xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/ada-lang.c (revision 53d1339bf7f9c7367b35a9e1ebe693f9b047a47b)
1 /* Ada language support routines for GDB, the GNU debugger.
2 
3    Copyright (C) 1992-2019 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "common/vec.h"
53 #include "stack.h"
54 #include "common/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57 
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66 
67 /* Define whether or not the C operator '/' truncates towards zero for
68    differently signed operands (truncation direction is undefined in C).
69    Copied from valarith.c.  */
70 
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74 
75 static struct type *desc_base_type (struct type *);
76 
77 static struct type *desc_bounds_type (struct type *);
78 
79 static struct value *desc_bounds (struct value *);
80 
81 static int fat_pntr_bounds_bitpos (struct type *);
82 
83 static int fat_pntr_bounds_bitsize (struct type *);
84 
85 static struct type *desc_data_target_type (struct type *);
86 
87 static struct value *desc_data (struct value *);
88 
89 static int fat_pntr_data_bitpos (struct type *);
90 
91 static int fat_pntr_data_bitsize (struct type *);
92 
93 static struct value *desc_one_bound (struct value *, int, int);
94 
95 static int desc_bound_bitpos (struct type *, int, int);
96 
97 static int desc_bound_bitsize (struct type *, int, int);
98 
99 static struct type *desc_index_type (struct type *, int);
100 
101 static int desc_arity (struct type *);
102 
103 static int ada_type_match (struct type *, struct type *, int);
104 
105 static int ada_args_match (struct symbol *, struct value **, int);
106 
107 static struct value *make_array_descriptor (struct type *, struct value *);
108 
109 static void ada_add_block_symbols (struct obstack *,
110 				   const struct block *,
111 				   const lookup_name_info &lookup_name,
112 				   domain_enum, struct objfile *);
113 
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 				 const lookup_name_info &lookup_name,
116 				 domain_enum, int, int *);
117 
118 static int is_nonfunction (struct block_symbol *, int);
119 
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121                              const struct block *);
122 
123 static int num_defns_collected (struct obstack *);
124 
125 static struct block_symbol *defns_collected (struct obstack *, int);
126 
127 static struct value *resolve_subexp (expression_up *, int *, int,
128                                      struct type *);
129 
130 static void replace_operator_with_call (expression_up *, int, int, int,
131                                         struct symbol *, const struct block *);
132 
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134 
135 static const char *ada_op_name (enum exp_opcode);
136 
137 static const char *ada_decoded_op_name (enum exp_opcode);
138 
139 static int numeric_type_p (struct type *);
140 
141 static int integer_type_p (struct type *);
142 
143 static int scalar_type_p (struct type *);
144 
145 static int discrete_type_p (struct type *);
146 
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 							    const char **,
149 							    int *,
150 							    const char **);
151 
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 						      const struct block *);
154 
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156                                                 int, int);
157 
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159 
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161                                                       const char *);
162 
163 static int is_dynamic_field (struct type *, int);
164 
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 						  const gdb_byte *,
167                                                   CORE_ADDR, struct value *);
168 
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170 
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172 
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175 
176 static struct value *unwrap_value (struct value *);
177 
178 static struct type *constrained_packed_array_type (struct type *, long *);
179 
180 static struct type *decode_constrained_packed_array_type (struct type *);
181 
182 static long decode_packed_array_bitsize (struct type *);
183 
184 static struct value *decode_constrained_packed_array (struct value *);
185 
186 static int ada_is_packed_array_type  (struct type *);
187 
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189 
190 static struct value *value_subscript_packed (struct value *, int,
191                                              struct value **);
192 
193 static struct value *coerce_unspec_val_to_type (struct value *,
194                                                 struct type *);
195 
196 static int lesseq_defined_than (struct symbol *, struct symbol *);
197 
198 static int equiv_types (struct type *, struct type *);
199 
200 static int is_name_suffix (const char *);
201 
202 static int advance_wild_match (const char **, const char *, int);
203 
204 static bool wild_match (const char *name, const char *patn);
205 
206 static struct value *ada_coerce_ref (struct value *);
207 
208 static LONGEST pos_atr (struct value *);
209 
210 static struct value *value_pos_atr (struct type *, struct value *);
211 
212 static struct value *value_val_atr (struct type *, struct value *);
213 
214 static struct symbol *standard_lookup (const char *, const struct block *,
215                                        domain_enum);
216 
217 static struct value *ada_search_struct_field (const char *, struct value *, int,
218                                               struct type *);
219 
220 static struct value *ada_value_primitive_field (struct value *, int, int,
221                                                 struct type *);
222 
223 static int find_struct_field (const char *, struct type *, int,
224                               struct type **, int *, int *, int *, int *);
225 
226 static int ada_resolve_function (struct block_symbol *, int,
227                                  struct value **, int, const char *,
228                                  struct type *);
229 
230 static int ada_is_direct_array_type (struct type *);
231 
232 static void ada_language_arch_info (struct gdbarch *,
233 				    struct language_arch_info *);
234 
235 static struct value *ada_index_struct_field (int, struct value *, int,
236 					     struct type *);
237 
238 static struct value *assign_aggregate (struct value *, struct value *,
239 				       struct expression *,
240 				       int *, enum noside);
241 
242 static void aggregate_assign_from_choices (struct value *, struct value *,
243 					   struct expression *,
244 					   int *, LONGEST *, int *,
245 					   int, LONGEST, LONGEST);
246 
247 static void aggregate_assign_positional (struct value *, struct value *,
248 					 struct expression *,
249 					 int *, LONGEST *, int *, int,
250 					 LONGEST, LONGEST);
251 
252 
253 static void aggregate_assign_others (struct value *, struct value *,
254 				     struct expression *,
255 				     int *, LONGEST *, int, LONGEST, LONGEST);
256 
257 
258 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
259 
260 
261 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
262 					  int *, enum noside);
263 
264 static void ada_forward_operator_length (struct expression *, int, int *,
265 					 int *);
266 
267 static struct type *ada_find_any_type (const char *name);
268 
269 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
270   (const lookup_name_info &lookup_name);
271 
272 
273 
274 /* The result of a symbol lookup to be stored in our symbol cache.  */
275 
276 struct cache_entry
277 {
278   /* The name used to perform the lookup.  */
279   const char *name;
280   /* The namespace used during the lookup.  */
281   domain_enum domain;
282   /* The symbol returned by the lookup, or NULL if no matching symbol
283      was found.  */
284   struct symbol *sym;
285   /* The block where the symbol was found, or NULL if no matching
286      symbol was found.  */
287   const struct block *block;
288   /* A pointer to the next entry with the same hash.  */
289   struct cache_entry *next;
290 };
291 
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293    lookups in the course of executing the user's commands.
294 
295    The cache is implemented using a simple, fixed-sized hash.
296    The size is fixed on the grounds that there are not likely to be
297    all that many symbols looked up during any given session, regardless
298    of the size of the symbol table.  If we decide to go to a resizable
299    table, let's just use the stuff from libiberty instead.  */
300 
301 #define HASH_SIZE 1009
302 
303 struct ada_symbol_cache
304 {
305   /* An obstack used to store the entries in our cache.  */
306   struct obstack cache_space;
307 
308   /* The root of the hash table used to implement our symbol cache.  */
309   struct cache_entry *root[HASH_SIZE];
310 };
311 
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313 
314 /* Maximum-sized dynamic type.  */
315 static unsigned int varsize_limit;
316 
317 static const char ada_completer_word_break_characters[] =
318 #ifdef VMS
319   " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
320 #else
321   " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
322 #endif
323 
324 /* The name of the symbol to use to get the name of the main subprogram.  */
325 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
326   = "__gnat_ada_main_program_name";
327 
328 /* Limit on the number of warnings to raise per expression evaluation.  */
329 static int warning_limit = 2;
330 
331 /* Number of warning messages issued; reset to 0 by cleanups after
332    expression evaluation.  */
333 static int warnings_issued = 0;
334 
335 static const char *known_runtime_file_name_patterns[] = {
336   ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337 };
338 
339 static const char *known_auxiliary_function_name_patterns[] = {
340   ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341 };
342 
343 /* Maintenance-related settings for this module.  */
344 
345 static struct cmd_list_element *maint_set_ada_cmdlist;
346 static struct cmd_list_element *maint_show_ada_cmdlist;
347 
348 /* Implement the "maintenance set ada" (prefix) command.  */
349 
350 static void
351 maint_set_ada_cmd (const char *args, int from_tty)
352 {
353   help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
354 	     gdb_stdout);
355 }
356 
357 /* Implement the "maintenance show ada" (prefix) command.  */
358 
359 static void
360 maint_show_ada_cmd (const char *args, int from_tty)
361 {
362   cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
363 }
364 
365 /* The "maintenance ada set/show ignore-descriptive-type" value.  */
366 
367 static int ada_ignore_descriptive_types_p = 0;
368 
369 			/* Inferior-specific data.  */
370 
371 /* Per-inferior data for this module.  */
372 
373 struct ada_inferior_data
374 {
375   /* The ada__tags__type_specific_data type, which is used when decoding
376      tagged types.  With older versions of GNAT, this type was directly
377      accessible through a component ("tsd") in the object tag.  But this
378      is no longer the case, so we cache it for each inferior.  */
379   struct type *tsd_type;
380 
381   /* The exception_support_info data.  This data is used to determine
382      how to implement support for Ada exception catchpoints in a given
383      inferior.  */
384   const struct exception_support_info *exception_info;
385 };
386 
387 /* Our key to this module's inferior data.  */
388 static const struct inferior_data *ada_inferior_data;
389 
390 /* A cleanup routine for our inferior data.  */
391 static void
392 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
393 {
394   struct ada_inferior_data *data;
395 
396   data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
397   if (data != NULL)
398     xfree (data);
399 }
400 
401 /* Return our inferior data for the given inferior (INF).
402 
403    This function always returns a valid pointer to an allocated
404    ada_inferior_data structure.  If INF's inferior data has not
405    been previously set, this functions creates a new one with all
406    fields set to zero, sets INF's inferior to it, and then returns
407    a pointer to that newly allocated ada_inferior_data.  */
408 
409 static struct ada_inferior_data *
410 get_ada_inferior_data (struct inferior *inf)
411 {
412   struct ada_inferior_data *data;
413 
414   data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
415   if (data == NULL)
416     {
417       data = XCNEW (struct ada_inferior_data);
418       set_inferior_data (inf, ada_inferior_data, data);
419     }
420 
421   return data;
422 }
423 
424 /* Perform all necessary cleanups regarding our module's inferior data
425    that is required after the inferior INF just exited.  */
426 
427 static void
428 ada_inferior_exit (struct inferior *inf)
429 {
430   ada_inferior_data_cleanup (inf, NULL);
431   set_inferior_data (inf, ada_inferior_data, NULL);
432 }
433 
434 
435 			/* program-space-specific data.  */
436 
437 /* This module's per-program-space data.  */
438 struct ada_pspace_data
439 {
440   /* The Ada symbol cache.  */
441   struct ada_symbol_cache *sym_cache;
442 };
443 
444 /* Key to our per-program-space data.  */
445 static const struct program_space_data *ada_pspace_data_handle;
446 
447 /* Return this module's data for the given program space (PSPACE).
448    If not is found, add a zero'ed one now.
449 
450    This function always returns a valid object.  */
451 
452 static struct ada_pspace_data *
453 get_ada_pspace_data (struct program_space *pspace)
454 {
455   struct ada_pspace_data *data;
456 
457   data = ((struct ada_pspace_data *)
458 	  program_space_data (pspace, ada_pspace_data_handle));
459   if (data == NULL)
460     {
461       data = XCNEW (struct ada_pspace_data);
462       set_program_space_data (pspace, ada_pspace_data_handle, data);
463     }
464 
465   return data;
466 }
467 
468 /* The cleanup callback for this module's per-program-space data.  */
469 
470 static void
471 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
472 {
473   struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
474 
475   if (pspace_data->sym_cache != NULL)
476     ada_free_symbol_cache (pspace_data->sym_cache);
477   xfree (pspace_data);
478 }
479 
480                         /* Utilities */
481 
482 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
483    all typedef layers have been peeled.  Otherwise, return TYPE.
484 
485    Normally, we really expect a typedef type to only have 1 typedef layer.
486    In other words, we really expect the target type of a typedef type to be
487    a non-typedef type.  This is particularly true for Ada units, because
488    the language does not have a typedef vs not-typedef distinction.
489    In that respect, the Ada compiler has been trying to eliminate as many
490    typedef definitions in the debugging information, since they generally
491    do not bring any extra information (we still use typedef under certain
492    circumstances related mostly to the GNAT encoding).
493 
494    Unfortunately, we have seen situations where the debugging information
495    generated by the compiler leads to such multiple typedef layers.  For
496    instance, consider the following example with stabs:
497 
498      .stabs  "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
499      .stabs  "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
500 
501    This is an error in the debugging information which causes type
502    pck__float_array___XUP to be defined twice, and the second time,
503    it is defined as a typedef of a typedef.
504 
505    This is on the fringe of legality as far as debugging information is
506    concerned, and certainly unexpected.  But it is easy to handle these
507    situations correctly, so we can afford to be lenient in this case.  */
508 
509 static struct type *
510 ada_typedef_target_type (struct type *type)
511 {
512   while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
513     type = TYPE_TARGET_TYPE (type);
514   return type;
515 }
516 
517 /* Given DECODED_NAME a string holding a symbol name in its
518    decoded form (ie using the Ada dotted notation), returns
519    its unqualified name.  */
520 
521 static const char *
522 ada_unqualified_name (const char *decoded_name)
523 {
524   const char *result;
525 
526   /* If the decoded name starts with '<', it means that the encoded
527      name does not follow standard naming conventions, and thus that
528      it is not your typical Ada symbol name.  Trying to unqualify it
529      is therefore pointless and possibly erroneous.  */
530   if (decoded_name[0] == '<')
531     return decoded_name;
532 
533   result = strrchr (decoded_name, '.');
534   if (result != NULL)
535     result++;                   /* Skip the dot...  */
536   else
537     result = decoded_name;
538 
539   return result;
540 }
541 
542 /* Return a string starting with '<', followed by STR, and '>'.  */
543 
544 static std::string
545 add_angle_brackets (const char *str)
546 {
547   return string_printf ("<%s>", str);
548 }
549 
550 static const char *
551 ada_get_gdb_completer_word_break_characters (void)
552 {
553   return ada_completer_word_break_characters;
554 }
555 
556 /* Print an array element index using the Ada syntax.  */
557 
558 static void
559 ada_print_array_index (struct value *index_value, struct ui_file *stream,
560                        const struct value_print_options *options)
561 {
562   LA_VALUE_PRINT (index_value, stream, options);
563   fprintf_filtered (stream, " => ");
564 }
565 
566 /* la_watch_location_expression for Ada.  */
567 
568 gdb::unique_xmalloc_ptr<char>
569 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
570 {
571   type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
572   std::string name = type_to_string (type);
573   return gdb::unique_xmalloc_ptr<char>
574     (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
575 }
576 
577 /* Assuming VECT points to an array of *SIZE objects of size
578    ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
579    updating *SIZE as necessary and returning the (new) array.  */
580 
581 void *
582 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
583 {
584   if (*size < min_size)
585     {
586       *size *= 2;
587       if (*size < min_size)
588         *size = min_size;
589       vect = xrealloc (vect, *size * element_size);
590     }
591   return vect;
592 }
593 
594 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
595    suffix of FIELD_NAME beginning "___".  */
596 
597 static int
598 field_name_match (const char *field_name, const char *target)
599 {
600   int len = strlen (target);
601 
602   return
603     (strncmp (field_name, target, len) == 0
604      && (field_name[len] == '\0'
605          || (startswith (field_name + len, "___")
606              && strcmp (field_name + strlen (field_name) - 6,
607                         "___XVN") != 0)));
608 }
609 
610 
611 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
612    a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
613    and return its index.  This function also handles fields whose name
614    have ___ suffixes because the compiler sometimes alters their name
615    by adding such a suffix to represent fields with certain constraints.
616    If the field could not be found, return a negative number if
617    MAYBE_MISSING is set.  Otherwise raise an error.  */
618 
619 int
620 ada_get_field_index (const struct type *type, const char *field_name,
621                      int maybe_missing)
622 {
623   int fieldno;
624   struct type *struct_type = check_typedef ((struct type *) type);
625 
626   for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
627     if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
628       return fieldno;
629 
630   if (!maybe_missing)
631     error (_("Unable to find field %s in struct %s.  Aborting"),
632            field_name, TYPE_NAME (struct_type));
633 
634   return -1;
635 }
636 
637 /* The length of the prefix of NAME prior to any "___" suffix.  */
638 
639 int
640 ada_name_prefix_len (const char *name)
641 {
642   if (name == NULL)
643     return 0;
644   else
645     {
646       const char *p = strstr (name, "___");
647 
648       if (p == NULL)
649         return strlen (name);
650       else
651         return p - name;
652     }
653 }
654 
655 /* Return non-zero if SUFFIX is a suffix of STR.
656    Return zero if STR is null.  */
657 
658 static int
659 is_suffix (const char *str, const char *suffix)
660 {
661   int len1, len2;
662 
663   if (str == NULL)
664     return 0;
665   len1 = strlen (str);
666   len2 = strlen (suffix);
667   return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
668 }
669 
670 /* The contents of value VAL, treated as a value of type TYPE.  The
671    result is an lval in memory if VAL is.  */
672 
673 static struct value *
674 coerce_unspec_val_to_type (struct value *val, struct type *type)
675 {
676   type = ada_check_typedef (type);
677   if (value_type (val) == type)
678     return val;
679   else
680     {
681       struct value *result;
682 
683       /* Make sure that the object size is not unreasonable before
684          trying to allocate some memory for it.  */
685       ada_ensure_varsize_limit (type);
686 
687       if (value_lazy (val)
688           || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
689 	result = allocate_value_lazy (type);
690       else
691 	{
692 	  result = allocate_value (type);
693 	  value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
694 	}
695       set_value_component_location (result, val);
696       set_value_bitsize (result, value_bitsize (val));
697       set_value_bitpos (result, value_bitpos (val));
698       set_value_address (result, value_address (val));
699       return result;
700     }
701 }
702 
703 static const gdb_byte *
704 cond_offset_host (const gdb_byte *valaddr, long offset)
705 {
706   if (valaddr == NULL)
707     return NULL;
708   else
709     return valaddr + offset;
710 }
711 
712 static CORE_ADDR
713 cond_offset_target (CORE_ADDR address, long offset)
714 {
715   if (address == 0)
716     return 0;
717   else
718     return address + offset;
719 }
720 
721 /* Issue a warning (as for the definition of warning in utils.c, but
722    with exactly one argument rather than ...), unless the limit on the
723    number of warnings has passed during the evaluation of the current
724    expression.  */
725 
726 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
727    provided by "complaint".  */
728 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
729 
730 static void
731 lim_warning (const char *format, ...)
732 {
733   va_list args;
734 
735   va_start (args, format);
736   warnings_issued += 1;
737   if (warnings_issued <= warning_limit)
738     vwarning (format, args);
739 
740   va_end (args);
741 }
742 
743 /* Issue an error if the size of an object of type T is unreasonable,
744    i.e. if it would be a bad idea to allocate a value of this type in
745    GDB.  */
746 
747 void
748 ada_ensure_varsize_limit (const struct type *type)
749 {
750   if (TYPE_LENGTH (type) > varsize_limit)
751     error (_("object size is larger than varsize-limit"));
752 }
753 
754 /* Maximum value of a SIZE-byte signed integer type.  */
755 static LONGEST
756 max_of_size (int size)
757 {
758   LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
759 
760   return top_bit | (top_bit - 1);
761 }
762 
763 /* Minimum value of a SIZE-byte signed integer type.  */
764 static LONGEST
765 min_of_size (int size)
766 {
767   return -max_of_size (size) - 1;
768 }
769 
770 /* Maximum value of a SIZE-byte unsigned integer type.  */
771 static ULONGEST
772 umax_of_size (int size)
773 {
774   ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
775 
776   return top_bit | (top_bit - 1);
777 }
778 
779 /* Maximum value of integral type T, as a signed quantity.  */
780 static LONGEST
781 max_of_type (struct type *t)
782 {
783   if (TYPE_UNSIGNED (t))
784     return (LONGEST) umax_of_size (TYPE_LENGTH (t));
785   else
786     return max_of_size (TYPE_LENGTH (t));
787 }
788 
789 /* Minimum value of integral type T, as a signed quantity.  */
790 static LONGEST
791 min_of_type (struct type *t)
792 {
793   if (TYPE_UNSIGNED (t))
794     return 0;
795   else
796     return min_of_size (TYPE_LENGTH (t));
797 }
798 
799 /* The largest value in the domain of TYPE, a discrete type, as an integer.  */
800 LONGEST
801 ada_discrete_type_high_bound (struct type *type)
802 {
803   type = resolve_dynamic_type (type, NULL, 0);
804   switch (TYPE_CODE (type))
805     {
806     case TYPE_CODE_RANGE:
807       return TYPE_HIGH_BOUND (type);
808     case TYPE_CODE_ENUM:
809       return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
810     case TYPE_CODE_BOOL:
811       return 1;
812     case TYPE_CODE_CHAR:
813     case TYPE_CODE_INT:
814       return max_of_type (type);
815     default:
816       error (_("Unexpected type in ada_discrete_type_high_bound."));
817     }
818 }
819 
820 /* The smallest value in the domain of TYPE, a discrete type, as an integer.  */
821 LONGEST
822 ada_discrete_type_low_bound (struct type *type)
823 {
824   type = resolve_dynamic_type (type, NULL, 0);
825   switch (TYPE_CODE (type))
826     {
827     case TYPE_CODE_RANGE:
828       return TYPE_LOW_BOUND (type);
829     case TYPE_CODE_ENUM:
830       return TYPE_FIELD_ENUMVAL (type, 0);
831     case TYPE_CODE_BOOL:
832       return 0;
833     case TYPE_CODE_CHAR:
834     case TYPE_CODE_INT:
835       return min_of_type (type);
836     default:
837       error (_("Unexpected type in ada_discrete_type_low_bound."));
838     }
839 }
840 
841 /* The identity on non-range types.  For range types, the underlying
842    non-range scalar type.  */
843 
844 static struct type *
845 get_base_type (struct type *type)
846 {
847   while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
848     {
849       if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
850         return type;
851       type = TYPE_TARGET_TYPE (type);
852     }
853   return type;
854 }
855 
856 /* Return a decoded version of the given VALUE.  This means returning
857    a value whose type is obtained by applying all the GNAT-specific
858    encondings, making the resulting type a static but standard description
859    of the initial type.  */
860 
861 struct value *
862 ada_get_decoded_value (struct value *value)
863 {
864   struct type *type = ada_check_typedef (value_type (value));
865 
866   if (ada_is_array_descriptor_type (type)
867       || (ada_is_constrained_packed_array_type (type)
868           && TYPE_CODE (type) != TYPE_CODE_PTR))
869     {
870       if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)  /* array access type.  */
871         value = ada_coerce_to_simple_array_ptr (value);
872       else
873         value = ada_coerce_to_simple_array (value);
874     }
875   else
876     value = ada_to_fixed_value (value);
877 
878   return value;
879 }
880 
881 /* Same as ada_get_decoded_value, but with the given TYPE.
882    Because there is no associated actual value for this type,
883    the resulting type might be a best-effort approximation in
884    the case of dynamic types.  */
885 
886 struct type *
887 ada_get_decoded_type (struct type *type)
888 {
889   type = to_static_fixed_type (type);
890   if (ada_is_constrained_packed_array_type (type))
891     type = ada_coerce_to_simple_array_type (type);
892   return type;
893 }
894 
895 
896 
897                                 /* Language Selection */
898 
899 /* If the main program is in Ada, return language_ada, otherwise return LANG
900    (the main program is in Ada iif the adainit symbol is found).  */
901 
902 enum language
903 ada_update_initial_language (enum language lang)
904 {
905   if (lookup_minimal_symbol ("adainit", (const char *) NULL,
906                              (struct objfile *) NULL).minsym != NULL)
907     return language_ada;
908 
909   return lang;
910 }
911 
912 /* If the main procedure is written in Ada, then return its name.
913    The result is good until the next call.  Return NULL if the main
914    procedure doesn't appear to be in Ada.  */
915 
916 char *
917 ada_main_name (void)
918 {
919   struct bound_minimal_symbol msym;
920   static gdb::unique_xmalloc_ptr<char> main_program_name;
921 
922   /* For Ada, the name of the main procedure is stored in a specific
923      string constant, generated by the binder.  Look for that symbol,
924      extract its address, and then read that string.  If we didn't find
925      that string, then most probably the main procedure is not written
926      in Ada.  */
927   msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
928 
929   if (msym.minsym != NULL)
930     {
931       CORE_ADDR main_program_name_addr;
932       int err_code;
933 
934       main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
935       if (main_program_name_addr == 0)
936         error (_("Invalid address for Ada main program name."));
937 
938       target_read_string (main_program_name_addr, &main_program_name,
939                           1024, &err_code);
940 
941       if (err_code != 0)
942         return NULL;
943       return main_program_name.get ();
944     }
945 
946   /* The main procedure doesn't seem to be in Ada.  */
947   return NULL;
948 }
949 
950                                 /* Symbols */
951 
952 /* Table of Ada operators and their GNAT-encoded names.  Last entry is pair
953    of NULLs.  */
954 
955 const struct ada_opname_map ada_opname_table[] = {
956   {"Oadd", "\"+\"", BINOP_ADD},
957   {"Osubtract", "\"-\"", BINOP_SUB},
958   {"Omultiply", "\"*\"", BINOP_MUL},
959   {"Odivide", "\"/\"", BINOP_DIV},
960   {"Omod", "\"mod\"", BINOP_MOD},
961   {"Orem", "\"rem\"", BINOP_REM},
962   {"Oexpon", "\"**\"", BINOP_EXP},
963   {"Olt", "\"<\"", BINOP_LESS},
964   {"Ole", "\"<=\"", BINOP_LEQ},
965   {"Ogt", "\">\"", BINOP_GTR},
966   {"Oge", "\">=\"", BINOP_GEQ},
967   {"Oeq", "\"=\"", BINOP_EQUAL},
968   {"One", "\"/=\"", BINOP_NOTEQUAL},
969   {"Oand", "\"and\"", BINOP_BITWISE_AND},
970   {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971   {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972   {"Oconcat", "\"&\"", BINOP_CONCAT},
973   {"Oabs", "\"abs\"", UNOP_ABS},
974   {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975   {"Oadd", "\"+\"", UNOP_PLUS},
976   {"Osubtract", "\"-\"", UNOP_NEG},
977   {NULL, NULL}
978 };
979 
980 /* The "encoded" form of DECODED, according to GNAT conventions.  The
981    result is valid until the next call to ada_encode.  If
982    THROW_ERRORS, throw an error if invalid operator name is found.
983    Otherwise, return NULL in that case.  */
984 
985 static char *
986 ada_encode_1 (const char *decoded, bool throw_errors)
987 {
988   static char *encoding_buffer = NULL;
989   static size_t encoding_buffer_size = 0;
990   const char *p;
991   int k;
992 
993   if (decoded == NULL)
994     return NULL;
995 
996   GROW_VECT (encoding_buffer, encoding_buffer_size,
997              2 * strlen (decoded) + 10);
998 
999   k = 0;
1000   for (p = decoded; *p != '\0'; p += 1)
1001     {
1002       if (*p == '.')
1003         {
1004           encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1005           k += 2;
1006         }
1007       else if (*p == '"')
1008         {
1009           const struct ada_opname_map *mapping;
1010 
1011           for (mapping = ada_opname_table;
1012                mapping->encoded != NULL
1013                && !startswith (p, mapping->decoded); mapping += 1)
1014             ;
1015           if (mapping->encoded == NULL)
1016 	    {
1017 	      if (throw_errors)
1018 		error (_("invalid Ada operator name: %s"), p);
1019 	      else
1020 		return NULL;
1021 	    }
1022           strcpy (encoding_buffer + k, mapping->encoded);
1023           k += strlen (mapping->encoded);
1024           break;
1025         }
1026       else
1027         {
1028           encoding_buffer[k] = *p;
1029           k += 1;
1030         }
1031     }
1032 
1033   encoding_buffer[k] = '\0';
1034   return encoding_buffer;
1035 }
1036 
1037 /* The "encoded" form of DECODED, according to GNAT conventions.
1038    The result is valid until the next call to ada_encode.  */
1039 
1040 char *
1041 ada_encode (const char *decoded)
1042 {
1043   return ada_encode_1 (decoded, true);
1044 }
1045 
1046 /* Return NAME folded to lower case, or, if surrounded by single
1047    quotes, unfolded, but with the quotes stripped away.  Result good
1048    to next call.  */
1049 
1050 char *
1051 ada_fold_name (const char *name)
1052 {
1053   static char *fold_buffer = NULL;
1054   static size_t fold_buffer_size = 0;
1055 
1056   int len = strlen (name);
1057   GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1058 
1059   if (name[0] == '\'')
1060     {
1061       strncpy (fold_buffer, name + 1, len - 2);
1062       fold_buffer[len - 2] = '\000';
1063     }
1064   else
1065     {
1066       int i;
1067 
1068       for (i = 0; i <= len; i += 1)
1069         fold_buffer[i] = tolower (name[i]);
1070     }
1071 
1072   return fold_buffer;
1073 }
1074 
1075 /* Return nonzero if C is either a digit or a lowercase alphabet character.  */
1076 
1077 static int
1078 is_lower_alphanum (const char c)
1079 {
1080   return (isdigit (c) || (isalpha (c) && islower (c)));
1081 }
1082 
1083 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1084    This function saves in LEN the length of that same symbol name but
1085    without either of these suffixes:
1086      . .{DIGIT}+
1087      . ${DIGIT}+
1088      . ___{DIGIT}+
1089      . __{DIGIT}+.
1090 
1091    These are suffixes introduced by the compiler for entities such as
1092    nested subprogram for instance, in order to avoid name clashes.
1093    They do not serve any purpose for the debugger.  */
1094 
1095 static void
1096 ada_remove_trailing_digits (const char *encoded, int *len)
1097 {
1098   if (*len > 1 && isdigit (encoded[*len - 1]))
1099     {
1100       int i = *len - 2;
1101 
1102       while (i > 0 && isdigit (encoded[i]))
1103         i--;
1104       if (i >= 0 && encoded[i] == '.')
1105         *len = i;
1106       else if (i >= 0 && encoded[i] == '$')
1107         *len = i;
1108       else if (i >= 2 && startswith (encoded + i - 2, "___"))
1109         *len = i - 2;
1110       else if (i >= 1 && startswith (encoded + i - 1, "__"))
1111         *len = i - 1;
1112     }
1113 }
1114 
1115 /* Remove the suffix introduced by the compiler for protected object
1116    subprograms.  */
1117 
1118 static void
1119 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1120 {
1121   /* Remove trailing N.  */
1122 
1123   /* Protected entry subprograms are broken into two
1124      separate subprograms: The first one is unprotected, and has
1125      a 'N' suffix; the second is the protected version, and has
1126      the 'P' suffix.  The second calls the first one after handling
1127      the protection.  Since the P subprograms are internally generated,
1128      we leave these names undecoded, giving the user a clue that this
1129      entity is internal.  */
1130 
1131   if (*len > 1
1132       && encoded[*len - 1] == 'N'
1133       && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1134     *len = *len - 1;
1135 }
1136 
1137 /* Remove trailing X[bn]* suffixes (indicating names in package bodies).  */
1138 
1139 static void
1140 ada_remove_Xbn_suffix (const char *encoded, int *len)
1141 {
1142   int i = *len - 1;
1143 
1144   while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1145     i--;
1146 
1147   if (encoded[i] != 'X')
1148     return;
1149 
1150   if (i == 0)
1151     return;
1152 
1153   if (isalnum (encoded[i-1]))
1154     *len = i;
1155 }
1156 
1157 /* If ENCODED follows the GNAT entity encoding conventions, then return
1158    the decoded form of ENCODED.  Otherwise, return "<%s>" where "%s" is
1159    replaced by ENCODED.
1160 
1161    The resulting string is valid until the next call of ada_decode.
1162    If the string is unchanged by decoding, the original string pointer
1163    is returned.  */
1164 
1165 const char *
1166 ada_decode (const char *encoded)
1167 {
1168   int i, j;
1169   int len0;
1170   const char *p;
1171   char *decoded;
1172   int at_start_name;
1173   static char *decoding_buffer = NULL;
1174   static size_t decoding_buffer_size = 0;
1175 
1176   /* With function descriptors on PPC64, the value of a symbol named
1177      ".FN", if it exists, is the entry point of the function "FN".  */
1178   if (encoded[0] == '.')
1179     encoded += 1;
1180 
1181   /* The name of the Ada main procedure starts with "_ada_".
1182      This prefix is not part of the decoded name, so skip this part
1183      if we see this prefix.  */
1184   if (startswith (encoded, "_ada_"))
1185     encoded += 5;
1186 
1187   /* If the name starts with '_', then it is not a properly encoded
1188      name, so do not attempt to decode it.  Similarly, if the name
1189      starts with '<', the name should not be decoded.  */
1190   if (encoded[0] == '_' || encoded[0] == '<')
1191     goto Suppress;
1192 
1193   len0 = strlen (encoded);
1194 
1195   ada_remove_trailing_digits (encoded, &len0);
1196   ada_remove_po_subprogram_suffix (encoded, &len0);
1197 
1198   /* Remove the ___X.* suffix if present.  Do not forget to verify that
1199      the suffix is located before the current "end" of ENCODED.  We want
1200      to avoid re-matching parts of ENCODED that have previously been
1201      marked as discarded (by decrementing LEN0).  */
1202   p = strstr (encoded, "___");
1203   if (p != NULL && p - encoded < len0 - 3)
1204     {
1205       if (p[3] == 'X')
1206         len0 = p - encoded;
1207       else
1208         goto Suppress;
1209     }
1210 
1211   /* Remove any trailing TKB suffix.  It tells us that this symbol
1212      is for the body of a task, but that information does not actually
1213      appear in the decoded name.  */
1214 
1215   if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1216     len0 -= 3;
1217 
1218   /* Remove any trailing TB suffix.  The TB suffix is slightly different
1219      from the TKB suffix because it is used for non-anonymous task
1220      bodies.  */
1221 
1222   if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1223     len0 -= 2;
1224 
1225   /* Remove trailing "B" suffixes.  */
1226   /* FIXME: brobecker/2006-04-19: Not sure what this are used for...  */
1227 
1228   if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1229     len0 -= 1;
1230 
1231   /* Make decoded big enough for possible expansion by operator name.  */
1232 
1233   GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1234   decoded = decoding_buffer;
1235 
1236   /* Remove trailing __{digit}+ or trailing ${digit}+.  */
1237 
1238   if (len0 > 1 && isdigit (encoded[len0 - 1]))
1239     {
1240       i = len0 - 2;
1241       while ((i >= 0 && isdigit (encoded[i]))
1242              || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1243         i -= 1;
1244       if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1245         len0 = i - 1;
1246       else if (encoded[i] == '$')
1247         len0 = i;
1248     }
1249 
1250   /* The first few characters that are not alphabetic are not part
1251      of any encoding we use, so we can copy them over verbatim.  */
1252 
1253   for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1254     decoded[j] = encoded[i];
1255 
1256   at_start_name = 1;
1257   while (i < len0)
1258     {
1259       /* Is this a symbol function?  */
1260       if (at_start_name && encoded[i] == 'O')
1261         {
1262           int k;
1263 
1264           for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1265             {
1266               int op_len = strlen (ada_opname_table[k].encoded);
1267               if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1268                             op_len - 1) == 0)
1269                   && !isalnum (encoded[i + op_len]))
1270                 {
1271                   strcpy (decoded + j, ada_opname_table[k].decoded);
1272                   at_start_name = 0;
1273                   i += op_len;
1274                   j += strlen (ada_opname_table[k].decoded);
1275                   break;
1276                 }
1277             }
1278           if (ada_opname_table[k].encoded != NULL)
1279             continue;
1280         }
1281       at_start_name = 0;
1282 
1283       /* Replace "TK__" with "__", which will eventually be translated
1284          into "." (just below).  */
1285 
1286       if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1287         i += 2;
1288 
1289       /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1290          be translated into "." (just below).  These are internal names
1291          generated for anonymous blocks inside which our symbol is nested.  */
1292 
1293       if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1294           && encoded [i+2] == 'B' && encoded [i+3] == '_'
1295           && isdigit (encoded [i+4]))
1296         {
1297           int k = i + 5;
1298 
1299           while (k < len0 && isdigit (encoded[k]))
1300             k++;  /* Skip any extra digit.  */
1301 
1302           /* Double-check that the "__B_{DIGITS}+" sequence we found
1303              is indeed followed by "__".  */
1304           if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1305             i = k;
1306         }
1307 
1308       /* Remove _E{DIGITS}+[sb] */
1309 
1310       /* Just as for protected object subprograms, there are 2 categories
1311          of subprograms created by the compiler for each entry.  The first
1312          one implements the actual entry code, and has a suffix following
1313          the convention above; the second one implements the barrier and
1314          uses the same convention as above, except that the 'E' is replaced
1315          by a 'B'.
1316 
1317          Just as above, we do not decode the name of barrier functions
1318          to give the user a clue that the code he is debugging has been
1319          internally generated.  */
1320 
1321       if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1322           && isdigit (encoded[i+2]))
1323         {
1324           int k = i + 3;
1325 
1326           while (k < len0 && isdigit (encoded[k]))
1327             k++;
1328 
1329           if (k < len0
1330               && (encoded[k] == 'b' || encoded[k] == 's'))
1331             {
1332               k++;
1333               /* Just as an extra precaution, make sure that if this
1334                  suffix is followed by anything else, it is a '_'.
1335                  Otherwise, we matched this sequence by accident.  */
1336               if (k == len0
1337                   || (k < len0 && encoded[k] == '_'))
1338                 i = k;
1339             }
1340         }
1341 
1342       /* Remove trailing "N" in [a-z0-9]+N__.  The N is added by
1343          the GNAT front-end in protected object subprograms.  */
1344 
1345       if (i < len0 + 3
1346           && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1347         {
1348           /* Backtrack a bit up until we reach either the begining of
1349              the encoded name, or "__".  Make sure that we only find
1350              digits or lowercase characters.  */
1351           const char *ptr = encoded + i - 1;
1352 
1353           while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1354             ptr--;
1355           if (ptr < encoded
1356               || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1357             i++;
1358         }
1359 
1360       if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1361         {
1362           /* This is a X[bn]* sequence not separated from the previous
1363              part of the name with a non-alpha-numeric character (in other
1364              words, immediately following an alpha-numeric character), then
1365              verify that it is placed at the end of the encoded name.  If
1366              not, then the encoding is not valid and we should abort the
1367              decoding.  Otherwise, just skip it, it is used in body-nested
1368              package names.  */
1369           do
1370             i += 1;
1371           while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1372           if (i < len0)
1373             goto Suppress;
1374         }
1375       else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1376         {
1377          /* Replace '__' by '.'.  */
1378           decoded[j] = '.';
1379           at_start_name = 1;
1380           i += 2;
1381           j += 1;
1382         }
1383       else
1384         {
1385           /* It's a character part of the decoded name, so just copy it
1386              over.  */
1387           decoded[j] = encoded[i];
1388           i += 1;
1389           j += 1;
1390         }
1391     }
1392   decoded[j] = '\000';
1393 
1394   /* Decoded names should never contain any uppercase character.
1395      Double-check this, and abort the decoding if we find one.  */
1396 
1397   for (i = 0; decoded[i] != '\0'; i += 1)
1398     if (isupper (decoded[i]) || decoded[i] == ' ')
1399       goto Suppress;
1400 
1401   if (strcmp (decoded, encoded) == 0)
1402     return encoded;
1403   else
1404     return decoded;
1405 
1406 Suppress:
1407   GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1408   decoded = decoding_buffer;
1409   if (encoded[0] == '<')
1410     strcpy (decoded, encoded);
1411   else
1412     xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1413   return decoded;
1414 
1415 }
1416 
1417 /* Table for keeping permanent unique copies of decoded names.  Once
1418    allocated, names in this table are never released.  While this is a
1419    storage leak, it should not be significant unless there are massive
1420    changes in the set of decoded names in successive versions of a
1421    symbol table loaded during a single session.  */
1422 static struct htab *decoded_names_store;
1423 
1424 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1425    in the language-specific part of GSYMBOL, if it has not been
1426    previously computed.  Tries to save the decoded name in the same
1427    obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1428    in any case, the decoded symbol has a lifetime at least that of
1429    GSYMBOL).
1430    The GSYMBOL parameter is "mutable" in the C++ sense: logically
1431    const, but nevertheless modified to a semantically equivalent form
1432    when a decoded name is cached in it.  */
1433 
1434 const char *
1435 ada_decode_symbol (const struct general_symbol_info *arg)
1436 {
1437   struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1438   const char **resultp =
1439     &gsymbol->language_specific.demangled_name;
1440 
1441   if (!gsymbol->ada_mangled)
1442     {
1443       const char *decoded = ada_decode (gsymbol->name);
1444       struct obstack *obstack = gsymbol->language_specific.obstack;
1445 
1446       gsymbol->ada_mangled = 1;
1447 
1448       if (obstack != NULL)
1449 	*resultp
1450 	  = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1451       else
1452         {
1453 	  /* Sometimes, we can't find a corresponding objfile, in
1454 	     which case, we put the result on the heap.  Since we only
1455 	     decode when needed, we hope this usually does not cause a
1456 	     significant memory leak (FIXME).  */
1457 
1458           char **slot = (char **) htab_find_slot (decoded_names_store,
1459                                                   decoded, INSERT);
1460 
1461           if (*slot == NULL)
1462             *slot = xstrdup (decoded);
1463           *resultp = *slot;
1464         }
1465     }
1466 
1467   return *resultp;
1468 }
1469 
1470 static char *
1471 ada_la_decode (const char *encoded, int options)
1472 {
1473   return xstrdup (ada_decode (encoded));
1474 }
1475 
1476 /* Implement la_sniff_from_mangled_name for Ada.  */
1477 
1478 static int
1479 ada_sniff_from_mangled_name (const char *mangled, char **out)
1480 {
1481   const char *demangled = ada_decode (mangled);
1482 
1483   *out = NULL;
1484 
1485   if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1486     {
1487       /* Set the gsymbol language to Ada, but still return 0.
1488 	 Two reasons for that:
1489 
1490 	 1. For Ada, we prefer computing the symbol's decoded name
1491 	 on the fly rather than pre-compute it, in order to save
1492 	 memory (Ada projects are typically very large).
1493 
1494 	 2. There are some areas in the definition of the GNAT
1495 	 encoding where, with a bit of bad luck, we might be able
1496 	 to decode a non-Ada symbol, generating an incorrect
1497 	 demangled name (Eg: names ending with "TB" for instance
1498 	 are identified as task bodies and so stripped from
1499 	 the decoded name returned).
1500 
1501 	 Returning 1, here, but not setting *DEMANGLED, helps us get a
1502 	 little bit of the best of both worlds.  Because we're last,
1503 	 we should not affect any of the other languages that were
1504 	 able to demangle the symbol before us; we get to correctly
1505 	 tag Ada symbols as such; and even if we incorrectly tagged a
1506 	 non-Ada symbol, which should be rare, any routing through the
1507 	 Ada language should be transparent (Ada tries to behave much
1508 	 like C/C++ with non-Ada symbols).  */
1509       return 1;
1510     }
1511 
1512   return 0;
1513 }
1514 
1515 
1516 
1517                                 /* Arrays */
1518 
1519 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1520    generated by the GNAT compiler to describe the index type used
1521    for each dimension of an array, check whether it follows the latest
1522    known encoding.  If not, fix it up to conform to the latest encoding.
1523    Otherwise, do nothing.  This function also does nothing if
1524    INDEX_DESC_TYPE is NULL.
1525 
1526    The GNAT encoding used to describle the array index type evolved a bit.
1527    Initially, the information would be provided through the name of each
1528    field of the structure type only, while the type of these fields was
1529    described as unspecified and irrelevant.  The debugger was then expected
1530    to perform a global type lookup using the name of that field in order
1531    to get access to the full index type description.  Because these global
1532    lookups can be very expensive, the encoding was later enhanced to make
1533    the global lookup unnecessary by defining the field type as being
1534    the full index type description.
1535 
1536    The purpose of this routine is to allow us to support older versions
1537    of the compiler by detecting the use of the older encoding, and by
1538    fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1539    we essentially replace each field's meaningless type by the associated
1540    index subtype).  */
1541 
1542 void
1543 ada_fixup_array_indexes_type (struct type *index_desc_type)
1544 {
1545   int i;
1546 
1547   if (index_desc_type == NULL)
1548     return;
1549   gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1550 
1551   /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1552      to check one field only, no need to check them all).  If not, return
1553      now.
1554 
1555      If our INDEX_DESC_TYPE was generated using the older encoding,
1556      the field type should be a meaningless integer type whose name
1557      is not equal to the field name.  */
1558   if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1559       && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1560                  TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1561     return;
1562 
1563   /* Fixup each field of INDEX_DESC_TYPE.  */
1564   for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1565    {
1566      const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1567      struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1568 
1569      if (raw_type)
1570        TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1571    }
1572 }
1573 
1574 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors.  */
1575 
1576 static const char *bound_name[] = {
1577   "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1578   "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1579 };
1580 
1581 /* Maximum number of array dimensions we are prepared to handle.  */
1582 
1583 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1584 
1585 
1586 /* The desc_* routines return primitive portions of array descriptors
1587    (fat pointers).  */
1588 
1589 /* The descriptor or array type, if any, indicated by TYPE; removes
1590    level of indirection, if needed.  */
1591 
1592 static struct type *
1593 desc_base_type (struct type *type)
1594 {
1595   if (type == NULL)
1596     return NULL;
1597   type = ada_check_typedef (type);
1598   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1599     type = ada_typedef_target_type (type);
1600 
1601   if (type != NULL
1602       && (TYPE_CODE (type) == TYPE_CODE_PTR
1603           || TYPE_CODE (type) == TYPE_CODE_REF))
1604     return ada_check_typedef (TYPE_TARGET_TYPE (type));
1605   else
1606     return type;
1607 }
1608 
1609 /* True iff TYPE indicates a "thin" array pointer type.  */
1610 
1611 static int
1612 is_thin_pntr (struct type *type)
1613 {
1614   return
1615     is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1616     || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1617 }
1618 
1619 /* The descriptor type for thin pointer type TYPE.  */
1620 
1621 static struct type *
1622 thin_descriptor_type (struct type *type)
1623 {
1624   struct type *base_type = desc_base_type (type);
1625 
1626   if (base_type == NULL)
1627     return NULL;
1628   if (is_suffix (ada_type_name (base_type), "___XVE"))
1629     return base_type;
1630   else
1631     {
1632       struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1633 
1634       if (alt_type == NULL)
1635         return base_type;
1636       else
1637         return alt_type;
1638     }
1639 }
1640 
1641 /* A pointer to the array data for thin-pointer value VAL.  */
1642 
1643 static struct value *
1644 thin_data_pntr (struct value *val)
1645 {
1646   struct type *type = ada_check_typedef (value_type (val));
1647   struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1648 
1649   data_type = lookup_pointer_type (data_type);
1650 
1651   if (TYPE_CODE (type) == TYPE_CODE_PTR)
1652     return value_cast (data_type, value_copy (val));
1653   else
1654     return value_from_longest (data_type, value_address (val));
1655 }
1656 
1657 /* True iff TYPE indicates a "thick" array pointer type.  */
1658 
1659 static int
1660 is_thick_pntr (struct type *type)
1661 {
1662   type = desc_base_type (type);
1663   return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1664           && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1665 }
1666 
1667 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1668    pointer to one, the type of its bounds data; otherwise, NULL.  */
1669 
1670 static struct type *
1671 desc_bounds_type (struct type *type)
1672 {
1673   struct type *r;
1674 
1675   type = desc_base_type (type);
1676 
1677   if (type == NULL)
1678     return NULL;
1679   else if (is_thin_pntr (type))
1680     {
1681       type = thin_descriptor_type (type);
1682       if (type == NULL)
1683         return NULL;
1684       r = lookup_struct_elt_type (type, "BOUNDS", 1);
1685       if (r != NULL)
1686         return ada_check_typedef (r);
1687     }
1688   else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1689     {
1690       r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1691       if (r != NULL)
1692         return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1693     }
1694   return NULL;
1695 }
1696 
1697 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1698    one, a pointer to its bounds data.   Otherwise NULL.  */
1699 
1700 static struct value *
1701 desc_bounds (struct value *arr)
1702 {
1703   struct type *type = ada_check_typedef (value_type (arr));
1704 
1705   if (is_thin_pntr (type))
1706     {
1707       struct type *bounds_type =
1708         desc_bounds_type (thin_descriptor_type (type));
1709       LONGEST addr;
1710 
1711       if (bounds_type == NULL)
1712         error (_("Bad GNAT array descriptor"));
1713 
1714       /* NOTE: The following calculation is not really kosher, but
1715          since desc_type is an XVE-encoded type (and shouldn't be),
1716          the correct calculation is a real pain.  FIXME (and fix GCC).  */
1717       if (TYPE_CODE (type) == TYPE_CODE_PTR)
1718         addr = value_as_long (arr);
1719       else
1720         addr = value_address (arr);
1721 
1722       return
1723         value_from_longest (lookup_pointer_type (bounds_type),
1724                             addr - TYPE_LENGTH (bounds_type));
1725     }
1726 
1727   else if (is_thick_pntr (type))
1728     {
1729       struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1730 					       _("Bad GNAT array descriptor"));
1731       struct type *p_bounds_type = value_type (p_bounds);
1732 
1733       if (p_bounds_type
1734 	  && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1735 	{
1736 	  struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1737 
1738 	  if (TYPE_STUB (target_type))
1739 	    p_bounds = value_cast (lookup_pointer_type
1740 				   (ada_check_typedef (target_type)),
1741 				   p_bounds);
1742 	}
1743       else
1744 	error (_("Bad GNAT array descriptor"));
1745 
1746       return p_bounds;
1747     }
1748   else
1749     return NULL;
1750 }
1751 
1752 /* If TYPE is the type of an array-descriptor (fat pointer),  the bit
1753    position of the field containing the address of the bounds data.  */
1754 
1755 static int
1756 fat_pntr_bounds_bitpos (struct type *type)
1757 {
1758   return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1759 }
1760 
1761 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1762    size of the field containing the address of the bounds data.  */
1763 
1764 static int
1765 fat_pntr_bounds_bitsize (struct type *type)
1766 {
1767   type = desc_base_type (type);
1768 
1769   if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1770     return TYPE_FIELD_BITSIZE (type, 1);
1771   else
1772     return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1773 }
1774 
1775 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1776    pointer to one, the type of its array data (a array-with-no-bounds type);
1777    otherwise, NULL.  Use ada_type_of_array to get an array type with bounds
1778    data.  */
1779 
1780 static struct type *
1781 desc_data_target_type (struct type *type)
1782 {
1783   type = desc_base_type (type);
1784 
1785   /* NOTE: The following is bogus; see comment in desc_bounds.  */
1786   if (is_thin_pntr (type))
1787     return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1788   else if (is_thick_pntr (type))
1789     {
1790       struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1791 
1792       if (data_type
1793 	  && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1794 	return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1795     }
1796 
1797   return NULL;
1798 }
1799 
1800 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1801    its array data.  */
1802 
1803 static struct value *
1804 desc_data (struct value *arr)
1805 {
1806   struct type *type = value_type (arr);
1807 
1808   if (is_thin_pntr (type))
1809     return thin_data_pntr (arr);
1810   else if (is_thick_pntr (type))
1811     return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1812                              _("Bad GNAT array descriptor"));
1813   else
1814     return NULL;
1815 }
1816 
1817 
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819    position of the field containing the address of the data.  */
1820 
1821 static int
1822 fat_pntr_data_bitpos (struct type *type)
1823 {
1824   return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1825 }
1826 
1827 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1828    size of the field containing the address of the data.  */
1829 
1830 static int
1831 fat_pntr_data_bitsize (struct type *type)
1832 {
1833   type = desc_base_type (type);
1834 
1835   if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1836     return TYPE_FIELD_BITSIZE (type, 0);
1837   else
1838     return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1839 }
1840 
1841 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1842    the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1843    bound, if WHICH is 1.  The first bound is I=1.  */
1844 
1845 static struct value *
1846 desc_one_bound (struct value *bounds, int i, int which)
1847 {
1848   return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1849                            _("Bad GNAT array descriptor bounds"));
1850 }
1851 
1852 /* If BOUNDS is an array-bounds structure type, return the bit position
1853    of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1854    bound, if WHICH is 1.  The first bound is I=1.  */
1855 
1856 static int
1857 desc_bound_bitpos (struct type *type, int i, int which)
1858 {
1859   return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1860 }
1861 
1862 /* If BOUNDS is an array-bounds structure type, return the bit field size
1863    of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1864    bound, if WHICH is 1.  The first bound is I=1.  */
1865 
1866 static int
1867 desc_bound_bitsize (struct type *type, int i, int which)
1868 {
1869   type = desc_base_type (type);
1870 
1871   if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1872     return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1873   else
1874     return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1875 }
1876 
1877 /* If TYPE is the type of an array-bounds structure, the type of its
1878    Ith bound (numbering from 1).  Otherwise, NULL.  */
1879 
1880 static struct type *
1881 desc_index_type (struct type *type, int i)
1882 {
1883   type = desc_base_type (type);
1884 
1885   if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1886     return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1887   else
1888     return NULL;
1889 }
1890 
1891 /* The number of index positions in the array-bounds type TYPE.
1892    Return 0 if TYPE is NULL.  */
1893 
1894 static int
1895 desc_arity (struct type *type)
1896 {
1897   type = desc_base_type (type);
1898 
1899   if (type != NULL)
1900     return TYPE_NFIELDS (type) / 2;
1901   return 0;
1902 }
1903 
1904 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1905    an array descriptor type (representing an unconstrained array
1906    type).  */
1907 
1908 static int
1909 ada_is_direct_array_type (struct type *type)
1910 {
1911   if (type == NULL)
1912     return 0;
1913   type = ada_check_typedef (type);
1914   return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1915           || ada_is_array_descriptor_type (type));
1916 }
1917 
1918 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1919  * to one.  */
1920 
1921 static int
1922 ada_is_array_type (struct type *type)
1923 {
1924   while (type != NULL
1925 	 && (TYPE_CODE (type) == TYPE_CODE_PTR
1926 	     || TYPE_CODE (type) == TYPE_CODE_REF))
1927     type = TYPE_TARGET_TYPE (type);
1928   return ada_is_direct_array_type (type);
1929 }
1930 
1931 /* Non-zero iff TYPE is a simple array type or pointer to one.  */
1932 
1933 int
1934 ada_is_simple_array_type (struct type *type)
1935 {
1936   if (type == NULL)
1937     return 0;
1938   type = ada_check_typedef (type);
1939   return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1940           || (TYPE_CODE (type) == TYPE_CODE_PTR
1941               && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1942                  == TYPE_CODE_ARRAY));
1943 }
1944 
1945 /* Non-zero iff TYPE belongs to a GNAT array descriptor.  */
1946 
1947 int
1948 ada_is_array_descriptor_type (struct type *type)
1949 {
1950   struct type *data_type = desc_data_target_type (type);
1951 
1952   if (type == NULL)
1953     return 0;
1954   type = ada_check_typedef (type);
1955   return (data_type != NULL
1956 	  && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1957 	  && desc_arity (desc_bounds_type (type)) > 0);
1958 }
1959 
1960 /* Non-zero iff type is a partially mal-formed GNAT array
1961    descriptor.  FIXME: This is to compensate for some problems with
1962    debugging output from GNAT.  Re-examine periodically to see if it
1963    is still needed.  */
1964 
1965 int
1966 ada_is_bogus_array_descriptor (struct type *type)
1967 {
1968   return
1969     type != NULL
1970     && TYPE_CODE (type) == TYPE_CODE_STRUCT
1971     && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1972         || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1973     && !ada_is_array_descriptor_type (type);
1974 }
1975 
1976 
1977 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1978    (fat pointer) returns the type of the array data described---specifically,
1979    a pointer-to-array type.  If BOUNDS is non-zero, the bounds data are filled
1980    in from the descriptor; otherwise, they are left unspecified.  If
1981    the ARR denotes a null array descriptor and BOUNDS is non-zero,
1982    returns NULL.  The result is simply the type of ARR if ARR is not
1983    a descriptor.  */
1984 struct type *
1985 ada_type_of_array (struct value *arr, int bounds)
1986 {
1987   if (ada_is_constrained_packed_array_type (value_type (arr)))
1988     return decode_constrained_packed_array_type (value_type (arr));
1989 
1990   if (!ada_is_array_descriptor_type (value_type (arr)))
1991     return value_type (arr);
1992 
1993   if (!bounds)
1994     {
1995       struct type *array_type =
1996 	ada_check_typedef (desc_data_target_type (value_type (arr)));
1997 
1998       if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1999 	TYPE_FIELD_BITSIZE (array_type, 0) =
2000 	  decode_packed_array_bitsize (value_type (arr));
2001 
2002       return array_type;
2003     }
2004   else
2005     {
2006       struct type *elt_type;
2007       int arity;
2008       struct value *descriptor;
2009 
2010       elt_type = ada_array_element_type (value_type (arr), -1);
2011       arity = ada_array_arity (value_type (arr));
2012 
2013       if (elt_type == NULL || arity == 0)
2014         return ada_check_typedef (value_type (arr));
2015 
2016       descriptor = desc_bounds (arr);
2017       if (value_as_long (descriptor) == 0)
2018         return NULL;
2019       while (arity > 0)
2020         {
2021           struct type *range_type = alloc_type_copy (value_type (arr));
2022           struct type *array_type = alloc_type_copy (value_type (arr));
2023           struct value *low = desc_one_bound (descriptor, arity, 0);
2024           struct value *high = desc_one_bound (descriptor, arity, 1);
2025 
2026           arity -= 1;
2027           create_static_range_type (range_type, value_type (low),
2028 				    longest_to_int (value_as_long (low)),
2029 				    longest_to_int (value_as_long (high)));
2030           elt_type = create_array_type (array_type, elt_type, range_type);
2031 
2032 	  if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2033 	    {
2034 	      /* We need to store the element packed bitsize, as well as
2035 	         recompute the array size, because it was previously
2036 		 computed based on the unpacked element size.  */
2037 	      LONGEST lo = value_as_long (low);
2038 	      LONGEST hi = value_as_long (high);
2039 
2040 	      TYPE_FIELD_BITSIZE (elt_type, 0) =
2041 		decode_packed_array_bitsize (value_type (arr));
2042 	      /* If the array has no element, then the size is already
2043 	         zero, and does not need to be recomputed.  */
2044 	      if (lo < hi)
2045 		{
2046 		  int array_bitsize =
2047 		        (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2048 
2049 		  TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2050 		}
2051 	    }
2052         }
2053 
2054       return lookup_pointer_type (elt_type);
2055     }
2056 }
2057 
2058 /* If ARR does not represent an array, returns ARR unchanged.
2059    Otherwise, returns either a standard GDB array with bounds set
2060    appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2061    GDB array.  Returns NULL if ARR is a null fat pointer.  */
2062 
2063 struct value *
2064 ada_coerce_to_simple_array_ptr (struct value *arr)
2065 {
2066   if (ada_is_array_descriptor_type (value_type (arr)))
2067     {
2068       struct type *arrType = ada_type_of_array (arr, 1);
2069 
2070       if (arrType == NULL)
2071         return NULL;
2072       return value_cast (arrType, value_copy (desc_data (arr)));
2073     }
2074   else if (ada_is_constrained_packed_array_type (value_type (arr)))
2075     return decode_constrained_packed_array (arr);
2076   else
2077     return arr;
2078 }
2079 
2080 /* If ARR does not represent an array, returns ARR unchanged.
2081    Otherwise, returns a standard GDB array describing ARR (which may
2082    be ARR itself if it already is in the proper form).  */
2083 
2084 struct value *
2085 ada_coerce_to_simple_array (struct value *arr)
2086 {
2087   if (ada_is_array_descriptor_type (value_type (arr)))
2088     {
2089       struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2090 
2091       if (arrVal == NULL)
2092         error (_("Bounds unavailable for null array pointer."));
2093       ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2094       return value_ind (arrVal);
2095     }
2096   else if (ada_is_constrained_packed_array_type (value_type (arr)))
2097     return decode_constrained_packed_array (arr);
2098   else
2099     return arr;
2100 }
2101 
2102 /* If TYPE represents a GNAT array type, return it translated to an
2103    ordinary GDB array type (possibly with BITSIZE fields indicating
2104    packing).  For other types, is the identity.  */
2105 
2106 struct type *
2107 ada_coerce_to_simple_array_type (struct type *type)
2108 {
2109   if (ada_is_constrained_packed_array_type (type))
2110     return decode_constrained_packed_array_type (type);
2111 
2112   if (ada_is_array_descriptor_type (type))
2113     return ada_check_typedef (desc_data_target_type (type));
2114 
2115   return type;
2116 }
2117 
2118 /* Non-zero iff TYPE represents a standard GNAT packed-array type.  */
2119 
2120 static int
2121 ada_is_packed_array_type  (struct type *type)
2122 {
2123   if (type == NULL)
2124     return 0;
2125   type = desc_base_type (type);
2126   type = ada_check_typedef (type);
2127   return
2128     ada_type_name (type) != NULL
2129     && strstr (ada_type_name (type), "___XP") != NULL;
2130 }
2131 
2132 /* Non-zero iff TYPE represents a standard GNAT constrained
2133    packed-array type.  */
2134 
2135 int
2136 ada_is_constrained_packed_array_type (struct type *type)
2137 {
2138   return ada_is_packed_array_type (type)
2139     && !ada_is_array_descriptor_type (type);
2140 }
2141 
2142 /* Non-zero iff TYPE represents an array descriptor for a
2143    unconstrained packed-array type.  */
2144 
2145 static int
2146 ada_is_unconstrained_packed_array_type (struct type *type)
2147 {
2148   return ada_is_packed_array_type (type)
2149     && ada_is_array_descriptor_type (type);
2150 }
2151 
2152 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2153    return the size of its elements in bits.  */
2154 
2155 static long
2156 decode_packed_array_bitsize (struct type *type)
2157 {
2158   const char *raw_name;
2159   const char *tail;
2160   long bits;
2161 
2162   /* Access to arrays implemented as fat pointers are encoded as a typedef
2163      of the fat pointer type.  We need the name of the fat pointer type
2164      to do the decoding, so strip the typedef layer.  */
2165   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2166     type = ada_typedef_target_type (type);
2167 
2168   raw_name = ada_type_name (ada_check_typedef (type));
2169   if (!raw_name)
2170     raw_name = ada_type_name (desc_base_type (type));
2171 
2172   if (!raw_name)
2173     return 0;
2174 
2175   tail = strstr (raw_name, "___XP");
2176   gdb_assert (tail != NULL);
2177 
2178   if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2179     {
2180       lim_warning
2181 	(_("could not understand bit size information on packed array"));
2182       return 0;
2183     }
2184 
2185   return bits;
2186 }
2187 
2188 /* Given that TYPE is a standard GDB array type with all bounds filled
2189    in, and that the element size of its ultimate scalar constituents
2190    (that is, either its elements, or, if it is an array of arrays, its
2191    elements' elements, etc.) is *ELT_BITS, return an identical type,
2192    but with the bit sizes of its elements (and those of any
2193    constituent arrays) recorded in the BITSIZE components of its
2194    TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2195    in bits.
2196 
2197    Note that, for arrays whose index type has an XA encoding where
2198    a bound references a record discriminant, getting that discriminant,
2199    and therefore the actual value of that bound, is not possible
2200    because none of the given parameters gives us access to the record.
2201    This function assumes that it is OK in the context where it is being
2202    used to return an array whose bounds are still dynamic and where
2203    the length is arbitrary.  */
2204 
2205 static struct type *
2206 constrained_packed_array_type (struct type *type, long *elt_bits)
2207 {
2208   struct type *new_elt_type;
2209   struct type *new_type;
2210   struct type *index_type_desc;
2211   struct type *index_type;
2212   LONGEST low_bound, high_bound;
2213 
2214   type = ada_check_typedef (type);
2215   if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2216     return type;
2217 
2218   index_type_desc = ada_find_parallel_type (type, "___XA");
2219   if (index_type_desc)
2220     index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2221 				      NULL);
2222   else
2223     index_type = TYPE_INDEX_TYPE (type);
2224 
2225   new_type = alloc_type_copy (type);
2226   new_elt_type =
2227     constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2228 				   elt_bits);
2229   create_array_type (new_type, new_elt_type, index_type);
2230   TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2231   TYPE_NAME (new_type) = ada_type_name (type);
2232 
2233   if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2234        && is_dynamic_type (check_typedef (index_type)))
2235       || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2236     low_bound = high_bound = 0;
2237   if (high_bound < low_bound)
2238     *elt_bits = TYPE_LENGTH (new_type) = 0;
2239   else
2240     {
2241       *elt_bits *= (high_bound - low_bound + 1);
2242       TYPE_LENGTH (new_type) =
2243         (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2244     }
2245 
2246   TYPE_FIXED_INSTANCE (new_type) = 1;
2247   return new_type;
2248 }
2249 
2250 /* The array type encoded by TYPE, where
2251    ada_is_constrained_packed_array_type (TYPE).  */
2252 
2253 static struct type *
2254 decode_constrained_packed_array_type (struct type *type)
2255 {
2256   const char *raw_name = ada_type_name (ada_check_typedef (type));
2257   char *name;
2258   const char *tail;
2259   struct type *shadow_type;
2260   long bits;
2261 
2262   if (!raw_name)
2263     raw_name = ada_type_name (desc_base_type (type));
2264 
2265   if (!raw_name)
2266     return NULL;
2267 
2268   name = (char *) alloca (strlen (raw_name) + 1);
2269   tail = strstr (raw_name, "___XP");
2270   type = desc_base_type (type);
2271 
2272   memcpy (name, raw_name, tail - raw_name);
2273   name[tail - raw_name] = '\000';
2274 
2275   shadow_type = ada_find_parallel_type_with_name (type, name);
2276 
2277   if (shadow_type == NULL)
2278     {
2279       lim_warning (_("could not find bounds information on packed array"));
2280       return NULL;
2281     }
2282   shadow_type = check_typedef (shadow_type);
2283 
2284   if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2285     {
2286       lim_warning (_("could not understand bounds "
2287 		     "information on packed array"));
2288       return NULL;
2289     }
2290 
2291   bits = decode_packed_array_bitsize (type);
2292   return constrained_packed_array_type (shadow_type, &bits);
2293 }
2294 
2295 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2296    array, returns a simple array that denotes that array.  Its type is a
2297    standard GDB array type except that the BITSIZEs of the array
2298    target types are set to the number of bits in each element, and the
2299    type length is set appropriately.  */
2300 
2301 static struct value *
2302 decode_constrained_packed_array (struct value *arr)
2303 {
2304   struct type *type;
2305 
2306   /* If our value is a pointer, then dereference it. Likewise if
2307      the value is a reference.  Make sure that this operation does not
2308      cause the target type to be fixed, as this would indirectly cause
2309      this array to be decoded.  The rest of the routine assumes that
2310      the array hasn't been decoded yet, so we use the basic "coerce_ref"
2311      and "value_ind" routines to perform the dereferencing, as opposed
2312      to using "ada_coerce_ref" or "ada_value_ind".  */
2313   arr = coerce_ref (arr);
2314   if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2315     arr = value_ind (arr);
2316 
2317   type = decode_constrained_packed_array_type (value_type (arr));
2318   if (type == NULL)
2319     {
2320       error (_("can't unpack array"));
2321       return NULL;
2322     }
2323 
2324   if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2325       && ada_is_modular_type (value_type (arr)))
2326     {
2327        /* This is a (right-justified) modular type representing a packed
2328  	 array with no wrapper.  In order to interpret the value through
2329  	 the (left-justified) packed array type we just built, we must
2330  	 first left-justify it.  */
2331       int bit_size, bit_pos;
2332       ULONGEST mod;
2333 
2334       mod = ada_modulus (value_type (arr)) - 1;
2335       bit_size = 0;
2336       while (mod > 0)
2337 	{
2338 	  bit_size += 1;
2339 	  mod >>= 1;
2340 	}
2341       bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2342       arr = ada_value_primitive_packed_val (arr, NULL,
2343 					    bit_pos / HOST_CHAR_BIT,
2344 					    bit_pos % HOST_CHAR_BIT,
2345 					    bit_size,
2346 					    type);
2347     }
2348 
2349   return coerce_unspec_val_to_type (arr, type);
2350 }
2351 
2352 
2353 /* The value of the element of packed array ARR at the ARITY indices
2354    given in IND.   ARR must be a simple array.  */
2355 
2356 static struct value *
2357 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2358 {
2359   int i;
2360   int bits, elt_off, bit_off;
2361   long elt_total_bit_offset;
2362   struct type *elt_type;
2363   struct value *v;
2364 
2365   bits = 0;
2366   elt_total_bit_offset = 0;
2367   elt_type = ada_check_typedef (value_type (arr));
2368   for (i = 0; i < arity; i += 1)
2369     {
2370       if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2371           || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2372         error
2373           (_("attempt to do packed indexing of "
2374 	     "something other than a packed array"));
2375       else
2376         {
2377           struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2378           LONGEST lowerbound, upperbound;
2379           LONGEST idx;
2380 
2381           if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2382             {
2383               lim_warning (_("don't know bounds of array"));
2384               lowerbound = upperbound = 0;
2385             }
2386 
2387           idx = pos_atr (ind[i]);
2388           if (idx < lowerbound || idx > upperbound)
2389             lim_warning (_("packed array index %ld out of bounds"),
2390 			 (long) idx);
2391           bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2392           elt_total_bit_offset += (idx - lowerbound) * bits;
2393           elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2394         }
2395     }
2396   elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2397   bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2398 
2399   v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2400                                       bits, elt_type);
2401   return v;
2402 }
2403 
2404 /* Non-zero iff TYPE includes negative integer values.  */
2405 
2406 static int
2407 has_negatives (struct type *type)
2408 {
2409   switch (TYPE_CODE (type))
2410     {
2411     default:
2412       return 0;
2413     case TYPE_CODE_INT:
2414       return !TYPE_UNSIGNED (type);
2415     case TYPE_CODE_RANGE:
2416       return TYPE_LOW_BOUND (type) < 0;
2417     }
2418 }
2419 
2420 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2421    unpack that data into UNPACKED.  UNPACKED_LEN is the size in bytes of
2422    the unpacked buffer.
2423 
2424    The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2425    enough to contain at least BIT_OFFSET bits.  If not, an error is raised.
2426 
2427    IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2428    zero otherwise.
2429 
2430    IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2431 
2432    IS_SCALAR is nonzero if the data corresponds to a signed type.  */
2433 
2434 static void
2435 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2436 			  gdb_byte *unpacked, int unpacked_len,
2437 			  int is_big_endian, int is_signed_type,
2438 			  int is_scalar)
2439 {
2440   int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2441   int src_idx;                  /* Index into the source area */
2442   int src_bytes_left;           /* Number of source bytes left to process.  */
2443   int srcBitsLeft;              /* Number of source bits left to move */
2444   int unusedLS;                 /* Number of bits in next significant
2445                                    byte of source that are unused */
2446 
2447   int unpacked_idx;             /* Index into the unpacked buffer */
2448   int unpacked_bytes_left;      /* Number of bytes left to set in unpacked.  */
2449 
2450   unsigned long accum;          /* Staging area for bits being transferred */
2451   int accumSize;                /* Number of meaningful bits in accum */
2452   unsigned char sign;
2453 
2454   /* Transmit bytes from least to most significant; delta is the direction
2455      the indices move.  */
2456   int delta = is_big_endian ? -1 : 1;
2457 
2458   /* Make sure that unpacked is large enough to receive the BIT_SIZE
2459      bits from SRC.  .*/
2460   if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2461     error (_("Cannot unpack %d bits into buffer of %d bytes"),
2462 	   bit_size, unpacked_len);
2463 
2464   srcBitsLeft = bit_size;
2465   src_bytes_left = src_len;
2466   unpacked_bytes_left = unpacked_len;
2467   sign = 0;
2468 
2469   if (is_big_endian)
2470     {
2471       src_idx = src_len - 1;
2472       if (is_signed_type
2473 	  && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2474         sign = ~0;
2475 
2476       unusedLS =
2477         (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2478         % HOST_CHAR_BIT;
2479 
2480       if (is_scalar)
2481 	{
2482           accumSize = 0;
2483           unpacked_idx = unpacked_len - 1;
2484 	}
2485       else
2486 	{
2487           /* Non-scalar values must be aligned at a byte boundary...  */
2488           accumSize =
2489             (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2490           /* ... And are placed at the beginning (most-significant) bytes
2491              of the target.  */
2492           unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2493           unpacked_bytes_left = unpacked_idx + 1;
2494 	}
2495     }
2496   else
2497     {
2498       int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2499 
2500       src_idx = unpacked_idx = 0;
2501       unusedLS = bit_offset;
2502       accumSize = 0;
2503 
2504       if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2505         sign = ~0;
2506     }
2507 
2508   accum = 0;
2509   while (src_bytes_left > 0)
2510     {
2511       /* Mask for removing bits of the next source byte that are not
2512          part of the value.  */
2513       unsigned int unusedMSMask =
2514         (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2515         1;
2516       /* Sign-extend bits for this byte.  */
2517       unsigned int signMask = sign & ~unusedMSMask;
2518 
2519       accum |=
2520         (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2521       accumSize += HOST_CHAR_BIT - unusedLS;
2522       if (accumSize >= HOST_CHAR_BIT)
2523         {
2524           unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2525           accumSize -= HOST_CHAR_BIT;
2526           accum >>= HOST_CHAR_BIT;
2527           unpacked_bytes_left -= 1;
2528           unpacked_idx += delta;
2529         }
2530       srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2531       unusedLS = 0;
2532       src_bytes_left -= 1;
2533       src_idx += delta;
2534     }
2535   while (unpacked_bytes_left > 0)
2536     {
2537       accum |= sign << accumSize;
2538       unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2539       accumSize -= HOST_CHAR_BIT;
2540       if (accumSize < 0)
2541 	accumSize = 0;
2542       accum >>= HOST_CHAR_BIT;
2543       unpacked_bytes_left -= 1;
2544       unpacked_idx += delta;
2545     }
2546 }
2547 
2548 /* Create a new value of type TYPE from the contents of OBJ starting
2549    at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2550    proceeding for BIT_SIZE bits.  If OBJ is an lval in memory, then
2551    assigning through the result will set the field fetched from.
2552    VALADDR is ignored unless OBJ is NULL, in which case,
2553    VALADDR+OFFSET must address the start of storage containing the
2554    packed value.  The value returned  in this case is never an lval.
2555    Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT.  */
2556 
2557 struct value *
2558 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2559 				long offset, int bit_offset, int bit_size,
2560                                 struct type *type)
2561 {
2562   struct value *v;
2563   const gdb_byte *src;                /* First byte containing data to unpack */
2564   gdb_byte *unpacked;
2565   const int is_scalar = is_scalar_type (type);
2566   const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2567   gdb::byte_vector staging;
2568 
2569   type = ada_check_typedef (type);
2570 
2571   if (obj == NULL)
2572     src = valaddr + offset;
2573   else
2574     src = value_contents (obj) + offset;
2575 
2576   if (is_dynamic_type (type))
2577     {
2578       /* The length of TYPE might by dynamic, so we need to resolve
2579 	 TYPE in order to know its actual size, which we then use
2580 	 to create the contents buffer of the value we return.
2581 	 The difficulty is that the data containing our object is
2582 	 packed, and therefore maybe not at a byte boundary.  So, what
2583 	 we do, is unpack the data into a byte-aligned buffer, and then
2584 	 use that buffer as our object's value for resolving the type.  */
2585       int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2586       staging.resize (staging_len);
2587 
2588       ada_unpack_from_contents (src, bit_offset, bit_size,
2589 			        staging.data (), staging.size (),
2590 				is_big_endian, has_negatives (type),
2591 				is_scalar);
2592       type = resolve_dynamic_type (type, staging.data (), 0);
2593       if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2594 	{
2595 	  /* This happens when the length of the object is dynamic,
2596 	     and is actually smaller than the space reserved for it.
2597 	     For instance, in an array of variant records, the bit_size
2598 	     we're given is the array stride, which is constant and
2599 	     normally equal to the maximum size of its element.
2600 	     But, in reality, each element only actually spans a portion
2601 	     of that stride.  */
2602 	  bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2603 	}
2604     }
2605 
2606   if (obj == NULL)
2607     {
2608       v = allocate_value (type);
2609       src = valaddr + offset;
2610     }
2611   else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2612     {
2613       int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2614       gdb_byte *buf;
2615 
2616       v = value_at (type, value_address (obj) + offset);
2617       buf = (gdb_byte *) alloca (src_len);
2618       read_memory (value_address (v), buf, src_len);
2619       src = buf;
2620     }
2621   else
2622     {
2623       v = allocate_value (type);
2624       src = value_contents (obj) + offset;
2625     }
2626 
2627   if (obj != NULL)
2628     {
2629       long new_offset = offset;
2630 
2631       set_value_component_location (v, obj);
2632       set_value_bitpos (v, bit_offset + value_bitpos (obj));
2633       set_value_bitsize (v, bit_size);
2634       if (value_bitpos (v) >= HOST_CHAR_BIT)
2635         {
2636 	  ++new_offset;
2637           set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2638         }
2639       set_value_offset (v, new_offset);
2640 
2641       /* Also set the parent value.  This is needed when trying to
2642 	 assign a new value (in inferior memory).  */
2643       set_value_parent (v, obj);
2644     }
2645   else
2646     set_value_bitsize (v, bit_size);
2647   unpacked = value_contents_writeable (v);
2648 
2649   if (bit_size == 0)
2650     {
2651       memset (unpacked, 0, TYPE_LENGTH (type));
2652       return v;
2653     }
2654 
2655   if (staging.size () == TYPE_LENGTH (type))
2656     {
2657       /* Small short-cut: If we've unpacked the data into a buffer
2658 	 of the same size as TYPE's length, then we can reuse that,
2659 	 instead of doing the unpacking again.  */
2660       memcpy (unpacked, staging.data (), staging.size ());
2661     }
2662   else
2663     ada_unpack_from_contents (src, bit_offset, bit_size,
2664 			      unpacked, TYPE_LENGTH (type),
2665 			      is_big_endian, has_negatives (type), is_scalar);
2666 
2667   return v;
2668 }
2669 
2670 /* Store the contents of FROMVAL into the location of TOVAL.
2671    Return a new value with the location of TOVAL and contents of
2672    FROMVAL.   Handles assignment into packed fields that have
2673    floating-point or non-scalar types.  */
2674 
2675 static struct value *
2676 ada_value_assign (struct value *toval, struct value *fromval)
2677 {
2678   struct type *type = value_type (toval);
2679   int bits = value_bitsize (toval);
2680 
2681   toval = ada_coerce_ref (toval);
2682   fromval = ada_coerce_ref (fromval);
2683 
2684   if (ada_is_direct_array_type (value_type (toval)))
2685     toval = ada_coerce_to_simple_array (toval);
2686   if (ada_is_direct_array_type (value_type (fromval)))
2687     fromval = ada_coerce_to_simple_array (fromval);
2688 
2689   if (!deprecated_value_modifiable (toval))
2690     error (_("Left operand of assignment is not a modifiable lvalue."));
2691 
2692   if (VALUE_LVAL (toval) == lval_memory
2693       && bits > 0
2694       && (TYPE_CODE (type) == TYPE_CODE_FLT
2695           || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2696     {
2697       int len = (value_bitpos (toval)
2698 		 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2699       int from_size;
2700       gdb_byte *buffer = (gdb_byte *) alloca (len);
2701       struct value *val;
2702       CORE_ADDR to_addr = value_address (toval);
2703 
2704       if (TYPE_CODE (type) == TYPE_CODE_FLT)
2705         fromval = value_cast (type, fromval);
2706 
2707       read_memory (to_addr, buffer, len);
2708       from_size = value_bitsize (fromval);
2709       if (from_size == 0)
2710 	from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2711       if (gdbarch_bits_big_endian (get_type_arch (type)))
2712         copy_bitwise (buffer, value_bitpos (toval),
2713 		      value_contents (fromval), from_size - bits, bits, 1);
2714       else
2715         copy_bitwise (buffer, value_bitpos (toval),
2716 		      value_contents (fromval), 0, bits, 0);
2717       write_memory_with_notification (to_addr, buffer, len);
2718 
2719       val = value_copy (toval);
2720       memcpy (value_contents_raw (val), value_contents (fromval),
2721               TYPE_LENGTH (type));
2722       deprecated_set_value_type (val, type);
2723 
2724       return val;
2725     }
2726 
2727   return value_assign (toval, fromval);
2728 }
2729 
2730 
2731 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2732    CONTAINER, assign the contents of VAL to COMPONENTS's place in
2733    CONTAINER.  Modifies the VALUE_CONTENTS of CONTAINER only, not
2734    COMPONENT, and not the inferior's memory.  The current contents
2735    of COMPONENT are ignored.
2736 
2737    Although not part of the initial design, this function also works
2738    when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2739    had a null address, and COMPONENT had an address which is equal to
2740    its offset inside CONTAINER.  */
2741 
2742 static void
2743 value_assign_to_component (struct value *container, struct value *component,
2744 			   struct value *val)
2745 {
2746   LONGEST offset_in_container =
2747     (LONGEST)  (value_address (component) - value_address (container));
2748   int bit_offset_in_container =
2749     value_bitpos (component) - value_bitpos (container);
2750   int bits;
2751 
2752   val = value_cast (value_type (component), val);
2753 
2754   if (value_bitsize (component) == 0)
2755     bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2756   else
2757     bits = value_bitsize (component);
2758 
2759   if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2760     {
2761       int src_offset;
2762 
2763       if (is_scalar_type (check_typedef (value_type (component))))
2764         src_offset
2765 	  = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2766       else
2767 	src_offset = 0;
2768       copy_bitwise (value_contents_writeable (container) + offset_in_container,
2769 		    value_bitpos (container) + bit_offset_in_container,
2770 		    value_contents (val), src_offset, bits, 1);
2771     }
2772   else
2773     copy_bitwise (value_contents_writeable (container) + offset_in_container,
2774 		  value_bitpos (container) + bit_offset_in_container,
2775 		  value_contents (val), 0, bits, 0);
2776 }
2777 
2778 /* Determine if TYPE is an access to an unconstrained array.  */
2779 
2780 bool
2781 ada_is_access_to_unconstrained_array (struct type *type)
2782 {
2783   return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2784 	  && is_thick_pntr (ada_typedef_target_type (type)));
2785 }
2786 
2787 /* The value of the element of array ARR at the ARITY indices given in IND.
2788    ARR may be either a simple array, GNAT array descriptor, or pointer
2789    thereto.  */
2790 
2791 struct value *
2792 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2793 {
2794   int k;
2795   struct value *elt;
2796   struct type *elt_type;
2797 
2798   elt = ada_coerce_to_simple_array (arr);
2799 
2800   elt_type = ada_check_typedef (value_type (elt));
2801   if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2802       && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2803     return value_subscript_packed (elt, arity, ind);
2804 
2805   for (k = 0; k < arity; k += 1)
2806     {
2807       struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2808 
2809       if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2810         error (_("too many subscripts (%d expected)"), k);
2811 
2812       elt = value_subscript (elt, pos_atr (ind[k]));
2813 
2814       if (ada_is_access_to_unconstrained_array (saved_elt_type)
2815 	  && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2816 	{
2817 	  /* The element is a typedef to an unconstrained array,
2818 	     except that the value_subscript call stripped the
2819 	     typedef layer.  The typedef layer is GNAT's way to
2820 	     specify that the element is, at the source level, an
2821 	     access to the unconstrained array, rather than the
2822 	     unconstrained array.  So, we need to restore that
2823 	     typedef layer, which we can do by forcing the element's
2824 	     type back to its original type. Otherwise, the returned
2825 	     value is going to be printed as the array, rather
2826 	     than as an access.  Another symptom of the same issue
2827 	     would be that an expression trying to dereference the
2828 	     element would also be improperly rejected.  */
2829 	  deprecated_set_value_type (elt, saved_elt_type);
2830 	}
2831 
2832       elt_type = ada_check_typedef (value_type (elt));
2833     }
2834 
2835   return elt;
2836 }
2837 
2838 /* Assuming ARR is a pointer to a GDB array, the value of the element
2839    of *ARR at the ARITY indices given in IND.
2840    Does not read the entire array into memory.
2841 
2842    Note: Unlike what one would expect, this function is used instead of
2843    ada_value_subscript for basically all non-packed array types.  The reason
2844    for this is that a side effect of doing our own pointer arithmetics instead
2845    of relying on value_subscript is that there is no implicit typedef peeling.
2846    This is important for arrays of array accesses, where it allows us to
2847    preserve the fact that the array's element is an array access, where the
2848    access part os encoded in a typedef layer.  */
2849 
2850 static struct value *
2851 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2852 {
2853   int k;
2854   struct value *array_ind = ada_value_ind (arr);
2855   struct type *type
2856     = check_typedef (value_enclosing_type (array_ind));
2857 
2858   if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2859       && TYPE_FIELD_BITSIZE (type, 0) > 0)
2860     return value_subscript_packed (array_ind, arity, ind);
2861 
2862   for (k = 0; k < arity; k += 1)
2863     {
2864       LONGEST lwb, upb;
2865       struct value *lwb_value;
2866 
2867       if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2868         error (_("too many subscripts (%d expected)"), k);
2869       arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2870                         value_copy (arr));
2871       get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2872       lwb_value = value_from_longest (value_type(ind[k]), lwb);
2873       arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2874       type = TYPE_TARGET_TYPE (type);
2875     }
2876 
2877   return value_ind (arr);
2878 }
2879 
2880 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2881    actual type of ARRAY_PTR is ignored), returns the Ada slice of
2882    HIGH'Pos-LOW'Pos+1 elements starting at index LOW.  The lower bound of
2883    this array is LOW, as per Ada rules.  */
2884 static struct value *
2885 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2886                           int low, int high)
2887 {
2888   struct type *type0 = ada_check_typedef (type);
2889   struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2890   struct type *index_type
2891     = create_static_range_type (NULL, base_index_type, low, high);
2892   struct type *slice_type = create_array_type_with_stride
2893 			      (NULL, TYPE_TARGET_TYPE (type0), index_type,
2894 			       get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2895 			       TYPE_FIELD_BITSIZE (type0, 0));
2896   int base_low =  ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2897   LONGEST base_low_pos, low_pos;
2898   CORE_ADDR base;
2899 
2900   if (!discrete_position (base_index_type, low, &low_pos)
2901       || !discrete_position (base_index_type, base_low, &base_low_pos))
2902     {
2903       warning (_("unable to get positions in slice, use bounds instead"));
2904       low_pos = low;
2905       base_low_pos = base_low;
2906     }
2907 
2908   base = value_as_address (array_ptr)
2909     + ((low_pos - base_low_pos)
2910        * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2911   return value_at_lazy (slice_type, base);
2912 }
2913 
2914 
2915 static struct value *
2916 ada_value_slice (struct value *array, int low, int high)
2917 {
2918   struct type *type = ada_check_typedef (value_type (array));
2919   struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2920   struct type *index_type
2921     = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2922   struct type *slice_type = create_array_type_with_stride
2923 			      (NULL, TYPE_TARGET_TYPE (type), index_type,
2924 			       get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2925 			       TYPE_FIELD_BITSIZE (type, 0));
2926   LONGEST low_pos, high_pos;
2927 
2928   if (!discrete_position (base_index_type, low, &low_pos)
2929       || !discrete_position (base_index_type, high, &high_pos))
2930     {
2931       warning (_("unable to get positions in slice, use bounds instead"));
2932       low_pos = low;
2933       high_pos = high;
2934     }
2935 
2936   return value_cast (slice_type,
2937 		     value_slice (array, low, high_pos - low_pos + 1));
2938 }
2939 
2940 /* If type is a record type in the form of a standard GNAT array
2941    descriptor, returns the number of dimensions for type.  If arr is a
2942    simple array, returns the number of "array of"s that prefix its
2943    type designation.  Otherwise, returns 0.  */
2944 
2945 int
2946 ada_array_arity (struct type *type)
2947 {
2948   int arity;
2949 
2950   if (type == NULL)
2951     return 0;
2952 
2953   type = desc_base_type (type);
2954 
2955   arity = 0;
2956   if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2957     return desc_arity (desc_bounds_type (type));
2958   else
2959     while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2960       {
2961         arity += 1;
2962         type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2963       }
2964 
2965   return arity;
2966 }
2967 
2968 /* If TYPE is a record type in the form of a standard GNAT array
2969    descriptor or a simple array type, returns the element type for
2970    TYPE after indexing by NINDICES indices, or by all indices if
2971    NINDICES is -1.  Otherwise, returns NULL.  */
2972 
2973 struct type *
2974 ada_array_element_type (struct type *type, int nindices)
2975 {
2976   type = desc_base_type (type);
2977 
2978   if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2979     {
2980       int k;
2981       struct type *p_array_type;
2982 
2983       p_array_type = desc_data_target_type (type);
2984 
2985       k = ada_array_arity (type);
2986       if (k == 0)
2987         return NULL;
2988 
2989       /* Initially p_array_type = elt_type(*)[]...(k times)...[].  */
2990       if (nindices >= 0 && k > nindices)
2991         k = nindices;
2992       while (k > 0 && p_array_type != NULL)
2993         {
2994           p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2995           k -= 1;
2996         }
2997       return p_array_type;
2998     }
2999   else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3000     {
3001       while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3002         {
3003           type = TYPE_TARGET_TYPE (type);
3004           nindices -= 1;
3005         }
3006       return type;
3007     }
3008 
3009   return NULL;
3010 }
3011 
3012 /* The type of nth index in arrays of given type (n numbering from 1).
3013    Does not examine memory.  Throws an error if N is invalid or TYPE
3014    is not an array type.  NAME is the name of the Ada attribute being
3015    evaluated ('range, 'first, 'last, or 'length); it is used in building
3016    the error message.  */
3017 
3018 static struct type *
3019 ada_index_type (struct type *type, int n, const char *name)
3020 {
3021   struct type *result_type;
3022 
3023   type = desc_base_type (type);
3024 
3025   if (n < 0 || n > ada_array_arity (type))
3026     error (_("invalid dimension number to '%s"), name);
3027 
3028   if (ada_is_simple_array_type (type))
3029     {
3030       int i;
3031 
3032       for (i = 1; i < n; i += 1)
3033         type = TYPE_TARGET_TYPE (type);
3034       result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3035       /* FIXME: The stabs type r(0,0);bound;bound in an array type
3036          has a target type of TYPE_CODE_UNDEF.  We compensate here, but
3037          perhaps stabsread.c would make more sense.  */
3038       if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3039         result_type = NULL;
3040     }
3041   else
3042     {
3043       result_type = desc_index_type (desc_bounds_type (type), n);
3044       if (result_type == NULL)
3045 	error (_("attempt to take bound of something that is not an array"));
3046     }
3047 
3048   return result_type;
3049 }
3050 
3051 /* Given that arr is an array type, returns the lower bound of the
3052    Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3053    WHICH is 1.  This returns bounds 0 .. -1 if ARR_TYPE is an
3054    array-descriptor type.  It works for other arrays with bounds supplied
3055    by run-time quantities other than discriminants.  */
3056 
3057 static LONGEST
3058 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3059 {
3060   struct type *type, *index_type_desc, *index_type;
3061   int i;
3062 
3063   gdb_assert (which == 0 || which == 1);
3064 
3065   if (ada_is_constrained_packed_array_type (arr_type))
3066     arr_type = decode_constrained_packed_array_type (arr_type);
3067 
3068   if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3069     return (LONGEST) - which;
3070 
3071   if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3072     type = TYPE_TARGET_TYPE (arr_type);
3073   else
3074     type = arr_type;
3075 
3076   if (TYPE_FIXED_INSTANCE (type))
3077     {
3078       /* The array has already been fixed, so we do not need to
3079 	 check the parallel ___XA type again.  That encoding has
3080 	 already been applied, so ignore it now.  */
3081       index_type_desc = NULL;
3082     }
3083   else
3084     {
3085       index_type_desc = ada_find_parallel_type (type, "___XA");
3086       ada_fixup_array_indexes_type (index_type_desc);
3087     }
3088 
3089   if (index_type_desc != NULL)
3090     index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3091 				      NULL);
3092   else
3093     {
3094       struct type *elt_type = check_typedef (type);
3095 
3096       for (i = 1; i < n; i++)
3097 	elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3098 
3099       index_type = TYPE_INDEX_TYPE (elt_type);
3100     }
3101 
3102   return
3103     (LONGEST) (which == 0
3104                ? ada_discrete_type_low_bound (index_type)
3105                : ada_discrete_type_high_bound (index_type));
3106 }
3107 
3108 /* Given that arr is an array value, returns the lower bound of the
3109    nth index (numbering from 1) if WHICH is 0, and the upper bound if
3110    WHICH is 1.  This routine will also work for arrays with bounds
3111    supplied by run-time quantities other than discriminants.  */
3112 
3113 static LONGEST
3114 ada_array_bound (struct value *arr, int n, int which)
3115 {
3116   struct type *arr_type;
3117 
3118   if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3119     arr = value_ind (arr);
3120   arr_type = value_enclosing_type (arr);
3121 
3122   if (ada_is_constrained_packed_array_type (arr_type))
3123     return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3124   else if (ada_is_simple_array_type (arr_type))
3125     return ada_array_bound_from_type (arr_type, n, which);
3126   else
3127     return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3128 }
3129 
3130 /* Given that arr is an array value, returns the length of the
3131    nth index.  This routine will also work for arrays with bounds
3132    supplied by run-time quantities other than discriminants.
3133    Does not work for arrays indexed by enumeration types with representation
3134    clauses at the moment.  */
3135 
3136 static LONGEST
3137 ada_array_length (struct value *arr, int n)
3138 {
3139   struct type *arr_type, *index_type;
3140   int low, high;
3141 
3142   if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3143     arr = value_ind (arr);
3144   arr_type = value_enclosing_type (arr);
3145 
3146   if (ada_is_constrained_packed_array_type (arr_type))
3147     return ada_array_length (decode_constrained_packed_array (arr), n);
3148 
3149   if (ada_is_simple_array_type (arr_type))
3150     {
3151       low = ada_array_bound_from_type (arr_type, n, 0);
3152       high = ada_array_bound_from_type (arr_type, n, 1);
3153     }
3154   else
3155     {
3156       low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3157       high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3158     }
3159 
3160   arr_type = check_typedef (arr_type);
3161   index_type = ada_index_type (arr_type, n, "length");
3162   if (index_type != NULL)
3163     {
3164       struct type *base_type;
3165       if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3166 	base_type = TYPE_TARGET_TYPE (index_type);
3167       else
3168 	base_type = index_type;
3169 
3170       low = pos_atr (value_from_longest (base_type, low));
3171       high = pos_atr (value_from_longest (base_type, high));
3172     }
3173   return high - low + 1;
3174 }
3175 
3176 /* An empty array whose type is that of ARR_TYPE (an array type),
3177    with bounds LOW to LOW-1.  */
3178 
3179 static struct value *
3180 empty_array (struct type *arr_type, int low)
3181 {
3182   struct type *arr_type0 = ada_check_typedef (arr_type);
3183   struct type *index_type
3184     = create_static_range_type
3185         (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),  low, low - 1);
3186   struct type *elt_type = ada_array_element_type (arr_type0, 1);
3187 
3188   return allocate_value (create_array_type (NULL, elt_type, index_type));
3189 }
3190 
3191 
3192                                 /* Name resolution */
3193 
3194 /* The "decoded" name for the user-definable Ada operator corresponding
3195    to OP.  */
3196 
3197 static const char *
3198 ada_decoded_op_name (enum exp_opcode op)
3199 {
3200   int i;
3201 
3202   for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3203     {
3204       if (ada_opname_table[i].op == op)
3205         return ada_opname_table[i].decoded;
3206     }
3207   error (_("Could not find operator name for opcode"));
3208 }
3209 
3210 
3211 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3212    references (marked by OP_VAR_VALUE nodes in which the symbol has an
3213    undefined namespace) and converts operators that are
3214    user-defined into appropriate function calls.  If CONTEXT_TYPE is
3215    non-null, it provides a preferred result type [at the moment, only
3216    type void has any effect---causing procedures to be preferred over
3217    functions in calls].  A null CONTEXT_TYPE indicates that a non-void
3218    return type is preferred.  May change (expand) *EXP.  */
3219 
3220 static void
3221 resolve (expression_up *expp, int void_context_p)
3222 {
3223   struct type *context_type = NULL;
3224   int pc = 0;
3225 
3226   if (void_context_p)
3227     context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3228 
3229   resolve_subexp (expp, &pc, 1, context_type);
3230 }
3231 
3232 /* Resolve the operator of the subexpression beginning at
3233    position *POS of *EXPP.  "Resolving" consists of replacing
3234    the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3235    with their resolutions, replacing built-in operators with
3236    function calls to user-defined operators, where appropriate, and,
3237    when DEPROCEDURE_P is non-zero, converting function-valued variables
3238    into parameterless calls.  May expand *EXPP.  The CONTEXT_TYPE functions
3239    are as in ada_resolve, above.  */
3240 
3241 static struct value *
3242 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3243                 struct type *context_type)
3244 {
3245   int pc = *pos;
3246   int i;
3247   struct expression *exp;       /* Convenience: == *expp.  */
3248   enum exp_opcode op = (*expp)->elts[pc].opcode;
3249   struct value **argvec;        /* Vector of operand types (alloca'ed).  */
3250   int nargs;                    /* Number of operands.  */
3251   int oplen;
3252 
3253   argvec = NULL;
3254   nargs = 0;
3255   exp = expp->get ();
3256 
3257   /* Pass one: resolve operands, saving their types and updating *pos,
3258      if needed.  */
3259   switch (op)
3260     {
3261     case OP_FUNCALL:
3262       if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3263           && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3264         *pos += 7;
3265       else
3266         {
3267           *pos += 3;
3268           resolve_subexp (expp, pos, 0, NULL);
3269         }
3270       nargs = longest_to_int (exp->elts[pc + 1].longconst);
3271       break;
3272 
3273     case UNOP_ADDR:
3274       *pos += 1;
3275       resolve_subexp (expp, pos, 0, NULL);
3276       break;
3277 
3278     case UNOP_QUAL:
3279       *pos += 3;
3280       resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3281       break;
3282 
3283     case OP_ATR_MODULUS:
3284     case OP_ATR_SIZE:
3285     case OP_ATR_TAG:
3286     case OP_ATR_FIRST:
3287     case OP_ATR_LAST:
3288     case OP_ATR_LENGTH:
3289     case OP_ATR_POS:
3290     case OP_ATR_VAL:
3291     case OP_ATR_MIN:
3292     case OP_ATR_MAX:
3293     case TERNOP_IN_RANGE:
3294     case BINOP_IN_BOUNDS:
3295     case UNOP_IN_RANGE:
3296     case OP_AGGREGATE:
3297     case OP_OTHERS:
3298     case OP_CHOICES:
3299     case OP_POSITIONAL:
3300     case OP_DISCRETE_RANGE:
3301     case OP_NAME:
3302       ada_forward_operator_length (exp, pc, &oplen, &nargs);
3303       *pos += oplen;
3304       break;
3305 
3306     case BINOP_ASSIGN:
3307       {
3308         struct value *arg1;
3309 
3310         *pos += 1;
3311         arg1 = resolve_subexp (expp, pos, 0, NULL);
3312         if (arg1 == NULL)
3313           resolve_subexp (expp, pos, 1, NULL);
3314         else
3315           resolve_subexp (expp, pos, 1, value_type (arg1));
3316         break;
3317       }
3318 
3319     case UNOP_CAST:
3320       *pos += 3;
3321       nargs = 1;
3322       break;
3323 
3324     case BINOP_ADD:
3325     case BINOP_SUB:
3326     case BINOP_MUL:
3327     case BINOP_DIV:
3328     case BINOP_REM:
3329     case BINOP_MOD:
3330     case BINOP_EXP:
3331     case BINOP_CONCAT:
3332     case BINOP_LOGICAL_AND:
3333     case BINOP_LOGICAL_OR:
3334     case BINOP_BITWISE_AND:
3335     case BINOP_BITWISE_IOR:
3336     case BINOP_BITWISE_XOR:
3337 
3338     case BINOP_EQUAL:
3339     case BINOP_NOTEQUAL:
3340     case BINOP_LESS:
3341     case BINOP_GTR:
3342     case BINOP_LEQ:
3343     case BINOP_GEQ:
3344 
3345     case BINOP_REPEAT:
3346     case BINOP_SUBSCRIPT:
3347     case BINOP_COMMA:
3348       *pos += 1;
3349       nargs = 2;
3350       break;
3351 
3352     case UNOP_NEG:
3353     case UNOP_PLUS:
3354     case UNOP_LOGICAL_NOT:
3355     case UNOP_ABS:
3356     case UNOP_IND:
3357       *pos += 1;
3358       nargs = 1;
3359       break;
3360 
3361     case OP_LONG:
3362     case OP_FLOAT:
3363     case OP_VAR_VALUE:
3364     case OP_VAR_MSYM_VALUE:
3365       *pos += 4;
3366       break;
3367 
3368     case OP_TYPE:
3369     case OP_BOOL:
3370     case OP_LAST:
3371     case OP_INTERNALVAR:
3372       *pos += 3;
3373       break;
3374 
3375     case UNOP_MEMVAL:
3376       *pos += 3;
3377       nargs = 1;
3378       break;
3379 
3380     case OP_REGISTER:
3381       *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3382       break;
3383 
3384     case STRUCTOP_STRUCT:
3385       *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3386       nargs = 1;
3387       break;
3388 
3389     case TERNOP_SLICE:
3390       *pos += 1;
3391       nargs = 3;
3392       break;
3393 
3394     case OP_STRING:
3395       break;
3396 
3397     default:
3398       error (_("Unexpected operator during name resolution"));
3399     }
3400 
3401   argvec = XALLOCAVEC (struct value *, nargs + 1);
3402   for (i = 0; i < nargs; i += 1)
3403     argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3404   argvec[i] = NULL;
3405   exp = expp->get ();
3406 
3407   /* Pass two: perform any resolution on principal operator.  */
3408   switch (op)
3409     {
3410     default:
3411       break;
3412 
3413     case OP_VAR_VALUE:
3414       if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3415         {
3416           std::vector<struct block_symbol> candidates;
3417           int n_candidates;
3418 
3419           n_candidates =
3420             ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3421                                     (exp->elts[pc + 2].symbol),
3422                                     exp->elts[pc + 1].block, VAR_DOMAIN,
3423                                     &candidates);
3424 
3425           if (n_candidates > 1)
3426             {
3427               /* Types tend to get re-introduced locally, so if there
3428                  are any local symbols that are not types, first filter
3429                  out all types.  */
3430               int j;
3431               for (j = 0; j < n_candidates; j += 1)
3432                 switch (SYMBOL_CLASS (candidates[j].symbol))
3433                   {
3434                   case LOC_REGISTER:
3435                   case LOC_ARG:
3436                   case LOC_REF_ARG:
3437                   case LOC_REGPARM_ADDR:
3438                   case LOC_LOCAL:
3439                   case LOC_COMPUTED:
3440                     goto FoundNonType;
3441                   default:
3442                     break;
3443                   }
3444             FoundNonType:
3445               if (j < n_candidates)
3446                 {
3447                   j = 0;
3448                   while (j < n_candidates)
3449                     {
3450                       if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3451                         {
3452                           candidates[j] = candidates[n_candidates - 1];
3453                           n_candidates -= 1;
3454                         }
3455                       else
3456                         j += 1;
3457                     }
3458                 }
3459             }
3460 
3461           if (n_candidates == 0)
3462             error (_("No definition found for %s"),
3463                    SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3464           else if (n_candidates == 1)
3465             i = 0;
3466           else if (deprocedure_p
3467                    && !is_nonfunction (candidates.data (), n_candidates))
3468             {
3469               i = ada_resolve_function
3470                 (candidates.data (), n_candidates, NULL, 0,
3471                  SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3472                  context_type);
3473               if (i < 0)
3474                 error (_("Could not find a match for %s"),
3475                        SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3476             }
3477           else
3478             {
3479               printf_filtered (_("Multiple matches for %s\n"),
3480                                SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3481               user_select_syms (candidates.data (), n_candidates, 1);
3482               i = 0;
3483             }
3484 
3485           exp->elts[pc + 1].block = candidates[i].block;
3486           exp->elts[pc + 2].symbol = candidates[i].symbol;
3487 	  innermost_block.update (candidates[i]);
3488         }
3489 
3490       if (deprocedure_p
3491           && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3492               == TYPE_CODE_FUNC))
3493         {
3494           replace_operator_with_call (expp, pc, 0, 4,
3495                                       exp->elts[pc + 2].symbol,
3496                                       exp->elts[pc + 1].block);
3497           exp = expp->get ();
3498         }
3499       break;
3500 
3501     case OP_FUNCALL:
3502       {
3503         if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3504             && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3505           {
3506 	    std::vector<struct block_symbol> candidates;
3507             int n_candidates;
3508 
3509             n_candidates =
3510               ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3511                                       (exp->elts[pc + 5].symbol),
3512                                       exp->elts[pc + 4].block, VAR_DOMAIN,
3513                                       &candidates);
3514 
3515             if (n_candidates == 1)
3516               i = 0;
3517             else
3518               {
3519                 i = ada_resolve_function
3520                   (candidates.data (), n_candidates,
3521                    argvec, nargs,
3522                    SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3523                    context_type);
3524                 if (i < 0)
3525                   error (_("Could not find a match for %s"),
3526                          SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3527               }
3528 
3529             exp->elts[pc + 4].block = candidates[i].block;
3530             exp->elts[pc + 5].symbol = candidates[i].symbol;
3531 	    innermost_block.update (candidates[i]);
3532           }
3533       }
3534       break;
3535     case BINOP_ADD:
3536     case BINOP_SUB:
3537     case BINOP_MUL:
3538     case BINOP_DIV:
3539     case BINOP_REM:
3540     case BINOP_MOD:
3541     case BINOP_CONCAT:
3542     case BINOP_BITWISE_AND:
3543     case BINOP_BITWISE_IOR:
3544     case BINOP_BITWISE_XOR:
3545     case BINOP_EQUAL:
3546     case BINOP_NOTEQUAL:
3547     case BINOP_LESS:
3548     case BINOP_GTR:
3549     case BINOP_LEQ:
3550     case BINOP_GEQ:
3551     case BINOP_EXP:
3552     case UNOP_NEG:
3553     case UNOP_PLUS:
3554     case UNOP_LOGICAL_NOT:
3555     case UNOP_ABS:
3556       if (possible_user_operator_p (op, argvec))
3557         {
3558 	  std::vector<struct block_symbol> candidates;
3559           int n_candidates;
3560 
3561           n_candidates =
3562             ada_lookup_symbol_list (ada_decoded_op_name (op),
3563                                     (struct block *) NULL, VAR_DOMAIN,
3564                                     &candidates);
3565 
3566           i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3567 				    nargs, ada_decoded_op_name (op), NULL);
3568           if (i < 0)
3569             break;
3570 
3571 	  replace_operator_with_call (expp, pc, nargs, 1,
3572 				      candidates[i].symbol,
3573 				      candidates[i].block);
3574           exp = expp->get ();
3575         }
3576       break;
3577 
3578     case OP_TYPE:
3579     case OP_REGISTER:
3580       return NULL;
3581     }
3582 
3583   *pos = pc;
3584   if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3585     return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3586 				    exp->elts[pc + 1].objfile,
3587 				    exp->elts[pc + 2].msymbol);
3588   else
3589     return evaluate_subexp_type (exp, pos);
3590 }
3591 
3592 /* Return non-zero if formal type FTYPE matches actual type ATYPE.  If
3593    MAY_DEREF is non-zero, the formal may be a pointer and the actual
3594    a non-pointer.  */
3595 /* The term "match" here is rather loose.  The match is heuristic and
3596    liberal.  */
3597 
3598 static int
3599 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3600 {
3601   ftype = ada_check_typedef (ftype);
3602   atype = ada_check_typedef (atype);
3603 
3604   if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3605     ftype = TYPE_TARGET_TYPE (ftype);
3606   if (TYPE_CODE (atype) == TYPE_CODE_REF)
3607     atype = TYPE_TARGET_TYPE (atype);
3608 
3609   switch (TYPE_CODE (ftype))
3610     {
3611     default:
3612       return TYPE_CODE (ftype) == TYPE_CODE (atype);
3613     case TYPE_CODE_PTR:
3614       if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3615         return ada_type_match (TYPE_TARGET_TYPE (ftype),
3616                                TYPE_TARGET_TYPE (atype), 0);
3617       else
3618         return (may_deref
3619                 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3620     case TYPE_CODE_INT:
3621     case TYPE_CODE_ENUM:
3622     case TYPE_CODE_RANGE:
3623       switch (TYPE_CODE (atype))
3624         {
3625         case TYPE_CODE_INT:
3626         case TYPE_CODE_ENUM:
3627         case TYPE_CODE_RANGE:
3628           return 1;
3629         default:
3630           return 0;
3631         }
3632 
3633     case TYPE_CODE_ARRAY:
3634       return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3635               || ada_is_array_descriptor_type (atype));
3636 
3637     case TYPE_CODE_STRUCT:
3638       if (ada_is_array_descriptor_type (ftype))
3639         return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3640                 || ada_is_array_descriptor_type (atype));
3641       else
3642         return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3643                 && !ada_is_array_descriptor_type (atype));
3644 
3645     case TYPE_CODE_UNION:
3646     case TYPE_CODE_FLT:
3647       return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3648     }
3649 }
3650 
3651 /* Return non-zero if the formals of FUNC "sufficiently match" the
3652    vector of actual argument types ACTUALS of size N_ACTUALS.  FUNC
3653    may also be an enumeral, in which case it is treated as a 0-
3654    argument function.  */
3655 
3656 static int
3657 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3658 {
3659   int i;
3660   struct type *func_type = SYMBOL_TYPE (func);
3661 
3662   if (SYMBOL_CLASS (func) == LOC_CONST
3663       && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3664     return (n_actuals == 0);
3665   else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3666     return 0;
3667 
3668   if (TYPE_NFIELDS (func_type) != n_actuals)
3669     return 0;
3670 
3671   for (i = 0; i < n_actuals; i += 1)
3672     {
3673       if (actuals[i] == NULL)
3674         return 0;
3675       else
3676         {
3677           struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3678 								   i));
3679           struct type *atype = ada_check_typedef (value_type (actuals[i]));
3680 
3681           if (!ada_type_match (ftype, atype, 1))
3682             return 0;
3683         }
3684     }
3685   return 1;
3686 }
3687 
3688 /* False iff function type FUNC_TYPE definitely does not produce a value
3689    compatible with type CONTEXT_TYPE.  Conservatively returns 1 if
3690    FUNC_TYPE is not a valid function type with a non-null return type
3691    or an enumerated type.  A null CONTEXT_TYPE indicates any non-void type.  */
3692 
3693 static int
3694 return_match (struct type *func_type, struct type *context_type)
3695 {
3696   struct type *return_type;
3697 
3698   if (func_type == NULL)
3699     return 1;
3700 
3701   if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3702     return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3703   else
3704     return_type = get_base_type (func_type);
3705   if (return_type == NULL)
3706     return 1;
3707 
3708   context_type = get_base_type (context_type);
3709 
3710   if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3711     return context_type == NULL || return_type == context_type;
3712   else if (context_type == NULL)
3713     return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3714   else
3715     return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3716 }
3717 
3718 
3719 /* Returns the index in SYMS[0..NSYMS-1] that contains  the symbol for the
3720    function (if any) that matches the types of the NARGS arguments in
3721    ARGS.  If CONTEXT_TYPE is non-null and there is at least one match
3722    that returns that type, then eliminate matches that don't.  If
3723    CONTEXT_TYPE is void and there is at least one match that does not
3724    return void, eliminate all matches that do.
3725 
3726    Asks the user if there is more than one match remaining.  Returns -1
3727    if there is no such symbol or none is selected.  NAME is used
3728    solely for messages.  May re-arrange and modify SYMS in
3729    the process; the index returned is for the modified vector.  */
3730 
3731 static int
3732 ada_resolve_function (struct block_symbol syms[],
3733                       int nsyms, struct value **args, int nargs,
3734                       const char *name, struct type *context_type)
3735 {
3736   int fallback;
3737   int k;
3738   int m;                        /* Number of hits */
3739 
3740   m = 0;
3741   /* In the first pass of the loop, we only accept functions matching
3742      context_type.  If none are found, we add a second pass of the loop
3743      where every function is accepted.  */
3744   for (fallback = 0; m == 0 && fallback < 2; fallback++)
3745     {
3746       for (k = 0; k < nsyms; k += 1)
3747         {
3748           struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3749 
3750           if (ada_args_match (syms[k].symbol, args, nargs)
3751               && (fallback || return_match (type, context_type)))
3752             {
3753               syms[m] = syms[k];
3754               m += 1;
3755             }
3756         }
3757     }
3758 
3759   /* If we got multiple matches, ask the user which one to use.  Don't do this
3760      interactive thing during completion, though, as the purpose of the
3761      completion is providing a list of all possible matches.  Prompting the
3762      user to filter it down would be completely unexpected in this case.  */
3763   if (m == 0)
3764     return -1;
3765   else if (m > 1 && !parse_completion)
3766     {
3767       printf_filtered (_("Multiple matches for %s\n"), name);
3768       user_select_syms (syms, m, 1);
3769       return 0;
3770     }
3771   return 0;
3772 }
3773 
3774 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3775    in a listing of choices during disambiguation (see sort_choices, below).
3776    The idea is that overloadings of a subprogram name from the
3777    same package should sort in their source order.  We settle for ordering
3778    such symbols by their trailing number (__N  or $N).  */
3779 
3780 static int
3781 encoded_ordered_before (const char *N0, const char *N1)
3782 {
3783   if (N1 == NULL)
3784     return 0;
3785   else if (N0 == NULL)
3786     return 1;
3787   else
3788     {
3789       int k0, k1;
3790 
3791       for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3792         ;
3793       for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3794         ;
3795       if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3796           && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3797         {
3798           int n0, n1;
3799 
3800           n0 = k0;
3801           while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3802             n0 -= 1;
3803           n1 = k1;
3804           while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3805             n1 -= 1;
3806           if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3807             return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3808         }
3809       return (strcmp (N0, N1) < 0);
3810     }
3811 }
3812 
3813 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3814    encoded names.  */
3815 
3816 static void
3817 sort_choices (struct block_symbol syms[], int nsyms)
3818 {
3819   int i;
3820 
3821   for (i = 1; i < nsyms; i += 1)
3822     {
3823       struct block_symbol sym = syms[i];
3824       int j;
3825 
3826       for (j = i - 1; j >= 0; j -= 1)
3827         {
3828           if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3829                                       SYMBOL_LINKAGE_NAME (sym.symbol)))
3830             break;
3831           syms[j + 1] = syms[j];
3832         }
3833       syms[j + 1] = sym;
3834     }
3835 }
3836 
3837 /* Whether GDB should display formals and return types for functions in the
3838    overloads selection menu.  */
3839 static int print_signatures = 1;
3840 
3841 /* Print the signature for SYM on STREAM according to the FLAGS options.  For
3842    all but functions, the signature is just the name of the symbol.  For
3843    functions, this is the name of the function, the list of types for formals
3844    and the return type (if any).  */
3845 
3846 static void
3847 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3848 			    const struct type_print_options *flags)
3849 {
3850   struct type *type = SYMBOL_TYPE (sym);
3851 
3852   fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3853   if (!print_signatures
3854       || type == NULL
3855       || TYPE_CODE (type) != TYPE_CODE_FUNC)
3856     return;
3857 
3858   if (TYPE_NFIELDS (type) > 0)
3859     {
3860       int i;
3861 
3862       fprintf_filtered (stream, " (");
3863       for (i = 0; i < TYPE_NFIELDS (type); ++i)
3864 	{
3865 	  if (i > 0)
3866 	    fprintf_filtered (stream, "; ");
3867 	  ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3868 			  flags);
3869 	}
3870       fprintf_filtered (stream, ")");
3871     }
3872   if (TYPE_TARGET_TYPE (type) != NULL
3873       && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3874     {
3875       fprintf_filtered (stream, " return ");
3876       ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3877     }
3878 }
3879 
3880 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3881    by asking the user (if necessary), returning the number selected,
3882    and setting the first elements of SYMS items.  Error if no symbols
3883    selected.  */
3884 
3885 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3886    to be re-integrated one of these days.  */
3887 
3888 int
3889 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3890 {
3891   int i;
3892   int *chosen = XALLOCAVEC (int , nsyms);
3893   int n_chosen;
3894   int first_choice = (max_results == 1) ? 1 : 2;
3895   const char *select_mode = multiple_symbols_select_mode ();
3896 
3897   if (max_results < 1)
3898     error (_("Request to select 0 symbols!"));
3899   if (nsyms <= 1)
3900     return nsyms;
3901 
3902   if (select_mode == multiple_symbols_cancel)
3903     error (_("\
3904 canceled because the command is ambiguous\n\
3905 See set/show multiple-symbol."));
3906 
3907   /* If select_mode is "all", then return all possible symbols.
3908      Only do that if more than one symbol can be selected, of course.
3909      Otherwise, display the menu as usual.  */
3910   if (select_mode == multiple_symbols_all && max_results > 1)
3911     return nsyms;
3912 
3913   printf_filtered (_("[0] cancel\n"));
3914   if (max_results > 1)
3915     printf_filtered (_("[1] all\n"));
3916 
3917   sort_choices (syms, nsyms);
3918 
3919   for (i = 0; i < nsyms; i += 1)
3920     {
3921       if (syms[i].symbol == NULL)
3922         continue;
3923 
3924       if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3925         {
3926           struct symtab_and_line sal =
3927             find_function_start_sal (syms[i].symbol, 1);
3928 
3929 	  printf_filtered ("[%d] ", i + first_choice);
3930 	  ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3931 				      &type_print_raw_options);
3932 	  if (sal.symtab == NULL)
3933 	    printf_filtered (_(" at <no source file available>:%d\n"),
3934 			     sal.line);
3935 	  else
3936 	    printf_filtered (_(" at %s:%d\n"),
3937 			     symtab_to_filename_for_display (sal.symtab),
3938 			     sal.line);
3939           continue;
3940         }
3941       else
3942         {
3943           int is_enumeral =
3944             (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3945              && SYMBOL_TYPE (syms[i].symbol) != NULL
3946              && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3947 	  struct symtab *symtab = NULL;
3948 
3949 	  if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3950 	    symtab = symbol_symtab (syms[i].symbol);
3951 
3952           if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3953 	    {
3954 	      printf_filtered ("[%d] ", i + first_choice);
3955 	      ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3956 					  &type_print_raw_options);
3957 	      printf_filtered (_(" at %s:%d\n"),
3958 			       symtab_to_filename_for_display (symtab),
3959 			       SYMBOL_LINE (syms[i].symbol));
3960 	    }
3961           else if (is_enumeral
3962                    && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3963             {
3964               printf_filtered (("[%d] "), i + first_choice);
3965               ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3966                               gdb_stdout, -1, 0, &type_print_raw_options);
3967               printf_filtered (_("'(%s) (enumeral)\n"),
3968 			       SYMBOL_PRINT_NAME (syms[i].symbol));
3969             }
3970 	  else
3971 	    {
3972 	      printf_filtered ("[%d] ", i + first_choice);
3973 	      ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3974 					  &type_print_raw_options);
3975 
3976 	      if (symtab != NULL)
3977 		printf_filtered (is_enumeral
3978 				 ? _(" in %s (enumeral)\n")
3979 				 : _(" at %s:?\n"),
3980 				 symtab_to_filename_for_display (symtab));
3981 	      else
3982 		printf_filtered (is_enumeral
3983 				 ? _(" (enumeral)\n")
3984 				 : _(" at ?\n"));
3985 	    }
3986         }
3987     }
3988 
3989   n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3990                              "overload-choice");
3991 
3992   for (i = 0; i < n_chosen; i += 1)
3993     syms[i] = syms[chosen[i]];
3994 
3995   return n_chosen;
3996 }
3997 
3998 /* Read and validate a set of numeric choices from the user in the
3999    range 0 .. N_CHOICES-1.  Place the results in increasing
4000    order in CHOICES[0 .. N-1], and return N.
4001 
4002    The user types choices as a sequence of numbers on one line
4003    separated by blanks, encoding them as follows:
4004 
4005      + A choice of 0 means to cancel the selection, throwing an error.
4006      + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4007      + The user chooses k by typing k+IS_ALL_CHOICE+1.
4008 
4009    The user is not allowed to choose more than MAX_RESULTS values.
4010 
4011    ANNOTATION_SUFFIX, if present, is used to annotate the input
4012    prompts (for use with the -f switch).  */
4013 
4014 int
4015 get_selections (int *choices, int n_choices, int max_results,
4016                 int is_all_choice, const char *annotation_suffix)
4017 {
4018   char *args;
4019   const char *prompt;
4020   int n_chosen;
4021   int first_choice = is_all_choice ? 2 : 1;
4022 
4023   prompt = getenv ("PS2");
4024   if (prompt == NULL)
4025     prompt = "> ";
4026 
4027   args = command_line_input (prompt, annotation_suffix);
4028 
4029   if (args == NULL)
4030     error_no_arg (_("one or more choice numbers"));
4031 
4032   n_chosen = 0;
4033 
4034   /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4035      order, as given in args.  Choices are validated.  */
4036   while (1)
4037     {
4038       char *args2;
4039       int choice, j;
4040 
4041       args = skip_spaces (args);
4042       if (*args == '\0' && n_chosen == 0)
4043         error_no_arg (_("one or more choice numbers"));
4044       else if (*args == '\0')
4045         break;
4046 
4047       choice = strtol (args, &args2, 10);
4048       if (args == args2 || choice < 0
4049           || choice > n_choices + first_choice - 1)
4050         error (_("Argument must be choice number"));
4051       args = args2;
4052 
4053       if (choice == 0)
4054         error (_("cancelled"));
4055 
4056       if (choice < first_choice)
4057         {
4058           n_chosen = n_choices;
4059           for (j = 0; j < n_choices; j += 1)
4060             choices[j] = j;
4061           break;
4062         }
4063       choice -= first_choice;
4064 
4065       for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4066         {
4067         }
4068 
4069       if (j < 0 || choice != choices[j])
4070         {
4071           int k;
4072 
4073           for (k = n_chosen - 1; k > j; k -= 1)
4074             choices[k + 1] = choices[k];
4075           choices[j + 1] = choice;
4076           n_chosen += 1;
4077         }
4078     }
4079 
4080   if (n_chosen > max_results)
4081     error (_("Select no more than %d of the above"), max_results);
4082 
4083   return n_chosen;
4084 }
4085 
4086 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4087    on the function identified by SYM and BLOCK, and taking NARGS
4088    arguments.  Update *EXPP as needed to hold more space.  */
4089 
4090 static void
4091 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4092                             int oplen, struct symbol *sym,
4093                             const struct block *block)
4094 {
4095   /* A new expression, with 6 more elements (3 for funcall, 4 for function
4096      symbol, -oplen for operator being replaced).  */
4097   struct expression *newexp = (struct expression *)
4098     xzalloc (sizeof (struct expression)
4099              + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4100   struct expression *exp = expp->get ();
4101 
4102   newexp->nelts = exp->nelts + 7 - oplen;
4103   newexp->language_defn = exp->language_defn;
4104   newexp->gdbarch = exp->gdbarch;
4105   memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4106   memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4107           EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4108 
4109   newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4110   newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4111 
4112   newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4113   newexp->elts[pc + 4].block = block;
4114   newexp->elts[pc + 5].symbol = sym;
4115 
4116   expp->reset (newexp);
4117 }
4118 
4119 /* Type-class predicates */
4120 
4121 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4122    or FLOAT).  */
4123 
4124 static int
4125 numeric_type_p (struct type *type)
4126 {
4127   if (type == NULL)
4128     return 0;
4129   else
4130     {
4131       switch (TYPE_CODE (type))
4132         {
4133         case TYPE_CODE_INT:
4134         case TYPE_CODE_FLT:
4135           return 1;
4136         case TYPE_CODE_RANGE:
4137           return (type == TYPE_TARGET_TYPE (type)
4138                   || numeric_type_p (TYPE_TARGET_TYPE (type)));
4139         default:
4140           return 0;
4141         }
4142     }
4143 }
4144 
4145 /* True iff TYPE is integral (an INT or RANGE of INTs).  */
4146 
4147 static int
4148 integer_type_p (struct type *type)
4149 {
4150   if (type == NULL)
4151     return 0;
4152   else
4153     {
4154       switch (TYPE_CODE (type))
4155         {
4156         case TYPE_CODE_INT:
4157           return 1;
4158         case TYPE_CODE_RANGE:
4159           return (type == TYPE_TARGET_TYPE (type)
4160                   || integer_type_p (TYPE_TARGET_TYPE (type)));
4161         default:
4162           return 0;
4163         }
4164     }
4165 }
4166 
4167 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM).  */
4168 
4169 static int
4170 scalar_type_p (struct type *type)
4171 {
4172   if (type == NULL)
4173     return 0;
4174   else
4175     {
4176       switch (TYPE_CODE (type))
4177         {
4178         case TYPE_CODE_INT:
4179         case TYPE_CODE_RANGE:
4180         case TYPE_CODE_ENUM:
4181         case TYPE_CODE_FLT:
4182           return 1;
4183         default:
4184           return 0;
4185         }
4186     }
4187 }
4188 
4189 /* True iff TYPE is discrete (INT, RANGE, ENUM).  */
4190 
4191 static int
4192 discrete_type_p (struct type *type)
4193 {
4194   if (type == NULL)
4195     return 0;
4196   else
4197     {
4198       switch (TYPE_CODE (type))
4199         {
4200         case TYPE_CODE_INT:
4201         case TYPE_CODE_RANGE:
4202         case TYPE_CODE_ENUM:
4203         case TYPE_CODE_BOOL:
4204           return 1;
4205         default:
4206           return 0;
4207         }
4208     }
4209 }
4210 
4211 /* Returns non-zero if OP with operands in the vector ARGS could be
4212    a user-defined function.  Errs on the side of pre-defined operators
4213    (i.e., result 0).  */
4214 
4215 static int
4216 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4217 {
4218   struct type *type0 =
4219     (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4220   struct type *type1 =
4221     (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4222 
4223   if (type0 == NULL)
4224     return 0;
4225 
4226   switch (op)
4227     {
4228     default:
4229       return 0;
4230 
4231     case BINOP_ADD:
4232     case BINOP_SUB:
4233     case BINOP_MUL:
4234     case BINOP_DIV:
4235       return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4236 
4237     case BINOP_REM:
4238     case BINOP_MOD:
4239     case BINOP_BITWISE_AND:
4240     case BINOP_BITWISE_IOR:
4241     case BINOP_BITWISE_XOR:
4242       return (!(integer_type_p (type0) && integer_type_p (type1)));
4243 
4244     case BINOP_EQUAL:
4245     case BINOP_NOTEQUAL:
4246     case BINOP_LESS:
4247     case BINOP_GTR:
4248     case BINOP_LEQ:
4249     case BINOP_GEQ:
4250       return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4251 
4252     case BINOP_CONCAT:
4253       return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4254 
4255     case BINOP_EXP:
4256       return (!(numeric_type_p (type0) && integer_type_p (type1)));
4257 
4258     case UNOP_NEG:
4259     case UNOP_PLUS:
4260     case UNOP_LOGICAL_NOT:
4261     case UNOP_ABS:
4262       return (!numeric_type_p (type0));
4263 
4264     }
4265 }
4266 
4267                                 /* Renaming */
4268 
4269 /* NOTES:
4270 
4271    1. In the following, we assume that a renaming type's name may
4272       have an ___XD suffix.  It would be nice if this went away at some
4273       point.
4274    2. We handle both the (old) purely type-based representation of
4275       renamings and the (new) variable-based encoding.  At some point,
4276       it is devoutly to be hoped that the former goes away
4277       (FIXME: hilfinger-2007-07-09).
4278    3. Subprogram renamings are not implemented, although the XRS
4279       suffix is recognized (FIXME: hilfinger-2007-07-09).  */
4280 
4281 /* If SYM encodes a renaming,
4282 
4283        <renaming> renames <renamed entity>,
4284 
4285    sets *LEN to the length of the renamed entity's name,
4286    *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4287    the string describing the subcomponent selected from the renamed
4288    entity.  Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4289    (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4290    are undefined).  Otherwise, returns a value indicating the category
4291    of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4292    (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4293    subprogram (ADA_SUBPROGRAM_RENAMING).  Does no allocation; the
4294    strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4295    deallocated.  The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4296    may be NULL, in which case they are not assigned.
4297 
4298    [Currently, however, GCC does not generate subprogram renamings.]  */
4299 
4300 enum ada_renaming_category
4301 ada_parse_renaming (struct symbol *sym,
4302 		    const char **renamed_entity, int *len,
4303 		    const char **renaming_expr)
4304 {
4305   enum ada_renaming_category kind;
4306   const char *info;
4307   const char *suffix;
4308 
4309   if (sym == NULL)
4310     return ADA_NOT_RENAMING;
4311   switch (SYMBOL_CLASS (sym))
4312     {
4313     default:
4314       return ADA_NOT_RENAMING;
4315     case LOC_TYPEDEF:
4316       return parse_old_style_renaming (SYMBOL_TYPE (sym),
4317 				       renamed_entity, len, renaming_expr);
4318     case LOC_LOCAL:
4319     case LOC_STATIC:
4320     case LOC_COMPUTED:
4321     case LOC_OPTIMIZED_OUT:
4322       info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4323       if (info == NULL)
4324 	return ADA_NOT_RENAMING;
4325       switch (info[5])
4326 	{
4327 	case '_':
4328 	  kind = ADA_OBJECT_RENAMING;
4329 	  info += 6;
4330 	  break;
4331 	case 'E':
4332 	  kind = ADA_EXCEPTION_RENAMING;
4333 	  info += 7;
4334 	  break;
4335 	case 'P':
4336 	  kind = ADA_PACKAGE_RENAMING;
4337 	  info += 7;
4338 	  break;
4339 	case 'S':
4340 	  kind = ADA_SUBPROGRAM_RENAMING;
4341 	  info += 7;
4342 	  break;
4343 	default:
4344 	  return ADA_NOT_RENAMING;
4345 	}
4346     }
4347 
4348   if (renamed_entity != NULL)
4349     *renamed_entity = info;
4350   suffix = strstr (info, "___XE");
4351   if (suffix == NULL || suffix == info)
4352     return ADA_NOT_RENAMING;
4353   if (len != NULL)
4354     *len = strlen (info) - strlen (suffix);
4355   suffix += 5;
4356   if (renaming_expr != NULL)
4357     *renaming_expr = suffix;
4358   return kind;
4359 }
4360 
4361 /* Assuming TYPE encodes a renaming according to the old encoding in
4362    exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4363    *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above.  Returns
4364    ADA_NOT_RENAMING otherwise.  */
4365 static enum ada_renaming_category
4366 parse_old_style_renaming (struct type *type,
4367 			  const char **renamed_entity, int *len,
4368 			  const char **renaming_expr)
4369 {
4370   enum ada_renaming_category kind;
4371   const char *name;
4372   const char *info;
4373   const char *suffix;
4374 
4375   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4376       || TYPE_NFIELDS (type) != 1)
4377     return ADA_NOT_RENAMING;
4378 
4379   name = TYPE_NAME (type);
4380   if (name == NULL)
4381     return ADA_NOT_RENAMING;
4382 
4383   name = strstr (name, "___XR");
4384   if (name == NULL)
4385     return ADA_NOT_RENAMING;
4386   switch (name[5])
4387     {
4388     case '\0':
4389     case '_':
4390       kind = ADA_OBJECT_RENAMING;
4391       break;
4392     case 'E':
4393       kind = ADA_EXCEPTION_RENAMING;
4394       break;
4395     case 'P':
4396       kind = ADA_PACKAGE_RENAMING;
4397       break;
4398     case 'S':
4399       kind = ADA_SUBPROGRAM_RENAMING;
4400       break;
4401     default:
4402       return ADA_NOT_RENAMING;
4403     }
4404 
4405   info = TYPE_FIELD_NAME (type, 0);
4406   if (info == NULL)
4407     return ADA_NOT_RENAMING;
4408   if (renamed_entity != NULL)
4409     *renamed_entity = info;
4410   suffix = strstr (info, "___XE");
4411   if (renaming_expr != NULL)
4412     *renaming_expr = suffix + 5;
4413   if (suffix == NULL || suffix == info)
4414     return ADA_NOT_RENAMING;
4415   if (len != NULL)
4416     *len = suffix - info;
4417   return kind;
4418 }
4419 
4420 /* Compute the value of the given RENAMING_SYM, which is expected to
4421    be a symbol encoding a renaming expression.  BLOCK is the block
4422    used to evaluate the renaming.  */
4423 
4424 static struct value *
4425 ada_read_renaming_var_value (struct symbol *renaming_sym,
4426 			     const struct block *block)
4427 {
4428   const char *sym_name;
4429 
4430   sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4431   expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4432   return evaluate_expression (expr.get ());
4433 }
4434 
4435 
4436                                 /* Evaluation: Function Calls */
4437 
4438 /* Return an lvalue containing the value VAL.  This is the identity on
4439    lvalues, and otherwise has the side-effect of allocating memory
4440    in the inferior where a copy of the value contents is copied.  */
4441 
4442 static struct value *
4443 ensure_lval (struct value *val)
4444 {
4445   if (VALUE_LVAL (val) == not_lval
4446       || VALUE_LVAL (val) == lval_internalvar)
4447     {
4448       int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4449       const CORE_ADDR addr =
4450         value_as_long (value_allocate_space_in_inferior (len));
4451 
4452       VALUE_LVAL (val) = lval_memory;
4453       set_value_address (val, addr);
4454       write_memory (addr, value_contents (val), len);
4455     }
4456 
4457   return val;
4458 }
4459 
4460 /* Return the value ACTUAL, converted to be an appropriate value for a
4461    formal of type FORMAL_TYPE.  Use *SP as a stack pointer for
4462    allocating any necessary descriptors (fat pointers), or copies of
4463    values not residing in memory, updating it as needed.  */
4464 
4465 struct value *
4466 ada_convert_actual (struct value *actual, struct type *formal_type0)
4467 {
4468   struct type *actual_type = ada_check_typedef (value_type (actual));
4469   struct type *formal_type = ada_check_typedef (formal_type0);
4470   struct type *formal_target =
4471     TYPE_CODE (formal_type) == TYPE_CODE_PTR
4472     ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4473   struct type *actual_target =
4474     TYPE_CODE (actual_type) == TYPE_CODE_PTR
4475     ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4476 
4477   if (ada_is_array_descriptor_type (formal_target)
4478       && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4479     return make_array_descriptor (formal_type, actual);
4480   else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4481 	   || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4482     {
4483       struct value *result;
4484 
4485       if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4486           && ada_is_array_descriptor_type (actual_target))
4487 	result = desc_data (actual);
4488       else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4489         {
4490           if (VALUE_LVAL (actual) != lval_memory)
4491             {
4492               struct value *val;
4493 
4494               actual_type = ada_check_typedef (value_type (actual));
4495               val = allocate_value (actual_type);
4496               memcpy ((char *) value_contents_raw (val),
4497                       (char *) value_contents (actual),
4498                       TYPE_LENGTH (actual_type));
4499               actual = ensure_lval (val);
4500             }
4501           result = value_addr (actual);
4502         }
4503       else
4504 	return actual;
4505       return value_cast_pointers (formal_type, result, 0);
4506     }
4507   else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4508     return ada_value_ind (actual);
4509   else if (ada_is_aligner_type (formal_type))
4510     {
4511       /* We need to turn this parameter into an aligner type
4512 	 as well.  */
4513       struct value *aligner = allocate_value (formal_type);
4514       struct value *component = ada_value_struct_elt (aligner, "F", 0);
4515 
4516       value_assign_to_component (aligner, component, actual);
4517       return aligner;
4518     }
4519 
4520   return actual;
4521 }
4522 
4523 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4524    type TYPE.  This is usually an inefficient no-op except on some targets
4525    (such as AVR) where the representation of a pointer and an address
4526    differs.  */
4527 
4528 static CORE_ADDR
4529 value_pointer (struct value *value, struct type *type)
4530 {
4531   struct gdbarch *gdbarch = get_type_arch (type);
4532   unsigned len = TYPE_LENGTH (type);
4533   gdb_byte *buf = (gdb_byte *) alloca (len);
4534   CORE_ADDR addr;
4535 
4536   addr = value_address (value);
4537   gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4538   addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4539   return addr;
4540 }
4541 
4542 
4543 /* Push a descriptor of type TYPE for array value ARR on the stack at
4544    *SP, updating *SP to reflect the new descriptor.  Return either
4545    an lvalue representing the new descriptor, or (if TYPE is a pointer-
4546    to-descriptor type rather than a descriptor type), a struct value *
4547    representing a pointer to this descriptor.  */
4548 
4549 static struct value *
4550 make_array_descriptor (struct type *type, struct value *arr)
4551 {
4552   struct type *bounds_type = desc_bounds_type (type);
4553   struct type *desc_type = desc_base_type (type);
4554   struct value *descriptor = allocate_value (desc_type);
4555   struct value *bounds = allocate_value (bounds_type);
4556   int i;
4557 
4558   for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4559        i > 0; i -= 1)
4560     {
4561       modify_field (value_type (bounds), value_contents_writeable (bounds),
4562 		    ada_array_bound (arr, i, 0),
4563 		    desc_bound_bitpos (bounds_type, i, 0),
4564 		    desc_bound_bitsize (bounds_type, i, 0));
4565       modify_field (value_type (bounds), value_contents_writeable (bounds),
4566 		    ada_array_bound (arr, i, 1),
4567 		    desc_bound_bitpos (bounds_type, i, 1),
4568 		    desc_bound_bitsize (bounds_type, i, 1));
4569     }
4570 
4571   bounds = ensure_lval (bounds);
4572 
4573   modify_field (value_type (descriptor),
4574 		value_contents_writeable (descriptor),
4575 		value_pointer (ensure_lval (arr),
4576 			       TYPE_FIELD_TYPE (desc_type, 0)),
4577 		fat_pntr_data_bitpos (desc_type),
4578 		fat_pntr_data_bitsize (desc_type));
4579 
4580   modify_field (value_type (descriptor),
4581 		value_contents_writeable (descriptor),
4582 		value_pointer (bounds,
4583 			       TYPE_FIELD_TYPE (desc_type, 1)),
4584 		fat_pntr_bounds_bitpos (desc_type),
4585 		fat_pntr_bounds_bitsize (desc_type));
4586 
4587   descriptor = ensure_lval (descriptor);
4588 
4589   if (TYPE_CODE (type) == TYPE_CODE_PTR)
4590     return value_addr (descriptor);
4591   else
4592     return descriptor;
4593 }
4594 
4595                                 /* Symbol Cache Module */
4596 
4597 /* Performance measurements made as of 2010-01-15 indicate that
4598    this cache does bring some noticeable improvements.  Depending
4599    on the type of entity being printed, the cache can make it as much
4600    as an order of magnitude faster than without it.
4601 
4602    The descriptive type DWARF extension has significantly reduced
4603    the need for this cache, at least when DWARF is being used.  However,
4604    even in this case, some expensive name-based symbol searches are still
4605    sometimes necessary - to find an XVZ variable, mostly.  */
4606 
4607 /* Initialize the contents of SYM_CACHE.  */
4608 
4609 static void
4610 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4611 {
4612   obstack_init (&sym_cache->cache_space);
4613   memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4614 }
4615 
4616 /* Free the memory used by SYM_CACHE.  */
4617 
4618 static void
4619 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4620 {
4621   obstack_free (&sym_cache->cache_space, NULL);
4622   xfree (sym_cache);
4623 }
4624 
4625 /* Return the symbol cache associated to the given program space PSPACE.
4626    If not allocated for this PSPACE yet, allocate and initialize one.  */
4627 
4628 static struct ada_symbol_cache *
4629 ada_get_symbol_cache (struct program_space *pspace)
4630 {
4631   struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4632 
4633   if (pspace_data->sym_cache == NULL)
4634     {
4635       pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4636       ada_init_symbol_cache (pspace_data->sym_cache);
4637     }
4638 
4639   return pspace_data->sym_cache;
4640 }
4641 
4642 /* Clear all entries from the symbol cache.  */
4643 
4644 static void
4645 ada_clear_symbol_cache (void)
4646 {
4647   struct ada_symbol_cache *sym_cache
4648     = ada_get_symbol_cache (current_program_space);
4649 
4650   obstack_free (&sym_cache->cache_space, NULL);
4651   ada_init_symbol_cache (sym_cache);
4652 }
4653 
4654 /* Search our cache for an entry matching NAME and DOMAIN.
4655    Return it if found, or NULL otherwise.  */
4656 
4657 static struct cache_entry **
4658 find_entry (const char *name, domain_enum domain)
4659 {
4660   struct ada_symbol_cache *sym_cache
4661     = ada_get_symbol_cache (current_program_space);
4662   int h = msymbol_hash (name) % HASH_SIZE;
4663   struct cache_entry **e;
4664 
4665   for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4666     {
4667       if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4668         return e;
4669     }
4670   return NULL;
4671 }
4672 
4673 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4674    Return 1 if found, 0 otherwise.
4675 
4676    If an entry was found and SYM is not NULL, set *SYM to the entry's
4677    SYM.  Same principle for BLOCK if not NULL.  */
4678 
4679 static int
4680 lookup_cached_symbol (const char *name, domain_enum domain,
4681                       struct symbol **sym, const struct block **block)
4682 {
4683   struct cache_entry **e = find_entry (name, domain);
4684 
4685   if (e == NULL)
4686     return 0;
4687   if (sym != NULL)
4688     *sym = (*e)->sym;
4689   if (block != NULL)
4690     *block = (*e)->block;
4691   return 1;
4692 }
4693 
4694 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4695    in domain DOMAIN, save this result in our symbol cache.  */
4696 
4697 static void
4698 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4699               const struct block *block)
4700 {
4701   struct ada_symbol_cache *sym_cache
4702     = ada_get_symbol_cache (current_program_space);
4703   int h;
4704   char *copy;
4705   struct cache_entry *e;
4706 
4707   /* Symbols for builtin types don't have a block.
4708      For now don't cache such symbols.  */
4709   if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4710     return;
4711 
4712   /* If the symbol is a local symbol, then do not cache it, as a search
4713      for that symbol depends on the context.  To determine whether
4714      the symbol is local or not, we check the block where we found it
4715      against the global and static blocks of its associated symtab.  */
4716   if (sym
4717       && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4718 			    GLOBAL_BLOCK) != block
4719       && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4720 			    STATIC_BLOCK) != block)
4721     return;
4722 
4723   h = msymbol_hash (name) % HASH_SIZE;
4724   e = XOBNEW (&sym_cache->cache_space, cache_entry);
4725   e->next = sym_cache->root[h];
4726   sym_cache->root[h] = e;
4727   e->name = copy
4728     = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4729   strcpy (copy, name);
4730   e->sym = sym;
4731   e->domain = domain;
4732   e->block = block;
4733 }
4734 
4735                                 /* Symbol Lookup */
4736 
4737 /* Return the symbol name match type that should be used used when
4738    searching for all symbols matching LOOKUP_NAME.
4739 
4740    LOOKUP_NAME is expected to be a symbol name after transformation
4741    for Ada lookups.  */
4742 
4743 static symbol_name_match_type
4744 name_match_type_from_name (const char *lookup_name)
4745 {
4746   return (strstr (lookup_name, "__") == NULL
4747 	  ? symbol_name_match_type::WILD
4748 	  : symbol_name_match_type::FULL);
4749 }
4750 
4751 /* Return the result of a standard (literal, C-like) lookup of NAME in
4752    given DOMAIN, visible from lexical block BLOCK.  */
4753 
4754 static struct symbol *
4755 standard_lookup (const char *name, const struct block *block,
4756                  domain_enum domain)
4757 {
4758   /* Initialize it just to avoid a GCC false warning.  */
4759   struct block_symbol sym = {NULL, NULL};
4760 
4761   if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4762     return sym.symbol;
4763   ada_lookup_encoded_symbol (name, block, domain, &sym);
4764   cache_symbol (name, domain, sym.symbol, sym.block);
4765   return sym.symbol;
4766 }
4767 
4768 
4769 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4770    in the symbol fields of SYMS[0..N-1].  We treat enumerals as functions,
4771    since they contend in overloading in the same way.  */
4772 static int
4773 is_nonfunction (struct block_symbol syms[], int n)
4774 {
4775   int i;
4776 
4777   for (i = 0; i < n; i += 1)
4778     if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4779         && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4780             || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4781       return 1;
4782 
4783   return 0;
4784 }
4785 
4786 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4787    struct types.  Otherwise, they may not.  */
4788 
4789 static int
4790 equiv_types (struct type *type0, struct type *type1)
4791 {
4792   if (type0 == type1)
4793     return 1;
4794   if (type0 == NULL || type1 == NULL
4795       || TYPE_CODE (type0) != TYPE_CODE (type1))
4796     return 0;
4797   if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4798        || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4799       && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4800       && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4801     return 1;
4802 
4803   return 0;
4804 }
4805 
4806 /* True iff SYM0 represents the same entity as SYM1, or one that is
4807    no more defined than that of SYM1.  */
4808 
4809 static int
4810 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4811 {
4812   if (sym0 == sym1)
4813     return 1;
4814   if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4815       || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4816     return 0;
4817 
4818   switch (SYMBOL_CLASS (sym0))
4819     {
4820     case LOC_UNDEF:
4821       return 1;
4822     case LOC_TYPEDEF:
4823       {
4824         struct type *type0 = SYMBOL_TYPE (sym0);
4825         struct type *type1 = SYMBOL_TYPE (sym1);
4826         const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4827         const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4828         int len0 = strlen (name0);
4829 
4830         return
4831           TYPE_CODE (type0) == TYPE_CODE (type1)
4832           && (equiv_types (type0, type1)
4833               || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4834                   && startswith (name1 + len0, "___XV")));
4835       }
4836     case LOC_CONST:
4837       return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4838         && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4839     default:
4840       return 0;
4841     }
4842 }
4843 
4844 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4845    records in OBSTACKP.  Do nothing if SYM is a duplicate.  */
4846 
4847 static void
4848 add_defn_to_vec (struct obstack *obstackp,
4849                  struct symbol *sym,
4850                  const struct block *block)
4851 {
4852   int i;
4853   struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4854 
4855   /* Do not try to complete stub types, as the debugger is probably
4856      already scanning all symbols matching a certain name at the
4857      time when this function is called.  Trying to replace the stub
4858      type by its associated full type will cause us to restart a scan
4859      which may lead to an infinite recursion.  Instead, the client
4860      collecting the matching symbols will end up collecting several
4861      matches, with at least one of them complete.  It can then filter
4862      out the stub ones if needed.  */
4863 
4864   for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4865     {
4866       if (lesseq_defined_than (sym, prevDefns[i].symbol))
4867         return;
4868       else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4869         {
4870           prevDefns[i].symbol = sym;
4871           prevDefns[i].block = block;
4872           return;
4873         }
4874     }
4875 
4876   {
4877     struct block_symbol info;
4878 
4879     info.symbol = sym;
4880     info.block = block;
4881     obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4882   }
4883 }
4884 
4885 /* Number of block_symbol structures currently collected in current vector in
4886    OBSTACKP.  */
4887 
4888 static int
4889 num_defns_collected (struct obstack *obstackp)
4890 {
4891   return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4892 }
4893 
4894 /* Vector of block_symbol structures currently collected in current vector in
4895    OBSTACKP.  If FINISH, close off the vector and return its final address.  */
4896 
4897 static struct block_symbol *
4898 defns_collected (struct obstack *obstackp, int finish)
4899 {
4900   if (finish)
4901     return (struct block_symbol *) obstack_finish (obstackp);
4902   else
4903     return (struct block_symbol *) obstack_base (obstackp);
4904 }
4905 
4906 /* Return a bound minimal symbol matching NAME according to Ada
4907    decoding rules.  Returns an invalid symbol if there is no such
4908    minimal symbol.  Names prefixed with "standard__" are handled
4909    specially: "standard__" is first stripped off, and only static and
4910    global symbols are searched.  */
4911 
4912 struct bound_minimal_symbol
4913 ada_lookup_simple_minsym (const char *name)
4914 {
4915   struct bound_minimal_symbol result;
4916 
4917   memset (&result, 0, sizeof (result));
4918 
4919   symbol_name_match_type match_type = name_match_type_from_name (name);
4920   lookup_name_info lookup_name (name, match_type);
4921 
4922   symbol_name_matcher_ftype *match_name
4923     = ada_get_symbol_name_matcher (lookup_name);
4924 
4925   for (objfile *objfile : current_program_space->objfiles ())
4926     {
4927       for (minimal_symbol *msymbol : objfile->msymbols ())
4928 	{
4929 	  if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4930 	      && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4931 	    {
4932 	      result.minsym = msymbol;
4933 	      result.objfile = objfile;
4934 	      break;
4935 	    }
4936 	}
4937     }
4938 
4939   return result;
4940 }
4941 
4942 /* For all subprograms that statically enclose the subprogram of the
4943    selected frame, add symbols matching identifier NAME in DOMAIN
4944    and their blocks to the list of data in OBSTACKP, as for
4945    ada_add_block_symbols (q.v.).   If WILD_MATCH_P, treat as NAME
4946    with a wildcard prefix.  */
4947 
4948 static void
4949 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4950 				  const lookup_name_info &lookup_name,
4951 				  domain_enum domain)
4952 {
4953 }
4954 
4955 /* True if TYPE is definitely an artificial type supplied to a symbol
4956    for which no debugging information was given in the symbol file.  */
4957 
4958 static int
4959 is_nondebugging_type (struct type *type)
4960 {
4961   const char *name = ada_type_name (type);
4962 
4963   return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4964 }
4965 
4966 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4967    that are deemed "identical" for practical purposes.
4968 
4969    This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4970    types and that their number of enumerals is identical (in other
4971    words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)).  */
4972 
4973 static int
4974 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4975 {
4976   int i;
4977 
4978   /* The heuristic we use here is fairly conservative.  We consider
4979      that 2 enumerate types are identical if they have the same
4980      number of enumerals and that all enumerals have the same
4981      underlying value and name.  */
4982 
4983   /* All enums in the type should have an identical underlying value.  */
4984   for (i = 0; i < TYPE_NFIELDS (type1); i++)
4985     if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4986       return 0;
4987 
4988   /* All enumerals should also have the same name (modulo any numerical
4989      suffix).  */
4990   for (i = 0; i < TYPE_NFIELDS (type1); i++)
4991     {
4992       const char *name_1 = TYPE_FIELD_NAME (type1, i);
4993       const char *name_2 = TYPE_FIELD_NAME (type2, i);
4994       int len_1 = strlen (name_1);
4995       int len_2 = strlen (name_2);
4996 
4997       ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4998       ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4999       if (len_1 != len_2
5000           || strncmp (TYPE_FIELD_NAME (type1, i),
5001 		      TYPE_FIELD_NAME (type2, i),
5002 		      len_1) != 0)
5003 	return 0;
5004     }
5005 
5006   return 1;
5007 }
5008 
5009 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5010    that are deemed "identical" for practical purposes.  Sometimes,
5011    enumerals are not strictly identical, but their types are so similar
5012    that they can be considered identical.
5013 
5014    For instance, consider the following code:
5015 
5016       type Color is (Black, Red, Green, Blue, White);
5017       type RGB_Color is new Color range Red .. Blue;
5018 
5019    Type RGB_Color is a subrange of an implicit type which is a copy
5020    of type Color. If we call that implicit type RGB_ColorB ("B" is
5021    for "Base Type"), then type RGB_ColorB is a copy of type Color.
5022    As a result, when an expression references any of the enumeral
5023    by name (Eg. "print green"), the expression is technically
5024    ambiguous and the user should be asked to disambiguate. But
5025    doing so would only hinder the user, since it wouldn't matter
5026    what choice he makes, the outcome would always be the same.
5027    So, for practical purposes, we consider them as the same.  */
5028 
5029 static int
5030 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5031 {
5032   int i;
5033 
5034   /* Before performing a thorough comparison check of each type,
5035      we perform a series of inexpensive checks.  We expect that these
5036      checks will quickly fail in the vast majority of cases, and thus
5037      help prevent the unnecessary use of a more expensive comparison.
5038      Said comparison also expects us to make some of these checks
5039      (see ada_identical_enum_types_p).  */
5040 
5041   /* Quick check: All symbols should have an enum type.  */
5042   for (i = 0; i < syms.size (); i++)
5043     if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5044       return 0;
5045 
5046   /* Quick check: They should all have the same value.  */
5047   for (i = 1; i < syms.size (); i++)
5048     if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5049       return 0;
5050 
5051   /* Quick check: They should all have the same number of enumerals.  */
5052   for (i = 1; i < syms.size (); i++)
5053     if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5054         != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5055       return 0;
5056 
5057   /* All the sanity checks passed, so we might have a set of
5058      identical enumeration types.  Perform a more complete
5059      comparison of the type of each symbol.  */
5060   for (i = 1; i < syms.size (); i++)
5061     if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5062                                      SYMBOL_TYPE (syms[0].symbol)))
5063       return 0;
5064 
5065   return 1;
5066 }
5067 
5068 /* Remove any non-debugging symbols in SYMS that definitely
5069    duplicate other symbols in the list (The only case I know of where
5070    this happens is when object files containing stabs-in-ecoff are
5071    linked with files containing ordinary ecoff debugging symbols (or no
5072    debugging symbols)).  Modifies SYMS to squeeze out deleted entries.
5073    Returns the number of items in the modified list.  */
5074 
5075 static int
5076 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5077 {
5078   int i, j;
5079 
5080   /* We should never be called with less than 2 symbols, as there
5081      cannot be any extra symbol in that case.  But it's easy to
5082      handle, since we have nothing to do in that case.  */
5083   if (syms->size () < 2)
5084     return syms->size ();
5085 
5086   i = 0;
5087   while (i < syms->size ())
5088     {
5089       int remove_p = 0;
5090 
5091       /* If two symbols have the same name and one of them is a stub type,
5092          the get rid of the stub.  */
5093 
5094       if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5095           && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5096         {
5097           for (j = 0; j < syms->size (); j++)
5098             {
5099               if (j != i
5100                   && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5101                   && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5102                   && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5103                              SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5104                 remove_p = 1;
5105             }
5106         }
5107 
5108       /* Two symbols with the same name, same class and same address
5109          should be identical.  */
5110 
5111       else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5112           && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5113           && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5114         {
5115           for (j = 0; j < syms->size (); j += 1)
5116             {
5117               if (i != j
5118                   && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5119                   && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5120                              SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5121                   && SYMBOL_CLASS ((*syms)[i].symbol)
5122 		       == SYMBOL_CLASS ((*syms)[j].symbol)
5123                   && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5124                   == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5125                 remove_p = 1;
5126             }
5127         }
5128 
5129       if (remove_p)
5130 	syms->erase (syms->begin () + i);
5131 
5132       i += 1;
5133     }
5134 
5135   /* If all the remaining symbols are identical enumerals, then
5136      just keep the first one and discard the rest.
5137 
5138      Unlike what we did previously, we do not discard any entry
5139      unless they are ALL identical.  This is because the symbol
5140      comparison is not a strict comparison, but rather a practical
5141      comparison.  If all symbols are considered identical, then
5142      we can just go ahead and use the first one and discard the rest.
5143      But if we cannot reduce the list to a single element, we have
5144      to ask the user to disambiguate anyways.  And if we have to
5145      present a multiple-choice menu, it's less confusing if the list
5146      isn't missing some choices that were identical and yet distinct.  */
5147   if (symbols_are_identical_enums (*syms))
5148     syms->resize (1);
5149 
5150   return syms->size ();
5151 }
5152 
5153 /* Given a type that corresponds to a renaming entity, use the type name
5154    to extract the scope (package name or function name, fully qualified,
5155    and following the GNAT encoding convention) where this renaming has been
5156    defined.  */
5157 
5158 static std::string
5159 xget_renaming_scope (struct type *renaming_type)
5160 {
5161   /* The renaming types adhere to the following convention:
5162      <scope>__<rename>___<XR extension>.
5163      So, to extract the scope, we search for the "___XR" extension,
5164      and then backtrack until we find the first "__".  */
5165 
5166   const char *name = TYPE_NAME (renaming_type);
5167   const char *suffix = strstr (name, "___XR");
5168   const char *last;
5169 
5170   /* Now, backtrack a bit until we find the first "__".  Start looking
5171      at suffix - 3, as the <rename> part is at least one character long.  */
5172 
5173   for (last = suffix - 3; last > name; last--)
5174     if (last[0] == '_' && last[1] == '_')
5175       break;
5176 
5177   /* Make a copy of scope and return it.  */
5178   return std::string (name, last);
5179 }
5180 
5181 /* Return nonzero if NAME corresponds to a package name.  */
5182 
5183 static int
5184 is_package_name (const char *name)
5185 {
5186   /* Here, We take advantage of the fact that no symbols are generated
5187      for packages, while symbols are generated for each function.
5188      So the condition for NAME represent a package becomes equivalent
5189      to NAME not existing in our list of symbols.  There is only one
5190      small complication with library-level functions (see below).  */
5191 
5192   /* If it is a function that has not been defined at library level,
5193      then we should be able to look it up in the symbols.  */
5194   if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5195     return 0;
5196 
5197   /* Library-level function names start with "_ada_".  See if function
5198      "_ada_" followed by NAME can be found.  */
5199 
5200   /* Do a quick check that NAME does not contain "__", since library-level
5201      functions names cannot contain "__" in them.  */
5202   if (strstr (name, "__") != NULL)
5203     return 0;
5204 
5205   std::string fun_name = string_printf ("_ada_%s", name);
5206 
5207   return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5208 }
5209 
5210 /* Return nonzero if SYM corresponds to a renaming entity that is
5211    not visible from FUNCTION_NAME.  */
5212 
5213 static int
5214 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5215 {
5216   if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5217     return 0;
5218 
5219   std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5220 
5221   /* If the rename has been defined in a package, then it is visible.  */
5222   if (is_package_name (scope.c_str ()))
5223     return 0;
5224 
5225   /* Check that the rename is in the current function scope by checking
5226      that its name starts with SCOPE.  */
5227 
5228   /* If the function name starts with "_ada_", it means that it is
5229      a library-level function.  Strip this prefix before doing the
5230      comparison, as the encoding for the renaming does not contain
5231      this prefix.  */
5232   if (startswith (function_name, "_ada_"))
5233     function_name += 5;
5234 
5235   return !startswith (function_name, scope.c_str ());
5236 }
5237 
5238 /* Remove entries from SYMS that corresponds to a renaming entity that
5239    is not visible from the function associated with CURRENT_BLOCK or
5240    that is superfluous due to the presence of more specific renaming
5241    information.  Places surviving symbols in the initial entries of
5242    SYMS and returns the number of surviving symbols.
5243 
5244    Rationale:
5245    First, in cases where an object renaming is implemented as a
5246    reference variable, GNAT may produce both the actual reference
5247    variable and the renaming encoding.  In this case, we discard the
5248    latter.
5249 
5250    Second, GNAT emits a type following a specified encoding for each renaming
5251    entity.  Unfortunately, STABS currently does not support the definition
5252    of types that are local to a given lexical block, so all renamings types
5253    are emitted at library level.  As a consequence, if an application
5254    contains two renaming entities using the same name, and a user tries to
5255    print the value of one of these entities, the result of the ada symbol
5256    lookup will also contain the wrong renaming type.
5257 
5258    This function partially covers for this limitation by attempting to
5259    remove from the SYMS list renaming symbols that should be visible
5260    from CURRENT_BLOCK.  However, there does not seem be a 100% reliable
5261    method with the current information available.  The implementation
5262    below has a couple of limitations (FIXME: brobecker-2003-05-12):
5263 
5264       - When the user tries to print a rename in a function while there
5265         is another rename entity defined in a package:  Normally, the
5266         rename in the function has precedence over the rename in the
5267         package, so the latter should be removed from the list.  This is
5268         currently not the case.
5269 
5270       - This function will incorrectly remove valid renames if
5271         the CURRENT_BLOCK corresponds to a function which symbol name
5272         has been changed by an "Export" pragma.  As a consequence,
5273         the user will be unable to print such rename entities.  */
5274 
5275 static int
5276 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5277 			     const struct block *current_block)
5278 {
5279   struct symbol *current_function;
5280   const char *current_function_name;
5281   int i;
5282   int is_new_style_renaming;
5283 
5284   /* If there is both a renaming foo___XR... encoded as a variable and
5285      a simple variable foo in the same block, discard the latter.
5286      First, zero out such symbols, then compress.  */
5287   is_new_style_renaming = 0;
5288   for (i = 0; i < syms->size (); i += 1)
5289     {
5290       struct symbol *sym = (*syms)[i].symbol;
5291       const struct block *block = (*syms)[i].block;
5292       const char *name;
5293       const char *suffix;
5294 
5295       if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5296 	continue;
5297       name = SYMBOL_LINKAGE_NAME (sym);
5298       suffix = strstr (name, "___XR");
5299 
5300       if (suffix != NULL)
5301 	{
5302 	  int name_len = suffix - name;
5303 	  int j;
5304 
5305 	  is_new_style_renaming = 1;
5306 	  for (j = 0; j < syms->size (); j += 1)
5307 	    if (i != j && (*syms)[j].symbol != NULL
5308 		&& strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5309 			    name_len) == 0
5310 		&& block == (*syms)[j].block)
5311 	      (*syms)[j].symbol = NULL;
5312 	}
5313     }
5314   if (is_new_style_renaming)
5315     {
5316       int j, k;
5317 
5318       for (j = k = 0; j < syms->size (); j += 1)
5319 	if ((*syms)[j].symbol != NULL)
5320 	    {
5321 	      (*syms)[k] = (*syms)[j];
5322 	      k += 1;
5323 	    }
5324       return k;
5325     }
5326 
5327   /* Extract the function name associated to CURRENT_BLOCK.
5328      Abort if unable to do so.  */
5329 
5330   if (current_block == NULL)
5331     return syms->size ();
5332 
5333   current_function = block_linkage_function (current_block);
5334   if (current_function == NULL)
5335     return syms->size ();
5336 
5337   current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5338   if (current_function_name == NULL)
5339     return syms->size ();
5340 
5341   /* Check each of the symbols, and remove it from the list if it is
5342      a type corresponding to a renaming that is out of the scope of
5343      the current block.  */
5344 
5345   i = 0;
5346   while (i < syms->size ())
5347     {
5348       if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5349           == ADA_OBJECT_RENAMING
5350           && old_renaming_is_invisible ((*syms)[i].symbol,
5351 					current_function_name))
5352 	syms->erase (syms->begin () + i);
5353       else
5354         i += 1;
5355     }
5356 
5357   return syms->size ();
5358 }
5359 
5360 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5361    whose name and domain match NAME and DOMAIN respectively.
5362    If no match was found, then extend the search to "enclosing"
5363    routines (in other words, if we're inside a nested function,
5364    search the symbols defined inside the enclosing functions).
5365    If WILD_MATCH_P is nonzero, perform the naming matching in
5366    "wild" mode (see function "wild_match" for more info).
5367 
5368    Note: This function assumes that OBSTACKP has 0 (zero) element in it.  */
5369 
5370 static void
5371 ada_add_local_symbols (struct obstack *obstackp,
5372 		       const lookup_name_info &lookup_name,
5373 		       const struct block *block, domain_enum domain)
5374 {
5375   int block_depth = 0;
5376 
5377   while (block != NULL)
5378     {
5379       block_depth += 1;
5380       ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5381 
5382       /* If we found a non-function match, assume that's the one.  */
5383       if (is_nonfunction (defns_collected (obstackp, 0),
5384                           num_defns_collected (obstackp)))
5385         return;
5386 
5387       block = BLOCK_SUPERBLOCK (block);
5388     }
5389 
5390   /* If no luck so far, try to find NAME as a local symbol in some lexically
5391      enclosing subprogram.  */
5392   if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5393     add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5394 }
5395 
5396 /* An object of this type is used as the user_data argument when
5397    calling the map_matching_symbols method.  */
5398 
5399 struct match_data
5400 {
5401   struct objfile *objfile;
5402   struct obstack *obstackp;
5403   struct symbol *arg_sym;
5404   int found_sym;
5405 };
5406 
5407 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5408    to a list of symbols.  DATA0 is a pointer to a struct match_data *
5409    containing the obstack that collects the symbol list, the file that SYM
5410    must come from, a flag indicating whether a non-argument symbol has
5411    been found in the current block, and the last argument symbol
5412    passed in SYM within the current block (if any).  When SYM is null,
5413    marking the end of a block, the argument symbol is added if no
5414    other has been found.  */
5415 
5416 static int
5417 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5418 {
5419   struct match_data *data = (struct match_data *) data0;
5420 
5421   if (sym == NULL)
5422     {
5423       if (!data->found_sym && data->arg_sym != NULL)
5424 	add_defn_to_vec (data->obstackp,
5425 			 fixup_symbol_section (data->arg_sym, data->objfile),
5426 			 block);
5427       data->found_sym = 0;
5428       data->arg_sym = NULL;
5429     }
5430   else
5431     {
5432       if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5433 	return 0;
5434       else if (SYMBOL_IS_ARGUMENT (sym))
5435 	data->arg_sym = sym;
5436       else
5437 	{
5438 	  data->found_sym = 1;
5439 	  add_defn_to_vec (data->obstackp,
5440 			   fixup_symbol_section (sym, data->objfile),
5441 			   block);
5442 	}
5443     }
5444   return 0;
5445 }
5446 
5447 /* Helper for add_nonlocal_symbols.  Find symbols in DOMAIN which are
5448    targeted by renamings matching LOOKUP_NAME in BLOCK.  Add these
5449    symbols to OBSTACKP.  Return whether we found such symbols.  */
5450 
5451 static int
5452 ada_add_block_renamings (struct obstack *obstackp,
5453 			 const struct block *block,
5454 			 const lookup_name_info &lookup_name,
5455 			 domain_enum domain)
5456 {
5457   struct using_direct *renaming;
5458   int defns_mark = num_defns_collected (obstackp);
5459 
5460   symbol_name_matcher_ftype *name_match
5461     = ada_get_symbol_name_matcher (lookup_name);
5462 
5463   for (renaming = block_using (block);
5464        renaming != NULL;
5465        renaming = renaming->next)
5466     {
5467       const char *r_name;
5468 
5469       /* Avoid infinite recursions: skip this renaming if we are actually
5470 	 already traversing it.
5471 
5472 	 Currently, symbol lookup in Ada don't use the namespace machinery from
5473 	 C++/Fortran support: skip namespace imports that use them.  */
5474       if (renaming->searched
5475 	  || (renaming->import_src != NULL
5476 	      && renaming->import_src[0] != '\0')
5477 	  || (renaming->import_dest != NULL
5478 	      && renaming->import_dest[0] != '\0'))
5479 	continue;
5480       renaming->searched = 1;
5481 
5482       /* TODO: here, we perform another name-based symbol lookup, which can
5483 	 pull its own multiple overloads.  In theory, we should be able to do
5484 	 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5485 	 not a simple name.  But in order to do this, we would need to enhance
5486 	 the DWARF reader to associate a symbol to this renaming, instead of a
5487 	 name.  So, for now, we do something simpler: re-use the C++/Fortran
5488 	 namespace machinery.  */
5489       r_name = (renaming->alias != NULL
5490 		? renaming->alias
5491 		: renaming->declaration);
5492       if (name_match (r_name, lookup_name, NULL))
5493 	{
5494 	  lookup_name_info decl_lookup_name (renaming->declaration,
5495 					     lookup_name.match_type ());
5496 	  ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5497 			       1, NULL);
5498 	}
5499       renaming->searched = 0;
5500     }
5501   return num_defns_collected (obstackp) != defns_mark;
5502 }
5503 
5504 /* Implements compare_names, but only applying the comparision using
5505    the given CASING.  */
5506 
5507 static int
5508 compare_names_with_case (const char *string1, const char *string2,
5509 			 enum case_sensitivity casing)
5510 {
5511   while (*string1 != '\0' && *string2 != '\0')
5512     {
5513       char c1, c2;
5514 
5515       if (isspace (*string1) || isspace (*string2))
5516 	return strcmp_iw_ordered (string1, string2);
5517 
5518       if (casing == case_sensitive_off)
5519 	{
5520 	  c1 = tolower (*string1);
5521 	  c2 = tolower (*string2);
5522 	}
5523       else
5524 	{
5525 	  c1 = *string1;
5526 	  c2 = *string2;
5527 	}
5528       if (c1 != c2)
5529 	break;
5530 
5531       string1 += 1;
5532       string2 += 1;
5533     }
5534 
5535   switch (*string1)
5536     {
5537     case '(':
5538       return strcmp_iw_ordered (string1, string2);
5539     case '_':
5540       if (*string2 == '\0')
5541 	{
5542 	  if (is_name_suffix (string1))
5543 	    return 0;
5544 	  else
5545 	    return 1;
5546 	}
5547       /* FALLTHROUGH */
5548     default:
5549       if (*string2 == '(')
5550 	return strcmp_iw_ordered (string1, string2);
5551       else
5552 	{
5553 	  if (casing == case_sensitive_off)
5554 	    return tolower (*string1) - tolower (*string2);
5555 	  else
5556 	    return *string1 - *string2;
5557 	}
5558     }
5559 }
5560 
5561 /* Compare STRING1 to STRING2, with results as for strcmp.
5562    Compatible with strcmp_iw_ordered in that...
5563 
5564        strcmp_iw_ordered (STRING1, STRING2) <= 0
5565 
5566    ... implies...
5567 
5568        compare_names (STRING1, STRING2) <= 0
5569 
5570    (they may differ as to what symbols compare equal).  */
5571 
5572 static int
5573 compare_names (const char *string1, const char *string2)
5574 {
5575   int result;
5576 
5577   /* Similar to what strcmp_iw_ordered does, we need to perform
5578      a case-insensitive comparison first, and only resort to
5579      a second, case-sensitive, comparison if the first one was
5580      not sufficient to differentiate the two strings.  */
5581 
5582   result = compare_names_with_case (string1, string2, case_sensitive_off);
5583   if (result == 0)
5584     result = compare_names_with_case (string1, string2, case_sensitive_on);
5585 
5586   return result;
5587 }
5588 
5589 /* Convenience function to get at the Ada encoded lookup name for
5590    LOOKUP_NAME, as a C string.  */
5591 
5592 static const char *
5593 ada_lookup_name (const lookup_name_info &lookup_name)
5594 {
5595   return lookup_name.ada ().lookup_name ().c_str ();
5596 }
5597 
5598 /* Add to OBSTACKP all non-local symbols whose name and domain match
5599    LOOKUP_NAME and DOMAIN respectively.  The search is performed on
5600    GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5601    symbols otherwise.  */
5602 
5603 static void
5604 add_nonlocal_symbols (struct obstack *obstackp,
5605 		      const lookup_name_info &lookup_name,
5606 		      domain_enum domain, int global)
5607 {
5608   struct match_data data;
5609 
5610   memset (&data, 0, sizeof data);
5611   data.obstackp = obstackp;
5612 
5613   bool is_wild_match = lookup_name.ada ().wild_match_p ();
5614 
5615   for (objfile *objfile : current_program_space->objfiles ())
5616     {
5617       data.objfile = objfile;
5618 
5619       if (is_wild_match)
5620 	objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5621 					       domain, global,
5622 					       aux_add_nonlocal_symbols, &data,
5623 					       symbol_name_match_type::WILD,
5624 					       NULL);
5625       else
5626 	objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5627 					       domain, global,
5628 					       aux_add_nonlocal_symbols, &data,
5629 					       symbol_name_match_type::FULL,
5630 					       compare_names);
5631 
5632       for (compunit_symtab *cu : objfile->compunits ())
5633 	{
5634 	  const struct block *global_block
5635 	    = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5636 
5637 	  if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5638 				       domain))
5639 	    data.found_sym = 1;
5640 	}
5641     }
5642 
5643   if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5644     {
5645       const char *name = ada_lookup_name (lookup_name);
5646       std::string name1 = std::string ("<_ada_") + name + '>';
5647 
5648       for (objfile *objfile : current_program_space->objfiles ())
5649         {
5650 	  data.objfile = objfile;
5651 	  objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5652 						 domain, global,
5653 						 aux_add_nonlocal_symbols,
5654 						 &data,
5655 						 symbol_name_match_type::FULL,
5656 						 compare_names);
5657 	}
5658     }
5659 }
5660 
5661 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5662    FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5663    returning the number of matches.  Add these to OBSTACKP.
5664 
5665    When FULL_SEARCH is non-zero, any non-function/non-enumeral
5666    symbol match within the nest of blocks whose innermost member is BLOCK,
5667    is the one match returned (no other matches in that or
5668    enclosing blocks is returned).  If there are any matches in or
5669    surrounding BLOCK, then these alone are returned.
5670 
5671    Names prefixed with "standard__" are handled specially:
5672    "standard__" is first stripped off (by the lookup_name
5673    constructor), and only static and global symbols are searched.
5674 
5675    If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5676    to lookup global symbols.  */
5677 
5678 static void
5679 ada_add_all_symbols (struct obstack *obstackp,
5680 		     const struct block *block,
5681 		     const lookup_name_info &lookup_name,
5682 		     domain_enum domain,
5683 		     int full_search,
5684 		     int *made_global_lookup_p)
5685 {
5686   struct symbol *sym;
5687 
5688   if (made_global_lookup_p)
5689     *made_global_lookup_p = 0;
5690 
5691   /* Special case: If the user specifies a symbol name inside package
5692      Standard, do a non-wild matching of the symbol name without
5693      the "standard__" prefix.  This was primarily introduced in order
5694      to allow the user to specifically access the standard exceptions
5695      using, for instance, Standard.Constraint_Error when Constraint_Error
5696      is ambiguous (due to the user defining its own Constraint_Error
5697      entity inside its program).  */
5698   if (lookup_name.ada ().standard_p ())
5699     block = NULL;
5700 
5701   /* Check the non-global symbols.  If we have ANY match, then we're done.  */
5702 
5703   if (block != NULL)
5704     {
5705       if (full_search)
5706 	ada_add_local_symbols (obstackp, lookup_name, block, domain);
5707       else
5708 	{
5709 	  /* In the !full_search case we're are being called by
5710 	     ada_iterate_over_symbols, and we don't want to search
5711 	     superblocks.  */
5712 	  ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5713 	}
5714       if (num_defns_collected (obstackp) > 0 || !full_search)
5715 	return;
5716     }
5717 
5718   /* No non-global symbols found.  Check our cache to see if we have
5719      already performed this search before.  If we have, then return
5720      the same result.  */
5721 
5722   if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5723 			    domain, &sym, &block))
5724     {
5725       if (sym != NULL)
5726 	add_defn_to_vec (obstackp, sym, block);
5727       return;
5728     }
5729 
5730   if (made_global_lookup_p)
5731     *made_global_lookup_p = 1;
5732 
5733   /* Search symbols from all global blocks.  */
5734 
5735   add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5736 
5737   /* Now add symbols from all per-file blocks if we've gotten no hits
5738      (not strictly correct, but perhaps better than an error).  */
5739 
5740   if (num_defns_collected (obstackp) == 0)
5741     add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5742 }
5743 
5744 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5745    is non-zero, enclosing scope and in global scopes, returning the number of
5746    matches.
5747    Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5748    found and the blocks and symbol tables (if any) in which they were
5749    found.
5750 
5751    When full_search is non-zero, any non-function/non-enumeral
5752    symbol match within the nest of blocks whose innermost member is BLOCK,
5753    is the one match returned (no other matches in that or
5754    enclosing blocks is returned).  If there are any matches in or
5755    surrounding BLOCK, then these alone are returned.
5756 
5757    Names prefixed with "standard__" are handled specially: "standard__"
5758    is first stripped off, and only static and global symbols are searched.  */
5759 
5760 static int
5761 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5762 			       const struct block *block,
5763 			       domain_enum domain,
5764 			       std::vector<struct block_symbol> *results,
5765 			       int full_search)
5766 {
5767   int syms_from_global_search;
5768   int ndefns;
5769   auto_obstack obstack;
5770 
5771   ada_add_all_symbols (&obstack, block, lookup_name,
5772 		       domain, full_search, &syms_from_global_search);
5773 
5774   ndefns = num_defns_collected (&obstack);
5775 
5776   struct block_symbol *base = defns_collected (&obstack, 1);
5777   for (int i = 0; i < ndefns; ++i)
5778     results->push_back (base[i]);
5779 
5780   ndefns = remove_extra_symbols (results);
5781 
5782   if (ndefns == 0 && full_search && syms_from_global_search)
5783     cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5784 
5785   if (ndefns == 1 && full_search && syms_from_global_search)
5786     cache_symbol (ada_lookup_name (lookup_name), domain,
5787 		  (*results)[0].symbol, (*results)[0].block);
5788 
5789   ndefns = remove_irrelevant_renamings (results, block);
5790 
5791   return ndefns;
5792 }
5793 
5794 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5795    in global scopes, returning the number of matches, and filling *RESULTS
5796    with (SYM,BLOCK) tuples.
5797 
5798    See ada_lookup_symbol_list_worker for further details.  */
5799 
5800 int
5801 ada_lookup_symbol_list (const char *name, const struct block *block,
5802 			domain_enum domain,
5803 			std::vector<struct block_symbol> *results)
5804 {
5805   symbol_name_match_type name_match_type = name_match_type_from_name (name);
5806   lookup_name_info lookup_name (name, name_match_type);
5807 
5808   return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5809 }
5810 
5811 /* Implementation of the la_iterate_over_symbols method.  */
5812 
5813 static void
5814 ada_iterate_over_symbols
5815   (const struct block *block, const lookup_name_info &name,
5816    domain_enum domain,
5817    gdb::function_view<symbol_found_callback_ftype> callback)
5818 {
5819   int ndefs, i;
5820   std::vector<struct block_symbol> results;
5821 
5822   ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5823 
5824   for (i = 0; i < ndefs; ++i)
5825     {
5826       if (!callback (&results[i]))
5827 	break;
5828     }
5829 }
5830 
5831 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5832    to 1, but choosing the first symbol found if there are multiple
5833    choices.
5834 
5835    The result is stored in *INFO, which must be non-NULL.
5836    If no match is found, INFO->SYM is set to NULL.  */
5837 
5838 void
5839 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5840 			   domain_enum domain,
5841 			   struct block_symbol *info)
5842 {
5843   /* Since we already have an encoded name, wrap it in '<>' to force a
5844      verbatim match.  Otherwise, if the name happens to not look like
5845      an encoded name (because it doesn't include a "__"),
5846      ada_lookup_name_info would re-encode/fold it again, and that
5847      would e.g., incorrectly lowercase object renaming names like
5848      "R28b" -> "r28b".  */
5849   std::string verbatim = std::string ("<") + name + '>';
5850 
5851   gdb_assert (info != NULL);
5852   *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5853 }
5854 
5855 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5856    scope and in global scopes, or NULL if none.  NAME is folded and
5857    encoded first.  Otherwise, the result is as for ada_lookup_symbol_list,
5858    choosing the first symbol if there are multiple choices.
5859    If IS_A_FIELD_OF_THIS is not NULL, it is set to zero.  */
5860 
5861 struct block_symbol
5862 ada_lookup_symbol (const char *name, const struct block *block0,
5863                    domain_enum domain, int *is_a_field_of_this)
5864 {
5865   if (is_a_field_of_this != NULL)
5866     *is_a_field_of_this = 0;
5867 
5868   std::vector<struct block_symbol> candidates;
5869   int n_candidates;
5870 
5871   n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5872 
5873   if (n_candidates == 0)
5874     return {};
5875 
5876   block_symbol info = candidates[0];
5877   info.symbol = fixup_symbol_section (info.symbol, NULL);
5878   return info;
5879 }
5880 
5881 static struct block_symbol
5882 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5883 			    const char *name,
5884                             const struct block *block,
5885                             const domain_enum domain)
5886 {
5887   struct block_symbol sym;
5888 
5889   sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5890   if (sym.symbol != NULL)
5891     return sym;
5892 
5893   /* If we haven't found a match at this point, try the primitive
5894      types.  In other languages, this search is performed before
5895      searching for global symbols in order to short-circuit that
5896      global-symbol search if it happens that the name corresponds
5897      to a primitive type.  But we cannot do the same in Ada, because
5898      it is perfectly legitimate for a program to declare a type which
5899      has the same name as a standard type.  If looking up a type in
5900      that situation, we have traditionally ignored the primitive type
5901      in favor of user-defined types.  This is why, unlike most other
5902      languages, we search the primitive types this late and only after
5903      having searched the global symbols without success.  */
5904 
5905   if (domain == VAR_DOMAIN)
5906     {
5907       struct gdbarch *gdbarch;
5908 
5909       if (block == NULL)
5910 	gdbarch = target_gdbarch ();
5911       else
5912 	gdbarch = block_gdbarch (block);
5913       sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5914       if (sym.symbol != NULL)
5915 	return sym;
5916     }
5917 
5918   return (struct block_symbol) {NULL, NULL};
5919 }
5920 
5921 
5922 /* True iff STR is a possible encoded suffix of a normal Ada name
5923    that is to be ignored for matching purposes.  Suffixes of parallel
5924    names (e.g., XVE) are not included here.  Currently, the possible suffixes
5925    are given by any of the regular expressions:
5926 
5927    [.$][0-9]+       [nested subprogram suffix, on platforms such as GNU/Linux]
5928    ___[0-9]+        [nested subprogram suffix, on platforms such as HP/UX]
5929    TKB              [subprogram suffix for task bodies]
5930    _E[0-9]+[bs]$    [protected object entry suffixes]
5931    (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5932 
5933    Also, any leading "__[0-9]+" sequence is skipped before the suffix
5934    match is performed.  This sequence is used to differentiate homonyms,
5935    is an optional part of a valid name suffix.  */
5936 
5937 static int
5938 is_name_suffix (const char *str)
5939 {
5940   int k;
5941   const char *matching;
5942   const int len = strlen (str);
5943 
5944   /* Skip optional leading __[0-9]+.  */
5945 
5946   if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5947     {
5948       str += 3;
5949       while (isdigit (str[0]))
5950         str += 1;
5951     }
5952 
5953   /* [.$][0-9]+ */
5954 
5955   if (str[0] == '.' || str[0] == '$')
5956     {
5957       matching = str + 1;
5958       while (isdigit (matching[0]))
5959         matching += 1;
5960       if (matching[0] == '\0')
5961         return 1;
5962     }
5963 
5964   /* ___[0-9]+ */
5965 
5966   if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5967     {
5968       matching = str + 3;
5969       while (isdigit (matching[0]))
5970         matching += 1;
5971       if (matching[0] == '\0')
5972         return 1;
5973     }
5974 
5975   /* "TKB" suffixes are used for subprograms implementing task bodies.  */
5976 
5977   if (strcmp (str, "TKB") == 0)
5978     return 1;
5979 
5980 #if 0
5981   /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5982      with a N at the end.  Unfortunately, the compiler uses the same
5983      convention for other internal types it creates.  So treating
5984      all entity names that end with an "N" as a name suffix causes
5985      some regressions.  For instance, consider the case of an enumerated
5986      type.  To support the 'Image attribute, it creates an array whose
5987      name ends with N.
5988      Having a single character like this as a suffix carrying some
5989      information is a bit risky.  Perhaps we should change the encoding
5990      to be something like "_N" instead.  In the meantime, do not do
5991      the following check.  */
5992   /* Protected Object Subprograms */
5993   if (len == 1 && str [0] == 'N')
5994     return 1;
5995 #endif
5996 
5997   /* _E[0-9]+[bs]$ */
5998   if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5999     {
6000       matching = str + 3;
6001       while (isdigit (matching[0]))
6002         matching += 1;
6003       if ((matching[0] == 'b' || matching[0] == 's')
6004           && matching [1] == '\0')
6005         return 1;
6006     }
6007 
6008   /* ??? We should not modify STR directly, as we are doing below.  This
6009      is fine in this case, but may become problematic later if we find
6010      that this alternative did not work, and want to try matching
6011      another one from the begining of STR.  Since we modified it, we
6012      won't be able to find the begining of the string anymore!  */
6013   if (str[0] == 'X')
6014     {
6015       str += 1;
6016       while (str[0] != '_' && str[0] != '\0')
6017         {
6018           if (str[0] != 'n' && str[0] != 'b')
6019             return 0;
6020           str += 1;
6021         }
6022     }
6023 
6024   if (str[0] == '\000')
6025     return 1;
6026 
6027   if (str[0] == '_')
6028     {
6029       if (str[1] != '_' || str[2] == '\000')
6030         return 0;
6031       if (str[2] == '_')
6032         {
6033           if (strcmp (str + 3, "JM") == 0)
6034             return 1;
6035           /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6036              the LJM suffix in favor of the JM one.  But we will
6037              still accept LJM as a valid suffix for a reasonable
6038              amount of time, just to allow ourselves to debug programs
6039              compiled using an older version of GNAT.  */
6040           if (strcmp (str + 3, "LJM") == 0)
6041             return 1;
6042           if (str[3] != 'X')
6043             return 0;
6044           if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6045               || str[4] == 'U' || str[4] == 'P')
6046             return 1;
6047           if (str[4] == 'R' && str[5] != 'T')
6048             return 1;
6049           return 0;
6050         }
6051       if (!isdigit (str[2]))
6052         return 0;
6053       for (k = 3; str[k] != '\0'; k += 1)
6054         if (!isdigit (str[k]) && str[k] != '_')
6055           return 0;
6056       return 1;
6057     }
6058   if (str[0] == '$' && isdigit (str[1]))
6059     {
6060       for (k = 2; str[k] != '\0'; k += 1)
6061         if (!isdigit (str[k]) && str[k] != '_')
6062           return 0;
6063       return 1;
6064     }
6065   return 0;
6066 }
6067 
6068 /* Return non-zero if the string starting at NAME and ending before
6069    NAME_END contains no capital letters.  */
6070 
6071 static int
6072 is_valid_name_for_wild_match (const char *name0)
6073 {
6074   const char *decoded_name = ada_decode (name0);
6075   int i;
6076 
6077   /* If the decoded name starts with an angle bracket, it means that
6078      NAME0 does not follow the GNAT encoding format.  It should then
6079      not be allowed as a possible wild match.  */
6080   if (decoded_name[0] == '<')
6081     return 0;
6082 
6083   for (i=0; decoded_name[i] != '\0'; i++)
6084     if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6085       return 0;
6086 
6087   return 1;
6088 }
6089 
6090 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6091    that could start a simple name.  Assumes that *NAMEP points into
6092    the string beginning at NAME0.  */
6093 
6094 static int
6095 advance_wild_match (const char **namep, const char *name0, int target0)
6096 {
6097   const char *name = *namep;
6098 
6099   while (1)
6100     {
6101       int t0, t1;
6102 
6103       t0 = *name;
6104       if (t0 == '_')
6105 	{
6106 	  t1 = name[1];
6107 	  if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6108 	    {
6109 	      name += 1;
6110 	      if (name == name0 + 5 && startswith (name0, "_ada"))
6111 		break;
6112 	      else
6113 		name += 1;
6114 	    }
6115 	  else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6116 				 || name[2] == target0))
6117 	    {
6118 	      name += 2;
6119 	      break;
6120 	    }
6121 	  else
6122 	    return 0;
6123 	}
6124       else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6125 	name += 1;
6126       else
6127 	return 0;
6128     }
6129 
6130   *namep = name;
6131   return 1;
6132 }
6133 
6134 /* Return true iff NAME encodes a name of the form prefix.PATN.
6135    Ignores any informational suffixes of NAME (i.e., for which
6136    is_name_suffix is true).  Assumes that PATN is a lower-cased Ada
6137    simple name.  */
6138 
6139 static bool
6140 wild_match (const char *name, const char *patn)
6141 {
6142   const char *p;
6143   const char *name0 = name;
6144 
6145   while (1)
6146     {
6147       const char *match = name;
6148 
6149       if (*name == *patn)
6150 	{
6151 	  for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6152 	    if (*p != *name)
6153 	      break;
6154 	  if (*p == '\0' && is_name_suffix (name))
6155 	    return match == name0 || is_valid_name_for_wild_match (name0);
6156 
6157 	  if (name[-1] == '_')
6158 	    name -= 1;
6159 	}
6160       if (!advance_wild_match (&name, name0, *patn))
6161 	return false;
6162     }
6163 }
6164 
6165 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6166    any trailing suffixes that encode debugging information or leading
6167    _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6168    information that is ignored).  */
6169 
6170 static bool
6171 full_match (const char *sym_name, const char *search_name)
6172 {
6173   size_t search_name_len = strlen (search_name);
6174 
6175   if (strncmp (sym_name, search_name, search_name_len) == 0
6176       && is_name_suffix (sym_name + search_name_len))
6177     return true;
6178 
6179   if (startswith (sym_name, "_ada_")
6180       && strncmp (sym_name + 5, search_name, search_name_len) == 0
6181       && is_name_suffix (sym_name + search_name_len + 5))
6182     return true;
6183 
6184   return false;
6185 }
6186 
6187 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6188    *defn_symbols, updating the list of symbols in OBSTACKP (if
6189    necessary).  OBJFILE is the section containing BLOCK.  */
6190 
6191 static void
6192 ada_add_block_symbols (struct obstack *obstackp,
6193 		       const struct block *block,
6194 		       const lookup_name_info &lookup_name,
6195 		       domain_enum domain, struct objfile *objfile)
6196 {
6197   struct block_iterator iter;
6198   /* A matching argument symbol, if any.  */
6199   struct symbol *arg_sym;
6200   /* Set true when we find a matching non-argument symbol.  */
6201   int found_sym;
6202   struct symbol *sym;
6203 
6204   arg_sym = NULL;
6205   found_sym = 0;
6206   for (sym = block_iter_match_first (block, lookup_name, &iter);
6207        sym != NULL;
6208        sym = block_iter_match_next (lookup_name, &iter))
6209     {
6210       if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6211 				 SYMBOL_DOMAIN (sym), domain))
6212 	{
6213 	  if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6214 	    {
6215 	      if (SYMBOL_IS_ARGUMENT (sym))
6216 		arg_sym = sym;
6217 	      else
6218 		{
6219 		  found_sym = 1;
6220 		  add_defn_to_vec (obstackp,
6221 				   fixup_symbol_section (sym, objfile),
6222 				   block);
6223 		}
6224 	    }
6225 	}
6226     }
6227 
6228   /* Handle renamings.  */
6229 
6230   if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6231     found_sym = 1;
6232 
6233   if (!found_sym && arg_sym != NULL)
6234     {
6235       add_defn_to_vec (obstackp,
6236                        fixup_symbol_section (arg_sym, objfile),
6237                        block);
6238     }
6239 
6240   if (!lookup_name.ada ().wild_match_p ())
6241     {
6242       arg_sym = NULL;
6243       found_sym = 0;
6244       const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6245       const char *name = ada_lookup_name.c_str ();
6246       size_t name_len = ada_lookup_name.size ();
6247 
6248       ALL_BLOCK_SYMBOLS (block, iter, sym)
6249       {
6250         if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6251                                    SYMBOL_DOMAIN (sym), domain))
6252           {
6253             int cmp;
6254 
6255             cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6256             if (cmp == 0)
6257               {
6258                 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6259                 if (cmp == 0)
6260                   cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6261                                  name_len);
6262               }
6263 
6264             if (cmp == 0
6265                 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6266               {
6267 		if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6268 		  {
6269 		    if (SYMBOL_IS_ARGUMENT (sym))
6270 		      arg_sym = sym;
6271 		    else
6272 		      {
6273 			found_sym = 1;
6274 			add_defn_to_vec (obstackp,
6275 					 fixup_symbol_section (sym, objfile),
6276 					 block);
6277 		      }
6278 		  }
6279               }
6280           }
6281       }
6282 
6283       /* NOTE: This really shouldn't be needed for _ada_ symbols.
6284          They aren't parameters, right?  */
6285       if (!found_sym && arg_sym != NULL)
6286         {
6287           add_defn_to_vec (obstackp,
6288                            fixup_symbol_section (arg_sym, objfile),
6289                            block);
6290         }
6291     }
6292 }
6293 
6294 
6295                                 /* Symbol Completion */
6296 
6297 /* See symtab.h.  */
6298 
6299 bool
6300 ada_lookup_name_info::matches
6301   (const char *sym_name,
6302    symbol_name_match_type match_type,
6303    completion_match_result *comp_match_res) const
6304 {
6305   bool match = false;
6306   const char *text = m_encoded_name.c_str ();
6307   size_t text_len = m_encoded_name.size ();
6308 
6309   /* First, test against the fully qualified name of the symbol.  */
6310 
6311   if (strncmp (sym_name, text, text_len) == 0)
6312     match = true;
6313 
6314   if (match && !m_encoded_p)
6315     {
6316       /* One needed check before declaring a positive match is to verify
6317          that iff we are doing a verbatim match, the decoded version
6318          of the symbol name starts with '<'.  Otherwise, this symbol name
6319          is not a suitable completion.  */
6320       const char *sym_name_copy = sym_name;
6321       bool has_angle_bracket;
6322 
6323       sym_name = ada_decode (sym_name);
6324       has_angle_bracket = (sym_name[0] == '<');
6325       match = (has_angle_bracket == m_verbatim_p);
6326       sym_name = sym_name_copy;
6327     }
6328 
6329   if (match && !m_verbatim_p)
6330     {
6331       /* When doing non-verbatim match, another check that needs to
6332          be done is to verify that the potentially matching symbol name
6333          does not include capital letters, because the ada-mode would
6334          not be able to understand these symbol names without the
6335          angle bracket notation.  */
6336       const char *tmp;
6337 
6338       for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6339       if (*tmp != '\0')
6340 	match = false;
6341     }
6342 
6343   /* Second: Try wild matching...  */
6344 
6345   if (!match && m_wild_match_p)
6346     {
6347       /* Since we are doing wild matching, this means that TEXT
6348          may represent an unqualified symbol name.  We therefore must
6349          also compare TEXT against the unqualified name of the symbol.  */
6350       sym_name = ada_unqualified_name (ada_decode (sym_name));
6351 
6352       if (strncmp (sym_name, text, text_len) == 0)
6353 	match = true;
6354     }
6355 
6356   /* Finally: If we found a match, prepare the result to return.  */
6357 
6358   if (!match)
6359     return false;
6360 
6361   if (comp_match_res != NULL)
6362     {
6363       std::string &match_str = comp_match_res->match.storage ();
6364 
6365       if (!m_encoded_p)
6366 	match_str = ada_decode (sym_name);
6367       else
6368 	{
6369 	  if (m_verbatim_p)
6370 	    match_str = add_angle_brackets (sym_name);
6371 	  else
6372 	    match_str = sym_name;
6373 
6374 	}
6375 
6376       comp_match_res->set_match (match_str.c_str ());
6377     }
6378 
6379   return true;
6380 }
6381 
6382 /* Add the list of possible symbol names completing TEXT to TRACKER.
6383    WORD is the entire command on which completion is made.  */
6384 
6385 static void
6386 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6387 				       complete_symbol_mode mode,
6388 				       symbol_name_match_type name_match_type,
6389 				       const char *text, const char *word,
6390 				       enum type_code code)
6391 {
6392   struct symbol *sym;
6393   const struct block *b, *surrounding_static_block = 0;
6394   struct block_iterator iter;
6395 
6396   gdb_assert (code == TYPE_CODE_UNDEF);
6397 
6398   lookup_name_info lookup_name (text, name_match_type, true);
6399 
6400   /* First, look at the partial symtab symbols.  */
6401   expand_symtabs_matching (NULL,
6402 			   lookup_name,
6403 			   NULL,
6404 			   NULL,
6405 			   ALL_DOMAIN);
6406 
6407   /* At this point scan through the misc symbol vectors and add each
6408      symbol you find to the list.  Eventually we want to ignore
6409      anything that isn't a text symbol (everything else will be
6410      handled by the psymtab code above).  */
6411 
6412   for (objfile *objfile : current_program_space->objfiles ())
6413     {
6414       for (minimal_symbol *msymbol : objfile->msymbols ())
6415 	{
6416 	  QUIT;
6417 
6418 	  if (completion_skip_symbol (mode, msymbol))
6419 	    continue;
6420 
6421 	  language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6422 
6423 	  /* Ada minimal symbols won't have their language set to Ada.  If
6424 	     we let completion_list_add_name compare using the
6425 	     default/C-like matcher, then when completing e.g., symbols in a
6426 	     package named "pck", we'd match internal Ada symbols like
6427 	     "pckS", which are invalid in an Ada expression, unless you wrap
6428 	     them in '<' '>' to request a verbatim match.
6429 
6430 	     Unfortunately, some Ada encoded names successfully demangle as
6431 	     C++ symbols (using an old mangling scheme), such as "name__2Xn"
6432 	     -> "Xn::name(void)" and thus some Ada minimal symbols end up
6433 	     with the wrong language set.  Paper over that issue here.  */
6434 	  if (symbol_language == language_auto
6435 	      || symbol_language == language_cplus)
6436 	    symbol_language = language_ada;
6437 
6438 	  completion_list_add_name (tracker,
6439 				    symbol_language,
6440 				    MSYMBOL_LINKAGE_NAME (msymbol),
6441 				    lookup_name, text, word);
6442 	}
6443     }
6444 
6445   /* Search upwards from currently selected frame (so that we can
6446      complete on local vars.  */
6447 
6448   for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6449     {
6450       if (!BLOCK_SUPERBLOCK (b))
6451         surrounding_static_block = b;   /* For elmin of dups */
6452 
6453       ALL_BLOCK_SYMBOLS (b, iter, sym)
6454       {
6455 	if (completion_skip_symbol (mode, sym))
6456 	  continue;
6457 
6458 	completion_list_add_name (tracker,
6459 				  SYMBOL_LANGUAGE (sym),
6460 				  SYMBOL_LINKAGE_NAME (sym),
6461 				  lookup_name, text, word);
6462       }
6463     }
6464 
6465   /* Go through the symtabs and check the externs and statics for
6466      symbols which match.  */
6467 
6468   for (objfile *objfile : current_program_space->objfiles ())
6469     {
6470       for (compunit_symtab *s : objfile->compunits ())
6471 	{
6472 	  QUIT;
6473 	  b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6474 	  ALL_BLOCK_SYMBOLS (b, iter, sym)
6475 	    {
6476 	      if (completion_skip_symbol (mode, sym))
6477 		continue;
6478 
6479 	      completion_list_add_name (tracker,
6480 					SYMBOL_LANGUAGE (sym),
6481 					SYMBOL_LINKAGE_NAME (sym),
6482 					lookup_name, text, word);
6483 	    }
6484 	}
6485     }
6486 
6487   for (objfile *objfile : current_program_space->objfiles ())
6488     {
6489       for (compunit_symtab *s : objfile->compunits ())
6490 	{
6491 	  QUIT;
6492 	  b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6493 	  /* Don't do this block twice.  */
6494 	  if (b == surrounding_static_block)
6495 	    continue;
6496 	  ALL_BLOCK_SYMBOLS (b, iter, sym)
6497 	    {
6498 	      if (completion_skip_symbol (mode, sym))
6499 		continue;
6500 
6501 	      completion_list_add_name (tracker,
6502 					SYMBOL_LANGUAGE (sym),
6503 					SYMBOL_LINKAGE_NAME (sym),
6504 					lookup_name, text, word);
6505 	    }
6506 	}
6507     }
6508 }
6509 
6510                                 /* Field Access */
6511 
6512 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6513    for tagged types.  */
6514 
6515 static int
6516 ada_is_dispatch_table_ptr_type (struct type *type)
6517 {
6518   const char *name;
6519 
6520   if (TYPE_CODE (type) != TYPE_CODE_PTR)
6521     return 0;
6522 
6523   name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6524   if (name == NULL)
6525     return 0;
6526 
6527   return (strcmp (name, "ada__tags__dispatch_table") == 0);
6528 }
6529 
6530 /* Return non-zero if TYPE is an interface tag.  */
6531 
6532 static int
6533 ada_is_interface_tag (struct type *type)
6534 {
6535   const char *name = TYPE_NAME (type);
6536 
6537   if (name == NULL)
6538     return 0;
6539 
6540   return (strcmp (name, "ada__tags__interface_tag") == 0);
6541 }
6542 
6543 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6544    to be invisible to users.  */
6545 
6546 int
6547 ada_is_ignored_field (struct type *type, int field_num)
6548 {
6549   if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6550     return 1;
6551 
6552   /* Check the name of that field.  */
6553   {
6554     const char *name = TYPE_FIELD_NAME (type, field_num);
6555 
6556     /* Anonymous field names should not be printed.
6557        brobecker/2007-02-20: I don't think this can actually happen
6558        but we don't want to print the value of annonymous fields anyway.  */
6559     if (name == NULL)
6560       return 1;
6561 
6562     /* Normally, fields whose name start with an underscore ("_")
6563        are fields that have been internally generated by the compiler,
6564        and thus should not be printed.  The "_parent" field is special,
6565        however: This is a field internally generated by the compiler
6566        for tagged types, and it contains the components inherited from
6567        the parent type.  This field should not be printed as is, but
6568        should not be ignored either.  */
6569     if (name[0] == '_' && !startswith (name, "_parent"))
6570       return 1;
6571   }
6572 
6573   /* If this is the dispatch table of a tagged type or an interface tag,
6574      then ignore.  */
6575   if (ada_is_tagged_type (type, 1)
6576       && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6577 	  || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6578     return 1;
6579 
6580   /* Not a special field, so it should not be ignored.  */
6581   return 0;
6582 }
6583 
6584 /* True iff TYPE has a tag field.  If REFOK, then TYPE may also be a
6585    pointer or reference type whose ultimate target has a tag field.  */
6586 
6587 int
6588 ada_is_tagged_type (struct type *type, int refok)
6589 {
6590   return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6591 }
6592 
6593 /* True iff TYPE represents the type of X'Tag */
6594 
6595 int
6596 ada_is_tag_type (struct type *type)
6597 {
6598   type = ada_check_typedef (type);
6599 
6600   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6601     return 0;
6602   else
6603     {
6604       const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6605 
6606       return (name != NULL
6607               && strcmp (name, "ada__tags__dispatch_table") == 0);
6608     }
6609 }
6610 
6611 /* The type of the tag on VAL.  */
6612 
6613 struct type *
6614 ada_tag_type (struct value *val)
6615 {
6616   return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6617 }
6618 
6619 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6620    retired at Ada 05).  */
6621 
6622 static int
6623 is_ada95_tag (struct value *tag)
6624 {
6625   return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6626 }
6627 
6628 /* The value of the tag on VAL.  */
6629 
6630 struct value *
6631 ada_value_tag (struct value *val)
6632 {
6633   return ada_value_struct_elt (val, "_tag", 0);
6634 }
6635 
6636 /* The value of the tag on the object of type TYPE whose contents are
6637    saved at VALADDR, if it is non-null, or is at memory address
6638    ADDRESS.  */
6639 
6640 static struct value *
6641 value_tag_from_contents_and_address (struct type *type,
6642 				     const gdb_byte *valaddr,
6643                                      CORE_ADDR address)
6644 {
6645   int tag_byte_offset;
6646   struct type *tag_type;
6647 
6648   if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6649                          NULL, NULL, NULL))
6650     {
6651       const gdb_byte *valaddr1 = ((valaddr == NULL)
6652 				  ? NULL
6653 				  : valaddr + tag_byte_offset);
6654       CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6655 
6656       return value_from_contents_and_address (tag_type, valaddr1, address1);
6657     }
6658   return NULL;
6659 }
6660 
6661 static struct type *
6662 type_from_tag (struct value *tag)
6663 {
6664   const char *type_name = ada_tag_name (tag);
6665 
6666   if (type_name != NULL)
6667     return ada_find_any_type (ada_encode (type_name));
6668   return NULL;
6669 }
6670 
6671 /* Given a value OBJ of a tagged type, return a value of this
6672    type at the base address of the object.  The base address, as
6673    defined in Ada.Tags, it is the address of the primary tag of
6674    the object, and therefore where the field values of its full
6675    view can be fetched.  */
6676 
6677 struct value *
6678 ada_tag_value_at_base_address (struct value *obj)
6679 {
6680   struct value *val;
6681   LONGEST offset_to_top = 0;
6682   struct type *ptr_type, *obj_type;
6683   struct value *tag;
6684   CORE_ADDR base_address;
6685 
6686   obj_type = value_type (obj);
6687 
6688   /* It is the responsability of the caller to deref pointers.  */
6689 
6690   if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6691       || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6692     return obj;
6693 
6694   tag = ada_value_tag (obj);
6695   if (!tag)
6696     return obj;
6697 
6698   /* Base addresses only appeared with Ada 05 and multiple inheritance.  */
6699 
6700   if (is_ada95_tag (tag))
6701     return obj;
6702 
6703   ptr_type = language_lookup_primitive_type
6704     (language_def (language_ada), target_gdbarch(), "storage_offset");
6705   ptr_type = lookup_pointer_type (ptr_type);
6706   val = value_cast (ptr_type, tag);
6707   if (!val)
6708     return obj;
6709 
6710   /* It is perfectly possible that an exception be raised while
6711      trying to determine the base address, just like for the tag;
6712      see ada_tag_name for more details.  We do not print the error
6713      message for the same reason.  */
6714 
6715   TRY
6716     {
6717       offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6718     }
6719 
6720   CATCH (e, RETURN_MASK_ERROR)
6721     {
6722       return obj;
6723     }
6724   END_CATCH
6725 
6726   /* If offset is null, nothing to do.  */
6727 
6728   if (offset_to_top == 0)
6729     return obj;
6730 
6731   /* -1 is a special case in Ada.Tags; however, what should be done
6732      is not quite clear from the documentation.  So do nothing for
6733      now.  */
6734 
6735   if (offset_to_top == -1)
6736     return obj;
6737 
6738   /* OFFSET_TO_TOP used to be a positive value to be subtracted
6739      from the base address.  This was however incompatible with
6740      C++ dispatch table: C++ uses a *negative* value to *add*
6741      to the base address.  Ada's convention has therefore been
6742      changed in GNAT 19.0w 20171023: since then, C++ and Ada
6743      use the same convention.  Here, we support both cases by
6744      checking the sign of OFFSET_TO_TOP.  */
6745 
6746   if (offset_to_top > 0)
6747     offset_to_top = -offset_to_top;
6748 
6749   base_address = value_address (obj) + offset_to_top;
6750   tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6751 
6752   /* Make sure that we have a proper tag at the new address.
6753      Otherwise, offset_to_top is bogus (which can happen when
6754      the object is not initialized yet).  */
6755 
6756   if (!tag)
6757     return obj;
6758 
6759   obj_type = type_from_tag (tag);
6760 
6761   if (!obj_type)
6762     return obj;
6763 
6764   return value_from_contents_and_address (obj_type, NULL, base_address);
6765 }
6766 
6767 /* Return the "ada__tags__type_specific_data" type.  */
6768 
6769 static struct type *
6770 ada_get_tsd_type (struct inferior *inf)
6771 {
6772   struct ada_inferior_data *data = get_ada_inferior_data (inf);
6773 
6774   if (data->tsd_type == 0)
6775     data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6776   return data->tsd_type;
6777 }
6778 
6779 /* Return the TSD (type-specific data) associated to the given TAG.
6780    TAG is assumed to be the tag of a tagged-type entity.
6781 
6782    May return NULL if we are unable to get the TSD.  */
6783 
6784 static struct value *
6785 ada_get_tsd_from_tag (struct value *tag)
6786 {
6787   struct value *val;
6788   struct type *type;
6789 
6790   /* First option: The TSD is simply stored as a field of our TAG.
6791      Only older versions of GNAT would use this format, but we have
6792      to test it first, because there are no visible markers for
6793      the current approach except the absence of that field.  */
6794 
6795   val = ada_value_struct_elt (tag, "tsd", 1);
6796   if (val)
6797     return val;
6798 
6799   /* Try the second representation for the dispatch table (in which
6800      there is no explicit 'tsd' field in the referent of the tag pointer,
6801      and instead the tsd pointer is stored just before the dispatch
6802      table.  */
6803 
6804   type = ada_get_tsd_type (current_inferior());
6805   if (type == NULL)
6806     return NULL;
6807   type = lookup_pointer_type (lookup_pointer_type (type));
6808   val = value_cast (type, tag);
6809   if (val == NULL)
6810     return NULL;
6811   return value_ind (value_ptradd (val, -1));
6812 }
6813 
6814 /* Given the TSD of a tag (type-specific data), return a string
6815    containing the name of the associated type.
6816 
6817    The returned value is good until the next call.  May return NULL
6818    if we are unable to determine the tag name.  */
6819 
6820 static char *
6821 ada_tag_name_from_tsd (struct value *tsd)
6822 {
6823   static char name[1024];
6824   char *p;
6825   struct value *val;
6826 
6827   val = ada_value_struct_elt (tsd, "expanded_name", 1);
6828   if (val == NULL)
6829     return NULL;
6830   read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6831   for (p = name; *p != '\0'; p += 1)
6832     if (isalpha (*p))
6833       *p = tolower (*p);
6834   return name;
6835 }
6836 
6837 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6838    a C string.
6839 
6840    Return NULL if the TAG is not an Ada tag, or if we were unable to
6841    determine the name of that tag.  The result is good until the next
6842    call.  */
6843 
6844 const char *
6845 ada_tag_name (struct value *tag)
6846 {
6847   char *name = NULL;
6848 
6849   if (!ada_is_tag_type (value_type (tag)))
6850     return NULL;
6851 
6852   /* It is perfectly possible that an exception be raised while trying
6853      to determine the TAG's name, even under normal circumstances:
6854      The associated variable may be uninitialized or corrupted, for
6855      instance. We do not let any exception propagate past this point.
6856      instead we return NULL.
6857 
6858      We also do not print the error message either (which often is very
6859      low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6860      the caller print a more meaningful message if necessary.  */
6861   TRY
6862     {
6863       struct value *tsd = ada_get_tsd_from_tag (tag);
6864 
6865       if (tsd != NULL)
6866 	name = ada_tag_name_from_tsd (tsd);
6867     }
6868   CATCH (e, RETURN_MASK_ERROR)
6869     {
6870     }
6871   END_CATCH
6872 
6873   return name;
6874 }
6875 
6876 /* The parent type of TYPE, or NULL if none.  */
6877 
6878 struct type *
6879 ada_parent_type (struct type *type)
6880 {
6881   int i;
6882 
6883   type = ada_check_typedef (type);
6884 
6885   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6886     return NULL;
6887 
6888   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6889     if (ada_is_parent_field (type, i))
6890       {
6891         struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6892 
6893         /* If the _parent field is a pointer, then dereference it.  */
6894         if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6895           parent_type = TYPE_TARGET_TYPE (parent_type);
6896         /* If there is a parallel XVS type, get the actual base type.  */
6897         parent_type = ada_get_base_type (parent_type);
6898 
6899         return ada_check_typedef (parent_type);
6900       }
6901 
6902   return NULL;
6903 }
6904 
6905 /* True iff field number FIELD_NUM of structure type TYPE contains the
6906    parent-type (inherited) fields of a derived type.  Assumes TYPE is
6907    a structure type with at least FIELD_NUM+1 fields.  */
6908 
6909 int
6910 ada_is_parent_field (struct type *type, int field_num)
6911 {
6912   const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6913 
6914   return (name != NULL
6915           && (startswith (name, "PARENT")
6916               || startswith (name, "_parent")));
6917 }
6918 
6919 /* True iff field number FIELD_NUM of structure type TYPE is a
6920    transparent wrapper field (which should be silently traversed when doing
6921    field selection and flattened when printing).  Assumes TYPE is a
6922    structure type with at least FIELD_NUM+1 fields.  Such fields are always
6923    structures.  */
6924 
6925 int
6926 ada_is_wrapper_field (struct type *type, int field_num)
6927 {
6928   const char *name = TYPE_FIELD_NAME (type, field_num);
6929 
6930   if (name != NULL && strcmp (name, "RETVAL") == 0)
6931     {
6932       /* This happens in functions with "out" or "in out" parameters
6933 	 which are passed by copy.  For such functions, GNAT describes
6934 	 the function's return type as being a struct where the return
6935 	 value is in a field called RETVAL, and where the other "out"
6936 	 or "in out" parameters are fields of that struct.  This is not
6937 	 a wrapper.  */
6938       return 0;
6939     }
6940 
6941   return (name != NULL
6942           && (startswith (name, "PARENT")
6943               || strcmp (name, "REP") == 0
6944               || startswith (name, "_parent")
6945               || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6946 }
6947 
6948 /* True iff field number FIELD_NUM of structure or union type TYPE
6949    is a variant wrapper.  Assumes TYPE is a structure type with at least
6950    FIELD_NUM+1 fields.  */
6951 
6952 int
6953 ada_is_variant_part (struct type *type, int field_num)
6954 {
6955   struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6956 
6957   return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6958           || (is_dynamic_field (type, field_num)
6959               && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6960 		  == TYPE_CODE_UNION)));
6961 }
6962 
6963 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6964    whose discriminants are contained in the record type OUTER_TYPE,
6965    returns the type of the controlling discriminant for the variant.
6966    May return NULL if the type could not be found.  */
6967 
6968 struct type *
6969 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6970 {
6971   const char *name = ada_variant_discrim_name (var_type);
6972 
6973   return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6974 }
6975 
6976 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6977    valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6978    represents a 'when others' clause; otherwise 0.  */
6979 
6980 int
6981 ada_is_others_clause (struct type *type, int field_num)
6982 {
6983   const char *name = TYPE_FIELD_NAME (type, field_num);
6984 
6985   return (name != NULL && name[0] == 'O');
6986 }
6987 
6988 /* Assuming that TYPE0 is the type of the variant part of a record,
6989    returns the name of the discriminant controlling the variant.
6990    The value is valid until the next call to ada_variant_discrim_name.  */
6991 
6992 const char *
6993 ada_variant_discrim_name (struct type *type0)
6994 {
6995   static char *result = NULL;
6996   static size_t result_len = 0;
6997   struct type *type;
6998   const char *name;
6999   const char *discrim_end;
7000   const char *discrim_start;
7001 
7002   if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7003     type = TYPE_TARGET_TYPE (type0);
7004   else
7005     type = type0;
7006 
7007   name = ada_type_name (type);
7008 
7009   if (name == NULL || name[0] == '\000')
7010     return "";
7011 
7012   for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7013        discrim_end -= 1)
7014     {
7015       if (startswith (discrim_end, "___XVN"))
7016         break;
7017     }
7018   if (discrim_end == name)
7019     return "";
7020 
7021   for (discrim_start = discrim_end; discrim_start != name + 3;
7022        discrim_start -= 1)
7023     {
7024       if (discrim_start == name + 1)
7025         return "";
7026       if ((discrim_start > name + 3
7027            && startswith (discrim_start - 3, "___"))
7028           || discrim_start[-1] == '.')
7029         break;
7030     }
7031 
7032   GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7033   strncpy (result, discrim_start, discrim_end - discrim_start);
7034   result[discrim_end - discrim_start] = '\0';
7035   return result;
7036 }
7037 
7038 /* Scan STR for a subtype-encoded number, beginning at position K.
7039    Put the position of the character just past the number scanned in
7040    *NEW_K, if NEW_K!=NULL.  Put the scanned number in *R, if R!=NULL.
7041    Return 1 if there was a valid number at the given position, and 0
7042    otherwise.  A "subtype-encoded" number consists of the absolute value
7043    in decimal, followed by the letter 'm' to indicate a negative number.
7044    Assumes 0m does not occur.  */
7045 
7046 int
7047 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7048 {
7049   ULONGEST RU;
7050 
7051   if (!isdigit (str[k]))
7052     return 0;
7053 
7054   /* Do it the hard way so as not to make any assumption about
7055      the relationship of unsigned long (%lu scan format code) and
7056      LONGEST.  */
7057   RU = 0;
7058   while (isdigit (str[k]))
7059     {
7060       RU = RU * 10 + (str[k] - '0');
7061       k += 1;
7062     }
7063 
7064   if (str[k] == 'm')
7065     {
7066       if (R != NULL)
7067         *R = (-(LONGEST) (RU - 1)) - 1;
7068       k += 1;
7069     }
7070   else if (R != NULL)
7071     *R = (LONGEST) RU;
7072 
7073   /* NOTE on the above: Technically, C does not say what the results of
7074      - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7075      number representable as a LONGEST (although either would probably work
7076      in most implementations).  When RU>0, the locution in the then branch
7077      above is always equivalent to the negative of RU.  */
7078 
7079   if (new_k != NULL)
7080     *new_k = k;
7081   return 1;
7082 }
7083 
7084 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7085    and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7086    in the range encoded by field FIELD_NUM of TYPE; otherwise 0.  */
7087 
7088 int
7089 ada_in_variant (LONGEST val, struct type *type, int field_num)
7090 {
7091   const char *name = TYPE_FIELD_NAME (type, field_num);
7092   int p;
7093 
7094   p = 0;
7095   while (1)
7096     {
7097       switch (name[p])
7098         {
7099         case '\0':
7100           return 0;
7101         case 'S':
7102           {
7103             LONGEST W;
7104 
7105             if (!ada_scan_number (name, p + 1, &W, &p))
7106               return 0;
7107             if (val == W)
7108               return 1;
7109             break;
7110           }
7111         case 'R':
7112           {
7113             LONGEST L, U;
7114 
7115             if (!ada_scan_number (name, p + 1, &L, &p)
7116                 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7117               return 0;
7118             if (val >= L && val <= U)
7119               return 1;
7120             break;
7121           }
7122         case 'O':
7123           return 1;
7124         default:
7125           return 0;
7126         }
7127     }
7128 }
7129 
7130 /* FIXME: Lots of redundancy below.  Try to consolidate.  */
7131 
7132 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7133    ARG_TYPE, extract and return the value of one of its (non-static)
7134    fields.  FIELDNO says which field.   Differs from value_primitive_field
7135    only in that it can handle packed values of arbitrary type.  */
7136 
7137 static struct value *
7138 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7139                            struct type *arg_type)
7140 {
7141   struct type *type;
7142 
7143   arg_type = ada_check_typedef (arg_type);
7144   type = TYPE_FIELD_TYPE (arg_type, fieldno);
7145 
7146   /* Handle packed fields.  */
7147 
7148   if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7149     {
7150       int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7151       int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7152 
7153       return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7154                                              offset + bit_pos / 8,
7155                                              bit_pos % 8, bit_size, type);
7156     }
7157   else
7158     return value_primitive_field (arg1, offset, fieldno, arg_type);
7159 }
7160 
7161 /* Find field with name NAME in object of type TYPE.  If found,
7162    set the following for each argument that is non-null:
7163     - *FIELD_TYPE_P to the field's type;
7164     - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7165       an object of that type;
7166     - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7167     - *BIT_SIZE_P to its size in bits if the field is packed, and
7168       0 otherwise;
7169    If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7170    fields up to but not including the desired field, or by the total
7171    number of fields if not found.   A NULL value of NAME never
7172    matches; the function just counts visible fields in this case.
7173 
7174    Notice that we need to handle when a tagged record hierarchy
7175    has some components with the same name, like in this scenario:
7176 
7177       type Top_T is tagged record
7178          N : Integer := 1;
7179          U : Integer := 974;
7180          A : Integer := 48;
7181       end record;
7182 
7183       type Middle_T is new Top.Top_T with record
7184          N : Character := 'a';
7185          C : Integer := 3;
7186       end record;
7187 
7188      type Bottom_T is new Middle.Middle_T with record
7189         N : Float := 4.0;
7190         C : Character := '5';
7191         X : Integer := 6;
7192         A : Character := 'J';
7193      end record;
7194 
7195    Let's say we now have a variable declared and initialized as follow:
7196 
7197      TC : Top_A := new Bottom_T;
7198 
7199    And then we use this variable to call this function
7200 
7201      procedure Assign (Obj: in out Top_T; TV : Integer);
7202 
7203    as follow:
7204 
7205       Assign (Top_T (B), 12);
7206 
7207    Now, we're in the debugger, and we're inside that procedure
7208    then and we want to print the value of obj.c:
7209 
7210    Usually, the tagged record or one of the parent type owns the
7211    component to print and there's no issue but in this particular
7212    case, what does it mean to ask for Obj.C? Since the actual
7213    type for object is type Bottom_T, it could mean two things: type
7214    component C from the Middle_T view, but also component C from
7215    Bottom_T.  So in that "undefined" case, when the component is
7216    not found in the non-resolved type (which includes all the
7217    components of the parent type), then resolve it and see if we
7218    get better luck once expanded.
7219 
7220    In the case of homonyms in the derived tagged type, we don't
7221    guaranty anything, and pick the one that's easiest for us
7222    to program.
7223 
7224    Returns 1 if found, 0 otherwise.  */
7225 
7226 static int
7227 find_struct_field (const char *name, struct type *type, int offset,
7228                    struct type **field_type_p,
7229                    int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7230 		   int *index_p)
7231 {
7232   int i;
7233   int parent_offset = -1;
7234 
7235   type = ada_check_typedef (type);
7236 
7237   if (field_type_p != NULL)
7238     *field_type_p = NULL;
7239   if (byte_offset_p != NULL)
7240     *byte_offset_p = 0;
7241   if (bit_offset_p != NULL)
7242     *bit_offset_p = 0;
7243   if (bit_size_p != NULL)
7244     *bit_size_p = 0;
7245 
7246   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7247     {
7248       int bit_pos = TYPE_FIELD_BITPOS (type, i);
7249       int fld_offset = offset + bit_pos / 8;
7250       const char *t_field_name = TYPE_FIELD_NAME (type, i);
7251 
7252       if (t_field_name == NULL)
7253         continue;
7254 
7255       else if (ada_is_parent_field (type, i))
7256         {
7257 	  /* This is a field pointing us to the parent type of a tagged
7258 	     type.  As hinted in this function's documentation, we give
7259 	     preference to fields in the current record first, so what
7260 	     we do here is just record the index of this field before
7261 	     we skip it.  If it turns out we couldn't find our field
7262 	     in the current record, then we'll get back to it and search
7263 	     inside it whether the field might exist in the parent.  */
7264 
7265           parent_offset = i;
7266           continue;
7267         }
7268 
7269       else if (name != NULL && field_name_match (t_field_name, name))
7270         {
7271           int bit_size = TYPE_FIELD_BITSIZE (type, i);
7272 
7273 	  if (field_type_p != NULL)
7274 	    *field_type_p = TYPE_FIELD_TYPE (type, i);
7275 	  if (byte_offset_p != NULL)
7276 	    *byte_offset_p = fld_offset;
7277 	  if (bit_offset_p != NULL)
7278 	    *bit_offset_p = bit_pos % 8;
7279 	  if (bit_size_p != NULL)
7280 	    *bit_size_p = bit_size;
7281           return 1;
7282         }
7283       else if (ada_is_wrapper_field (type, i))
7284         {
7285 	  if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7286 				 field_type_p, byte_offset_p, bit_offset_p,
7287 				 bit_size_p, index_p))
7288             return 1;
7289         }
7290       else if (ada_is_variant_part (type, i))
7291         {
7292 	  /* PNH: Wait.  Do we ever execute this section, or is ARG always of
7293 	     fixed type?? */
7294           int j;
7295           struct type *field_type
7296 	    = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7297 
7298           for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7299             {
7300               if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7301                                      fld_offset
7302                                      + TYPE_FIELD_BITPOS (field_type, j) / 8,
7303                                      field_type_p, byte_offset_p,
7304                                      bit_offset_p, bit_size_p, index_p))
7305                 return 1;
7306             }
7307         }
7308       else if (index_p != NULL)
7309 	*index_p += 1;
7310     }
7311 
7312   /* Field not found so far.  If this is a tagged type which
7313      has a parent, try finding that field in the parent now.  */
7314 
7315   if (parent_offset != -1)
7316     {
7317       int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7318       int fld_offset = offset + bit_pos / 8;
7319 
7320       if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7321                              fld_offset, field_type_p, byte_offset_p,
7322                              bit_offset_p, bit_size_p, index_p))
7323         return 1;
7324     }
7325 
7326   return 0;
7327 }
7328 
7329 /* Number of user-visible fields in record type TYPE.  */
7330 
7331 static int
7332 num_visible_fields (struct type *type)
7333 {
7334   int n;
7335 
7336   n = 0;
7337   find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7338   return n;
7339 }
7340 
7341 /* Look for a field NAME in ARG.  Adjust the address of ARG by OFFSET bytes,
7342    and search in it assuming it has (class) type TYPE.
7343    If found, return value, else return NULL.
7344 
7345    Searches recursively through wrapper fields (e.g., '_parent').
7346 
7347    In the case of homonyms in the tagged types, please refer to the
7348    long explanation in find_struct_field's function documentation.  */
7349 
7350 static struct value *
7351 ada_search_struct_field (const char *name, struct value *arg, int offset,
7352                          struct type *type)
7353 {
7354   int i;
7355   int parent_offset = -1;
7356 
7357   type = ada_check_typedef (type);
7358   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7359     {
7360       const char *t_field_name = TYPE_FIELD_NAME (type, i);
7361 
7362       if (t_field_name == NULL)
7363         continue;
7364 
7365       else if (ada_is_parent_field (type, i))
7366         {
7367 	  /* This is a field pointing us to the parent type of a tagged
7368 	     type.  As hinted in this function's documentation, we give
7369 	     preference to fields in the current record first, so what
7370 	     we do here is just record the index of this field before
7371 	     we skip it.  If it turns out we couldn't find our field
7372 	     in the current record, then we'll get back to it and search
7373 	     inside it whether the field might exist in the parent.  */
7374 
7375           parent_offset = i;
7376           continue;
7377         }
7378 
7379       else if (field_name_match (t_field_name, name))
7380         return ada_value_primitive_field (arg, offset, i, type);
7381 
7382       else if (ada_is_wrapper_field (type, i))
7383         {
7384           struct value *v =     /* Do not let indent join lines here.  */
7385             ada_search_struct_field (name, arg,
7386                                      offset + TYPE_FIELD_BITPOS (type, i) / 8,
7387                                      TYPE_FIELD_TYPE (type, i));
7388 
7389           if (v != NULL)
7390             return v;
7391         }
7392 
7393       else if (ada_is_variant_part (type, i))
7394         {
7395 	  /* PNH: Do we ever get here?  See find_struct_field.  */
7396           int j;
7397           struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7398 									i));
7399           int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7400 
7401           for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7402             {
7403               struct value *v = ada_search_struct_field /* Force line
7404 							   break.  */
7405                 (name, arg,
7406                  var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7407                  TYPE_FIELD_TYPE (field_type, j));
7408 
7409               if (v != NULL)
7410                 return v;
7411             }
7412         }
7413     }
7414 
7415   /* Field not found so far.  If this is a tagged type which
7416      has a parent, try finding that field in the parent now.  */
7417 
7418   if (parent_offset != -1)
7419     {
7420       struct value *v = ada_search_struct_field (
7421 	name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7422 	TYPE_FIELD_TYPE (type, parent_offset));
7423 
7424       if (v != NULL)
7425         return v;
7426     }
7427 
7428   return NULL;
7429 }
7430 
7431 static struct value *ada_index_struct_field_1 (int *, struct value *,
7432 					       int, struct type *);
7433 
7434 
7435 /* Return field #INDEX in ARG, where the index is that returned by
7436  * find_struct_field through its INDEX_P argument.  Adjust the address
7437  * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7438  * If found, return value, else return NULL.  */
7439 
7440 static struct value *
7441 ada_index_struct_field (int index, struct value *arg, int offset,
7442 			struct type *type)
7443 {
7444   return ada_index_struct_field_1 (&index, arg, offset, type);
7445 }
7446 
7447 
7448 /* Auxiliary function for ada_index_struct_field.  Like
7449  * ada_index_struct_field, but takes index from *INDEX_P and modifies
7450  * *INDEX_P.  */
7451 
7452 static struct value *
7453 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7454 			  struct type *type)
7455 {
7456   int i;
7457   type = ada_check_typedef (type);
7458 
7459   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7460     {
7461       if (TYPE_FIELD_NAME (type, i) == NULL)
7462         continue;
7463       else if (ada_is_wrapper_field (type, i))
7464         {
7465           struct value *v =     /* Do not let indent join lines here.  */
7466             ada_index_struct_field_1 (index_p, arg,
7467 				      offset + TYPE_FIELD_BITPOS (type, i) / 8,
7468 				      TYPE_FIELD_TYPE (type, i));
7469 
7470           if (v != NULL)
7471             return v;
7472         }
7473 
7474       else if (ada_is_variant_part (type, i))
7475         {
7476 	  /* PNH: Do we ever get here?  See ada_search_struct_field,
7477 	     find_struct_field.  */
7478 	  error (_("Cannot assign this kind of variant record"));
7479         }
7480       else if (*index_p == 0)
7481         return ada_value_primitive_field (arg, offset, i, type);
7482       else
7483 	*index_p -= 1;
7484     }
7485   return NULL;
7486 }
7487 
7488 /* Given ARG, a value of type (pointer or reference to a)*
7489    structure/union, extract the component named NAME from the ultimate
7490    target structure/union and return it as a value with its
7491    appropriate type.
7492 
7493    The routine searches for NAME among all members of the structure itself
7494    and (recursively) among all members of any wrapper members
7495    (e.g., '_parent').
7496 
7497    If NO_ERR, then simply return NULL in case of error, rather than
7498    calling error.  */
7499 
7500 struct value *
7501 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7502 {
7503   struct type *t, *t1;
7504   struct value *v;
7505   int check_tag;
7506 
7507   v = NULL;
7508   t1 = t = ada_check_typedef (value_type (arg));
7509   if (TYPE_CODE (t) == TYPE_CODE_REF)
7510     {
7511       t1 = TYPE_TARGET_TYPE (t);
7512       if (t1 == NULL)
7513 	goto BadValue;
7514       t1 = ada_check_typedef (t1);
7515       if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7516         {
7517           arg = coerce_ref (arg);
7518           t = t1;
7519         }
7520     }
7521 
7522   while (TYPE_CODE (t) == TYPE_CODE_PTR)
7523     {
7524       t1 = TYPE_TARGET_TYPE (t);
7525       if (t1 == NULL)
7526 	goto BadValue;
7527       t1 = ada_check_typedef (t1);
7528       if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7529         {
7530           arg = value_ind (arg);
7531           t = t1;
7532         }
7533       else
7534         break;
7535     }
7536 
7537   if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7538     goto BadValue;
7539 
7540   if (t1 == t)
7541     v = ada_search_struct_field (name, arg, 0, t);
7542   else
7543     {
7544       int bit_offset, bit_size, byte_offset;
7545       struct type *field_type;
7546       CORE_ADDR address;
7547 
7548       if (TYPE_CODE (t) == TYPE_CODE_PTR)
7549 	address = value_address (ada_value_ind (arg));
7550       else
7551 	address = value_address (ada_coerce_ref (arg));
7552 
7553       /* Check to see if this is a tagged type.  We also need to handle
7554          the case where the type is a reference to a tagged type, but
7555          we have to be careful to exclude pointers to tagged types.
7556          The latter should be shown as usual (as a pointer), whereas
7557          a reference should mostly be transparent to the user.  */
7558 
7559       if (ada_is_tagged_type (t1, 0)
7560           || (TYPE_CODE (t1) == TYPE_CODE_REF
7561               && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7562         {
7563           /* We first try to find the searched field in the current type.
7564 	     If not found then let's look in the fixed type.  */
7565 
7566           if (!find_struct_field (name, t1, 0,
7567                                   &field_type, &byte_offset, &bit_offset,
7568                                   &bit_size, NULL))
7569 	    check_tag = 1;
7570 	  else
7571 	    check_tag = 0;
7572         }
7573       else
7574 	check_tag = 0;
7575 
7576       /* Convert to fixed type in all cases, so that we have proper
7577 	 offsets to each field in unconstrained record types.  */
7578       t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7579 			      address, NULL, check_tag);
7580 
7581       if (find_struct_field (name, t1, 0,
7582                              &field_type, &byte_offset, &bit_offset,
7583                              &bit_size, NULL))
7584         {
7585           if (bit_size != 0)
7586             {
7587               if (TYPE_CODE (t) == TYPE_CODE_REF)
7588                 arg = ada_coerce_ref (arg);
7589               else
7590                 arg = ada_value_ind (arg);
7591               v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7592                                                   bit_offset, bit_size,
7593                                                   field_type);
7594             }
7595           else
7596             v = value_at_lazy (field_type, address + byte_offset);
7597         }
7598     }
7599 
7600   if (v != NULL || no_err)
7601     return v;
7602   else
7603     error (_("There is no member named %s."), name);
7604 
7605  BadValue:
7606   if (no_err)
7607     return NULL;
7608   else
7609     error (_("Attempt to extract a component of "
7610 	     "a value that is not a record."));
7611 }
7612 
7613 /* Return a string representation of type TYPE.  */
7614 
7615 static std::string
7616 type_as_string (struct type *type)
7617 {
7618   string_file tmp_stream;
7619 
7620   type_print (type, "", &tmp_stream, -1);
7621 
7622   return std::move (tmp_stream.string ());
7623 }
7624 
7625 /* Given a type TYPE, look up the type of the component of type named NAME.
7626    If DISPP is non-null, add its byte displacement from the beginning of a
7627    structure (pointed to by a value) of type TYPE to *DISPP (does not
7628    work for packed fields).
7629 
7630    Matches any field whose name has NAME as a prefix, possibly
7631    followed by "___".
7632 
7633    TYPE can be either a struct or union.  If REFOK, TYPE may also
7634    be a (pointer or reference)+ to a struct or union, and the
7635    ultimate target type will be searched.
7636 
7637    Looks recursively into variant clauses and parent types.
7638 
7639    In the case of homonyms in the tagged types, please refer to the
7640    long explanation in find_struct_field's function documentation.
7641 
7642    If NOERR is nonzero, return NULL if NAME is not suitably defined or
7643    TYPE is not a type of the right kind.  */
7644 
7645 static struct type *
7646 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7647                             int noerr)
7648 {
7649   int i;
7650   int parent_offset = -1;
7651 
7652   if (name == NULL)
7653     goto BadName;
7654 
7655   if (refok && type != NULL)
7656     while (1)
7657       {
7658         type = ada_check_typedef (type);
7659         if (TYPE_CODE (type) != TYPE_CODE_PTR
7660             && TYPE_CODE (type) != TYPE_CODE_REF)
7661           break;
7662         type = TYPE_TARGET_TYPE (type);
7663       }
7664 
7665   if (type == NULL
7666       || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7667           && TYPE_CODE (type) != TYPE_CODE_UNION))
7668     {
7669       if (noerr)
7670         return NULL;
7671 
7672       error (_("Type %s is not a structure or union type"),
7673 	     type != NULL ? type_as_string (type).c_str () : _("(null)"));
7674     }
7675 
7676   type = to_static_fixed_type (type);
7677 
7678   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7679     {
7680       const char *t_field_name = TYPE_FIELD_NAME (type, i);
7681       struct type *t;
7682 
7683       if (t_field_name == NULL)
7684         continue;
7685 
7686       else if (ada_is_parent_field (type, i))
7687         {
7688 	  /* This is a field pointing us to the parent type of a tagged
7689 	     type.  As hinted in this function's documentation, we give
7690 	     preference to fields in the current record first, so what
7691 	     we do here is just record the index of this field before
7692 	     we skip it.  If it turns out we couldn't find our field
7693 	     in the current record, then we'll get back to it and search
7694 	     inside it whether the field might exist in the parent.  */
7695 
7696           parent_offset = i;
7697           continue;
7698         }
7699 
7700       else if (field_name_match (t_field_name, name))
7701 	return TYPE_FIELD_TYPE (type, i);
7702 
7703       else if (ada_is_wrapper_field (type, i))
7704         {
7705           t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7706                                           0, 1);
7707           if (t != NULL)
7708 	    return t;
7709         }
7710 
7711       else if (ada_is_variant_part (type, i))
7712         {
7713           int j;
7714           struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7715 									i));
7716 
7717           for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7718             {
7719 	      /* FIXME pnh 2008/01/26: We check for a field that is
7720 	         NOT wrapped in a struct, since the compiler sometimes
7721 		 generates these for unchecked variant types.  Revisit
7722 	         if the compiler changes this practice.  */
7723 	      const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7724 
7725 	      if (v_field_name != NULL
7726 		  && field_name_match (v_field_name, name))
7727 		t = TYPE_FIELD_TYPE (field_type, j);
7728 	      else
7729 		t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7730 								 j),
7731 						name, 0, 1);
7732 
7733               if (t != NULL)
7734 		return t;
7735             }
7736         }
7737 
7738     }
7739 
7740     /* Field not found so far.  If this is a tagged type which
7741        has a parent, try finding that field in the parent now.  */
7742 
7743     if (parent_offset != -1)
7744       {
7745         struct type *t;
7746 
7747         t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7748                                         name, 0, 1);
7749         if (t != NULL)
7750 	  return t;
7751       }
7752 
7753 BadName:
7754   if (!noerr)
7755     {
7756       const char *name_str = name != NULL ? name : _("<null>");
7757 
7758       error (_("Type %s has no component named %s"),
7759 	     type_as_string (type).c_str (), name_str);
7760     }
7761 
7762   return NULL;
7763 }
7764 
7765 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7766    within a value of type OUTER_TYPE, return true iff VAR_TYPE
7767    represents an unchecked union (that is, the variant part of a
7768    record that is named in an Unchecked_Union pragma).  */
7769 
7770 static int
7771 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7772 {
7773   const char *discrim_name = ada_variant_discrim_name (var_type);
7774 
7775   return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7776 }
7777 
7778 
7779 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7780    within a value of type OUTER_TYPE that is stored in GDB at
7781    OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7782    numbering from 0) is applicable.  Returns -1 if none are.  */
7783 
7784 int
7785 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7786                            const gdb_byte *outer_valaddr)
7787 {
7788   int others_clause;
7789   int i;
7790   const char *discrim_name = ada_variant_discrim_name (var_type);
7791   struct value *outer;
7792   struct value *discrim;
7793   LONGEST discrim_val;
7794 
7795   /* Using plain value_from_contents_and_address here causes problems
7796      because we will end up trying to resolve a type that is currently
7797      being constructed.  */
7798   outer = value_from_contents_and_address_unresolved (outer_type,
7799 						      outer_valaddr, 0);
7800   discrim = ada_value_struct_elt (outer, discrim_name, 1);
7801   if (discrim == NULL)
7802     return -1;
7803   discrim_val = value_as_long (discrim);
7804 
7805   others_clause = -1;
7806   for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7807     {
7808       if (ada_is_others_clause (var_type, i))
7809         others_clause = i;
7810       else if (ada_in_variant (discrim_val, var_type, i))
7811         return i;
7812     }
7813 
7814   return others_clause;
7815 }
7816 
7817 
7818 
7819                                 /* Dynamic-Sized Records */
7820 
7821 /* Strategy: The type ostensibly attached to a value with dynamic size
7822    (i.e., a size that is not statically recorded in the debugging
7823    data) does not accurately reflect the size or layout of the value.
7824    Our strategy is to convert these values to values with accurate,
7825    conventional types that are constructed on the fly.  */
7826 
7827 /* There is a subtle and tricky problem here.  In general, we cannot
7828    determine the size of dynamic records without its data.  However,
7829    the 'struct value' data structure, which GDB uses to represent
7830    quantities in the inferior process (the target), requires the size
7831    of the type at the time of its allocation in order to reserve space
7832    for GDB's internal copy of the data.  That's why the
7833    'to_fixed_xxx_type' routines take (target) addresses as parameters,
7834    rather than struct value*s.
7835 
7836    However, GDB's internal history variables ($1, $2, etc.) are
7837    struct value*s containing internal copies of the data that are not, in
7838    general, the same as the data at their corresponding addresses in
7839    the target.  Fortunately, the types we give to these values are all
7840    conventional, fixed-size types (as per the strategy described
7841    above), so that we don't usually have to perform the
7842    'to_fixed_xxx_type' conversions to look at their values.
7843    Unfortunately, there is one exception: if one of the internal
7844    history variables is an array whose elements are unconstrained
7845    records, then we will need to create distinct fixed types for each
7846    element selected.  */
7847 
7848 /* The upshot of all of this is that many routines take a (type, host
7849    address, target address) triple as arguments to represent a value.
7850    The host address, if non-null, is supposed to contain an internal
7851    copy of the relevant data; otherwise, the program is to consult the
7852    target at the target address.  */
7853 
7854 /* Assuming that VAL0 represents a pointer value, the result of
7855    dereferencing it.  Differs from value_ind in its treatment of
7856    dynamic-sized types.  */
7857 
7858 struct value *
7859 ada_value_ind (struct value *val0)
7860 {
7861   struct value *val = value_ind (val0);
7862 
7863   if (ada_is_tagged_type (value_type (val), 0))
7864     val = ada_tag_value_at_base_address (val);
7865 
7866   return ada_to_fixed_value (val);
7867 }
7868 
7869 /* The value resulting from dereferencing any "reference to"
7870    qualifiers on VAL0.  */
7871 
7872 static struct value *
7873 ada_coerce_ref (struct value *val0)
7874 {
7875   if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7876     {
7877       struct value *val = val0;
7878 
7879       val = coerce_ref (val);
7880 
7881       if (ada_is_tagged_type (value_type (val), 0))
7882 	val = ada_tag_value_at_base_address (val);
7883 
7884       return ada_to_fixed_value (val);
7885     }
7886   else
7887     return val0;
7888 }
7889 
7890 /* Return OFF rounded upward if necessary to a multiple of
7891    ALIGNMENT (a power of 2).  */
7892 
7893 static unsigned int
7894 align_value (unsigned int off, unsigned int alignment)
7895 {
7896   return (off + alignment - 1) & ~(alignment - 1);
7897 }
7898 
7899 /* Return the bit alignment required for field #F of template type TYPE.  */
7900 
7901 static unsigned int
7902 field_alignment (struct type *type, int f)
7903 {
7904   const char *name = TYPE_FIELD_NAME (type, f);
7905   int len;
7906   int align_offset;
7907 
7908   /* The field name should never be null, unless the debugging information
7909      is somehow malformed.  In this case, we assume the field does not
7910      require any alignment.  */
7911   if (name == NULL)
7912     return 1;
7913 
7914   len = strlen (name);
7915 
7916   if (!isdigit (name[len - 1]))
7917     return 1;
7918 
7919   if (isdigit (name[len - 2]))
7920     align_offset = len - 2;
7921   else
7922     align_offset = len - 1;
7923 
7924   if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7925     return TARGET_CHAR_BIT;
7926 
7927   return atoi (name + align_offset) * TARGET_CHAR_BIT;
7928 }
7929 
7930 /* Find a typedef or tag symbol named NAME.  Ignores ambiguity.  */
7931 
7932 static struct symbol *
7933 ada_find_any_type_symbol (const char *name)
7934 {
7935   struct symbol *sym;
7936 
7937   sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7938   if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7939     return sym;
7940 
7941   sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7942   return sym;
7943 }
7944 
7945 /* Find a type named NAME.  Ignores ambiguity.  This routine will look
7946    solely for types defined by debug info, it will not search the GDB
7947    primitive types.  */
7948 
7949 static struct type *
7950 ada_find_any_type (const char *name)
7951 {
7952   struct symbol *sym = ada_find_any_type_symbol (name);
7953 
7954   if (sym != NULL)
7955     return SYMBOL_TYPE (sym);
7956 
7957   return NULL;
7958 }
7959 
7960 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7961    associated with NAME_SYM's name.  NAME_SYM may itself be a renaming
7962    symbol, in which case it is returned.  Otherwise, this looks for
7963    symbols whose name is that of NAME_SYM suffixed with  "___XR".
7964    Return symbol if found, and NULL otherwise.  */
7965 
7966 struct symbol *
7967 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7968 {
7969   const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7970   struct symbol *sym;
7971 
7972   if (strstr (name, "___XR") != NULL)
7973      return name_sym;
7974 
7975   sym = find_old_style_renaming_symbol (name, block);
7976 
7977   if (sym != NULL)
7978     return sym;
7979 
7980   /* Not right yet.  FIXME pnh 7/20/2007.  */
7981   sym = ada_find_any_type_symbol (name);
7982   if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7983     return sym;
7984   else
7985     return NULL;
7986 }
7987 
7988 static struct symbol *
7989 find_old_style_renaming_symbol (const char *name, const struct block *block)
7990 {
7991   const struct symbol *function_sym = block_linkage_function (block);
7992   char *rename;
7993 
7994   if (function_sym != NULL)
7995     {
7996       /* If the symbol is defined inside a function, NAME is not fully
7997          qualified.  This means we need to prepend the function name
7998          as well as adding the ``___XR'' suffix to build the name of
7999          the associated renaming symbol.  */
8000       const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8001       /* Function names sometimes contain suffixes used
8002          for instance to qualify nested subprograms.  When building
8003          the XR type name, we need to make sure that this suffix is
8004          not included.  So do not include any suffix in the function
8005          name length below.  */
8006       int function_name_len = ada_name_prefix_len (function_name);
8007       const int rename_len = function_name_len + 2      /*  "__" */
8008         + strlen (name) + 6 /* "___XR\0" */ ;
8009 
8010       /* Strip the suffix if necessary.  */
8011       ada_remove_trailing_digits (function_name, &function_name_len);
8012       ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8013       ada_remove_Xbn_suffix (function_name, &function_name_len);
8014 
8015       /* Library-level functions are a special case, as GNAT adds
8016          a ``_ada_'' prefix to the function name to avoid namespace
8017          pollution.  However, the renaming symbols themselves do not
8018          have this prefix, so we need to skip this prefix if present.  */
8019       if (function_name_len > 5 /* "_ada_" */
8020           && strstr (function_name, "_ada_") == function_name)
8021         {
8022 	  function_name += 5;
8023 	  function_name_len -= 5;
8024         }
8025 
8026       rename = (char *) alloca (rename_len * sizeof (char));
8027       strncpy (rename, function_name, function_name_len);
8028       xsnprintf (rename + function_name_len, rename_len - function_name_len,
8029 		 "__%s___XR", name);
8030     }
8031   else
8032     {
8033       const int rename_len = strlen (name) + 6;
8034 
8035       rename = (char *) alloca (rename_len * sizeof (char));
8036       xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8037     }
8038 
8039   return ada_find_any_type_symbol (rename);
8040 }
8041 
8042 /* Because of GNAT encoding conventions, several GDB symbols may match a
8043    given type name.  If the type denoted by TYPE0 is to be preferred to
8044    that of TYPE1 for purposes of type printing, return non-zero;
8045    otherwise return 0.  */
8046 
8047 int
8048 ada_prefer_type (struct type *type0, struct type *type1)
8049 {
8050   if (type1 == NULL)
8051     return 1;
8052   else if (type0 == NULL)
8053     return 0;
8054   else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8055     return 1;
8056   else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8057     return 0;
8058   else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8059     return 1;
8060   else if (ada_is_constrained_packed_array_type (type0))
8061     return 1;
8062   else if (ada_is_array_descriptor_type (type0)
8063            && !ada_is_array_descriptor_type (type1))
8064     return 1;
8065   else
8066     {
8067       const char *type0_name = TYPE_NAME (type0);
8068       const char *type1_name = TYPE_NAME (type1);
8069 
8070       if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8071 	  && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8072 	return 1;
8073     }
8074   return 0;
8075 }
8076 
8077 /* The name of TYPE, which is its TYPE_NAME.  Null if TYPE is
8078    null.  */
8079 
8080 const char *
8081 ada_type_name (struct type *type)
8082 {
8083   if (type == NULL)
8084     return NULL;
8085   return TYPE_NAME (type);
8086 }
8087 
8088 /* Search the list of "descriptive" types associated to TYPE for a type
8089    whose name is NAME.  */
8090 
8091 static struct type *
8092 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8093 {
8094   struct type *result, *tmp;
8095 
8096   if (ada_ignore_descriptive_types_p)
8097     return NULL;
8098 
8099   /* If there no descriptive-type info, then there is no parallel type
8100      to be found.  */
8101   if (!HAVE_GNAT_AUX_INFO (type))
8102     return NULL;
8103 
8104   result = TYPE_DESCRIPTIVE_TYPE (type);
8105   while (result != NULL)
8106     {
8107       const char *result_name = ada_type_name (result);
8108 
8109       if (result_name == NULL)
8110         {
8111           warning (_("unexpected null name on descriptive type"));
8112           return NULL;
8113         }
8114 
8115       /* If the names match, stop.  */
8116       if (strcmp (result_name, name) == 0)
8117 	break;
8118 
8119       /* Otherwise, look at the next item on the list, if any.  */
8120       if (HAVE_GNAT_AUX_INFO (result))
8121 	tmp = TYPE_DESCRIPTIVE_TYPE (result);
8122       else
8123 	tmp = NULL;
8124 
8125       /* If not found either, try after having resolved the typedef.  */
8126       if (tmp != NULL)
8127 	result = tmp;
8128       else
8129 	{
8130 	  result = check_typedef (result);
8131 	  if (HAVE_GNAT_AUX_INFO (result))
8132 	    result = TYPE_DESCRIPTIVE_TYPE (result);
8133 	  else
8134 	    result = NULL;
8135 	}
8136     }
8137 
8138   /* If we didn't find a match, see whether this is a packed array.  With
8139      older compilers, the descriptive type information is either absent or
8140      irrelevant when it comes to packed arrays so the above lookup fails.
8141      Fall back to using a parallel lookup by name in this case.  */
8142   if (result == NULL && ada_is_constrained_packed_array_type (type))
8143     return ada_find_any_type (name);
8144 
8145   return result;
8146 }
8147 
8148 /* Find a parallel type to TYPE with the specified NAME, using the
8149    descriptive type taken from the debugging information, if available,
8150    and otherwise using the (slower) name-based method.  */
8151 
8152 static struct type *
8153 ada_find_parallel_type_with_name (struct type *type, const char *name)
8154 {
8155   struct type *result = NULL;
8156 
8157   if (HAVE_GNAT_AUX_INFO (type))
8158     result = find_parallel_type_by_descriptive_type (type, name);
8159   else
8160     result = ada_find_any_type (name);
8161 
8162   return result;
8163 }
8164 
8165 /* Same as above, but specify the name of the parallel type by appending
8166    SUFFIX to the name of TYPE.  */
8167 
8168 struct type *
8169 ada_find_parallel_type (struct type *type, const char *suffix)
8170 {
8171   char *name;
8172   const char *type_name = ada_type_name (type);
8173   int len;
8174 
8175   if (type_name == NULL)
8176     return NULL;
8177 
8178   len = strlen (type_name);
8179 
8180   name = (char *) alloca (len + strlen (suffix) + 1);
8181 
8182   strcpy (name, type_name);
8183   strcpy (name + len, suffix);
8184 
8185   return ada_find_parallel_type_with_name (type, name);
8186 }
8187 
8188 /* If TYPE is a variable-size record type, return the corresponding template
8189    type describing its fields.  Otherwise, return NULL.  */
8190 
8191 static struct type *
8192 dynamic_template_type (struct type *type)
8193 {
8194   type = ada_check_typedef (type);
8195 
8196   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8197       || ada_type_name (type) == NULL)
8198     return NULL;
8199   else
8200     {
8201       int len = strlen (ada_type_name (type));
8202 
8203       if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8204         return type;
8205       else
8206         return ada_find_parallel_type (type, "___XVE");
8207     }
8208 }
8209 
8210 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8211    non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size.  */
8212 
8213 static int
8214 is_dynamic_field (struct type *templ_type, int field_num)
8215 {
8216   const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8217 
8218   return name != NULL
8219     && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8220     && strstr (name, "___XVL") != NULL;
8221 }
8222 
8223 /* The index of the variant field of TYPE, or -1 if TYPE does not
8224    represent a variant record type.  */
8225 
8226 static int
8227 variant_field_index (struct type *type)
8228 {
8229   int f;
8230 
8231   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8232     return -1;
8233 
8234   for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8235     {
8236       if (ada_is_variant_part (type, f))
8237         return f;
8238     }
8239   return -1;
8240 }
8241 
8242 /* A record type with no fields.  */
8243 
8244 static struct type *
8245 empty_record (struct type *templ)
8246 {
8247   struct type *type = alloc_type_copy (templ);
8248 
8249   TYPE_CODE (type) = TYPE_CODE_STRUCT;
8250   TYPE_NFIELDS (type) = 0;
8251   TYPE_FIELDS (type) = NULL;
8252   INIT_CPLUS_SPECIFIC (type);
8253   TYPE_NAME (type) = "<empty>";
8254   TYPE_LENGTH (type) = 0;
8255   return type;
8256 }
8257 
8258 /* An ordinary record type (with fixed-length fields) that describes
8259    the value of type TYPE at VALADDR or ADDRESS (see comments at
8260    the beginning of this section) VAL according to GNAT conventions.
8261    DVAL0 should describe the (portion of a) record that contains any
8262    necessary discriminants.  It should be NULL if value_type (VAL) is
8263    an outer-level type (i.e., as opposed to a branch of a variant.)  A
8264    variant field (unless unchecked) is replaced by a particular branch
8265    of the variant.
8266 
8267    If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8268    length are not statically known are discarded.  As a consequence,
8269    VALADDR, ADDRESS and DVAL0 are ignored.
8270 
8271    NOTE: Limitations: For now, we assume that dynamic fields and
8272    variants occupy whole numbers of bytes.  However, they need not be
8273    byte-aligned.  */
8274 
8275 struct type *
8276 ada_template_to_fixed_record_type_1 (struct type *type,
8277 				     const gdb_byte *valaddr,
8278                                      CORE_ADDR address, struct value *dval0,
8279                                      int keep_dynamic_fields)
8280 {
8281   struct value *mark = value_mark ();
8282   struct value *dval;
8283   struct type *rtype;
8284   int nfields, bit_len;
8285   int variant_field;
8286   long off;
8287   int fld_bit_len;
8288   int f;
8289 
8290   /* Compute the number of fields in this record type that are going
8291      to be processed: unless keep_dynamic_fields, this includes only
8292      fields whose position and length are static will be processed.  */
8293   if (keep_dynamic_fields)
8294     nfields = TYPE_NFIELDS (type);
8295   else
8296     {
8297       nfields = 0;
8298       while (nfields < TYPE_NFIELDS (type)
8299              && !ada_is_variant_part (type, nfields)
8300              && !is_dynamic_field (type, nfields))
8301         nfields++;
8302     }
8303 
8304   rtype = alloc_type_copy (type);
8305   TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8306   INIT_CPLUS_SPECIFIC (rtype);
8307   TYPE_NFIELDS (rtype) = nfields;
8308   TYPE_FIELDS (rtype) = (struct field *)
8309     TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8310   memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8311   TYPE_NAME (rtype) = ada_type_name (type);
8312   TYPE_FIXED_INSTANCE (rtype) = 1;
8313 
8314   off = 0;
8315   bit_len = 0;
8316   variant_field = -1;
8317 
8318   for (f = 0; f < nfields; f += 1)
8319     {
8320       off = align_value (off, field_alignment (type, f))
8321 	+ TYPE_FIELD_BITPOS (type, f);
8322       SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8323       TYPE_FIELD_BITSIZE (rtype, f) = 0;
8324 
8325       if (ada_is_variant_part (type, f))
8326         {
8327           variant_field = f;
8328           fld_bit_len = 0;
8329         }
8330       else if (is_dynamic_field (type, f))
8331         {
8332 	  const gdb_byte *field_valaddr = valaddr;
8333 	  CORE_ADDR field_address = address;
8334 	  struct type *field_type =
8335 	    TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8336 
8337           if (dval0 == NULL)
8338 	    {
8339 	      /* rtype's length is computed based on the run-time
8340 		 value of discriminants.  If the discriminants are not
8341 		 initialized, the type size may be completely bogus and
8342 		 GDB may fail to allocate a value for it.  So check the
8343 		 size first before creating the value.  */
8344 	      ada_ensure_varsize_limit (rtype);
8345 	      /* Using plain value_from_contents_and_address here
8346 		 causes problems because we will end up trying to
8347 		 resolve a type that is currently being
8348 		 constructed.  */
8349 	      dval = value_from_contents_and_address_unresolved (rtype,
8350 								 valaddr,
8351 								 address);
8352 	      rtype = value_type (dval);
8353 	    }
8354           else
8355             dval = dval0;
8356 
8357 	  /* If the type referenced by this field is an aligner type, we need
8358 	     to unwrap that aligner type, because its size might not be set.
8359 	     Keeping the aligner type would cause us to compute the wrong
8360 	     size for this field, impacting the offset of the all the fields
8361 	     that follow this one.  */
8362 	  if (ada_is_aligner_type (field_type))
8363 	    {
8364 	      long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8365 
8366 	      field_valaddr = cond_offset_host (field_valaddr, field_offset);
8367 	      field_address = cond_offset_target (field_address, field_offset);
8368 	      field_type = ada_aligned_type (field_type);
8369 	    }
8370 
8371 	  field_valaddr = cond_offset_host (field_valaddr,
8372 					    off / TARGET_CHAR_BIT);
8373 	  field_address = cond_offset_target (field_address,
8374 					      off / TARGET_CHAR_BIT);
8375 
8376 	  /* Get the fixed type of the field.  Note that, in this case,
8377 	     we do not want to get the real type out of the tag: if
8378 	     the current field is the parent part of a tagged record,
8379 	     we will get the tag of the object.  Clearly wrong: the real
8380 	     type of the parent is not the real type of the child.  We
8381 	     would end up in an infinite loop.	*/
8382 	  field_type = ada_get_base_type (field_type);
8383 	  field_type = ada_to_fixed_type (field_type, field_valaddr,
8384 					  field_address, dval, 0);
8385 	  /* If the field size is already larger than the maximum
8386 	     object size, then the record itself will necessarily
8387 	     be larger than the maximum object size.  We need to make
8388 	     this check now, because the size might be so ridiculously
8389 	     large (due to an uninitialized variable in the inferior)
8390 	     that it would cause an overflow when adding it to the
8391 	     record size.  */
8392 	  ada_ensure_varsize_limit (field_type);
8393 
8394 	  TYPE_FIELD_TYPE (rtype, f) = field_type;
8395           TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8396 	  /* The multiplication can potentially overflow.  But because
8397 	     the field length has been size-checked just above, and
8398 	     assuming that the maximum size is a reasonable value,
8399 	     an overflow should not happen in practice.  So rather than
8400 	     adding overflow recovery code to this already complex code,
8401 	     we just assume that it's not going to happen.  */
8402           fld_bit_len =
8403             TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8404         }
8405       else
8406         {
8407 	  /* Note: If this field's type is a typedef, it is important
8408 	     to preserve the typedef layer.
8409 
8410 	     Otherwise, we might be transforming a typedef to a fat
8411 	     pointer (encoding a pointer to an unconstrained array),
8412 	     into a basic fat pointer (encoding an unconstrained
8413 	     array).  As both types are implemented using the same
8414 	     structure, the typedef is the only clue which allows us
8415 	     to distinguish between the two options.  Stripping it
8416 	     would prevent us from printing this field appropriately.  */
8417           TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8418           TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8419           if (TYPE_FIELD_BITSIZE (type, f) > 0)
8420             fld_bit_len =
8421               TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8422           else
8423 	    {
8424 	      struct type *field_type = TYPE_FIELD_TYPE (type, f);
8425 
8426 	      /* We need to be careful of typedefs when computing
8427 		 the length of our field.  If this is a typedef,
8428 		 get the length of the target type, not the length
8429 		 of the typedef.  */
8430 	      if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8431 		field_type = ada_typedef_target_type (field_type);
8432 
8433               fld_bit_len =
8434                 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8435 	    }
8436         }
8437       if (off + fld_bit_len > bit_len)
8438         bit_len = off + fld_bit_len;
8439       off += fld_bit_len;
8440       TYPE_LENGTH (rtype) =
8441         align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8442     }
8443 
8444   /* We handle the variant part, if any, at the end because of certain
8445      odd cases in which it is re-ordered so as NOT to be the last field of
8446      the record.  This can happen in the presence of representation
8447      clauses.  */
8448   if (variant_field >= 0)
8449     {
8450       struct type *branch_type;
8451 
8452       off = TYPE_FIELD_BITPOS (rtype, variant_field);
8453 
8454       if (dval0 == NULL)
8455 	{
8456 	  /* Using plain value_from_contents_and_address here causes
8457 	     problems because we will end up trying to resolve a type
8458 	     that is currently being constructed.  */
8459 	  dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8460 							     address);
8461 	  rtype = value_type (dval);
8462 	}
8463       else
8464         dval = dval0;
8465 
8466       branch_type =
8467         to_fixed_variant_branch_type
8468         (TYPE_FIELD_TYPE (type, variant_field),
8469          cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8470          cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8471       if (branch_type == NULL)
8472         {
8473           for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8474             TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8475           TYPE_NFIELDS (rtype) -= 1;
8476         }
8477       else
8478         {
8479           TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8480           TYPE_FIELD_NAME (rtype, variant_field) = "S";
8481           fld_bit_len =
8482             TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8483             TARGET_CHAR_BIT;
8484           if (off + fld_bit_len > bit_len)
8485             bit_len = off + fld_bit_len;
8486           TYPE_LENGTH (rtype) =
8487             align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8488         }
8489     }
8490 
8491   /* According to exp_dbug.ads, the size of TYPE for variable-size records
8492      should contain the alignment of that record, which should be a strictly
8493      positive value.  If null or negative, then something is wrong, most
8494      probably in the debug info.  In that case, we don't round up the size
8495      of the resulting type.  If this record is not part of another structure,
8496      the current RTYPE length might be good enough for our purposes.  */
8497   if (TYPE_LENGTH (type) <= 0)
8498     {
8499       if (TYPE_NAME (rtype))
8500 	warning (_("Invalid type size for `%s' detected: %d."),
8501 		 TYPE_NAME (rtype), TYPE_LENGTH (type));
8502       else
8503 	warning (_("Invalid type size for <unnamed> detected: %d."),
8504 		 TYPE_LENGTH (type));
8505     }
8506   else
8507     {
8508       TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8509                                          TYPE_LENGTH (type));
8510     }
8511 
8512   value_free_to_mark (mark);
8513   if (TYPE_LENGTH (rtype) > varsize_limit)
8514     error (_("record type with dynamic size is larger than varsize-limit"));
8515   return rtype;
8516 }
8517 
8518 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8519    of 1.  */
8520 
8521 static struct type *
8522 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8523                                CORE_ADDR address, struct value *dval0)
8524 {
8525   return ada_template_to_fixed_record_type_1 (type, valaddr,
8526                                               address, dval0, 1);
8527 }
8528 
8529 /* An ordinary record type in which ___XVL-convention fields and
8530    ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8531    static approximations, containing all possible fields.  Uses
8532    no runtime values.  Useless for use in values, but that's OK,
8533    since the results are used only for type determinations.   Works on both
8534    structs and unions.  Representation note: to save space, we memorize
8535    the result of this function in the TYPE_TARGET_TYPE of the
8536    template type.  */
8537 
8538 static struct type *
8539 template_to_static_fixed_type (struct type *type0)
8540 {
8541   struct type *type;
8542   int nfields;
8543   int f;
8544 
8545   /* No need no do anything if the input type is already fixed.  */
8546   if (TYPE_FIXED_INSTANCE (type0))
8547     return type0;
8548 
8549   /* Likewise if we already have computed the static approximation.  */
8550   if (TYPE_TARGET_TYPE (type0) != NULL)
8551     return TYPE_TARGET_TYPE (type0);
8552 
8553   /* Don't clone TYPE0 until we are sure we are going to need a copy.  */
8554   type = type0;
8555   nfields = TYPE_NFIELDS (type0);
8556 
8557   /* Whether or not we cloned TYPE0, cache the result so that we don't do
8558      recompute all over next time.  */
8559   TYPE_TARGET_TYPE (type0) = type;
8560 
8561   for (f = 0; f < nfields; f += 1)
8562     {
8563       struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8564       struct type *new_type;
8565 
8566       if (is_dynamic_field (type0, f))
8567 	{
8568 	  field_type = ada_check_typedef (field_type);
8569           new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8570 	}
8571       else
8572         new_type = static_unwrap_type (field_type);
8573 
8574       if (new_type != field_type)
8575 	{
8576 	  /* Clone TYPE0 only the first time we get a new field type.  */
8577 	  if (type == type0)
8578 	    {
8579 	      TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8580 	      TYPE_CODE (type) = TYPE_CODE (type0);
8581 	      INIT_CPLUS_SPECIFIC (type);
8582 	      TYPE_NFIELDS (type) = nfields;
8583 	      TYPE_FIELDS (type) = (struct field *)
8584 		TYPE_ALLOC (type, nfields * sizeof (struct field));
8585 	      memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8586 		      sizeof (struct field) * nfields);
8587 	      TYPE_NAME (type) = ada_type_name (type0);
8588 	      TYPE_FIXED_INSTANCE (type) = 1;
8589 	      TYPE_LENGTH (type) = 0;
8590 	    }
8591 	  TYPE_FIELD_TYPE (type, f) = new_type;
8592 	  TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8593 	}
8594     }
8595 
8596   return type;
8597 }
8598 
8599 /* Given an object of type TYPE whose contents are at VALADDR and
8600    whose address in memory is ADDRESS, returns a revision of TYPE,
8601    which should be a non-dynamic-sized record, in which the variant
8602    part, if any, is replaced with the appropriate branch.  Looks
8603    for discriminant values in DVAL0, which can be NULL if the record
8604    contains the necessary discriminant values.  */
8605 
8606 static struct type *
8607 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8608                                    CORE_ADDR address, struct value *dval0)
8609 {
8610   struct value *mark = value_mark ();
8611   struct value *dval;
8612   struct type *rtype;
8613   struct type *branch_type;
8614   int nfields = TYPE_NFIELDS (type);
8615   int variant_field = variant_field_index (type);
8616 
8617   if (variant_field == -1)
8618     return type;
8619 
8620   if (dval0 == NULL)
8621     {
8622       dval = value_from_contents_and_address (type, valaddr, address);
8623       type = value_type (dval);
8624     }
8625   else
8626     dval = dval0;
8627 
8628   rtype = alloc_type_copy (type);
8629   TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8630   INIT_CPLUS_SPECIFIC (rtype);
8631   TYPE_NFIELDS (rtype) = nfields;
8632   TYPE_FIELDS (rtype) =
8633     (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8634   memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8635           sizeof (struct field) * nfields);
8636   TYPE_NAME (rtype) = ada_type_name (type);
8637   TYPE_FIXED_INSTANCE (rtype) = 1;
8638   TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8639 
8640   branch_type = to_fixed_variant_branch_type
8641     (TYPE_FIELD_TYPE (type, variant_field),
8642      cond_offset_host (valaddr,
8643                        TYPE_FIELD_BITPOS (type, variant_field)
8644                        / TARGET_CHAR_BIT),
8645      cond_offset_target (address,
8646                          TYPE_FIELD_BITPOS (type, variant_field)
8647                          / TARGET_CHAR_BIT), dval);
8648   if (branch_type == NULL)
8649     {
8650       int f;
8651 
8652       for (f = variant_field + 1; f < nfields; f += 1)
8653         TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8654       TYPE_NFIELDS (rtype) -= 1;
8655     }
8656   else
8657     {
8658       TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8659       TYPE_FIELD_NAME (rtype, variant_field) = "S";
8660       TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8661       TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8662     }
8663   TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8664 
8665   value_free_to_mark (mark);
8666   return rtype;
8667 }
8668 
8669 /* An ordinary record type (with fixed-length fields) that describes
8670    the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8671    beginning of this section].   Any necessary discriminants' values
8672    should be in DVAL, a record value; it may be NULL if the object
8673    at ADDR itself contains any necessary discriminant values.
8674    Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8675    values from the record are needed.  Except in the case that DVAL,
8676    VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8677    unchecked) is replaced by a particular branch of the variant.
8678 
8679    NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8680    is questionable and may be removed.  It can arise during the
8681    processing of an unconstrained-array-of-record type where all the
8682    variant branches have exactly the same size.  This is because in
8683    such cases, the compiler does not bother to use the XVS convention
8684    when encoding the record.  I am currently dubious of this
8685    shortcut and suspect the compiler should be altered.  FIXME.  */
8686 
8687 static struct type *
8688 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8689                       CORE_ADDR address, struct value *dval)
8690 {
8691   struct type *templ_type;
8692 
8693   if (TYPE_FIXED_INSTANCE (type0))
8694     return type0;
8695 
8696   templ_type = dynamic_template_type (type0);
8697 
8698   if (templ_type != NULL)
8699     return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8700   else if (variant_field_index (type0) >= 0)
8701     {
8702       if (dval == NULL && valaddr == NULL && address == 0)
8703         return type0;
8704       return to_record_with_fixed_variant_part (type0, valaddr, address,
8705                                                 dval);
8706     }
8707   else
8708     {
8709       TYPE_FIXED_INSTANCE (type0) = 1;
8710       return type0;
8711     }
8712 
8713 }
8714 
8715 /* An ordinary record type (with fixed-length fields) that describes
8716    the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8717    union type.  Any necessary discriminants' values should be in DVAL,
8718    a record value.  That is, this routine selects the appropriate
8719    branch of the union at ADDR according to the discriminant value
8720    indicated in the union's type name.  Returns VAR_TYPE0 itself if
8721    it represents a variant subject to a pragma Unchecked_Union.  */
8722 
8723 static struct type *
8724 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8725                               CORE_ADDR address, struct value *dval)
8726 {
8727   int which;
8728   struct type *templ_type;
8729   struct type *var_type;
8730 
8731   if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8732     var_type = TYPE_TARGET_TYPE (var_type0);
8733   else
8734     var_type = var_type0;
8735 
8736   templ_type = ada_find_parallel_type (var_type, "___XVU");
8737 
8738   if (templ_type != NULL)
8739     var_type = templ_type;
8740 
8741   if (is_unchecked_variant (var_type, value_type (dval)))
8742       return var_type0;
8743   which =
8744     ada_which_variant_applies (var_type,
8745                                value_type (dval), value_contents (dval));
8746 
8747   if (which < 0)
8748     return empty_record (var_type);
8749   else if (is_dynamic_field (var_type, which))
8750     return to_fixed_record_type
8751       (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8752        valaddr, address, dval);
8753   else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8754     return
8755       to_fixed_record_type
8756       (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8757   else
8758     return TYPE_FIELD_TYPE (var_type, which);
8759 }
8760 
8761 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8762    ENCODING_TYPE, a type following the GNAT conventions for discrete
8763    type encodings, only carries redundant information.  */
8764 
8765 static int
8766 ada_is_redundant_range_encoding (struct type *range_type,
8767 				 struct type *encoding_type)
8768 {
8769   const char *bounds_str;
8770   int n;
8771   LONGEST lo, hi;
8772 
8773   gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8774 
8775   if (TYPE_CODE (get_base_type (range_type))
8776       != TYPE_CODE (get_base_type (encoding_type)))
8777     {
8778       /* The compiler probably used a simple base type to describe
8779 	 the range type instead of the range's actual base type,
8780 	 expecting us to get the real base type from the encoding
8781 	 anyway.  In this situation, the encoding cannot be ignored
8782 	 as redundant.  */
8783       return 0;
8784     }
8785 
8786   if (is_dynamic_type (range_type))
8787     return 0;
8788 
8789   if (TYPE_NAME (encoding_type) == NULL)
8790     return 0;
8791 
8792   bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8793   if (bounds_str == NULL)
8794     return 0;
8795 
8796   n = 8; /* Skip "___XDLU_".  */
8797   if (!ada_scan_number (bounds_str, n, &lo, &n))
8798     return 0;
8799   if (TYPE_LOW_BOUND (range_type) != lo)
8800     return 0;
8801 
8802   n += 2; /* Skip the "__" separator between the two bounds.  */
8803   if (!ada_scan_number (bounds_str, n, &hi, &n))
8804     return 0;
8805   if (TYPE_HIGH_BOUND (range_type) != hi)
8806     return 0;
8807 
8808   return 1;
8809 }
8810 
8811 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8812    a type following the GNAT encoding for describing array type
8813    indices, only carries redundant information.  */
8814 
8815 static int
8816 ada_is_redundant_index_type_desc (struct type *array_type,
8817 				  struct type *desc_type)
8818 {
8819   struct type *this_layer = check_typedef (array_type);
8820   int i;
8821 
8822   for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8823     {
8824       if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8825 					    TYPE_FIELD_TYPE (desc_type, i)))
8826 	return 0;
8827       this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8828     }
8829 
8830   return 1;
8831 }
8832 
8833 /* Assuming that TYPE0 is an array type describing the type of a value
8834    at ADDR, and that DVAL describes a record containing any
8835    discriminants used in TYPE0, returns a type for the value that
8836    contains no dynamic components (that is, no components whose sizes
8837    are determined by run-time quantities).  Unless IGNORE_TOO_BIG is
8838    true, gives an error message if the resulting type's size is over
8839    varsize_limit.  */
8840 
8841 static struct type *
8842 to_fixed_array_type (struct type *type0, struct value *dval,
8843                      int ignore_too_big)
8844 {
8845   struct type *index_type_desc;
8846   struct type *result;
8847   int constrained_packed_array_p;
8848   static const char *xa_suffix = "___XA";
8849 
8850   type0 = ada_check_typedef (type0);
8851   if (TYPE_FIXED_INSTANCE (type0))
8852     return type0;
8853 
8854   constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8855   if (constrained_packed_array_p)
8856     type0 = decode_constrained_packed_array_type (type0);
8857 
8858   index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8859 
8860   /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8861      encoding suffixed with 'P' may still be generated.  If so,
8862      it should be used to find the XA type.  */
8863 
8864   if (index_type_desc == NULL)
8865     {
8866       const char *type_name = ada_type_name (type0);
8867 
8868       if (type_name != NULL)
8869 	{
8870 	  const int len = strlen (type_name);
8871 	  char *name = (char *) alloca (len + strlen (xa_suffix));
8872 
8873 	  if (type_name[len - 1] == 'P')
8874 	    {
8875 	      strcpy (name, type_name);
8876 	      strcpy (name + len - 1, xa_suffix);
8877 	      index_type_desc = ada_find_parallel_type_with_name (type0, name);
8878 	    }
8879 	}
8880     }
8881 
8882   ada_fixup_array_indexes_type (index_type_desc);
8883   if (index_type_desc != NULL
8884       && ada_is_redundant_index_type_desc (type0, index_type_desc))
8885     {
8886       /* Ignore this ___XA parallel type, as it does not bring any
8887 	 useful information.  This allows us to avoid creating fixed
8888 	 versions of the array's index types, which would be identical
8889 	 to the original ones.  This, in turn, can also help avoid
8890 	 the creation of fixed versions of the array itself.  */
8891       index_type_desc = NULL;
8892     }
8893 
8894   if (index_type_desc == NULL)
8895     {
8896       struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8897 
8898       /* NOTE: elt_type---the fixed version of elt_type0---should never
8899          depend on the contents of the array in properly constructed
8900          debugging data.  */
8901       /* Create a fixed version of the array element type.
8902          We're not providing the address of an element here,
8903          and thus the actual object value cannot be inspected to do
8904          the conversion.  This should not be a problem, since arrays of
8905          unconstrained objects are not allowed.  In particular, all
8906          the elements of an array of a tagged type should all be of
8907          the same type specified in the debugging info.  No need to
8908          consult the object tag.  */
8909       struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8910 
8911       /* Make sure we always create a new array type when dealing with
8912 	 packed array types, since we're going to fix-up the array
8913 	 type length and element bitsize a little further down.  */
8914       if (elt_type0 == elt_type && !constrained_packed_array_p)
8915         result = type0;
8916       else
8917         result = create_array_type (alloc_type_copy (type0),
8918                                     elt_type, TYPE_INDEX_TYPE (type0));
8919     }
8920   else
8921     {
8922       int i;
8923       struct type *elt_type0;
8924 
8925       elt_type0 = type0;
8926       for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8927         elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8928 
8929       /* NOTE: result---the fixed version of elt_type0---should never
8930          depend on the contents of the array in properly constructed
8931          debugging data.  */
8932       /* Create a fixed version of the array element type.
8933          We're not providing the address of an element here,
8934          and thus the actual object value cannot be inspected to do
8935          the conversion.  This should not be a problem, since arrays of
8936          unconstrained objects are not allowed.  In particular, all
8937          the elements of an array of a tagged type should all be of
8938          the same type specified in the debugging info.  No need to
8939          consult the object tag.  */
8940       result =
8941         ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8942 
8943       elt_type0 = type0;
8944       for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8945         {
8946           struct type *range_type =
8947             to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8948 
8949           result = create_array_type (alloc_type_copy (elt_type0),
8950                                       result, range_type);
8951 	  elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8952         }
8953       if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8954         error (_("array type with dynamic size is larger than varsize-limit"));
8955     }
8956 
8957   /* We want to preserve the type name.  This can be useful when
8958      trying to get the type name of a value that has already been
8959      printed (for instance, if the user did "print VAR; whatis $".  */
8960   TYPE_NAME (result) = TYPE_NAME (type0);
8961 
8962   if (constrained_packed_array_p)
8963     {
8964       /* So far, the resulting type has been created as if the original
8965 	 type was a regular (non-packed) array type.  As a result, the
8966 	 bitsize of the array elements needs to be set again, and the array
8967 	 length needs to be recomputed based on that bitsize.  */
8968       int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8969       int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8970 
8971       TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8972       TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8973       if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8974         TYPE_LENGTH (result)++;
8975     }
8976 
8977   TYPE_FIXED_INSTANCE (result) = 1;
8978   return result;
8979 }
8980 
8981 
8982 /* A standard type (containing no dynamically sized components)
8983    corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8984    DVAL describes a record containing any discriminants used in TYPE0,
8985    and may be NULL if there are none, or if the object of type TYPE at
8986    ADDRESS or in VALADDR contains these discriminants.
8987 
8988    If CHECK_TAG is not null, in the case of tagged types, this function
8989    attempts to locate the object's tag and use it to compute the actual
8990    type.  However, when ADDRESS is null, we cannot use it to determine the
8991    location of the tag, and therefore compute the tagged type's actual type.
8992    So we return the tagged type without consulting the tag.  */
8993 
8994 static struct type *
8995 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8996                    CORE_ADDR address, struct value *dval, int check_tag)
8997 {
8998   type = ada_check_typedef (type);
8999   switch (TYPE_CODE (type))
9000     {
9001     default:
9002       return type;
9003     case TYPE_CODE_STRUCT:
9004       {
9005         struct type *static_type = to_static_fixed_type (type);
9006         struct type *fixed_record_type =
9007           to_fixed_record_type (type, valaddr, address, NULL);
9008 
9009         /* If STATIC_TYPE is a tagged type and we know the object's address,
9010            then we can determine its tag, and compute the object's actual
9011            type from there.  Note that we have to use the fixed record
9012            type (the parent part of the record may have dynamic fields
9013            and the way the location of _tag is expressed may depend on
9014            them).  */
9015 
9016         if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9017           {
9018 	    struct value *tag =
9019 	      value_tag_from_contents_and_address
9020 	      (fixed_record_type,
9021 	       valaddr,
9022 	       address);
9023 	    struct type *real_type = type_from_tag (tag);
9024 	    struct value *obj =
9025 	      value_from_contents_and_address (fixed_record_type,
9026 					       valaddr,
9027 					       address);
9028             fixed_record_type = value_type (obj);
9029             if (real_type != NULL)
9030               return to_fixed_record_type
9031 		(real_type, NULL,
9032 		 value_address (ada_tag_value_at_base_address (obj)), NULL);
9033           }
9034 
9035         /* Check to see if there is a parallel ___XVZ variable.
9036            If there is, then it provides the actual size of our type.  */
9037         else if (ada_type_name (fixed_record_type) != NULL)
9038           {
9039             const char *name = ada_type_name (fixed_record_type);
9040             char *xvz_name
9041 	      = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9042 	    bool xvz_found = false;
9043             LONGEST size;
9044 
9045             xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9046 	    TRY
9047 	      {
9048 		xvz_found = get_int_var_value (xvz_name, size);
9049 	      }
9050 	    CATCH (except, RETURN_MASK_ERROR)
9051 	      {
9052 		/* We found the variable, but somehow failed to read
9053 		   its value.  Rethrow the same error, but with a little
9054 		   bit more information, to help the user understand
9055 		   what went wrong (Eg: the variable might have been
9056 		   optimized out).  */
9057 		throw_error (except.error,
9058 			     _("unable to read value of %s (%s)"),
9059 			     xvz_name, except.message);
9060 	      }
9061 	    END_CATCH
9062 
9063             if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9064               {
9065                 fixed_record_type = copy_type (fixed_record_type);
9066                 TYPE_LENGTH (fixed_record_type) = size;
9067 
9068                 /* The FIXED_RECORD_TYPE may have be a stub.  We have
9069                    observed this when the debugging info is STABS, and
9070                    apparently it is something that is hard to fix.
9071 
9072                    In practice, we don't need the actual type definition
9073                    at all, because the presence of the XVZ variable allows us
9074                    to assume that there must be a XVS type as well, which we
9075                    should be able to use later, when we need the actual type
9076                    definition.
9077 
9078                    In the meantime, pretend that the "fixed" type we are
9079                    returning is NOT a stub, because this can cause trouble
9080                    when using this type to create new types targeting it.
9081                    Indeed, the associated creation routines often check
9082                    whether the target type is a stub and will try to replace
9083                    it, thus using a type with the wrong size.  This, in turn,
9084                    might cause the new type to have the wrong size too.
9085                    Consider the case of an array, for instance, where the size
9086                    of the array is computed from the number of elements in
9087                    our array multiplied by the size of its element.  */
9088                 TYPE_STUB (fixed_record_type) = 0;
9089               }
9090           }
9091         return fixed_record_type;
9092       }
9093     case TYPE_CODE_ARRAY:
9094       return to_fixed_array_type (type, dval, 1);
9095     case TYPE_CODE_UNION:
9096       if (dval == NULL)
9097         return type;
9098       else
9099         return to_fixed_variant_branch_type (type, valaddr, address, dval);
9100     }
9101 }
9102 
9103 /* The same as ada_to_fixed_type_1, except that it preserves the type
9104    if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9105 
9106    The typedef layer needs be preserved in order to differentiate between
9107    arrays and array pointers when both types are implemented using the same
9108    fat pointer.  In the array pointer case, the pointer is encoded as
9109    a typedef of the pointer type.  For instance, considering:
9110 
9111 	  type String_Access is access String;
9112 	  S1 : String_Access := null;
9113 
9114    To the debugger, S1 is defined as a typedef of type String.  But
9115    to the user, it is a pointer.  So if the user tries to print S1,
9116    we should not dereference the array, but print the array address
9117    instead.
9118 
9119    If we didn't preserve the typedef layer, we would lose the fact that
9120    the type is to be presented as a pointer (needs de-reference before
9121    being printed).  And we would also use the source-level type name.  */
9122 
9123 struct type *
9124 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9125                    CORE_ADDR address, struct value *dval, int check_tag)
9126 
9127 {
9128   struct type *fixed_type =
9129     ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9130 
9131   /*  If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9132       then preserve the typedef layer.
9133 
9134       Implementation note: We can only check the main-type portion of
9135       the TYPE and FIXED_TYPE, because eliminating the typedef layer
9136       from TYPE now returns a type that has the same instance flags
9137       as TYPE.  For instance, if TYPE is a "typedef const", and its
9138       target type is a "struct", then the typedef elimination will return
9139       a "const" version of the target type.  See check_typedef for more
9140       details about how the typedef layer elimination is done.
9141 
9142       brobecker/2010-11-19: It seems to me that the only case where it is
9143       useful to preserve the typedef layer is when dealing with fat pointers.
9144       Perhaps, we could add a check for that and preserve the typedef layer
9145       only in that situation.  But this seems unecessary so far, probably
9146       because we call check_typedef/ada_check_typedef pretty much everywhere.
9147       */
9148   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9149       && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9150 	  == TYPE_MAIN_TYPE (fixed_type)))
9151     return type;
9152 
9153   return fixed_type;
9154 }
9155 
9156 /* A standard (static-sized) type corresponding as well as possible to
9157    TYPE0, but based on no runtime data.  */
9158 
9159 static struct type *
9160 to_static_fixed_type (struct type *type0)
9161 {
9162   struct type *type;
9163 
9164   if (type0 == NULL)
9165     return NULL;
9166 
9167   if (TYPE_FIXED_INSTANCE (type0))
9168     return type0;
9169 
9170   type0 = ada_check_typedef (type0);
9171 
9172   switch (TYPE_CODE (type0))
9173     {
9174     default:
9175       return type0;
9176     case TYPE_CODE_STRUCT:
9177       type = dynamic_template_type (type0);
9178       if (type != NULL)
9179         return template_to_static_fixed_type (type);
9180       else
9181         return template_to_static_fixed_type (type0);
9182     case TYPE_CODE_UNION:
9183       type = ada_find_parallel_type (type0, "___XVU");
9184       if (type != NULL)
9185         return template_to_static_fixed_type (type);
9186       else
9187         return template_to_static_fixed_type (type0);
9188     }
9189 }
9190 
9191 /* A static approximation of TYPE with all type wrappers removed.  */
9192 
9193 static struct type *
9194 static_unwrap_type (struct type *type)
9195 {
9196   if (ada_is_aligner_type (type))
9197     {
9198       struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9199       if (ada_type_name (type1) == NULL)
9200         TYPE_NAME (type1) = ada_type_name (type);
9201 
9202       return static_unwrap_type (type1);
9203     }
9204   else
9205     {
9206       struct type *raw_real_type = ada_get_base_type (type);
9207 
9208       if (raw_real_type == type)
9209         return type;
9210       else
9211         return to_static_fixed_type (raw_real_type);
9212     }
9213 }
9214 
9215 /* In some cases, incomplete and private types require
9216    cross-references that are not resolved as records (for example,
9217       type Foo;
9218       type FooP is access Foo;
9219       V: FooP;
9220       type Foo is array ...;
9221    ).  In these cases, since there is no mechanism for producing
9222    cross-references to such types, we instead substitute for FooP a
9223    stub enumeration type that is nowhere resolved, and whose tag is
9224    the name of the actual type.  Call these types "non-record stubs".  */
9225 
9226 /* A type equivalent to TYPE that is not a non-record stub, if one
9227    exists, otherwise TYPE.  */
9228 
9229 struct type *
9230 ada_check_typedef (struct type *type)
9231 {
9232   if (type == NULL)
9233     return NULL;
9234 
9235   /* If our type is an access to an unconstrained array, which is encoded
9236      as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9237      We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9238      what allows us to distinguish between fat pointers that represent
9239      array types, and fat pointers that represent array access types
9240      (in both cases, the compiler implements them as fat pointers).  */
9241   if (ada_is_access_to_unconstrained_array (type))
9242     return type;
9243 
9244   type = check_typedef (type);
9245   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9246       || !TYPE_STUB (type)
9247       || TYPE_NAME (type) == NULL)
9248     return type;
9249   else
9250     {
9251       const char *name = TYPE_NAME (type);
9252       struct type *type1 = ada_find_any_type (name);
9253 
9254       if (type1 == NULL)
9255         return type;
9256 
9257       /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9258 	 stubs pointing to arrays, as we don't create symbols for array
9259 	 types, only for the typedef-to-array types).  If that's the case,
9260 	 strip the typedef layer.  */
9261       if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9262 	type1 = ada_check_typedef (type1);
9263 
9264       return type1;
9265     }
9266 }
9267 
9268 /* A value representing the data at VALADDR/ADDRESS as described by
9269    type TYPE0, but with a standard (static-sized) type that correctly
9270    describes it.  If VAL0 is not NULL and TYPE0 already is a standard
9271    type, then return VAL0 [this feature is simply to avoid redundant
9272    creation of struct values].  */
9273 
9274 static struct value *
9275 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9276                            struct value *val0)
9277 {
9278   struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9279 
9280   if (type == type0 && val0 != NULL)
9281     return val0;
9282 
9283   if (VALUE_LVAL (val0) != lval_memory)
9284     {
9285       /* Our value does not live in memory; it could be a convenience
9286 	 variable, for instance.  Create a not_lval value using val0's
9287 	 contents.  */
9288       return value_from_contents (type, value_contents (val0));
9289     }
9290 
9291   return value_from_contents_and_address (type, 0, address);
9292 }
9293 
9294 /* A value representing VAL, but with a standard (static-sized) type
9295    that correctly describes it.  Does not necessarily create a new
9296    value.  */
9297 
9298 struct value *
9299 ada_to_fixed_value (struct value *val)
9300 {
9301   val = unwrap_value (val);
9302   val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9303   return val;
9304 }
9305 
9306 
9307 /* Attributes */
9308 
9309 /* Table mapping attribute numbers to names.
9310    NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h.  */
9311 
9312 static const char *attribute_names[] = {
9313   "<?>",
9314 
9315   "first",
9316   "last",
9317   "length",
9318   "image",
9319   "max",
9320   "min",
9321   "modulus",
9322   "pos",
9323   "size",
9324   "tag",
9325   "val",
9326   0
9327 };
9328 
9329 const char *
9330 ada_attribute_name (enum exp_opcode n)
9331 {
9332   if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9333     return attribute_names[n - OP_ATR_FIRST + 1];
9334   else
9335     return attribute_names[0];
9336 }
9337 
9338 /* Evaluate the 'POS attribute applied to ARG.  */
9339 
9340 static LONGEST
9341 pos_atr (struct value *arg)
9342 {
9343   struct value *val = coerce_ref (arg);
9344   struct type *type = value_type (val);
9345   LONGEST result;
9346 
9347   if (!discrete_type_p (type))
9348     error (_("'POS only defined on discrete types"));
9349 
9350   if (!discrete_position (type, value_as_long (val), &result))
9351     error (_("enumeration value is invalid: can't find 'POS"));
9352 
9353   return result;
9354 }
9355 
9356 static struct value *
9357 value_pos_atr (struct type *type, struct value *arg)
9358 {
9359   return value_from_longest (type, pos_atr (arg));
9360 }
9361 
9362 /* Evaluate the TYPE'VAL attribute applied to ARG.  */
9363 
9364 static struct value *
9365 value_val_atr (struct type *type, struct value *arg)
9366 {
9367   if (!discrete_type_p (type))
9368     error (_("'VAL only defined on discrete types"));
9369   if (!integer_type_p (value_type (arg)))
9370     error (_("'VAL requires integral argument"));
9371 
9372   if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9373     {
9374       long pos = value_as_long (arg);
9375 
9376       if (pos < 0 || pos >= TYPE_NFIELDS (type))
9377         error (_("argument to 'VAL out of range"));
9378       return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9379     }
9380   else
9381     return value_from_longest (type, value_as_long (arg));
9382 }
9383 
9384 
9385                                 /* Evaluation */
9386 
9387 /* True if TYPE appears to be an Ada character type.
9388    [At the moment, this is true only for Character and Wide_Character;
9389    It is a heuristic test that could stand improvement].  */
9390 
9391 int
9392 ada_is_character_type (struct type *type)
9393 {
9394   const char *name;
9395 
9396   /* If the type code says it's a character, then assume it really is,
9397      and don't check any further.  */
9398   if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9399     return 1;
9400 
9401   /* Otherwise, assume it's a character type iff it is a discrete type
9402      with a known character type name.  */
9403   name = ada_type_name (type);
9404   return (name != NULL
9405           && (TYPE_CODE (type) == TYPE_CODE_INT
9406               || TYPE_CODE (type) == TYPE_CODE_RANGE)
9407           && (strcmp (name, "character") == 0
9408               || strcmp (name, "wide_character") == 0
9409               || strcmp (name, "wide_wide_character") == 0
9410               || strcmp (name, "unsigned char") == 0));
9411 }
9412 
9413 /* True if TYPE appears to be an Ada string type.  */
9414 
9415 int
9416 ada_is_string_type (struct type *type)
9417 {
9418   type = ada_check_typedef (type);
9419   if (type != NULL
9420       && TYPE_CODE (type) != TYPE_CODE_PTR
9421       && (ada_is_simple_array_type (type)
9422           || ada_is_array_descriptor_type (type))
9423       && ada_array_arity (type) == 1)
9424     {
9425       struct type *elttype = ada_array_element_type (type, 1);
9426 
9427       return ada_is_character_type (elttype);
9428     }
9429   else
9430     return 0;
9431 }
9432 
9433 /* The compiler sometimes provides a parallel XVS type for a given
9434    PAD type.  Normally, it is safe to follow the PAD type directly,
9435    but older versions of the compiler have a bug that causes the offset
9436    of its "F" field to be wrong.  Following that field in that case
9437    would lead to incorrect results, but this can be worked around
9438    by ignoring the PAD type and using the associated XVS type instead.
9439 
9440    Set to True if the debugger should trust the contents of PAD types.
9441    Otherwise, ignore the PAD type if there is a parallel XVS type.  */
9442 static int trust_pad_over_xvs = 1;
9443 
9444 /* True if TYPE is a struct type introduced by the compiler to force the
9445    alignment of a value.  Such types have a single field with a
9446    distinctive name.  */
9447 
9448 int
9449 ada_is_aligner_type (struct type *type)
9450 {
9451   type = ada_check_typedef (type);
9452 
9453   if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9454     return 0;
9455 
9456   return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9457           && TYPE_NFIELDS (type) == 1
9458           && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9459 }
9460 
9461 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9462    the parallel type.  */
9463 
9464 struct type *
9465 ada_get_base_type (struct type *raw_type)
9466 {
9467   struct type *real_type_namer;
9468   struct type *raw_real_type;
9469 
9470   if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9471     return raw_type;
9472 
9473   if (ada_is_aligner_type (raw_type))
9474     /* The encoding specifies that we should always use the aligner type.
9475        So, even if this aligner type has an associated XVS type, we should
9476        simply ignore it.
9477 
9478        According to the compiler gurus, an XVS type parallel to an aligner
9479        type may exist because of a stabs limitation.  In stabs, aligner
9480        types are empty because the field has a variable-sized type, and
9481        thus cannot actually be used as an aligner type.  As a result,
9482        we need the associated parallel XVS type to decode the type.
9483        Since the policy in the compiler is to not change the internal
9484        representation based on the debugging info format, we sometimes
9485        end up having a redundant XVS type parallel to the aligner type.  */
9486     return raw_type;
9487 
9488   real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9489   if (real_type_namer == NULL
9490       || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9491       || TYPE_NFIELDS (real_type_namer) != 1)
9492     return raw_type;
9493 
9494   if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9495     {
9496       /* This is an older encoding form where the base type needs to be
9497 	 looked up by name.  We prefer the newer enconding because it is
9498 	 more efficient.  */
9499       raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9500       if (raw_real_type == NULL)
9501 	return raw_type;
9502       else
9503 	return raw_real_type;
9504     }
9505 
9506   /* The field in our XVS type is a reference to the base type.  */
9507   return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9508 }
9509 
9510 /* The type of value designated by TYPE, with all aligners removed.  */
9511 
9512 struct type *
9513 ada_aligned_type (struct type *type)
9514 {
9515   if (ada_is_aligner_type (type))
9516     return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9517   else
9518     return ada_get_base_type (type);
9519 }
9520 
9521 
9522 /* The address of the aligned value in an object at address VALADDR
9523    having type TYPE.  Assumes ada_is_aligner_type (TYPE).  */
9524 
9525 const gdb_byte *
9526 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9527 {
9528   if (ada_is_aligner_type (type))
9529     return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9530                                    valaddr +
9531                                    TYPE_FIELD_BITPOS (type,
9532                                                       0) / TARGET_CHAR_BIT);
9533   else
9534     return valaddr;
9535 }
9536 
9537 
9538 
9539 /* The printed representation of an enumeration literal with encoded
9540    name NAME.  The value is good to the next call of ada_enum_name.  */
9541 const char *
9542 ada_enum_name (const char *name)
9543 {
9544   static char *result;
9545   static size_t result_len = 0;
9546   const char *tmp;
9547 
9548   /* First, unqualify the enumeration name:
9549      1. Search for the last '.' character.  If we find one, then skip
9550      all the preceding characters, the unqualified name starts
9551      right after that dot.
9552      2. Otherwise, we may be debugging on a target where the compiler
9553      translates dots into "__".  Search forward for double underscores,
9554      but stop searching when we hit an overloading suffix, which is
9555      of the form "__" followed by digits.  */
9556 
9557   tmp = strrchr (name, '.');
9558   if (tmp != NULL)
9559     name = tmp + 1;
9560   else
9561     {
9562       while ((tmp = strstr (name, "__")) != NULL)
9563         {
9564           if (isdigit (tmp[2]))
9565             break;
9566           else
9567             name = tmp + 2;
9568         }
9569     }
9570 
9571   if (name[0] == 'Q')
9572     {
9573       int v;
9574 
9575       if (name[1] == 'U' || name[1] == 'W')
9576         {
9577           if (sscanf (name + 2, "%x", &v) != 1)
9578             return name;
9579         }
9580       else
9581         return name;
9582 
9583       GROW_VECT (result, result_len, 16);
9584       if (isascii (v) && isprint (v))
9585         xsnprintf (result, result_len, "'%c'", v);
9586       else if (name[1] == 'U')
9587         xsnprintf (result, result_len, "[\"%02x\"]", v);
9588       else
9589         xsnprintf (result, result_len, "[\"%04x\"]", v);
9590 
9591       return result;
9592     }
9593   else
9594     {
9595       tmp = strstr (name, "__");
9596       if (tmp == NULL)
9597 	tmp = strstr (name, "$");
9598       if (tmp != NULL)
9599         {
9600           GROW_VECT (result, result_len, tmp - name + 1);
9601           strncpy (result, name, tmp - name);
9602           result[tmp - name] = '\0';
9603           return result;
9604         }
9605 
9606       return name;
9607     }
9608 }
9609 
9610 /* Evaluate the subexpression of EXP starting at *POS as for
9611    evaluate_type, updating *POS to point just past the evaluated
9612    expression.  */
9613 
9614 static struct value *
9615 evaluate_subexp_type (struct expression *exp, int *pos)
9616 {
9617   return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9618 }
9619 
9620 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9621    value it wraps.  */
9622 
9623 static struct value *
9624 unwrap_value (struct value *val)
9625 {
9626   struct type *type = ada_check_typedef (value_type (val));
9627 
9628   if (ada_is_aligner_type (type))
9629     {
9630       struct value *v = ada_value_struct_elt (val, "F", 0);
9631       struct type *val_type = ada_check_typedef (value_type (v));
9632 
9633       if (ada_type_name (val_type) == NULL)
9634         TYPE_NAME (val_type) = ada_type_name (type);
9635 
9636       return unwrap_value (v);
9637     }
9638   else
9639     {
9640       struct type *raw_real_type =
9641         ada_check_typedef (ada_get_base_type (type));
9642 
9643       /* If there is no parallel XVS or XVE type, then the value is
9644 	 already unwrapped.  Return it without further modification.  */
9645       if ((type == raw_real_type)
9646 	  && ada_find_parallel_type (type, "___XVE") == NULL)
9647 	return val;
9648 
9649       return
9650         coerce_unspec_val_to_type
9651         (val, ada_to_fixed_type (raw_real_type, 0,
9652                                  value_address (val),
9653                                  NULL, 1));
9654     }
9655 }
9656 
9657 static struct value *
9658 cast_from_fixed (struct type *type, struct value *arg)
9659 {
9660   struct value *scale = ada_scaling_factor (value_type (arg));
9661   arg = value_cast (value_type (scale), arg);
9662 
9663   arg = value_binop (arg, scale, BINOP_MUL);
9664   return value_cast (type, arg);
9665 }
9666 
9667 static struct value *
9668 cast_to_fixed (struct type *type, struct value *arg)
9669 {
9670   if (type == value_type (arg))
9671     return arg;
9672 
9673   struct value *scale = ada_scaling_factor (type);
9674   if (ada_is_fixed_point_type (value_type (arg)))
9675     arg = cast_from_fixed (value_type (scale), arg);
9676   else
9677     arg = value_cast (value_type (scale), arg);
9678 
9679   arg = value_binop (arg, scale, BINOP_DIV);
9680   return value_cast (type, arg);
9681 }
9682 
9683 /* Given two array types T1 and T2, return nonzero iff both arrays
9684    contain the same number of elements.  */
9685 
9686 static int
9687 ada_same_array_size_p (struct type *t1, struct type *t2)
9688 {
9689   LONGEST lo1, hi1, lo2, hi2;
9690 
9691   /* Get the array bounds in order to verify that the size of
9692      the two arrays match.  */
9693   if (!get_array_bounds (t1, &lo1, &hi1)
9694       || !get_array_bounds (t2, &lo2, &hi2))
9695     error (_("unable to determine array bounds"));
9696 
9697   /* To make things easier for size comparison, normalize a bit
9698      the case of empty arrays by making sure that the difference
9699      between upper bound and lower bound is always -1.  */
9700   if (lo1 > hi1)
9701     hi1 = lo1 - 1;
9702   if (lo2 > hi2)
9703     hi2 = lo2 - 1;
9704 
9705   return (hi1 - lo1 == hi2 - lo2);
9706 }
9707 
9708 /* Assuming that VAL is an array of integrals, and TYPE represents
9709    an array with the same number of elements, but with wider integral
9710    elements, return an array "casted" to TYPE.  In practice, this
9711    means that the returned array is built by casting each element
9712    of the original array into TYPE's (wider) element type.  */
9713 
9714 static struct value *
9715 ada_promote_array_of_integrals (struct type *type, struct value *val)
9716 {
9717   struct type *elt_type = TYPE_TARGET_TYPE (type);
9718   LONGEST lo, hi;
9719   struct value *res;
9720   LONGEST i;
9721 
9722   /* Verify that both val and type are arrays of scalars, and
9723      that the size of val's elements is smaller than the size
9724      of type's element.  */
9725   gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9726   gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9727   gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9728   gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9729   gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9730 	      > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9731 
9732   if (!get_array_bounds (type, &lo, &hi))
9733     error (_("unable to determine array bounds"));
9734 
9735   res = allocate_value (type);
9736 
9737   /* Promote each array element.  */
9738   for (i = 0; i < hi - lo + 1; i++)
9739     {
9740       struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9741 
9742       memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9743 	      value_contents_all (elt), TYPE_LENGTH (elt_type));
9744     }
9745 
9746   return res;
9747 }
9748 
9749 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9750    return the converted value.  */
9751 
9752 static struct value *
9753 coerce_for_assign (struct type *type, struct value *val)
9754 {
9755   struct type *type2 = value_type (val);
9756 
9757   if (type == type2)
9758     return val;
9759 
9760   type2 = ada_check_typedef (type2);
9761   type = ada_check_typedef (type);
9762 
9763   if (TYPE_CODE (type2) == TYPE_CODE_PTR
9764       && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9765     {
9766       val = ada_value_ind (val);
9767       type2 = value_type (val);
9768     }
9769 
9770   if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9771       && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9772     {
9773       if (!ada_same_array_size_p (type, type2))
9774 	error (_("cannot assign arrays of different length"));
9775 
9776       if (is_integral_type (TYPE_TARGET_TYPE (type))
9777 	  && is_integral_type (TYPE_TARGET_TYPE (type2))
9778 	  && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9779 	       < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9780 	{
9781 	  /* Allow implicit promotion of the array elements to
9782 	     a wider type.  */
9783 	  return ada_promote_array_of_integrals (type, val);
9784 	}
9785 
9786       if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9787           != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9788         error (_("Incompatible types in assignment"));
9789       deprecated_set_value_type (val, type);
9790     }
9791   return val;
9792 }
9793 
9794 static struct value *
9795 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9796 {
9797   struct value *val;
9798   struct type *type1, *type2;
9799   LONGEST v, v1, v2;
9800 
9801   arg1 = coerce_ref (arg1);
9802   arg2 = coerce_ref (arg2);
9803   type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9804   type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9805 
9806   if (TYPE_CODE (type1) != TYPE_CODE_INT
9807       || TYPE_CODE (type2) != TYPE_CODE_INT)
9808     return value_binop (arg1, arg2, op);
9809 
9810   switch (op)
9811     {
9812     case BINOP_MOD:
9813     case BINOP_DIV:
9814     case BINOP_REM:
9815       break;
9816     default:
9817       return value_binop (arg1, arg2, op);
9818     }
9819 
9820   v2 = value_as_long (arg2);
9821   if (v2 == 0)
9822     error (_("second operand of %s must not be zero."), op_string (op));
9823 
9824   if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9825     return value_binop (arg1, arg2, op);
9826 
9827   v1 = value_as_long (arg1);
9828   switch (op)
9829     {
9830     case BINOP_DIV:
9831       v = v1 / v2;
9832       if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9833         v += v > 0 ? -1 : 1;
9834       break;
9835     case BINOP_REM:
9836       v = v1 % v2;
9837       if (v * v1 < 0)
9838         v -= v2;
9839       break;
9840     default:
9841       /* Should not reach this point.  */
9842       v = 0;
9843     }
9844 
9845   val = allocate_value (type1);
9846   store_unsigned_integer (value_contents_raw (val),
9847                           TYPE_LENGTH (value_type (val)),
9848 			  gdbarch_byte_order (get_type_arch (type1)), v);
9849   return val;
9850 }
9851 
9852 static int
9853 ada_value_equal (struct value *arg1, struct value *arg2)
9854 {
9855   if (ada_is_direct_array_type (value_type (arg1))
9856       || ada_is_direct_array_type (value_type (arg2)))
9857     {
9858       struct type *arg1_type, *arg2_type;
9859 
9860       /* Automatically dereference any array reference before
9861          we attempt to perform the comparison.  */
9862       arg1 = ada_coerce_ref (arg1);
9863       arg2 = ada_coerce_ref (arg2);
9864 
9865       arg1 = ada_coerce_to_simple_array (arg1);
9866       arg2 = ada_coerce_to_simple_array (arg2);
9867 
9868       arg1_type = ada_check_typedef (value_type (arg1));
9869       arg2_type = ada_check_typedef (value_type (arg2));
9870 
9871       if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9872           || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9873         error (_("Attempt to compare array with non-array"));
9874       /* FIXME: The following works only for types whose
9875          representations use all bits (no padding or undefined bits)
9876          and do not have user-defined equality.  */
9877       return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9878 	      && memcmp (value_contents (arg1), value_contents (arg2),
9879 			 TYPE_LENGTH (arg1_type)) == 0);
9880     }
9881   return value_equal (arg1, arg2);
9882 }
9883 
9884 /* Total number of component associations in the aggregate starting at
9885    index PC in EXP.  Assumes that index PC is the start of an
9886    OP_AGGREGATE.  */
9887 
9888 static int
9889 num_component_specs (struct expression *exp, int pc)
9890 {
9891   int n, m, i;
9892 
9893   m = exp->elts[pc + 1].longconst;
9894   pc += 3;
9895   n = 0;
9896   for (i = 0; i < m; i += 1)
9897     {
9898       switch (exp->elts[pc].opcode)
9899 	{
9900 	default:
9901 	  n += 1;
9902 	  break;
9903 	case OP_CHOICES:
9904 	  n += exp->elts[pc + 1].longconst;
9905 	  break;
9906 	}
9907       ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9908     }
9909   return n;
9910 }
9911 
9912 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9913    component of LHS (a simple array or a record), updating *POS past
9914    the expression, assuming that LHS is contained in CONTAINER.  Does
9915    not modify the inferior's memory, nor does it modify LHS (unless
9916    LHS == CONTAINER).  */
9917 
9918 static void
9919 assign_component (struct value *container, struct value *lhs, LONGEST index,
9920 		  struct expression *exp, int *pos)
9921 {
9922   struct value *mark = value_mark ();
9923   struct value *elt;
9924   struct type *lhs_type = check_typedef (value_type (lhs));
9925 
9926   if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9927     {
9928       struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9929       struct value *index_val = value_from_longest (index_type, index);
9930 
9931       elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9932     }
9933   else
9934     {
9935       elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9936       elt = ada_to_fixed_value (elt);
9937     }
9938 
9939   if (exp->elts[*pos].opcode == OP_AGGREGATE)
9940     assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9941   else
9942     value_assign_to_component (container, elt,
9943 			       ada_evaluate_subexp (NULL, exp, pos,
9944 						    EVAL_NORMAL));
9945 
9946   value_free_to_mark (mark);
9947 }
9948 
9949 /* Assuming that LHS represents an lvalue having a record or array
9950    type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9951    of that aggregate's value to LHS, advancing *POS past the
9952    aggregate.  NOSIDE is as for evaluate_subexp.  CONTAINER is an
9953    lvalue containing LHS (possibly LHS itself).  Does not modify
9954    the inferior's memory, nor does it modify the contents of
9955    LHS (unless == CONTAINER).  Returns the modified CONTAINER.  */
9956 
9957 static struct value *
9958 assign_aggregate (struct value *container,
9959 		  struct value *lhs, struct expression *exp,
9960 		  int *pos, enum noside noside)
9961 {
9962   struct type *lhs_type;
9963   int n = exp->elts[*pos+1].longconst;
9964   LONGEST low_index, high_index;
9965   int num_specs;
9966   LONGEST *indices;
9967   int max_indices, num_indices;
9968   int i;
9969 
9970   *pos += 3;
9971   if (noside != EVAL_NORMAL)
9972     {
9973       for (i = 0; i < n; i += 1)
9974 	ada_evaluate_subexp (NULL, exp, pos, noside);
9975       return container;
9976     }
9977 
9978   container = ada_coerce_ref (container);
9979   if (ada_is_direct_array_type (value_type (container)))
9980     container = ada_coerce_to_simple_array (container);
9981   lhs = ada_coerce_ref (lhs);
9982   if (!deprecated_value_modifiable (lhs))
9983     error (_("Left operand of assignment is not a modifiable lvalue."));
9984 
9985   lhs_type = check_typedef (value_type (lhs));
9986   if (ada_is_direct_array_type (lhs_type))
9987     {
9988       lhs = ada_coerce_to_simple_array (lhs);
9989       lhs_type = check_typedef (value_type (lhs));
9990       low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9991       high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9992     }
9993   else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9994     {
9995       low_index = 0;
9996       high_index = num_visible_fields (lhs_type) - 1;
9997     }
9998   else
9999     error (_("Left-hand side must be array or record."));
10000 
10001   num_specs = num_component_specs (exp, *pos - 3);
10002   max_indices = 4 * num_specs + 4;
10003   indices = XALLOCAVEC (LONGEST, max_indices);
10004   indices[0] = indices[1] = low_index - 1;
10005   indices[2] = indices[3] = high_index + 1;
10006   num_indices = 4;
10007 
10008   for (i = 0; i < n; i += 1)
10009     {
10010       switch (exp->elts[*pos].opcode)
10011 	{
10012 	  case OP_CHOICES:
10013 	    aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10014 					   &num_indices, max_indices,
10015 					   low_index, high_index);
10016 	    break;
10017 	  case OP_POSITIONAL:
10018 	    aggregate_assign_positional (container, lhs, exp, pos, indices,
10019 					 &num_indices, max_indices,
10020 					 low_index, high_index);
10021 	    break;
10022 	  case OP_OTHERS:
10023 	    if (i != n-1)
10024 	      error (_("Misplaced 'others' clause"));
10025 	    aggregate_assign_others (container, lhs, exp, pos, indices,
10026 				     num_indices, low_index, high_index);
10027 	    break;
10028 	  default:
10029 	    error (_("Internal error: bad aggregate clause"));
10030 	}
10031     }
10032 
10033   return container;
10034 }
10035 
10036 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10037    construct at *POS, updating *POS past the construct, given that
10038    the positions are relative to lower bound LOW, where HIGH is the
10039    upper bound.  Record the position in INDICES[0 .. MAX_INDICES-1]
10040    updating *NUM_INDICES as needed.  CONTAINER is as for
10041    assign_aggregate.  */
10042 static void
10043 aggregate_assign_positional (struct value *container,
10044 			     struct value *lhs, struct expression *exp,
10045 			     int *pos, LONGEST *indices, int *num_indices,
10046 			     int max_indices, LONGEST low, LONGEST high)
10047 {
10048   LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10049 
10050   if (ind - 1 == high)
10051     warning (_("Extra components in aggregate ignored."));
10052   if (ind <= high)
10053     {
10054       add_component_interval (ind, ind, indices, num_indices, max_indices);
10055       *pos += 3;
10056       assign_component (container, lhs, ind, exp, pos);
10057     }
10058   else
10059     ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10060 }
10061 
10062 /* Assign into the components of LHS indexed by the OP_CHOICES
10063    construct at *POS, updating *POS past the construct, given that
10064    the allowable indices are LOW..HIGH.  Record the indices assigned
10065    to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10066    needed.  CONTAINER is as for assign_aggregate.  */
10067 static void
10068 aggregate_assign_from_choices (struct value *container,
10069 			       struct value *lhs, struct expression *exp,
10070 			       int *pos, LONGEST *indices, int *num_indices,
10071 			       int max_indices, LONGEST low, LONGEST high)
10072 {
10073   int j;
10074   int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10075   int choice_pos, expr_pc;
10076   int is_array = ada_is_direct_array_type (value_type (lhs));
10077 
10078   choice_pos = *pos += 3;
10079 
10080   for (j = 0; j < n_choices; j += 1)
10081     ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10082   expr_pc = *pos;
10083   ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10084 
10085   for (j = 0; j < n_choices; j += 1)
10086     {
10087       LONGEST lower, upper;
10088       enum exp_opcode op = exp->elts[choice_pos].opcode;
10089 
10090       if (op == OP_DISCRETE_RANGE)
10091 	{
10092 	  choice_pos += 1;
10093 	  lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10094 						      EVAL_NORMAL));
10095 	  upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10096 						      EVAL_NORMAL));
10097 	}
10098       else if (is_array)
10099 	{
10100 	  lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10101 						      EVAL_NORMAL));
10102 	  upper = lower;
10103 	}
10104       else
10105 	{
10106 	  int ind;
10107 	  const char *name;
10108 
10109 	  switch (op)
10110 	    {
10111 	    case OP_NAME:
10112 	      name = &exp->elts[choice_pos + 2].string;
10113 	      break;
10114 	    case OP_VAR_VALUE:
10115 	      name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10116 	      break;
10117 	    default:
10118 	      error (_("Invalid record component association."));
10119 	    }
10120 	  ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10121 	  ind = 0;
10122 	  if (! find_struct_field (name, value_type (lhs), 0,
10123 				   NULL, NULL, NULL, NULL, &ind))
10124 	    error (_("Unknown component name: %s."), name);
10125 	  lower = upper = ind;
10126 	}
10127 
10128       if (lower <= upper && (lower < low || upper > high))
10129 	error (_("Index in component association out of bounds."));
10130 
10131       add_component_interval (lower, upper, indices, num_indices,
10132 			      max_indices);
10133       while (lower <= upper)
10134 	{
10135 	  int pos1;
10136 
10137 	  pos1 = expr_pc;
10138 	  assign_component (container, lhs, lower, exp, &pos1);
10139 	  lower += 1;
10140 	}
10141     }
10142 }
10143 
10144 /* Assign the value of the expression in the OP_OTHERS construct in
10145    EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10146    have not been previously assigned.  The index intervals already assigned
10147    are in INDICES[0 .. NUM_INDICES-1].  Updates *POS to after the
10148    OP_OTHERS clause.  CONTAINER is as for assign_aggregate.  */
10149 static void
10150 aggregate_assign_others (struct value *container,
10151 			 struct value *lhs, struct expression *exp,
10152 			 int *pos, LONGEST *indices, int num_indices,
10153 			 LONGEST low, LONGEST high)
10154 {
10155   int i;
10156   int expr_pc = *pos + 1;
10157 
10158   for (i = 0; i < num_indices - 2; i += 2)
10159     {
10160       LONGEST ind;
10161 
10162       for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10163 	{
10164 	  int localpos;
10165 
10166 	  localpos = expr_pc;
10167 	  assign_component (container, lhs, ind, exp, &localpos);
10168 	}
10169     }
10170   ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10171 }
10172 
10173 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10174    [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10175    modifying *SIZE as needed.  It is an error if *SIZE exceeds
10176    MAX_SIZE.  The resulting intervals do not overlap.  */
10177 static void
10178 add_component_interval (LONGEST low, LONGEST high,
10179 			LONGEST* indices, int *size, int max_size)
10180 {
10181   int i, j;
10182 
10183   for (i = 0; i < *size; i += 2) {
10184     if (high >= indices[i] && low <= indices[i + 1])
10185       {
10186 	int kh;
10187 
10188 	for (kh = i + 2; kh < *size; kh += 2)
10189 	  if (high < indices[kh])
10190 	    break;
10191 	if (low < indices[i])
10192 	  indices[i] = low;
10193 	indices[i + 1] = indices[kh - 1];
10194 	if (high > indices[i + 1])
10195 	  indices[i + 1] = high;
10196 	memcpy (indices + i + 2, indices + kh, *size - kh);
10197 	*size -= kh - i - 2;
10198 	return;
10199       }
10200     else if (high < indices[i])
10201       break;
10202   }
10203 
10204   if (*size == max_size)
10205     error (_("Internal error: miscounted aggregate components."));
10206   *size += 2;
10207   for (j = *size-1; j >= i+2; j -= 1)
10208     indices[j] = indices[j - 2];
10209   indices[i] = low;
10210   indices[i + 1] = high;
10211 }
10212 
10213 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10214    is different.  */
10215 
10216 static struct value *
10217 ada_value_cast (struct type *type, struct value *arg2)
10218 {
10219   if (type == ada_check_typedef (value_type (arg2)))
10220     return arg2;
10221 
10222   if (ada_is_fixed_point_type (type))
10223     return cast_to_fixed (type, arg2);
10224 
10225   if (ada_is_fixed_point_type (value_type (arg2)))
10226     return cast_from_fixed (type, arg2);
10227 
10228   return value_cast (type, arg2);
10229 }
10230 
10231 /*  Evaluating Ada expressions, and printing their result.
10232     ------------------------------------------------------
10233 
10234     1. Introduction:
10235     ----------------
10236 
10237     We usually evaluate an Ada expression in order to print its value.
10238     We also evaluate an expression in order to print its type, which
10239     happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10240     but we'll focus mostly on the EVAL_NORMAL phase.  In practice, the
10241     EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10242     the evaluation compared to the EVAL_NORMAL, but is otherwise very
10243     similar.
10244 
10245     Evaluating expressions is a little more complicated for Ada entities
10246     than it is for entities in languages such as C.  The main reason for
10247     this is that Ada provides types whose definition might be dynamic.
10248     One example of such types is variant records.  Or another example
10249     would be an array whose bounds can only be known at run time.
10250 
10251     The following description is a general guide as to what should be
10252     done (and what should NOT be done) in order to evaluate an expression
10253     involving such types, and when.  This does not cover how the semantic
10254     information is encoded by GNAT as this is covered separatly.  For the
10255     document used as the reference for the GNAT encoding, see exp_dbug.ads
10256     in the GNAT sources.
10257 
10258     Ideally, we should embed each part of this description next to its
10259     associated code.  Unfortunately, the amount of code is so vast right
10260     now that it's hard to see whether the code handling a particular
10261     situation might be duplicated or not.  One day, when the code is
10262     cleaned up, this guide might become redundant with the comments
10263     inserted in the code, and we might want to remove it.
10264 
10265     2. ``Fixing'' an Entity, the Simple Case:
10266     -----------------------------------------
10267 
10268     When evaluating Ada expressions, the tricky issue is that they may
10269     reference entities whose type contents and size are not statically
10270     known.  Consider for instance a variant record:
10271 
10272        type Rec (Empty : Boolean := True) is record
10273           case Empty is
10274              when True => null;
10275              when False => Value : Integer;
10276           end case;
10277        end record;
10278        Yes : Rec := (Empty => False, Value => 1);
10279        No  : Rec := (empty => True);
10280 
10281     The size and contents of that record depends on the value of the
10282     descriminant (Rec.Empty).  At this point, neither the debugging
10283     information nor the associated type structure in GDB are able to
10284     express such dynamic types.  So what the debugger does is to create
10285     "fixed" versions of the type that applies to the specific object.
10286     We also informally refer to this opperation as "fixing" an object,
10287     which means creating its associated fixed type.
10288 
10289     Example: when printing the value of variable "Yes" above, its fixed
10290     type would look like this:
10291 
10292        type Rec is record
10293           Empty : Boolean;
10294           Value : Integer;
10295        end record;
10296 
10297     On the other hand, if we printed the value of "No", its fixed type
10298     would become:
10299 
10300        type Rec is record
10301           Empty : Boolean;
10302        end record;
10303 
10304     Things become a little more complicated when trying to fix an entity
10305     with a dynamic type that directly contains another dynamic type,
10306     such as an array of variant records, for instance.  There are
10307     two possible cases: Arrays, and records.
10308 
10309     3. ``Fixing'' Arrays:
10310     ---------------------
10311 
10312     The type structure in GDB describes an array in terms of its bounds,
10313     and the type of its elements.  By design, all elements in the array
10314     have the same type and we cannot represent an array of variant elements
10315     using the current type structure in GDB.  When fixing an array,
10316     we cannot fix the array element, as we would potentially need one
10317     fixed type per element of the array.  As a result, the best we can do
10318     when fixing an array is to produce an array whose bounds and size
10319     are correct (allowing us to read it from memory), but without having
10320     touched its element type.  Fixing each element will be done later,
10321     when (if) necessary.
10322 
10323     Arrays are a little simpler to handle than records, because the same
10324     amount of memory is allocated for each element of the array, even if
10325     the amount of space actually used by each element differs from element
10326     to element.  Consider for instance the following array of type Rec:
10327 
10328        type Rec_Array is array (1 .. 2) of Rec;
10329 
10330     The actual amount of memory occupied by each element might be different
10331     from element to element, depending on the value of their discriminant.
10332     But the amount of space reserved for each element in the array remains
10333     fixed regardless.  So we simply need to compute that size using
10334     the debugging information available, from which we can then determine
10335     the array size (we multiply the number of elements of the array by
10336     the size of each element).
10337 
10338     The simplest case is when we have an array of a constrained element
10339     type. For instance, consider the following type declarations:
10340 
10341         type Bounded_String (Max_Size : Integer) is
10342            Length : Integer;
10343            Buffer : String (1 .. Max_Size);
10344         end record;
10345         type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10346 
10347     In this case, the compiler describes the array as an array of
10348     variable-size elements (identified by its XVS suffix) for which
10349     the size can be read in the parallel XVZ variable.
10350 
10351     In the case of an array of an unconstrained element type, the compiler
10352     wraps the array element inside a private PAD type.  This type should not
10353     be shown to the user, and must be "unwrap"'ed before printing.  Note
10354     that we also use the adjective "aligner" in our code to designate
10355     these wrapper types.
10356 
10357     In some cases, the size allocated for each element is statically
10358     known.  In that case, the PAD type already has the correct size,
10359     and the array element should remain unfixed.
10360 
10361     But there are cases when this size is not statically known.
10362     For instance, assuming that "Five" is an integer variable:
10363 
10364         type Dynamic is array (1 .. Five) of Integer;
10365         type Wrapper (Has_Length : Boolean := False) is record
10366            Data : Dynamic;
10367            case Has_Length is
10368               when True => Length : Integer;
10369               when False => null;
10370            end case;
10371         end record;
10372         type Wrapper_Array is array (1 .. 2) of Wrapper;
10373 
10374         Hello : Wrapper_Array := (others => (Has_Length => True,
10375                                              Data => (others => 17),
10376                                              Length => 1));
10377 
10378 
10379     The debugging info would describe variable Hello as being an
10380     array of a PAD type.  The size of that PAD type is not statically
10381     known, but can be determined using a parallel XVZ variable.
10382     In that case, a copy of the PAD type with the correct size should
10383     be used for the fixed array.
10384 
10385     3. ``Fixing'' record type objects:
10386     ----------------------------------
10387 
10388     Things are slightly different from arrays in the case of dynamic
10389     record types.  In this case, in order to compute the associated
10390     fixed type, we need to determine the size and offset of each of
10391     its components.  This, in turn, requires us to compute the fixed
10392     type of each of these components.
10393 
10394     Consider for instance the example:
10395 
10396         type Bounded_String (Max_Size : Natural) is record
10397            Str : String (1 .. Max_Size);
10398            Length : Natural;
10399         end record;
10400         My_String : Bounded_String (Max_Size => 10);
10401 
10402     In that case, the position of field "Length" depends on the size
10403     of field Str, which itself depends on the value of the Max_Size
10404     discriminant.  In order to fix the type of variable My_String,
10405     we need to fix the type of field Str.  Therefore, fixing a variant
10406     record requires us to fix each of its components.
10407 
10408     However, if a component does not have a dynamic size, the component
10409     should not be fixed.  In particular, fields that use a PAD type
10410     should not fixed.  Here is an example where this might happen
10411     (assuming type Rec above):
10412 
10413        type Container (Big : Boolean) is record
10414           First : Rec;
10415           After : Integer;
10416           case Big is
10417              when True => Another : Integer;
10418              when False => null;
10419           end case;
10420        end record;
10421        My_Container : Container := (Big => False,
10422                                     First => (Empty => True),
10423                                     After => 42);
10424 
10425     In that example, the compiler creates a PAD type for component First,
10426     whose size is constant, and then positions the component After just
10427     right after it.  The offset of component After is therefore constant
10428     in this case.
10429 
10430     The debugger computes the position of each field based on an algorithm
10431     that uses, among other things, the actual position and size of the field
10432     preceding it.  Let's now imagine that the user is trying to print
10433     the value of My_Container.  If the type fixing was recursive, we would
10434     end up computing the offset of field After based on the size of the
10435     fixed version of field First.  And since in our example First has
10436     only one actual field, the size of the fixed type is actually smaller
10437     than the amount of space allocated to that field, and thus we would
10438     compute the wrong offset of field After.
10439 
10440     To make things more complicated, we need to watch out for dynamic
10441     components of variant records (identified by the ___XVL suffix in
10442     the component name).  Even if the target type is a PAD type, the size
10443     of that type might not be statically known.  So the PAD type needs
10444     to be unwrapped and the resulting type needs to be fixed.  Otherwise,
10445     we might end up with the wrong size for our component.  This can be
10446     observed with the following type declarations:
10447 
10448         type Octal is new Integer range 0 .. 7;
10449         type Octal_Array is array (Positive range <>) of Octal;
10450         pragma Pack (Octal_Array);
10451 
10452         type Octal_Buffer (Size : Positive) is record
10453            Buffer : Octal_Array (1 .. Size);
10454            Length : Integer;
10455         end record;
10456 
10457     In that case, Buffer is a PAD type whose size is unset and needs
10458     to be computed by fixing the unwrapped type.
10459 
10460     4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10461     ----------------------------------------------------------
10462 
10463     Lastly, when should the sub-elements of an entity that remained unfixed
10464     thus far, be actually fixed?
10465 
10466     The answer is: Only when referencing that element.  For instance
10467     when selecting one component of a record, this specific component
10468     should be fixed at that point in time.  Or when printing the value
10469     of a record, each component should be fixed before its value gets
10470     printed.  Similarly for arrays, the element of the array should be
10471     fixed when printing each element of the array, or when extracting
10472     one element out of that array.  On the other hand, fixing should
10473     not be performed on the elements when taking a slice of an array!
10474 
10475     Note that one of the side effects of miscomputing the offset and
10476     size of each field is that we end up also miscomputing the size
10477     of the containing type.  This can have adverse results when computing
10478     the value of an entity.  GDB fetches the value of an entity based
10479     on the size of its type, and thus a wrong size causes GDB to fetch
10480     the wrong amount of memory.  In the case where the computed size is
10481     too small, GDB fetches too little data to print the value of our
10482     entity.  Results in this case are unpredictable, as we usually read
10483     past the buffer containing the data =:-o.  */
10484 
10485 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10486    for that subexpression cast to TO_TYPE.  Advance *POS over the
10487    subexpression.  */
10488 
10489 static value *
10490 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10491 			      enum noside noside, struct type *to_type)
10492 {
10493   int pc = *pos;
10494 
10495   if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10496       || exp->elts[pc].opcode == OP_VAR_VALUE)
10497     {
10498       (*pos) += 4;
10499 
10500       value *val;
10501       if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10502         {
10503           if (noside == EVAL_AVOID_SIDE_EFFECTS)
10504             return value_zero (to_type, not_lval);
10505 
10506           val = evaluate_var_msym_value (noside,
10507                                          exp->elts[pc + 1].objfile,
10508                                          exp->elts[pc + 2].msymbol);
10509         }
10510       else
10511         val = evaluate_var_value (noside,
10512                                   exp->elts[pc + 1].block,
10513                                   exp->elts[pc + 2].symbol);
10514 
10515       if (noside == EVAL_SKIP)
10516         return eval_skip_value (exp);
10517 
10518       val = ada_value_cast (to_type, val);
10519 
10520       /* Follow the Ada language semantics that do not allow taking
10521 	 an address of the result of a cast (view conversion in Ada).  */
10522       if (VALUE_LVAL (val) == lval_memory)
10523         {
10524           if (value_lazy (val))
10525             value_fetch_lazy (val);
10526           VALUE_LVAL (val) = not_lval;
10527         }
10528       return val;
10529     }
10530 
10531   value *val = evaluate_subexp (to_type, exp, pos, noside);
10532   if (noside == EVAL_SKIP)
10533     return eval_skip_value (exp);
10534   return ada_value_cast (to_type, val);
10535 }
10536 
10537 /* Implement the evaluate_exp routine in the exp_descriptor structure
10538    for the Ada language.  */
10539 
10540 static struct value *
10541 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10542                      int *pos, enum noside noside)
10543 {
10544   enum exp_opcode op;
10545   int tem;
10546   int pc;
10547   int preeval_pos;
10548   struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10549   struct type *type;
10550   int nargs, oplen;
10551   struct value **argvec;
10552 
10553   pc = *pos;
10554   *pos += 1;
10555   op = exp->elts[pc].opcode;
10556 
10557   switch (op)
10558     {
10559     default:
10560       *pos -= 1;
10561       arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10562 
10563       if (noside == EVAL_NORMAL)
10564 	arg1 = unwrap_value (arg1);
10565 
10566       /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10567          then we need to perform the conversion manually, because
10568          evaluate_subexp_standard doesn't do it.  This conversion is
10569          necessary in Ada because the different kinds of float/fixed
10570          types in Ada have different representations.
10571 
10572          Similarly, we need to perform the conversion from OP_LONG
10573          ourselves.  */
10574       if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10575         arg1 = ada_value_cast (expect_type, arg1);
10576 
10577       return arg1;
10578 
10579     case OP_STRING:
10580       {
10581         struct value *result;
10582 
10583         *pos -= 1;
10584         result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10585         /* The result type will have code OP_STRING, bashed there from
10586            OP_ARRAY.  Bash it back.  */
10587         if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10588           TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10589         return result;
10590       }
10591 
10592     case UNOP_CAST:
10593       (*pos) += 2;
10594       type = exp->elts[pc + 1].type;
10595       return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10596 
10597     case UNOP_QUAL:
10598       (*pos) += 2;
10599       type = exp->elts[pc + 1].type;
10600       return ada_evaluate_subexp (type, exp, pos, noside);
10601 
10602     case BINOP_ASSIGN:
10603       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10604       if (exp->elts[*pos].opcode == OP_AGGREGATE)
10605 	{
10606 	  arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10607 	  if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10608 	    return arg1;
10609 	  return ada_value_assign (arg1, arg1);
10610 	}
10611       /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10612          except if the lhs of our assignment is a convenience variable.
10613          In the case of assigning to a convenience variable, the lhs
10614          should be exactly the result of the evaluation of the rhs.  */
10615       type = value_type (arg1);
10616       if (VALUE_LVAL (arg1) == lval_internalvar)
10617          type = NULL;
10618       arg2 = evaluate_subexp (type, exp, pos, noside);
10619       if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10620         return arg1;
10621       if (ada_is_fixed_point_type (value_type (arg1)))
10622         arg2 = cast_to_fixed (value_type (arg1), arg2);
10623       else if (ada_is_fixed_point_type (value_type (arg2)))
10624         error
10625           (_("Fixed-point values must be assigned to fixed-point variables"));
10626       else
10627         arg2 = coerce_for_assign (value_type (arg1), arg2);
10628       return ada_value_assign (arg1, arg2);
10629 
10630     case BINOP_ADD:
10631       arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10632       arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10633       if (noside == EVAL_SKIP)
10634         goto nosideret;
10635       if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10636         return (value_from_longest
10637                  (value_type (arg1),
10638                   value_as_long (arg1) + value_as_long (arg2)));
10639       if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10640         return (value_from_longest
10641                  (value_type (arg2),
10642                   value_as_long (arg1) + value_as_long (arg2)));
10643       if ((ada_is_fixed_point_type (value_type (arg1))
10644            || ada_is_fixed_point_type (value_type (arg2)))
10645           && value_type (arg1) != value_type (arg2))
10646         error (_("Operands of fixed-point addition must have the same type"));
10647       /* Do the addition, and cast the result to the type of the first
10648          argument.  We cannot cast the result to a reference type, so if
10649          ARG1 is a reference type, find its underlying type.  */
10650       type = value_type (arg1);
10651       while (TYPE_CODE (type) == TYPE_CODE_REF)
10652         type = TYPE_TARGET_TYPE (type);
10653       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10654       return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10655 
10656     case BINOP_SUB:
10657       arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10658       arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10659       if (noside == EVAL_SKIP)
10660         goto nosideret;
10661       if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10662         return (value_from_longest
10663                  (value_type (arg1),
10664                   value_as_long (arg1) - value_as_long (arg2)));
10665       if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10666         return (value_from_longest
10667                  (value_type (arg2),
10668                   value_as_long (arg1) - value_as_long (arg2)));
10669       if ((ada_is_fixed_point_type (value_type (arg1))
10670            || ada_is_fixed_point_type (value_type (arg2)))
10671           && value_type (arg1) != value_type (arg2))
10672         error (_("Operands of fixed-point subtraction "
10673 		 "must have the same type"));
10674       /* Do the substraction, and cast the result to the type of the first
10675          argument.  We cannot cast the result to a reference type, so if
10676          ARG1 is a reference type, find its underlying type.  */
10677       type = value_type (arg1);
10678       while (TYPE_CODE (type) == TYPE_CODE_REF)
10679         type = TYPE_TARGET_TYPE (type);
10680       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10681       return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10682 
10683     case BINOP_MUL:
10684     case BINOP_DIV:
10685     case BINOP_REM:
10686     case BINOP_MOD:
10687       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10688       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10689       if (noside == EVAL_SKIP)
10690         goto nosideret;
10691       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10692         {
10693           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10694           return value_zero (value_type (arg1), not_lval);
10695         }
10696       else
10697         {
10698           type = builtin_type (exp->gdbarch)->builtin_double;
10699           if (ada_is_fixed_point_type (value_type (arg1)))
10700             arg1 = cast_from_fixed (type, arg1);
10701           if (ada_is_fixed_point_type (value_type (arg2)))
10702             arg2 = cast_from_fixed (type, arg2);
10703           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10704           return ada_value_binop (arg1, arg2, op);
10705         }
10706 
10707     case BINOP_EQUAL:
10708     case BINOP_NOTEQUAL:
10709       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10710       arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10711       if (noside == EVAL_SKIP)
10712         goto nosideret;
10713       if (noside == EVAL_AVOID_SIDE_EFFECTS)
10714         tem = 0;
10715       else
10716 	{
10717 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10718 	  tem = ada_value_equal (arg1, arg2);
10719 	}
10720       if (op == BINOP_NOTEQUAL)
10721         tem = !tem;
10722       type = language_bool_type (exp->language_defn, exp->gdbarch);
10723       return value_from_longest (type, (LONGEST) tem);
10724 
10725     case UNOP_NEG:
10726       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10727       if (noside == EVAL_SKIP)
10728         goto nosideret;
10729       else if (ada_is_fixed_point_type (value_type (arg1)))
10730         return value_cast (value_type (arg1), value_neg (arg1));
10731       else
10732 	{
10733 	  unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10734 	  return value_neg (arg1);
10735 	}
10736 
10737     case BINOP_LOGICAL_AND:
10738     case BINOP_LOGICAL_OR:
10739     case UNOP_LOGICAL_NOT:
10740       {
10741         struct value *val;
10742 
10743         *pos -= 1;
10744         val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10745 	type = language_bool_type (exp->language_defn, exp->gdbarch);
10746         return value_cast (type, val);
10747       }
10748 
10749     case BINOP_BITWISE_AND:
10750     case BINOP_BITWISE_IOR:
10751     case BINOP_BITWISE_XOR:
10752       {
10753         struct value *val;
10754 
10755         arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10756         *pos = pc;
10757         val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10758 
10759         return value_cast (value_type (arg1), val);
10760       }
10761 
10762     case OP_VAR_VALUE:
10763       *pos -= 1;
10764 
10765       if (noside == EVAL_SKIP)
10766         {
10767           *pos += 4;
10768           goto nosideret;
10769         }
10770 
10771       if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10772         /* Only encountered when an unresolved symbol occurs in a
10773            context other than a function call, in which case, it is
10774            invalid.  */
10775         error (_("Unexpected unresolved symbol, %s, during evaluation"),
10776                SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10777 
10778       if (noside == EVAL_AVOID_SIDE_EFFECTS)
10779         {
10780           type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10781           /* Check to see if this is a tagged type.  We also need to handle
10782              the case where the type is a reference to a tagged type, but
10783              we have to be careful to exclude pointers to tagged types.
10784              The latter should be shown as usual (as a pointer), whereas
10785              a reference should mostly be transparent to the user.  */
10786           if (ada_is_tagged_type (type, 0)
10787               || (TYPE_CODE (type) == TYPE_CODE_REF
10788                   && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10789 	    {
10790 	      /* Tagged types are a little special in the fact that the real
10791 		 type is dynamic and can only be determined by inspecting the
10792 		 object's tag.  This means that we need to get the object's
10793 		 value first (EVAL_NORMAL) and then extract the actual object
10794 		 type from its tag.
10795 
10796 		 Note that we cannot skip the final step where we extract
10797 		 the object type from its tag, because the EVAL_NORMAL phase
10798 		 results in dynamic components being resolved into fixed ones.
10799 		 This can cause problems when trying to print the type
10800 		 description of tagged types whose parent has a dynamic size:
10801 		 We use the type name of the "_parent" component in order
10802 		 to print the name of the ancestor type in the type description.
10803 		 If that component had a dynamic size, the resolution into
10804 		 a fixed type would result in the loss of that type name,
10805 		 thus preventing us from printing the name of the ancestor
10806 		 type in the type description.  */
10807 	      arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10808 
10809 	      if (TYPE_CODE (type) != TYPE_CODE_REF)
10810 		{
10811 		  struct type *actual_type;
10812 
10813 		  actual_type = type_from_tag (ada_value_tag (arg1));
10814 		  if (actual_type == NULL)
10815 		    /* If, for some reason, we were unable to determine
10816 		       the actual type from the tag, then use the static
10817 		       approximation that we just computed as a fallback.
10818 		       This can happen if the debugging information is
10819 		       incomplete, for instance.  */
10820 		    actual_type = type;
10821 		  return value_zero (actual_type, not_lval);
10822 		}
10823 	      else
10824 		{
10825 		  /* In the case of a ref, ada_coerce_ref takes care
10826 		     of determining the actual type.  But the evaluation
10827 		     should return a ref as it should be valid to ask
10828 		     for its address; so rebuild a ref after coerce.  */
10829 		  arg1 = ada_coerce_ref (arg1);
10830 		  return value_ref (arg1, TYPE_CODE_REF);
10831 		}
10832 	    }
10833 
10834 	  /* Records and unions for which GNAT encodings have been
10835 	     generated need to be statically fixed as well.
10836 	     Otherwise, non-static fixing produces a type where
10837 	     all dynamic properties are removed, which prevents "ptype"
10838 	     from being able to completely describe the type.
10839 	     For instance, a case statement in a variant record would be
10840 	     replaced by the relevant components based on the actual
10841 	     value of the discriminants.  */
10842 	  if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10843 	       && dynamic_template_type (type) != NULL)
10844 	      || (TYPE_CODE (type) == TYPE_CODE_UNION
10845 		  && ada_find_parallel_type (type, "___XVU") != NULL))
10846 	    {
10847 	      *pos += 4;
10848 	      return value_zero (to_static_fixed_type (type), not_lval);
10849 	    }
10850         }
10851 
10852       arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10853       return ada_to_fixed_value (arg1);
10854 
10855     case OP_FUNCALL:
10856       (*pos) += 2;
10857 
10858       /* Allocate arg vector, including space for the function to be
10859          called in argvec[0] and a terminating NULL.  */
10860       nargs = longest_to_int (exp->elts[pc + 1].longconst);
10861       argvec = XALLOCAVEC (struct value *, nargs + 2);
10862 
10863       if (exp->elts[*pos].opcode == OP_VAR_VALUE
10864           && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10865         error (_("Unexpected unresolved symbol, %s, during evaluation"),
10866                SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10867       else
10868         {
10869           for (tem = 0; tem <= nargs; tem += 1)
10870             argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10871           argvec[tem] = 0;
10872 
10873           if (noside == EVAL_SKIP)
10874             goto nosideret;
10875         }
10876 
10877       if (ada_is_constrained_packed_array_type
10878 	  (desc_base_type (value_type (argvec[0]))))
10879         argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10880       else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10881                && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10882         /* This is a packed array that has already been fixed, and
10883 	   therefore already coerced to a simple array.  Nothing further
10884 	   to do.  */
10885         ;
10886       else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10887 	{
10888 	  /* Make sure we dereference references so that all the code below
10889 	     feels like it's really handling the referenced value.  Wrapping
10890 	     types (for alignment) may be there, so make sure we strip them as
10891 	     well.  */
10892 	  argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10893 	}
10894       else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10895 	       && VALUE_LVAL (argvec[0]) == lval_memory)
10896 	argvec[0] = value_addr (argvec[0]);
10897 
10898       type = ada_check_typedef (value_type (argvec[0]));
10899 
10900       /* Ada allows us to implicitly dereference arrays when subscripting
10901 	 them.  So, if this is an array typedef (encoding use for array
10902 	 access types encoded as fat pointers), strip it now.  */
10903       if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10904 	type = ada_typedef_target_type (type);
10905 
10906       if (TYPE_CODE (type) == TYPE_CODE_PTR)
10907         {
10908           switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10909             {
10910             case TYPE_CODE_FUNC:
10911               type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10912               break;
10913             case TYPE_CODE_ARRAY:
10914               break;
10915             case TYPE_CODE_STRUCT:
10916               if (noside != EVAL_AVOID_SIDE_EFFECTS)
10917                 argvec[0] = ada_value_ind (argvec[0]);
10918               type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10919               break;
10920             default:
10921               error (_("cannot subscript or call something of type `%s'"),
10922                      ada_type_name (value_type (argvec[0])));
10923               break;
10924             }
10925         }
10926 
10927       switch (TYPE_CODE (type))
10928         {
10929         case TYPE_CODE_FUNC:
10930           if (noside == EVAL_AVOID_SIDE_EFFECTS)
10931 	    {
10932 	      if (TYPE_TARGET_TYPE (type) == NULL)
10933 		error_call_unknown_return_type (NULL);
10934 	      return allocate_value (TYPE_TARGET_TYPE (type));
10935 	    }
10936 	  return call_function_by_hand (argvec[0], NULL,
10937 					gdb::make_array_view (argvec + 1,
10938 							      nargs));
10939 	case TYPE_CODE_INTERNAL_FUNCTION:
10940 	  if (noside == EVAL_AVOID_SIDE_EFFECTS)
10941 	    /* We don't know anything about what the internal
10942 	       function might return, but we have to return
10943 	       something.  */
10944 	    return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10945 			       not_lval);
10946 	  else
10947 	    return call_internal_function (exp->gdbarch, exp->language_defn,
10948 					   argvec[0], nargs, argvec + 1);
10949 
10950         case TYPE_CODE_STRUCT:
10951           {
10952             int arity;
10953 
10954             arity = ada_array_arity (type);
10955             type = ada_array_element_type (type, nargs);
10956             if (type == NULL)
10957               error (_("cannot subscript or call a record"));
10958             if (arity != nargs)
10959               error (_("wrong number of subscripts; expecting %d"), arity);
10960             if (noside == EVAL_AVOID_SIDE_EFFECTS)
10961               return value_zero (ada_aligned_type (type), lval_memory);
10962             return
10963               unwrap_value (ada_value_subscript
10964                             (argvec[0], nargs, argvec + 1));
10965           }
10966         case TYPE_CODE_ARRAY:
10967           if (noside == EVAL_AVOID_SIDE_EFFECTS)
10968             {
10969               type = ada_array_element_type (type, nargs);
10970               if (type == NULL)
10971                 error (_("element type of array unknown"));
10972               else
10973                 return value_zero (ada_aligned_type (type), lval_memory);
10974             }
10975           return
10976             unwrap_value (ada_value_subscript
10977                           (ada_coerce_to_simple_array (argvec[0]),
10978                            nargs, argvec + 1));
10979         case TYPE_CODE_PTR:     /* Pointer to array */
10980           if (noside == EVAL_AVOID_SIDE_EFFECTS)
10981             {
10982 	      type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10983               type = ada_array_element_type (type, nargs);
10984               if (type == NULL)
10985                 error (_("element type of array unknown"));
10986               else
10987                 return value_zero (ada_aligned_type (type), lval_memory);
10988             }
10989           return
10990             unwrap_value (ada_value_ptr_subscript (argvec[0],
10991 						   nargs, argvec + 1));
10992 
10993         default:
10994           error (_("Attempt to index or call something other than an "
10995 		   "array or function"));
10996         }
10997 
10998     case TERNOP_SLICE:
10999       {
11000         struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11001         struct value *low_bound_val =
11002           evaluate_subexp (NULL_TYPE, exp, pos, noside);
11003         struct value *high_bound_val =
11004           evaluate_subexp (NULL_TYPE, exp, pos, noside);
11005         LONGEST low_bound;
11006         LONGEST high_bound;
11007 
11008         low_bound_val = coerce_ref (low_bound_val);
11009         high_bound_val = coerce_ref (high_bound_val);
11010         low_bound = value_as_long (low_bound_val);
11011         high_bound = value_as_long (high_bound_val);
11012 
11013         if (noside == EVAL_SKIP)
11014           goto nosideret;
11015 
11016         /* If this is a reference to an aligner type, then remove all
11017            the aligners.  */
11018         if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11019             && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11020           TYPE_TARGET_TYPE (value_type (array)) =
11021             ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11022 
11023         if (ada_is_constrained_packed_array_type (value_type (array)))
11024           error (_("cannot slice a packed array"));
11025 
11026         /* If this is a reference to an array or an array lvalue,
11027            convert to a pointer.  */
11028         if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11029             || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11030                 && VALUE_LVAL (array) == lval_memory))
11031           array = value_addr (array);
11032 
11033         if (noside == EVAL_AVOID_SIDE_EFFECTS
11034             && ada_is_array_descriptor_type (ada_check_typedef
11035                                              (value_type (array))))
11036           return empty_array (ada_type_of_array (array, 0), low_bound);
11037 
11038         array = ada_coerce_to_simple_array_ptr (array);
11039 
11040         /* If we have more than one level of pointer indirection,
11041            dereference the value until we get only one level.  */
11042         while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11043                && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11044                      == TYPE_CODE_PTR))
11045           array = value_ind (array);
11046 
11047         /* Make sure we really do have an array type before going further,
11048            to avoid a SEGV when trying to get the index type or the target
11049            type later down the road if the debug info generated by
11050            the compiler is incorrect or incomplete.  */
11051         if (!ada_is_simple_array_type (value_type (array)))
11052           error (_("cannot take slice of non-array"));
11053 
11054         if (TYPE_CODE (ada_check_typedef (value_type (array)))
11055             == TYPE_CODE_PTR)
11056           {
11057             struct type *type0 = ada_check_typedef (value_type (array));
11058 
11059             if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11060               return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11061             else
11062               {
11063                 struct type *arr_type0 =
11064                   to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11065 
11066                 return ada_value_slice_from_ptr (array, arr_type0,
11067                                                  longest_to_int (low_bound),
11068                                                  longest_to_int (high_bound));
11069               }
11070           }
11071         else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11072           return array;
11073         else if (high_bound < low_bound)
11074           return empty_array (value_type (array), low_bound);
11075         else
11076           return ada_value_slice (array, longest_to_int (low_bound),
11077 				  longest_to_int (high_bound));
11078       }
11079 
11080     case UNOP_IN_RANGE:
11081       (*pos) += 2;
11082       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11083       type = check_typedef (exp->elts[pc + 1].type);
11084 
11085       if (noside == EVAL_SKIP)
11086         goto nosideret;
11087 
11088       switch (TYPE_CODE (type))
11089         {
11090         default:
11091           lim_warning (_("Membership test incompletely implemented; "
11092 			 "always returns true"));
11093 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
11094 	  return value_from_longest (type, (LONGEST) 1);
11095 
11096         case TYPE_CODE_RANGE:
11097 	  arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11098 	  arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11099 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11100 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11101 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
11102 	  return
11103 	    value_from_longest (type,
11104                                 (value_less (arg1, arg3)
11105                                  || value_equal (arg1, arg3))
11106                                 && (value_less (arg2, arg1)
11107                                     || value_equal (arg2, arg1)));
11108         }
11109 
11110     case BINOP_IN_BOUNDS:
11111       (*pos) += 2;
11112       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11113       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11114 
11115       if (noside == EVAL_SKIP)
11116         goto nosideret;
11117 
11118       if (noside == EVAL_AVOID_SIDE_EFFECTS)
11119 	{
11120 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
11121 	  return value_zero (type, not_lval);
11122 	}
11123 
11124       tem = longest_to_int (exp->elts[pc + 1].longconst);
11125 
11126       type = ada_index_type (value_type (arg2), tem, "range");
11127       if (!type)
11128 	type = value_type (arg1);
11129 
11130       arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11131       arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11132 
11133       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11134       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11135       type = language_bool_type (exp->language_defn, exp->gdbarch);
11136       return
11137         value_from_longest (type,
11138                             (value_less (arg1, arg3)
11139                              || value_equal (arg1, arg3))
11140                             && (value_less (arg2, arg1)
11141                                 || value_equal (arg2, arg1)));
11142 
11143     case TERNOP_IN_RANGE:
11144       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11145       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11146       arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11147 
11148       if (noside == EVAL_SKIP)
11149         goto nosideret;
11150 
11151       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11152       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11153       type = language_bool_type (exp->language_defn, exp->gdbarch);
11154       return
11155         value_from_longest (type,
11156                             (value_less (arg1, arg3)
11157                              || value_equal (arg1, arg3))
11158                             && (value_less (arg2, arg1)
11159                                 || value_equal (arg2, arg1)));
11160 
11161     case OP_ATR_FIRST:
11162     case OP_ATR_LAST:
11163     case OP_ATR_LENGTH:
11164       {
11165         struct type *type_arg;
11166 
11167         if (exp->elts[*pos].opcode == OP_TYPE)
11168           {
11169             evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11170             arg1 = NULL;
11171             type_arg = check_typedef (exp->elts[pc + 2].type);
11172           }
11173         else
11174           {
11175             arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11176             type_arg = NULL;
11177           }
11178 
11179         if (exp->elts[*pos].opcode != OP_LONG)
11180           error (_("Invalid operand to '%s"), ada_attribute_name (op));
11181         tem = longest_to_int (exp->elts[*pos + 2].longconst);
11182         *pos += 4;
11183 
11184         if (noside == EVAL_SKIP)
11185           goto nosideret;
11186 
11187         if (type_arg == NULL)
11188           {
11189             arg1 = ada_coerce_ref (arg1);
11190 
11191             if (ada_is_constrained_packed_array_type (value_type (arg1)))
11192               arg1 = ada_coerce_to_simple_array (arg1);
11193 
11194             if (op == OP_ATR_LENGTH)
11195 	      type = builtin_type (exp->gdbarch)->builtin_int;
11196 	    else
11197 	      {
11198 		type = ada_index_type (value_type (arg1), tem,
11199 				       ada_attribute_name (op));
11200 		if (type == NULL)
11201 		  type = builtin_type (exp->gdbarch)->builtin_int;
11202 	      }
11203 
11204             if (noside == EVAL_AVOID_SIDE_EFFECTS)
11205               return allocate_value (type);
11206 
11207             switch (op)
11208               {
11209               default:          /* Should never happen.  */
11210                 error (_("unexpected attribute encountered"));
11211               case OP_ATR_FIRST:
11212                 return value_from_longest
11213 			(type, ada_array_bound (arg1, tem, 0));
11214               case OP_ATR_LAST:
11215                 return value_from_longest
11216 			(type, ada_array_bound (arg1, tem, 1));
11217               case OP_ATR_LENGTH:
11218                 return value_from_longest
11219 			(type, ada_array_length (arg1, tem));
11220               }
11221           }
11222         else if (discrete_type_p (type_arg))
11223           {
11224             struct type *range_type;
11225             const char *name = ada_type_name (type_arg);
11226 
11227             range_type = NULL;
11228             if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11229               range_type = to_fixed_range_type (type_arg, NULL);
11230             if (range_type == NULL)
11231               range_type = type_arg;
11232             switch (op)
11233               {
11234               default:
11235                 error (_("unexpected attribute encountered"));
11236               case OP_ATR_FIRST:
11237 		return value_from_longest
11238 		  (range_type, ada_discrete_type_low_bound (range_type));
11239               case OP_ATR_LAST:
11240                 return value_from_longest
11241 		  (range_type, ada_discrete_type_high_bound (range_type));
11242               case OP_ATR_LENGTH:
11243                 error (_("the 'length attribute applies only to array types"));
11244               }
11245           }
11246         else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11247           error (_("unimplemented type attribute"));
11248         else
11249           {
11250             LONGEST low, high;
11251 
11252             if (ada_is_constrained_packed_array_type (type_arg))
11253               type_arg = decode_constrained_packed_array_type (type_arg);
11254 
11255 	    if (op == OP_ATR_LENGTH)
11256 	      type = builtin_type (exp->gdbarch)->builtin_int;
11257 	    else
11258 	      {
11259 		type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11260 		if (type == NULL)
11261 		  type = builtin_type (exp->gdbarch)->builtin_int;
11262 	      }
11263 
11264             if (noside == EVAL_AVOID_SIDE_EFFECTS)
11265               return allocate_value (type);
11266 
11267             switch (op)
11268               {
11269               default:
11270                 error (_("unexpected attribute encountered"));
11271               case OP_ATR_FIRST:
11272                 low = ada_array_bound_from_type (type_arg, tem, 0);
11273                 return value_from_longest (type, low);
11274               case OP_ATR_LAST:
11275                 high = ada_array_bound_from_type (type_arg, tem, 1);
11276                 return value_from_longest (type, high);
11277               case OP_ATR_LENGTH:
11278                 low = ada_array_bound_from_type (type_arg, tem, 0);
11279                 high = ada_array_bound_from_type (type_arg, tem, 1);
11280                 return value_from_longest (type, high - low + 1);
11281               }
11282           }
11283       }
11284 
11285     case OP_ATR_TAG:
11286       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11287       if (noside == EVAL_SKIP)
11288         goto nosideret;
11289 
11290       if (noside == EVAL_AVOID_SIDE_EFFECTS)
11291         return value_zero (ada_tag_type (arg1), not_lval);
11292 
11293       return ada_value_tag (arg1);
11294 
11295     case OP_ATR_MIN:
11296     case OP_ATR_MAX:
11297       evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11298       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11299       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11300       if (noside == EVAL_SKIP)
11301         goto nosideret;
11302       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11303         return value_zero (value_type (arg1), not_lval);
11304       else
11305 	{
11306 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11307 	  return value_binop (arg1, arg2,
11308 			      op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11309 	}
11310 
11311     case OP_ATR_MODULUS:
11312       {
11313         struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11314 
11315         evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11316         if (noside == EVAL_SKIP)
11317           goto nosideret;
11318 
11319         if (!ada_is_modular_type (type_arg))
11320           error (_("'modulus must be applied to modular type"));
11321 
11322         return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11323                                    ada_modulus (type_arg));
11324       }
11325 
11326 
11327     case OP_ATR_POS:
11328       evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11329       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11330       if (noside == EVAL_SKIP)
11331         goto nosideret;
11332       type = builtin_type (exp->gdbarch)->builtin_int;
11333       if (noside == EVAL_AVOID_SIDE_EFFECTS)
11334 	return value_zero (type, not_lval);
11335       else
11336 	return value_pos_atr (type, arg1);
11337 
11338     case OP_ATR_SIZE:
11339       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11340       type = value_type (arg1);
11341 
11342       /* If the argument is a reference, then dereference its type, since
11343          the user is really asking for the size of the actual object,
11344          not the size of the pointer.  */
11345       if (TYPE_CODE (type) == TYPE_CODE_REF)
11346         type = TYPE_TARGET_TYPE (type);
11347 
11348       if (noside == EVAL_SKIP)
11349         goto nosideret;
11350       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11351         return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11352       else
11353         return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11354                                    TARGET_CHAR_BIT * TYPE_LENGTH (type));
11355 
11356     case OP_ATR_VAL:
11357       evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11358       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11359       type = exp->elts[pc + 2].type;
11360       if (noside == EVAL_SKIP)
11361         goto nosideret;
11362       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11363         return value_zero (type, not_lval);
11364       else
11365         return value_val_atr (type, arg1);
11366 
11367     case BINOP_EXP:
11368       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11369       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11370       if (noside == EVAL_SKIP)
11371         goto nosideret;
11372       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11373         return value_zero (value_type (arg1), not_lval);
11374       else
11375 	{
11376 	  /* For integer exponentiation operations,
11377 	     only promote the first argument.  */
11378 	  if (is_integral_type (value_type (arg2)))
11379 	    unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11380 	  else
11381 	    binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11382 
11383 	  return value_binop (arg1, arg2, op);
11384 	}
11385 
11386     case UNOP_PLUS:
11387       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11388       if (noside == EVAL_SKIP)
11389         goto nosideret;
11390       else
11391         return arg1;
11392 
11393     case UNOP_ABS:
11394       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11395       if (noside == EVAL_SKIP)
11396         goto nosideret;
11397       unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11398       if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11399         return value_neg (arg1);
11400       else
11401         return arg1;
11402 
11403     case UNOP_IND:
11404       preeval_pos = *pos;
11405       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11406       if (noside == EVAL_SKIP)
11407         goto nosideret;
11408       type = ada_check_typedef (value_type (arg1));
11409       if (noside == EVAL_AVOID_SIDE_EFFECTS)
11410         {
11411           if (ada_is_array_descriptor_type (type))
11412             /* GDB allows dereferencing GNAT array descriptors.  */
11413             {
11414               struct type *arrType = ada_type_of_array (arg1, 0);
11415 
11416               if (arrType == NULL)
11417                 error (_("Attempt to dereference null array pointer."));
11418               return value_at_lazy (arrType, 0);
11419             }
11420           else if (TYPE_CODE (type) == TYPE_CODE_PTR
11421                    || TYPE_CODE (type) == TYPE_CODE_REF
11422                    /* In C you can dereference an array to get the 1st elt.  */
11423                    || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11424             {
11425             /* As mentioned in the OP_VAR_VALUE case, tagged types can
11426                only be determined by inspecting the object's tag.
11427                This means that we need to evaluate completely the
11428                expression in order to get its type.  */
11429 
11430 	      if ((TYPE_CODE (type) == TYPE_CODE_REF
11431 		   || TYPE_CODE (type) == TYPE_CODE_PTR)
11432 		  && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11433 		{
11434 		  arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11435 					  EVAL_NORMAL);
11436 		  type = value_type (ada_value_ind (arg1));
11437 		}
11438 	      else
11439 		{
11440 		  type = to_static_fixed_type
11441 		    (ada_aligned_type
11442 		     (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11443 		}
11444 	      ada_ensure_varsize_limit (type);
11445               return value_zero (type, lval_memory);
11446             }
11447           else if (TYPE_CODE (type) == TYPE_CODE_INT)
11448 	    {
11449 	      /* GDB allows dereferencing an int.  */
11450 	      if (expect_type == NULL)
11451 		return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11452 				   lval_memory);
11453 	      else
11454 		{
11455 		  expect_type =
11456 		    to_static_fixed_type (ada_aligned_type (expect_type));
11457 		  return value_zero (expect_type, lval_memory);
11458 		}
11459 	    }
11460           else
11461             error (_("Attempt to take contents of a non-pointer value."));
11462         }
11463       arg1 = ada_coerce_ref (arg1);     /* FIXME: What is this for??  */
11464       type = ada_check_typedef (value_type (arg1));
11465 
11466       if (TYPE_CODE (type) == TYPE_CODE_INT)
11467           /* GDB allows dereferencing an int.  If we were given
11468              the expect_type, then use that as the target type.
11469              Otherwise, assume that the target type is an int.  */
11470         {
11471           if (expect_type != NULL)
11472 	    return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11473 					      arg1));
11474 	  else
11475 	    return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11476 				  (CORE_ADDR) value_as_address (arg1));
11477         }
11478 
11479       if (ada_is_array_descriptor_type (type))
11480         /* GDB allows dereferencing GNAT array descriptors.  */
11481         return ada_coerce_to_simple_array (arg1);
11482       else
11483         return ada_value_ind (arg1);
11484 
11485     case STRUCTOP_STRUCT:
11486       tem = longest_to_int (exp->elts[pc + 1].longconst);
11487       (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11488       preeval_pos = *pos;
11489       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11490       if (noside == EVAL_SKIP)
11491         goto nosideret;
11492       if (noside == EVAL_AVOID_SIDE_EFFECTS)
11493         {
11494           struct type *type1 = value_type (arg1);
11495 
11496           if (ada_is_tagged_type (type1, 1))
11497             {
11498               type = ada_lookup_struct_elt_type (type1,
11499                                                  &exp->elts[pc + 2].string,
11500                                                  1, 1);
11501 
11502 	      /* If the field is not found, check if it exists in the
11503 		 extension of this object's type. This means that we
11504 		 need to evaluate completely the expression.  */
11505 
11506               if (type == NULL)
11507 		{
11508 		  arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11509 					  EVAL_NORMAL);
11510 		  arg1 = ada_value_struct_elt (arg1,
11511 					       &exp->elts[pc + 2].string,
11512 					       0);
11513 		  arg1 = unwrap_value (arg1);
11514 		  type = value_type (ada_to_fixed_value (arg1));
11515 		}
11516             }
11517           else
11518             type =
11519               ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11520                                           0);
11521 
11522           return value_zero (ada_aligned_type (type), lval_memory);
11523         }
11524       else
11525 	{
11526 	  arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11527 	  arg1 = unwrap_value (arg1);
11528 	  return ada_to_fixed_value (arg1);
11529 	}
11530 
11531     case OP_TYPE:
11532       /* The value is not supposed to be used.  This is here to make it
11533          easier to accommodate expressions that contain types.  */
11534       (*pos) += 2;
11535       if (noside == EVAL_SKIP)
11536         goto nosideret;
11537       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11538         return allocate_value (exp->elts[pc + 1].type);
11539       else
11540         error (_("Attempt to use a type name as an expression"));
11541 
11542     case OP_AGGREGATE:
11543     case OP_CHOICES:
11544     case OP_OTHERS:
11545     case OP_DISCRETE_RANGE:
11546     case OP_POSITIONAL:
11547     case OP_NAME:
11548       if (noside == EVAL_NORMAL)
11549 	switch (op)
11550 	  {
11551 	  case OP_NAME:
11552 	    error (_("Undefined name, ambiguous name, or renaming used in "
11553 		     "component association: %s."), &exp->elts[pc+2].string);
11554 	  case OP_AGGREGATE:
11555 	    error (_("Aggregates only allowed on the right of an assignment"));
11556 	  default:
11557 	    internal_error (__FILE__, __LINE__,
11558 			    _("aggregate apparently mangled"));
11559 	  }
11560 
11561       ada_forward_operator_length (exp, pc, &oplen, &nargs);
11562       *pos += oplen - 1;
11563       for (tem = 0; tem < nargs; tem += 1)
11564 	ada_evaluate_subexp (NULL, exp, pos, noside);
11565       goto nosideret;
11566     }
11567 
11568 nosideret:
11569   return eval_skip_value (exp);
11570 }
11571 
11572 
11573                                 /* Fixed point */
11574 
11575 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11576    type name that encodes the 'small and 'delta information.
11577    Otherwise, return NULL.  */
11578 
11579 static const char *
11580 fixed_type_info (struct type *type)
11581 {
11582   const char *name = ada_type_name (type);
11583   enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11584 
11585   if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11586     {
11587       const char *tail = strstr (name, "___XF_");
11588 
11589       if (tail == NULL)
11590         return NULL;
11591       else
11592         return tail + 5;
11593     }
11594   else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11595     return fixed_type_info (TYPE_TARGET_TYPE (type));
11596   else
11597     return NULL;
11598 }
11599 
11600 /* Returns non-zero iff TYPE represents an Ada fixed-point type.  */
11601 
11602 int
11603 ada_is_fixed_point_type (struct type *type)
11604 {
11605   return fixed_type_info (type) != NULL;
11606 }
11607 
11608 /* Return non-zero iff TYPE represents a System.Address type.  */
11609 
11610 int
11611 ada_is_system_address_type (struct type *type)
11612 {
11613   return (TYPE_NAME (type)
11614           && strcmp (TYPE_NAME (type), "system__address") == 0);
11615 }
11616 
11617 /* Assuming that TYPE is the representation of an Ada fixed-point
11618    type, return the target floating-point type to be used to represent
11619    of this type during internal computation.  */
11620 
11621 static struct type *
11622 ada_scaling_type (struct type *type)
11623 {
11624   return builtin_type (get_type_arch (type))->builtin_long_double;
11625 }
11626 
11627 /* Assuming that TYPE is the representation of an Ada fixed-point
11628    type, return its delta, or NULL if the type is malformed and the
11629    delta cannot be determined.  */
11630 
11631 struct value *
11632 ada_delta (struct type *type)
11633 {
11634   const char *encoding = fixed_type_info (type);
11635   struct type *scale_type = ada_scaling_type (type);
11636 
11637   long long num, den;
11638 
11639   if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11640     return nullptr;
11641   else
11642     return value_binop (value_from_longest (scale_type, num),
11643 			value_from_longest (scale_type, den), BINOP_DIV);
11644 }
11645 
11646 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11647    factor ('SMALL value) associated with the type.  */
11648 
11649 struct value *
11650 ada_scaling_factor (struct type *type)
11651 {
11652   const char *encoding = fixed_type_info (type);
11653   struct type *scale_type = ada_scaling_type (type);
11654 
11655   long long num0, den0, num1, den1;
11656   int n;
11657 
11658   n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11659 	      &num0, &den0, &num1, &den1);
11660 
11661   if (n < 2)
11662     return value_from_longest (scale_type, 1);
11663   else if (n == 4)
11664     return value_binop (value_from_longest (scale_type, num1),
11665 			value_from_longest (scale_type, den1), BINOP_DIV);
11666   else
11667     return value_binop (value_from_longest (scale_type, num0),
11668 			value_from_longest (scale_type, den0), BINOP_DIV);
11669 }
11670 
11671 
11672 
11673                                 /* Range types */
11674 
11675 /* Scan STR beginning at position K for a discriminant name, and
11676    return the value of that discriminant field of DVAL in *PX.  If
11677    PNEW_K is not null, put the position of the character beyond the
11678    name scanned in *PNEW_K.  Return 1 if successful; return 0 and do
11679    not alter *PX and *PNEW_K if unsuccessful.  */
11680 
11681 static int
11682 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11683                     int *pnew_k)
11684 {
11685   static char *bound_buffer = NULL;
11686   static size_t bound_buffer_len = 0;
11687   const char *pstart, *pend, *bound;
11688   struct value *bound_val;
11689 
11690   if (dval == NULL || str == NULL || str[k] == '\0')
11691     return 0;
11692 
11693   pstart = str + k;
11694   pend = strstr (pstart, "__");
11695   if (pend == NULL)
11696     {
11697       bound = pstart;
11698       k += strlen (bound);
11699     }
11700   else
11701     {
11702       int len = pend - pstart;
11703 
11704       /* Strip __ and beyond.  */
11705       GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11706       strncpy (bound_buffer, pstart, len);
11707       bound_buffer[len] = '\0';
11708 
11709       bound = bound_buffer;
11710       k = pend - str;
11711     }
11712 
11713   bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11714   if (bound_val == NULL)
11715     return 0;
11716 
11717   *px = value_as_long (bound_val);
11718   if (pnew_k != NULL)
11719     *pnew_k = k;
11720   return 1;
11721 }
11722 
11723 /* Value of variable named NAME in the current environment.  If
11724    no such variable found, then if ERR_MSG is null, returns 0, and
11725    otherwise causes an error with message ERR_MSG.  */
11726 
11727 static struct value *
11728 get_var_value (const char *name, const char *err_msg)
11729 {
11730   lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11731 
11732   std::vector<struct block_symbol> syms;
11733   int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11734 					     get_selected_block (0),
11735 					     VAR_DOMAIN, &syms, 1);
11736 
11737   if (nsyms != 1)
11738     {
11739       if (err_msg == NULL)
11740         return 0;
11741       else
11742         error (("%s"), err_msg);
11743     }
11744 
11745   return value_of_variable (syms[0].symbol, syms[0].block);
11746 }
11747 
11748 /* Value of integer variable named NAME in the current environment.
11749    If no such variable is found, returns false.  Otherwise, sets VALUE
11750    to the variable's value and returns true.  */
11751 
11752 bool
11753 get_int_var_value (const char *name, LONGEST &value)
11754 {
11755   struct value *var_val = get_var_value (name, 0);
11756 
11757   if (var_val == 0)
11758     return false;
11759 
11760   value = value_as_long (var_val);
11761   return true;
11762 }
11763 
11764 
11765 /* Return a range type whose base type is that of the range type named
11766    NAME in the current environment, and whose bounds are calculated
11767    from NAME according to the GNAT range encoding conventions.
11768    Extract discriminant values, if needed, from DVAL.  ORIG_TYPE is the
11769    corresponding range type from debug information; fall back to using it
11770    if symbol lookup fails.  If a new type must be created, allocate it
11771    like ORIG_TYPE was.  The bounds information, in general, is encoded
11772    in NAME, the base type given in the named range type.  */
11773 
11774 static struct type *
11775 to_fixed_range_type (struct type *raw_type, struct value *dval)
11776 {
11777   const char *name;
11778   struct type *base_type;
11779   const char *subtype_info;
11780 
11781   gdb_assert (raw_type != NULL);
11782   gdb_assert (TYPE_NAME (raw_type) != NULL);
11783 
11784   if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11785     base_type = TYPE_TARGET_TYPE (raw_type);
11786   else
11787     base_type = raw_type;
11788 
11789   name = TYPE_NAME (raw_type);
11790   subtype_info = strstr (name, "___XD");
11791   if (subtype_info == NULL)
11792     {
11793       LONGEST L = ada_discrete_type_low_bound (raw_type);
11794       LONGEST U = ada_discrete_type_high_bound (raw_type);
11795 
11796       if (L < INT_MIN || U > INT_MAX)
11797 	return raw_type;
11798       else
11799 	return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11800 					 L, U);
11801     }
11802   else
11803     {
11804       static char *name_buf = NULL;
11805       static size_t name_len = 0;
11806       int prefix_len = subtype_info - name;
11807       LONGEST L, U;
11808       struct type *type;
11809       const char *bounds_str;
11810       int n;
11811 
11812       GROW_VECT (name_buf, name_len, prefix_len + 5);
11813       strncpy (name_buf, name, prefix_len);
11814       name_buf[prefix_len] = '\0';
11815 
11816       subtype_info += 5;
11817       bounds_str = strchr (subtype_info, '_');
11818       n = 1;
11819 
11820       if (*subtype_info == 'L')
11821         {
11822           if (!ada_scan_number (bounds_str, n, &L, &n)
11823               && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11824             return raw_type;
11825           if (bounds_str[n] == '_')
11826             n += 2;
11827           else if (bounds_str[n] == '.')     /* FIXME? SGI Workshop kludge.  */
11828             n += 1;
11829           subtype_info += 1;
11830         }
11831       else
11832         {
11833           strcpy (name_buf + prefix_len, "___L");
11834           if (!get_int_var_value (name_buf, L))
11835             {
11836               lim_warning (_("Unknown lower bound, using 1."));
11837               L = 1;
11838             }
11839         }
11840 
11841       if (*subtype_info == 'U')
11842         {
11843           if (!ada_scan_number (bounds_str, n, &U, &n)
11844               && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11845             return raw_type;
11846         }
11847       else
11848         {
11849           strcpy (name_buf + prefix_len, "___U");
11850           if (!get_int_var_value (name_buf, U))
11851             {
11852               lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11853               U = L;
11854             }
11855         }
11856 
11857       type = create_static_range_type (alloc_type_copy (raw_type),
11858 				       base_type, L, U);
11859       /* create_static_range_type alters the resulting type's length
11860          to match the size of the base_type, which is not what we want.
11861          Set it back to the original range type's length.  */
11862       TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11863       TYPE_NAME (type) = name;
11864       return type;
11865     }
11866 }
11867 
11868 /* True iff NAME is the name of a range type.  */
11869 
11870 int
11871 ada_is_range_type_name (const char *name)
11872 {
11873   return (name != NULL && strstr (name, "___XD"));
11874 }
11875 
11876 
11877                                 /* Modular types */
11878 
11879 /* True iff TYPE is an Ada modular type.  */
11880 
11881 int
11882 ada_is_modular_type (struct type *type)
11883 {
11884   struct type *subranged_type = get_base_type (type);
11885 
11886   return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11887           && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11888           && TYPE_UNSIGNED (subranged_type));
11889 }
11890 
11891 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE.  */
11892 
11893 ULONGEST
11894 ada_modulus (struct type *type)
11895 {
11896   return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11897 }
11898 
11899 
11900 /* Ada exception catchpoint support:
11901    ---------------------------------
11902 
11903    We support 3 kinds of exception catchpoints:
11904      . catchpoints on Ada exceptions
11905      . catchpoints on unhandled Ada exceptions
11906      . catchpoints on failed assertions
11907 
11908    Exceptions raised during failed assertions, or unhandled exceptions
11909    could perfectly be caught with the general catchpoint on Ada exceptions.
11910    However, we can easily differentiate these two special cases, and having
11911    the option to distinguish these two cases from the rest can be useful
11912    to zero-in on certain situations.
11913 
11914    Exception catchpoints are a specialized form of breakpoint,
11915    since they rely on inserting breakpoints inside known routines
11916    of the GNAT runtime.  The implementation therefore uses a standard
11917    breakpoint structure of the BP_BREAKPOINT type, but with its own set
11918    of breakpoint_ops.
11919 
11920    Support in the runtime for exception catchpoints have been changed
11921    a few times already, and these changes affect the implementation
11922    of these catchpoints.  In order to be able to support several
11923    variants of the runtime, we use a sniffer that will determine
11924    the runtime variant used by the program being debugged.  */
11925 
11926 /* Ada's standard exceptions.
11927 
11928    The Ada 83 standard also defined Numeric_Error.  But there so many
11929    situations where it was unclear from the Ada 83 Reference Manual
11930    (RM) whether Constraint_Error or Numeric_Error should be raised,
11931    that the ARG (Ada Rapporteur Group) eventually issued a Binding
11932    Interpretation saying that anytime the RM says that Numeric_Error
11933    should be raised, the implementation may raise Constraint_Error.
11934    Ada 95 went one step further and pretty much removed Numeric_Error
11935    from the list of standard exceptions (it made it a renaming of
11936    Constraint_Error, to help preserve compatibility when compiling
11937    an Ada83 compiler). As such, we do not include Numeric_Error from
11938    this list of standard exceptions.  */
11939 
11940 static const char *standard_exc[] = {
11941   "constraint_error",
11942   "program_error",
11943   "storage_error",
11944   "tasking_error"
11945 };
11946 
11947 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11948 
11949 /* A structure that describes how to support exception catchpoints
11950    for a given executable.  */
11951 
11952 struct exception_support_info
11953 {
11954    /* The name of the symbol to break on in order to insert
11955       a catchpoint on exceptions.  */
11956    const char *catch_exception_sym;
11957 
11958    /* The name of the symbol to break on in order to insert
11959       a catchpoint on unhandled exceptions.  */
11960    const char *catch_exception_unhandled_sym;
11961 
11962    /* The name of the symbol to break on in order to insert
11963       a catchpoint on failed assertions.  */
11964    const char *catch_assert_sym;
11965 
11966    /* The name of the symbol to break on in order to insert
11967       a catchpoint on exception handling.  */
11968    const char *catch_handlers_sym;
11969 
11970    /* Assuming that the inferior just triggered an unhandled exception
11971       catchpoint, this function is responsible for returning the address
11972       in inferior memory where the name of that exception is stored.
11973       Return zero if the address could not be computed.  */
11974    ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11975 };
11976 
11977 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11978 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11979 
11980 /* The following exception support info structure describes how to
11981    implement exception catchpoints with the latest version of the
11982    Ada runtime (as of 2007-03-06).  */
11983 
11984 static const struct exception_support_info default_exception_support_info =
11985 {
11986   "__gnat_debug_raise_exception", /* catch_exception_sym */
11987   "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11988   "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11989   "__gnat_begin_handler", /* catch_handlers_sym */
11990   ada_unhandled_exception_name_addr
11991 };
11992 
11993 /* The following exception support info structure describes how to
11994    implement exception catchpoints with a slightly older version
11995    of the Ada runtime.  */
11996 
11997 static const struct exception_support_info exception_support_info_fallback =
11998 {
11999   "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12000   "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12001   "system__assertions__raise_assert_failure",  /* catch_assert_sym */
12002   "__gnat_begin_handler", /* catch_handlers_sym */
12003   ada_unhandled_exception_name_addr_from_raise
12004 };
12005 
12006 /* Return nonzero if we can detect the exception support routines
12007    described in EINFO.
12008 
12009    This function errors out if an abnormal situation is detected
12010    (for instance, if we find the exception support routines, but
12011    that support is found to be incomplete).  */
12012 
12013 static int
12014 ada_has_this_exception_support (const struct exception_support_info *einfo)
12015 {
12016   struct symbol *sym;
12017 
12018   /* The symbol we're looking up is provided by a unit in the GNAT runtime
12019      that should be compiled with debugging information.  As a result, we
12020      expect to find that symbol in the symtabs.  */
12021 
12022   sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12023   if (sym == NULL)
12024     {
12025       /* Perhaps we did not find our symbol because the Ada runtime was
12026 	 compiled without debugging info, or simply stripped of it.
12027 	 It happens on some GNU/Linux distributions for instance, where
12028 	 users have to install a separate debug package in order to get
12029 	 the runtime's debugging info.  In that situation, let the user
12030 	 know why we cannot insert an Ada exception catchpoint.
12031 
12032 	 Note: Just for the purpose of inserting our Ada exception
12033 	 catchpoint, we could rely purely on the associated minimal symbol.
12034 	 But we would be operating in degraded mode anyway, since we are
12035 	 still lacking the debugging info needed later on to extract
12036 	 the name of the exception being raised (this name is printed in
12037 	 the catchpoint message, and is also used when trying to catch
12038 	 a specific exception).  We do not handle this case for now.  */
12039       struct bound_minimal_symbol msym
12040 	= lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12041 
12042       if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12043 	error (_("Your Ada runtime appears to be missing some debugging "
12044 		 "information.\nCannot insert Ada exception catchpoint "
12045 		 "in this configuration."));
12046 
12047       return 0;
12048     }
12049 
12050   /* Make sure that the symbol we found corresponds to a function.  */
12051 
12052   if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12053     error (_("Symbol \"%s\" is not a function (class = %d)"),
12054            SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12055 
12056   return 1;
12057 }
12058 
12059 /* Inspect the Ada runtime and determine which exception info structure
12060    should be used to provide support for exception catchpoints.
12061 
12062    This function will always set the per-inferior exception_info,
12063    or raise an error.  */
12064 
12065 static void
12066 ada_exception_support_info_sniffer (void)
12067 {
12068   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12069 
12070   /* If the exception info is already known, then no need to recompute it.  */
12071   if (data->exception_info != NULL)
12072     return;
12073 
12074   /* Check the latest (default) exception support info.  */
12075   if (ada_has_this_exception_support (&default_exception_support_info))
12076     {
12077       data->exception_info = &default_exception_support_info;
12078       return;
12079     }
12080 
12081   /* Try our fallback exception suport info.  */
12082   if (ada_has_this_exception_support (&exception_support_info_fallback))
12083     {
12084       data->exception_info = &exception_support_info_fallback;
12085       return;
12086     }
12087 
12088   /* Sometimes, it is normal for us to not be able to find the routine
12089      we are looking for.  This happens when the program is linked with
12090      the shared version of the GNAT runtime, and the program has not been
12091      started yet.  Inform the user of these two possible causes if
12092      applicable.  */
12093 
12094   if (ada_update_initial_language (language_unknown) != language_ada)
12095     error (_("Unable to insert catchpoint.  Is this an Ada main program?"));
12096 
12097   /* If the symbol does not exist, then check that the program is
12098      already started, to make sure that shared libraries have been
12099      loaded.  If it is not started, this may mean that the symbol is
12100      in a shared library.  */
12101 
12102   if (inferior_ptid.pid () == 0)
12103     error (_("Unable to insert catchpoint. Try to start the program first."));
12104 
12105   /* At this point, we know that we are debugging an Ada program and
12106      that the inferior has been started, but we still are not able to
12107      find the run-time symbols.  That can mean that we are in
12108      configurable run time mode, or that a-except as been optimized
12109      out by the linker...  In any case, at this point it is not worth
12110      supporting this feature.  */
12111 
12112   error (_("Cannot insert Ada exception catchpoints in this configuration."));
12113 }
12114 
12115 /* True iff FRAME is very likely to be that of a function that is
12116    part of the runtime system.  This is all very heuristic, but is
12117    intended to be used as advice as to what frames are uninteresting
12118    to most users.  */
12119 
12120 static int
12121 is_known_support_routine (struct frame_info *frame)
12122 {
12123   enum language func_lang;
12124   int i;
12125   const char *fullname;
12126 
12127   /* If this code does not have any debugging information (no symtab),
12128      This cannot be any user code.  */
12129 
12130   symtab_and_line sal = find_frame_sal (frame);
12131   if (sal.symtab == NULL)
12132     return 1;
12133 
12134   /* If there is a symtab, but the associated source file cannot be
12135      located, then assume this is not user code:  Selecting a frame
12136      for which we cannot display the code would not be very helpful
12137      for the user.  This should also take care of case such as VxWorks
12138      where the kernel has some debugging info provided for a few units.  */
12139 
12140   fullname = symtab_to_fullname (sal.symtab);
12141   if (access (fullname, R_OK) != 0)
12142     return 1;
12143 
12144   /* Check the unit filename againt the Ada runtime file naming.
12145      We also check the name of the objfile against the name of some
12146      known system libraries that sometimes come with debugging info
12147      too.  */
12148 
12149   for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12150     {
12151       re_comp (known_runtime_file_name_patterns[i]);
12152       if (re_exec (lbasename (sal.symtab->filename)))
12153         return 1;
12154       if (SYMTAB_OBJFILE (sal.symtab) != NULL
12155           && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12156         return 1;
12157     }
12158 
12159   /* Check whether the function is a GNAT-generated entity.  */
12160 
12161   gdb::unique_xmalloc_ptr<char> func_name
12162     = find_frame_funname (frame, &func_lang, NULL);
12163   if (func_name == NULL)
12164     return 1;
12165 
12166   for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12167     {
12168       re_comp (known_auxiliary_function_name_patterns[i]);
12169       if (re_exec (func_name.get ()))
12170 	return 1;
12171     }
12172 
12173   return 0;
12174 }
12175 
12176 /* Find the first frame that contains debugging information and that is not
12177    part of the Ada run-time, starting from FI and moving upward.  */
12178 
12179 void
12180 ada_find_printable_frame (struct frame_info *fi)
12181 {
12182   for (; fi != NULL; fi = get_prev_frame (fi))
12183     {
12184       if (!is_known_support_routine (fi))
12185         {
12186           select_frame (fi);
12187           break;
12188         }
12189     }
12190 
12191 }
12192 
12193 /* Assuming that the inferior just triggered an unhandled exception
12194    catchpoint, return the address in inferior memory where the name
12195    of the exception is stored.
12196 
12197    Return zero if the address could not be computed.  */
12198 
12199 static CORE_ADDR
12200 ada_unhandled_exception_name_addr (void)
12201 {
12202   return parse_and_eval_address ("e.full_name");
12203 }
12204 
12205 /* Same as ada_unhandled_exception_name_addr, except that this function
12206    should be used when the inferior uses an older version of the runtime,
12207    where the exception name needs to be extracted from a specific frame
12208    several frames up in the callstack.  */
12209 
12210 static CORE_ADDR
12211 ada_unhandled_exception_name_addr_from_raise (void)
12212 {
12213   int frame_level;
12214   struct frame_info *fi;
12215   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12216 
12217   /* To determine the name of this exception, we need to select
12218      the frame corresponding to RAISE_SYM_NAME.  This frame is
12219      at least 3 levels up, so we simply skip the first 3 frames
12220      without checking the name of their associated function.  */
12221   fi = get_current_frame ();
12222   for (frame_level = 0; frame_level < 3; frame_level += 1)
12223     if (fi != NULL)
12224       fi = get_prev_frame (fi);
12225 
12226   while (fi != NULL)
12227     {
12228       enum language func_lang;
12229 
12230       gdb::unique_xmalloc_ptr<char> func_name
12231 	= find_frame_funname (fi, &func_lang, NULL);
12232       if (func_name != NULL)
12233 	{
12234           if (strcmp (func_name.get (),
12235 		      data->exception_info->catch_exception_sym) == 0)
12236 	    break; /* We found the frame we were looking for...  */
12237 	}
12238       fi = get_prev_frame (fi);
12239     }
12240 
12241   if (fi == NULL)
12242     return 0;
12243 
12244   select_frame (fi);
12245   return parse_and_eval_address ("id.full_name");
12246 }
12247 
12248 /* Assuming the inferior just triggered an Ada exception catchpoint
12249    (of any type), return the address in inferior memory where the name
12250    of the exception is stored, if applicable.
12251 
12252    Assumes the selected frame is the current frame.
12253 
12254    Return zero if the address could not be computed, or if not relevant.  */
12255 
12256 static CORE_ADDR
12257 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12258                            struct breakpoint *b)
12259 {
12260   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12261 
12262   switch (ex)
12263     {
12264       case ada_catch_exception:
12265         return (parse_and_eval_address ("e.full_name"));
12266         break;
12267 
12268       case ada_catch_exception_unhandled:
12269         return data->exception_info->unhandled_exception_name_addr ();
12270         break;
12271 
12272       case ada_catch_handlers:
12273         return 0;  /* The runtimes does not provide access to the exception
12274 		      name.  */
12275         break;
12276 
12277       case ada_catch_assert:
12278         return 0;  /* Exception name is not relevant in this case.  */
12279         break;
12280 
12281       default:
12282         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12283         break;
12284     }
12285 
12286   return 0; /* Should never be reached.  */
12287 }
12288 
12289 /* Assuming the inferior is stopped at an exception catchpoint,
12290    return the message which was associated to the exception, if
12291    available.  Return NULL if the message could not be retrieved.
12292 
12293    Note: The exception message can be associated to an exception
12294    either through the use of the Raise_Exception function, or
12295    more simply (Ada 2005 and later), via:
12296 
12297        raise Exception_Name with "exception message";
12298 
12299    */
12300 
12301 static gdb::unique_xmalloc_ptr<char>
12302 ada_exception_message_1 (void)
12303 {
12304   struct value *e_msg_val;
12305   int e_msg_len;
12306 
12307   /* For runtimes that support this feature, the exception message
12308      is passed as an unbounded string argument called "message".  */
12309   e_msg_val = parse_and_eval ("message");
12310   if (e_msg_val == NULL)
12311     return NULL; /* Exception message not supported.  */
12312 
12313   e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12314   gdb_assert (e_msg_val != NULL);
12315   e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12316 
12317   /* If the message string is empty, then treat it as if there was
12318      no exception message.  */
12319   if (e_msg_len <= 0)
12320     return NULL;
12321 
12322   gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12323   read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12324   e_msg.get ()[e_msg_len] = '\0';
12325 
12326   return e_msg;
12327 }
12328 
12329 /* Same as ada_exception_message_1, except that all exceptions are
12330    contained here (returning NULL instead).  */
12331 
12332 static gdb::unique_xmalloc_ptr<char>
12333 ada_exception_message (void)
12334 {
12335   gdb::unique_xmalloc_ptr<char> e_msg;
12336 
12337   TRY
12338     {
12339       e_msg = ada_exception_message_1 ();
12340     }
12341   CATCH (e, RETURN_MASK_ERROR)
12342     {
12343       e_msg.reset (nullptr);
12344     }
12345   END_CATCH
12346 
12347   return e_msg;
12348 }
12349 
12350 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12351    any error that ada_exception_name_addr_1 might cause to be thrown.
12352    When an error is intercepted, a warning with the error message is printed,
12353    and zero is returned.  */
12354 
12355 static CORE_ADDR
12356 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12357                          struct breakpoint *b)
12358 {
12359   CORE_ADDR result = 0;
12360 
12361   TRY
12362     {
12363       result = ada_exception_name_addr_1 (ex, b);
12364     }
12365 
12366   CATCH (e, RETURN_MASK_ERROR)
12367     {
12368       warning (_("failed to get exception name: %s"), e.message);
12369       return 0;
12370     }
12371   END_CATCH
12372 
12373   return result;
12374 }
12375 
12376 static std::string ada_exception_catchpoint_cond_string
12377   (const char *excep_string,
12378    enum ada_exception_catchpoint_kind ex);
12379 
12380 /* Ada catchpoints.
12381 
12382    In the case of catchpoints on Ada exceptions, the catchpoint will
12383    stop the target on every exception the program throws.  When a user
12384    specifies the name of a specific exception, we translate this
12385    request into a condition expression (in text form), and then parse
12386    it into an expression stored in each of the catchpoint's locations.
12387    We then use this condition to check whether the exception that was
12388    raised is the one the user is interested in.  If not, then the
12389    target is resumed again.  We store the name of the requested
12390    exception, in order to be able to re-set the condition expression
12391    when symbols change.  */
12392 
12393 /* An instance of this type is used to represent an Ada catchpoint
12394    breakpoint location.  */
12395 
12396 class ada_catchpoint_location : public bp_location
12397 {
12398 public:
12399   ada_catchpoint_location (breakpoint *owner)
12400     : bp_location (owner)
12401   {}
12402 
12403   /* The condition that checks whether the exception that was raised
12404      is the specific exception the user specified on catchpoint
12405      creation.  */
12406   expression_up excep_cond_expr;
12407 };
12408 
12409 /* An instance of this type is used to represent an Ada catchpoint.  */
12410 
12411 struct ada_catchpoint : public breakpoint
12412 {
12413   /* The name of the specific exception the user specified.  */
12414   std::string excep_string;
12415 };
12416 
12417 /* Parse the exception condition string in the context of each of the
12418    catchpoint's locations, and store them for later evaluation.  */
12419 
12420 static void
12421 create_excep_cond_exprs (struct ada_catchpoint *c,
12422                          enum ada_exception_catchpoint_kind ex)
12423 {
12424   struct bp_location *bl;
12425 
12426   /* Nothing to do if there's no specific exception to catch.  */
12427   if (c->excep_string.empty ())
12428     return;
12429 
12430   /* Same if there are no locations... */
12431   if (c->loc == NULL)
12432     return;
12433 
12434   /* Compute the condition expression in text form, from the specific
12435      expection we want to catch.  */
12436   std::string cond_string
12437     = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12438 
12439   /* Iterate over all the catchpoint's locations, and parse an
12440      expression for each.  */
12441   for (bl = c->loc; bl != NULL; bl = bl->next)
12442     {
12443       struct ada_catchpoint_location *ada_loc
12444 	= (struct ada_catchpoint_location *) bl;
12445       expression_up exp;
12446 
12447       if (!bl->shlib_disabled)
12448 	{
12449 	  const char *s;
12450 
12451 	  s = cond_string.c_str ();
12452 	  TRY
12453 	    {
12454 	      exp = parse_exp_1 (&s, bl->address,
12455 				 block_for_pc (bl->address),
12456 				 0);
12457 	    }
12458 	  CATCH (e, RETURN_MASK_ERROR)
12459 	    {
12460 	      warning (_("failed to reevaluate internal exception condition "
12461 			 "for catchpoint %d: %s"),
12462 		       c->number, e.message);
12463 	    }
12464 	  END_CATCH
12465 	}
12466 
12467       ada_loc->excep_cond_expr = std::move (exp);
12468     }
12469 }
12470 
12471 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12472    structure for all exception catchpoint kinds.  */
12473 
12474 static struct bp_location *
12475 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12476 			     struct breakpoint *self)
12477 {
12478   return new ada_catchpoint_location (self);
12479 }
12480 
12481 /* Implement the RE_SET method in the breakpoint_ops structure for all
12482    exception catchpoint kinds.  */
12483 
12484 static void
12485 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12486 {
12487   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12488 
12489   /* Call the base class's method.  This updates the catchpoint's
12490      locations.  */
12491   bkpt_breakpoint_ops.re_set (b);
12492 
12493   /* Reparse the exception conditional expressions.  One for each
12494      location.  */
12495   create_excep_cond_exprs (c, ex);
12496 }
12497 
12498 /* Returns true if we should stop for this breakpoint hit.  If the
12499    user specified a specific exception, we only want to cause a stop
12500    if the program thrown that exception.  */
12501 
12502 static int
12503 should_stop_exception (const struct bp_location *bl)
12504 {
12505   struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12506   const struct ada_catchpoint_location *ada_loc
12507     = (const struct ada_catchpoint_location *) bl;
12508   int stop;
12509 
12510   /* With no specific exception, should always stop.  */
12511   if (c->excep_string.empty ())
12512     return 1;
12513 
12514   if (ada_loc->excep_cond_expr == NULL)
12515     {
12516       /* We will have a NULL expression if back when we were creating
12517 	 the expressions, this location's had failed to parse.  */
12518       return 1;
12519     }
12520 
12521   stop = 1;
12522   TRY
12523     {
12524       struct value *mark;
12525 
12526       mark = value_mark ();
12527       stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12528       value_free_to_mark (mark);
12529     }
12530   CATCH (ex, RETURN_MASK_ALL)
12531     {
12532       exception_fprintf (gdb_stderr, ex,
12533 			 _("Error in testing exception condition:\n"));
12534     }
12535   END_CATCH
12536 
12537   return stop;
12538 }
12539 
12540 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12541    for all exception catchpoint kinds.  */
12542 
12543 static void
12544 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12545 {
12546   bs->stop = should_stop_exception (bs->bp_location_at);
12547 }
12548 
12549 /* Implement the PRINT_IT method in the breakpoint_ops structure
12550    for all exception catchpoint kinds.  */
12551 
12552 static enum print_stop_action
12553 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12554 {
12555   struct ui_out *uiout = current_uiout;
12556   struct breakpoint *b = bs->breakpoint_at;
12557 
12558   annotate_catchpoint (b->number);
12559 
12560   if (uiout->is_mi_like_p ())
12561     {
12562       uiout->field_string ("reason",
12563 			   async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12564       uiout->field_string ("disp", bpdisp_text (b->disposition));
12565     }
12566 
12567   uiout->text (b->disposition == disp_del
12568 	       ? "\nTemporary catchpoint " : "\nCatchpoint ");
12569   uiout->field_int ("bkptno", b->number);
12570   uiout->text (", ");
12571 
12572   /* ada_exception_name_addr relies on the selected frame being the
12573      current frame.  Need to do this here because this function may be
12574      called more than once when printing a stop, and below, we'll
12575      select the first frame past the Ada run-time (see
12576      ada_find_printable_frame).  */
12577   select_frame (get_current_frame ());
12578 
12579   switch (ex)
12580     {
12581       case ada_catch_exception:
12582       case ada_catch_exception_unhandled:
12583       case ada_catch_handlers:
12584 	{
12585 	  const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12586 	  char exception_name[256];
12587 
12588 	  if (addr != 0)
12589 	    {
12590 	      read_memory (addr, (gdb_byte *) exception_name,
12591 			   sizeof (exception_name) - 1);
12592 	      exception_name [sizeof (exception_name) - 1] = '\0';
12593 	    }
12594 	  else
12595 	    {
12596 	      /* For some reason, we were unable to read the exception
12597 		 name.  This could happen if the Runtime was compiled
12598 		 without debugging info, for instance.  In that case,
12599 		 just replace the exception name by the generic string
12600 		 "exception" - it will read as "an exception" in the
12601 		 notification we are about to print.  */
12602 	      memcpy (exception_name, "exception", sizeof ("exception"));
12603 	    }
12604 	  /* In the case of unhandled exception breakpoints, we print
12605 	     the exception name as "unhandled EXCEPTION_NAME", to make
12606 	     it clearer to the user which kind of catchpoint just got
12607 	     hit.  We used ui_out_text to make sure that this extra
12608 	     info does not pollute the exception name in the MI case.  */
12609 	  if (ex == ada_catch_exception_unhandled)
12610 	    uiout->text ("unhandled ");
12611 	  uiout->field_string ("exception-name", exception_name);
12612 	}
12613 	break;
12614       case ada_catch_assert:
12615 	/* In this case, the name of the exception is not really
12616 	   important.  Just print "failed assertion" to make it clearer
12617 	   that his program just hit an assertion-failure catchpoint.
12618 	   We used ui_out_text because this info does not belong in
12619 	   the MI output.  */
12620 	uiout->text ("failed assertion");
12621 	break;
12622     }
12623 
12624   gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12625   if (exception_message != NULL)
12626     {
12627       uiout->text (" (");
12628       uiout->field_string ("exception-message", exception_message.get ());
12629       uiout->text (")");
12630     }
12631 
12632   uiout->text (" at ");
12633   ada_find_printable_frame (get_current_frame ());
12634 
12635   return PRINT_SRC_AND_LOC;
12636 }
12637 
12638 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12639    for all exception catchpoint kinds.  */
12640 
12641 static void
12642 print_one_exception (enum ada_exception_catchpoint_kind ex,
12643                      struct breakpoint *b, struct bp_location **last_loc)
12644 {
12645   struct ui_out *uiout = current_uiout;
12646   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12647   struct value_print_options opts;
12648 
12649   get_user_print_options (&opts);
12650   if (opts.addressprint)
12651     {
12652       annotate_field (4);
12653       uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12654     }
12655 
12656   annotate_field (5);
12657   *last_loc = b->loc;
12658   switch (ex)
12659     {
12660       case ada_catch_exception:
12661         if (!c->excep_string.empty ())
12662           {
12663 	    std::string msg = string_printf (_("`%s' Ada exception"),
12664 					     c->excep_string.c_str ());
12665 
12666             uiout->field_string ("what", msg);
12667           }
12668         else
12669           uiout->field_string ("what", "all Ada exceptions");
12670 
12671         break;
12672 
12673       case ada_catch_exception_unhandled:
12674         uiout->field_string ("what", "unhandled Ada exceptions");
12675         break;
12676 
12677       case ada_catch_handlers:
12678         if (!c->excep_string.empty ())
12679           {
12680 	    uiout->field_fmt ("what",
12681 			      _("`%s' Ada exception handlers"),
12682 			      c->excep_string.c_str ());
12683           }
12684         else
12685 	  uiout->field_string ("what", "all Ada exceptions handlers");
12686         break;
12687 
12688       case ada_catch_assert:
12689         uiout->field_string ("what", "failed Ada assertions");
12690         break;
12691 
12692       default:
12693         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12694         break;
12695     }
12696 }
12697 
12698 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12699    for all exception catchpoint kinds.  */
12700 
12701 static void
12702 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12703                          struct breakpoint *b)
12704 {
12705   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12706   struct ui_out *uiout = current_uiout;
12707 
12708   uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12709                                                  : _("Catchpoint "));
12710   uiout->field_int ("bkptno", b->number);
12711   uiout->text (": ");
12712 
12713   switch (ex)
12714     {
12715       case ada_catch_exception:
12716         if (!c->excep_string.empty ())
12717 	  {
12718 	    std::string info = string_printf (_("`%s' Ada exception"),
12719 					      c->excep_string.c_str ());
12720 	    uiout->text (info.c_str ());
12721 	  }
12722         else
12723           uiout->text (_("all Ada exceptions"));
12724         break;
12725 
12726       case ada_catch_exception_unhandled:
12727         uiout->text (_("unhandled Ada exceptions"));
12728         break;
12729 
12730       case ada_catch_handlers:
12731         if (!c->excep_string.empty ())
12732 	  {
12733 	    std::string info
12734 	      = string_printf (_("`%s' Ada exception handlers"),
12735 			       c->excep_string.c_str ());
12736 	    uiout->text (info.c_str ());
12737 	  }
12738         else
12739           uiout->text (_("all Ada exceptions handlers"));
12740         break;
12741 
12742       case ada_catch_assert:
12743         uiout->text (_("failed Ada assertions"));
12744         break;
12745 
12746       default:
12747         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12748         break;
12749     }
12750 }
12751 
12752 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12753    for all exception catchpoint kinds.  */
12754 
12755 static void
12756 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12757 			  struct breakpoint *b, struct ui_file *fp)
12758 {
12759   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12760 
12761   switch (ex)
12762     {
12763       case ada_catch_exception:
12764 	fprintf_filtered (fp, "catch exception");
12765 	if (!c->excep_string.empty ())
12766 	  fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12767 	break;
12768 
12769       case ada_catch_exception_unhandled:
12770 	fprintf_filtered (fp, "catch exception unhandled");
12771 	break;
12772 
12773       case ada_catch_handlers:
12774 	fprintf_filtered (fp, "catch handlers");
12775 	break;
12776 
12777       case ada_catch_assert:
12778 	fprintf_filtered (fp, "catch assert");
12779 	break;
12780 
12781       default:
12782 	internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12783     }
12784   print_recreate_thread (b, fp);
12785 }
12786 
12787 /* Virtual table for "catch exception" breakpoints.  */
12788 
12789 static struct bp_location *
12790 allocate_location_catch_exception (struct breakpoint *self)
12791 {
12792   return allocate_location_exception (ada_catch_exception, self);
12793 }
12794 
12795 static void
12796 re_set_catch_exception (struct breakpoint *b)
12797 {
12798   re_set_exception (ada_catch_exception, b);
12799 }
12800 
12801 static void
12802 check_status_catch_exception (bpstat bs)
12803 {
12804   check_status_exception (ada_catch_exception, bs);
12805 }
12806 
12807 static enum print_stop_action
12808 print_it_catch_exception (bpstat bs)
12809 {
12810   return print_it_exception (ada_catch_exception, bs);
12811 }
12812 
12813 static void
12814 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12815 {
12816   print_one_exception (ada_catch_exception, b, last_loc);
12817 }
12818 
12819 static void
12820 print_mention_catch_exception (struct breakpoint *b)
12821 {
12822   print_mention_exception (ada_catch_exception, b);
12823 }
12824 
12825 static void
12826 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12827 {
12828   print_recreate_exception (ada_catch_exception, b, fp);
12829 }
12830 
12831 static struct breakpoint_ops catch_exception_breakpoint_ops;
12832 
12833 /* Virtual table for "catch exception unhandled" breakpoints.  */
12834 
12835 static struct bp_location *
12836 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12837 {
12838   return allocate_location_exception (ada_catch_exception_unhandled, self);
12839 }
12840 
12841 static void
12842 re_set_catch_exception_unhandled (struct breakpoint *b)
12843 {
12844   re_set_exception (ada_catch_exception_unhandled, b);
12845 }
12846 
12847 static void
12848 check_status_catch_exception_unhandled (bpstat bs)
12849 {
12850   check_status_exception (ada_catch_exception_unhandled, bs);
12851 }
12852 
12853 static enum print_stop_action
12854 print_it_catch_exception_unhandled (bpstat bs)
12855 {
12856   return print_it_exception (ada_catch_exception_unhandled, bs);
12857 }
12858 
12859 static void
12860 print_one_catch_exception_unhandled (struct breakpoint *b,
12861 				     struct bp_location **last_loc)
12862 {
12863   print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12864 }
12865 
12866 static void
12867 print_mention_catch_exception_unhandled (struct breakpoint *b)
12868 {
12869   print_mention_exception (ada_catch_exception_unhandled, b);
12870 }
12871 
12872 static void
12873 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12874 					  struct ui_file *fp)
12875 {
12876   print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12877 }
12878 
12879 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12880 
12881 /* Virtual table for "catch assert" breakpoints.  */
12882 
12883 static struct bp_location *
12884 allocate_location_catch_assert (struct breakpoint *self)
12885 {
12886   return allocate_location_exception (ada_catch_assert, self);
12887 }
12888 
12889 static void
12890 re_set_catch_assert (struct breakpoint *b)
12891 {
12892   re_set_exception (ada_catch_assert, b);
12893 }
12894 
12895 static void
12896 check_status_catch_assert (bpstat bs)
12897 {
12898   check_status_exception (ada_catch_assert, bs);
12899 }
12900 
12901 static enum print_stop_action
12902 print_it_catch_assert (bpstat bs)
12903 {
12904   return print_it_exception (ada_catch_assert, bs);
12905 }
12906 
12907 static void
12908 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12909 {
12910   print_one_exception (ada_catch_assert, b, last_loc);
12911 }
12912 
12913 static void
12914 print_mention_catch_assert (struct breakpoint *b)
12915 {
12916   print_mention_exception (ada_catch_assert, b);
12917 }
12918 
12919 static void
12920 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12921 {
12922   print_recreate_exception (ada_catch_assert, b, fp);
12923 }
12924 
12925 static struct breakpoint_ops catch_assert_breakpoint_ops;
12926 
12927 /* Virtual table for "catch handlers" breakpoints.  */
12928 
12929 static struct bp_location *
12930 allocate_location_catch_handlers (struct breakpoint *self)
12931 {
12932   return allocate_location_exception (ada_catch_handlers, self);
12933 }
12934 
12935 static void
12936 re_set_catch_handlers (struct breakpoint *b)
12937 {
12938   re_set_exception (ada_catch_handlers, b);
12939 }
12940 
12941 static void
12942 check_status_catch_handlers (bpstat bs)
12943 {
12944   check_status_exception (ada_catch_handlers, bs);
12945 }
12946 
12947 static enum print_stop_action
12948 print_it_catch_handlers (bpstat bs)
12949 {
12950   return print_it_exception (ada_catch_handlers, bs);
12951 }
12952 
12953 static void
12954 print_one_catch_handlers (struct breakpoint *b,
12955 			  struct bp_location **last_loc)
12956 {
12957   print_one_exception (ada_catch_handlers, b, last_loc);
12958 }
12959 
12960 static void
12961 print_mention_catch_handlers (struct breakpoint *b)
12962 {
12963   print_mention_exception (ada_catch_handlers, b);
12964 }
12965 
12966 static void
12967 print_recreate_catch_handlers (struct breakpoint *b,
12968 			       struct ui_file *fp)
12969 {
12970   print_recreate_exception (ada_catch_handlers, b, fp);
12971 }
12972 
12973 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12974 
12975 /* Split the arguments specified in a "catch exception" command.
12976    Set EX to the appropriate catchpoint type.
12977    Set EXCEP_STRING to the name of the specific exception if
12978    specified by the user.
12979    IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12980    "catch handlers" command.  False otherwise.
12981    If a condition is found at the end of the arguments, the condition
12982    expression is stored in COND_STRING (memory must be deallocated
12983    after use).  Otherwise COND_STRING is set to NULL.  */
12984 
12985 static void
12986 catch_ada_exception_command_split (const char *args,
12987 				   bool is_catch_handlers_cmd,
12988                                    enum ada_exception_catchpoint_kind *ex,
12989 				   std::string *excep_string,
12990 				   std::string *cond_string)
12991 {
12992   std::string exception_name;
12993 
12994   exception_name = extract_arg (&args);
12995   if (exception_name == "if")
12996     {
12997       /* This is not an exception name; this is the start of a condition
12998 	 expression for a catchpoint on all exceptions.  So, "un-get"
12999 	 this token, and set exception_name to NULL.  */
13000       exception_name.clear ();
13001       args -= 2;
13002     }
13003 
13004   /* Check to see if we have a condition.  */
13005 
13006   args = skip_spaces (args);
13007   if (startswith (args, "if")
13008       && (isspace (args[2]) || args[2] == '\0'))
13009     {
13010       args += 2;
13011       args = skip_spaces (args);
13012 
13013       if (args[0] == '\0')
13014         error (_("Condition missing after `if' keyword"));
13015       *cond_string = args;
13016 
13017       args += strlen (args);
13018     }
13019 
13020   /* Check that we do not have any more arguments.  Anything else
13021      is unexpected.  */
13022 
13023   if (args[0] != '\0')
13024     error (_("Junk at end of expression"));
13025 
13026   if (is_catch_handlers_cmd)
13027     {
13028       /* Catch handling of exceptions.  */
13029       *ex = ada_catch_handlers;
13030       *excep_string = exception_name;
13031     }
13032   else if (exception_name.empty ())
13033     {
13034       /* Catch all exceptions.  */
13035       *ex = ada_catch_exception;
13036       excep_string->clear ();
13037     }
13038   else if (exception_name == "unhandled")
13039     {
13040       /* Catch unhandled exceptions.  */
13041       *ex = ada_catch_exception_unhandled;
13042       excep_string->clear ();
13043     }
13044   else
13045     {
13046       /* Catch a specific exception.  */
13047       *ex = ada_catch_exception;
13048       *excep_string = exception_name;
13049     }
13050 }
13051 
13052 /* Return the name of the symbol on which we should break in order to
13053    implement a catchpoint of the EX kind.  */
13054 
13055 static const char *
13056 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13057 {
13058   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13059 
13060   gdb_assert (data->exception_info != NULL);
13061 
13062   switch (ex)
13063     {
13064       case ada_catch_exception:
13065         return (data->exception_info->catch_exception_sym);
13066         break;
13067       case ada_catch_exception_unhandled:
13068         return (data->exception_info->catch_exception_unhandled_sym);
13069         break;
13070       case ada_catch_assert:
13071         return (data->exception_info->catch_assert_sym);
13072         break;
13073       case ada_catch_handlers:
13074         return (data->exception_info->catch_handlers_sym);
13075         break;
13076       default:
13077         internal_error (__FILE__, __LINE__,
13078                         _("unexpected catchpoint kind (%d)"), ex);
13079     }
13080 }
13081 
13082 /* Return the breakpoint ops "virtual table" used for catchpoints
13083    of the EX kind.  */
13084 
13085 static const struct breakpoint_ops *
13086 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13087 {
13088   switch (ex)
13089     {
13090       case ada_catch_exception:
13091         return (&catch_exception_breakpoint_ops);
13092         break;
13093       case ada_catch_exception_unhandled:
13094         return (&catch_exception_unhandled_breakpoint_ops);
13095         break;
13096       case ada_catch_assert:
13097         return (&catch_assert_breakpoint_ops);
13098         break;
13099       case ada_catch_handlers:
13100         return (&catch_handlers_breakpoint_ops);
13101         break;
13102       default:
13103         internal_error (__FILE__, __LINE__,
13104                         _("unexpected catchpoint kind (%d)"), ex);
13105     }
13106 }
13107 
13108 /* Return the condition that will be used to match the current exception
13109    being raised with the exception that the user wants to catch.  This
13110    assumes that this condition is used when the inferior just triggered
13111    an exception catchpoint.
13112    EX: the type of catchpoints used for catching Ada exceptions.  */
13113 
13114 static std::string
13115 ada_exception_catchpoint_cond_string (const char *excep_string,
13116                                       enum ada_exception_catchpoint_kind ex)
13117 {
13118   int i;
13119   bool is_standard_exc = false;
13120   std::string result;
13121 
13122   if (ex == ada_catch_handlers)
13123     {
13124       /* For exception handlers catchpoints, the condition string does
13125          not use the same parameter as for the other exceptions.  */
13126       result = ("long_integer (GNAT_GCC_exception_Access"
13127 		"(gcc_exception).all.occurrence.id)");
13128     }
13129   else
13130     result = "long_integer (e)";
13131 
13132   /* The standard exceptions are a special case.  They are defined in
13133      runtime units that have been compiled without debugging info; if
13134      EXCEP_STRING is the not-fully-qualified name of a standard
13135      exception (e.g. "constraint_error") then, during the evaluation
13136      of the condition expression, the symbol lookup on this name would
13137      *not* return this standard exception.  The catchpoint condition
13138      may then be set only on user-defined exceptions which have the
13139      same not-fully-qualified name (e.g. my_package.constraint_error).
13140 
13141      To avoid this unexcepted behavior, these standard exceptions are
13142      systematically prefixed by "standard".  This means that "catch
13143      exception constraint_error" is rewritten into "catch exception
13144      standard.constraint_error".
13145 
13146      If an exception named contraint_error is defined in another package of
13147      the inferior program, then the only way to specify this exception as a
13148      breakpoint condition is to use its fully-qualified named:
13149      e.g. my_package.constraint_error.  */
13150 
13151   for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13152     {
13153       if (strcmp (standard_exc [i], excep_string) == 0)
13154 	{
13155 	  is_standard_exc = true;
13156 	  break;
13157 	}
13158     }
13159 
13160   result += " = ";
13161 
13162   if (is_standard_exc)
13163     string_appendf (result, "long_integer (&standard.%s)", excep_string);
13164   else
13165     string_appendf (result, "long_integer (&%s)", excep_string);
13166 
13167   return result;
13168 }
13169 
13170 /* Return the symtab_and_line that should be used to insert an exception
13171    catchpoint of the TYPE kind.
13172 
13173    ADDR_STRING returns the name of the function where the real
13174    breakpoint that implements the catchpoints is set, depending on the
13175    type of catchpoint we need to create.  */
13176 
13177 static struct symtab_and_line
13178 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13179 		   std::string *addr_string, const struct breakpoint_ops **ops)
13180 {
13181   const char *sym_name;
13182   struct symbol *sym;
13183 
13184   /* First, find out which exception support info to use.  */
13185   ada_exception_support_info_sniffer ();
13186 
13187   /* Then lookup the function on which we will break in order to catch
13188      the Ada exceptions requested by the user.  */
13189   sym_name = ada_exception_sym_name (ex);
13190   sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13191 
13192   if (sym == NULL)
13193     error (_("Catchpoint symbol not found: %s"), sym_name);
13194 
13195   if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13196     error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13197 
13198   /* Set ADDR_STRING.  */
13199   *addr_string = sym_name;
13200 
13201   /* Set OPS.  */
13202   *ops = ada_exception_breakpoint_ops (ex);
13203 
13204   return find_function_start_sal (sym, 1);
13205 }
13206 
13207 /* Create an Ada exception catchpoint.
13208 
13209    EX_KIND is the kind of exception catchpoint to be created.
13210 
13211    If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13212    for all exceptions.  Otherwise, EXCEPT_STRING indicates the name
13213    of the exception to which this catchpoint applies.
13214 
13215    COND_STRING, if not empty, is the catchpoint condition.
13216 
13217    TEMPFLAG, if nonzero, means that the underlying breakpoint
13218    should be temporary.
13219 
13220    FROM_TTY is the usual argument passed to all commands implementations.  */
13221 
13222 void
13223 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13224 				 enum ada_exception_catchpoint_kind ex_kind,
13225 				 const std::string &excep_string,
13226 				 const std::string &cond_string,
13227 				 int tempflag,
13228 				 int disabled,
13229 				 int from_tty)
13230 {
13231   std::string addr_string;
13232   const struct breakpoint_ops *ops = NULL;
13233   struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13234 
13235   std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13236   init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13237 				 ops, tempflag, disabled, from_tty);
13238   c->excep_string = excep_string;
13239   create_excep_cond_exprs (c.get (), ex_kind);
13240   if (!cond_string.empty ())
13241     set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13242   install_breakpoint (0, std::move (c), 1);
13243 }
13244 
13245 /* Implement the "catch exception" command.  */
13246 
13247 static void
13248 catch_ada_exception_command (const char *arg_entry, int from_tty,
13249 			     struct cmd_list_element *command)
13250 {
13251   const char *arg = arg_entry;
13252   struct gdbarch *gdbarch = get_current_arch ();
13253   int tempflag;
13254   enum ada_exception_catchpoint_kind ex_kind;
13255   std::string excep_string;
13256   std::string cond_string;
13257 
13258   tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13259 
13260   if (!arg)
13261     arg = "";
13262   catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13263 				     &cond_string);
13264   create_ada_exception_catchpoint (gdbarch, ex_kind,
13265 				   excep_string, cond_string,
13266 				   tempflag, 1 /* enabled */,
13267 				   from_tty);
13268 }
13269 
13270 /* Implement the "catch handlers" command.  */
13271 
13272 static void
13273 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13274 			    struct cmd_list_element *command)
13275 {
13276   const char *arg = arg_entry;
13277   struct gdbarch *gdbarch = get_current_arch ();
13278   int tempflag;
13279   enum ada_exception_catchpoint_kind ex_kind;
13280   std::string excep_string;
13281   std::string cond_string;
13282 
13283   tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13284 
13285   if (!arg)
13286     arg = "";
13287   catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13288 				     &cond_string);
13289   create_ada_exception_catchpoint (gdbarch, ex_kind,
13290 				   excep_string, cond_string,
13291 				   tempflag, 1 /* enabled */,
13292 				   from_tty);
13293 }
13294 
13295 /* Split the arguments specified in a "catch assert" command.
13296 
13297    ARGS contains the command's arguments (or the empty string if
13298    no arguments were passed).
13299 
13300    If ARGS contains a condition, set COND_STRING to that condition
13301    (the memory needs to be deallocated after use).  */
13302 
13303 static void
13304 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13305 {
13306   args = skip_spaces (args);
13307 
13308   /* Check whether a condition was provided.  */
13309   if (startswith (args, "if")
13310       && (isspace (args[2]) || args[2] == '\0'))
13311     {
13312       args += 2;
13313       args = skip_spaces (args);
13314       if (args[0] == '\0')
13315         error (_("condition missing after `if' keyword"));
13316       cond_string.assign (args);
13317     }
13318 
13319   /* Otherwise, there should be no other argument at the end of
13320      the command.  */
13321   else if (args[0] != '\0')
13322     error (_("Junk at end of arguments."));
13323 }
13324 
13325 /* Implement the "catch assert" command.  */
13326 
13327 static void
13328 catch_assert_command (const char *arg_entry, int from_tty,
13329 		      struct cmd_list_element *command)
13330 {
13331   const char *arg = arg_entry;
13332   struct gdbarch *gdbarch = get_current_arch ();
13333   int tempflag;
13334   std::string cond_string;
13335 
13336   tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13337 
13338   if (!arg)
13339     arg = "";
13340   catch_ada_assert_command_split (arg, cond_string);
13341   create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13342 				   "", cond_string,
13343 				   tempflag, 1 /* enabled */,
13344 				   from_tty);
13345 }
13346 
13347 /* Return non-zero if the symbol SYM is an Ada exception object.  */
13348 
13349 static int
13350 ada_is_exception_sym (struct symbol *sym)
13351 {
13352   const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13353 
13354   return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13355           && SYMBOL_CLASS (sym) != LOC_BLOCK
13356           && SYMBOL_CLASS (sym) != LOC_CONST
13357           && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13358           && type_name != NULL && strcmp (type_name, "exception") == 0);
13359 }
13360 
13361 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13362    Ada exception object.  This matches all exceptions except the ones
13363    defined by the Ada language.  */
13364 
13365 static int
13366 ada_is_non_standard_exception_sym (struct symbol *sym)
13367 {
13368   int i;
13369 
13370   if (!ada_is_exception_sym (sym))
13371     return 0;
13372 
13373   for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13374     if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13375       return 0;  /* A standard exception.  */
13376 
13377   /* Numeric_Error is also a standard exception, so exclude it.
13378      See the STANDARD_EXC description for more details as to why
13379      this exception is not listed in that array.  */
13380   if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13381     return 0;
13382 
13383   return 1;
13384 }
13385 
13386 /* A helper function for std::sort, comparing two struct ada_exc_info
13387    objects.
13388 
13389    The comparison is determined first by exception name, and then
13390    by exception address.  */
13391 
13392 bool
13393 ada_exc_info::operator< (const ada_exc_info &other) const
13394 {
13395   int result;
13396 
13397   result = strcmp (name, other.name);
13398   if (result < 0)
13399     return true;
13400   if (result == 0 && addr < other.addr)
13401     return true;
13402   return false;
13403 }
13404 
13405 bool
13406 ada_exc_info::operator== (const ada_exc_info &other) const
13407 {
13408   return addr == other.addr && strcmp (name, other.name) == 0;
13409 }
13410 
13411 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13412    routine, but keeping the first SKIP elements untouched.
13413 
13414    All duplicates are also removed.  */
13415 
13416 static void
13417 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13418 				      int skip)
13419 {
13420   std::sort (exceptions->begin () + skip, exceptions->end ());
13421   exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13422 		     exceptions->end ());
13423 }
13424 
13425 /* Add all exceptions defined by the Ada standard whose name match
13426    a regular expression.
13427 
13428    If PREG is not NULL, then this regexp_t object is used to
13429    perform the symbol name matching.  Otherwise, no name-based
13430    filtering is performed.
13431 
13432    EXCEPTIONS is a vector of exceptions to which matching exceptions
13433    gets pushed.  */
13434 
13435 static void
13436 ada_add_standard_exceptions (compiled_regex *preg,
13437 			     std::vector<ada_exc_info> *exceptions)
13438 {
13439   int i;
13440 
13441   for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13442     {
13443       if (preg == NULL
13444 	  || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13445 	{
13446 	  struct bound_minimal_symbol msymbol
13447 	    = ada_lookup_simple_minsym (standard_exc[i]);
13448 
13449 	  if (msymbol.minsym != NULL)
13450 	    {
13451 	      struct ada_exc_info info
13452 		= {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13453 
13454 	      exceptions->push_back (info);
13455 	    }
13456 	}
13457     }
13458 }
13459 
13460 /* Add all Ada exceptions defined locally and accessible from the given
13461    FRAME.
13462 
13463    If PREG is not NULL, then this regexp_t object is used to
13464    perform the symbol name matching.  Otherwise, no name-based
13465    filtering is performed.
13466 
13467    EXCEPTIONS is a vector of exceptions to which matching exceptions
13468    gets pushed.  */
13469 
13470 static void
13471 ada_add_exceptions_from_frame (compiled_regex *preg,
13472 			       struct frame_info *frame,
13473 			       std::vector<ada_exc_info> *exceptions)
13474 {
13475   const struct block *block = get_frame_block (frame, 0);
13476 
13477   while (block != 0)
13478     {
13479       struct block_iterator iter;
13480       struct symbol *sym;
13481 
13482       ALL_BLOCK_SYMBOLS (block, iter, sym)
13483 	{
13484 	  switch (SYMBOL_CLASS (sym))
13485 	    {
13486 	    case LOC_TYPEDEF:
13487 	    case LOC_BLOCK:
13488 	    case LOC_CONST:
13489 	      break;
13490 	    default:
13491 	      if (ada_is_exception_sym (sym))
13492 		{
13493 		  struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13494 					      SYMBOL_VALUE_ADDRESS (sym)};
13495 
13496 		  exceptions->push_back (info);
13497 		}
13498 	    }
13499 	}
13500       if (BLOCK_FUNCTION (block) != NULL)
13501 	break;
13502       block = BLOCK_SUPERBLOCK (block);
13503     }
13504 }
13505 
13506 /* Return true if NAME matches PREG or if PREG is NULL.  */
13507 
13508 static bool
13509 name_matches_regex (const char *name, compiled_regex *preg)
13510 {
13511   return (preg == NULL
13512 	  || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13513 }
13514 
13515 /* Add all exceptions defined globally whose name name match
13516    a regular expression, excluding standard exceptions.
13517 
13518    The reason we exclude standard exceptions is that they need
13519    to be handled separately: Standard exceptions are defined inside
13520    a runtime unit which is normally not compiled with debugging info,
13521    and thus usually do not show up in our symbol search.  However,
13522    if the unit was in fact built with debugging info, we need to
13523    exclude them because they would duplicate the entry we found
13524    during the special loop that specifically searches for those
13525    standard exceptions.
13526 
13527    If PREG is not NULL, then this regexp_t object is used to
13528    perform the symbol name matching.  Otherwise, no name-based
13529    filtering is performed.
13530 
13531    EXCEPTIONS is a vector of exceptions to which matching exceptions
13532    gets pushed.  */
13533 
13534 static void
13535 ada_add_global_exceptions (compiled_regex *preg,
13536 			   std::vector<ada_exc_info> *exceptions)
13537 {
13538   /* In Ada, the symbol "search name" is a linkage name, whereas the
13539      regular expression used to do the matching refers to the natural
13540      name.  So match against the decoded name.  */
13541   expand_symtabs_matching (NULL,
13542 			   lookup_name_info::match_any (),
13543 			   [&] (const char *search_name)
13544 			   {
13545 			     const char *decoded = ada_decode (search_name);
13546 			     return name_matches_regex (decoded, preg);
13547 			   },
13548 			   NULL,
13549 			   VARIABLES_DOMAIN);
13550 
13551   for (objfile *objfile : current_program_space->objfiles ())
13552     {
13553       for (compunit_symtab *s : objfile->compunits ())
13554 	{
13555 	  const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13556 	  int i;
13557 
13558 	  for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13559 	    {
13560 	      struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13561 	      struct block_iterator iter;
13562 	      struct symbol *sym;
13563 
13564 	      ALL_BLOCK_SYMBOLS (b, iter, sym)
13565 		if (ada_is_non_standard_exception_sym (sym)
13566 		    && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13567 		  {
13568 		    struct ada_exc_info info
13569 		      = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13570 
13571 		    exceptions->push_back (info);
13572 		  }
13573 	    }
13574 	}
13575     }
13576 }
13577 
13578 /* Implements ada_exceptions_list with the regular expression passed
13579    as a regex_t, rather than a string.
13580 
13581    If not NULL, PREG is used to filter out exceptions whose names
13582    do not match.  Otherwise, all exceptions are listed.  */
13583 
13584 static std::vector<ada_exc_info>
13585 ada_exceptions_list_1 (compiled_regex *preg)
13586 {
13587   std::vector<ada_exc_info> result;
13588   int prev_len;
13589 
13590   /* First, list the known standard exceptions.  These exceptions
13591      need to be handled separately, as they are usually defined in
13592      runtime units that have been compiled without debugging info.  */
13593 
13594   ada_add_standard_exceptions (preg, &result);
13595 
13596   /* Next, find all exceptions whose scope is local and accessible
13597      from the currently selected frame.  */
13598 
13599   if (has_stack_frames ())
13600     {
13601       prev_len = result.size ();
13602       ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13603 				     &result);
13604       if (result.size () > prev_len)
13605 	sort_remove_dups_ada_exceptions_list (&result, prev_len);
13606     }
13607 
13608   /* Add all exceptions whose scope is global.  */
13609 
13610   prev_len = result.size ();
13611   ada_add_global_exceptions (preg, &result);
13612   if (result.size () > prev_len)
13613     sort_remove_dups_ada_exceptions_list (&result, prev_len);
13614 
13615   return result;
13616 }
13617 
13618 /* Return a vector of ada_exc_info.
13619 
13620    If REGEXP is NULL, all exceptions are included in the result.
13621    Otherwise, it should contain a valid regular expression,
13622    and only the exceptions whose names match that regular expression
13623    are included in the result.
13624 
13625    The exceptions are sorted in the following order:
13626      - Standard exceptions (defined by the Ada language), in
13627        alphabetical order;
13628      - Exceptions only visible from the current frame, in
13629        alphabetical order;
13630      - Exceptions whose scope is global, in alphabetical order.  */
13631 
13632 std::vector<ada_exc_info>
13633 ada_exceptions_list (const char *regexp)
13634 {
13635   if (regexp == NULL)
13636     return ada_exceptions_list_1 (NULL);
13637 
13638   compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13639   return ada_exceptions_list_1 (&reg);
13640 }
13641 
13642 /* Implement the "info exceptions" command.  */
13643 
13644 static void
13645 info_exceptions_command (const char *regexp, int from_tty)
13646 {
13647   struct gdbarch *gdbarch = get_current_arch ();
13648 
13649   std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13650 
13651   if (regexp != NULL)
13652     printf_filtered
13653       (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13654   else
13655     printf_filtered (_("All defined Ada exceptions:\n"));
13656 
13657   for (const ada_exc_info &info : exceptions)
13658     printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13659 }
13660 
13661                                 /* Operators */
13662 /* Information about operators given special treatment in functions
13663    below.  */
13664 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>).  */
13665 
13666 #define ADA_OPERATORS \
13667     OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13668     OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13669     OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13670     OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13671     OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13672     OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13673     OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13674     OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13675     OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13676     OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13677     OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13678     OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13679     OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13680     OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13681     OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13682     OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13683     OP_DEFN (OP_OTHERS, 1, 1, 0) \
13684     OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13685     OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13686 
13687 static void
13688 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13689 		     int *argsp)
13690 {
13691   switch (exp->elts[pc - 1].opcode)
13692     {
13693     default:
13694       operator_length_standard (exp, pc, oplenp, argsp);
13695       break;
13696 
13697 #define OP_DEFN(op, len, args, binop) \
13698     case op: *oplenp = len; *argsp = args; break;
13699       ADA_OPERATORS;
13700 #undef OP_DEFN
13701 
13702     case OP_AGGREGATE:
13703       *oplenp = 3;
13704       *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13705       break;
13706 
13707     case OP_CHOICES:
13708       *oplenp = 3;
13709       *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13710       break;
13711     }
13712 }
13713 
13714 /* Implementation of the exp_descriptor method operator_check.  */
13715 
13716 static int
13717 ada_operator_check (struct expression *exp, int pos,
13718 		    int (*objfile_func) (struct objfile *objfile, void *data),
13719 		    void *data)
13720 {
13721   const union exp_element *const elts = exp->elts;
13722   struct type *type = NULL;
13723 
13724   switch (elts[pos].opcode)
13725     {
13726       case UNOP_IN_RANGE:
13727       case UNOP_QUAL:
13728 	type = elts[pos + 1].type;
13729 	break;
13730 
13731       default:
13732 	return operator_check_standard (exp, pos, objfile_func, data);
13733     }
13734 
13735   /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL.  */
13736 
13737   if (type && TYPE_OBJFILE (type)
13738       && (*objfile_func) (TYPE_OBJFILE (type), data))
13739     return 1;
13740 
13741   return 0;
13742 }
13743 
13744 static const char *
13745 ada_op_name (enum exp_opcode opcode)
13746 {
13747   switch (opcode)
13748     {
13749     default:
13750       return op_name_standard (opcode);
13751 
13752 #define OP_DEFN(op, len, args, binop) case op: return #op;
13753       ADA_OPERATORS;
13754 #undef OP_DEFN
13755 
13756     case OP_AGGREGATE:
13757       return "OP_AGGREGATE";
13758     case OP_CHOICES:
13759       return "OP_CHOICES";
13760     case OP_NAME:
13761       return "OP_NAME";
13762     }
13763 }
13764 
13765 /* As for operator_length, but assumes PC is pointing at the first
13766    element of the operator, and gives meaningful results only for the
13767    Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise.  */
13768 
13769 static void
13770 ada_forward_operator_length (struct expression *exp, int pc,
13771                              int *oplenp, int *argsp)
13772 {
13773   switch (exp->elts[pc].opcode)
13774     {
13775     default:
13776       *oplenp = *argsp = 0;
13777       break;
13778 
13779 #define OP_DEFN(op, len, args, binop) \
13780     case op: *oplenp = len; *argsp = args; break;
13781       ADA_OPERATORS;
13782 #undef OP_DEFN
13783 
13784     case OP_AGGREGATE:
13785       *oplenp = 3;
13786       *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13787       break;
13788 
13789     case OP_CHOICES:
13790       *oplenp = 3;
13791       *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13792       break;
13793 
13794     case OP_STRING:
13795     case OP_NAME:
13796       {
13797 	int len = longest_to_int (exp->elts[pc + 1].longconst);
13798 
13799 	*oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13800 	*argsp = 0;
13801 	break;
13802       }
13803     }
13804 }
13805 
13806 static int
13807 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13808 {
13809   enum exp_opcode op = exp->elts[elt].opcode;
13810   int oplen, nargs;
13811   int pc = elt;
13812   int i;
13813 
13814   ada_forward_operator_length (exp, elt, &oplen, &nargs);
13815 
13816   switch (op)
13817     {
13818       /* Ada attributes ('Foo).  */
13819     case OP_ATR_FIRST:
13820     case OP_ATR_LAST:
13821     case OP_ATR_LENGTH:
13822     case OP_ATR_IMAGE:
13823     case OP_ATR_MAX:
13824     case OP_ATR_MIN:
13825     case OP_ATR_MODULUS:
13826     case OP_ATR_POS:
13827     case OP_ATR_SIZE:
13828     case OP_ATR_TAG:
13829     case OP_ATR_VAL:
13830       break;
13831 
13832     case UNOP_IN_RANGE:
13833     case UNOP_QUAL:
13834       /* XXX: gdb_sprint_host_address, type_sprint */
13835       fprintf_filtered (stream, _("Type @"));
13836       gdb_print_host_address (exp->elts[pc + 1].type, stream);
13837       fprintf_filtered (stream, " (");
13838       type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13839       fprintf_filtered (stream, ")");
13840       break;
13841     case BINOP_IN_BOUNDS:
13842       fprintf_filtered (stream, " (%d)",
13843 			longest_to_int (exp->elts[pc + 2].longconst));
13844       break;
13845     case TERNOP_IN_RANGE:
13846       break;
13847 
13848     case OP_AGGREGATE:
13849     case OP_OTHERS:
13850     case OP_DISCRETE_RANGE:
13851     case OP_POSITIONAL:
13852     case OP_CHOICES:
13853       break;
13854 
13855     case OP_NAME:
13856     case OP_STRING:
13857       {
13858 	char *name = &exp->elts[elt + 2].string;
13859 	int len = longest_to_int (exp->elts[elt + 1].longconst);
13860 
13861 	fprintf_filtered (stream, "Text: `%.*s'", len, name);
13862 	break;
13863       }
13864 
13865     default:
13866       return dump_subexp_body_standard (exp, stream, elt);
13867     }
13868 
13869   elt += oplen;
13870   for (i = 0; i < nargs; i += 1)
13871     elt = dump_subexp (exp, stream, elt);
13872 
13873   return elt;
13874 }
13875 
13876 /* The Ada extension of print_subexp (q.v.).  */
13877 
13878 static void
13879 ada_print_subexp (struct expression *exp, int *pos,
13880                   struct ui_file *stream, enum precedence prec)
13881 {
13882   int oplen, nargs, i;
13883   int pc = *pos;
13884   enum exp_opcode op = exp->elts[pc].opcode;
13885 
13886   ada_forward_operator_length (exp, pc, &oplen, &nargs);
13887 
13888   *pos += oplen;
13889   switch (op)
13890     {
13891     default:
13892       *pos -= oplen;
13893       print_subexp_standard (exp, pos, stream, prec);
13894       return;
13895 
13896     case OP_VAR_VALUE:
13897       fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13898       return;
13899 
13900     case BINOP_IN_BOUNDS:
13901       /* XXX: sprint_subexp */
13902       print_subexp (exp, pos, stream, PREC_SUFFIX);
13903       fputs_filtered (" in ", stream);
13904       print_subexp (exp, pos, stream, PREC_SUFFIX);
13905       fputs_filtered ("'range", stream);
13906       if (exp->elts[pc + 1].longconst > 1)
13907         fprintf_filtered (stream, "(%ld)",
13908                           (long) exp->elts[pc + 1].longconst);
13909       return;
13910 
13911     case TERNOP_IN_RANGE:
13912       if (prec >= PREC_EQUAL)
13913         fputs_filtered ("(", stream);
13914       /* XXX: sprint_subexp */
13915       print_subexp (exp, pos, stream, PREC_SUFFIX);
13916       fputs_filtered (" in ", stream);
13917       print_subexp (exp, pos, stream, PREC_EQUAL);
13918       fputs_filtered (" .. ", stream);
13919       print_subexp (exp, pos, stream, PREC_EQUAL);
13920       if (prec >= PREC_EQUAL)
13921         fputs_filtered (")", stream);
13922       return;
13923 
13924     case OP_ATR_FIRST:
13925     case OP_ATR_LAST:
13926     case OP_ATR_LENGTH:
13927     case OP_ATR_IMAGE:
13928     case OP_ATR_MAX:
13929     case OP_ATR_MIN:
13930     case OP_ATR_MODULUS:
13931     case OP_ATR_POS:
13932     case OP_ATR_SIZE:
13933     case OP_ATR_TAG:
13934     case OP_ATR_VAL:
13935       if (exp->elts[*pos].opcode == OP_TYPE)
13936         {
13937           if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13938             LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13939 			   &type_print_raw_options);
13940           *pos += 3;
13941         }
13942       else
13943         print_subexp (exp, pos, stream, PREC_SUFFIX);
13944       fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13945       if (nargs > 1)
13946         {
13947           int tem;
13948 
13949           for (tem = 1; tem < nargs; tem += 1)
13950             {
13951               fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13952               print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13953             }
13954           fputs_filtered (")", stream);
13955         }
13956       return;
13957 
13958     case UNOP_QUAL:
13959       type_print (exp->elts[pc + 1].type, "", stream, 0);
13960       fputs_filtered ("'(", stream);
13961       print_subexp (exp, pos, stream, PREC_PREFIX);
13962       fputs_filtered (")", stream);
13963       return;
13964 
13965     case UNOP_IN_RANGE:
13966       /* XXX: sprint_subexp */
13967       print_subexp (exp, pos, stream, PREC_SUFFIX);
13968       fputs_filtered (" in ", stream);
13969       LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13970 		     &type_print_raw_options);
13971       return;
13972 
13973     case OP_DISCRETE_RANGE:
13974       print_subexp (exp, pos, stream, PREC_SUFFIX);
13975       fputs_filtered ("..", stream);
13976       print_subexp (exp, pos, stream, PREC_SUFFIX);
13977       return;
13978 
13979     case OP_OTHERS:
13980       fputs_filtered ("others => ", stream);
13981       print_subexp (exp, pos, stream, PREC_SUFFIX);
13982       return;
13983 
13984     case OP_CHOICES:
13985       for (i = 0; i < nargs-1; i += 1)
13986 	{
13987 	  if (i > 0)
13988 	    fputs_filtered ("|", stream);
13989 	  print_subexp (exp, pos, stream, PREC_SUFFIX);
13990 	}
13991       fputs_filtered (" => ", stream);
13992       print_subexp (exp, pos, stream, PREC_SUFFIX);
13993       return;
13994 
13995     case OP_POSITIONAL:
13996       print_subexp (exp, pos, stream, PREC_SUFFIX);
13997       return;
13998 
13999     case OP_AGGREGATE:
14000       fputs_filtered ("(", stream);
14001       for (i = 0; i < nargs; i += 1)
14002 	{
14003 	  if (i > 0)
14004 	    fputs_filtered (", ", stream);
14005 	  print_subexp (exp, pos, stream, PREC_SUFFIX);
14006 	}
14007       fputs_filtered (")", stream);
14008       return;
14009     }
14010 }
14011 
14012 /* Table mapping opcodes into strings for printing operators
14013    and precedences of the operators.  */
14014 
14015 static const struct op_print ada_op_print_tab[] = {
14016   {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14017   {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14018   {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14019   {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14020   {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14021   {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14022   {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14023   {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14024   {"<=", BINOP_LEQ, PREC_ORDER, 0},
14025   {">=", BINOP_GEQ, PREC_ORDER, 0},
14026   {">", BINOP_GTR, PREC_ORDER, 0},
14027   {"<", BINOP_LESS, PREC_ORDER, 0},
14028   {">>", BINOP_RSH, PREC_SHIFT, 0},
14029   {"<<", BINOP_LSH, PREC_SHIFT, 0},
14030   {"+", BINOP_ADD, PREC_ADD, 0},
14031   {"-", BINOP_SUB, PREC_ADD, 0},
14032   {"&", BINOP_CONCAT, PREC_ADD, 0},
14033   {"*", BINOP_MUL, PREC_MUL, 0},
14034   {"/", BINOP_DIV, PREC_MUL, 0},
14035   {"rem", BINOP_REM, PREC_MUL, 0},
14036   {"mod", BINOP_MOD, PREC_MUL, 0},
14037   {"**", BINOP_EXP, PREC_REPEAT, 0},
14038   {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14039   {"-", UNOP_NEG, PREC_PREFIX, 0},
14040   {"+", UNOP_PLUS, PREC_PREFIX, 0},
14041   {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14042   {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14043   {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14044   {".all", UNOP_IND, PREC_SUFFIX, 1},
14045   {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14046   {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14047   {NULL, OP_NULL, PREC_SUFFIX, 0}
14048 };
14049 
14050 enum ada_primitive_types {
14051   ada_primitive_type_int,
14052   ada_primitive_type_long,
14053   ada_primitive_type_short,
14054   ada_primitive_type_char,
14055   ada_primitive_type_float,
14056   ada_primitive_type_double,
14057   ada_primitive_type_void,
14058   ada_primitive_type_long_long,
14059   ada_primitive_type_long_double,
14060   ada_primitive_type_natural,
14061   ada_primitive_type_positive,
14062   ada_primitive_type_system_address,
14063   ada_primitive_type_storage_offset,
14064   nr_ada_primitive_types
14065 };
14066 
14067 static void
14068 ada_language_arch_info (struct gdbarch *gdbarch,
14069 			struct language_arch_info *lai)
14070 {
14071   const struct builtin_type *builtin = builtin_type (gdbarch);
14072 
14073   lai->primitive_type_vector
14074     = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14075 			      struct type *);
14076 
14077   lai->primitive_type_vector [ada_primitive_type_int]
14078     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14079 			 0, "integer");
14080   lai->primitive_type_vector [ada_primitive_type_long]
14081     = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14082 			 0, "long_integer");
14083   lai->primitive_type_vector [ada_primitive_type_short]
14084     = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14085 			 0, "short_integer");
14086   lai->string_char_type
14087     = lai->primitive_type_vector [ada_primitive_type_char]
14088     = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14089   lai->primitive_type_vector [ada_primitive_type_float]
14090     = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14091 		       "float", gdbarch_float_format (gdbarch));
14092   lai->primitive_type_vector [ada_primitive_type_double]
14093     = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14094 		       "long_float", gdbarch_double_format (gdbarch));
14095   lai->primitive_type_vector [ada_primitive_type_long_long]
14096     = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14097 			 0, "long_long_integer");
14098   lai->primitive_type_vector [ada_primitive_type_long_double]
14099     = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14100 		       "long_long_float", gdbarch_long_double_format (gdbarch));
14101   lai->primitive_type_vector [ada_primitive_type_natural]
14102     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14103 			 0, "natural");
14104   lai->primitive_type_vector [ada_primitive_type_positive]
14105     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14106 			 0, "positive");
14107   lai->primitive_type_vector [ada_primitive_type_void]
14108     = builtin->builtin_void;
14109 
14110   lai->primitive_type_vector [ada_primitive_type_system_address]
14111     = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14112 				      "void"));
14113   TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14114     = "system__address";
14115 
14116   /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14117      type.  This is a signed integral type whose size is the same as
14118      the size of addresses.  */
14119   {
14120     unsigned int addr_length = TYPE_LENGTH
14121       (lai->primitive_type_vector [ada_primitive_type_system_address]);
14122 
14123     lai->primitive_type_vector [ada_primitive_type_storage_offset]
14124       = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14125 			   "storage_offset");
14126   }
14127 
14128   lai->bool_type_symbol = NULL;
14129   lai->bool_type_default = builtin->builtin_bool;
14130 }
14131 
14132 				/* Language vector */
14133 
14134 /* Not really used, but needed in the ada_language_defn.  */
14135 
14136 static void
14137 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14138 {
14139   ada_emit_char (c, type, stream, quoter, 1);
14140 }
14141 
14142 static int
14143 parse (struct parser_state *ps)
14144 {
14145   warnings_issued = 0;
14146   return ada_parse (ps);
14147 }
14148 
14149 static const struct exp_descriptor ada_exp_descriptor = {
14150   ada_print_subexp,
14151   ada_operator_length,
14152   ada_operator_check,
14153   ada_op_name,
14154   ada_dump_subexp_body,
14155   ada_evaluate_subexp
14156 };
14157 
14158 /* symbol_name_matcher_ftype adapter for wild_match.  */
14159 
14160 static bool
14161 do_wild_match (const char *symbol_search_name,
14162 	       const lookup_name_info &lookup_name,
14163 	       completion_match_result *comp_match_res)
14164 {
14165   return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14166 }
14167 
14168 /* symbol_name_matcher_ftype adapter for full_match.  */
14169 
14170 static bool
14171 do_full_match (const char *symbol_search_name,
14172 	       const lookup_name_info &lookup_name,
14173 	       completion_match_result *comp_match_res)
14174 {
14175   return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14176 }
14177 
14178 /* symbol_name_matcher_ftype for exact (verbatim) matches.  */
14179 
14180 static bool
14181 do_exact_match (const char *symbol_search_name,
14182 		const lookup_name_info &lookup_name,
14183 		completion_match_result *comp_match_res)
14184 {
14185   return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14186 }
14187 
14188 /* Build the Ada lookup name for LOOKUP_NAME.  */
14189 
14190 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14191 {
14192   const std::string &user_name = lookup_name.name ();
14193 
14194   if (user_name[0] == '<')
14195     {
14196       if (user_name.back () == '>')
14197 	m_encoded_name = user_name.substr (1, user_name.size () - 2);
14198       else
14199 	m_encoded_name = user_name.substr (1, user_name.size () - 1);
14200       m_encoded_p = true;
14201       m_verbatim_p = true;
14202       m_wild_match_p = false;
14203       m_standard_p = false;
14204     }
14205   else
14206     {
14207       m_verbatim_p = false;
14208 
14209       m_encoded_p = user_name.find ("__") != std::string::npos;
14210 
14211       if (!m_encoded_p)
14212 	{
14213 	  const char *folded = ada_fold_name (user_name.c_str ());
14214 	  const char *encoded = ada_encode_1 (folded, false);
14215 	  if (encoded != NULL)
14216 	    m_encoded_name = encoded;
14217 	  else
14218 	    m_encoded_name = user_name;
14219 	}
14220       else
14221 	m_encoded_name = user_name;
14222 
14223       /* Handle the 'package Standard' special case.  See description
14224 	 of m_standard_p.  */
14225       if (startswith (m_encoded_name.c_str (), "standard__"))
14226 	{
14227 	  m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14228 	  m_standard_p = true;
14229 	}
14230       else
14231 	m_standard_p = false;
14232 
14233       /* If the name contains a ".", then the user is entering a fully
14234 	 qualified entity name, and the match must not be done in wild
14235 	 mode.  Similarly, if the user wants to complete what looks
14236 	 like an encoded name, the match must not be done in wild
14237 	 mode.  Also, in the standard__ special case always do
14238 	 non-wild matching.  */
14239       m_wild_match_p
14240 	= (lookup_name.match_type () != symbol_name_match_type::FULL
14241 	   && !m_encoded_p
14242 	   && !m_standard_p
14243 	   && user_name.find ('.') == std::string::npos);
14244     }
14245 }
14246 
14247 /* symbol_name_matcher_ftype method for Ada.  This only handles
14248    completion mode.  */
14249 
14250 static bool
14251 ada_symbol_name_matches (const char *symbol_search_name,
14252 			 const lookup_name_info &lookup_name,
14253 			 completion_match_result *comp_match_res)
14254 {
14255   return lookup_name.ada ().matches (symbol_search_name,
14256 				     lookup_name.match_type (),
14257 				     comp_match_res);
14258 }
14259 
14260 /* A name matcher that matches the symbol name exactly, with
14261    strcmp.  */
14262 
14263 static bool
14264 literal_symbol_name_matcher (const char *symbol_search_name,
14265 			     const lookup_name_info &lookup_name,
14266 			     completion_match_result *comp_match_res)
14267 {
14268   const std::string &name = lookup_name.name ();
14269 
14270   int cmp = (lookup_name.completion_mode ()
14271 	     ? strncmp (symbol_search_name, name.c_str (), name.size ())
14272 	     : strcmp (symbol_search_name, name.c_str ()));
14273   if (cmp == 0)
14274     {
14275       if (comp_match_res != NULL)
14276 	comp_match_res->set_match (symbol_search_name);
14277       return true;
14278     }
14279   else
14280     return false;
14281 }
14282 
14283 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14284    Ada.  */
14285 
14286 static symbol_name_matcher_ftype *
14287 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14288 {
14289   if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14290     return literal_symbol_name_matcher;
14291 
14292   if (lookup_name.completion_mode ())
14293     return ada_symbol_name_matches;
14294   else
14295     {
14296       if (lookup_name.ada ().wild_match_p ())
14297 	return do_wild_match;
14298       else if (lookup_name.ada ().verbatim_p ())
14299 	return do_exact_match;
14300       else
14301 	return do_full_match;
14302     }
14303 }
14304 
14305 /* Implement the "la_read_var_value" language_defn method for Ada.  */
14306 
14307 static struct value *
14308 ada_read_var_value (struct symbol *var, const struct block *var_block,
14309 		    struct frame_info *frame)
14310 {
14311   const struct block *frame_block = NULL;
14312   struct symbol *renaming_sym = NULL;
14313 
14314   /* The only case where default_read_var_value is not sufficient
14315      is when VAR is a renaming...  */
14316   if (frame)
14317     frame_block = get_frame_block (frame, NULL);
14318   if (frame_block)
14319     renaming_sym = ada_find_renaming_symbol (var, frame_block);
14320   if (renaming_sym != NULL)
14321     return ada_read_renaming_var_value (renaming_sym, frame_block);
14322 
14323   /* This is a typical case where we expect the default_read_var_value
14324      function to work.  */
14325   return default_read_var_value (var, var_block, frame);
14326 }
14327 
14328 static const char *ada_extensions[] =
14329 {
14330   ".adb", ".ads", ".a", ".ada", ".dg", NULL
14331 };
14332 
14333 extern const struct language_defn ada_language_defn = {
14334   "ada",                        /* Language name */
14335   "Ada",
14336   language_ada,
14337   range_check_off,
14338   case_sensitive_on,            /* Yes, Ada is case-insensitive, but
14339                                    that's not quite what this means.  */
14340   array_row_major,
14341   macro_expansion_no,
14342   ada_extensions,
14343   &ada_exp_descriptor,
14344   parse,
14345   resolve,
14346   ada_printchar,                /* Print a character constant */
14347   ada_printstr,                 /* Function to print string constant */
14348   emit_char,                    /* Function to print single char (not used) */
14349   ada_print_type,               /* Print a type using appropriate syntax */
14350   ada_print_typedef,            /* Print a typedef using appropriate syntax */
14351   ada_val_print,                /* Print a value using appropriate syntax */
14352   ada_value_print,              /* Print a top-level value */
14353   ada_read_var_value,		/* la_read_var_value */
14354   NULL,                         /* Language specific skip_trampoline */
14355   NULL,                         /* name_of_this */
14356   true,                         /* la_store_sym_names_in_linkage_form_p */
14357   ada_lookup_symbol_nonlocal,   /* Looking up non-local symbols.  */
14358   basic_lookup_transparent_type,        /* lookup_transparent_type */
14359   ada_la_decode,                /* Language specific symbol demangler */
14360   ada_sniff_from_mangled_name,
14361   NULL,                         /* Language specific
14362 				   class_name_from_physname */
14363   ada_op_print_tab,             /* expression operators for printing */
14364   0,                            /* c-style arrays */
14365   1,                            /* String lower bound */
14366   ada_get_gdb_completer_word_break_characters,
14367   ada_collect_symbol_completion_matches,
14368   ada_language_arch_info,
14369   ada_print_array_index,
14370   default_pass_by_reference,
14371   c_get_string,
14372   ada_watch_location_expression,
14373   ada_get_symbol_name_matcher,	/* la_get_symbol_name_matcher */
14374   ada_iterate_over_symbols,
14375   default_search_name_hash,
14376   &ada_varobj_ops,
14377   NULL,
14378   NULL,
14379   LANG_MAGIC
14380 };
14381 
14382 /* Command-list for the "set/show ada" prefix command.  */
14383 static struct cmd_list_element *set_ada_list;
14384 static struct cmd_list_element *show_ada_list;
14385 
14386 /* Implement the "set ada" prefix command.  */
14387 
14388 static void
14389 set_ada_command (const char *arg, int from_tty)
14390 {
14391   printf_unfiltered (_(\
14392 "\"set ada\" must be followed by the name of a setting.\n"));
14393   help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14394 }
14395 
14396 /* Implement the "show ada" prefix command.  */
14397 
14398 static void
14399 show_ada_command (const char *args, int from_tty)
14400 {
14401   cmd_show_list (show_ada_list, from_tty, "");
14402 }
14403 
14404 static void
14405 initialize_ada_catchpoint_ops (void)
14406 {
14407   struct breakpoint_ops *ops;
14408 
14409   initialize_breakpoint_ops ();
14410 
14411   ops = &catch_exception_breakpoint_ops;
14412   *ops = bkpt_breakpoint_ops;
14413   ops->allocate_location = allocate_location_catch_exception;
14414   ops->re_set = re_set_catch_exception;
14415   ops->check_status = check_status_catch_exception;
14416   ops->print_it = print_it_catch_exception;
14417   ops->print_one = print_one_catch_exception;
14418   ops->print_mention = print_mention_catch_exception;
14419   ops->print_recreate = print_recreate_catch_exception;
14420 
14421   ops = &catch_exception_unhandled_breakpoint_ops;
14422   *ops = bkpt_breakpoint_ops;
14423   ops->allocate_location = allocate_location_catch_exception_unhandled;
14424   ops->re_set = re_set_catch_exception_unhandled;
14425   ops->check_status = check_status_catch_exception_unhandled;
14426   ops->print_it = print_it_catch_exception_unhandled;
14427   ops->print_one = print_one_catch_exception_unhandled;
14428   ops->print_mention = print_mention_catch_exception_unhandled;
14429   ops->print_recreate = print_recreate_catch_exception_unhandled;
14430 
14431   ops = &catch_assert_breakpoint_ops;
14432   *ops = bkpt_breakpoint_ops;
14433   ops->allocate_location = allocate_location_catch_assert;
14434   ops->re_set = re_set_catch_assert;
14435   ops->check_status = check_status_catch_assert;
14436   ops->print_it = print_it_catch_assert;
14437   ops->print_one = print_one_catch_assert;
14438   ops->print_mention = print_mention_catch_assert;
14439   ops->print_recreate = print_recreate_catch_assert;
14440 
14441   ops = &catch_handlers_breakpoint_ops;
14442   *ops = bkpt_breakpoint_ops;
14443   ops->allocate_location = allocate_location_catch_handlers;
14444   ops->re_set = re_set_catch_handlers;
14445   ops->check_status = check_status_catch_handlers;
14446   ops->print_it = print_it_catch_handlers;
14447   ops->print_one = print_one_catch_handlers;
14448   ops->print_mention = print_mention_catch_handlers;
14449   ops->print_recreate = print_recreate_catch_handlers;
14450 }
14451 
14452 /* This module's 'new_objfile' observer.  */
14453 
14454 static void
14455 ada_new_objfile_observer (struct objfile *objfile)
14456 {
14457   ada_clear_symbol_cache ();
14458 }
14459 
14460 /* This module's 'free_objfile' observer.  */
14461 
14462 static void
14463 ada_free_objfile_observer (struct objfile *objfile)
14464 {
14465   ada_clear_symbol_cache ();
14466 }
14467 
14468 void
14469 _initialize_ada_language (void)
14470 {
14471   initialize_ada_catchpoint_ops ();
14472 
14473   add_prefix_cmd ("ada", no_class, set_ada_command,
14474                   _("Prefix command for changing Ada-specific settings"),
14475                   &set_ada_list, "set ada ", 0, &setlist);
14476 
14477   add_prefix_cmd ("ada", no_class, show_ada_command,
14478                   _("Generic command for showing Ada-specific settings."),
14479                   &show_ada_list, "show ada ", 0, &showlist);
14480 
14481   add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14482                            &trust_pad_over_xvs, _("\
14483 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14484 Show whether an optimization trusting PAD types over XVS types is activated"),
14485                            _("\
14486 This is related to the encoding used by the GNAT compiler.  The debugger\n\
14487 should normally trust the contents of PAD types, but certain older versions\n\
14488 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14489 to be incorrect.  Turning this setting \"off\" allows the debugger to\n\
14490 work around this bug.  It is always safe to turn this option \"off\", but\n\
14491 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14492 this option to \"off\" unless necessary."),
14493                             NULL, NULL, &set_ada_list, &show_ada_list);
14494 
14495   add_setshow_boolean_cmd ("print-signatures", class_vars,
14496 			   &print_signatures, _("\
14497 Enable or disable the output of formal and return types for functions in the \
14498 overloads selection menu"), _("\
14499 Show whether the output of formal and return types for functions in the \
14500 overloads selection menu is activated"),
14501 			   NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14502 
14503   add_catch_command ("exception", _("\
14504 Catch Ada exceptions, when raised.\n\
14505 Usage: catch exception [ ARG ]\n\
14506 \n\
14507 Without any argument, stop when any Ada exception is raised.\n\
14508 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14509 being raised does not have a handler (and will therefore lead to the task's\n\
14510 termination).\n\
14511 Otherwise, the catchpoint only stops when the name of the exception being\n\
14512 raised is the same as ARG."),
14513 		     catch_ada_exception_command,
14514                      NULL,
14515 		     CATCH_PERMANENT,
14516 		     CATCH_TEMPORARY);
14517 
14518   add_catch_command ("handlers", _("\
14519 Catch Ada exceptions, when handled.\n\
14520 With an argument, catch only exceptions with the given name."),
14521 		     catch_ada_handlers_command,
14522                      NULL,
14523 		     CATCH_PERMANENT,
14524 		     CATCH_TEMPORARY);
14525   add_catch_command ("assert", _("\
14526 Catch failed Ada assertions, when raised.\n\
14527 With an argument, catch only exceptions with the given name."),
14528 		     catch_assert_command,
14529                      NULL,
14530 		     CATCH_PERMANENT,
14531 		     CATCH_TEMPORARY);
14532 
14533   varsize_limit = 65536;
14534   add_setshow_uinteger_cmd ("varsize-limit", class_support,
14535 			    &varsize_limit, _("\
14536 Set the maximum number of bytes allowed in a variable-size object."), _("\
14537 Show the maximum number of bytes allowed in a variable-size object."), _("\
14538 Attempts to access an object whose size is not a compile-time constant\n\
14539 and exceeds this limit will cause an error."),
14540 			    NULL, NULL, &setlist, &showlist);
14541 
14542   add_info ("exceptions", info_exceptions_command,
14543 	    _("\
14544 List all Ada exception names.\n\
14545 If a regular expression is passed as an argument, only those matching\n\
14546 the regular expression are listed."));
14547 
14548   add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14549 		  _("Set Ada maintenance-related variables."),
14550                   &maint_set_ada_cmdlist, "maintenance set ada ",
14551                   0/*allow-unknown*/, &maintenance_set_cmdlist);
14552 
14553   add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14554 		  _("Show Ada maintenance-related variables"),
14555                   &maint_show_ada_cmdlist, "maintenance show ada ",
14556                   0/*allow-unknown*/, &maintenance_show_cmdlist);
14557 
14558   add_setshow_boolean_cmd
14559     ("ignore-descriptive-types", class_maintenance,
14560      &ada_ignore_descriptive_types_p,
14561      _("Set whether descriptive types generated by GNAT should be ignored."),
14562      _("Show whether descriptive types generated by GNAT should be ignored."),
14563      _("\
14564 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14565 DWARF attribute."),
14566      NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14567 
14568   decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14569 					   NULL, xcalloc, xfree);
14570 
14571   /* The ada-lang observers.  */
14572   gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14573   gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14574   gdb::observers::inferior_exit.attach (ada_inferior_exit);
14575 
14576   /* Setup various context-specific data.  */
14577   ada_inferior_data
14578     = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14579   ada_pspace_data_handle
14580     = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14581 }
14582