12917 
12918   exception_name = ada_get_next_arg (&args);
12919   if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12920     {
12921       /* This is not an exception name; this is the start of a condition
12922 	 expression for a catchpoint on all exceptions.  So, "un-get"
12923 	 this token, and set exception_name to NULL.  */
12924       xfree (exception_name);
12925       exception_name = NULL;
12926       args -= 2;
12927     }
12928   make_cleanup (xfree, exception_name);
12929 
12930   /* Check to see if we have a condition.  */
12931 
12932   args = skip_spaces (args);
12933   if (startswith (args, "if")
12934       && (isspace (args[2]) || args[2] == '\0'))
12935     {
12936       args += 2;
12937       args = skip_spaces (args);
12938 
12939       if (args[0] == '\0')
12940         error (_("Condition missing after `if' keyword"));
12941       cond = xstrdup (args);
12942       make_cleanup (xfree, cond);
12943 
12944       args += strlen (args);
12945     }
12946 
12947   /* Check that we do not have any more arguments.  Anything else
12948      is unexpected.  */
12949 
12950   if (args[0] != '\0')
12951     error (_("Junk at end of expression"));
12952 
12953   discard_cleanups (old_chain);
12954 
12955   if (exception_name == NULL)
12956     {
12957       /* Catch all exceptions.  */
12958       *ex = ada_catch_exception;
12959       *excep_string = NULL;
12960     }
12961   else if (strcmp (exception_name, "unhandled") == 0)
12962     {
12963       /* Catch unhandled exceptions.  */
12964       *ex = ada_catch_exception_unhandled;
12965       *excep_string = NULL;
12966     }
12967   else
12968     {
12969       /* Catch a specific exception.  */
12970       *ex = ada_catch_exception;
12971       *excep_string = exception_name;
12972     }
12973   *cond_string = cond;
12974 }
12975 
12976 /* Return the name of the symbol on which we should break in order to
12977    implement a catchpoint of the EX kind.  */
12978 
12979 static const char *
12980 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12981 {
12982   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12983 
12984   gdb_assert (data->exception_info != NULL);
12985 
12986   switch (ex)
12987     {
12988       case ada_catch_exception:
12989         return (data->exception_info->catch_exception_sym);
12990         break;
12991       case ada_catch_exception_unhandled:
12992         return (data->exception_info->catch_exception_unhandled_sym);
12993         break;
12994       case ada_catch_assert:
12995         return (data->exception_info->catch_assert_sym);
12996         break;
12997       default:
12998         internal_error (__FILE__, __LINE__,
12999                         _("unexpected catchpoint kind (%d)"), ex);
13000     }
13001 }
13002 
13003 /* Return the breakpoint ops "virtual table" used for catchpoints
13004    of the EX kind.  */
13005 
13006 static const struct breakpoint_ops *
13007 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13008 {
13009   switch (ex)
13010     {
13011       case ada_catch_exception:
13012         return (&catch_exception_breakpoint_ops);
13013         break;
13014       case ada_catch_exception_unhandled:
13015         return (&catch_exception_unhandled_breakpoint_ops);
13016         break;
13017       case ada_catch_assert:
13018         return (&catch_assert_breakpoint_ops);
13019         break;
13020       default:
13021         internal_error (__FILE__, __LINE__,
13022                         _("unexpected catchpoint kind (%d)"), ex);
13023     }
13024 }
13025 
13026 /* Return the condition that will be used to match the current exception
13027    being raised with the exception that the user wants to catch.  This
13028    assumes that this condition is used when the inferior just triggered
13029    an exception catchpoint.
13030 
13031    The string returned is a newly allocated string that needs to be
13032    deallocated later.  */
13033 
13034 static char *
13035 ada_exception_catchpoint_cond_string (const char *excep_string)
13036 {
13037   int i;
13038 
13039   /* The standard exceptions are a special case.  They are defined in
13040      runtime units that have been compiled without debugging info; if
13041      EXCEP_STRING is the not-fully-qualified name of a standard
13042      exception (e.g. "constraint_error") then, during the evaluation
13043      of the condition expression, the symbol lookup on this name would
13044      *not* return this standard exception.  The catchpoint condition
13045      may then be set only on user-defined exceptions which have the
13046      same not-fully-qualified name (e.g. my_package.constraint_error).
13047 
13048      To avoid this unexcepted behavior, these standard exceptions are
13049      systematically prefixed by "standard".  This means that "catch
13050      exception constraint_error" is rewritten into "catch exception
13051      standard.constraint_error".
13052 
13053      If an exception named contraint_error is defined in another package of
13054      the inferior program, then the only way to specify this exception as a
13055      breakpoint condition is to use its fully-qualified named:
13056      e.g. my_package.constraint_error.  */
13057 
13058   for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13059     {
13060       if (strcmp (standard_exc [i], excep_string) == 0)
13061 	{
13062           return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
13063                              excep_string);
13064 	}
13065     }
13066   return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
13067 }
13068 
13069 /* Return the symtab_and_line that should be used to insert an exception
13070    catchpoint of the TYPE kind.
13071 
13072    EXCEP_STRING should contain the name of a specific exception that
13073    the catchpoint should catch, or NULL otherwise.
13074 
13075    ADDR_STRING returns the name of the function where the real
13076    breakpoint that implements the catchpoints is set, depending on the
13077    type of catchpoint we need to create.  */
13078 
13079 static struct symtab_and_line
13080 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13081 		   char **addr_string, const struct breakpoint_ops **ops)
13082 {
13083   const char *sym_name;
13084   struct symbol *sym;
13085 
13086   /* First, find out which exception support info to use.  */
13087   ada_exception_support_info_sniffer ();
13088 
13089   /* Then lookup the function on which we will break in order to catch
13090      the Ada exceptions requested by the user.  */
13091   sym_name = ada_exception_sym_name (ex);
13092   sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13093 
13094   /* We can assume that SYM is not NULL at this stage.  If the symbol
13095      did not exist, ada_exception_support_info_sniffer would have
13096      raised an exception.
13097 
13098      Also, ada_exception_support_info_sniffer should have already
13099      verified that SYM is a function symbol.  */
13100   gdb_assert (sym != NULL);
13101   gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13102 
13103   /* Set ADDR_STRING.  */
13104   *addr_string = xstrdup (sym_name);
13105 
13106   /* Set OPS.  */
13107   *ops = ada_exception_breakpoint_ops (ex);
13108 
13109   return find_function_start_sal (sym, 1);
13110 }
13111 
13112 /* Create an Ada exception catchpoint.
13113 
13114    EX_KIND is the kind of exception catchpoint to be created.
13115 
13116    If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13117    for all exceptions.  Otherwise, EXCEPT_STRING indicates the name
13118    of the exception to which this catchpoint applies.  When not NULL,
13119    the string must be allocated on the heap, and its deallocation
13120    is no longer the responsibility of the caller.
13121 
13122    COND_STRING, if not NULL, is the catchpoint condition.  This string
13123    must be allocated on the heap, and its deallocation is no longer
13124    the responsibility of the caller.
13125 
13126    TEMPFLAG, if nonzero, means that the underlying breakpoint
13127    should be temporary.
13128 
13129    FROM_TTY is the usual argument passed to all commands implementations.  */
13130 
13131 void
13132 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13133 				 enum ada_exception_catchpoint_kind ex_kind,
13134 				 char *excep_string,
13135 				 char *cond_string,
13136 				 int tempflag,
13137 				 int disabled,
13138 				 int from_tty)
13139 {
13140   struct ada_catchpoint *c;
13141   char *addr_string = NULL;
13142   const struct breakpoint_ops *ops = NULL;
13143   struct symtab_and_line sal
13144     = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13145 
13146   c = XNEW (struct ada_catchpoint);
13147   init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
13148 				 ops, tempflag, disabled, from_tty);
13149   c->excep_string = excep_string;
13150   create_excep_cond_exprs (c);
13151   if (cond_string != NULL)
13152     set_breakpoint_condition (&c->base, cond_string, from_tty);
13153   install_breakpoint (0, &c->base, 1);
13154 }
13155 
13156 /* Implement the "catch exception" command.  */
13157 
13158 static void
13159 catch_ada_exception_command (char *arg, int from_tty,
13160 			     struct cmd_list_element *command)
13161 {
13162   struct gdbarch *gdbarch = get_current_arch ();
13163   int tempflag;
13164   enum ada_exception_catchpoint_kind ex_kind;
13165   char *excep_string = NULL;
13166   char *cond_string = NULL;
13167 
13168   tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13169 
13170   if (!arg)
13171     arg = "";
13172   catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13173 				     &cond_string);
13174   create_ada_exception_catchpoint (gdbarch, ex_kind,
13175 				   excep_string, cond_string,
13176 				   tempflag, 1 /* enabled */,
13177 				   from_tty);
13178 }
13179 
13180 /* Split the arguments specified in a "catch assert" command.
13181 
13182    ARGS contains the command's arguments (or the empty string if
13183    no arguments were passed).
13184 
13185    If ARGS contains a condition, set COND_STRING to that condition
13186    (the memory needs to be deallocated after use).  */
13187 
13188 static void
13189 catch_ada_assert_command_split (char *args, char **cond_string)
13190 {
13191   args = skip_spaces (args);
13192 
13193   /* Check whether a condition was provided.  */
13194   if (startswith (args, "if")
13195       && (isspace (args[2]) || args[2] == '\0'))
13196     {
13197       args += 2;
13198       args = skip_spaces (args);
13199       if (args[0] == '\0')
13200         error (_("condition missing after `if' keyword"));
13201       *cond_string = xstrdup (args);
13202     }
13203 
13204   /* Otherwise, there should be no other argument at the end of
13205      the command.  */
13206   else if (args[0] != '\0')
13207     error (_("Junk at end of arguments."));
13208 }
13209 
13210 /* Implement the "catch assert" command.  */
13211 
13212 static void
13213 catch_assert_command (char *arg, int from_tty,
13214 		      struct cmd_list_element *command)
13215 {
13216   struct gdbarch *gdbarch = get_current_arch ();
13217   int tempflag;
13218   char *cond_string = NULL;
13219 
13220   tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13221 
13222   if (!arg)
13223     arg = "";
13224   catch_ada_assert_command_split (arg, &cond_string);
13225   create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13226 				   NULL, cond_string,
13227 				   tempflag, 1 /* enabled */,
13228 				   from_tty);
13229 }
13230 
13231 /* Return non-zero if the symbol SYM is an Ada exception object.  */
13232 
13233 static int
13234 ada_is_exception_sym (struct symbol *sym)
13235 {
13236   const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13237 
13238   return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13239           && SYMBOL_CLASS (sym) != LOC_BLOCK
13240           && SYMBOL_CLASS (sym) != LOC_CONST
13241           && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13242           && type_name != NULL && strcmp (type_name, "exception") == 0);
13243 }
13244 
13245 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13246    Ada exception object.  This matches all exceptions except the ones
13247    defined by the Ada language.  */
13248 
13249 static int
13250 ada_is_non_standard_exception_sym (struct symbol *sym)
13251 {
13252   int i;
13253 
13254   if (!ada_is_exception_sym (sym))
13255     return 0;
13256 
13257   for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13258     if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13259       return 0;  /* A standard exception.  */
13260 
13261   /* Numeric_Error is also a standard exception, so exclude it.
13262      See the STANDARD_EXC description for more details as to why
13263      this exception is not listed in that array.  */
13264   if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13265     return 0;
13266 
13267   return 1;
13268 }
13269 
13270 /* A helper function for qsort, comparing two struct ada_exc_info
13271    objects.
13272 
13273    The comparison is determined first by exception name, and then
13274    by exception address.  */
13275 
13276 static int
13277 compare_ada_exception_info (const void *a, const void *b)
13278 {
13279   const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13280   const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13281   int result;
13282 
13283   result = strcmp (exc_a->name, exc_b->name);
13284   if (result != 0)
13285     return result;
13286 
13287   if (exc_a->addr < exc_b->addr)
13288     return -1;
13289   if (exc_a->addr > exc_b->addr)
13290     return 1;
13291 
13292   return 0;
13293 }
13294 
13295 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13296    routine, but keeping the first SKIP elements untouched.
13297 
13298    All duplicates are also removed.  */
13299 
13300 static void
13301 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13302 				      int skip)
13303 {
13304   struct ada_exc_info *to_sort
13305     = VEC_address (ada_exc_info, *exceptions) + skip;
13306   int to_sort_len
13307     = VEC_length (ada_exc_info, *exceptions) - skip;
13308   int i, j;
13309 
13310   qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13311 	 compare_ada_exception_info);
13312 
13313   for (i = 1, j = 1; i < to_sort_len; i++)
13314     if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13315       to_sort[j++] = to_sort[i];
13316   to_sort_len = j;
13317   VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13318 }
13319 
13320 /* A function intended as the "name_matcher" callback in the struct
13321    quick_symbol_functions' expand_symtabs_matching method.
13322 
13323    SEARCH_NAME is the symbol's search name.
13324 
13325    If USER_DATA is not NULL, it is a pointer to a regext_t object
13326    used to match the symbol (by natural name).  Otherwise, when USER_DATA
13327    is null, no filtering is performed, and all symbols are a positive
13328    match.  */
13329 
13330 static int
13331 ada_exc_search_name_matches (const char *search_name, void *user_data)
13332 {
13333   regex_t *preg = (regex_t *) user_data;
13334 
13335   if (preg == NULL)
13336     return 1;
13337 
13338   /* In Ada, the symbol "search name" is a linkage name, whereas
13339      the regular expression used to do the matching refers to
13340      the natural name.  So match against the decoded name.  */
13341   return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13342 }
13343 
13344 /* Add all exceptions defined by the Ada standard whose name match
13345    a regular expression.
13346 
13347    If PREG is not NULL, then this regexp_t object is used to
13348    perform the symbol name matching.  Otherwise, no name-based
13349    filtering is performed.
13350 
13351    EXCEPTIONS is a vector of exceptions to which matching exceptions
13352    gets pushed.  */
13353 
13354 static void
13355 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13356 {
13357   int i;
13358 
13359   for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13360     {
13361       if (preg == NULL
13362 	  || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13363 	{
13364 	  struct bound_minimal_symbol msymbol
13365 	    = ada_lookup_simple_minsym (standard_exc[i]);
13366 
13367 	  if (msymbol.minsym != NULL)
13368 	    {
13369 	      struct ada_exc_info info
13370 		= {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13371 
13372 	      VEC_safe_push (ada_exc_info, *exceptions, &info);
13373 	    }
13374 	}
13375     }
13376 }
13377 
13378 /* Add all Ada exceptions defined locally and accessible from the given
13379    FRAME.
13380 
13381    If PREG is not NULL, then this regexp_t object is used to
13382    perform the symbol name matching.  Otherwise, no name-based
13383    filtering is performed.
13384 
13385    EXCEPTIONS is a vector of exceptions to which matching exceptions
13386    gets pushed.  */
13387 
13388 static void
13389 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13390 			       VEC(ada_exc_info) **exceptions)
13391 {
13392   const struct block *block = get_frame_block (frame, 0);
13393 
13394   while (block != 0)
13395     {
13396       struct block_iterator iter;
13397       struct symbol *sym;
13398 
13399       ALL_BLOCK_SYMBOLS (block, iter, sym)
13400 	{
13401 	  switch (SYMBOL_CLASS (sym))
13402 	    {
13403 	    case LOC_TYPEDEF:
13404 	    case LOC_BLOCK:
13405 	    case LOC_CONST:
13406 	      break;
13407 	    default:
13408 	      if (ada_is_exception_sym (sym))
13409 		{
13410 		  struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13411 					      SYMBOL_VALUE_ADDRESS (sym)};
13412 
13413 		  VEC_safe_push (ada_exc_info, *exceptions, &info);
13414 		}
13415 	    }
13416 	}
13417       if (BLOCK_FUNCTION (block) != NULL)
13418 	break;
13419       block = BLOCK_SUPERBLOCK (block);
13420     }
13421 }
13422 
13423 /* Add all exceptions defined globally whose name name match
13424    a regular expression, excluding standard exceptions.
13425 
13426    The reason we exclude standard exceptions is that they need
13427    to be handled separately: Standard exceptions are defined inside
13428    a runtime unit which is normally not compiled with debugging info,
13429    and thus usually do not show up in our symbol search.  However,
13430    if the unit was in fact built with debugging info, we need to
13431    exclude them because they would duplicate the entry we found
13432    during the special loop that specifically searches for those
13433    standard exceptions.
13434 
13435    If PREG is not NULL, then this regexp_t object is used to
13436    perform the symbol name matching.  Otherwise, no name-based
13437    filtering is performed.
13438 
13439    EXCEPTIONS is a vector of exceptions to which matching exceptions
13440    gets pushed.  */
13441 
13442 static void
13443 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13444 {
13445   struct objfile *objfile;
13446   struct compunit_symtab *s;
13447 
13448   expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13449 			   VARIABLES_DOMAIN, preg);
13450 
13451   ALL_COMPUNITS (objfile, s)
13452     {
13453       const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13454       int i;
13455 
13456       for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13457 	{
13458 	  struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13459 	  struct block_iterator iter;
13460 	  struct symbol *sym;
13461 
13462 	  ALL_BLOCK_SYMBOLS (b, iter, sym)
13463 	    if (ada_is_non_standard_exception_sym (sym)
13464 		&& (preg == NULL
13465 		    || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13466 				0, NULL, 0) == 0))
13467 	      {
13468 		struct ada_exc_info info
13469 		  = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13470 
13471 		VEC_safe_push (ada_exc_info, *exceptions, &info);
13472 	      }
13473 	}
13474     }
13475 }
13476 
13477 /* Implements ada_exceptions_list with the regular expression passed
13478    as a regex_t, rather than a string.
13479 
13480    If not NULL, PREG is used to filter out exceptions whose names
13481    do not match.  Otherwise, all exceptions are listed.  */
13482 
13483 static VEC(ada_exc_info) *
13484 ada_exceptions_list_1 (regex_t *preg)
13485 {
13486   VEC(ada_exc_info) *result = NULL;
13487   struct cleanup *old_chain
13488     = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13489   int prev_len;
13490 
13491   /* First, list the known standard exceptions.  These exceptions
13492      need to be handled separately, as they are usually defined in
13493      runtime units that have been compiled without debugging info.  */
13494 
13495   ada_add_standard_exceptions (preg, &result);
13496 
13497   /* Next, find all exceptions whose scope is local and accessible
13498      from the currently selected frame.  */
13499 
13500   if (has_stack_frames ())
13501     {
13502       prev_len = VEC_length (ada_exc_info, result);
13503       ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13504 				     &result);
13505       if (VEC_length (ada_exc_info, result) > prev_len)
13506 	sort_remove_dups_ada_exceptions_list (&result, prev_len);
13507     }
13508 
13509   /* Add all exceptions whose scope is global.  */
13510 
13511   prev_len = VEC_length (ada_exc_info, result);
13512   ada_add_global_exceptions (preg, &result);
13513   if (VEC_length (ada_exc_info, result) > prev_len)
13514     sort_remove_dups_ada_exceptions_list (&result, prev_len);
13515 
13516   discard_cleanups (old_chain);
13517   return result;
13518 }
13519 
13520 /* Return a vector of ada_exc_info.
13521 
13522    If REGEXP is NULL, all exceptions are included in the result.
13523    Otherwise, it should contain a valid regular expression,
13524    and only the exceptions whose names match that regular expression
13525    are included in the result.
13526 
13527    The exceptions are sorted in the following order:
13528      - Standard exceptions (defined by the Ada language), in
13529        alphabetical order;
13530      - Exceptions only visible from the current frame, in
13531        alphabetical order;
13532      - Exceptions whose scope is global, in alphabetical order.  */
13533 
13534 VEC(ada_exc_info) *
13535 ada_exceptions_list (const char *regexp)
13536 {
13537   VEC(ada_exc_info) *result = NULL;
13538   struct cleanup *old_chain = NULL;
13539   regex_t reg;
13540 
13541   if (regexp != NULL)
13542     old_chain = compile_rx_or_error (&reg, regexp,
13543 				     _("invalid regular expression"));
13544 
13545   result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13546 
13547   if (old_chain != NULL)
13548     do_cleanups (old_chain);
13549   return result;
13550 }
13551 
13552 /* Implement the "info exceptions" command.  */
13553 
13554 static void
13555 info_exceptions_command (char *regexp, int from_tty)
13556 {
13557   VEC(ada_exc_info) *exceptions;
13558   struct cleanup *cleanup;
13559   struct gdbarch *gdbarch = get_current_arch ();
13560   int ix;
13561   struct ada_exc_info *info;
13562 
13563   exceptions = ada_exceptions_list (regexp);
13564   cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13565 
13566   if (regexp != NULL)
13567     printf_filtered
13568       (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13569   else
13570     printf_filtered (_("All defined Ada exceptions:\n"));
13571 
13572   for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13573     printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13574 
13575   do_cleanups (cleanup);
13576 }
13577 
13578                                 /* Operators */
13579 /* Information about operators given special treatment in functions
13580    below.  */
13581 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>).  */
13582 
13583 #define ADA_OPERATORS \
13584     OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13585     OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13586     OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13587     OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13588     OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13589     OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13590     OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13591     OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13592     OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13593     OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13594     OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13595     OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13596     OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13597     OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13598     OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13599     OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13600     OP_DEFN (OP_OTHERS, 1, 1, 0) \
13601     OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13602     OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13603 
13604 static void
13605 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13606 		     int *argsp)
13607 {
13608   switch (exp->elts[pc - 1].opcode)
13609     {
13610     default:
13611       operator_length_standard (exp, pc, oplenp, argsp);
13612       break;
13613 
13614 #define OP_DEFN(op, len, args, binop) \
13615     case op: *oplenp = len; *argsp = args; break;
13616       ADA_OPERATORS;
13617 #undef OP_DEFN
13618 
13619     case OP_AGGREGATE:
13620       *oplenp = 3;
13621       *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13622       break;
13623 
13624     case OP_CHOICES:
13625       *oplenp = 3;
13626       *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13627       break;
13628     }
13629 }
13630 
13631 /* Implementation of the exp_descriptor method operator_check.  */
13632 
13633 static int
13634 ada_operator_check (struct expression *exp, int pos,
13635 		    int (*objfile_func) (struct objfile *objfile, void *data),
13636 		    void *data)
13637 {
13638   const union exp_element *const elts = exp->elts;
13639   struct type *type = NULL;
13640 
13641   switch (elts[pos].opcode)
13642     {
13643       case UNOP_IN_RANGE:
13644       case UNOP_QUAL:
13645 	type = elts[pos + 1].type;
13646 	break;
13647 
13648       default:
13649 	return operator_check_standard (exp, pos, objfile_func, data);
13650     }
13651 
13652   /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL.  */
13653 
13654   if (type && TYPE_OBJFILE (type)
13655       && (*objfile_func) (TYPE_OBJFILE (type), data))
13656     return 1;
13657 
13658   return 0;
13659 }
13660 
13661 static char *
13662 ada_op_name (enum exp_opcode opcode)
13663 {
13664   switch (opcode)
13665     {
13666     default:
13667       return op_name_standard (opcode);
13668 
13669 #define OP_DEFN(op, len, args, binop) case op: return #op;
13670       ADA_OPERATORS;
13671 #undef OP_DEFN
13672 
13673     case OP_AGGREGATE:
13674       return "OP_AGGREGATE";
13675     case OP_CHOICES:
13676       return "OP_CHOICES";
13677     case OP_NAME:
13678       return "OP_NAME";
13679     }
13680 }
13681 
13682 /* As for operator_length, but assumes PC is pointing at the first
13683    element of the operator, and gives meaningful results only for the
13684    Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise.  */
13685 
13686 static void
13687 ada_forward_operator_length (struct expression *exp, int pc,
13688                              int *oplenp, int *argsp)
13689 {
13690   switch (exp->elts[pc].opcode)
13691     {
13692     default:
13693       *oplenp = *argsp = 0;
13694       break;
13695 
13696 #define OP_DEFN(op, len, args, binop) \
13697     case op: *oplenp = len; *argsp = args; break;
13698       ADA_OPERATORS;
13699 #undef OP_DEFN
13700 
13701     case OP_AGGREGATE:
13702       *oplenp = 3;
13703       *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13704       break;
13705 
13706     case OP_CHOICES:
13707       *oplenp = 3;
13708       *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13709       break;
13710 
13711     case OP_STRING:
13712     case OP_NAME:
13713       {
13714 	int len = longest_to_int (exp->elts[pc + 1].longconst);
13715 
13716 	*oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13717 	*argsp = 0;
13718 	break;
13719       }
13720     }
13721 }
13722 
13723 static int
13724 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13725 {
13726   enum exp_opcode op = exp->elts[elt].opcode;
13727   int oplen, nargs;
13728   int pc = elt;
13729   int i;
13730 
13731   ada_forward_operator_length (exp, elt, &oplen, &nargs);
13732 
13733   switch (op)
13734     {
13735       /* Ada attributes ('Foo).  */
13736     case OP_ATR_FIRST:
13737     case OP_ATR_LAST:
13738     case OP_ATR_LENGTH:
13739     case OP_ATR_IMAGE:
13740     case OP_ATR_MAX:
13741     case OP_ATR_MIN:
13742     case OP_ATR_MODULUS:
13743     case OP_ATR_POS:
13744     case OP_ATR_SIZE:
13745     case OP_ATR_TAG:
13746     case OP_ATR_VAL:
13747       break;
13748 
13749     case UNOP_IN_RANGE:
13750     case UNOP_QUAL:
13751       /* XXX: gdb_sprint_host_address, type_sprint */
13752       fprintf_filtered (stream, _("Type @"));
13753       gdb_print_host_address (exp->elts[pc + 1].type, stream);
13754       fprintf_filtered (stream, " (");
13755       type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13756       fprintf_filtered (stream, ")");
13757       break;
13758     case BINOP_IN_BOUNDS:
13759       fprintf_filtered (stream, " (%d)",
13760 			longest_to_int (exp->elts[pc + 2].longconst));
13761       break;
13762     case TERNOP_IN_RANGE:
13763       break;
13764 
13765     case OP_AGGREGATE:
13766     case OP_OTHERS:
13767     case OP_DISCRETE_RANGE:
13768     case OP_POSITIONAL:
13769     case OP_CHOICES:
13770       break;
13771 
13772     case OP_NAME:
13773     case OP_STRING:
13774       {
13775 	char *name = &exp->elts[elt + 2].string;
13776 	int len = longest_to_int (exp->elts[elt + 1].longconst);
13777 
13778 	fprintf_filtered (stream, "Text: `%.*s'", len, name);
13779 	break;
13780       }
13781 
13782     default:
13783       return dump_subexp_body_standard (exp, stream, elt);
13784     }
13785 
13786   elt += oplen;
13787   for (i = 0; i < nargs; i += 1)
13788     elt = dump_subexp (exp, stream, elt);
13789 
13790   return elt;
13791 }
13792 
13793 /* The Ada extension of print_subexp (q.v.).  */
13794 
13795 static void
13796 ada_print_subexp (struct expression *exp, int *pos,
13797                   struct ui_file *stream, enum precedence prec)
13798 {
13799   int oplen, nargs, i;
13800   int pc = *pos;
13801   enum exp_opcode op = exp->elts[pc].opcode;
13802 
13803   ada_forward_operator_length (exp, pc, &oplen, &nargs);
13804 
13805   *pos += oplen;
13806   switch (op)
13807     {
13808     default:
13809       *pos -= oplen;
13810       print_subexp_standard (exp, pos, stream, prec);
13811       return;
13812 
13813     case OP_VAR_VALUE:
13814       fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13815       return;
13816 
13817     case BINOP_IN_BOUNDS:
13818       /* XXX: sprint_subexp */
13819       print_subexp (exp, pos, stream, PREC_SUFFIX);
13820       fputs_filtered (" in ", stream);
13821       print_subexp (exp, pos, stream, PREC_SUFFIX);
13822       fputs_filtered ("'range", stream);
13823       if (exp->elts[pc + 1].longconst > 1)
13824         fprintf_filtered (stream, "(%ld)",
13825                           (long) exp->elts[pc + 1].longconst);
13826       return;
13827 
13828     case TERNOP_IN_RANGE:
13829       if (prec >= PREC_EQUAL)
13830         fputs_filtered ("(", stream);
13831       /* XXX: sprint_subexp */
13832       print_subexp (exp, pos, stream, PREC_SUFFIX);
13833       fputs_filtered (" in ", stream);
13834       print_subexp (exp, pos, stream, PREC_EQUAL);
13835       fputs_filtered (" .. ", stream);
13836       print_subexp (exp, pos, stream, PREC_EQUAL);
13837       if (prec >= PREC_EQUAL)
13838         fputs_filtered (")", stream);
13839       return;
13840 
13841     case OP_ATR_FIRST:
13842     case OP_ATR_LAST:
13843     case OP_ATR_LENGTH:
13844     case OP_ATR_IMAGE:
13845     case OP_ATR_MAX:
13846     case OP_ATR_MIN:
13847     case OP_ATR_MODULUS:
13848     case OP_ATR_POS:
13849     case OP_ATR_SIZE:
13850     case OP_ATR_TAG:
13851     case OP_ATR_VAL:
13852       if (exp->elts[*pos].opcode == OP_TYPE)
13853         {
13854           if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13855             LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13856 			   &type_print_raw_options);
13857           *pos += 3;
13858         }
13859       else
13860         print_subexp (exp, pos, stream, PREC_SUFFIX);
13861       fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13862       if (nargs > 1)
13863         {
13864           int tem;
13865 
13866           for (tem = 1; tem < nargs; tem += 1)
13867             {
13868               fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13869               print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13870             }
13871           fputs_filtered (")", stream);
13872         }
13873       return;
13874 
13875     case UNOP_QUAL:
13876       type_print (exp->elts[pc + 1].type, "", stream, 0);
13877       fputs_filtered ("'(", stream);
13878       print_subexp (exp, pos, stream, PREC_PREFIX);
13879       fputs_filtered (")", stream);
13880       return;
13881 
13882     case UNOP_IN_RANGE:
13883       /* XXX: sprint_subexp */
13884       print_subexp (exp, pos, stream, PREC_SUFFIX);
13885       fputs_filtered (" in ", stream);
13886       LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13887 		     &type_print_raw_options);
13888       return;
13889 
13890     case OP_DISCRETE_RANGE:
13891       print_subexp (exp, pos, stream, PREC_SUFFIX);
13892       fputs_filtered ("..", stream);
13893       print_subexp (exp, pos, stream, PREC_SUFFIX);
13894       return;
13895 
13896     case OP_OTHERS:
13897       fputs_filtered ("others => ", stream);
13898       print_subexp (exp, pos, stream, PREC_SUFFIX);
13899       return;
13900 
13901     case OP_CHOICES:
13902       for (i = 0; i < nargs-1; i += 1)
13903 	{
13904 	  if (i > 0)
13905 	    fputs_filtered ("|", stream);
13906 	  print_subexp (exp, pos, stream, PREC_SUFFIX);
13907 	}
13908       fputs_filtered (" => ", stream);
13909       print_subexp (exp, pos, stream, PREC_SUFFIX);
13910       return;
13911 
13912     case OP_POSITIONAL:
13913       print_subexp (exp, pos, stream, PREC_SUFFIX);
13914       return;
13915 
13916     case OP_AGGREGATE:
13917       fputs_filtered ("(", stream);
13918       for (i = 0; i < nargs; i += 1)
13919 	{
13920 	  if (i > 0)
13921 	    fputs_filtered (", ", stream);
13922 	  print_subexp (exp, pos, stream, PREC_SUFFIX);
13923 	}
13924       fputs_filtered (")", stream);
13925       return;
13926     }
13927 }
13928 
13929 /* Table mapping opcodes into strings for printing operators
13930    and precedences of the operators.  */
13931 
13932 static const struct op_print ada_op_print_tab[] = {
13933   {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13934   {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13935   {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13936   {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13937   {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13938   {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13939   {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13940   {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13941   {"<=", BINOP_LEQ, PREC_ORDER, 0},
13942   {">=", BINOP_GEQ, PREC_ORDER, 0},
13943   {">", BINOP_GTR, PREC_ORDER, 0},
13944   {"<", BINOP_LESS, PREC_ORDER, 0},
13945   {">>", BINOP_RSH, PREC_SHIFT, 0},
13946   {"<<", BINOP_LSH, PREC_SHIFT, 0},
13947   {"+", BINOP_ADD, PREC_ADD, 0},
13948   {"-", BINOP_SUB, PREC_ADD, 0},
13949   {"&", BINOP_CONCAT, PREC_ADD, 0},
13950   {"*", BINOP_MUL, PREC_MUL, 0},
13951   {"/", BINOP_DIV, PREC_MUL, 0},
13952   {"rem", BINOP_REM, PREC_MUL, 0},
13953   {"mod", BINOP_MOD, PREC_MUL, 0},
13954   {"**", BINOP_EXP, PREC_REPEAT, 0},
13955   {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13956   {"-", UNOP_NEG, PREC_PREFIX, 0},
13957   {"+", UNOP_PLUS, PREC_PREFIX, 0},
13958   {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13959   {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13960   {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13961   {".all", UNOP_IND, PREC_SUFFIX, 1},
13962   {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13963   {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13964   {NULL, OP_NULL, PREC_SUFFIX, 0}
13965 };
13966 
13967 enum ada_primitive_types {
13968   ada_primitive_type_int,
13969   ada_primitive_type_long,
13970   ada_primitive_type_short,
13971   ada_primitive_type_char,
13972   ada_primitive_type_float,
13973   ada_primitive_type_double,
13974   ada_primitive_type_void,
13975   ada_primitive_type_long_long,
13976   ada_primitive_type_long_double,
13977   ada_primitive_type_natural,
13978   ada_primitive_type_positive,
13979   ada_primitive_type_system_address,
13980   nr_ada_primitive_types
13981 };
13982 
13983 static void
13984 ada_language_arch_info (struct gdbarch *gdbarch,
13985 			struct language_arch_info *lai)
13986 {
13987   const struct builtin_type *builtin = builtin_type (gdbarch);
13988 
13989   lai->primitive_type_vector
13990     = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13991 			      struct type *);
13992 
13993   lai->primitive_type_vector [ada_primitive_type_int]
13994     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13995 			 0, "integer");
13996   lai->primitive_type_vector [ada_primitive_type_long]
13997     = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13998 			 0, "long_integer");
13999   lai->primitive_type_vector [ada_primitive_type_short]
14000     = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14001 			 0, "short_integer");
14002   lai->string_char_type
14003     = lai->primitive_type_vector [ada_primitive_type_char]
14004     = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14005   lai->primitive_type_vector [ada_primitive_type_float]
14006     = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14007 		       "float", NULL);
14008   lai->primitive_type_vector [ada_primitive_type_double]
14009     = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14010 		       "long_float", NULL);
14011   lai->primitive_type_vector [ada_primitive_type_long_long]
14012     = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14013 			 0, "long_long_integer");
14014   lai->primitive_type_vector [ada_primitive_type_long_double]
14015     = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14016 		       "long_long_float", NULL);
14017   lai->primitive_type_vector [ada_primitive_type_natural]
14018     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14019 			 0, "natural");
14020   lai->primitive_type_vector [ada_primitive_type_positive]
14021     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14022 			 0, "positive");
14023   lai->primitive_type_vector [ada_primitive_type_void]
14024     = builtin->builtin_void;
14025 
14026   lai->primitive_type_vector [ada_primitive_type_system_address]
14027     = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
14028   TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14029     = "system__address";
14030 
14031   lai->bool_type_symbol = NULL;
14032   lai->bool_type_default = builtin->builtin_bool;
14033 }
14034 
14035 				/* Language vector */
14036 
14037 /* Not really used, but needed in the ada_language_defn.  */
14038 
14039 static void
14040 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14041 {
14042   ada_emit_char (c, type, stream, quoter, 1);
14043 }
14044 
14045 static int
14046 parse (struct parser_state *ps)
14047 {
14048   warnings_issued = 0;
14049   return ada_parse (ps);
14050 }
14051 
14052 static const struct exp_descriptor ada_exp_descriptor = {
14053   ada_print_subexp,
14054   ada_operator_length,
14055   ada_operator_check,
14056   ada_op_name,
14057   ada_dump_subexp_body,
14058   ada_evaluate_subexp
14059 };
14060 
14061 /* Implement the "la_get_symbol_name_cmp" language_defn method
14062    for Ada.  */
14063 
14064 static symbol_name_cmp_ftype
14065 ada_get_symbol_name_cmp (const char *lookup_name)
14066 {
14067   if (should_use_wild_match (lookup_name))
14068     return wild_match;
14069   else
14070     return compare_names;
14071 }
14072 
14073 /* Implement the "la_read_var_value" language_defn method for Ada.  */
14074 
14075 static struct value *
14076 ada_read_var_value (struct symbol *var, const struct block *var_block,
14077 		    struct frame_info *frame)
14078 {
14079   const struct block *frame_block = NULL;
14080   struct symbol *renaming_sym = NULL;
14081 
14082   /* The only case where default_read_var_value is not sufficient
14083      is when VAR is a renaming...  */
14084   if (frame)
14085     frame_block = get_frame_block (frame, NULL);
14086   if (frame_block)
14087     renaming_sym = ada_find_renaming_symbol (var, frame_block);
14088   if (renaming_sym != NULL)
14089     return ada_read_renaming_var_value (renaming_sym, frame_block);
14090 
14091   /* This is a typical case where we expect the default_read_var_value
14092      function to work.  */
14093   return default_read_var_value (var, var_block, frame);
14094 }
14095 
14096 static const char *ada_extensions[] =
14097 {
14098   ".adb", ".ads", ".a", ".ada", ".dg", NULL
14099 };
14100 
14101 const struct language_defn ada_language_defn = {
14102   "ada",                        /* Language name */
14103   "Ada",
14104   language_ada,
14105   range_check_off,
14106   case_sensitive_on,            /* Yes, Ada is case-insensitive, but
14107                                    that's not quite what this means.  */
14108   array_row_major,
14109   macro_expansion_no,
14110   ada_extensions,
14111   &ada_exp_descriptor,
14112   parse,
14113   ada_yyerror,
14114   resolve,
14115   ada_printchar,                /* Print a character constant */
14116   ada_printstr,                 /* Function to print string constant */
14117   emit_char,                    /* Function to print single char (not used) */
14118   ada_print_type,               /* Print a type using appropriate syntax */
14119   ada_print_typedef,            /* Print a typedef using appropriate syntax */
14120   ada_val_print,                /* Print a value using appropriate syntax */
14121   ada_value_print,              /* Print a top-level value */
14122   ada_read_var_value,		/* la_read_var_value */
14123   NULL,                         /* Language specific skip_trampoline */
14124   NULL,                         /* name_of_this */
14125   ada_lookup_symbol_nonlocal,   /* Looking up non-local symbols.  */
14126   basic_lookup_transparent_type,        /* lookup_transparent_type */
14127   ada_la_decode,                /* Language specific symbol demangler */
14128   ada_sniff_from_mangled_name,
14129   NULL,                         /* Language specific
14130 				   class_name_from_physname */
14131   ada_op_print_tab,             /* expression operators for printing */
14132   0,                            /* c-style arrays */
14133   1,                            /* String lower bound */
14134   ada_get_gdb_completer_word_break_characters,
14135   ada_make_symbol_completion_list,
14136   ada_language_arch_info,
14137   ada_print_array_index,
14138   default_pass_by_reference,
14139   c_get_string,
14140   ada_get_symbol_name_cmp,	/* la_get_symbol_name_cmp */
14141   ada_iterate_over_symbols,
14142   &ada_varobj_ops,
14143   NULL,
14144   NULL,
14145   LANG_MAGIC
14146 };
14147 
14148 /* Provide a prototype to silence -Wmissing-prototypes.  */
14149 extern initialize_file_ftype _initialize_ada_language;
14150 
14151 /* Command-list for the "set/show ada" prefix command.  */
14152 static struct cmd_list_element *set_ada_list;
14153 static struct cmd_list_element *show_ada_list;
14154 
14155 /* Implement the "set ada" prefix command.  */
14156 
14157 static void
14158 set_ada_command (char *arg, int from_tty)
14159 {
14160   printf_unfiltered (_(\
14161 "\"set ada\" must be followed by the name of a setting.\n"));
14162   help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14163 }
14164 
14165 /* Implement the "show ada" prefix command.  */
14166 
14167 static void
14168 show_ada_command (char *args, int from_tty)
14169 {
14170   cmd_show_list (show_ada_list, from_tty, "");
14171 }
14172 
14173 static void
14174 initialize_ada_catchpoint_ops (void)
14175 {
14176   struct breakpoint_ops *ops;
14177 
14178   initialize_breakpoint_ops ();
14179 
14180   ops = &catch_exception_breakpoint_ops;
14181   *ops = bkpt_breakpoint_ops;
14182   ops->dtor = dtor_catch_exception;
14183   ops->allocate_location = allocate_location_catch_exception;
14184   ops->re_set = re_set_catch_exception;
14185   ops->check_status = check_status_catch_exception;
14186   ops->print_it = print_it_catch_exception;
14187   ops->print_one = print_one_catch_exception;
14188   ops->print_mention = print_mention_catch_exception;
14189   ops->print_recreate = print_recreate_catch_exception;
14190 
14191   ops = &catch_exception_unhandled_breakpoint_ops;
14192   *ops = bkpt_breakpoint_ops;
14193   ops->dtor = dtor_catch_exception_unhandled;
14194   ops->allocate_location = allocate_location_catch_exception_unhandled;
14195   ops->re_set = re_set_catch_exception_unhandled;
14196   ops->check_status = check_status_catch_exception_unhandled;
14197   ops->print_it = print_it_catch_exception_unhandled;
14198   ops->print_one = print_one_catch_exception_unhandled;
14199   ops->print_mention = print_mention_catch_exception_unhandled;
14200   ops->print_recreate = print_recreate_catch_exception_unhandled;
14201 
14202   ops = &catch_assert_breakpoint_ops;
14203   *ops = bkpt_breakpoint_ops;
14204   ops->dtor = dtor_catch_assert;
14205   ops->allocate_location = allocate_location_catch_assert;
14206   ops->re_set = re_set_catch_assert;
14207   ops->check_status = check_status_catch_assert;
14208   ops->print_it = print_it_catch_assert;
14209   ops->print_one = print_one_catch_assert;
14210   ops->print_mention = print_mention_catch_assert;
14211   ops->print_recreate = print_recreate_catch_assert;
14212 }
14213 
14214 /* This module's 'new_objfile' observer.  */
14215 
14216 static void
14217 ada_new_objfile_observer (struct objfile *objfile)
14218 {
14219   ada_clear_symbol_cache ();
14220 }
14221 
14222 /* This module's 'free_objfile' observer.  */
14223 
14224 static void
14225 ada_free_objfile_observer (struct objfile *objfile)
14226 {
14227   ada_clear_symbol_cache ();
14228 }
14229 
14230 void
14231 _initialize_ada_language (void)
14232 {
14233   add_language (&ada_language_defn);
14234 
14235   initialize_ada_catchpoint_ops ();
14236 
14237   add_prefix_cmd ("ada", no_class, set_ada_command,
14238                   _("Prefix command for changing Ada-specfic settings"),
14239                   &set_ada_list, "set ada ", 0, &setlist);
14240 
14241   add_prefix_cmd ("ada", no_class, show_ada_command,
14242                   _("Generic command for showing Ada-specific settings."),
14243                   &show_ada_list, "show ada ", 0, &showlist);
14244 
14245   add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14246                            &trust_pad_over_xvs, _("\
14247 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14248 Show whether an optimization trusting PAD types over XVS types is activated"),
14249                            _("\
14250 This is related to the encoding used by the GNAT compiler.  The debugger\n\
14251 should normally trust the contents of PAD types, but certain older versions\n\
14252 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14253 to be incorrect.  Turning this setting \"off\" allows the debugger to\n\
14254 work around this bug.  It is always safe to turn this option \"off\", but\n\
14255 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14256 this option to \"off\" unless necessary."),
14257                             NULL, NULL, &set_ada_list, &show_ada_list);
14258 
14259   add_setshow_boolean_cmd ("print-signatures", class_vars,
14260 			   &print_signatures, _("\
14261 Enable or disable the output of formal and return types for functions in the \
14262 overloads selection menu"), _("\
14263 Show whether the output of formal and return types for functions in the \
14264 overloads selection menu is activated"),
14265 			   NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14266 
14267   add_catch_command ("exception", _("\
14268 Catch Ada exceptions, when raised.\n\
14269 With an argument, catch only exceptions with the given name."),
14270 		     catch_ada_exception_command,
14271                      NULL,
14272 		     CATCH_PERMANENT,
14273 		     CATCH_TEMPORARY);
14274   add_catch_command ("assert", _("\
14275 Catch failed Ada assertions, when raised.\n\
14276 With an argument, catch only exceptions with the given name."),
14277 		     catch_assert_command,
14278                      NULL,
14279 		     CATCH_PERMANENT,
14280 		     CATCH_TEMPORARY);
14281 
14282   varsize_limit = 65536;
14283 
14284   add_info ("exceptions", info_exceptions_command,
14285 	    _("\
14286 List all Ada exception names.\n\
14287 If a regular expression is passed as an argument, only those matching\n\
14288 the regular expression are listed."));
14289 
14290   add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14291 		  _("Set Ada maintenance-related variables."),
14292                   &maint_set_ada_cmdlist, "maintenance set ada ",
14293                   0/*allow-unknown*/, &maintenance_set_cmdlist);
14294 
14295   add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14296 		  _("Show Ada maintenance-related variables"),
14297                   &maint_show_ada_cmdlist, "maintenance show ada ",
14298                   0/*allow-unknown*/, &maintenance_show_cmdlist);
14299 
14300   add_setshow_boolean_cmd
14301     ("ignore-descriptive-types", class_maintenance,
14302      &ada_ignore_descriptive_types_p,
14303      _("Set whether descriptive types generated by GNAT should be ignored."),
14304      _("Show whether descriptive types generated by GNAT should be ignored."),
14305      _("\
14306 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14307 DWARF attribute."),
14308      NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14309 
14310   obstack_init (&symbol_list_obstack);
14311 
14312   decoded_names_store = htab_create_alloc
14313     (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14314      NULL, xcalloc, xfree);
14315 
14316   /* The ada-lang observers.  */
14317   observer_attach_new_objfile (ada_new_objfile_observer);
14318   observer_attach_free_objfile (ada_free_objfile_observer);
14319   observer_attach_inferior_exit (ada_inferior_exit);
14320 
14321   /* Setup various context-specific data.  */
14322   ada_inferior_data
14323     = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14324   ada_pspace_data_handle
14325     = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14326 }
14327