xref: /netbsd-src/external/gpl3/gdb.old/dist/gdb/ada-lang.c (revision 200d779b75dbeafa7bc01fd0f60bc61185f6967b)
1 /* Ada language support routines for GDB, the GNU debugger.
2 
3    Copyright (C) 1992-2014 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 
21 #include "defs.h"
22 #include <stdio.h>
23 #include <string.h>
24 #include <ctype.h>
25 #include <stdarg.h>
26 #include "demangle.h"
27 #include "gdb_regex.h"
28 #include "frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "expression.h"
33 #include "parser-defs.h"
34 #include "language.h"
35 #include "varobj.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include <sys/stat.h>
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61 #include "typeprint.h"
62 
63 #include "psymtab.h"
64 #include "value.h"
65 #include "mi/mi-common.h"
66 #include "arch-utils.h"
67 #include "cli/cli-utils.h"
68 
69 /* Define whether or not the C operator '/' truncates towards zero for
70    differently signed operands (truncation direction is undefined in C).
71    Copied from valarith.c.  */
72 
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76 
77 static struct type *desc_base_type (struct type *);
78 
79 static struct type *desc_bounds_type (struct type *);
80 
81 static struct value *desc_bounds (struct value *);
82 
83 static int fat_pntr_bounds_bitpos (struct type *);
84 
85 static int fat_pntr_bounds_bitsize (struct type *);
86 
87 static struct type *desc_data_target_type (struct type *);
88 
89 static struct value *desc_data (struct value *);
90 
91 static int fat_pntr_data_bitpos (struct type *);
92 
93 static int fat_pntr_data_bitsize (struct type *);
94 
95 static struct value *desc_one_bound (struct value *, int, int);
96 
97 static int desc_bound_bitpos (struct type *, int, int);
98 
99 static int desc_bound_bitsize (struct type *, int, int);
100 
101 static struct type *desc_index_type (struct type *, int);
102 
103 static int desc_arity (struct type *);
104 
105 static int ada_type_match (struct type *, struct type *, int);
106 
107 static int ada_args_match (struct symbol *, struct value **, int);
108 
109 static int full_match (const char *, const char *);
110 
111 static struct value *make_array_descriptor (struct type *, struct value *);
112 
113 static void ada_add_block_symbols (struct obstack *,
114                                    struct block *, const char *,
115                                    domain_enum, struct objfile *, int);
116 
117 static int is_nonfunction (struct ada_symbol_info *, int);
118 
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120                              struct block *);
121 
122 static int num_defns_collected (struct obstack *);
123 
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125 
126 static struct value *resolve_subexp (struct expression **, int *, int,
127                                      struct type *);
128 
129 static void replace_operator_with_call (struct expression **, int, int, int,
130                                         struct symbol *, const struct block *);
131 
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133 
134 static char *ada_op_name (enum exp_opcode);
135 
136 static const char *ada_decoded_op_name (enum exp_opcode);
137 
138 static int numeric_type_p (struct type *);
139 
140 static int integer_type_p (struct type *);
141 
142 static int scalar_type_p (struct type *);
143 
144 static int discrete_type_p (struct type *);
145 
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 							    const char **,
148 							    int *,
149 							    const char **);
150 
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 						      const struct block *);
153 
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155                                                 int, int, int *);
156 
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158 
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160                                                       const char *);
161 
162 static int is_dynamic_field (struct type *, int);
163 
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 						  const gdb_byte *,
166                                                   CORE_ADDR, struct value *);
167 
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169 
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171 
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174 
175 static struct value *unwrap_value (struct value *);
176 
177 static struct type *constrained_packed_array_type (struct type *, long *);
178 
179 static struct type *decode_constrained_packed_array_type (struct type *);
180 
181 static long decode_packed_array_bitsize (struct type *);
182 
183 static struct value *decode_constrained_packed_array (struct value *);
184 
185 static int ada_is_packed_array_type  (struct type *);
186 
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188 
189 static struct value *value_subscript_packed (struct value *, int,
190                                              struct value **);
191 
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193 
194 static struct value *coerce_unspec_val_to_type (struct value *,
195                                                 struct type *);
196 
197 static struct value *get_var_value (char *, char *);
198 
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200 
201 static int equiv_types (struct type *, struct type *);
202 
203 static int is_name_suffix (const char *);
204 
205 static int advance_wild_match (const char **, const char *, int);
206 
207 static int wild_match (const char *, const char *);
208 
209 static struct value *ada_coerce_ref (struct value *);
210 
211 static LONGEST pos_atr (struct value *);
212 
213 static struct value *value_pos_atr (struct type *, struct value *);
214 
215 static struct value *value_val_atr (struct type *, struct value *);
216 
217 static struct symbol *standard_lookup (const char *, const struct block *,
218                                        domain_enum);
219 
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221                                               struct type *);
222 
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224                                                 struct type *);
225 
226 static int find_struct_field (const char *, struct type *, int,
227                               struct type **, int *, int *, int *, int *);
228 
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230                                                 struct value *);
231 
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233                                  struct value **, int, const char *,
234                                  struct type *);
235 
236 static int ada_is_direct_array_type (struct type *);
237 
238 static void ada_language_arch_info (struct gdbarch *,
239 				    struct language_arch_info *);
240 
241 static void check_size (const struct type *);
242 
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 					     struct type *);
245 
246 static struct value *assign_aggregate (struct value *, struct value *,
247 				       struct expression *,
248 				       int *, enum noside);
249 
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 					   struct expression *,
252 					   int *, LONGEST *, int *,
253 					   int, LONGEST, LONGEST);
254 
255 static void aggregate_assign_positional (struct value *, struct value *,
256 					 struct expression *,
257 					 int *, LONGEST *, int *, int,
258 					 LONGEST, LONGEST);
259 
260 
261 static void aggregate_assign_others (struct value *, struct value *,
262 				     struct expression *,
263 				     int *, LONGEST *, int, LONGEST, LONGEST);
264 
265 
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267 
268 
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 					  int *, enum noside);
271 
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 					 int *);
274 
275 static struct type *ada_find_any_type (const char *name);
276 
277 
278 
279 /* Maximum-sized dynamic type.  */
280 static unsigned int varsize_limit;
281 
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283    returned by a function that does not return a const char *.  */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286   " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288   " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290 
291 /* The name of the symbol to use to get the name of the main subprogram.  */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293   = "__gnat_ada_main_program_name";
294 
295 /* Limit on the number of warnings to raise per expression evaluation.  */
296 static int warning_limit = 2;
297 
298 /* Number of warning messages issued; reset to 0 by cleanups after
299    expression evaluation.  */
300 static int warnings_issued = 0;
301 
302 static const char *known_runtime_file_name_patterns[] = {
303   ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305 
306 static const char *known_auxiliary_function_name_patterns[] = {
307   ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309 
310 /* Space for allocating results of ada_lookup_symbol_list.  */
311 static struct obstack symbol_list_obstack;
312 
313 			/* Inferior-specific data.  */
314 
315 /* Per-inferior data for this module.  */
316 
317 struct ada_inferior_data
318 {
319   /* The ada__tags__type_specific_data type, which is used when decoding
320      tagged types.  With older versions of GNAT, this type was directly
321      accessible through a component ("tsd") in the object tag.  But this
322      is no longer the case, so we cache it for each inferior.  */
323   struct type *tsd_type;
324 
325   /* The exception_support_info data.  This data is used to determine
326      how to implement support for Ada exception catchpoints in a given
327      inferior.  */
328   const struct exception_support_info *exception_info;
329 };
330 
331 /* Our key to this module's inferior data.  */
332 static const struct inferior_data *ada_inferior_data;
333 
334 /* A cleanup routine for our inferior data.  */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338   struct ada_inferior_data *data;
339 
340   data = inferior_data (inf, ada_inferior_data);
341   if (data != NULL)
342     xfree (data);
343 }
344 
345 /* Return our inferior data for the given inferior (INF).
346 
347    This function always returns a valid pointer to an allocated
348    ada_inferior_data structure.  If INF's inferior data has not
349    been previously set, this functions creates a new one with all
350    fields set to zero, sets INF's inferior to it, and then returns
351    a pointer to that newly allocated ada_inferior_data.  */
352 
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356   struct ada_inferior_data *data;
357 
358   data = inferior_data (inf, ada_inferior_data);
359   if (data == NULL)
360     {
361       data = XZALLOC (struct ada_inferior_data);
362       set_inferior_data (inf, ada_inferior_data, data);
363     }
364 
365   return data;
366 }
367 
368 /* Perform all necessary cleanups regarding our module's inferior data
369    that is required after the inferior INF just exited.  */
370 
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374   ada_inferior_data_cleanup (inf, NULL);
375   set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377 
378                         /* Utilities */
379 
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381    all typedef layers have been peeled.  Otherwise, return TYPE.
382 
383    Normally, we really expect a typedef type to only have 1 typedef layer.
384    In other words, we really expect the target type of a typedef type to be
385    a non-typedef type.  This is particularly true for Ada units, because
386    the language does not have a typedef vs not-typedef distinction.
387    In that respect, the Ada compiler has been trying to eliminate as many
388    typedef definitions in the debugging information, since they generally
389    do not bring any extra information (we still use typedef under certain
390    circumstances related mostly to the GNAT encoding).
391 
392    Unfortunately, we have seen situations where the debugging information
393    generated by the compiler leads to such multiple typedef layers.  For
394    instance, consider the following example with stabs:
395 
396      .stabs  "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397      .stabs  "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398 
399    This is an error in the debugging information which causes type
400    pck__float_array___XUP to be defined twice, and the second time,
401    it is defined as a typedef of a typedef.
402 
403    This is on the fringe of legality as far as debugging information is
404    concerned, and certainly unexpected.  But it is easy to handle these
405    situations correctly, so we can afford to be lenient in this case.  */
406 
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410   while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411     type = TYPE_TARGET_TYPE (type);
412   return type;
413 }
414 
415 /* Given DECODED_NAME a string holding a symbol name in its
416    decoded form (ie using the Ada dotted notation), returns
417    its unqualified name.  */
418 
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422   const char *result = strrchr (decoded_name, '.');
423 
424   if (result != NULL)
425     result++;                   /* Skip the dot...  */
426   else
427     result = decoded_name;
428 
429   return result;
430 }
431 
432 /* Return a string starting with '<', followed by STR, and '>'.
433    The result is good until the next call.  */
434 
435 static char *
436 add_angle_brackets (const char *str)
437 {
438   static char *result = NULL;
439 
440   xfree (result);
441   result = xstrprintf ("<%s>", str);
442   return result;
443 }
444 
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448   return ada_completer_word_break_characters;
449 }
450 
451 /* Print an array element index using the Ada syntax.  */
452 
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455                        const struct value_print_options *options)
456 {
457   LA_VALUE_PRINT (index_value, stream, options);
458   fprintf_filtered (stream, " => ");
459 }
460 
461 /* Assuming VECT points to an array of *SIZE objects of size
462    ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463    updating *SIZE as necessary and returning the (new) array.  */
464 
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468   if (*size < min_size)
469     {
470       *size *= 2;
471       if (*size < min_size)
472         *size = min_size;
473       vect = xrealloc (vect, *size * element_size);
474     }
475   return vect;
476 }
477 
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479    suffix of FIELD_NAME beginning "___".  */
480 
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484   int len = strlen (target);
485 
486   return
487     (strncmp (field_name, target, len) == 0
488      && (field_name[len] == '\0'
489          || (strncmp (field_name + len, "___", 3) == 0
490              && strcmp (field_name + strlen (field_name) - 6,
491                         "___XVN") != 0)));
492 }
493 
494 
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496    a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497    and return its index.  This function also handles fields whose name
498    have ___ suffixes because the compiler sometimes alters their name
499    by adding such a suffix to represent fields with certain constraints.
500    If the field could not be found, return a negative number if
501    MAYBE_MISSING is set.  Otherwise raise an error.  */
502 
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505                      int maybe_missing)
506 {
507   int fieldno;
508   struct type *struct_type = check_typedef ((struct type *) type);
509 
510   for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511     if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512       return fieldno;
513 
514   if (!maybe_missing)
515     error (_("Unable to find field %s in struct %s.  Aborting"),
516            field_name, TYPE_NAME (struct_type));
517 
518   return -1;
519 }
520 
521 /* The length of the prefix of NAME prior to any "___" suffix.  */
522 
523 int
524 ada_name_prefix_len (const char *name)
525 {
526   if (name == NULL)
527     return 0;
528   else
529     {
530       const char *p = strstr (name, "___");
531 
532       if (p == NULL)
533         return strlen (name);
534       else
535         return p - name;
536     }
537 }
538 
539 /* Return non-zero if SUFFIX is a suffix of STR.
540    Return zero if STR is null.  */
541 
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545   int len1, len2;
546 
547   if (str == NULL)
548     return 0;
549   len1 = strlen (str);
550   len2 = strlen (suffix);
551   return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553 
554 /* The contents of value VAL, treated as a value of type TYPE.  The
555    result is an lval in memory if VAL is.  */
556 
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560   type = ada_check_typedef (type);
561   if (value_type (val) == type)
562     return val;
563   else
564     {
565       struct value *result;
566 
567       /* Make sure that the object size is not unreasonable before
568          trying to allocate some memory for it.  */
569       check_size (type);
570 
571       if (value_lazy (val)
572           || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 	result = allocate_value_lazy (type);
574       else
575 	{
576 	  result = allocate_value (type);
577 	  memcpy (value_contents_raw (result), value_contents (val),
578 		  TYPE_LENGTH (type));
579 	}
580       set_value_component_location (result, val);
581       set_value_bitsize (result, value_bitsize (val));
582       set_value_bitpos (result, value_bitpos (val));
583       set_value_address (result, value_address (val));
584       set_value_optimized_out (result, value_optimized_out_const (val));
585       return result;
586     }
587 }
588 
589 static const gdb_byte *
590 cond_offset_host (const gdb_byte *valaddr, long offset)
591 {
592   if (valaddr == NULL)
593     return NULL;
594   else
595     return valaddr + offset;
596 }
597 
598 static CORE_ADDR
599 cond_offset_target (CORE_ADDR address, long offset)
600 {
601   if (address == 0)
602     return 0;
603   else
604     return address + offset;
605 }
606 
607 /* Issue a warning (as for the definition of warning in utils.c, but
608    with exactly one argument rather than ...), unless the limit on the
609    number of warnings has passed during the evaluation of the current
610    expression.  */
611 
612 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613    provided by "complaint".  */
614 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
615 
616 static void
617 lim_warning (const char *format, ...)
618 {
619   va_list args;
620 
621   va_start (args, format);
622   warnings_issued += 1;
623   if (warnings_issued <= warning_limit)
624     vwarning (format, args);
625 
626   va_end (args);
627 }
628 
629 /* Issue an error if the size of an object of type T is unreasonable,
630    i.e. if it would be a bad idea to allocate a value of this type in
631    GDB.  */
632 
633 static void
634 check_size (const struct type *type)
635 {
636   if (TYPE_LENGTH (type) > varsize_limit)
637     error (_("object size is larger than varsize-limit"));
638 }
639 
640 /* Maximum value of a SIZE-byte signed integer type.  */
641 static LONGEST
642 max_of_size (int size)
643 {
644   LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
645 
646   return top_bit | (top_bit - 1);
647 }
648 
649 /* Minimum value of a SIZE-byte signed integer type.  */
650 static LONGEST
651 min_of_size (int size)
652 {
653   return -max_of_size (size) - 1;
654 }
655 
656 /* Maximum value of a SIZE-byte unsigned integer type.  */
657 static ULONGEST
658 umax_of_size (int size)
659 {
660   ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
661 
662   return top_bit | (top_bit - 1);
663 }
664 
665 /* Maximum value of integral type T, as a signed quantity.  */
666 static LONGEST
667 max_of_type (struct type *t)
668 {
669   if (TYPE_UNSIGNED (t))
670     return (LONGEST) umax_of_size (TYPE_LENGTH (t));
671   else
672     return max_of_size (TYPE_LENGTH (t));
673 }
674 
675 /* Minimum value of integral type T, as a signed quantity.  */
676 static LONGEST
677 min_of_type (struct type *t)
678 {
679   if (TYPE_UNSIGNED (t))
680     return 0;
681   else
682     return min_of_size (TYPE_LENGTH (t));
683 }
684 
685 /* The largest value in the domain of TYPE, a discrete type, as an integer.  */
686 LONGEST
687 ada_discrete_type_high_bound (struct type *type)
688 {
689   switch (TYPE_CODE (type))
690     {
691     case TYPE_CODE_RANGE:
692       return TYPE_HIGH_BOUND (type);
693     case TYPE_CODE_ENUM:
694       return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
695     case TYPE_CODE_BOOL:
696       return 1;
697     case TYPE_CODE_CHAR:
698     case TYPE_CODE_INT:
699       return max_of_type (type);
700     default:
701       error (_("Unexpected type in ada_discrete_type_high_bound."));
702     }
703 }
704 
705 /* The smallest value in the domain of TYPE, a discrete type, as an integer.  */
706 LONGEST
707 ada_discrete_type_low_bound (struct type *type)
708 {
709   switch (TYPE_CODE (type))
710     {
711     case TYPE_CODE_RANGE:
712       return TYPE_LOW_BOUND (type);
713     case TYPE_CODE_ENUM:
714       return TYPE_FIELD_ENUMVAL (type, 0);
715     case TYPE_CODE_BOOL:
716       return 0;
717     case TYPE_CODE_CHAR:
718     case TYPE_CODE_INT:
719       return min_of_type (type);
720     default:
721       error (_("Unexpected type in ada_discrete_type_low_bound."));
722     }
723 }
724 
725 /* The identity on non-range types.  For range types, the underlying
726    non-range scalar type.  */
727 
728 static struct type *
729 get_base_type (struct type *type)
730 {
731   while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
732     {
733       if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
734         return type;
735       type = TYPE_TARGET_TYPE (type);
736     }
737   return type;
738 }
739 
740 /* Return a decoded version of the given VALUE.  This means returning
741    a value whose type is obtained by applying all the GNAT-specific
742    encondings, making the resulting type a static but standard description
743    of the initial type.  */
744 
745 struct value *
746 ada_get_decoded_value (struct value *value)
747 {
748   struct type *type = ada_check_typedef (value_type (value));
749 
750   if (ada_is_array_descriptor_type (type)
751       || (ada_is_constrained_packed_array_type (type)
752           && TYPE_CODE (type) != TYPE_CODE_PTR))
753     {
754       if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)  /* array access type.  */
755         value = ada_coerce_to_simple_array_ptr (value);
756       else
757         value = ada_coerce_to_simple_array (value);
758     }
759   else
760     value = ada_to_fixed_value (value);
761 
762   return value;
763 }
764 
765 /* Same as ada_get_decoded_value, but with the given TYPE.
766    Because there is no associated actual value for this type,
767    the resulting type might be a best-effort approximation in
768    the case of dynamic types.  */
769 
770 struct type *
771 ada_get_decoded_type (struct type *type)
772 {
773   type = to_static_fixed_type (type);
774   if (ada_is_constrained_packed_array_type (type))
775     type = ada_coerce_to_simple_array_type (type);
776   return type;
777 }
778 
779 
780 
781                                 /* Language Selection */
782 
783 /* If the main program is in Ada, return language_ada, otherwise return LANG
784    (the main program is in Ada iif the adainit symbol is found).  */
785 
786 enum language
787 ada_update_initial_language (enum language lang)
788 {
789   if (lookup_minimal_symbol ("adainit", (const char *) NULL,
790                              (struct objfile *) NULL) != NULL)
791     return language_ada;
792 
793   return lang;
794 }
795 
796 /* If the main procedure is written in Ada, then return its name.
797    The result is good until the next call.  Return NULL if the main
798    procedure doesn't appear to be in Ada.  */
799 
800 char *
801 ada_main_name (void)
802 {
803   struct minimal_symbol *msym;
804   static char *main_program_name = NULL;
805 
806   /* For Ada, the name of the main procedure is stored in a specific
807      string constant, generated by the binder.  Look for that symbol,
808      extract its address, and then read that string.  If we didn't find
809      that string, then most probably the main procedure is not written
810      in Ada.  */
811   msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
812 
813   if (msym != NULL)
814     {
815       CORE_ADDR main_program_name_addr;
816       int err_code;
817 
818       main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819       if (main_program_name_addr == 0)
820         error (_("Invalid address for Ada main program name."));
821 
822       xfree (main_program_name);
823       target_read_string (main_program_name_addr, &main_program_name,
824                           1024, &err_code);
825 
826       if (err_code != 0)
827         return NULL;
828       return main_program_name;
829     }
830 
831   /* The main procedure doesn't seem to be in Ada.  */
832   return NULL;
833 }
834 
835                                 /* Symbols */
836 
837 /* Table of Ada operators and their GNAT-encoded names.  Last entry is pair
838    of NULLs.  */
839 
840 const struct ada_opname_map ada_opname_table[] = {
841   {"Oadd", "\"+\"", BINOP_ADD},
842   {"Osubtract", "\"-\"", BINOP_SUB},
843   {"Omultiply", "\"*\"", BINOP_MUL},
844   {"Odivide", "\"/\"", BINOP_DIV},
845   {"Omod", "\"mod\"", BINOP_MOD},
846   {"Orem", "\"rem\"", BINOP_REM},
847   {"Oexpon", "\"**\"", BINOP_EXP},
848   {"Olt", "\"<\"", BINOP_LESS},
849   {"Ole", "\"<=\"", BINOP_LEQ},
850   {"Ogt", "\">\"", BINOP_GTR},
851   {"Oge", "\">=\"", BINOP_GEQ},
852   {"Oeq", "\"=\"", BINOP_EQUAL},
853   {"One", "\"/=\"", BINOP_NOTEQUAL},
854   {"Oand", "\"and\"", BINOP_BITWISE_AND},
855   {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856   {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857   {"Oconcat", "\"&\"", BINOP_CONCAT},
858   {"Oabs", "\"abs\"", UNOP_ABS},
859   {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860   {"Oadd", "\"+\"", UNOP_PLUS},
861   {"Osubtract", "\"-\"", UNOP_NEG},
862   {NULL, NULL}
863 };
864 
865 /* The "encoded" form of DECODED, according to GNAT conventions.
866    The result is valid until the next call to ada_encode.  */
867 
868 char *
869 ada_encode (const char *decoded)
870 {
871   static char *encoding_buffer = NULL;
872   static size_t encoding_buffer_size = 0;
873   const char *p;
874   int k;
875 
876   if (decoded == NULL)
877     return NULL;
878 
879   GROW_VECT (encoding_buffer, encoding_buffer_size,
880              2 * strlen (decoded) + 10);
881 
882   k = 0;
883   for (p = decoded; *p != '\0'; p += 1)
884     {
885       if (*p == '.')
886         {
887           encoding_buffer[k] = encoding_buffer[k + 1] = '_';
888           k += 2;
889         }
890       else if (*p == '"')
891         {
892           const struct ada_opname_map *mapping;
893 
894           for (mapping = ada_opname_table;
895                mapping->encoded != NULL
896                && strncmp (mapping->decoded, p,
897                            strlen (mapping->decoded)) != 0; mapping += 1)
898             ;
899           if (mapping->encoded == NULL)
900             error (_("invalid Ada operator name: %s"), p);
901           strcpy (encoding_buffer + k, mapping->encoded);
902           k += strlen (mapping->encoded);
903           break;
904         }
905       else
906         {
907           encoding_buffer[k] = *p;
908           k += 1;
909         }
910     }
911 
912   encoding_buffer[k] = '\0';
913   return encoding_buffer;
914 }
915 
916 /* Return NAME folded to lower case, or, if surrounded by single
917    quotes, unfolded, but with the quotes stripped away.  Result good
918    to next call.  */
919 
920 char *
921 ada_fold_name (const char *name)
922 {
923   static char *fold_buffer = NULL;
924   static size_t fold_buffer_size = 0;
925 
926   int len = strlen (name);
927   GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
928 
929   if (name[0] == '\'')
930     {
931       strncpy (fold_buffer, name + 1, len - 2);
932       fold_buffer[len - 2] = '\000';
933     }
934   else
935     {
936       int i;
937 
938       for (i = 0; i <= len; i += 1)
939         fold_buffer[i] = tolower (name[i]);
940     }
941 
942   return fold_buffer;
943 }
944 
945 /* Return nonzero if C is either a digit or a lowercase alphabet character.  */
946 
947 static int
948 is_lower_alphanum (const char c)
949 {
950   return (isdigit (c) || (isalpha (c) && islower (c)));
951 }
952 
953 /* ENCODED is the linkage name of a symbol and LEN contains its length.
954    This function saves in LEN the length of that same symbol name but
955    without either of these suffixes:
956      . .{DIGIT}+
957      . ${DIGIT}+
958      . ___{DIGIT}+
959      . __{DIGIT}+.
960 
961    These are suffixes introduced by the compiler for entities such as
962    nested subprogram for instance, in order to avoid name clashes.
963    They do not serve any purpose for the debugger.  */
964 
965 static void
966 ada_remove_trailing_digits (const char *encoded, int *len)
967 {
968   if (*len > 1 && isdigit (encoded[*len - 1]))
969     {
970       int i = *len - 2;
971 
972       while (i > 0 && isdigit (encoded[i]))
973         i--;
974       if (i >= 0 && encoded[i] == '.')
975         *len = i;
976       else if (i >= 0 && encoded[i] == '$')
977         *len = i;
978       else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
979         *len = i - 2;
980       else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
981         *len = i - 1;
982     }
983 }
984 
985 /* Remove the suffix introduced by the compiler for protected object
986    subprograms.  */
987 
988 static void
989 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
990 {
991   /* Remove trailing N.  */
992 
993   /* Protected entry subprograms are broken into two
994      separate subprograms: The first one is unprotected, and has
995      a 'N' suffix; the second is the protected version, and has
996      the 'P' suffix.  The second calls the first one after handling
997      the protection.  Since the P subprograms are internally generated,
998      we leave these names undecoded, giving the user a clue that this
999      entity is internal.  */
1000 
1001   if (*len > 1
1002       && encoded[*len - 1] == 'N'
1003       && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1004     *len = *len - 1;
1005 }
1006 
1007 /* Remove trailing X[bn]* suffixes (indicating names in package bodies).  */
1008 
1009 static void
1010 ada_remove_Xbn_suffix (const char *encoded, int *len)
1011 {
1012   int i = *len - 1;
1013 
1014   while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1015     i--;
1016 
1017   if (encoded[i] != 'X')
1018     return;
1019 
1020   if (i == 0)
1021     return;
1022 
1023   if (isalnum (encoded[i-1]))
1024     *len = i;
1025 }
1026 
1027 /* If ENCODED follows the GNAT entity encoding conventions, then return
1028    the decoded form of ENCODED.  Otherwise, return "<%s>" where "%s" is
1029    replaced by ENCODED.
1030 
1031    The resulting string is valid until the next call of ada_decode.
1032    If the string is unchanged by decoding, the original string pointer
1033    is returned.  */
1034 
1035 const char *
1036 ada_decode (const char *encoded)
1037 {
1038   int i, j;
1039   int len0;
1040   const char *p;
1041   char *decoded;
1042   int at_start_name;
1043   static char *decoding_buffer = NULL;
1044   static size_t decoding_buffer_size = 0;
1045 
1046   /* The name of the Ada main procedure starts with "_ada_".
1047      This prefix is not part of the decoded name, so skip this part
1048      if we see this prefix.  */
1049   if (strncmp (encoded, "_ada_", 5) == 0)
1050     encoded += 5;
1051 
1052   /* If the name starts with '_', then it is not a properly encoded
1053      name, so do not attempt to decode it.  Similarly, if the name
1054      starts with '<', the name should not be decoded.  */
1055   if (encoded[0] == '_' || encoded[0] == '<')
1056     goto Suppress;
1057 
1058   len0 = strlen (encoded);
1059 
1060   ada_remove_trailing_digits (encoded, &len0);
1061   ada_remove_po_subprogram_suffix (encoded, &len0);
1062 
1063   /* Remove the ___X.* suffix if present.  Do not forget to verify that
1064      the suffix is located before the current "end" of ENCODED.  We want
1065      to avoid re-matching parts of ENCODED that have previously been
1066      marked as discarded (by decrementing LEN0).  */
1067   p = strstr (encoded, "___");
1068   if (p != NULL && p - encoded < len0 - 3)
1069     {
1070       if (p[3] == 'X')
1071         len0 = p - encoded;
1072       else
1073         goto Suppress;
1074     }
1075 
1076   /* Remove any trailing TKB suffix.  It tells us that this symbol
1077      is for the body of a task, but that information does not actually
1078      appear in the decoded name.  */
1079 
1080   if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1081     len0 -= 3;
1082 
1083   /* Remove any trailing TB suffix.  The TB suffix is slightly different
1084      from the TKB suffix because it is used for non-anonymous task
1085      bodies.  */
1086 
1087   if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1088     len0 -= 2;
1089 
1090   /* Remove trailing "B" suffixes.  */
1091   /* FIXME: brobecker/2006-04-19: Not sure what this are used for...  */
1092 
1093   if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1094     len0 -= 1;
1095 
1096   /* Make decoded big enough for possible expansion by operator name.  */
1097 
1098   GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099   decoded = decoding_buffer;
1100 
1101   /* Remove trailing __{digit}+ or trailing ${digit}+.  */
1102 
1103   if (len0 > 1 && isdigit (encoded[len0 - 1]))
1104     {
1105       i = len0 - 2;
1106       while ((i >= 0 && isdigit (encoded[i]))
1107              || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1108         i -= 1;
1109       if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1110         len0 = i - 1;
1111       else if (encoded[i] == '$')
1112         len0 = i;
1113     }
1114 
1115   /* The first few characters that are not alphabetic are not part
1116      of any encoding we use, so we can copy them over verbatim.  */
1117 
1118   for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119     decoded[j] = encoded[i];
1120 
1121   at_start_name = 1;
1122   while (i < len0)
1123     {
1124       /* Is this a symbol function?  */
1125       if (at_start_name && encoded[i] == 'O')
1126         {
1127           int k;
1128 
1129           for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1130             {
1131               int op_len = strlen (ada_opname_table[k].encoded);
1132               if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1133                             op_len - 1) == 0)
1134                   && !isalnum (encoded[i + op_len]))
1135                 {
1136                   strcpy (decoded + j, ada_opname_table[k].decoded);
1137                   at_start_name = 0;
1138                   i += op_len;
1139                   j += strlen (ada_opname_table[k].decoded);
1140                   break;
1141                 }
1142             }
1143           if (ada_opname_table[k].encoded != NULL)
1144             continue;
1145         }
1146       at_start_name = 0;
1147 
1148       /* Replace "TK__" with "__", which will eventually be translated
1149          into "." (just below).  */
1150 
1151       if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1152         i += 2;
1153 
1154       /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155          be translated into "." (just below).  These are internal names
1156          generated for anonymous blocks inside which our symbol is nested.  */
1157 
1158       if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159           && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160           && isdigit (encoded [i+4]))
1161         {
1162           int k = i + 5;
1163 
1164           while (k < len0 && isdigit (encoded[k]))
1165             k++;  /* Skip any extra digit.  */
1166 
1167           /* Double-check that the "__B_{DIGITS}+" sequence we found
1168              is indeed followed by "__".  */
1169           if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1170             i = k;
1171         }
1172 
1173       /* Remove _E{DIGITS}+[sb] */
1174 
1175       /* Just as for protected object subprograms, there are 2 categories
1176          of subprograms created by the compiler for each entry.  The first
1177          one implements the actual entry code, and has a suffix following
1178          the convention above; the second one implements the barrier and
1179          uses the same convention as above, except that the 'E' is replaced
1180          by a 'B'.
1181 
1182          Just as above, we do not decode the name of barrier functions
1183          to give the user a clue that the code he is debugging has been
1184          internally generated.  */
1185 
1186       if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187           && isdigit (encoded[i+2]))
1188         {
1189           int k = i + 3;
1190 
1191           while (k < len0 && isdigit (encoded[k]))
1192             k++;
1193 
1194           if (k < len0
1195               && (encoded[k] == 'b' || encoded[k] == 's'))
1196             {
1197               k++;
1198               /* Just as an extra precaution, make sure that if this
1199                  suffix is followed by anything else, it is a '_'.
1200                  Otherwise, we matched this sequence by accident.  */
1201               if (k == len0
1202                   || (k < len0 && encoded[k] == '_'))
1203                 i = k;
1204             }
1205         }
1206 
1207       /* Remove trailing "N" in [a-z0-9]+N__.  The N is added by
1208          the GNAT front-end in protected object subprograms.  */
1209 
1210       if (i < len0 + 3
1211           && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1212         {
1213           /* Backtrack a bit up until we reach either the begining of
1214              the encoded name, or "__".  Make sure that we only find
1215              digits or lowercase characters.  */
1216           const char *ptr = encoded + i - 1;
1217 
1218           while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1219             ptr--;
1220           if (ptr < encoded
1221               || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1222             i++;
1223         }
1224 
1225       if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1226         {
1227           /* This is a X[bn]* sequence not separated from the previous
1228              part of the name with a non-alpha-numeric character (in other
1229              words, immediately following an alpha-numeric character), then
1230              verify that it is placed at the end of the encoded name.  If
1231              not, then the encoding is not valid and we should abort the
1232              decoding.  Otherwise, just skip it, it is used in body-nested
1233              package names.  */
1234           do
1235             i += 1;
1236           while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1237           if (i < len0)
1238             goto Suppress;
1239         }
1240       else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1241         {
1242          /* Replace '__' by '.'.  */
1243           decoded[j] = '.';
1244           at_start_name = 1;
1245           i += 2;
1246           j += 1;
1247         }
1248       else
1249         {
1250           /* It's a character part of the decoded name, so just copy it
1251              over.  */
1252           decoded[j] = encoded[i];
1253           i += 1;
1254           j += 1;
1255         }
1256     }
1257   decoded[j] = '\000';
1258 
1259   /* Decoded names should never contain any uppercase character.
1260      Double-check this, and abort the decoding if we find one.  */
1261 
1262   for (i = 0; decoded[i] != '\0'; i += 1)
1263     if (isupper (decoded[i]) || decoded[i] == ' ')
1264       goto Suppress;
1265 
1266   if (strcmp (decoded, encoded) == 0)
1267     return encoded;
1268   else
1269     return decoded;
1270 
1271 Suppress:
1272   GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273   decoded = decoding_buffer;
1274   if (encoded[0] == '<')
1275     strcpy (decoded, encoded);
1276   else
1277     xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1278   return decoded;
1279 
1280 }
1281 
1282 /* Table for keeping permanent unique copies of decoded names.  Once
1283    allocated, names in this table are never released.  While this is a
1284    storage leak, it should not be significant unless there are massive
1285    changes in the set of decoded names in successive versions of a
1286    symbol table loaded during a single session.  */
1287 static struct htab *decoded_names_store;
1288 
1289 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290    in the language-specific part of GSYMBOL, if it has not been
1291    previously computed.  Tries to save the decoded name in the same
1292    obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293    in any case, the decoded symbol has a lifetime at least that of
1294    GSYMBOL).
1295    The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296    const, but nevertheless modified to a semantically equivalent form
1297    when a decoded name is cached in it.  */
1298 
1299 const char *
1300 ada_decode_symbol (const struct general_symbol_info *arg)
1301 {
1302   struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1303   const char **resultp =
1304     &gsymbol->language_specific.mangled_lang.demangled_name;
1305 
1306   if (!gsymbol->ada_mangled)
1307     {
1308       const char *decoded = ada_decode (gsymbol->name);
1309       struct obstack *obstack = gsymbol->language_specific.obstack;
1310 
1311       gsymbol->ada_mangled = 1;
1312 
1313       if (obstack != NULL)
1314 	*resultp = obstack_copy0 (obstack, decoded, strlen (decoded));
1315       else
1316         {
1317 	  /* Sometimes, we can't find a corresponding objfile, in
1318 	     which case, we put the result on the heap.  Since we only
1319 	     decode when needed, we hope this usually does not cause a
1320 	     significant memory leak (FIXME).  */
1321 
1322           char **slot = (char **) htab_find_slot (decoded_names_store,
1323                                                   decoded, INSERT);
1324 
1325           if (*slot == NULL)
1326             *slot = xstrdup (decoded);
1327           *resultp = *slot;
1328         }
1329     }
1330 
1331   return *resultp;
1332 }
1333 
1334 static char *
1335 ada_la_decode (const char *encoded, int options)
1336 {
1337   return xstrdup (ada_decode (encoded));
1338 }
1339 
1340 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1341    suffixes that encode debugging information or leading _ada_ on
1342    SYM_NAME (see is_name_suffix commentary for the debugging
1343    information that is ignored).  If WILD, then NAME need only match a
1344    suffix of SYM_NAME minus the same suffixes.  Also returns 0 if
1345    either argument is NULL.  */
1346 
1347 static int
1348 match_name (const char *sym_name, const char *name, int wild)
1349 {
1350   if (sym_name == NULL || name == NULL)
1351     return 0;
1352   else if (wild)
1353     return wild_match (sym_name, name) == 0;
1354   else
1355     {
1356       int len_name = strlen (name);
1357 
1358       return (strncmp (sym_name, name, len_name) == 0
1359               && is_name_suffix (sym_name + len_name))
1360         || (strncmp (sym_name, "_ada_", 5) == 0
1361             && strncmp (sym_name + 5, name, len_name) == 0
1362             && is_name_suffix (sym_name + len_name + 5));
1363     }
1364 }
1365 
1366 
1367                                 /* Arrays */
1368 
1369 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370    generated by the GNAT compiler to describe the index type used
1371    for each dimension of an array, check whether it follows the latest
1372    known encoding.  If not, fix it up to conform to the latest encoding.
1373    Otherwise, do nothing.  This function also does nothing if
1374    INDEX_DESC_TYPE is NULL.
1375 
1376    The GNAT encoding used to describle the array index type evolved a bit.
1377    Initially, the information would be provided through the name of each
1378    field of the structure type only, while the type of these fields was
1379    described as unspecified and irrelevant.  The debugger was then expected
1380    to perform a global type lookup using the name of that field in order
1381    to get access to the full index type description.  Because these global
1382    lookups can be very expensive, the encoding was later enhanced to make
1383    the global lookup unnecessary by defining the field type as being
1384    the full index type description.
1385 
1386    The purpose of this routine is to allow us to support older versions
1387    of the compiler by detecting the use of the older encoding, and by
1388    fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389    we essentially replace each field's meaningless type by the associated
1390    index subtype).  */
1391 
1392 void
1393 ada_fixup_array_indexes_type (struct type *index_desc_type)
1394 {
1395   int i;
1396 
1397   if (index_desc_type == NULL)
1398     return;
1399   gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1400 
1401   /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402      to check one field only, no need to check them all).  If not, return
1403      now.
1404 
1405      If our INDEX_DESC_TYPE was generated using the older encoding,
1406      the field type should be a meaningless integer type whose name
1407      is not equal to the field name.  */
1408   if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1409       && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1410                  TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1411     return;
1412 
1413   /* Fixup each field of INDEX_DESC_TYPE.  */
1414   for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1415    {
1416      const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1417      struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1418 
1419      if (raw_type)
1420        TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1421    }
1422 }
1423 
1424 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors.  */
1425 
1426 static char *bound_name[] = {
1427   "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1428   "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1429 };
1430 
1431 /* Maximum number of array dimensions we are prepared to handle.  */
1432 
1433 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1434 
1435 
1436 /* The desc_* routines return primitive portions of array descriptors
1437    (fat pointers).  */
1438 
1439 /* The descriptor or array type, if any, indicated by TYPE; removes
1440    level of indirection, if needed.  */
1441 
1442 static struct type *
1443 desc_base_type (struct type *type)
1444 {
1445   if (type == NULL)
1446     return NULL;
1447   type = ada_check_typedef (type);
1448   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1449     type = ada_typedef_target_type (type);
1450 
1451   if (type != NULL
1452       && (TYPE_CODE (type) == TYPE_CODE_PTR
1453           || TYPE_CODE (type) == TYPE_CODE_REF))
1454     return ada_check_typedef (TYPE_TARGET_TYPE (type));
1455   else
1456     return type;
1457 }
1458 
1459 /* True iff TYPE indicates a "thin" array pointer type.  */
1460 
1461 static int
1462 is_thin_pntr (struct type *type)
1463 {
1464   return
1465     is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1466     || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1467 }
1468 
1469 /* The descriptor type for thin pointer type TYPE.  */
1470 
1471 static struct type *
1472 thin_descriptor_type (struct type *type)
1473 {
1474   struct type *base_type = desc_base_type (type);
1475 
1476   if (base_type == NULL)
1477     return NULL;
1478   if (is_suffix (ada_type_name (base_type), "___XVE"))
1479     return base_type;
1480   else
1481     {
1482       struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1483 
1484       if (alt_type == NULL)
1485         return base_type;
1486       else
1487         return alt_type;
1488     }
1489 }
1490 
1491 /* A pointer to the array data for thin-pointer value VAL.  */
1492 
1493 static struct value *
1494 thin_data_pntr (struct value *val)
1495 {
1496   struct type *type = ada_check_typedef (value_type (val));
1497   struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1498 
1499   data_type = lookup_pointer_type (data_type);
1500 
1501   if (TYPE_CODE (type) == TYPE_CODE_PTR)
1502     return value_cast (data_type, value_copy (val));
1503   else
1504     return value_from_longest (data_type, value_address (val));
1505 }
1506 
1507 /* True iff TYPE indicates a "thick" array pointer type.  */
1508 
1509 static int
1510 is_thick_pntr (struct type *type)
1511 {
1512   type = desc_base_type (type);
1513   return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1514           && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1515 }
1516 
1517 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518    pointer to one, the type of its bounds data; otherwise, NULL.  */
1519 
1520 static struct type *
1521 desc_bounds_type (struct type *type)
1522 {
1523   struct type *r;
1524 
1525   type = desc_base_type (type);
1526 
1527   if (type == NULL)
1528     return NULL;
1529   else if (is_thin_pntr (type))
1530     {
1531       type = thin_descriptor_type (type);
1532       if (type == NULL)
1533         return NULL;
1534       r = lookup_struct_elt_type (type, "BOUNDS", 1);
1535       if (r != NULL)
1536         return ada_check_typedef (r);
1537     }
1538   else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1539     {
1540       r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1541       if (r != NULL)
1542         return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1543     }
1544   return NULL;
1545 }
1546 
1547 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1548    one, a pointer to its bounds data.   Otherwise NULL.  */
1549 
1550 static struct value *
1551 desc_bounds (struct value *arr)
1552 {
1553   struct type *type = ada_check_typedef (value_type (arr));
1554 
1555   if (is_thin_pntr (type))
1556     {
1557       struct type *bounds_type =
1558         desc_bounds_type (thin_descriptor_type (type));
1559       LONGEST addr;
1560 
1561       if (bounds_type == NULL)
1562         error (_("Bad GNAT array descriptor"));
1563 
1564       /* NOTE: The following calculation is not really kosher, but
1565          since desc_type is an XVE-encoded type (and shouldn't be),
1566          the correct calculation is a real pain.  FIXME (and fix GCC).  */
1567       if (TYPE_CODE (type) == TYPE_CODE_PTR)
1568         addr = value_as_long (arr);
1569       else
1570         addr = value_address (arr);
1571 
1572       return
1573         value_from_longest (lookup_pointer_type (bounds_type),
1574                             addr - TYPE_LENGTH (bounds_type));
1575     }
1576 
1577   else if (is_thick_pntr (type))
1578     {
1579       struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1580 					       _("Bad GNAT array descriptor"));
1581       struct type *p_bounds_type = value_type (p_bounds);
1582 
1583       if (p_bounds_type
1584 	  && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1585 	{
1586 	  struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1587 
1588 	  if (TYPE_STUB (target_type))
1589 	    p_bounds = value_cast (lookup_pointer_type
1590 				   (ada_check_typedef (target_type)),
1591 				   p_bounds);
1592 	}
1593       else
1594 	error (_("Bad GNAT array descriptor"));
1595 
1596       return p_bounds;
1597     }
1598   else
1599     return NULL;
1600 }
1601 
1602 /* If TYPE is the type of an array-descriptor (fat pointer),  the bit
1603    position of the field containing the address of the bounds data.  */
1604 
1605 static int
1606 fat_pntr_bounds_bitpos (struct type *type)
1607 {
1608   return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1609 }
1610 
1611 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1612    size of the field containing the address of the bounds data.  */
1613 
1614 static int
1615 fat_pntr_bounds_bitsize (struct type *type)
1616 {
1617   type = desc_base_type (type);
1618 
1619   if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1620     return TYPE_FIELD_BITSIZE (type, 1);
1621   else
1622     return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1623 }
1624 
1625 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1626    pointer to one, the type of its array data (a array-with-no-bounds type);
1627    otherwise, NULL.  Use ada_type_of_array to get an array type with bounds
1628    data.  */
1629 
1630 static struct type *
1631 desc_data_target_type (struct type *type)
1632 {
1633   type = desc_base_type (type);
1634 
1635   /* NOTE: The following is bogus; see comment in desc_bounds.  */
1636   if (is_thin_pntr (type))
1637     return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1638   else if (is_thick_pntr (type))
1639     {
1640       struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1641 
1642       if (data_type
1643 	  && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1644 	return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1645     }
1646 
1647   return NULL;
1648 }
1649 
1650 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1651    its array data.  */
1652 
1653 static struct value *
1654 desc_data (struct value *arr)
1655 {
1656   struct type *type = value_type (arr);
1657 
1658   if (is_thin_pntr (type))
1659     return thin_data_pntr (arr);
1660   else if (is_thick_pntr (type))
1661     return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1662                              _("Bad GNAT array descriptor"));
1663   else
1664     return NULL;
1665 }
1666 
1667 
1668 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1669    position of the field containing the address of the data.  */
1670 
1671 static int
1672 fat_pntr_data_bitpos (struct type *type)
1673 {
1674   return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1675 }
1676 
1677 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1678    size of the field containing the address of the data.  */
1679 
1680 static int
1681 fat_pntr_data_bitsize (struct type *type)
1682 {
1683   type = desc_base_type (type);
1684 
1685   if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1686     return TYPE_FIELD_BITSIZE (type, 0);
1687   else
1688     return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1689 }
1690 
1691 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1692    the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1693    bound, if WHICH is 1.  The first bound is I=1.  */
1694 
1695 static struct value *
1696 desc_one_bound (struct value *bounds, int i, int which)
1697 {
1698   return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1699                            _("Bad GNAT array descriptor bounds"));
1700 }
1701 
1702 /* If BOUNDS is an array-bounds structure type, return the bit position
1703    of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704    bound, if WHICH is 1.  The first bound is I=1.  */
1705 
1706 static int
1707 desc_bound_bitpos (struct type *type, int i, int which)
1708 {
1709   return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1710 }
1711 
1712 /* If BOUNDS is an array-bounds structure type, return the bit field size
1713    of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1714    bound, if WHICH is 1.  The first bound is I=1.  */
1715 
1716 static int
1717 desc_bound_bitsize (struct type *type, int i, int which)
1718 {
1719   type = desc_base_type (type);
1720 
1721   if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1722     return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1723   else
1724     return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1725 }
1726 
1727 /* If TYPE is the type of an array-bounds structure, the type of its
1728    Ith bound (numbering from 1).  Otherwise, NULL.  */
1729 
1730 static struct type *
1731 desc_index_type (struct type *type, int i)
1732 {
1733   type = desc_base_type (type);
1734 
1735   if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1736     return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1737   else
1738     return NULL;
1739 }
1740 
1741 /* The number of index positions in the array-bounds type TYPE.
1742    Return 0 if TYPE is NULL.  */
1743 
1744 static int
1745 desc_arity (struct type *type)
1746 {
1747   type = desc_base_type (type);
1748 
1749   if (type != NULL)
1750     return TYPE_NFIELDS (type) / 2;
1751   return 0;
1752 }
1753 
1754 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755    an array descriptor type (representing an unconstrained array
1756    type).  */
1757 
1758 static int
1759 ada_is_direct_array_type (struct type *type)
1760 {
1761   if (type == NULL)
1762     return 0;
1763   type = ada_check_typedef (type);
1764   return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1765           || ada_is_array_descriptor_type (type));
1766 }
1767 
1768 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1769  * to one.  */
1770 
1771 static int
1772 ada_is_array_type (struct type *type)
1773 {
1774   while (type != NULL
1775 	 && (TYPE_CODE (type) == TYPE_CODE_PTR
1776 	     || TYPE_CODE (type) == TYPE_CODE_REF))
1777     type = TYPE_TARGET_TYPE (type);
1778   return ada_is_direct_array_type (type);
1779 }
1780 
1781 /* Non-zero iff TYPE is a simple array type or pointer to one.  */
1782 
1783 int
1784 ada_is_simple_array_type (struct type *type)
1785 {
1786   if (type == NULL)
1787     return 0;
1788   type = ada_check_typedef (type);
1789   return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1790           || (TYPE_CODE (type) == TYPE_CODE_PTR
1791               && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1792                  == TYPE_CODE_ARRAY));
1793 }
1794 
1795 /* Non-zero iff TYPE belongs to a GNAT array descriptor.  */
1796 
1797 int
1798 ada_is_array_descriptor_type (struct type *type)
1799 {
1800   struct type *data_type = desc_data_target_type (type);
1801 
1802   if (type == NULL)
1803     return 0;
1804   type = ada_check_typedef (type);
1805   return (data_type != NULL
1806 	  && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1807 	  && desc_arity (desc_bounds_type (type)) > 0);
1808 }
1809 
1810 /* Non-zero iff type is a partially mal-formed GNAT array
1811    descriptor.  FIXME: This is to compensate for some problems with
1812    debugging output from GNAT.  Re-examine periodically to see if it
1813    is still needed.  */
1814 
1815 int
1816 ada_is_bogus_array_descriptor (struct type *type)
1817 {
1818   return
1819     type != NULL
1820     && TYPE_CODE (type) == TYPE_CODE_STRUCT
1821     && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1822         || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1823     && !ada_is_array_descriptor_type (type);
1824 }
1825 
1826 
1827 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1828    (fat pointer) returns the type of the array data described---specifically,
1829    a pointer-to-array type.  If BOUNDS is non-zero, the bounds data are filled
1830    in from the descriptor; otherwise, they are left unspecified.  If
1831    the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832    returns NULL.  The result is simply the type of ARR if ARR is not
1833    a descriptor.  */
1834 struct type *
1835 ada_type_of_array (struct value *arr, int bounds)
1836 {
1837   if (ada_is_constrained_packed_array_type (value_type (arr)))
1838     return decode_constrained_packed_array_type (value_type (arr));
1839 
1840   if (!ada_is_array_descriptor_type (value_type (arr)))
1841     return value_type (arr);
1842 
1843   if (!bounds)
1844     {
1845       struct type *array_type =
1846 	ada_check_typedef (desc_data_target_type (value_type (arr)));
1847 
1848       if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1849 	TYPE_FIELD_BITSIZE (array_type, 0) =
1850 	  decode_packed_array_bitsize (value_type (arr));
1851 
1852       return array_type;
1853     }
1854   else
1855     {
1856       struct type *elt_type;
1857       int arity;
1858       struct value *descriptor;
1859 
1860       elt_type = ada_array_element_type (value_type (arr), -1);
1861       arity = ada_array_arity (value_type (arr));
1862 
1863       if (elt_type == NULL || arity == 0)
1864         return ada_check_typedef (value_type (arr));
1865 
1866       descriptor = desc_bounds (arr);
1867       if (value_as_long (descriptor) == 0)
1868         return NULL;
1869       while (arity > 0)
1870         {
1871           struct type *range_type = alloc_type_copy (value_type (arr));
1872           struct type *array_type = alloc_type_copy (value_type (arr));
1873           struct value *low = desc_one_bound (descriptor, arity, 0);
1874           struct value *high = desc_one_bound (descriptor, arity, 1);
1875 
1876           arity -= 1;
1877           create_range_type (range_type, value_type (low),
1878                              longest_to_int (value_as_long (low)),
1879                              longest_to_int (value_as_long (high)));
1880           elt_type = create_array_type (array_type, elt_type, range_type);
1881 
1882 	  if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1883 	    {
1884 	      /* We need to store the element packed bitsize, as well as
1885 	         recompute the array size, because it was previously
1886 		 computed based on the unpacked element size.  */
1887 	      LONGEST lo = value_as_long (low);
1888 	      LONGEST hi = value_as_long (high);
1889 
1890 	      TYPE_FIELD_BITSIZE (elt_type, 0) =
1891 		decode_packed_array_bitsize (value_type (arr));
1892 	      /* If the array has no element, then the size is already
1893 	         zero, and does not need to be recomputed.  */
1894 	      if (lo < hi)
1895 		{
1896 		  int array_bitsize =
1897 		        (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1898 
1899 		  TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1900 		}
1901 	    }
1902         }
1903 
1904       return lookup_pointer_type (elt_type);
1905     }
1906 }
1907 
1908 /* If ARR does not represent an array, returns ARR unchanged.
1909    Otherwise, returns either a standard GDB array with bounds set
1910    appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911    GDB array.  Returns NULL if ARR is a null fat pointer.  */
1912 
1913 struct value *
1914 ada_coerce_to_simple_array_ptr (struct value *arr)
1915 {
1916   if (ada_is_array_descriptor_type (value_type (arr)))
1917     {
1918       struct type *arrType = ada_type_of_array (arr, 1);
1919 
1920       if (arrType == NULL)
1921         return NULL;
1922       return value_cast (arrType, value_copy (desc_data (arr)));
1923     }
1924   else if (ada_is_constrained_packed_array_type (value_type (arr)))
1925     return decode_constrained_packed_array (arr);
1926   else
1927     return arr;
1928 }
1929 
1930 /* If ARR does not represent an array, returns ARR unchanged.
1931    Otherwise, returns a standard GDB array describing ARR (which may
1932    be ARR itself if it already is in the proper form).  */
1933 
1934 struct value *
1935 ada_coerce_to_simple_array (struct value *arr)
1936 {
1937   if (ada_is_array_descriptor_type (value_type (arr)))
1938     {
1939       struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1940 
1941       if (arrVal == NULL)
1942         error (_("Bounds unavailable for null array pointer."));
1943       check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1944       return value_ind (arrVal);
1945     }
1946   else if (ada_is_constrained_packed_array_type (value_type (arr)))
1947     return decode_constrained_packed_array (arr);
1948   else
1949     return arr;
1950 }
1951 
1952 /* If TYPE represents a GNAT array type, return it translated to an
1953    ordinary GDB array type (possibly with BITSIZE fields indicating
1954    packing).  For other types, is the identity.  */
1955 
1956 struct type *
1957 ada_coerce_to_simple_array_type (struct type *type)
1958 {
1959   if (ada_is_constrained_packed_array_type (type))
1960     return decode_constrained_packed_array_type (type);
1961 
1962   if (ada_is_array_descriptor_type (type))
1963     return ada_check_typedef (desc_data_target_type (type));
1964 
1965   return type;
1966 }
1967 
1968 /* Non-zero iff TYPE represents a standard GNAT packed-array type.  */
1969 
1970 static int
1971 ada_is_packed_array_type  (struct type *type)
1972 {
1973   if (type == NULL)
1974     return 0;
1975   type = desc_base_type (type);
1976   type = ada_check_typedef (type);
1977   return
1978     ada_type_name (type) != NULL
1979     && strstr (ada_type_name (type), "___XP") != NULL;
1980 }
1981 
1982 /* Non-zero iff TYPE represents a standard GNAT constrained
1983    packed-array type.  */
1984 
1985 int
1986 ada_is_constrained_packed_array_type (struct type *type)
1987 {
1988   return ada_is_packed_array_type (type)
1989     && !ada_is_array_descriptor_type (type);
1990 }
1991 
1992 /* Non-zero iff TYPE represents an array descriptor for a
1993    unconstrained packed-array type.  */
1994 
1995 static int
1996 ada_is_unconstrained_packed_array_type (struct type *type)
1997 {
1998   return ada_is_packed_array_type (type)
1999     && ada_is_array_descriptor_type (type);
2000 }
2001 
2002 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003    return the size of its elements in bits.  */
2004 
2005 static long
2006 decode_packed_array_bitsize (struct type *type)
2007 {
2008   const char *raw_name;
2009   const char *tail;
2010   long bits;
2011 
2012   /* Access to arrays implemented as fat pointers are encoded as a typedef
2013      of the fat pointer type.  We need the name of the fat pointer type
2014      to do the decoding, so strip the typedef layer.  */
2015   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016     type = ada_typedef_target_type (type);
2017 
2018   raw_name = ada_type_name (ada_check_typedef (type));
2019   if (!raw_name)
2020     raw_name = ada_type_name (desc_base_type (type));
2021 
2022   if (!raw_name)
2023     return 0;
2024 
2025   tail = strstr (raw_name, "___XP");
2026   gdb_assert (tail != NULL);
2027 
2028   if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2029     {
2030       lim_warning
2031 	(_("could not understand bit size information on packed array"));
2032       return 0;
2033     }
2034 
2035   return bits;
2036 }
2037 
2038 /* Given that TYPE is a standard GDB array type with all bounds filled
2039    in, and that the element size of its ultimate scalar constituents
2040    (that is, either its elements, or, if it is an array of arrays, its
2041    elements' elements, etc.) is *ELT_BITS, return an identical type,
2042    but with the bit sizes of its elements (and those of any
2043    constituent arrays) recorded in the BITSIZE components of its
2044    TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2045    in bits.  */
2046 
2047 static struct type *
2048 constrained_packed_array_type (struct type *type, long *elt_bits)
2049 {
2050   struct type *new_elt_type;
2051   struct type *new_type;
2052   struct type *index_type_desc;
2053   struct type *index_type;
2054   LONGEST low_bound, high_bound;
2055 
2056   type = ada_check_typedef (type);
2057   if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2058     return type;
2059 
2060   index_type_desc = ada_find_parallel_type (type, "___XA");
2061   if (index_type_desc)
2062     index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2063 				      NULL);
2064   else
2065     index_type = TYPE_INDEX_TYPE (type);
2066 
2067   new_type = alloc_type_copy (type);
2068   new_elt_type =
2069     constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2070 				   elt_bits);
2071   create_array_type (new_type, new_elt_type, index_type);
2072   TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2073   TYPE_NAME (new_type) = ada_type_name (type);
2074 
2075   if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2076     low_bound = high_bound = 0;
2077   if (high_bound < low_bound)
2078     *elt_bits = TYPE_LENGTH (new_type) = 0;
2079   else
2080     {
2081       *elt_bits *= (high_bound - low_bound + 1);
2082       TYPE_LENGTH (new_type) =
2083         (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2084     }
2085 
2086   TYPE_FIXED_INSTANCE (new_type) = 1;
2087   return new_type;
2088 }
2089 
2090 /* The array type encoded by TYPE, where
2091    ada_is_constrained_packed_array_type (TYPE).  */
2092 
2093 static struct type *
2094 decode_constrained_packed_array_type (struct type *type)
2095 {
2096   const char *raw_name = ada_type_name (ada_check_typedef (type));
2097   char *name;
2098   const char *tail;
2099   struct type *shadow_type;
2100   long bits;
2101 
2102   if (!raw_name)
2103     raw_name = ada_type_name (desc_base_type (type));
2104 
2105   if (!raw_name)
2106     return NULL;
2107 
2108   name = (char *) alloca (strlen (raw_name) + 1);
2109   tail = strstr (raw_name, "___XP");
2110   type = desc_base_type (type);
2111 
2112   memcpy (name, raw_name, tail - raw_name);
2113   name[tail - raw_name] = '\000';
2114 
2115   shadow_type = ada_find_parallel_type_with_name (type, name);
2116 
2117   if (shadow_type == NULL)
2118     {
2119       lim_warning (_("could not find bounds information on packed array"));
2120       return NULL;
2121     }
2122   CHECK_TYPEDEF (shadow_type);
2123 
2124   if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2125     {
2126       lim_warning (_("could not understand bounds "
2127 		     "information on packed array"));
2128       return NULL;
2129     }
2130 
2131   bits = decode_packed_array_bitsize (type);
2132   return constrained_packed_array_type (shadow_type, &bits);
2133 }
2134 
2135 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2136    array, returns a simple array that denotes that array.  Its type is a
2137    standard GDB array type except that the BITSIZEs of the array
2138    target types are set to the number of bits in each element, and the
2139    type length is set appropriately.  */
2140 
2141 static struct value *
2142 decode_constrained_packed_array (struct value *arr)
2143 {
2144   struct type *type;
2145 
2146   arr = ada_coerce_ref (arr);
2147 
2148   /* If our value is a pointer, then dererence it.  Make sure that
2149      this operation does not cause the target type to be fixed, as
2150      this would indirectly cause this array to be decoded.  The rest
2151      of the routine assumes that the array hasn't been decoded yet,
2152      so we use the basic "value_ind" routine to perform the dereferencing,
2153      as opposed to using "ada_value_ind".  */
2154   if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2155     arr = value_ind (arr);
2156 
2157   type = decode_constrained_packed_array_type (value_type (arr));
2158   if (type == NULL)
2159     {
2160       error (_("can't unpack array"));
2161       return NULL;
2162     }
2163 
2164   if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2165       && ada_is_modular_type (value_type (arr)))
2166     {
2167        /* This is a (right-justified) modular type representing a packed
2168  	 array with no wrapper.  In order to interpret the value through
2169  	 the (left-justified) packed array type we just built, we must
2170  	 first left-justify it.  */
2171       int bit_size, bit_pos;
2172       ULONGEST mod;
2173 
2174       mod = ada_modulus (value_type (arr)) - 1;
2175       bit_size = 0;
2176       while (mod > 0)
2177 	{
2178 	  bit_size += 1;
2179 	  mod >>= 1;
2180 	}
2181       bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2182       arr = ada_value_primitive_packed_val (arr, NULL,
2183 					    bit_pos / HOST_CHAR_BIT,
2184 					    bit_pos % HOST_CHAR_BIT,
2185 					    bit_size,
2186 					    type);
2187     }
2188 
2189   return coerce_unspec_val_to_type (arr, type);
2190 }
2191 
2192 
2193 /* The value of the element of packed array ARR at the ARITY indices
2194    given in IND.   ARR must be a simple array.  */
2195 
2196 static struct value *
2197 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2198 {
2199   int i;
2200   int bits, elt_off, bit_off;
2201   long elt_total_bit_offset;
2202   struct type *elt_type;
2203   struct value *v;
2204 
2205   bits = 0;
2206   elt_total_bit_offset = 0;
2207   elt_type = ada_check_typedef (value_type (arr));
2208   for (i = 0; i < arity; i += 1)
2209     {
2210       if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2211           || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2212         error
2213           (_("attempt to do packed indexing of "
2214 	     "something other than a packed array"));
2215       else
2216         {
2217           struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2218           LONGEST lowerbound, upperbound;
2219           LONGEST idx;
2220 
2221           if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2222             {
2223               lim_warning (_("don't know bounds of array"));
2224               lowerbound = upperbound = 0;
2225             }
2226 
2227           idx = pos_atr (ind[i]);
2228           if (idx < lowerbound || idx > upperbound)
2229             lim_warning (_("packed array index %ld out of bounds"),
2230 			 (long) idx);
2231           bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2232           elt_total_bit_offset += (idx - lowerbound) * bits;
2233           elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2234         }
2235     }
2236   elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2237   bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2238 
2239   v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2240                                       bits, elt_type);
2241   return v;
2242 }
2243 
2244 /* Non-zero iff TYPE includes negative integer values.  */
2245 
2246 static int
2247 has_negatives (struct type *type)
2248 {
2249   switch (TYPE_CODE (type))
2250     {
2251     default:
2252       return 0;
2253     case TYPE_CODE_INT:
2254       return !TYPE_UNSIGNED (type);
2255     case TYPE_CODE_RANGE:
2256       return TYPE_LOW_BOUND (type) < 0;
2257     }
2258 }
2259 
2260 
2261 /* Create a new value of type TYPE from the contents of OBJ starting
2262    at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263    proceeding for BIT_SIZE bits.  If OBJ is an lval in memory, then
2264    assigning through the result will set the field fetched from.
2265    VALADDR is ignored unless OBJ is NULL, in which case,
2266    VALADDR+OFFSET must address the start of storage containing the
2267    packed value.  The value returned  in this case is never an lval.
2268    Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT.  */
2269 
2270 struct value *
2271 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2272 				long offset, int bit_offset, int bit_size,
2273                                 struct type *type)
2274 {
2275   struct value *v;
2276   int src,                      /* Index into the source area */
2277     targ,                       /* Index into the target area */
2278     srcBitsLeft,                /* Number of source bits left to move */
2279     nsrc, ntarg,                /* Number of source and target bytes */
2280     unusedLS,                   /* Number of bits in next significant
2281                                    byte of source that are unused */
2282     accumSize;                  /* Number of meaningful bits in accum */
2283   unsigned char *bytes;         /* First byte containing data to unpack */
2284   unsigned char *unpacked;
2285   unsigned long accum;          /* Staging area for bits being transferred */
2286   unsigned char sign;
2287   int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2288   /* Transmit bytes from least to most significant; delta is the direction
2289      the indices move.  */
2290   int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2291 
2292   type = ada_check_typedef (type);
2293 
2294   if (obj == NULL)
2295     {
2296       v = allocate_value (type);
2297       bytes = (unsigned char *) (valaddr + offset);
2298     }
2299   else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2300     {
2301       v = value_at (type, value_address (obj));
2302       bytes = (unsigned char *) alloca (len);
2303       read_memory (value_address (v) + offset, bytes, len);
2304     }
2305   else
2306     {
2307       v = allocate_value (type);
2308       bytes = (unsigned char *) value_contents (obj) + offset;
2309     }
2310 
2311   if (obj != NULL)
2312     {
2313       long new_offset = offset;
2314 
2315       set_value_component_location (v, obj);
2316       set_value_bitpos (v, bit_offset + value_bitpos (obj));
2317       set_value_bitsize (v, bit_size);
2318       if (value_bitpos (v) >= HOST_CHAR_BIT)
2319         {
2320 	  ++new_offset;
2321           set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2322         }
2323       set_value_offset (v, new_offset);
2324 
2325       /* Also set the parent value.  This is needed when trying to
2326 	 assign a new value (in inferior memory).  */
2327       set_value_parent (v, obj);
2328     }
2329   else
2330     set_value_bitsize (v, bit_size);
2331   unpacked = (unsigned char *) value_contents (v);
2332 
2333   srcBitsLeft = bit_size;
2334   nsrc = len;
2335   ntarg = TYPE_LENGTH (type);
2336   sign = 0;
2337   if (bit_size == 0)
2338     {
2339       memset (unpacked, 0, TYPE_LENGTH (type));
2340       return v;
2341     }
2342   else if (gdbarch_bits_big_endian (get_type_arch (type)))
2343     {
2344       src = len - 1;
2345       if (has_negatives (type)
2346           && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2347         sign = ~0;
2348 
2349       unusedLS =
2350         (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2351         % HOST_CHAR_BIT;
2352 
2353       switch (TYPE_CODE (type))
2354         {
2355         case TYPE_CODE_ARRAY:
2356         case TYPE_CODE_UNION:
2357         case TYPE_CODE_STRUCT:
2358           /* Non-scalar values must be aligned at a byte boundary...  */
2359           accumSize =
2360             (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361           /* ... And are placed at the beginning (most-significant) bytes
2362              of the target.  */
2363           targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2364           ntarg = targ + 1;
2365           break;
2366         default:
2367           accumSize = 0;
2368           targ = TYPE_LENGTH (type) - 1;
2369           break;
2370         }
2371     }
2372   else
2373     {
2374       int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2375 
2376       src = targ = 0;
2377       unusedLS = bit_offset;
2378       accumSize = 0;
2379 
2380       if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2381         sign = ~0;
2382     }
2383 
2384   accum = 0;
2385   while (nsrc > 0)
2386     {
2387       /* Mask for removing bits of the next source byte that are not
2388          part of the value.  */
2389       unsigned int unusedMSMask =
2390         (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2391         1;
2392       /* Sign-extend bits for this byte.  */
2393       unsigned int signMask = sign & ~unusedMSMask;
2394 
2395       accum |=
2396         (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2397       accumSize += HOST_CHAR_BIT - unusedLS;
2398       if (accumSize >= HOST_CHAR_BIT)
2399         {
2400           unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401           accumSize -= HOST_CHAR_BIT;
2402           accum >>= HOST_CHAR_BIT;
2403           ntarg -= 1;
2404           targ += delta;
2405         }
2406       srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2407       unusedLS = 0;
2408       nsrc -= 1;
2409       src += delta;
2410     }
2411   while (ntarg > 0)
2412     {
2413       accum |= sign << accumSize;
2414       unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415       accumSize -= HOST_CHAR_BIT;
2416       accum >>= HOST_CHAR_BIT;
2417       ntarg -= 1;
2418       targ += delta;
2419     }
2420 
2421   return v;
2422 }
2423 
2424 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425    TARGET, starting at bit offset TARG_OFFSET.  SOURCE and TARGET must
2426    not overlap.  */
2427 static void
2428 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2429 	   int src_offset, int n, int bits_big_endian_p)
2430 {
2431   unsigned int accum, mask;
2432   int accum_bits, chunk_size;
2433 
2434   target += targ_offset / HOST_CHAR_BIT;
2435   targ_offset %= HOST_CHAR_BIT;
2436   source += src_offset / HOST_CHAR_BIT;
2437   src_offset %= HOST_CHAR_BIT;
2438   if (bits_big_endian_p)
2439     {
2440       accum = (unsigned char) *source;
2441       source += 1;
2442       accum_bits = HOST_CHAR_BIT - src_offset;
2443 
2444       while (n > 0)
2445         {
2446           int unused_right;
2447 
2448           accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449           accum_bits += HOST_CHAR_BIT;
2450           source += 1;
2451           chunk_size = HOST_CHAR_BIT - targ_offset;
2452           if (chunk_size > n)
2453             chunk_size = n;
2454           unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455           mask = ((1 << chunk_size) - 1) << unused_right;
2456           *target =
2457             (*target & ~mask)
2458             | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2459           n -= chunk_size;
2460           accum_bits -= chunk_size;
2461           target += 1;
2462           targ_offset = 0;
2463         }
2464     }
2465   else
2466     {
2467       accum = (unsigned char) *source >> src_offset;
2468       source += 1;
2469       accum_bits = HOST_CHAR_BIT - src_offset;
2470 
2471       while (n > 0)
2472         {
2473           accum = accum + ((unsigned char) *source << accum_bits);
2474           accum_bits += HOST_CHAR_BIT;
2475           source += 1;
2476           chunk_size = HOST_CHAR_BIT - targ_offset;
2477           if (chunk_size > n)
2478             chunk_size = n;
2479           mask = ((1 << chunk_size) - 1) << targ_offset;
2480           *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2481           n -= chunk_size;
2482           accum_bits -= chunk_size;
2483           accum >>= chunk_size;
2484           target += 1;
2485           targ_offset = 0;
2486         }
2487     }
2488 }
2489 
2490 /* Store the contents of FROMVAL into the location of TOVAL.
2491    Return a new value with the location of TOVAL and contents of
2492    FROMVAL.   Handles assignment into packed fields that have
2493    floating-point or non-scalar types.  */
2494 
2495 static struct value *
2496 ada_value_assign (struct value *toval, struct value *fromval)
2497 {
2498   struct type *type = value_type (toval);
2499   int bits = value_bitsize (toval);
2500 
2501   toval = ada_coerce_ref (toval);
2502   fromval = ada_coerce_ref (fromval);
2503 
2504   if (ada_is_direct_array_type (value_type (toval)))
2505     toval = ada_coerce_to_simple_array (toval);
2506   if (ada_is_direct_array_type (value_type (fromval)))
2507     fromval = ada_coerce_to_simple_array (fromval);
2508 
2509   if (!deprecated_value_modifiable (toval))
2510     error (_("Left operand of assignment is not a modifiable lvalue."));
2511 
2512   if (VALUE_LVAL (toval) == lval_memory
2513       && bits > 0
2514       && (TYPE_CODE (type) == TYPE_CODE_FLT
2515           || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2516     {
2517       int len = (value_bitpos (toval)
2518 		 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2519       int from_size;
2520       gdb_byte *buffer = alloca (len);
2521       struct value *val;
2522       CORE_ADDR to_addr = value_address (toval);
2523 
2524       if (TYPE_CODE (type) == TYPE_CODE_FLT)
2525         fromval = value_cast (type, fromval);
2526 
2527       read_memory (to_addr, buffer, len);
2528       from_size = value_bitsize (fromval);
2529       if (from_size == 0)
2530 	from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2531       if (gdbarch_bits_big_endian (get_type_arch (type)))
2532         move_bits (buffer, value_bitpos (toval),
2533 		   value_contents (fromval), from_size - bits, bits, 1);
2534       else
2535         move_bits (buffer, value_bitpos (toval),
2536 		   value_contents (fromval), 0, bits, 0);
2537       write_memory_with_notification (to_addr, buffer, len);
2538 
2539       val = value_copy (toval);
2540       memcpy (value_contents_raw (val), value_contents (fromval),
2541               TYPE_LENGTH (type));
2542       deprecated_set_value_type (val, type);
2543 
2544       return val;
2545     }
2546 
2547   return value_assign (toval, fromval);
2548 }
2549 
2550 
2551 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2552  * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2553  * CONTAINER.  Modifies the VALUE_CONTENTS of CONTAINER only, not
2554  * COMPONENT, and not the inferior's memory.  The current contents
2555  * of COMPONENT are ignored.  */
2556 static void
2557 value_assign_to_component (struct value *container, struct value *component,
2558 			   struct value *val)
2559 {
2560   LONGEST offset_in_container =
2561     (LONGEST)  (value_address (component) - value_address (container));
2562   int bit_offset_in_container =
2563     value_bitpos (component) - value_bitpos (container);
2564   int bits;
2565 
2566   val = value_cast (value_type (component), val);
2567 
2568   if (value_bitsize (component) == 0)
2569     bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2570   else
2571     bits = value_bitsize (component);
2572 
2573   if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2574     move_bits (value_contents_writeable (container) + offset_in_container,
2575 	       value_bitpos (container) + bit_offset_in_container,
2576 	       value_contents (val),
2577 	       TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2578 	       bits, 1);
2579   else
2580     move_bits (value_contents_writeable (container) + offset_in_container,
2581 	       value_bitpos (container) + bit_offset_in_container,
2582 	       value_contents (val), 0, bits, 0);
2583 }
2584 
2585 /* The value of the element of array ARR at the ARITY indices given in IND.
2586    ARR may be either a simple array, GNAT array descriptor, or pointer
2587    thereto.  */
2588 
2589 struct value *
2590 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2591 {
2592   int k;
2593   struct value *elt;
2594   struct type *elt_type;
2595 
2596   elt = ada_coerce_to_simple_array (arr);
2597 
2598   elt_type = ada_check_typedef (value_type (elt));
2599   if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2600       && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2601     return value_subscript_packed (elt, arity, ind);
2602 
2603   for (k = 0; k < arity; k += 1)
2604     {
2605       if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2606         error (_("too many subscripts (%d expected)"), k);
2607       elt = value_subscript (elt, pos_atr (ind[k]));
2608     }
2609   return elt;
2610 }
2611 
2612 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2613    value of the element of *ARR at the ARITY indices given in
2614    IND.  Does not read the entire array into memory.  */
2615 
2616 static struct value *
2617 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2618                          struct value **ind)
2619 {
2620   int k;
2621 
2622   for (k = 0; k < arity; k += 1)
2623     {
2624       LONGEST lwb, upb;
2625 
2626       if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2627         error (_("too many subscripts (%d expected)"), k);
2628       arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2629                         value_copy (arr));
2630       get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2631       arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2632       type = TYPE_TARGET_TYPE (type);
2633     }
2634 
2635   return value_ind (arr);
2636 }
2637 
2638 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2639    actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2640    elements starting at index LOW.  The lower bound of this array is LOW, as
2641    per Ada rules.  */
2642 static struct value *
2643 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2644                           int low, int high)
2645 {
2646   struct type *type0 = ada_check_typedef (type);
2647   CORE_ADDR base = value_as_address (array_ptr)
2648     + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2649        * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2650   struct type *index_type =
2651     create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2652                        low, high);
2653   struct type *slice_type =
2654     create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2655 
2656   return value_at_lazy (slice_type, base);
2657 }
2658 
2659 
2660 static struct value *
2661 ada_value_slice (struct value *array, int low, int high)
2662 {
2663   struct type *type = ada_check_typedef (value_type (array));
2664   struct type *index_type =
2665     create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2666   struct type *slice_type =
2667     create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2668 
2669   return value_cast (slice_type, value_slice (array, low, high - low + 1));
2670 }
2671 
2672 /* If type is a record type in the form of a standard GNAT array
2673    descriptor, returns the number of dimensions for type.  If arr is a
2674    simple array, returns the number of "array of"s that prefix its
2675    type designation.  Otherwise, returns 0.  */
2676 
2677 int
2678 ada_array_arity (struct type *type)
2679 {
2680   int arity;
2681 
2682   if (type == NULL)
2683     return 0;
2684 
2685   type = desc_base_type (type);
2686 
2687   arity = 0;
2688   if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2689     return desc_arity (desc_bounds_type (type));
2690   else
2691     while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2692       {
2693         arity += 1;
2694         type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2695       }
2696 
2697   return arity;
2698 }
2699 
2700 /* If TYPE is a record type in the form of a standard GNAT array
2701    descriptor or a simple array type, returns the element type for
2702    TYPE after indexing by NINDICES indices, or by all indices if
2703    NINDICES is -1.  Otherwise, returns NULL.  */
2704 
2705 struct type *
2706 ada_array_element_type (struct type *type, int nindices)
2707 {
2708   type = desc_base_type (type);
2709 
2710   if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2711     {
2712       int k;
2713       struct type *p_array_type;
2714 
2715       p_array_type = desc_data_target_type (type);
2716 
2717       k = ada_array_arity (type);
2718       if (k == 0)
2719         return NULL;
2720 
2721       /* Initially p_array_type = elt_type(*)[]...(k times)...[].  */
2722       if (nindices >= 0 && k > nindices)
2723         k = nindices;
2724       while (k > 0 && p_array_type != NULL)
2725         {
2726           p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2727           k -= 1;
2728         }
2729       return p_array_type;
2730     }
2731   else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2732     {
2733       while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2734         {
2735           type = TYPE_TARGET_TYPE (type);
2736           nindices -= 1;
2737         }
2738       return type;
2739     }
2740 
2741   return NULL;
2742 }
2743 
2744 /* The type of nth index in arrays of given type (n numbering from 1).
2745    Does not examine memory.  Throws an error if N is invalid or TYPE
2746    is not an array type.  NAME is the name of the Ada attribute being
2747    evaluated ('range, 'first, 'last, or 'length); it is used in building
2748    the error message.  */
2749 
2750 static struct type *
2751 ada_index_type (struct type *type, int n, const char *name)
2752 {
2753   struct type *result_type;
2754 
2755   type = desc_base_type (type);
2756 
2757   if (n < 0 || n > ada_array_arity (type))
2758     error (_("invalid dimension number to '%s"), name);
2759 
2760   if (ada_is_simple_array_type (type))
2761     {
2762       int i;
2763 
2764       for (i = 1; i < n; i += 1)
2765         type = TYPE_TARGET_TYPE (type);
2766       result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2767       /* FIXME: The stabs type r(0,0);bound;bound in an array type
2768          has a target type of TYPE_CODE_UNDEF.  We compensate here, but
2769          perhaps stabsread.c would make more sense.  */
2770       if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2771         result_type = NULL;
2772     }
2773   else
2774     {
2775       result_type = desc_index_type (desc_bounds_type (type), n);
2776       if (result_type == NULL)
2777 	error (_("attempt to take bound of something that is not an array"));
2778     }
2779 
2780   return result_type;
2781 }
2782 
2783 /* Given that arr is an array type, returns the lower bound of the
2784    Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2785    WHICH is 1.  This returns bounds 0 .. -1 if ARR_TYPE is an
2786    array-descriptor type.  It works for other arrays with bounds supplied
2787    by run-time quantities other than discriminants.  */
2788 
2789 static LONGEST
2790 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2791 {
2792   struct type *type, *index_type_desc, *index_type;
2793   int i;
2794 
2795   gdb_assert (which == 0 || which == 1);
2796 
2797   if (ada_is_constrained_packed_array_type (arr_type))
2798     arr_type = decode_constrained_packed_array_type (arr_type);
2799 
2800   if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2801     return (LONGEST) - which;
2802 
2803   if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2804     type = TYPE_TARGET_TYPE (arr_type);
2805   else
2806     type = arr_type;
2807 
2808   index_type_desc = ada_find_parallel_type (type, "___XA");
2809   ada_fixup_array_indexes_type (index_type_desc);
2810   if (index_type_desc != NULL)
2811     index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2812 				      NULL);
2813   else
2814     {
2815       struct type *elt_type = check_typedef (type);
2816 
2817       for (i = 1; i < n; i++)
2818 	elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2819 
2820       index_type = TYPE_INDEX_TYPE (elt_type);
2821     }
2822 
2823   return
2824     (LONGEST) (which == 0
2825                ? ada_discrete_type_low_bound (index_type)
2826                : ada_discrete_type_high_bound (index_type));
2827 }
2828 
2829 /* Given that arr is an array value, returns the lower bound of the
2830    nth index (numbering from 1) if WHICH is 0, and the upper bound if
2831    WHICH is 1.  This routine will also work for arrays with bounds
2832    supplied by run-time quantities other than discriminants.  */
2833 
2834 static LONGEST
2835 ada_array_bound (struct value *arr, int n, int which)
2836 {
2837   struct type *arr_type = value_type (arr);
2838 
2839   if (ada_is_constrained_packed_array_type (arr_type))
2840     return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2841   else if (ada_is_simple_array_type (arr_type))
2842     return ada_array_bound_from_type (arr_type, n, which);
2843   else
2844     return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2845 }
2846 
2847 /* Given that arr is an array value, returns the length of the
2848    nth index.  This routine will also work for arrays with bounds
2849    supplied by run-time quantities other than discriminants.
2850    Does not work for arrays indexed by enumeration types with representation
2851    clauses at the moment.  */
2852 
2853 static LONGEST
2854 ada_array_length (struct value *arr, int n)
2855 {
2856   struct type *arr_type = ada_check_typedef (value_type (arr));
2857 
2858   if (ada_is_constrained_packed_array_type (arr_type))
2859     return ada_array_length (decode_constrained_packed_array (arr), n);
2860 
2861   if (ada_is_simple_array_type (arr_type))
2862     return (ada_array_bound_from_type (arr_type, n, 1)
2863 	    - ada_array_bound_from_type (arr_type, n, 0) + 1);
2864   else
2865     return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2866 	    - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2867 }
2868 
2869 /* An empty array whose type is that of ARR_TYPE (an array type),
2870    with bounds LOW to LOW-1.  */
2871 
2872 static struct value *
2873 empty_array (struct type *arr_type, int low)
2874 {
2875   struct type *arr_type0 = ada_check_typedef (arr_type);
2876   struct type *index_type =
2877     create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2878                        low, low - 1);
2879   struct type *elt_type = ada_array_element_type (arr_type0, 1);
2880 
2881   return allocate_value (create_array_type (NULL, elt_type, index_type));
2882 }
2883 
2884 
2885                                 /* Name resolution */
2886 
2887 /* The "decoded" name for the user-definable Ada operator corresponding
2888    to OP.  */
2889 
2890 static const char *
2891 ada_decoded_op_name (enum exp_opcode op)
2892 {
2893   int i;
2894 
2895   for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2896     {
2897       if (ada_opname_table[i].op == op)
2898         return ada_opname_table[i].decoded;
2899     }
2900   error (_("Could not find operator name for opcode"));
2901 }
2902 
2903 
2904 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2905    references (marked by OP_VAR_VALUE nodes in which the symbol has an
2906    undefined namespace) and converts operators that are
2907    user-defined into appropriate function calls.  If CONTEXT_TYPE is
2908    non-null, it provides a preferred result type [at the moment, only
2909    type void has any effect---causing procedures to be preferred over
2910    functions in calls].  A null CONTEXT_TYPE indicates that a non-void
2911    return type is preferred.  May change (expand) *EXP.  */
2912 
2913 static void
2914 resolve (struct expression **expp, int void_context_p)
2915 {
2916   struct type *context_type = NULL;
2917   int pc = 0;
2918 
2919   if (void_context_p)
2920     context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2921 
2922   resolve_subexp (expp, &pc, 1, context_type);
2923 }
2924 
2925 /* Resolve the operator of the subexpression beginning at
2926    position *POS of *EXPP.  "Resolving" consists of replacing
2927    the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2928    with their resolutions, replacing built-in operators with
2929    function calls to user-defined operators, where appropriate, and,
2930    when DEPROCEDURE_P is non-zero, converting function-valued variables
2931    into parameterless calls.  May expand *EXPP.  The CONTEXT_TYPE functions
2932    are as in ada_resolve, above.  */
2933 
2934 static struct value *
2935 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2936                 struct type *context_type)
2937 {
2938   int pc = *pos;
2939   int i;
2940   struct expression *exp;       /* Convenience: == *expp.  */
2941   enum exp_opcode op = (*expp)->elts[pc].opcode;
2942   struct value **argvec;        /* Vector of operand types (alloca'ed).  */
2943   int nargs;                    /* Number of operands.  */
2944   int oplen;
2945 
2946   argvec = NULL;
2947   nargs = 0;
2948   exp = *expp;
2949 
2950   /* Pass one: resolve operands, saving their types and updating *pos,
2951      if needed.  */
2952   switch (op)
2953     {
2954     case OP_FUNCALL:
2955       if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2956           && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2957         *pos += 7;
2958       else
2959         {
2960           *pos += 3;
2961           resolve_subexp (expp, pos, 0, NULL);
2962         }
2963       nargs = longest_to_int (exp->elts[pc + 1].longconst);
2964       break;
2965 
2966     case UNOP_ADDR:
2967       *pos += 1;
2968       resolve_subexp (expp, pos, 0, NULL);
2969       break;
2970 
2971     case UNOP_QUAL:
2972       *pos += 3;
2973       resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2974       break;
2975 
2976     case OP_ATR_MODULUS:
2977     case OP_ATR_SIZE:
2978     case OP_ATR_TAG:
2979     case OP_ATR_FIRST:
2980     case OP_ATR_LAST:
2981     case OP_ATR_LENGTH:
2982     case OP_ATR_POS:
2983     case OP_ATR_VAL:
2984     case OP_ATR_MIN:
2985     case OP_ATR_MAX:
2986     case TERNOP_IN_RANGE:
2987     case BINOP_IN_BOUNDS:
2988     case UNOP_IN_RANGE:
2989     case OP_AGGREGATE:
2990     case OP_OTHERS:
2991     case OP_CHOICES:
2992     case OP_POSITIONAL:
2993     case OP_DISCRETE_RANGE:
2994     case OP_NAME:
2995       ada_forward_operator_length (exp, pc, &oplen, &nargs);
2996       *pos += oplen;
2997       break;
2998 
2999     case BINOP_ASSIGN:
3000       {
3001         struct value *arg1;
3002 
3003         *pos += 1;
3004         arg1 = resolve_subexp (expp, pos, 0, NULL);
3005         if (arg1 == NULL)
3006           resolve_subexp (expp, pos, 1, NULL);
3007         else
3008           resolve_subexp (expp, pos, 1, value_type (arg1));
3009         break;
3010       }
3011 
3012     case UNOP_CAST:
3013       *pos += 3;
3014       nargs = 1;
3015       break;
3016 
3017     case BINOP_ADD:
3018     case BINOP_SUB:
3019     case BINOP_MUL:
3020     case BINOP_DIV:
3021     case BINOP_REM:
3022     case BINOP_MOD:
3023     case BINOP_EXP:
3024     case BINOP_CONCAT:
3025     case BINOP_LOGICAL_AND:
3026     case BINOP_LOGICAL_OR:
3027     case BINOP_BITWISE_AND:
3028     case BINOP_BITWISE_IOR:
3029     case BINOP_BITWISE_XOR:
3030 
3031     case BINOP_EQUAL:
3032     case BINOP_NOTEQUAL:
3033     case BINOP_LESS:
3034     case BINOP_GTR:
3035     case BINOP_LEQ:
3036     case BINOP_GEQ:
3037 
3038     case BINOP_REPEAT:
3039     case BINOP_SUBSCRIPT:
3040     case BINOP_COMMA:
3041       *pos += 1;
3042       nargs = 2;
3043       break;
3044 
3045     case UNOP_NEG:
3046     case UNOP_PLUS:
3047     case UNOP_LOGICAL_NOT:
3048     case UNOP_ABS:
3049     case UNOP_IND:
3050       *pos += 1;
3051       nargs = 1;
3052       break;
3053 
3054     case OP_LONG:
3055     case OP_DOUBLE:
3056     case OP_VAR_VALUE:
3057       *pos += 4;
3058       break;
3059 
3060     case OP_TYPE:
3061     case OP_BOOL:
3062     case OP_LAST:
3063     case OP_INTERNALVAR:
3064       *pos += 3;
3065       break;
3066 
3067     case UNOP_MEMVAL:
3068       *pos += 3;
3069       nargs = 1;
3070       break;
3071 
3072     case OP_REGISTER:
3073       *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3074       break;
3075 
3076     case STRUCTOP_STRUCT:
3077       *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3078       nargs = 1;
3079       break;
3080 
3081     case TERNOP_SLICE:
3082       *pos += 1;
3083       nargs = 3;
3084       break;
3085 
3086     case OP_STRING:
3087       break;
3088 
3089     default:
3090       error (_("Unexpected operator during name resolution"));
3091     }
3092 
3093   argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3094   for (i = 0; i < nargs; i += 1)
3095     argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3096   argvec[i] = NULL;
3097   exp = *expp;
3098 
3099   /* Pass two: perform any resolution on principal operator.  */
3100   switch (op)
3101     {
3102     default:
3103       break;
3104 
3105     case OP_VAR_VALUE:
3106       if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3107         {
3108           struct ada_symbol_info *candidates;
3109           int n_candidates;
3110 
3111           n_candidates =
3112             ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3113                                     (exp->elts[pc + 2].symbol),
3114                                     exp->elts[pc + 1].block, VAR_DOMAIN,
3115                                     &candidates);
3116 
3117           if (n_candidates > 1)
3118             {
3119               /* Types tend to get re-introduced locally, so if there
3120                  are any local symbols that are not types, first filter
3121                  out all types.  */
3122               int j;
3123               for (j = 0; j < n_candidates; j += 1)
3124                 switch (SYMBOL_CLASS (candidates[j].sym))
3125                   {
3126                   case LOC_REGISTER:
3127                   case LOC_ARG:
3128                   case LOC_REF_ARG:
3129                   case LOC_REGPARM_ADDR:
3130                   case LOC_LOCAL:
3131                   case LOC_COMPUTED:
3132                     goto FoundNonType;
3133                   default:
3134                     break;
3135                   }
3136             FoundNonType:
3137               if (j < n_candidates)
3138                 {
3139                   j = 0;
3140                   while (j < n_candidates)
3141                     {
3142                       if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3143                         {
3144                           candidates[j] = candidates[n_candidates - 1];
3145                           n_candidates -= 1;
3146                         }
3147                       else
3148                         j += 1;
3149                     }
3150                 }
3151             }
3152 
3153           if (n_candidates == 0)
3154             error (_("No definition found for %s"),
3155                    SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3156           else if (n_candidates == 1)
3157             i = 0;
3158           else if (deprocedure_p
3159                    && !is_nonfunction (candidates, n_candidates))
3160             {
3161               i = ada_resolve_function
3162                 (candidates, n_candidates, NULL, 0,
3163                  SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3164                  context_type);
3165               if (i < 0)
3166                 error (_("Could not find a match for %s"),
3167                        SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3168             }
3169           else
3170             {
3171               printf_filtered (_("Multiple matches for %s\n"),
3172                                SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3173               user_select_syms (candidates, n_candidates, 1);
3174               i = 0;
3175             }
3176 
3177           exp->elts[pc + 1].block = candidates[i].block;
3178           exp->elts[pc + 2].symbol = candidates[i].sym;
3179           if (innermost_block == NULL
3180               || contained_in (candidates[i].block, innermost_block))
3181             innermost_block = candidates[i].block;
3182         }
3183 
3184       if (deprocedure_p
3185           && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3186               == TYPE_CODE_FUNC))
3187         {
3188           replace_operator_with_call (expp, pc, 0, 0,
3189                                       exp->elts[pc + 2].symbol,
3190                                       exp->elts[pc + 1].block);
3191           exp = *expp;
3192         }
3193       break;
3194 
3195     case OP_FUNCALL:
3196       {
3197         if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3198             && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3199           {
3200             struct ada_symbol_info *candidates;
3201             int n_candidates;
3202 
3203             n_candidates =
3204               ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3205                                       (exp->elts[pc + 5].symbol),
3206                                       exp->elts[pc + 4].block, VAR_DOMAIN,
3207                                       &candidates);
3208             if (n_candidates == 1)
3209               i = 0;
3210             else
3211               {
3212                 i = ada_resolve_function
3213                   (candidates, n_candidates,
3214                    argvec, nargs,
3215                    SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3216                    context_type);
3217                 if (i < 0)
3218                   error (_("Could not find a match for %s"),
3219                          SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3220               }
3221 
3222             exp->elts[pc + 4].block = candidates[i].block;
3223             exp->elts[pc + 5].symbol = candidates[i].sym;
3224             if (innermost_block == NULL
3225                 || contained_in (candidates[i].block, innermost_block))
3226               innermost_block = candidates[i].block;
3227           }
3228       }
3229       break;
3230     case BINOP_ADD:
3231     case BINOP_SUB:
3232     case BINOP_MUL:
3233     case BINOP_DIV:
3234     case BINOP_REM:
3235     case BINOP_MOD:
3236     case BINOP_CONCAT:
3237     case BINOP_BITWISE_AND:
3238     case BINOP_BITWISE_IOR:
3239     case BINOP_BITWISE_XOR:
3240     case BINOP_EQUAL:
3241     case BINOP_NOTEQUAL:
3242     case BINOP_LESS:
3243     case BINOP_GTR:
3244     case BINOP_LEQ:
3245     case BINOP_GEQ:
3246     case BINOP_EXP:
3247     case UNOP_NEG:
3248     case UNOP_PLUS:
3249     case UNOP_LOGICAL_NOT:
3250     case UNOP_ABS:
3251       if (possible_user_operator_p (op, argvec))
3252         {
3253           struct ada_symbol_info *candidates;
3254           int n_candidates;
3255 
3256           n_candidates =
3257             ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3258                                     (struct block *) NULL, VAR_DOMAIN,
3259                                     &candidates);
3260           i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3261                                     ada_decoded_op_name (op), NULL);
3262           if (i < 0)
3263             break;
3264 
3265           replace_operator_with_call (expp, pc, nargs, 1,
3266                                       candidates[i].sym, candidates[i].block);
3267           exp = *expp;
3268         }
3269       break;
3270 
3271     case OP_TYPE:
3272     case OP_REGISTER:
3273       return NULL;
3274     }
3275 
3276   *pos = pc;
3277   return evaluate_subexp_type (exp, pos);
3278 }
3279 
3280 /* Return non-zero if formal type FTYPE matches actual type ATYPE.  If
3281    MAY_DEREF is non-zero, the formal may be a pointer and the actual
3282    a non-pointer.  */
3283 /* The term "match" here is rather loose.  The match is heuristic and
3284    liberal.  */
3285 
3286 static int
3287 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3288 {
3289   ftype = ada_check_typedef (ftype);
3290   atype = ada_check_typedef (atype);
3291 
3292   if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3293     ftype = TYPE_TARGET_TYPE (ftype);
3294   if (TYPE_CODE (atype) == TYPE_CODE_REF)
3295     atype = TYPE_TARGET_TYPE (atype);
3296 
3297   switch (TYPE_CODE (ftype))
3298     {
3299     default:
3300       return TYPE_CODE (ftype) == TYPE_CODE (atype);
3301     case TYPE_CODE_PTR:
3302       if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3303         return ada_type_match (TYPE_TARGET_TYPE (ftype),
3304                                TYPE_TARGET_TYPE (atype), 0);
3305       else
3306         return (may_deref
3307                 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3308     case TYPE_CODE_INT:
3309     case TYPE_CODE_ENUM:
3310     case TYPE_CODE_RANGE:
3311       switch (TYPE_CODE (atype))
3312         {
3313         case TYPE_CODE_INT:
3314         case TYPE_CODE_ENUM:
3315         case TYPE_CODE_RANGE:
3316           return 1;
3317         default:
3318           return 0;
3319         }
3320 
3321     case TYPE_CODE_ARRAY:
3322       return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3323               || ada_is_array_descriptor_type (atype));
3324 
3325     case TYPE_CODE_STRUCT:
3326       if (ada_is_array_descriptor_type (ftype))
3327         return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3328                 || ada_is_array_descriptor_type (atype));
3329       else
3330         return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3331                 && !ada_is_array_descriptor_type (atype));
3332 
3333     case TYPE_CODE_UNION:
3334     case TYPE_CODE_FLT:
3335       return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3336     }
3337 }
3338 
3339 /* Return non-zero if the formals of FUNC "sufficiently match" the
3340    vector of actual argument types ACTUALS of size N_ACTUALS.  FUNC
3341    may also be an enumeral, in which case it is treated as a 0-
3342    argument function.  */
3343 
3344 static int
3345 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3346 {
3347   int i;
3348   struct type *func_type = SYMBOL_TYPE (func);
3349 
3350   if (SYMBOL_CLASS (func) == LOC_CONST
3351       && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3352     return (n_actuals == 0);
3353   else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3354     return 0;
3355 
3356   if (TYPE_NFIELDS (func_type) != n_actuals)
3357     return 0;
3358 
3359   for (i = 0; i < n_actuals; i += 1)
3360     {
3361       if (actuals[i] == NULL)
3362         return 0;
3363       else
3364         {
3365           struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3366 								   i));
3367           struct type *atype = ada_check_typedef (value_type (actuals[i]));
3368 
3369           if (!ada_type_match (ftype, atype, 1))
3370             return 0;
3371         }
3372     }
3373   return 1;
3374 }
3375 
3376 /* False iff function type FUNC_TYPE definitely does not produce a value
3377    compatible with type CONTEXT_TYPE.  Conservatively returns 1 if
3378    FUNC_TYPE is not a valid function type with a non-null return type
3379    or an enumerated type.  A null CONTEXT_TYPE indicates any non-void type.  */
3380 
3381 static int
3382 return_match (struct type *func_type, struct type *context_type)
3383 {
3384   struct type *return_type;
3385 
3386   if (func_type == NULL)
3387     return 1;
3388 
3389   if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3390     return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3391   else
3392     return_type = get_base_type (func_type);
3393   if (return_type == NULL)
3394     return 1;
3395 
3396   context_type = get_base_type (context_type);
3397 
3398   if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3399     return context_type == NULL || return_type == context_type;
3400   else if (context_type == NULL)
3401     return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3402   else
3403     return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3404 }
3405 
3406 
3407 /* Returns the index in SYMS[0..NSYMS-1] that contains  the symbol for the
3408    function (if any) that matches the types of the NARGS arguments in
3409    ARGS.  If CONTEXT_TYPE is non-null and there is at least one match
3410    that returns that type, then eliminate matches that don't.  If
3411    CONTEXT_TYPE is void and there is at least one match that does not
3412    return void, eliminate all matches that do.
3413 
3414    Asks the user if there is more than one match remaining.  Returns -1
3415    if there is no such symbol or none is selected.  NAME is used
3416    solely for messages.  May re-arrange and modify SYMS in
3417    the process; the index returned is for the modified vector.  */
3418 
3419 static int
3420 ada_resolve_function (struct ada_symbol_info syms[],
3421                       int nsyms, struct value **args, int nargs,
3422                       const char *name, struct type *context_type)
3423 {
3424   int fallback;
3425   int k;
3426   int m;                        /* Number of hits */
3427 
3428   m = 0;
3429   /* In the first pass of the loop, we only accept functions matching
3430      context_type.  If none are found, we add a second pass of the loop
3431      where every function is accepted.  */
3432   for (fallback = 0; m == 0 && fallback < 2; fallback++)
3433     {
3434       for (k = 0; k < nsyms; k += 1)
3435         {
3436           struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3437 
3438           if (ada_args_match (syms[k].sym, args, nargs)
3439               && (fallback || return_match (type, context_type)))
3440             {
3441               syms[m] = syms[k];
3442               m += 1;
3443             }
3444         }
3445     }
3446 
3447   if (m == 0)
3448     return -1;
3449   else if (m > 1)
3450     {
3451       printf_filtered (_("Multiple matches for %s\n"), name);
3452       user_select_syms (syms, m, 1);
3453       return 0;
3454     }
3455   return 0;
3456 }
3457 
3458 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3459    in a listing of choices during disambiguation (see sort_choices, below).
3460    The idea is that overloadings of a subprogram name from the
3461    same package should sort in their source order.  We settle for ordering
3462    such symbols by their trailing number (__N  or $N).  */
3463 
3464 static int
3465 encoded_ordered_before (const char *N0, const char *N1)
3466 {
3467   if (N1 == NULL)
3468     return 0;
3469   else if (N0 == NULL)
3470     return 1;
3471   else
3472     {
3473       int k0, k1;
3474 
3475       for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3476         ;
3477       for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3478         ;
3479       if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3480           && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3481         {
3482           int n0, n1;
3483 
3484           n0 = k0;
3485           while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3486             n0 -= 1;
3487           n1 = k1;
3488           while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3489             n1 -= 1;
3490           if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3491             return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3492         }
3493       return (strcmp (N0, N1) < 0);
3494     }
3495 }
3496 
3497 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3498    encoded names.  */
3499 
3500 static void
3501 sort_choices (struct ada_symbol_info syms[], int nsyms)
3502 {
3503   int i;
3504 
3505   for (i = 1; i < nsyms; i += 1)
3506     {
3507       struct ada_symbol_info sym = syms[i];
3508       int j;
3509 
3510       for (j = i - 1; j >= 0; j -= 1)
3511         {
3512           if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3513                                       SYMBOL_LINKAGE_NAME (sym.sym)))
3514             break;
3515           syms[j + 1] = syms[j];
3516         }
3517       syms[j + 1] = sym;
3518     }
3519 }
3520 
3521 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3522    by asking the user (if necessary), returning the number selected,
3523    and setting the first elements of SYMS items.  Error if no symbols
3524    selected.  */
3525 
3526 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3527    to be re-integrated one of these days.  */
3528 
3529 int
3530 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3531 {
3532   int i;
3533   int *chosen = (int *) alloca (sizeof (int) * nsyms);
3534   int n_chosen;
3535   int first_choice = (max_results == 1) ? 1 : 2;
3536   const char *select_mode = multiple_symbols_select_mode ();
3537 
3538   if (max_results < 1)
3539     error (_("Request to select 0 symbols!"));
3540   if (nsyms <= 1)
3541     return nsyms;
3542 
3543   if (select_mode == multiple_symbols_cancel)
3544     error (_("\
3545 canceled because the command is ambiguous\n\
3546 See set/show multiple-symbol."));
3547 
3548   /* If select_mode is "all", then return all possible symbols.
3549      Only do that if more than one symbol can be selected, of course.
3550      Otherwise, display the menu as usual.  */
3551   if (select_mode == multiple_symbols_all && max_results > 1)
3552     return nsyms;
3553 
3554   printf_unfiltered (_("[0] cancel\n"));
3555   if (max_results > 1)
3556     printf_unfiltered (_("[1] all\n"));
3557 
3558   sort_choices (syms, nsyms);
3559 
3560   for (i = 0; i < nsyms; i += 1)
3561     {
3562       if (syms[i].sym == NULL)
3563         continue;
3564 
3565       if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3566         {
3567           struct symtab_and_line sal =
3568             find_function_start_sal (syms[i].sym, 1);
3569 
3570 	  if (sal.symtab == NULL)
3571 	    printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3572 			       i + first_choice,
3573 			       SYMBOL_PRINT_NAME (syms[i].sym),
3574 			       sal.line);
3575 	  else
3576 	    printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3577 			       SYMBOL_PRINT_NAME (syms[i].sym),
3578 			       symtab_to_filename_for_display (sal.symtab),
3579 			       sal.line);
3580           continue;
3581         }
3582       else
3583         {
3584           int is_enumeral =
3585             (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3586              && SYMBOL_TYPE (syms[i].sym) != NULL
3587              && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3588           struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym);
3589 
3590           if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3591             printf_unfiltered (_("[%d] %s at %s:%d\n"),
3592                                i + first_choice,
3593                                SYMBOL_PRINT_NAME (syms[i].sym),
3594 			       symtab_to_filename_for_display (symtab),
3595 			       SYMBOL_LINE (syms[i].sym));
3596           else if (is_enumeral
3597                    && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3598             {
3599               printf_unfiltered (("[%d] "), i + first_choice);
3600               ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3601                               gdb_stdout, -1, 0, &type_print_raw_options);
3602               printf_unfiltered (_("'(%s) (enumeral)\n"),
3603                                  SYMBOL_PRINT_NAME (syms[i].sym));
3604             }
3605           else if (symtab != NULL)
3606             printf_unfiltered (is_enumeral
3607                                ? _("[%d] %s in %s (enumeral)\n")
3608                                : _("[%d] %s at %s:?\n"),
3609                                i + first_choice,
3610                                SYMBOL_PRINT_NAME (syms[i].sym),
3611                                symtab_to_filename_for_display (symtab));
3612           else
3613             printf_unfiltered (is_enumeral
3614                                ? _("[%d] %s (enumeral)\n")
3615                                : _("[%d] %s at ?\n"),
3616                                i + first_choice,
3617                                SYMBOL_PRINT_NAME (syms[i].sym));
3618         }
3619     }
3620 
3621   n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3622                              "overload-choice");
3623 
3624   for (i = 0; i < n_chosen; i += 1)
3625     syms[i] = syms[chosen[i]];
3626 
3627   return n_chosen;
3628 }
3629 
3630 /* Read and validate a set of numeric choices from the user in the
3631    range 0 .. N_CHOICES-1.  Place the results in increasing
3632    order in CHOICES[0 .. N-1], and return N.
3633 
3634    The user types choices as a sequence of numbers on one line
3635    separated by blanks, encoding them as follows:
3636 
3637      + A choice of 0 means to cancel the selection, throwing an error.
3638      + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3639      + The user chooses k by typing k+IS_ALL_CHOICE+1.
3640 
3641    The user is not allowed to choose more than MAX_RESULTS values.
3642 
3643    ANNOTATION_SUFFIX, if present, is used to annotate the input
3644    prompts (for use with the -f switch).  */
3645 
3646 int
3647 get_selections (int *choices, int n_choices, int max_results,
3648                 int is_all_choice, char *annotation_suffix)
3649 {
3650   char *args;
3651   char *prompt;
3652   int n_chosen;
3653   int first_choice = is_all_choice ? 2 : 1;
3654 
3655   prompt = getenv ("PS2");
3656   if (prompt == NULL)
3657     prompt = "> ";
3658 
3659   args = command_line_input (prompt, 0, annotation_suffix);
3660 
3661   if (args == NULL)
3662     error_no_arg (_("one or more choice numbers"));
3663 
3664   n_chosen = 0;
3665 
3666   /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3667      order, as given in args.  Choices are validated.  */
3668   while (1)
3669     {
3670       char *args2;
3671       int choice, j;
3672 
3673       args = skip_spaces (args);
3674       if (*args == '\0' && n_chosen == 0)
3675         error_no_arg (_("one or more choice numbers"));
3676       else if (*args == '\0')
3677         break;
3678 
3679       choice = strtol (args, &args2, 10);
3680       if (args == args2 || choice < 0
3681           || choice > n_choices + first_choice - 1)
3682         error (_("Argument must be choice number"));
3683       args = args2;
3684 
3685       if (choice == 0)
3686         error (_("cancelled"));
3687 
3688       if (choice < first_choice)
3689         {
3690           n_chosen = n_choices;
3691           for (j = 0; j < n_choices; j += 1)
3692             choices[j] = j;
3693           break;
3694         }
3695       choice -= first_choice;
3696 
3697       for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3698         {
3699         }
3700 
3701       if (j < 0 || choice != choices[j])
3702         {
3703           int k;
3704 
3705           for (k = n_chosen - 1; k > j; k -= 1)
3706             choices[k + 1] = choices[k];
3707           choices[j + 1] = choice;
3708           n_chosen += 1;
3709         }
3710     }
3711 
3712   if (n_chosen > max_results)
3713     error (_("Select no more than %d of the above"), max_results);
3714 
3715   return n_chosen;
3716 }
3717 
3718 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3719    on the function identified by SYM and BLOCK, and taking NARGS
3720    arguments.  Update *EXPP as needed to hold more space.  */
3721 
3722 static void
3723 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3724                             int oplen, struct symbol *sym,
3725                             const struct block *block)
3726 {
3727   /* A new expression, with 6 more elements (3 for funcall, 4 for function
3728      symbol, -oplen for operator being replaced).  */
3729   struct expression *newexp = (struct expression *)
3730     xzalloc (sizeof (struct expression)
3731              + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3732   struct expression *exp = *expp;
3733 
3734   newexp->nelts = exp->nelts + 7 - oplen;
3735   newexp->language_defn = exp->language_defn;
3736   newexp->gdbarch = exp->gdbarch;
3737   memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3738   memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3739           EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3740 
3741   newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3742   newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3743 
3744   newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3745   newexp->elts[pc + 4].block = block;
3746   newexp->elts[pc + 5].symbol = sym;
3747 
3748   *expp = newexp;
3749   xfree (exp);
3750 }
3751 
3752 /* Type-class predicates */
3753 
3754 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3755    or FLOAT).  */
3756 
3757 static int
3758 numeric_type_p (struct type *type)
3759 {
3760   if (type == NULL)
3761     return 0;
3762   else
3763     {
3764       switch (TYPE_CODE (type))
3765         {
3766         case TYPE_CODE_INT:
3767         case TYPE_CODE_FLT:
3768           return 1;
3769         case TYPE_CODE_RANGE:
3770           return (type == TYPE_TARGET_TYPE (type)
3771                   || numeric_type_p (TYPE_TARGET_TYPE (type)));
3772         default:
3773           return 0;
3774         }
3775     }
3776 }
3777 
3778 /* True iff TYPE is integral (an INT or RANGE of INTs).  */
3779 
3780 static int
3781 integer_type_p (struct type *type)
3782 {
3783   if (type == NULL)
3784     return 0;
3785   else
3786     {
3787       switch (TYPE_CODE (type))
3788         {
3789         case TYPE_CODE_INT:
3790           return 1;
3791         case TYPE_CODE_RANGE:
3792           return (type == TYPE_TARGET_TYPE (type)
3793                   || integer_type_p (TYPE_TARGET_TYPE (type)));
3794         default:
3795           return 0;
3796         }
3797     }
3798 }
3799 
3800 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM).  */
3801 
3802 static int
3803 scalar_type_p (struct type *type)
3804 {
3805   if (type == NULL)
3806     return 0;
3807   else
3808     {
3809       switch (TYPE_CODE (type))
3810         {
3811         case TYPE_CODE_INT:
3812         case TYPE_CODE_RANGE:
3813         case TYPE_CODE_ENUM:
3814         case TYPE_CODE_FLT:
3815           return 1;
3816         default:
3817           return 0;
3818         }
3819     }
3820 }
3821 
3822 /* True iff TYPE is discrete (INT, RANGE, ENUM).  */
3823 
3824 static int
3825 discrete_type_p (struct type *type)
3826 {
3827   if (type == NULL)
3828     return 0;
3829   else
3830     {
3831       switch (TYPE_CODE (type))
3832         {
3833         case TYPE_CODE_INT:
3834         case TYPE_CODE_RANGE:
3835         case TYPE_CODE_ENUM:
3836         case TYPE_CODE_BOOL:
3837           return 1;
3838         default:
3839           return 0;
3840         }
3841     }
3842 }
3843 
3844 /* Returns non-zero if OP with operands in the vector ARGS could be
3845    a user-defined function.  Errs on the side of pre-defined operators
3846    (i.e., result 0).  */
3847 
3848 static int
3849 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3850 {
3851   struct type *type0 =
3852     (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3853   struct type *type1 =
3854     (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3855 
3856   if (type0 == NULL)
3857     return 0;
3858 
3859   switch (op)
3860     {
3861     default:
3862       return 0;
3863 
3864     case BINOP_ADD:
3865     case BINOP_SUB:
3866     case BINOP_MUL:
3867     case BINOP_DIV:
3868       return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3869 
3870     case BINOP_REM:
3871     case BINOP_MOD:
3872     case BINOP_BITWISE_AND:
3873     case BINOP_BITWISE_IOR:
3874     case BINOP_BITWISE_XOR:
3875       return (!(integer_type_p (type0) && integer_type_p (type1)));
3876 
3877     case BINOP_EQUAL:
3878     case BINOP_NOTEQUAL:
3879     case BINOP_LESS:
3880     case BINOP_GTR:
3881     case BINOP_LEQ:
3882     case BINOP_GEQ:
3883       return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3884 
3885     case BINOP_CONCAT:
3886       return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3887 
3888     case BINOP_EXP:
3889       return (!(numeric_type_p (type0) && integer_type_p (type1)));
3890 
3891     case UNOP_NEG:
3892     case UNOP_PLUS:
3893     case UNOP_LOGICAL_NOT:
3894     case UNOP_ABS:
3895       return (!numeric_type_p (type0));
3896 
3897     }
3898 }
3899 
3900                                 /* Renaming */
3901 
3902 /* NOTES:
3903 
3904    1. In the following, we assume that a renaming type's name may
3905       have an ___XD suffix.  It would be nice if this went away at some
3906       point.
3907    2. We handle both the (old) purely type-based representation of
3908       renamings and the (new) variable-based encoding.  At some point,
3909       it is devoutly to be hoped that the former goes away
3910       (FIXME: hilfinger-2007-07-09).
3911    3. Subprogram renamings are not implemented, although the XRS
3912       suffix is recognized (FIXME: hilfinger-2007-07-09).  */
3913 
3914 /* If SYM encodes a renaming,
3915 
3916        <renaming> renames <renamed entity>,
3917 
3918    sets *LEN to the length of the renamed entity's name,
3919    *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3920    the string describing the subcomponent selected from the renamed
3921    entity.  Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3922    (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3923    are undefined).  Otherwise, returns a value indicating the category
3924    of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3925    (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3926    subprogram (ADA_SUBPROGRAM_RENAMING).  Does no allocation; the
3927    strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3928    deallocated.  The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3929    may be NULL, in which case they are not assigned.
3930 
3931    [Currently, however, GCC does not generate subprogram renamings.]  */
3932 
3933 enum ada_renaming_category
3934 ada_parse_renaming (struct symbol *sym,
3935 		    const char **renamed_entity, int *len,
3936 		    const char **renaming_expr)
3937 {
3938   enum ada_renaming_category kind;
3939   const char *info;
3940   const char *suffix;
3941 
3942   if (sym == NULL)
3943     return ADA_NOT_RENAMING;
3944   switch (SYMBOL_CLASS (sym))
3945     {
3946     default:
3947       return ADA_NOT_RENAMING;
3948     case LOC_TYPEDEF:
3949       return parse_old_style_renaming (SYMBOL_TYPE (sym),
3950 				       renamed_entity, len, renaming_expr);
3951     case LOC_LOCAL:
3952     case LOC_STATIC:
3953     case LOC_COMPUTED:
3954     case LOC_OPTIMIZED_OUT:
3955       info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3956       if (info == NULL)
3957 	return ADA_NOT_RENAMING;
3958       switch (info[5])
3959 	{
3960 	case '_':
3961 	  kind = ADA_OBJECT_RENAMING;
3962 	  info += 6;
3963 	  break;
3964 	case 'E':
3965 	  kind = ADA_EXCEPTION_RENAMING;
3966 	  info += 7;
3967 	  break;
3968 	case 'P':
3969 	  kind = ADA_PACKAGE_RENAMING;
3970 	  info += 7;
3971 	  break;
3972 	case 'S':
3973 	  kind = ADA_SUBPROGRAM_RENAMING;
3974 	  info += 7;
3975 	  break;
3976 	default:
3977 	  return ADA_NOT_RENAMING;
3978 	}
3979     }
3980 
3981   if (renamed_entity != NULL)
3982     *renamed_entity = info;
3983   suffix = strstr (info, "___XE");
3984   if (suffix == NULL || suffix == info)
3985     return ADA_NOT_RENAMING;
3986   if (len != NULL)
3987     *len = strlen (info) - strlen (suffix);
3988   suffix += 5;
3989   if (renaming_expr != NULL)
3990     *renaming_expr = suffix;
3991   return kind;
3992 }
3993 
3994 /* Assuming TYPE encodes a renaming according to the old encoding in
3995    exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3996    *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above.  Returns
3997    ADA_NOT_RENAMING otherwise.  */
3998 static enum ada_renaming_category
3999 parse_old_style_renaming (struct type *type,
4000 			  const char **renamed_entity, int *len,
4001 			  const char **renaming_expr)
4002 {
4003   enum ada_renaming_category kind;
4004   const char *name;
4005   const char *info;
4006   const char *suffix;
4007 
4008   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4009       || TYPE_NFIELDS (type) != 1)
4010     return ADA_NOT_RENAMING;
4011 
4012   name = type_name_no_tag (type);
4013   if (name == NULL)
4014     return ADA_NOT_RENAMING;
4015 
4016   name = strstr (name, "___XR");
4017   if (name == NULL)
4018     return ADA_NOT_RENAMING;
4019   switch (name[5])
4020     {
4021     case '\0':
4022     case '_':
4023       kind = ADA_OBJECT_RENAMING;
4024       break;
4025     case 'E':
4026       kind = ADA_EXCEPTION_RENAMING;
4027       break;
4028     case 'P':
4029       kind = ADA_PACKAGE_RENAMING;
4030       break;
4031     case 'S':
4032       kind = ADA_SUBPROGRAM_RENAMING;
4033       break;
4034     default:
4035       return ADA_NOT_RENAMING;
4036     }
4037 
4038   info = TYPE_FIELD_NAME (type, 0);
4039   if (info == NULL)
4040     return ADA_NOT_RENAMING;
4041   if (renamed_entity != NULL)
4042     *renamed_entity = info;
4043   suffix = strstr (info, "___XE");
4044   if (renaming_expr != NULL)
4045     *renaming_expr = suffix + 5;
4046   if (suffix == NULL || suffix == info)
4047     return ADA_NOT_RENAMING;
4048   if (len != NULL)
4049     *len = suffix - info;
4050   return kind;
4051 }
4052 
4053 /* Compute the value of the given RENAMING_SYM, which is expected to
4054    be a symbol encoding a renaming expression.  BLOCK is the block
4055    used to evaluate the renaming.  */
4056 
4057 static struct value *
4058 ada_read_renaming_var_value (struct symbol *renaming_sym,
4059 			     struct block *block)
4060 {
4061   const char *sym_name;
4062   struct expression *expr;
4063   struct value *value;
4064   struct cleanup *old_chain = NULL;
4065 
4066   sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4067   expr = parse_exp_1 (&sym_name, 0, block, 0);
4068   old_chain = make_cleanup (free_current_contents, &expr);
4069   value = evaluate_expression (expr);
4070 
4071   do_cleanups (old_chain);
4072   return value;
4073 }
4074 
4075 
4076                                 /* Evaluation: Function Calls */
4077 
4078 /* Return an lvalue containing the value VAL.  This is the identity on
4079    lvalues, and otherwise has the side-effect of allocating memory
4080    in the inferior where a copy of the value contents is copied.  */
4081 
4082 static struct value *
4083 ensure_lval (struct value *val)
4084 {
4085   if (VALUE_LVAL (val) == not_lval
4086       || VALUE_LVAL (val) == lval_internalvar)
4087     {
4088       int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4089       const CORE_ADDR addr =
4090         value_as_long (value_allocate_space_in_inferior (len));
4091 
4092       set_value_address (val, addr);
4093       VALUE_LVAL (val) = lval_memory;
4094       write_memory (addr, value_contents (val), len);
4095     }
4096 
4097   return val;
4098 }
4099 
4100 /* Return the value ACTUAL, converted to be an appropriate value for a
4101    formal of type FORMAL_TYPE.  Use *SP as a stack pointer for
4102    allocating any necessary descriptors (fat pointers), or copies of
4103    values not residing in memory, updating it as needed.  */
4104 
4105 struct value *
4106 ada_convert_actual (struct value *actual, struct type *formal_type0)
4107 {
4108   struct type *actual_type = ada_check_typedef (value_type (actual));
4109   struct type *formal_type = ada_check_typedef (formal_type0);
4110   struct type *formal_target =
4111     TYPE_CODE (formal_type) == TYPE_CODE_PTR
4112     ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4113   struct type *actual_target =
4114     TYPE_CODE (actual_type) == TYPE_CODE_PTR
4115     ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4116 
4117   if (ada_is_array_descriptor_type (formal_target)
4118       && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4119     return make_array_descriptor (formal_type, actual);
4120   else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4121 	   || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4122     {
4123       struct value *result;
4124 
4125       if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4126           && ada_is_array_descriptor_type (actual_target))
4127 	result = desc_data (actual);
4128       else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4129         {
4130           if (VALUE_LVAL (actual) != lval_memory)
4131             {
4132               struct value *val;
4133 
4134               actual_type = ada_check_typedef (value_type (actual));
4135               val = allocate_value (actual_type);
4136               memcpy ((char *) value_contents_raw (val),
4137                       (char *) value_contents (actual),
4138                       TYPE_LENGTH (actual_type));
4139               actual = ensure_lval (val);
4140             }
4141           result = value_addr (actual);
4142         }
4143       else
4144 	return actual;
4145       return value_cast_pointers (formal_type, result, 0);
4146     }
4147   else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4148     return ada_value_ind (actual);
4149 
4150   return actual;
4151 }
4152 
4153 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4154    type TYPE.  This is usually an inefficient no-op except on some targets
4155    (such as AVR) where the representation of a pointer and an address
4156    differs.  */
4157 
4158 static CORE_ADDR
4159 value_pointer (struct value *value, struct type *type)
4160 {
4161   struct gdbarch *gdbarch = get_type_arch (type);
4162   unsigned len = TYPE_LENGTH (type);
4163   gdb_byte *buf = alloca (len);
4164   CORE_ADDR addr;
4165 
4166   addr = value_address (value);
4167   gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4168   addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4169   return addr;
4170 }
4171 
4172 
4173 /* Push a descriptor of type TYPE for array value ARR on the stack at
4174    *SP, updating *SP to reflect the new descriptor.  Return either
4175    an lvalue representing the new descriptor, or (if TYPE is a pointer-
4176    to-descriptor type rather than a descriptor type), a struct value *
4177    representing a pointer to this descriptor.  */
4178 
4179 static struct value *
4180 make_array_descriptor (struct type *type, struct value *arr)
4181 {
4182   struct type *bounds_type = desc_bounds_type (type);
4183   struct type *desc_type = desc_base_type (type);
4184   struct value *descriptor = allocate_value (desc_type);
4185   struct value *bounds = allocate_value (bounds_type);
4186   int i;
4187 
4188   for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4189        i > 0; i -= 1)
4190     {
4191       modify_field (value_type (bounds), value_contents_writeable (bounds),
4192 		    ada_array_bound (arr, i, 0),
4193 		    desc_bound_bitpos (bounds_type, i, 0),
4194 		    desc_bound_bitsize (bounds_type, i, 0));
4195       modify_field (value_type (bounds), value_contents_writeable (bounds),
4196 		    ada_array_bound (arr, i, 1),
4197 		    desc_bound_bitpos (bounds_type, i, 1),
4198 		    desc_bound_bitsize (bounds_type, i, 1));
4199     }
4200 
4201   bounds = ensure_lval (bounds);
4202 
4203   modify_field (value_type (descriptor),
4204 		value_contents_writeable (descriptor),
4205 		value_pointer (ensure_lval (arr),
4206 			       TYPE_FIELD_TYPE (desc_type, 0)),
4207 		fat_pntr_data_bitpos (desc_type),
4208 		fat_pntr_data_bitsize (desc_type));
4209 
4210   modify_field (value_type (descriptor),
4211 		value_contents_writeable (descriptor),
4212 		value_pointer (bounds,
4213 			       TYPE_FIELD_TYPE (desc_type, 1)),
4214 		fat_pntr_bounds_bitpos (desc_type),
4215 		fat_pntr_bounds_bitsize (desc_type));
4216 
4217   descriptor = ensure_lval (descriptor);
4218 
4219   if (TYPE_CODE (type) == TYPE_CODE_PTR)
4220     return value_addr (descriptor);
4221   else
4222     return descriptor;
4223 }
4224 
4225 /* Dummy definitions for an experimental caching module that is not
4226  * used in the public sources.  */
4227 
4228 static int
4229 lookup_cached_symbol (const char *name, domain_enum namespace,
4230                       struct symbol **sym, struct block **block)
4231 {
4232   return 0;
4233 }
4234 
4235 static void
4236 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4237               const struct block *block)
4238 {
4239 }
4240 
4241                                 /* Symbol Lookup */
4242 
4243 /* Return nonzero if wild matching should be used when searching for
4244    all symbols matching LOOKUP_NAME.
4245 
4246    LOOKUP_NAME is expected to be a symbol name after transformation
4247    for Ada lookups (see ada_name_for_lookup).  */
4248 
4249 static int
4250 should_use_wild_match (const char *lookup_name)
4251 {
4252   return (strstr (lookup_name, "__") == NULL);
4253 }
4254 
4255 /* Return the result of a standard (literal, C-like) lookup of NAME in
4256    given DOMAIN, visible from lexical block BLOCK.  */
4257 
4258 static struct symbol *
4259 standard_lookup (const char *name, const struct block *block,
4260                  domain_enum domain)
4261 {
4262   /* Initialize it just to avoid a GCC false warning.  */
4263   struct symbol *sym = NULL;
4264 
4265   if (lookup_cached_symbol (name, domain, &sym, NULL))
4266     return sym;
4267   sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4268   cache_symbol (name, domain, sym, block_found);
4269   return sym;
4270 }
4271 
4272 
4273 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4274    in the symbol fields of SYMS[0..N-1].  We treat enumerals as functions,
4275    since they contend in overloading in the same way.  */
4276 static int
4277 is_nonfunction (struct ada_symbol_info syms[], int n)
4278 {
4279   int i;
4280 
4281   for (i = 0; i < n; i += 1)
4282     if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4283         && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4284             || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4285       return 1;
4286 
4287   return 0;
4288 }
4289 
4290 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4291    struct types.  Otherwise, they may not.  */
4292 
4293 static int
4294 equiv_types (struct type *type0, struct type *type1)
4295 {
4296   if (type0 == type1)
4297     return 1;
4298   if (type0 == NULL || type1 == NULL
4299       || TYPE_CODE (type0) != TYPE_CODE (type1))
4300     return 0;
4301   if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4302        || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4303       && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4304       && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4305     return 1;
4306 
4307   return 0;
4308 }
4309 
4310 /* True iff SYM0 represents the same entity as SYM1, or one that is
4311    no more defined than that of SYM1.  */
4312 
4313 static int
4314 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4315 {
4316   if (sym0 == sym1)
4317     return 1;
4318   if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4319       || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4320     return 0;
4321 
4322   switch (SYMBOL_CLASS (sym0))
4323     {
4324     case LOC_UNDEF:
4325       return 1;
4326     case LOC_TYPEDEF:
4327       {
4328         struct type *type0 = SYMBOL_TYPE (sym0);
4329         struct type *type1 = SYMBOL_TYPE (sym1);
4330         const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4331         const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4332         int len0 = strlen (name0);
4333 
4334         return
4335           TYPE_CODE (type0) == TYPE_CODE (type1)
4336           && (equiv_types (type0, type1)
4337               || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4338                   && strncmp (name1 + len0, "___XV", 5) == 0));
4339       }
4340     case LOC_CONST:
4341       return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4342         && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4343     default:
4344       return 0;
4345     }
4346 }
4347 
4348 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4349    records in OBSTACKP.  Do nothing if SYM is a duplicate.  */
4350 
4351 static void
4352 add_defn_to_vec (struct obstack *obstackp,
4353                  struct symbol *sym,
4354                  struct block *block)
4355 {
4356   int i;
4357   struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4358 
4359   /* Do not try to complete stub types, as the debugger is probably
4360      already scanning all symbols matching a certain name at the
4361      time when this function is called.  Trying to replace the stub
4362      type by its associated full type will cause us to restart a scan
4363      which may lead to an infinite recursion.  Instead, the client
4364      collecting the matching symbols will end up collecting several
4365      matches, with at least one of them complete.  It can then filter
4366      out the stub ones if needed.  */
4367 
4368   for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4369     {
4370       if (lesseq_defined_than (sym, prevDefns[i].sym))
4371         return;
4372       else if (lesseq_defined_than (prevDefns[i].sym, sym))
4373         {
4374           prevDefns[i].sym = sym;
4375           prevDefns[i].block = block;
4376           return;
4377         }
4378     }
4379 
4380   {
4381     struct ada_symbol_info info;
4382 
4383     info.sym = sym;
4384     info.block = block;
4385     obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4386   }
4387 }
4388 
4389 /* Number of ada_symbol_info structures currently collected in
4390    current vector in *OBSTACKP.  */
4391 
4392 static int
4393 num_defns_collected (struct obstack *obstackp)
4394 {
4395   return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4396 }
4397 
4398 /* Vector of ada_symbol_info structures currently collected in current
4399    vector in *OBSTACKP.  If FINISH, close off the vector and return
4400    its final address.  */
4401 
4402 static struct ada_symbol_info *
4403 defns_collected (struct obstack *obstackp, int finish)
4404 {
4405   if (finish)
4406     return obstack_finish (obstackp);
4407   else
4408     return (struct ada_symbol_info *) obstack_base (obstackp);
4409 }
4410 
4411 /* Return a bound minimal symbol matching NAME according to Ada
4412    decoding rules.  Returns an invalid symbol if there is no such
4413    minimal symbol.  Names prefixed with "standard__" are handled
4414    specially: "standard__" is first stripped off, and only static and
4415    global symbols are searched.  */
4416 
4417 struct bound_minimal_symbol
4418 ada_lookup_simple_minsym (const char *name)
4419 {
4420   struct bound_minimal_symbol result;
4421   struct objfile *objfile;
4422   struct minimal_symbol *msymbol;
4423   const int wild_match_p = should_use_wild_match (name);
4424 
4425   memset (&result, 0, sizeof (result));
4426 
4427   /* Special case: If the user specifies a symbol name inside package
4428      Standard, do a non-wild matching of the symbol name without
4429      the "standard__" prefix.  This was primarily introduced in order
4430      to allow the user to specifically access the standard exceptions
4431      using, for instance, Standard.Constraint_Error when Constraint_Error
4432      is ambiguous (due to the user defining its own Constraint_Error
4433      entity inside its program).  */
4434   if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4435     name += sizeof ("standard__") - 1;
4436 
4437   ALL_MSYMBOLS (objfile, msymbol)
4438   {
4439     if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4440         && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4441       {
4442 	result.minsym = msymbol;
4443 	result.objfile = objfile;
4444 	break;
4445       }
4446   }
4447 
4448   return result;
4449 }
4450 
4451 /* For all subprograms that statically enclose the subprogram of the
4452    selected frame, add symbols matching identifier NAME in DOMAIN
4453    and their blocks to the list of data in OBSTACKP, as for
4454    ada_add_block_symbols (q.v.).   If WILD_MATCH_P, treat as NAME
4455    with a wildcard prefix.  */
4456 
4457 static void
4458 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4459                                   const char *name, domain_enum namespace,
4460                                   int wild_match_p)
4461 {
4462 }
4463 
4464 /* True if TYPE is definitely an artificial type supplied to a symbol
4465    for which no debugging information was given in the symbol file.  */
4466 
4467 static int
4468 is_nondebugging_type (struct type *type)
4469 {
4470   const char *name = ada_type_name (type);
4471 
4472   return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4473 }
4474 
4475 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4476    that are deemed "identical" for practical purposes.
4477 
4478    This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4479    types and that their number of enumerals is identical (in other
4480    words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)).  */
4481 
4482 static int
4483 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4484 {
4485   int i;
4486 
4487   /* The heuristic we use here is fairly conservative.  We consider
4488      that 2 enumerate types are identical if they have the same
4489      number of enumerals and that all enumerals have the same
4490      underlying value and name.  */
4491 
4492   /* All enums in the type should have an identical underlying value.  */
4493   for (i = 0; i < TYPE_NFIELDS (type1); i++)
4494     if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4495       return 0;
4496 
4497   /* All enumerals should also have the same name (modulo any numerical
4498      suffix).  */
4499   for (i = 0; i < TYPE_NFIELDS (type1); i++)
4500     {
4501       const char *name_1 = TYPE_FIELD_NAME (type1, i);
4502       const char *name_2 = TYPE_FIELD_NAME (type2, i);
4503       int len_1 = strlen (name_1);
4504       int len_2 = strlen (name_2);
4505 
4506       ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4507       ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4508       if (len_1 != len_2
4509           || strncmp (TYPE_FIELD_NAME (type1, i),
4510 		      TYPE_FIELD_NAME (type2, i),
4511 		      len_1) != 0)
4512 	return 0;
4513     }
4514 
4515   return 1;
4516 }
4517 
4518 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4519    that are deemed "identical" for practical purposes.  Sometimes,
4520    enumerals are not strictly identical, but their types are so similar
4521    that they can be considered identical.
4522 
4523    For instance, consider the following code:
4524 
4525       type Color is (Black, Red, Green, Blue, White);
4526       type RGB_Color is new Color range Red .. Blue;
4527 
4528    Type RGB_Color is a subrange of an implicit type which is a copy
4529    of type Color. If we call that implicit type RGB_ColorB ("B" is
4530    for "Base Type"), then type RGB_ColorB is a copy of type Color.
4531    As a result, when an expression references any of the enumeral
4532    by name (Eg. "print green"), the expression is technically
4533    ambiguous and the user should be asked to disambiguate. But
4534    doing so would only hinder the user, since it wouldn't matter
4535    what choice he makes, the outcome would always be the same.
4536    So, for practical purposes, we consider them as the same.  */
4537 
4538 static int
4539 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4540 {
4541   int i;
4542 
4543   /* Before performing a thorough comparison check of each type,
4544      we perform a series of inexpensive checks.  We expect that these
4545      checks will quickly fail in the vast majority of cases, and thus
4546      help prevent the unnecessary use of a more expensive comparison.
4547      Said comparison also expects us to make some of these checks
4548      (see ada_identical_enum_types_p).  */
4549 
4550   /* Quick check: All symbols should have an enum type.  */
4551   for (i = 0; i < nsyms; i++)
4552     if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4553       return 0;
4554 
4555   /* Quick check: They should all have the same value.  */
4556   for (i = 1; i < nsyms; i++)
4557     if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4558       return 0;
4559 
4560   /* Quick check: They should all have the same number of enumerals.  */
4561   for (i = 1; i < nsyms; i++)
4562     if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4563         != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4564       return 0;
4565 
4566   /* All the sanity checks passed, so we might have a set of
4567      identical enumeration types.  Perform a more complete
4568      comparison of the type of each symbol.  */
4569   for (i = 1; i < nsyms; i++)
4570     if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4571                                      SYMBOL_TYPE (syms[0].sym)))
4572       return 0;
4573 
4574   return 1;
4575 }
4576 
4577 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4578    duplicate other symbols in the list (The only case I know of where
4579    this happens is when object files containing stabs-in-ecoff are
4580    linked with files containing ordinary ecoff debugging symbols (or no
4581    debugging symbols)).  Modifies SYMS to squeeze out deleted entries.
4582    Returns the number of items in the modified list.  */
4583 
4584 static int
4585 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4586 {
4587   int i, j;
4588 
4589   /* We should never be called with less than 2 symbols, as there
4590      cannot be any extra symbol in that case.  But it's easy to
4591      handle, since we have nothing to do in that case.  */
4592   if (nsyms < 2)
4593     return nsyms;
4594 
4595   i = 0;
4596   while (i < nsyms)
4597     {
4598       int remove_p = 0;
4599 
4600       /* If two symbols have the same name and one of them is a stub type,
4601          the get rid of the stub.  */
4602 
4603       if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4604           && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4605         {
4606           for (j = 0; j < nsyms; j++)
4607             {
4608               if (j != i
4609                   && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4610                   && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4611                   && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4612                              SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4613                 remove_p = 1;
4614             }
4615         }
4616 
4617       /* Two symbols with the same name, same class and same address
4618          should be identical.  */
4619 
4620       else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4621           && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4622           && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4623         {
4624           for (j = 0; j < nsyms; j += 1)
4625             {
4626               if (i != j
4627                   && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4628                   && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4629                              SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4630                   && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4631                   && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4632                   == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4633                 remove_p = 1;
4634             }
4635         }
4636 
4637       if (remove_p)
4638         {
4639           for (j = i + 1; j < nsyms; j += 1)
4640             syms[j - 1] = syms[j];
4641           nsyms -= 1;
4642         }
4643 
4644       i += 1;
4645     }
4646 
4647   /* If all the remaining symbols are identical enumerals, then
4648      just keep the first one and discard the rest.
4649 
4650      Unlike what we did previously, we do not discard any entry
4651      unless they are ALL identical.  This is because the symbol
4652      comparison is not a strict comparison, but rather a practical
4653      comparison.  If all symbols are considered identical, then
4654      we can just go ahead and use the first one and discard the rest.
4655      But if we cannot reduce the list to a single element, we have
4656      to ask the user to disambiguate anyways.  And if we have to
4657      present a multiple-choice menu, it's less confusing if the list
4658      isn't missing some choices that were identical and yet distinct.  */
4659   if (symbols_are_identical_enums (syms, nsyms))
4660     nsyms = 1;
4661 
4662   return nsyms;
4663 }
4664 
4665 /* Given a type that corresponds to a renaming entity, use the type name
4666    to extract the scope (package name or function name, fully qualified,
4667    and following the GNAT encoding convention) where this renaming has been
4668    defined.  The string returned needs to be deallocated after use.  */
4669 
4670 static char *
4671 xget_renaming_scope (struct type *renaming_type)
4672 {
4673   /* The renaming types adhere to the following convention:
4674      <scope>__<rename>___<XR extension>.
4675      So, to extract the scope, we search for the "___XR" extension,
4676      and then backtrack until we find the first "__".  */
4677 
4678   const char *name = type_name_no_tag (renaming_type);
4679   char *suffix = strstr (name, "___XR");
4680   char *last;
4681   int scope_len;
4682   char *scope;
4683 
4684   /* Now, backtrack a bit until we find the first "__".  Start looking
4685      at suffix - 3, as the <rename> part is at least one character long.  */
4686 
4687   for (last = suffix - 3; last > name; last--)
4688     if (last[0] == '_' && last[1] == '_')
4689       break;
4690 
4691   /* Make a copy of scope and return it.  */
4692 
4693   scope_len = last - name;
4694   scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4695 
4696   strncpy (scope, name, scope_len);
4697   scope[scope_len] = '\0';
4698 
4699   return scope;
4700 }
4701 
4702 /* Return nonzero if NAME corresponds to a package name.  */
4703 
4704 static int
4705 is_package_name (const char *name)
4706 {
4707   /* Here, We take advantage of the fact that no symbols are generated
4708      for packages, while symbols are generated for each function.
4709      So the condition for NAME represent a package becomes equivalent
4710      to NAME not existing in our list of symbols.  There is only one
4711      small complication with library-level functions (see below).  */
4712 
4713   char *fun_name;
4714 
4715   /* If it is a function that has not been defined at library level,
4716      then we should be able to look it up in the symbols.  */
4717   if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4718     return 0;
4719 
4720   /* Library-level function names start with "_ada_".  See if function
4721      "_ada_" followed by NAME can be found.  */
4722 
4723   /* Do a quick check that NAME does not contain "__", since library-level
4724      functions names cannot contain "__" in them.  */
4725   if (strstr (name, "__") != NULL)
4726     return 0;
4727 
4728   fun_name = xstrprintf ("_ada_%s", name);
4729 
4730   return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4731 }
4732 
4733 /* Return nonzero if SYM corresponds to a renaming entity that is
4734    not visible from FUNCTION_NAME.  */
4735 
4736 static int
4737 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4738 {
4739   char *scope;
4740   struct cleanup *old_chain;
4741 
4742   if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4743     return 0;
4744 
4745   scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4746   old_chain = make_cleanup (xfree, scope);
4747 
4748   /* If the rename has been defined in a package, then it is visible.  */
4749   if (is_package_name (scope))
4750     {
4751       do_cleanups (old_chain);
4752       return 0;
4753     }
4754 
4755   /* Check that the rename is in the current function scope by checking
4756      that its name starts with SCOPE.  */
4757 
4758   /* If the function name starts with "_ada_", it means that it is
4759      a library-level function.  Strip this prefix before doing the
4760      comparison, as the encoding for the renaming does not contain
4761      this prefix.  */
4762   if (strncmp (function_name, "_ada_", 5) == 0)
4763     function_name += 5;
4764 
4765   {
4766     int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0;
4767 
4768     do_cleanups (old_chain);
4769     return is_invisible;
4770   }
4771 }
4772 
4773 /* Remove entries from SYMS that corresponds to a renaming entity that
4774    is not visible from the function associated with CURRENT_BLOCK or
4775    that is superfluous due to the presence of more specific renaming
4776    information.  Places surviving symbols in the initial entries of
4777    SYMS and returns the number of surviving symbols.
4778 
4779    Rationale:
4780    First, in cases where an object renaming is implemented as a
4781    reference variable, GNAT may produce both the actual reference
4782    variable and the renaming encoding.  In this case, we discard the
4783    latter.
4784 
4785    Second, GNAT emits a type following a specified encoding for each renaming
4786    entity.  Unfortunately, STABS currently does not support the definition
4787    of types that are local to a given lexical block, so all renamings types
4788    are emitted at library level.  As a consequence, if an application
4789    contains two renaming entities using the same name, and a user tries to
4790    print the value of one of these entities, the result of the ada symbol
4791    lookup will also contain the wrong renaming type.
4792 
4793    This function partially covers for this limitation by attempting to
4794    remove from the SYMS list renaming symbols that should be visible
4795    from CURRENT_BLOCK.  However, there does not seem be a 100% reliable
4796    method with the current information available.  The implementation
4797    below has a couple of limitations (FIXME: brobecker-2003-05-12):
4798 
4799       - When the user tries to print a rename in a function while there
4800         is another rename entity defined in a package:  Normally, the
4801         rename in the function has precedence over the rename in the
4802         package, so the latter should be removed from the list.  This is
4803         currently not the case.
4804 
4805       - This function will incorrectly remove valid renames if
4806         the CURRENT_BLOCK corresponds to a function which symbol name
4807         has been changed by an "Export" pragma.  As a consequence,
4808         the user will be unable to print such rename entities.  */
4809 
4810 static int
4811 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4812 			     int nsyms, const struct block *current_block)
4813 {
4814   struct symbol *current_function;
4815   const char *current_function_name;
4816   int i;
4817   int is_new_style_renaming;
4818 
4819   /* If there is both a renaming foo___XR... encoded as a variable and
4820      a simple variable foo in the same block, discard the latter.
4821      First, zero out such symbols, then compress.  */
4822   is_new_style_renaming = 0;
4823   for (i = 0; i < nsyms; i += 1)
4824     {
4825       struct symbol *sym = syms[i].sym;
4826       const struct block *block = syms[i].block;
4827       const char *name;
4828       const char *suffix;
4829 
4830       if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4831 	continue;
4832       name = SYMBOL_LINKAGE_NAME (sym);
4833       suffix = strstr (name, "___XR");
4834 
4835       if (suffix != NULL)
4836 	{
4837 	  int name_len = suffix - name;
4838 	  int j;
4839 
4840 	  is_new_style_renaming = 1;
4841 	  for (j = 0; j < nsyms; j += 1)
4842 	    if (i != j && syms[j].sym != NULL
4843 		&& strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4844 			    name_len) == 0
4845 		&& block == syms[j].block)
4846 	      syms[j].sym = NULL;
4847 	}
4848     }
4849   if (is_new_style_renaming)
4850     {
4851       int j, k;
4852 
4853       for (j = k = 0; j < nsyms; j += 1)
4854 	if (syms[j].sym != NULL)
4855 	    {
4856 	      syms[k] = syms[j];
4857 	      k += 1;
4858 	    }
4859       return k;
4860     }
4861 
4862   /* Extract the function name associated to CURRENT_BLOCK.
4863      Abort if unable to do so.  */
4864 
4865   if (current_block == NULL)
4866     return nsyms;
4867 
4868   current_function = block_linkage_function (current_block);
4869   if (current_function == NULL)
4870     return nsyms;
4871 
4872   current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4873   if (current_function_name == NULL)
4874     return nsyms;
4875 
4876   /* Check each of the symbols, and remove it from the list if it is
4877      a type corresponding to a renaming that is out of the scope of
4878      the current block.  */
4879 
4880   i = 0;
4881   while (i < nsyms)
4882     {
4883       if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4884           == ADA_OBJECT_RENAMING
4885           && old_renaming_is_invisible (syms[i].sym, current_function_name))
4886         {
4887           int j;
4888 
4889           for (j = i + 1; j < nsyms; j += 1)
4890             syms[j - 1] = syms[j];
4891           nsyms -= 1;
4892         }
4893       else
4894         i += 1;
4895     }
4896 
4897   return nsyms;
4898 }
4899 
4900 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4901    whose name and domain match NAME and DOMAIN respectively.
4902    If no match was found, then extend the search to "enclosing"
4903    routines (in other words, if we're inside a nested function,
4904    search the symbols defined inside the enclosing functions).
4905    If WILD_MATCH_P is nonzero, perform the naming matching in
4906    "wild" mode (see function "wild_match" for more info).
4907 
4908    Note: This function assumes that OBSTACKP has 0 (zero) element in it.  */
4909 
4910 static void
4911 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4912                        struct block *block, domain_enum domain,
4913                        int wild_match_p)
4914 {
4915   int block_depth = 0;
4916 
4917   while (block != NULL)
4918     {
4919       block_depth += 1;
4920       ada_add_block_symbols (obstackp, block, name, domain, NULL,
4921 			     wild_match_p);
4922 
4923       /* If we found a non-function match, assume that's the one.  */
4924       if (is_nonfunction (defns_collected (obstackp, 0),
4925                           num_defns_collected (obstackp)))
4926         return;
4927 
4928       block = BLOCK_SUPERBLOCK (block);
4929     }
4930 
4931   /* If no luck so far, try to find NAME as a local symbol in some lexically
4932      enclosing subprogram.  */
4933   if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4934     add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4935 }
4936 
4937 /* An object of this type is used as the user_data argument when
4938    calling the map_matching_symbols method.  */
4939 
4940 struct match_data
4941 {
4942   struct objfile *objfile;
4943   struct obstack *obstackp;
4944   struct symbol *arg_sym;
4945   int found_sym;
4946 };
4947 
4948 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4949    to a list of symbols.  DATA0 is a pointer to a struct match_data *
4950    containing the obstack that collects the symbol list, the file that SYM
4951    must come from, a flag indicating whether a non-argument symbol has
4952    been found in the current block, and the last argument symbol
4953    passed in SYM within the current block (if any).  When SYM is null,
4954    marking the end of a block, the argument symbol is added if no
4955    other has been found.  */
4956 
4957 static int
4958 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4959 {
4960   struct match_data *data = (struct match_data *) data0;
4961 
4962   if (sym == NULL)
4963     {
4964       if (!data->found_sym && data->arg_sym != NULL)
4965 	add_defn_to_vec (data->obstackp,
4966 			 fixup_symbol_section (data->arg_sym, data->objfile),
4967 			 block);
4968       data->found_sym = 0;
4969       data->arg_sym = NULL;
4970     }
4971   else
4972     {
4973       if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4974 	return 0;
4975       else if (SYMBOL_IS_ARGUMENT (sym))
4976 	data->arg_sym = sym;
4977       else
4978 	{
4979 	  data->found_sym = 1;
4980 	  add_defn_to_vec (data->obstackp,
4981 			   fixup_symbol_section (sym, data->objfile),
4982 			   block);
4983 	}
4984     }
4985   return 0;
4986 }
4987 
4988 /* Implements compare_names, but only applying the comparision using
4989    the given CASING.  */
4990 
4991 static int
4992 compare_names_with_case (const char *string1, const char *string2,
4993 			 enum case_sensitivity casing)
4994 {
4995   while (*string1 != '\0' && *string2 != '\0')
4996     {
4997       char c1, c2;
4998 
4999       if (isspace (*string1) || isspace (*string2))
5000 	return strcmp_iw_ordered (string1, string2);
5001 
5002       if (casing == case_sensitive_off)
5003 	{
5004 	  c1 = tolower (*string1);
5005 	  c2 = tolower (*string2);
5006 	}
5007       else
5008 	{
5009 	  c1 = *string1;
5010 	  c2 = *string2;
5011 	}
5012       if (c1 != c2)
5013 	break;
5014 
5015       string1 += 1;
5016       string2 += 1;
5017     }
5018 
5019   switch (*string1)
5020     {
5021     case '(':
5022       return strcmp_iw_ordered (string1, string2);
5023     case '_':
5024       if (*string2 == '\0')
5025 	{
5026 	  if (is_name_suffix (string1))
5027 	    return 0;
5028 	  else
5029 	    return 1;
5030 	}
5031       /* FALLTHROUGH */
5032     default:
5033       if (*string2 == '(')
5034 	return strcmp_iw_ordered (string1, string2);
5035       else
5036 	{
5037 	  if (casing == case_sensitive_off)
5038 	    return tolower (*string1) - tolower (*string2);
5039 	  else
5040 	    return *string1 - *string2;
5041 	}
5042     }
5043 }
5044 
5045 /* Compare STRING1 to STRING2, with results as for strcmp.
5046    Compatible with strcmp_iw_ordered in that...
5047 
5048        strcmp_iw_ordered (STRING1, STRING2) <= 0
5049 
5050    ... implies...
5051 
5052        compare_names (STRING1, STRING2) <= 0
5053 
5054    (they may differ as to what symbols compare equal).  */
5055 
5056 static int
5057 compare_names (const char *string1, const char *string2)
5058 {
5059   int result;
5060 
5061   /* Similar to what strcmp_iw_ordered does, we need to perform
5062      a case-insensitive comparison first, and only resort to
5063      a second, case-sensitive, comparison if the first one was
5064      not sufficient to differentiate the two strings.  */
5065 
5066   result = compare_names_with_case (string1, string2, case_sensitive_off);
5067   if (result == 0)
5068     result = compare_names_with_case (string1, string2, case_sensitive_on);
5069 
5070   return result;
5071 }
5072 
5073 /* Add to OBSTACKP all non-local symbols whose name and domain match
5074    NAME and DOMAIN respectively.  The search is performed on GLOBAL_BLOCK
5075    symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise.  */
5076 
5077 static void
5078 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5079 		      domain_enum domain, int global,
5080 		      int is_wild_match)
5081 {
5082   struct objfile *objfile;
5083   struct match_data data;
5084 
5085   memset (&data, 0, sizeof data);
5086   data.obstackp = obstackp;
5087 
5088   ALL_OBJFILES (objfile)
5089     {
5090       data.objfile = objfile;
5091 
5092       if (is_wild_match)
5093 	objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5094 					       aux_add_nonlocal_symbols, &data,
5095 					       wild_match, NULL);
5096       else
5097 	objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5098 					       aux_add_nonlocal_symbols, &data,
5099 					       full_match, compare_names);
5100     }
5101 
5102   if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5103     {
5104       ALL_OBJFILES (objfile)
5105         {
5106 	  char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5107 	  strcpy (name1, "_ada_");
5108 	  strcpy (name1 + sizeof ("_ada_") - 1, name);
5109 	  data.objfile = objfile;
5110 	  objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5111 						 global,
5112 						 aux_add_nonlocal_symbols,
5113 						 &data,
5114 						 full_match, compare_names);
5115 	}
5116     }
5117 }
5118 
5119 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is
5120    non-zero, enclosing scope and in global scopes, returning the number of
5121    matches.
5122    Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5123    indicating the symbols found and the blocks and symbol tables (if
5124    any) in which they were found.  This vector is transient---good only to
5125    the next call of ada_lookup_symbol_list.
5126 
5127    When full_search is non-zero, any non-function/non-enumeral
5128    symbol match within the nest of blocks whose innermost member is BLOCK0,
5129    is the one match returned (no other matches in that or
5130    enclosing blocks is returned).  If there are any matches in or
5131    surrounding BLOCK0, then these alone are returned.
5132 
5133    Names prefixed with "standard__" are handled specially: "standard__"
5134    is first stripped off, and only static and global symbols are searched.  */
5135 
5136 static int
5137 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0,
5138 			       domain_enum namespace,
5139 			       struct ada_symbol_info **results,
5140 			       int full_search)
5141 {
5142   struct symbol *sym;
5143   struct block *block;
5144   const char *name;
5145   const int wild_match_p = should_use_wild_match (name0);
5146   int cacheIfUnique;
5147   int ndefns;
5148 
5149   obstack_free (&symbol_list_obstack, NULL);
5150   obstack_init (&symbol_list_obstack);
5151 
5152   cacheIfUnique = 0;
5153 
5154   /* Search specified block and its superiors.  */
5155 
5156   name = name0;
5157   block = (struct block *) block0;      /* FIXME: No cast ought to be
5158                                            needed, but adding const will
5159                                            have a cascade effect.  */
5160 
5161   /* Special case: If the user specifies a symbol name inside package
5162      Standard, do a non-wild matching of the symbol name without
5163      the "standard__" prefix.  This was primarily introduced in order
5164      to allow the user to specifically access the standard exceptions
5165      using, for instance, Standard.Constraint_Error when Constraint_Error
5166      is ambiguous (due to the user defining its own Constraint_Error
5167      entity inside its program).  */
5168   if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5169     {
5170       block = NULL;
5171       name = name0 + sizeof ("standard__") - 1;
5172     }
5173 
5174   /* Check the non-global symbols.  If we have ANY match, then we're done.  */
5175 
5176   if (block != NULL)
5177     {
5178       if (full_search)
5179 	{
5180 	  ada_add_local_symbols (&symbol_list_obstack, name, block,
5181 				 namespace, wild_match_p);
5182 	}
5183       else
5184 	{
5185 	  /* In the !full_search case we're are being called by
5186 	     ada_iterate_over_symbols, and we don't want to search
5187 	     superblocks.  */
5188 	  ada_add_block_symbols (&symbol_list_obstack, block, name,
5189 				 namespace, NULL, wild_match_p);
5190 	}
5191       if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5192 	goto done;
5193     }
5194 
5195   /* No non-global symbols found.  Check our cache to see if we have
5196      already performed this search before.  If we have, then return
5197      the same result.  */
5198 
5199   cacheIfUnique = 1;
5200   if (lookup_cached_symbol (name0, namespace, &sym, &block))
5201     {
5202       if (sym != NULL)
5203         add_defn_to_vec (&symbol_list_obstack, sym, block);
5204       goto done;
5205     }
5206 
5207   /* Search symbols from all global blocks.  */
5208 
5209   add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5210 			wild_match_p);
5211 
5212   /* Now add symbols from all per-file blocks if we've gotten no hits
5213      (not strictly correct, but perhaps better than an error).  */
5214 
5215   if (num_defns_collected (&symbol_list_obstack) == 0)
5216     add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5217 			  wild_match_p);
5218 
5219 done:
5220   ndefns = num_defns_collected (&symbol_list_obstack);
5221   *results = defns_collected (&symbol_list_obstack, 1);
5222 
5223   ndefns = remove_extra_symbols (*results, ndefns);
5224 
5225   if (ndefns == 0 && full_search)
5226     cache_symbol (name0, namespace, NULL, NULL);
5227 
5228   if (ndefns == 1 && full_search && cacheIfUnique)
5229     cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5230 
5231   ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5232 
5233   return ndefns;
5234 }
5235 
5236 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5237    in global scopes, returning the number of matches, and setting *RESULTS
5238    to a vector of (SYM,BLOCK) tuples.
5239    See ada_lookup_symbol_list_worker for further details.  */
5240 
5241 int
5242 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5243 			domain_enum domain, struct ada_symbol_info **results)
5244 {
5245   return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5246 }
5247 
5248 /* Implementation of the la_iterate_over_symbols method.  */
5249 
5250 static void
5251 ada_iterate_over_symbols (const struct block *block,
5252 			  const char *name, domain_enum domain,
5253 			  symbol_found_callback_ftype *callback,
5254 			  void *data)
5255 {
5256   int ndefs, i;
5257   struct ada_symbol_info *results;
5258 
5259   ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5260   for (i = 0; i < ndefs; ++i)
5261     {
5262       if (! (*callback) (results[i].sym, data))
5263 	break;
5264     }
5265 }
5266 
5267 /* If NAME is the name of an entity, return a string that should
5268    be used to look that entity up in Ada units.  This string should
5269    be deallocated after use using xfree.
5270 
5271    NAME can have any form that the "break" or "print" commands might
5272    recognize.  In other words, it does not have to be the "natural"
5273    name, or the "encoded" name.  */
5274 
5275 char *
5276 ada_name_for_lookup (const char *name)
5277 {
5278   char *canon;
5279   int nlen = strlen (name);
5280 
5281   if (name[0] == '<' && name[nlen - 1] == '>')
5282     {
5283       canon = xmalloc (nlen - 1);
5284       memcpy (canon, name + 1, nlen - 2);
5285       canon[nlen - 2] = '\0';
5286     }
5287   else
5288     canon = xstrdup (ada_encode (ada_fold_name (name)));
5289   return canon;
5290 }
5291 
5292 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5293    to 1, but choosing the first symbol found if there are multiple
5294    choices.
5295 
5296    The result is stored in *INFO, which must be non-NULL.
5297    If no match is found, INFO->SYM is set to NULL.  */
5298 
5299 void
5300 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5301 			   domain_enum namespace,
5302 			   struct ada_symbol_info *info)
5303 {
5304   struct ada_symbol_info *candidates;
5305   int n_candidates;
5306 
5307   gdb_assert (info != NULL);
5308   memset (info, 0, sizeof (struct ada_symbol_info));
5309 
5310   n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates);
5311   if (n_candidates == 0)
5312     return;
5313 
5314   *info = candidates[0];
5315   info->sym = fixup_symbol_section (info->sym, NULL);
5316 }
5317 
5318 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5319    scope and in global scopes, or NULL if none.  NAME is folded and
5320    encoded first.  Otherwise, the result is as for ada_lookup_symbol_list,
5321    choosing the first symbol if there are multiple choices.
5322    If IS_A_FIELD_OF_THIS is not NULL, it is set to zero.  */
5323 
5324 struct symbol *
5325 ada_lookup_symbol (const char *name, const struct block *block0,
5326                    domain_enum namespace, int *is_a_field_of_this)
5327 {
5328   struct ada_symbol_info info;
5329 
5330   if (is_a_field_of_this != NULL)
5331     *is_a_field_of_this = 0;
5332 
5333   ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5334 			     block0, namespace, &info);
5335   return info.sym;
5336 }
5337 
5338 static struct symbol *
5339 ada_lookup_symbol_nonlocal (const char *name,
5340                             const struct block *block,
5341                             const domain_enum domain)
5342 {
5343   return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5344 }
5345 
5346 
5347 /* True iff STR is a possible encoded suffix of a normal Ada name
5348    that is to be ignored for matching purposes.  Suffixes of parallel
5349    names (e.g., XVE) are not included here.  Currently, the possible suffixes
5350    are given by any of the regular expressions:
5351 
5352    [.$][0-9]+       [nested subprogram suffix, on platforms such as GNU/Linux]
5353    ___[0-9]+        [nested subprogram suffix, on platforms such as HP/UX]
5354    TKB              [subprogram suffix for task bodies]
5355    _E[0-9]+[bs]$    [protected object entry suffixes]
5356    (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5357 
5358    Also, any leading "__[0-9]+" sequence is skipped before the suffix
5359    match is performed.  This sequence is used to differentiate homonyms,
5360    is an optional part of a valid name suffix.  */
5361 
5362 static int
5363 is_name_suffix (const char *str)
5364 {
5365   int k;
5366   const char *matching;
5367   const int len = strlen (str);
5368 
5369   /* Skip optional leading __[0-9]+.  */
5370 
5371   if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5372     {
5373       str += 3;
5374       while (isdigit (str[0]))
5375         str += 1;
5376     }
5377 
5378   /* [.$][0-9]+ */
5379 
5380   if (str[0] == '.' || str[0] == '$')
5381     {
5382       matching = str + 1;
5383       while (isdigit (matching[0]))
5384         matching += 1;
5385       if (matching[0] == '\0')
5386         return 1;
5387     }
5388 
5389   /* ___[0-9]+ */
5390 
5391   if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5392     {
5393       matching = str + 3;
5394       while (isdigit (matching[0]))
5395         matching += 1;
5396       if (matching[0] == '\0')
5397         return 1;
5398     }
5399 
5400   /* "TKB" suffixes are used for subprograms implementing task bodies.  */
5401 
5402   if (strcmp (str, "TKB") == 0)
5403     return 1;
5404 
5405 #if 0
5406   /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5407      with a N at the end.  Unfortunately, the compiler uses the same
5408      convention for other internal types it creates.  So treating
5409      all entity names that end with an "N" as a name suffix causes
5410      some regressions.  For instance, consider the case of an enumerated
5411      type.  To support the 'Image attribute, it creates an array whose
5412      name ends with N.
5413      Having a single character like this as a suffix carrying some
5414      information is a bit risky.  Perhaps we should change the encoding
5415      to be something like "_N" instead.  In the meantime, do not do
5416      the following check.  */
5417   /* Protected Object Subprograms */
5418   if (len == 1 && str [0] == 'N')
5419     return 1;
5420 #endif
5421 
5422   /* _E[0-9]+[bs]$ */
5423   if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5424     {
5425       matching = str + 3;
5426       while (isdigit (matching[0]))
5427         matching += 1;
5428       if ((matching[0] == 'b' || matching[0] == 's')
5429           && matching [1] == '\0')
5430         return 1;
5431     }
5432 
5433   /* ??? We should not modify STR directly, as we are doing below.  This
5434      is fine in this case, but may become problematic later if we find
5435      that this alternative did not work, and want to try matching
5436      another one from the begining of STR.  Since we modified it, we
5437      won't be able to find the begining of the string anymore!  */
5438   if (str[0] == 'X')
5439     {
5440       str += 1;
5441       while (str[0] != '_' && str[0] != '\0')
5442         {
5443           if (str[0] != 'n' && str[0] != 'b')
5444             return 0;
5445           str += 1;
5446         }
5447     }
5448 
5449   if (str[0] == '\000')
5450     return 1;
5451 
5452   if (str[0] == '_')
5453     {
5454       if (str[1] != '_' || str[2] == '\000')
5455         return 0;
5456       if (str[2] == '_')
5457         {
5458           if (strcmp (str + 3, "JM") == 0)
5459             return 1;
5460           /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5461              the LJM suffix in favor of the JM one.  But we will
5462              still accept LJM as a valid suffix for a reasonable
5463              amount of time, just to allow ourselves to debug programs
5464              compiled using an older version of GNAT.  */
5465           if (strcmp (str + 3, "LJM") == 0)
5466             return 1;
5467           if (str[3] != 'X')
5468             return 0;
5469           if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5470               || str[4] == 'U' || str[4] == 'P')
5471             return 1;
5472           if (str[4] == 'R' && str[5] != 'T')
5473             return 1;
5474           return 0;
5475         }
5476       if (!isdigit (str[2]))
5477         return 0;
5478       for (k = 3; str[k] != '\0'; k += 1)
5479         if (!isdigit (str[k]) && str[k] != '_')
5480           return 0;
5481       return 1;
5482     }
5483   if (str[0] == '$' && isdigit (str[1]))
5484     {
5485       for (k = 2; str[k] != '\0'; k += 1)
5486         if (!isdigit (str[k]) && str[k] != '_')
5487           return 0;
5488       return 1;
5489     }
5490   return 0;
5491 }
5492 
5493 /* Return non-zero if the string starting at NAME and ending before
5494    NAME_END contains no capital letters.  */
5495 
5496 static int
5497 is_valid_name_for_wild_match (const char *name0)
5498 {
5499   const char *decoded_name = ada_decode (name0);
5500   int i;
5501 
5502   /* If the decoded name starts with an angle bracket, it means that
5503      NAME0 does not follow the GNAT encoding format.  It should then
5504      not be allowed as a possible wild match.  */
5505   if (decoded_name[0] == '<')
5506     return 0;
5507 
5508   for (i=0; decoded_name[i] != '\0'; i++)
5509     if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5510       return 0;
5511 
5512   return 1;
5513 }
5514 
5515 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5516    that could start a simple name.  Assumes that *NAMEP points into
5517    the string beginning at NAME0.  */
5518 
5519 static int
5520 advance_wild_match (const char **namep, const char *name0, int target0)
5521 {
5522   const char *name = *namep;
5523 
5524   while (1)
5525     {
5526       int t0, t1;
5527 
5528       t0 = *name;
5529       if (t0 == '_')
5530 	{
5531 	  t1 = name[1];
5532 	  if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5533 	    {
5534 	      name += 1;
5535 	      if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5536 		break;
5537 	      else
5538 		name += 1;
5539 	    }
5540 	  else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5541 				 || name[2] == target0))
5542 	    {
5543 	      name += 2;
5544 	      break;
5545 	    }
5546 	  else
5547 	    return 0;
5548 	}
5549       else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5550 	name += 1;
5551       else
5552 	return 0;
5553     }
5554 
5555   *namep = name;
5556   return 1;
5557 }
5558 
5559 /* Return 0 iff NAME encodes a name of the form prefix.PATN.  Ignores any
5560    informational suffixes of NAME (i.e., for which is_name_suffix is
5561    true).  Assumes that PATN is a lower-cased Ada simple name.  */
5562 
5563 static int
5564 wild_match (const char *name, const char *patn)
5565 {
5566   const char *p;
5567   const char *name0 = name;
5568 
5569   while (1)
5570     {
5571       const char *match = name;
5572 
5573       if (*name == *patn)
5574 	{
5575 	  for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5576 	    if (*p != *name)
5577 	      break;
5578 	  if (*p == '\0' && is_name_suffix (name))
5579 	    return match != name0 && !is_valid_name_for_wild_match (name0);
5580 
5581 	  if (name[-1] == '_')
5582 	    name -= 1;
5583 	}
5584       if (!advance_wild_match (&name, name0, *patn))
5585 	return 1;
5586     }
5587 }
5588 
5589 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5590    informational suffix.  */
5591 
5592 static int
5593 full_match (const char *sym_name, const char *search_name)
5594 {
5595   return !match_name (sym_name, search_name, 0);
5596 }
5597 
5598 
5599 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5600    vector *defn_symbols, updating the list of symbols in OBSTACKP
5601    (if necessary).  If WILD, treat as NAME with a wildcard prefix.
5602    OBJFILE is the section containing BLOCK.  */
5603 
5604 static void
5605 ada_add_block_symbols (struct obstack *obstackp,
5606                        struct block *block, const char *name,
5607                        domain_enum domain, struct objfile *objfile,
5608                        int wild)
5609 {
5610   struct block_iterator iter;
5611   int name_len = strlen (name);
5612   /* A matching argument symbol, if any.  */
5613   struct symbol *arg_sym;
5614   /* Set true when we find a matching non-argument symbol.  */
5615   int found_sym;
5616   struct symbol *sym;
5617 
5618   arg_sym = NULL;
5619   found_sym = 0;
5620   if (wild)
5621     {
5622       for (sym = block_iter_match_first (block, name, wild_match, &iter);
5623 	   sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5624       {
5625         if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5626                                    SYMBOL_DOMAIN (sym), domain)
5627             && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5628           {
5629 	    if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5630 	      continue;
5631 	    else if (SYMBOL_IS_ARGUMENT (sym))
5632 	      arg_sym = sym;
5633 	    else
5634 	      {
5635                 found_sym = 1;
5636                 add_defn_to_vec (obstackp,
5637                                  fixup_symbol_section (sym, objfile),
5638                                  block);
5639               }
5640           }
5641       }
5642     }
5643   else
5644     {
5645      for (sym = block_iter_match_first (block, name, full_match, &iter);
5646 	  sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5647       {
5648         if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5649                                    SYMBOL_DOMAIN (sym), domain))
5650           {
5651 	    if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5652 	      {
5653 		if (SYMBOL_IS_ARGUMENT (sym))
5654 		  arg_sym = sym;
5655 		else
5656 		  {
5657 		    found_sym = 1;
5658 		    add_defn_to_vec (obstackp,
5659 				     fixup_symbol_section (sym, objfile),
5660 				     block);
5661 		  }
5662 	      }
5663           }
5664       }
5665     }
5666 
5667   if (!found_sym && arg_sym != NULL)
5668     {
5669       add_defn_to_vec (obstackp,
5670                        fixup_symbol_section (arg_sym, objfile),
5671                        block);
5672     }
5673 
5674   if (!wild)
5675     {
5676       arg_sym = NULL;
5677       found_sym = 0;
5678 
5679       ALL_BLOCK_SYMBOLS (block, iter, sym)
5680       {
5681         if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5682                                    SYMBOL_DOMAIN (sym), domain))
5683           {
5684             int cmp;
5685 
5686             cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5687             if (cmp == 0)
5688               {
5689                 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5690                 if (cmp == 0)
5691                   cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5692                                  name_len);
5693               }
5694 
5695             if (cmp == 0
5696                 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5697               {
5698 		if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5699 		  {
5700 		    if (SYMBOL_IS_ARGUMENT (sym))
5701 		      arg_sym = sym;
5702 		    else
5703 		      {
5704 			found_sym = 1;
5705 			add_defn_to_vec (obstackp,
5706 					 fixup_symbol_section (sym, objfile),
5707 					 block);
5708 		      }
5709 		  }
5710               }
5711           }
5712       }
5713 
5714       /* NOTE: This really shouldn't be needed for _ada_ symbols.
5715          They aren't parameters, right?  */
5716       if (!found_sym && arg_sym != NULL)
5717         {
5718           add_defn_to_vec (obstackp,
5719                            fixup_symbol_section (arg_sym, objfile),
5720                            block);
5721         }
5722     }
5723 }
5724 
5725 
5726                                 /* Symbol Completion */
5727 
5728 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5729    name in a form that's appropriate for the completion.  The result
5730    does not need to be deallocated, but is only good until the next call.
5731 
5732    TEXT_LEN is equal to the length of TEXT.
5733    Perform a wild match if WILD_MATCH_P is set.
5734    ENCODED_P should be set if TEXT represents the start of a symbol name
5735    in its encoded form.  */
5736 
5737 static const char *
5738 symbol_completion_match (const char *sym_name,
5739                          const char *text, int text_len,
5740                          int wild_match_p, int encoded_p)
5741 {
5742   const int verbatim_match = (text[0] == '<');
5743   int match = 0;
5744 
5745   if (verbatim_match)
5746     {
5747       /* Strip the leading angle bracket.  */
5748       text = text + 1;
5749       text_len--;
5750     }
5751 
5752   /* First, test against the fully qualified name of the symbol.  */
5753 
5754   if (strncmp (sym_name, text, text_len) == 0)
5755     match = 1;
5756 
5757   if (match && !encoded_p)
5758     {
5759       /* One needed check before declaring a positive match is to verify
5760          that iff we are doing a verbatim match, the decoded version
5761          of the symbol name starts with '<'.  Otherwise, this symbol name
5762          is not a suitable completion.  */
5763       const char *sym_name_copy = sym_name;
5764       int has_angle_bracket;
5765 
5766       sym_name = ada_decode (sym_name);
5767       has_angle_bracket = (sym_name[0] == '<');
5768       match = (has_angle_bracket == verbatim_match);
5769       sym_name = sym_name_copy;
5770     }
5771 
5772   if (match && !verbatim_match)
5773     {
5774       /* When doing non-verbatim match, another check that needs to
5775          be done is to verify that the potentially matching symbol name
5776          does not include capital letters, because the ada-mode would
5777          not be able to understand these symbol names without the
5778          angle bracket notation.  */
5779       const char *tmp;
5780 
5781       for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5782       if (*tmp != '\0')
5783         match = 0;
5784     }
5785 
5786   /* Second: Try wild matching...  */
5787 
5788   if (!match && wild_match_p)
5789     {
5790       /* Since we are doing wild matching, this means that TEXT
5791          may represent an unqualified symbol name.  We therefore must
5792          also compare TEXT against the unqualified name of the symbol.  */
5793       sym_name = ada_unqualified_name (ada_decode (sym_name));
5794 
5795       if (strncmp (sym_name, text, text_len) == 0)
5796         match = 1;
5797     }
5798 
5799   /* Finally: If we found a mach, prepare the result to return.  */
5800 
5801   if (!match)
5802     return NULL;
5803 
5804   if (verbatim_match)
5805     sym_name = add_angle_brackets (sym_name);
5806 
5807   if (!encoded_p)
5808     sym_name = ada_decode (sym_name);
5809 
5810   return sym_name;
5811 }
5812 
5813 /* A companion function to ada_make_symbol_completion_list().
5814    Check if SYM_NAME represents a symbol which name would be suitable
5815    to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5816    it is appended at the end of the given string vector SV.
5817 
5818    ORIG_TEXT is the string original string from the user command
5819    that needs to be completed.  WORD is the entire command on which
5820    completion should be performed.  These two parameters are used to
5821    determine which part of the symbol name should be added to the
5822    completion vector.
5823    if WILD_MATCH_P is set, then wild matching is performed.
5824    ENCODED_P should be set if TEXT represents a symbol name in its
5825    encoded formed (in which case the completion should also be
5826    encoded).  */
5827 
5828 static void
5829 symbol_completion_add (VEC(char_ptr) **sv,
5830                        const char *sym_name,
5831                        const char *text, int text_len,
5832                        const char *orig_text, const char *word,
5833                        int wild_match_p, int encoded_p)
5834 {
5835   const char *match = symbol_completion_match (sym_name, text, text_len,
5836                                                wild_match_p, encoded_p);
5837   char *completion;
5838 
5839   if (match == NULL)
5840     return;
5841 
5842   /* We found a match, so add the appropriate completion to the given
5843      string vector.  */
5844 
5845   if (word == orig_text)
5846     {
5847       completion = xmalloc (strlen (match) + 5);
5848       strcpy (completion, match);
5849     }
5850   else if (word > orig_text)
5851     {
5852       /* Return some portion of sym_name.  */
5853       completion = xmalloc (strlen (match) + 5);
5854       strcpy (completion, match + (word - orig_text));
5855     }
5856   else
5857     {
5858       /* Return some of ORIG_TEXT plus sym_name.  */
5859       completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5860       strncpy (completion, word, orig_text - word);
5861       completion[orig_text - word] = '\0';
5862       strcat (completion, match);
5863     }
5864 
5865   VEC_safe_push (char_ptr, *sv, completion);
5866 }
5867 
5868 /* An object of this type is passed as the user_data argument to the
5869    expand_partial_symbol_names method.  */
5870 struct add_partial_datum
5871 {
5872   VEC(char_ptr) **completions;
5873   const char *text;
5874   int text_len;
5875   const char *text0;
5876   const char *word;
5877   int wild_match;
5878   int encoded;
5879 };
5880 
5881 /* A callback for expand_partial_symbol_names.  */
5882 static int
5883 ada_expand_partial_symbol_name (const char *name, void *user_data)
5884 {
5885   struct add_partial_datum *data = user_data;
5886 
5887   return symbol_completion_match (name, data->text, data->text_len,
5888                                   data->wild_match, data->encoded) != NULL;
5889 }
5890 
5891 /* Return a list of possible symbol names completing TEXT0.  WORD is
5892    the entire command on which completion is made.  */
5893 
5894 static VEC (char_ptr) *
5895 ada_make_symbol_completion_list (const char *text0, const char *word,
5896 				 enum type_code code)
5897 {
5898   char *text;
5899   int text_len;
5900   int wild_match_p;
5901   int encoded_p;
5902   VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5903   struct symbol *sym;
5904   struct symtab *s;
5905   struct minimal_symbol *msymbol;
5906   struct objfile *objfile;
5907   struct block *b, *surrounding_static_block = 0;
5908   int i;
5909   struct block_iterator iter;
5910   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5911 
5912   gdb_assert (code == TYPE_CODE_UNDEF);
5913 
5914   if (text0[0] == '<')
5915     {
5916       text = xstrdup (text0);
5917       make_cleanup (xfree, text);
5918       text_len = strlen (text);
5919       wild_match_p = 0;
5920       encoded_p = 1;
5921     }
5922   else
5923     {
5924       text = xstrdup (ada_encode (text0));
5925       make_cleanup (xfree, text);
5926       text_len = strlen (text);
5927       for (i = 0; i < text_len; i++)
5928         text[i] = tolower (text[i]);
5929 
5930       encoded_p = (strstr (text0, "__") != NULL);
5931       /* If the name contains a ".", then the user is entering a fully
5932          qualified entity name, and the match must not be done in wild
5933          mode.  Similarly, if the user wants to complete what looks like
5934          an encoded name, the match must not be done in wild mode.  */
5935       wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5936     }
5937 
5938   /* First, look at the partial symtab symbols.  */
5939   {
5940     struct add_partial_datum data;
5941 
5942     data.completions = &completions;
5943     data.text = text;
5944     data.text_len = text_len;
5945     data.text0 = text0;
5946     data.word = word;
5947     data.wild_match = wild_match_p;
5948     data.encoded = encoded_p;
5949     expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5950   }
5951 
5952   /* At this point scan through the misc symbol vectors and add each
5953      symbol you find to the list.  Eventually we want to ignore
5954      anything that isn't a text symbol (everything else will be
5955      handled by the psymtab code above).  */
5956 
5957   ALL_MSYMBOLS (objfile, msymbol)
5958   {
5959     QUIT;
5960     symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5961 			   text, text_len, text0, word, wild_match_p,
5962 			   encoded_p);
5963   }
5964 
5965   /* Search upwards from currently selected frame (so that we can
5966      complete on local vars.  */
5967 
5968   for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5969     {
5970       if (!BLOCK_SUPERBLOCK (b))
5971         surrounding_static_block = b;   /* For elmin of dups */
5972 
5973       ALL_BLOCK_SYMBOLS (b, iter, sym)
5974       {
5975         symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5976                                text, text_len, text0, word,
5977                                wild_match_p, encoded_p);
5978       }
5979     }
5980 
5981   /* Go through the symtabs and check the externs and statics for
5982      symbols which match.  */
5983 
5984   ALL_SYMTABS (objfile, s)
5985   {
5986     QUIT;
5987     b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5988     ALL_BLOCK_SYMBOLS (b, iter, sym)
5989     {
5990       symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5991                              text, text_len, text0, word,
5992                              wild_match_p, encoded_p);
5993     }
5994   }
5995 
5996   ALL_SYMTABS (objfile, s)
5997   {
5998     QUIT;
5999     b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
6000     /* Don't do this block twice.  */
6001     if (b == surrounding_static_block)
6002       continue;
6003     ALL_BLOCK_SYMBOLS (b, iter, sym)
6004     {
6005       symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6006                              text, text_len, text0, word,
6007                              wild_match_p, encoded_p);
6008     }
6009   }
6010 
6011   do_cleanups (old_chain);
6012   return completions;
6013 }
6014 
6015                                 /* Field Access */
6016 
6017 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6018    for tagged types.  */
6019 
6020 static int
6021 ada_is_dispatch_table_ptr_type (struct type *type)
6022 {
6023   const char *name;
6024 
6025   if (TYPE_CODE (type) != TYPE_CODE_PTR)
6026     return 0;
6027 
6028   name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6029   if (name == NULL)
6030     return 0;
6031 
6032   return (strcmp (name, "ada__tags__dispatch_table") == 0);
6033 }
6034 
6035 /* Return non-zero if TYPE is an interface tag.  */
6036 
6037 static int
6038 ada_is_interface_tag (struct type *type)
6039 {
6040   const char *name = TYPE_NAME (type);
6041 
6042   if (name == NULL)
6043     return 0;
6044 
6045   return (strcmp (name, "ada__tags__interface_tag") == 0);
6046 }
6047 
6048 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6049    to be invisible to users.  */
6050 
6051 int
6052 ada_is_ignored_field (struct type *type, int field_num)
6053 {
6054   if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6055     return 1;
6056 
6057   /* Check the name of that field.  */
6058   {
6059     const char *name = TYPE_FIELD_NAME (type, field_num);
6060 
6061     /* Anonymous field names should not be printed.
6062        brobecker/2007-02-20: I don't think this can actually happen
6063        but we don't want to print the value of annonymous fields anyway.  */
6064     if (name == NULL)
6065       return 1;
6066 
6067     /* Normally, fields whose name start with an underscore ("_")
6068        are fields that have been internally generated by the compiler,
6069        and thus should not be printed.  The "_parent" field is special,
6070        however: This is a field internally generated by the compiler
6071        for tagged types, and it contains the components inherited from
6072        the parent type.  This field should not be printed as is, but
6073        should not be ignored either.  */
6074     if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
6075       return 1;
6076   }
6077 
6078   /* If this is the dispatch table of a tagged type or an interface tag,
6079      then ignore.  */
6080   if (ada_is_tagged_type (type, 1)
6081       && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6082 	  || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6083     return 1;
6084 
6085   /* Not a special field, so it should not be ignored.  */
6086   return 0;
6087 }
6088 
6089 /* True iff TYPE has a tag field.  If REFOK, then TYPE may also be a
6090    pointer or reference type whose ultimate target has a tag field.  */
6091 
6092 int
6093 ada_is_tagged_type (struct type *type, int refok)
6094 {
6095   return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6096 }
6097 
6098 /* True iff TYPE represents the type of X'Tag */
6099 
6100 int
6101 ada_is_tag_type (struct type *type)
6102 {
6103   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6104     return 0;
6105   else
6106     {
6107       const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6108 
6109       return (name != NULL
6110               && strcmp (name, "ada__tags__dispatch_table") == 0);
6111     }
6112 }
6113 
6114 /* The type of the tag on VAL.  */
6115 
6116 struct type *
6117 ada_tag_type (struct value *val)
6118 {
6119   return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6120 }
6121 
6122 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6123    retired at Ada 05).  */
6124 
6125 static int
6126 is_ada95_tag (struct value *tag)
6127 {
6128   return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6129 }
6130 
6131 /* The value of the tag on VAL.  */
6132 
6133 struct value *
6134 ada_value_tag (struct value *val)
6135 {
6136   return ada_value_struct_elt (val, "_tag", 0);
6137 }
6138 
6139 /* The value of the tag on the object of type TYPE whose contents are
6140    saved at VALADDR, if it is non-null, or is at memory address
6141    ADDRESS.  */
6142 
6143 static struct value *
6144 value_tag_from_contents_and_address (struct type *type,
6145 				     const gdb_byte *valaddr,
6146                                      CORE_ADDR address)
6147 {
6148   int tag_byte_offset;
6149   struct type *tag_type;
6150 
6151   if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6152                          NULL, NULL, NULL))
6153     {
6154       const gdb_byte *valaddr1 = ((valaddr == NULL)
6155 				  ? NULL
6156 				  : valaddr + tag_byte_offset);
6157       CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6158 
6159       return value_from_contents_and_address (tag_type, valaddr1, address1);
6160     }
6161   return NULL;
6162 }
6163 
6164 static struct type *
6165 type_from_tag (struct value *tag)
6166 {
6167   const char *type_name = ada_tag_name (tag);
6168 
6169   if (type_name != NULL)
6170     return ada_find_any_type (ada_encode (type_name));
6171   return NULL;
6172 }
6173 
6174 /* Given a value OBJ of a tagged type, return a value of this
6175    type at the base address of the object.  The base address, as
6176    defined in Ada.Tags, it is the address of the primary tag of
6177    the object, and therefore where the field values of its full
6178    view can be fetched.  */
6179 
6180 struct value *
6181 ada_tag_value_at_base_address (struct value *obj)
6182 {
6183   volatile struct gdb_exception e;
6184   struct value *val;
6185   LONGEST offset_to_top = 0;
6186   struct type *ptr_type, *obj_type;
6187   struct value *tag;
6188   CORE_ADDR base_address;
6189 
6190   obj_type = value_type (obj);
6191 
6192   /* It is the responsability of the caller to deref pointers.  */
6193 
6194   if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6195       || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6196     return obj;
6197 
6198   tag = ada_value_tag (obj);
6199   if (!tag)
6200     return obj;
6201 
6202   /* Base addresses only appeared with Ada 05 and multiple inheritance.  */
6203 
6204   if (is_ada95_tag (tag))
6205     return obj;
6206 
6207   ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6208   ptr_type = lookup_pointer_type (ptr_type);
6209   val = value_cast (ptr_type, tag);
6210   if (!val)
6211     return obj;
6212 
6213   /* It is perfectly possible that an exception be raised while
6214      trying to determine the base address, just like for the tag;
6215      see ada_tag_name for more details.  We do not print the error
6216      message for the same reason.  */
6217 
6218   TRY_CATCH (e, RETURN_MASK_ERROR)
6219     {
6220       offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6221     }
6222 
6223   if (e.reason < 0)
6224     return obj;
6225 
6226   /* If offset is null, nothing to do.  */
6227 
6228   if (offset_to_top == 0)
6229     return obj;
6230 
6231   /* -1 is a special case in Ada.Tags; however, what should be done
6232      is not quite clear from the documentation.  So do nothing for
6233      now.  */
6234 
6235   if (offset_to_top == -1)
6236     return obj;
6237 
6238   base_address = value_address (obj) - offset_to_top;
6239   tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6240 
6241   /* Make sure that we have a proper tag at the new address.
6242      Otherwise, offset_to_top is bogus (which can happen when
6243      the object is not initialized yet).  */
6244 
6245   if (!tag)
6246     return obj;
6247 
6248   obj_type = type_from_tag (tag);
6249 
6250   if (!obj_type)
6251     return obj;
6252 
6253   return value_from_contents_and_address (obj_type, NULL, base_address);
6254 }
6255 
6256 /* Return the "ada__tags__type_specific_data" type.  */
6257 
6258 static struct type *
6259 ada_get_tsd_type (struct inferior *inf)
6260 {
6261   struct ada_inferior_data *data = get_ada_inferior_data (inf);
6262 
6263   if (data->tsd_type == 0)
6264     data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6265   return data->tsd_type;
6266 }
6267 
6268 /* Return the TSD (type-specific data) associated to the given TAG.
6269    TAG is assumed to be the tag of a tagged-type entity.
6270 
6271    May return NULL if we are unable to get the TSD.  */
6272 
6273 static struct value *
6274 ada_get_tsd_from_tag (struct value *tag)
6275 {
6276   struct value *val;
6277   struct type *type;
6278 
6279   /* First option: The TSD is simply stored as a field of our TAG.
6280      Only older versions of GNAT would use this format, but we have
6281      to test it first, because there are no visible markers for
6282      the current approach except the absence of that field.  */
6283 
6284   val = ada_value_struct_elt (tag, "tsd", 1);
6285   if (val)
6286     return val;
6287 
6288   /* Try the second representation for the dispatch table (in which
6289      there is no explicit 'tsd' field in the referent of the tag pointer,
6290      and instead the tsd pointer is stored just before the dispatch
6291      table.  */
6292 
6293   type = ada_get_tsd_type (current_inferior());
6294   if (type == NULL)
6295     return NULL;
6296   type = lookup_pointer_type (lookup_pointer_type (type));
6297   val = value_cast (type, tag);
6298   if (val == NULL)
6299     return NULL;
6300   return value_ind (value_ptradd (val, -1));
6301 }
6302 
6303 /* Given the TSD of a tag (type-specific data), return a string
6304    containing the name of the associated type.
6305 
6306    The returned value is good until the next call.  May return NULL
6307    if we are unable to determine the tag name.  */
6308 
6309 static char *
6310 ada_tag_name_from_tsd (struct value *tsd)
6311 {
6312   static char name[1024];
6313   char *p;
6314   struct value *val;
6315 
6316   val = ada_value_struct_elt (tsd, "expanded_name", 1);
6317   if (val == NULL)
6318     return NULL;
6319   read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6320   for (p = name; *p != '\0'; p += 1)
6321     if (isalpha (*p))
6322       *p = tolower (*p);
6323   return name;
6324 }
6325 
6326 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6327    a C string.
6328 
6329    Return NULL if the TAG is not an Ada tag, or if we were unable to
6330    determine the name of that tag.  The result is good until the next
6331    call.  */
6332 
6333 const char *
6334 ada_tag_name (struct value *tag)
6335 {
6336   volatile struct gdb_exception e;
6337   char *name = NULL;
6338 
6339   if (!ada_is_tag_type (value_type (tag)))
6340     return NULL;
6341 
6342   /* It is perfectly possible that an exception be raised while trying
6343      to determine the TAG's name, even under normal circumstances:
6344      The associated variable may be uninitialized or corrupted, for
6345      instance. We do not let any exception propagate past this point.
6346      instead we return NULL.
6347 
6348      We also do not print the error message either (which often is very
6349      low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6350      the caller print a more meaningful message if necessary.  */
6351   TRY_CATCH (e, RETURN_MASK_ERROR)
6352     {
6353       struct value *tsd = ada_get_tsd_from_tag (tag);
6354 
6355       if (tsd != NULL)
6356 	name = ada_tag_name_from_tsd (tsd);
6357     }
6358 
6359   return name;
6360 }
6361 
6362 /* The parent type of TYPE, or NULL if none.  */
6363 
6364 struct type *
6365 ada_parent_type (struct type *type)
6366 {
6367   int i;
6368 
6369   type = ada_check_typedef (type);
6370 
6371   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6372     return NULL;
6373 
6374   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6375     if (ada_is_parent_field (type, i))
6376       {
6377         struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6378 
6379         /* If the _parent field is a pointer, then dereference it.  */
6380         if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6381           parent_type = TYPE_TARGET_TYPE (parent_type);
6382         /* If there is a parallel XVS type, get the actual base type.  */
6383         parent_type = ada_get_base_type (parent_type);
6384 
6385         return ada_check_typedef (parent_type);
6386       }
6387 
6388   return NULL;
6389 }
6390 
6391 /* True iff field number FIELD_NUM of structure type TYPE contains the
6392    parent-type (inherited) fields of a derived type.  Assumes TYPE is
6393    a structure type with at least FIELD_NUM+1 fields.  */
6394 
6395 int
6396 ada_is_parent_field (struct type *type, int field_num)
6397 {
6398   const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6399 
6400   return (name != NULL
6401           && (strncmp (name, "PARENT", 6) == 0
6402               || strncmp (name, "_parent", 7) == 0));
6403 }
6404 
6405 /* True iff field number FIELD_NUM of structure type TYPE is a
6406    transparent wrapper field (which should be silently traversed when doing
6407    field selection and flattened when printing).  Assumes TYPE is a
6408    structure type with at least FIELD_NUM+1 fields.  Such fields are always
6409    structures.  */
6410 
6411 int
6412 ada_is_wrapper_field (struct type *type, int field_num)
6413 {
6414   const char *name = TYPE_FIELD_NAME (type, field_num);
6415 
6416   return (name != NULL
6417           && (strncmp (name, "PARENT", 6) == 0
6418               || strcmp (name, "REP") == 0
6419               || strncmp (name, "_parent", 7) == 0
6420               || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6421 }
6422 
6423 /* True iff field number FIELD_NUM of structure or union type TYPE
6424    is a variant wrapper.  Assumes TYPE is a structure type with at least
6425    FIELD_NUM+1 fields.  */
6426 
6427 int
6428 ada_is_variant_part (struct type *type, int field_num)
6429 {
6430   struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6431 
6432   return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6433           || (is_dynamic_field (type, field_num)
6434               && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6435 		  == TYPE_CODE_UNION)));
6436 }
6437 
6438 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6439    whose discriminants are contained in the record type OUTER_TYPE,
6440    returns the type of the controlling discriminant for the variant.
6441    May return NULL if the type could not be found.  */
6442 
6443 struct type *
6444 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6445 {
6446   char *name = ada_variant_discrim_name (var_type);
6447 
6448   return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6449 }
6450 
6451 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6452    valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6453    represents a 'when others' clause; otherwise 0.  */
6454 
6455 int
6456 ada_is_others_clause (struct type *type, int field_num)
6457 {
6458   const char *name = TYPE_FIELD_NAME (type, field_num);
6459 
6460   return (name != NULL && name[0] == 'O');
6461 }
6462 
6463 /* Assuming that TYPE0 is the type of the variant part of a record,
6464    returns the name of the discriminant controlling the variant.
6465    The value is valid until the next call to ada_variant_discrim_name.  */
6466 
6467 char *
6468 ada_variant_discrim_name (struct type *type0)
6469 {
6470   static char *result = NULL;
6471   static size_t result_len = 0;
6472   struct type *type;
6473   const char *name;
6474   const char *discrim_end;
6475   const char *discrim_start;
6476 
6477   if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6478     type = TYPE_TARGET_TYPE (type0);
6479   else
6480     type = type0;
6481 
6482   name = ada_type_name (type);
6483 
6484   if (name == NULL || name[0] == '\000')
6485     return "";
6486 
6487   for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6488        discrim_end -= 1)
6489     {
6490       if (strncmp (discrim_end, "___XVN", 6) == 0)
6491         break;
6492     }
6493   if (discrim_end == name)
6494     return "";
6495 
6496   for (discrim_start = discrim_end; discrim_start != name + 3;
6497        discrim_start -= 1)
6498     {
6499       if (discrim_start == name + 1)
6500         return "";
6501       if ((discrim_start > name + 3
6502            && strncmp (discrim_start - 3, "___", 3) == 0)
6503           || discrim_start[-1] == '.')
6504         break;
6505     }
6506 
6507   GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6508   strncpy (result, discrim_start, discrim_end - discrim_start);
6509   result[discrim_end - discrim_start] = '\0';
6510   return result;
6511 }
6512 
6513 /* Scan STR for a subtype-encoded number, beginning at position K.
6514    Put the position of the character just past the number scanned in
6515    *NEW_K, if NEW_K!=NULL.  Put the scanned number in *R, if R!=NULL.
6516    Return 1 if there was a valid number at the given position, and 0
6517    otherwise.  A "subtype-encoded" number consists of the absolute value
6518    in decimal, followed by the letter 'm' to indicate a negative number.
6519    Assumes 0m does not occur.  */
6520 
6521 int
6522 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6523 {
6524   ULONGEST RU;
6525 
6526   if (!isdigit (str[k]))
6527     return 0;
6528 
6529   /* Do it the hard way so as not to make any assumption about
6530      the relationship of unsigned long (%lu scan format code) and
6531      LONGEST.  */
6532   RU = 0;
6533   while (isdigit (str[k]))
6534     {
6535       RU = RU * 10 + (str[k] - '0');
6536       k += 1;
6537     }
6538 
6539   if (str[k] == 'm')
6540     {
6541       if (R != NULL)
6542         *R = (-(LONGEST) (RU - 1)) - 1;
6543       k += 1;
6544     }
6545   else if (R != NULL)
6546     *R = (LONGEST) RU;
6547 
6548   /* NOTE on the above: Technically, C does not say what the results of
6549      - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6550      number representable as a LONGEST (although either would probably work
6551      in most implementations).  When RU>0, the locution in the then branch
6552      above is always equivalent to the negative of RU.  */
6553 
6554   if (new_k != NULL)
6555     *new_k = k;
6556   return 1;
6557 }
6558 
6559 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6560    and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6561    in the range encoded by field FIELD_NUM of TYPE; otherwise 0.  */
6562 
6563 int
6564 ada_in_variant (LONGEST val, struct type *type, int field_num)
6565 {
6566   const char *name = TYPE_FIELD_NAME (type, field_num);
6567   int p;
6568 
6569   p = 0;
6570   while (1)
6571     {
6572       switch (name[p])
6573         {
6574         case '\0':
6575           return 0;
6576         case 'S':
6577           {
6578             LONGEST W;
6579 
6580             if (!ada_scan_number (name, p + 1, &W, &p))
6581               return 0;
6582             if (val == W)
6583               return 1;
6584             break;
6585           }
6586         case 'R':
6587           {
6588             LONGEST L, U;
6589 
6590             if (!ada_scan_number (name, p + 1, &L, &p)
6591                 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6592               return 0;
6593             if (val >= L && val <= U)
6594               return 1;
6595             break;
6596           }
6597         case 'O':
6598           return 1;
6599         default:
6600           return 0;
6601         }
6602     }
6603 }
6604 
6605 /* FIXME: Lots of redundancy below.  Try to consolidate.  */
6606 
6607 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6608    ARG_TYPE, extract and return the value of one of its (non-static)
6609    fields.  FIELDNO says which field.   Differs from value_primitive_field
6610    only in that it can handle packed values of arbitrary type.  */
6611 
6612 static struct value *
6613 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6614                            struct type *arg_type)
6615 {
6616   struct type *type;
6617 
6618   arg_type = ada_check_typedef (arg_type);
6619   type = TYPE_FIELD_TYPE (arg_type, fieldno);
6620 
6621   /* Handle packed fields.  */
6622 
6623   if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6624     {
6625       int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6626       int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6627 
6628       return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6629                                              offset + bit_pos / 8,
6630                                              bit_pos % 8, bit_size, type);
6631     }
6632   else
6633     return value_primitive_field (arg1, offset, fieldno, arg_type);
6634 }
6635 
6636 /* Find field with name NAME in object of type TYPE.  If found,
6637    set the following for each argument that is non-null:
6638     - *FIELD_TYPE_P to the field's type;
6639     - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6640       an object of that type;
6641     - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6642     - *BIT_SIZE_P to its size in bits if the field is packed, and
6643       0 otherwise;
6644    If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6645    fields up to but not including the desired field, or by the total
6646    number of fields if not found.   A NULL value of NAME never
6647    matches; the function just counts visible fields in this case.
6648 
6649    Returns 1 if found, 0 otherwise.  */
6650 
6651 static int
6652 find_struct_field (const char *name, struct type *type, int offset,
6653                    struct type **field_type_p,
6654                    int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6655 		   int *index_p)
6656 {
6657   int i;
6658 
6659   type = ada_check_typedef (type);
6660 
6661   if (field_type_p != NULL)
6662     *field_type_p = NULL;
6663   if (byte_offset_p != NULL)
6664     *byte_offset_p = 0;
6665   if (bit_offset_p != NULL)
6666     *bit_offset_p = 0;
6667   if (bit_size_p != NULL)
6668     *bit_size_p = 0;
6669 
6670   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6671     {
6672       int bit_pos = TYPE_FIELD_BITPOS (type, i);
6673       int fld_offset = offset + bit_pos / 8;
6674       const char *t_field_name = TYPE_FIELD_NAME (type, i);
6675 
6676       if (t_field_name == NULL)
6677         continue;
6678 
6679       else if (name != NULL && field_name_match (t_field_name, name))
6680         {
6681           int bit_size = TYPE_FIELD_BITSIZE (type, i);
6682 
6683 	  if (field_type_p != NULL)
6684 	    *field_type_p = TYPE_FIELD_TYPE (type, i);
6685 	  if (byte_offset_p != NULL)
6686 	    *byte_offset_p = fld_offset;
6687 	  if (bit_offset_p != NULL)
6688 	    *bit_offset_p = bit_pos % 8;
6689 	  if (bit_size_p != NULL)
6690 	    *bit_size_p = bit_size;
6691           return 1;
6692         }
6693       else if (ada_is_wrapper_field (type, i))
6694         {
6695 	  if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6696 				 field_type_p, byte_offset_p, bit_offset_p,
6697 				 bit_size_p, index_p))
6698             return 1;
6699         }
6700       else if (ada_is_variant_part (type, i))
6701         {
6702 	  /* PNH: Wait.  Do we ever execute this section, or is ARG always of
6703 	     fixed type?? */
6704           int j;
6705           struct type *field_type
6706 	    = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6707 
6708           for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6709             {
6710               if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6711                                      fld_offset
6712                                      + TYPE_FIELD_BITPOS (field_type, j) / 8,
6713                                      field_type_p, byte_offset_p,
6714                                      bit_offset_p, bit_size_p, index_p))
6715                 return 1;
6716             }
6717         }
6718       else if (index_p != NULL)
6719 	*index_p += 1;
6720     }
6721   return 0;
6722 }
6723 
6724 /* Number of user-visible fields in record type TYPE.  */
6725 
6726 static int
6727 num_visible_fields (struct type *type)
6728 {
6729   int n;
6730 
6731   n = 0;
6732   find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6733   return n;
6734 }
6735 
6736 /* Look for a field NAME in ARG.  Adjust the address of ARG by OFFSET bytes,
6737    and search in it assuming it has (class) type TYPE.
6738    If found, return value, else return NULL.
6739 
6740    Searches recursively through wrapper fields (e.g., '_parent').  */
6741 
6742 static struct value *
6743 ada_search_struct_field (char *name, struct value *arg, int offset,
6744                          struct type *type)
6745 {
6746   int i;
6747 
6748   type = ada_check_typedef (type);
6749   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6750     {
6751       const char *t_field_name = TYPE_FIELD_NAME (type, i);
6752 
6753       if (t_field_name == NULL)
6754         continue;
6755 
6756       else if (field_name_match (t_field_name, name))
6757         return ada_value_primitive_field (arg, offset, i, type);
6758 
6759       else if (ada_is_wrapper_field (type, i))
6760         {
6761           struct value *v =     /* Do not let indent join lines here.  */
6762             ada_search_struct_field (name, arg,
6763                                      offset + TYPE_FIELD_BITPOS (type, i) / 8,
6764                                      TYPE_FIELD_TYPE (type, i));
6765 
6766           if (v != NULL)
6767             return v;
6768         }
6769 
6770       else if (ada_is_variant_part (type, i))
6771         {
6772 	  /* PNH: Do we ever get here?  See find_struct_field.  */
6773           int j;
6774           struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6775 									i));
6776           int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6777 
6778           for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6779             {
6780               struct value *v = ada_search_struct_field /* Force line
6781 							   break.  */
6782                 (name, arg,
6783                  var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6784                  TYPE_FIELD_TYPE (field_type, j));
6785 
6786               if (v != NULL)
6787                 return v;
6788             }
6789         }
6790     }
6791   return NULL;
6792 }
6793 
6794 static struct value *ada_index_struct_field_1 (int *, struct value *,
6795 					       int, struct type *);
6796 
6797 
6798 /* Return field #INDEX in ARG, where the index is that returned by
6799  * find_struct_field through its INDEX_P argument.  Adjust the address
6800  * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6801  * If found, return value, else return NULL.  */
6802 
6803 static struct value *
6804 ada_index_struct_field (int index, struct value *arg, int offset,
6805 			struct type *type)
6806 {
6807   return ada_index_struct_field_1 (&index, arg, offset, type);
6808 }
6809 
6810 
6811 /* Auxiliary function for ada_index_struct_field.  Like
6812  * ada_index_struct_field, but takes index from *INDEX_P and modifies
6813  * *INDEX_P.  */
6814 
6815 static struct value *
6816 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6817 			  struct type *type)
6818 {
6819   int i;
6820   type = ada_check_typedef (type);
6821 
6822   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6823     {
6824       if (TYPE_FIELD_NAME (type, i) == NULL)
6825         continue;
6826       else if (ada_is_wrapper_field (type, i))
6827         {
6828           struct value *v =     /* Do not let indent join lines here.  */
6829             ada_index_struct_field_1 (index_p, arg,
6830 				      offset + TYPE_FIELD_BITPOS (type, i) / 8,
6831 				      TYPE_FIELD_TYPE (type, i));
6832 
6833           if (v != NULL)
6834             return v;
6835         }
6836 
6837       else if (ada_is_variant_part (type, i))
6838         {
6839 	  /* PNH: Do we ever get here?  See ada_search_struct_field,
6840 	     find_struct_field.  */
6841 	  error (_("Cannot assign this kind of variant record"));
6842         }
6843       else if (*index_p == 0)
6844         return ada_value_primitive_field (arg, offset, i, type);
6845       else
6846 	*index_p -= 1;
6847     }
6848   return NULL;
6849 }
6850 
6851 /* Given ARG, a value of type (pointer or reference to a)*
6852    structure/union, extract the component named NAME from the ultimate
6853    target structure/union and return it as a value with its
6854    appropriate type.
6855 
6856    The routine searches for NAME among all members of the structure itself
6857    and (recursively) among all members of any wrapper members
6858    (e.g., '_parent').
6859 
6860    If NO_ERR, then simply return NULL in case of error, rather than
6861    calling error.  */
6862 
6863 struct value *
6864 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6865 {
6866   struct type *t, *t1;
6867   struct value *v;
6868 
6869   v = NULL;
6870   t1 = t = ada_check_typedef (value_type (arg));
6871   if (TYPE_CODE (t) == TYPE_CODE_REF)
6872     {
6873       t1 = TYPE_TARGET_TYPE (t);
6874       if (t1 == NULL)
6875 	goto BadValue;
6876       t1 = ada_check_typedef (t1);
6877       if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6878         {
6879           arg = coerce_ref (arg);
6880           t = t1;
6881         }
6882     }
6883 
6884   while (TYPE_CODE (t) == TYPE_CODE_PTR)
6885     {
6886       t1 = TYPE_TARGET_TYPE (t);
6887       if (t1 == NULL)
6888 	goto BadValue;
6889       t1 = ada_check_typedef (t1);
6890       if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6891         {
6892           arg = value_ind (arg);
6893           t = t1;
6894         }
6895       else
6896         break;
6897     }
6898 
6899   if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6900     goto BadValue;
6901 
6902   if (t1 == t)
6903     v = ada_search_struct_field (name, arg, 0, t);
6904   else
6905     {
6906       int bit_offset, bit_size, byte_offset;
6907       struct type *field_type;
6908       CORE_ADDR address;
6909 
6910       if (TYPE_CODE (t) == TYPE_CODE_PTR)
6911 	address = value_address (ada_value_ind (arg));
6912       else
6913 	address = value_address (ada_coerce_ref (arg));
6914 
6915       t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6916       if (find_struct_field (name, t1, 0,
6917                              &field_type, &byte_offset, &bit_offset,
6918                              &bit_size, NULL))
6919         {
6920           if (bit_size != 0)
6921             {
6922               if (TYPE_CODE (t) == TYPE_CODE_REF)
6923                 arg = ada_coerce_ref (arg);
6924               else
6925                 arg = ada_value_ind (arg);
6926               v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6927                                                   bit_offset, bit_size,
6928                                                   field_type);
6929             }
6930           else
6931             v = value_at_lazy (field_type, address + byte_offset);
6932         }
6933     }
6934 
6935   if (v != NULL || no_err)
6936     return v;
6937   else
6938     error (_("There is no member named %s."), name);
6939 
6940  BadValue:
6941   if (no_err)
6942     return NULL;
6943   else
6944     error (_("Attempt to extract a component of "
6945 	     "a value that is not a record."));
6946 }
6947 
6948 /* Given a type TYPE, look up the type of the component of type named NAME.
6949    If DISPP is non-null, add its byte displacement from the beginning of a
6950    structure (pointed to by a value) of type TYPE to *DISPP (does not
6951    work for packed fields).
6952 
6953    Matches any field whose name has NAME as a prefix, possibly
6954    followed by "___".
6955 
6956    TYPE can be either a struct or union.  If REFOK, TYPE may also
6957    be a (pointer or reference)+ to a struct or union, and the
6958    ultimate target type will be searched.
6959 
6960    Looks recursively into variant clauses and parent types.
6961 
6962    If NOERR is nonzero, return NULL if NAME is not suitably defined or
6963    TYPE is not a type of the right kind.  */
6964 
6965 static struct type *
6966 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6967                             int noerr, int *dispp)
6968 {
6969   int i;
6970 
6971   if (name == NULL)
6972     goto BadName;
6973 
6974   if (refok && type != NULL)
6975     while (1)
6976       {
6977         type = ada_check_typedef (type);
6978         if (TYPE_CODE (type) != TYPE_CODE_PTR
6979             && TYPE_CODE (type) != TYPE_CODE_REF)
6980           break;
6981         type = TYPE_TARGET_TYPE (type);
6982       }
6983 
6984   if (type == NULL
6985       || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6986           && TYPE_CODE (type) != TYPE_CODE_UNION))
6987     {
6988       if (noerr)
6989         return NULL;
6990       else
6991         {
6992           target_terminal_ours ();
6993           gdb_flush (gdb_stdout);
6994 	  if (type == NULL)
6995 	    error (_("Type (null) is not a structure or union type"));
6996 	  else
6997 	    {
6998 	      /* XXX: type_sprint */
6999 	      fprintf_unfiltered (gdb_stderr, _("Type "));
7000 	      type_print (type, "", gdb_stderr, -1);
7001 	      error (_(" is not a structure or union type"));
7002 	    }
7003         }
7004     }
7005 
7006   type = to_static_fixed_type (type);
7007 
7008   for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7009     {
7010       const char *t_field_name = TYPE_FIELD_NAME (type, i);
7011       struct type *t;
7012       int disp;
7013 
7014       if (t_field_name == NULL)
7015         continue;
7016 
7017       else if (field_name_match (t_field_name, name))
7018         {
7019           if (dispp != NULL)
7020             *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7021           return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7022         }
7023 
7024       else if (ada_is_wrapper_field (type, i))
7025         {
7026           disp = 0;
7027           t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7028                                           0, 1, &disp);
7029           if (t != NULL)
7030             {
7031               if (dispp != NULL)
7032                 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7033               return t;
7034             }
7035         }
7036 
7037       else if (ada_is_variant_part (type, i))
7038         {
7039           int j;
7040           struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7041 									i));
7042 
7043           for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7044             {
7045 	      /* FIXME pnh 2008/01/26: We check for a field that is
7046 	         NOT wrapped in a struct, since the compiler sometimes
7047 		 generates these for unchecked variant types.  Revisit
7048 	         if the compiler changes this practice.  */
7049 	      const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7050               disp = 0;
7051 	      if (v_field_name != NULL
7052 		  && field_name_match (v_field_name, name))
7053 		t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
7054 	      else
7055 		t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7056 								 j),
7057 						name, 0, 1, &disp);
7058 
7059               if (t != NULL)
7060                 {
7061                   if (dispp != NULL)
7062                     *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7063                   return t;
7064                 }
7065             }
7066         }
7067 
7068     }
7069 
7070 BadName:
7071   if (!noerr)
7072     {
7073       target_terminal_ours ();
7074       gdb_flush (gdb_stdout);
7075       if (name == NULL)
7076         {
7077 	  /* XXX: type_sprint */
7078 	  fprintf_unfiltered (gdb_stderr, _("Type "));
7079 	  type_print (type, "", gdb_stderr, -1);
7080 	  error (_(" has no component named <null>"));
7081 	}
7082       else
7083 	{
7084 	  /* XXX: type_sprint */
7085 	  fprintf_unfiltered (gdb_stderr, _("Type "));
7086 	  type_print (type, "", gdb_stderr, -1);
7087 	  error (_(" has no component named %s"), name);
7088 	}
7089     }
7090 
7091   return NULL;
7092 }
7093 
7094 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7095    within a value of type OUTER_TYPE, return true iff VAR_TYPE
7096    represents an unchecked union (that is, the variant part of a
7097    record that is named in an Unchecked_Union pragma).  */
7098 
7099 static int
7100 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7101 {
7102   char *discrim_name = ada_variant_discrim_name (var_type);
7103 
7104   return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7105 	  == NULL);
7106 }
7107 
7108 
7109 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7110    within a value of type OUTER_TYPE that is stored in GDB at
7111    OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7112    numbering from 0) is applicable.  Returns -1 if none are.  */
7113 
7114 int
7115 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7116                            const gdb_byte *outer_valaddr)
7117 {
7118   int others_clause;
7119   int i;
7120   char *discrim_name = ada_variant_discrim_name (var_type);
7121   struct value *outer;
7122   struct value *discrim;
7123   LONGEST discrim_val;
7124 
7125   outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
7126   discrim = ada_value_struct_elt (outer, discrim_name, 1);
7127   if (discrim == NULL)
7128     return -1;
7129   discrim_val = value_as_long (discrim);
7130 
7131   others_clause = -1;
7132   for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7133     {
7134       if (ada_is_others_clause (var_type, i))
7135         others_clause = i;
7136       else if (ada_in_variant (discrim_val, var_type, i))
7137         return i;
7138     }
7139 
7140   return others_clause;
7141 }
7142 
7143 
7144 
7145                                 /* Dynamic-Sized Records */
7146 
7147 /* Strategy: The type ostensibly attached to a value with dynamic size
7148    (i.e., a size that is not statically recorded in the debugging
7149    data) does not accurately reflect the size or layout of the value.
7150    Our strategy is to convert these values to values with accurate,
7151    conventional types that are constructed on the fly.  */
7152 
7153 /* There is a subtle and tricky problem here.  In general, we cannot
7154    determine the size of dynamic records without its data.  However,
7155    the 'struct value' data structure, which GDB uses to represent
7156    quantities in the inferior process (the target), requires the size
7157    of the type at the time of its allocation in order to reserve space
7158    for GDB's internal copy of the data.  That's why the
7159    'to_fixed_xxx_type' routines take (target) addresses as parameters,
7160    rather than struct value*s.
7161 
7162    However, GDB's internal history variables ($1, $2, etc.) are
7163    struct value*s containing internal copies of the data that are not, in
7164    general, the same as the data at their corresponding addresses in
7165    the target.  Fortunately, the types we give to these values are all
7166    conventional, fixed-size types (as per the strategy described
7167    above), so that we don't usually have to perform the
7168    'to_fixed_xxx_type' conversions to look at their values.
7169    Unfortunately, there is one exception: if one of the internal
7170    history variables is an array whose elements are unconstrained
7171    records, then we will need to create distinct fixed types for each
7172    element selected.  */
7173 
7174 /* The upshot of all of this is that many routines take a (type, host
7175    address, target address) triple as arguments to represent a value.
7176    The host address, if non-null, is supposed to contain an internal
7177    copy of the relevant data; otherwise, the program is to consult the
7178    target at the target address.  */
7179 
7180 /* Assuming that VAL0 represents a pointer value, the result of
7181    dereferencing it.  Differs from value_ind in its treatment of
7182    dynamic-sized types.  */
7183 
7184 struct value *
7185 ada_value_ind (struct value *val0)
7186 {
7187   struct value *val = value_ind (val0);
7188 
7189   if (ada_is_tagged_type (value_type (val), 0))
7190     val = ada_tag_value_at_base_address (val);
7191 
7192   return ada_to_fixed_value (val);
7193 }
7194 
7195 /* The value resulting from dereferencing any "reference to"
7196    qualifiers on VAL0.  */
7197 
7198 static struct value *
7199 ada_coerce_ref (struct value *val0)
7200 {
7201   if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7202     {
7203       struct value *val = val0;
7204 
7205       val = coerce_ref (val);
7206 
7207       if (ada_is_tagged_type (value_type (val), 0))
7208 	val = ada_tag_value_at_base_address (val);
7209 
7210       return ada_to_fixed_value (val);
7211     }
7212   else
7213     return val0;
7214 }
7215 
7216 /* Return OFF rounded upward if necessary to a multiple of
7217    ALIGNMENT (a power of 2).  */
7218 
7219 static unsigned int
7220 align_value (unsigned int off, unsigned int alignment)
7221 {
7222   return (off + alignment - 1) & ~(alignment - 1);
7223 }
7224 
7225 /* Return the bit alignment required for field #F of template type TYPE.  */
7226 
7227 static unsigned int
7228 field_alignment (struct type *type, int f)
7229 {
7230   const char *name = TYPE_FIELD_NAME (type, f);
7231   int len;
7232   int align_offset;
7233 
7234   /* The field name should never be null, unless the debugging information
7235      is somehow malformed.  In this case, we assume the field does not
7236      require any alignment.  */
7237   if (name == NULL)
7238     return 1;
7239 
7240   len = strlen (name);
7241 
7242   if (!isdigit (name[len - 1]))
7243     return 1;
7244 
7245   if (isdigit (name[len - 2]))
7246     align_offset = len - 2;
7247   else
7248     align_offset = len - 1;
7249 
7250   if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7251     return TARGET_CHAR_BIT;
7252 
7253   return atoi (name + align_offset) * TARGET_CHAR_BIT;
7254 }
7255 
7256 /* Find a typedef or tag symbol named NAME.  Ignores ambiguity.  */
7257 
7258 static struct symbol *
7259 ada_find_any_type_symbol (const char *name)
7260 {
7261   struct symbol *sym;
7262 
7263   sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7264   if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7265     return sym;
7266 
7267   sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7268   return sym;
7269 }
7270 
7271 /* Find a type named NAME.  Ignores ambiguity.  This routine will look
7272    solely for types defined by debug info, it will not search the GDB
7273    primitive types.  */
7274 
7275 static struct type *
7276 ada_find_any_type (const char *name)
7277 {
7278   struct symbol *sym = ada_find_any_type_symbol (name);
7279 
7280   if (sym != NULL)
7281     return SYMBOL_TYPE (sym);
7282 
7283   return NULL;
7284 }
7285 
7286 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7287    associated with NAME_SYM's name.  NAME_SYM may itself be a renaming
7288    symbol, in which case it is returned.  Otherwise, this looks for
7289    symbols whose name is that of NAME_SYM suffixed with  "___XR".
7290    Return symbol if found, and NULL otherwise.  */
7291 
7292 struct symbol *
7293 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7294 {
7295   const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7296   struct symbol *sym;
7297 
7298   if (strstr (name, "___XR") != NULL)
7299      return name_sym;
7300 
7301   sym = find_old_style_renaming_symbol (name, block);
7302 
7303   if (sym != NULL)
7304     return sym;
7305 
7306   /* Not right yet.  FIXME pnh 7/20/2007.  */
7307   sym = ada_find_any_type_symbol (name);
7308   if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7309     return sym;
7310   else
7311     return NULL;
7312 }
7313 
7314 static struct symbol *
7315 find_old_style_renaming_symbol (const char *name, const struct block *block)
7316 {
7317   const struct symbol *function_sym = block_linkage_function (block);
7318   char *rename;
7319 
7320   if (function_sym != NULL)
7321     {
7322       /* If the symbol is defined inside a function, NAME is not fully
7323          qualified.  This means we need to prepend the function name
7324          as well as adding the ``___XR'' suffix to build the name of
7325          the associated renaming symbol.  */
7326       const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7327       /* Function names sometimes contain suffixes used
7328          for instance to qualify nested subprograms.  When building
7329          the XR type name, we need to make sure that this suffix is
7330          not included.  So do not include any suffix in the function
7331          name length below.  */
7332       int function_name_len = ada_name_prefix_len (function_name);
7333       const int rename_len = function_name_len + 2      /*  "__" */
7334         + strlen (name) + 6 /* "___XR\0" */ ;
7335 
7336       /* Strip the suffix if necessary.  */
7337       ada_remove_trailing_digits (function_name, &function_name_len);
7338       ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7339       ada_remove_Xbn_suffix (function_name, &function_name_len);
7340 
7341       /* Library-level functions are a special case, as GNAT adds
7342          a ``_ada_'' prefix to the function name to avoid namespace
7343          pollution.  However, the renaming symbols themselves do not
7344          have this prefix, so we need to skip this prefix if present.  */
7345       if (function_name_len > 5 /* "_ada_" */
7346           && strstr (function_name, "_ada_") == function_name)
7347         {
7348 	  function_name += 5;
7349 	  function_name_len -= 5;
7350         }
7351 
7352       rename = (char *) alloca (rename_len * sizeof (char));
7353       strncpy (rename, function_name, function_name_len);
7354       xsnprintf (rename + function_name_len, rename_len - function_name_len,
7355 		 "__%s___XR", name);
7356     }
7357   else
7358     {
7359       const int rename_len = strlen (name) + 6;
7360 
7361       rename = (char *) alloca (rename_len * sizeof (char));
7362       xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7363     }
7364 
7365   return ada_find_any_type_symbol (rename);
7366 }
7367 
7368 /* Because of GNAT encoding conventions, several GDB symbols may match a
7369    given type name.  If the type denoted by TYPE0 is to be preferred to
7370    that of TYPE1 for purposes of type printing, return non-zero;
7371    otherwise return 0.  */
7372 
7373 int
7374 ada_prefer_type (struct type *type0, struct type *type1)
7375 {
7376   if (type1 == NULL)
7377     return 1;
7378   else if (type0 == NULL)
7379     return 0;
7380   else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7381     return 1;
7382   else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7383     return 0;
7384   else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7385     return 1;
7386   else if (ada_is_constrained_packed_array_type (type0))
7387     return 1;
7388   else if (ada_is_array_descriptor_type (type0)
7389            && !ada_is_array_descriptor_type (type1))
7390     return 1;
7391   else
7392     {
7393       const char *type0_name = type_name_no_tag (type0);
7394       const char *type1_name = type_name_no_tag (type1);
7395 
7396       if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7397 	  && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7398 	return 1;
7399     }
7400   return 0;
7401 }
7402 
7403 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7404    null, its TYPE_TAG_NAME.  Null if TYPE is null.  */
7405 
7406 const char *
7407 ada_type_name (struct type *type)
7408 {
7409   if (type == NULL)
7410     return NULL;
7411   else if (TYPE_NAME (type) != NULL)
7412     return TYPE_NAME (type);
7413   else
7414     return TYPE_TAG_NAME (type);
7415 }
7416 
7417 /* Search the list of "descriptive" types associated to TYPE for a type
7418    whose name is NAME.  */
7419 
7420 static struct type *
7421 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7422 {
7423   struct type *result;
7424 
7425   /* If there no descriptive-type info, then there is no parallel type
7426      to be found.  */
7427   if (!HAVE_GNAT_AUX_INFO (type))
7428     return NULL;
7429 
7430   result = TYPE_DESCRIPTIVE_TYPE (type);
7431   while (result != NULL)
7432     {
7433       const char *result_name = ada_type_name (result);
7434 
7435       if (result_name == NULL)
7436         {
7437           warning (_("unexpected null name on descriptive type"));
7438           return NULL;
7439         }
7440 
7441       /* If the names match, stop.  */
7442       if (strcmp (result_name, name) == 0)
7443 	break;
7444 
7445       /* Otherwise, look at the next item on the list, if any.  */
7446       if (HAVE_GNAT_AUX_INFO (result))
7447 	result = TYPE_DESCRIPTIVE_TYPE (result);
7448       else
7449 	result = NULL;
7450     }
7451 
7452   /* If we didn't find a match, see whether this is a packed array.  With
7453      older compilers, the descriptive type information is either absent or
7454      irrelevant when it comes to packed arrays so the above lookup fails.
7455      Fall back to using a parallel lookup by name in this case.  */
7456   if (result == NULL && ada_is_constrained_packed_array_type (type))
7457     return ada_find_any_type (name);
7458 
7459   return result;
7460 }
7461 
7462 /* Find a parallel type to TYPE with the specified NAME, using the
7463    descriptive type taken from the debugging information, if available,
7464    and otherwise using the (slower) name-based method.  */
7465 
7466 static struct type *
7467 ada_find_parallel_type_with_name (struct type *type, const char *name)
7468 {
7469   struct type *result = NULL;
7470 
7471   if (HAVE_GNAT_AUX_INFO (type))
7472     result = find_parallel_type_by_descriptive_type (type, name);
7473   else
7474     result = ada_find_any_type (name);
7475 
7476   return result;
7477 }
7478 
7479 /* Same as above, but specify the name of the parallel type by appending
7480    SUFFIX to the name of TYPE.  */
7481 
7482 struct type *
7483 ada_find_parallel_type (struct type *type, const char *suffix)
7484 {
7485   char *name;
7486   const char *typename = ada_type_name (type);
7487   int len;
7488 
7489   if (typename == NULL)
7490     return NULL;
7491 
7492   len = strlen (typename);
7493 
7494   name = (char *) alloca (len + strlen (suffix) + 1);
7495 
7496   strcpy (name, typename);
7497   strcpy (name + len, suffix);
7498 
7499   return ada_find_parallel_type_with_name (type, name);
7500 }
7501 
7502 /* If TYPE is a variable-size record type, return the corresponding template
7503    type describing its fields.  Otherwise, return NULL.  */
7504 
7505 static struct type *
7506 dynamic_template_type (struct type *type)
7507 {
7508   type = ada_check_typedef (type);
7509 
7510   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7511       || ada_type_name (type) == NULL)
7512     return NULL;
7513   else
7514     {
7515       int len = strlen (ada_type_name (type));
7516 
7517       if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7518         return type;
7519       else
7520         return ada_find_parallel_type (type, "___XVE");
7521     }
7522 }
7523 
7524 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7525    non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size.  */
7526 
7527 static int
7528 is_dynamic_field (struct type *templ_type, int field_num)
7529 {
7530   const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7531 
7532   return name != NULL
7533     && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7534     && strstr (name, "___XVL") != NULL;
7535 }
7536 
7537 /* The index of the variant field of TYPE, or -1 if TYPE does not
7538    represent a variant record type.  */
7539 
7540 static int
7541 variant_field_index (struct type *type)
7542 {
7543   int f;
7544 
7545   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7546     return -1;
7547 
7548   for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7549     {
7550       if (ada_is_variant_part (type, f))
7551         return f;
7552     }
7553   return -1;
7554 }
7555 
7556 /* A record type with no fields.  */
7557 
7558 static struct type *
7559 empty_record (struct type *template)
7560 {
7561   struct type *type = alloc_type_copy (template);
7562 
7563   TYPE_CODE (type) = TYPE_CODE_STRUCT;
7564   TYPE_NFIELDS (type) = 0;
7565   TYPE_FIELDS (type) = NULL;
7566   INIT_CPLUS_SPECIFIC (type);
7567   TYPE_NAME (type) = "<empty>";
7568   TYPE_TAG_NAME (type) = NULL;
7569   TYPE_LENGTH (type) = 0;
7570   return type;
7571 }
7572 
7573 /* An ordinary record type (with fixed-length fields) that describes
7574    the value of type TYPE at VALADDR or ADDRESS (see comments at
7575    the beginning of this section) VAL according to GNAT conventions.
7576    DVAL0 should describe the (portion of a) record that contains any
7577    necessary discriminants.  It should be NULL if value_type (VAL) is
7578    an outer-level type (i.e., as opposed to a branch of a variant.)  A
7579    variant field (unless unchecked) is replaced by a particular branch
7580    of the variant.
7581 
7582    If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7583    length are not statically known are discarded.  As a consequence,
7584    VALADDR, ADDRESS and DVAL0 are ignored.
7585 
7586    NOTE: Limitations: For now, we assume that dynamic fields and
7587    variants occupy whole numbers of bytes.  However, they need not be
7588    byte-aligned.  */
7589 
7590 struct type *
7591 ada_template_to_fixed_record_type_1 (struct type *type,
7592 				     const gdb_byte *valaddr,
7593                                      CORE_ADDR address, struct value *dval0,
7594                                      int keep_dynamic_fields)
7595 {
7596   struct value *mark = value_mark ();
7597   struct value *dval;
7598   struct type *rtype;
7599   int nfields, bit_len;
7600   int variant_field;
7601   long off;
7602   int fld_bit_len;
7603   int f;
7604 
7605   /* Compute the number of fields in this record type that are going
7606      to be processed: unless keep_dynamic_fields, this includes only
7607      fields whose position and length are static will be processed.  */
7608   if (keep_dynamic_fields)
7609     nfields = TYPE_NFIELDS (type);
7610   else
7611     {
7612       nfields = 0;
7613       while (nfields < TYPE_NFIELDS (type)
7614              && !ada_is_variant_part (type, nfields)
7615              && !is_dynamic_field (type, nfields))
7616         nfields++;
7617     }
7618 
7619   rtype = alloc_type_copy (type);
7620   TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7621   INIT_CPLUS_SPECIFIC (rtype);
7622   TYPE_NFIELDS (rtype) = nfields;
7623   TYPE_FIELDS (rtype) = (struct field *)
7624     TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7625   memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7626   TYPE_NAME (rtype) = ada_type_name (type);
7627   TYPE_TAG_NAME (rtype) = NULL;
7628   TYPE_FIXED_INSTANCE (rtype) = 1;
7629 
7630   off = 0;
7631   bit_len = 0;
7632   variant_field = -1;
7633 
7634   for (f = 0; f < nfields; f += 1)
7635     {
7636       off = align_value (off, field_alignment (type, f))
7637 	+ TYPE_FIELD_BITPOS (type, f);
7638       SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7639       TYPE_FIELD_BITSIZE (rtype, f) = 0;
7640 
7641       if (ada_is_variant_part (type, f))
7642         {
7643           variant_field = f;
7644           fld_bit_len = 0;
7645         }
7646       else if (is_dynamic_field (type, f))
7647         {
7648 	  const gdb_byte *field_valaddr = valaddr;
7649 	  CORE_ADDR field_address = address;
7650 	  struct type *field_type =
7651 	    TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7652 
7653           if (dval0 == NULL)
7654 	    {
7655 	      /* rtype's length is computed based on the run-time
7656 		 value of discriminants.  If the discriminants are not
7657 		 initialized, the type size may be completely bogus and
7658 		 GDB may fail to allocate a value for it.  So check the
7659 		 size first before creating the value.  */
7660 	      check_size (rtype);
7661 	      dval = value_from_contents_and_address (rtype, valaddr, address);
7662 	    }
7663           else
7664             dval = dval0;
7665 
7666 	  /* If the type referenced by this field is an aligner type, we need
7667 	     to unwrap that aligner type, because its size might not be set.
7668 	     Keeping the aligner type would cause us to compute the wrong
7669 	     size for this field, impacting the offset of the all the fields
7670 	     that follow this one.  */
7671 	  if (ada_is_aligner_type (field_type))
7672 	    {
7673 	      long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7674 
7675 	      field_valaddr = cond_offset_host (field_valaddr, field_offset);
7676 	      field_address = cond_offset_target (field_address, field_offset);
7677 	      field_type = ada_aligned_type (field_type);
7678 	    }
7679 
7680 	  field_valaddr = cond_offset_host (field_valaddr,
7681 					    off / TARGET_CHAR_BIT);
7682 	  field_address = cond_offset_target (field_address,
7683 					      off / TARGET_CHAR_BIT);
7684 
7685 	  /* Get the fixed type of the field.  Note that, in this case,
7686 	     we do not want to get the real type out of the tag: if
7687 	     the current field is the parent part of a tagged record,
7688 	     we will get the tag of the object.  Clearly wrong: the real
7689 	     type of the parent is not the real type of the child.  We
7690 	     would end up in an infinite loop.	*/
7691 	  field_type = ada_get_base_type (field_type);
7692 	  field_type = ada_to_fixed_type (field_type, field_valaddr,
7693 					  field_address, dval, 0);
7694 	  /* If the field size is already larger than the maximum
7695 	     object size, then the record itself will necessarily
7696 	     be larger than the maximum object size.  We need to make
7697 	     this check now, because the size might be so ridiculously
7698 	     large (due to an uninitialized variable in the inferior)
7699 	     that it would cause an overflow when adding it to the
7700 	     record size.  */
7701 	  check_size (field_type);
7702 
7703 	  TYPE_FIELD_TYPE (rtype, f) = field_type;
7704           TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7705 	  /* The multiplication can potentially overflow.  But because
7706 	     the field length has been size-checked just above, and
7707 	     assuming that the maximum size is a reasonable value,
7708 	     an overflow should not happen in practice.  So rather than
7709 	     adding overflow recovery code to this already complex code,
7710 	     we just assume that it's not going to happen.  */
7711           fld_bit_len =
7712             TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7713         }
7714       else
7715         {
7716 	  /* Note: If this field's type is a typedef, it is important
7717 	     to preserve the typedef layer.
7718 
7719 	     Otherwise, we might be transforming a typedef to a fat
7720 	     pointer (encoding a pointer to an unconstrained array),
7721 	     into a basic fat pointer (encoding an unconstrained
7722 	     array).  As both types are implemented using the same
7723 	     structure, the typedef is the only clue which allows us
7724 	     to distinguish between the two options.  Stripping it
7725 	     would prevent us from printing this field appropriately.  */
7726           TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7727           TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7728           if (TYPE_FIELD_BITSIZE (type, f) > 0)
7729             fld_bit_len =
7730               TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7731           else
7732 	    {
7733 	      struct type *field_type = TYPE_FIELD_TYPE (type, f);
7734 
7735 	      /* We need to be careful of typedefs when computing
7736 		 the length of our field.  If this is a typedef,
7737 		 get the length of the target type, not the length
7738 		 of the typedef.  */
7739 	      if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7740 		field_type = ada_typedef_target_type (field_type);
7741 
7742               fld_bit_len =
7743                 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7744 	    }
7745         }
7746       if (off + fld_bit_len > bit_len)
7747         bit_len = off + fld_bit_len;
7748       off += fld_bit_len;
7749       TYPE_LENGTH (rtype) =
7750         align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7751     }
7752 
7753   /* We handle the variant part, if any, at the end because of certain
7754      odd cases in which it is re-ordered so as NOT to be the last field of
7755      the record.  This can happen in the presence of representation
7756      clauses.  */
7757   if (variant_field >= 0)
7758     {
7759       struct type *branch_type;
7760 
7761       off = TYPE_FIELD_BITPOS (rtype, variant_field);
7762 
7763       if (dval0 == NULL)
7764         dval = value_from_contents_and_address (rtype, valaddr, address);
7765       else
7766         dval = dval0;
7767 
7768       branch_type =
7769         to_fixed_variant_branch_type
7770         (TYPE_FIELD_TYPE (type, variant_field),
7771          cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7772          cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7773       if (branch_type == NULL)
7774         {
7775           for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7776             TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7777           TYPE_NFIELDS (rtype) -= 1;
7778         }
7779       else
7780         {
7781           TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7782           TYPE_FIELD_NAME (rtype, variant_field) = "S";
7783           fld_bit_len =
7784             TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7785             TARGET_CHAR_BIT;
7786           if (off + fld_bit_len > bit_len)
7787             bit_len = off + fld_bit_len;
7788           TYPE_LENGTH (rtype) =
7789             align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7790         }
7791     }
7792 
7793   /* According to exp_dbug.ads, the size of TYPE for variable-size records
7794      should contain the alignment of that record, which should be a strictly
7795      positive value.  If null or negative, then something is wrong, most
7796      probably in the debug info.  In that case, we don't round up the size
7797      of the resulting type.  If this record is not part of another structure,
7798      the current RTYPE length might be good enough for our purposes.  */
7799   if (TYPE_LENGTH (type) <= 0)
7800     {
7801       if (TYPE_NAME (rtype))
7802 	warning (_("Invalid type size for `%s' detected: %d."),
7803 		 TYPE_NAME (rtype), TYPE_LENGTH (type));
7804       else
7805 	warning (_("Invalid type size for <unnamed> detected: %d."),
7806 		 TYPE_LENGTH (type));
7807     }
7808   else
7809     {
7810       TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7811                                          TYPE_LENGTH (type));
7812     }
7813 
7814   value_free_to_mark (mark);
7815   if (TYPE_LENGTH (rtype) > varsize_limit)
7816     error (_("record type with dynamic size is larger than varsize-limit"));
7817   return rtype;
7818 }
7819 
7820 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7821    of 1.  */
7822 
7823 static struct type *
7824 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7825                                CORE_ADDR address, struct value *dval0)
7826 {
7827   return ada_template_to_fixed_record_type_1 (type, valaddr,
7828                                               address, dval0, 1);
7829 }
7830 
7831 /* An ordinary record type in which ___XVL-convention fields and
7832    ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7833    static approximations, containing all possible fields.  Uses
7834    no runtime values.  Useless for use in values, but that's OK,
7835    since the results are used only for type determinations.   Works on both
7836    structs and unions.  Representation note: to save space, we memorize
7837    the result of this function in the TYPE_TARGET_TYPE of the
7838    template type.  */
7839 
7840 static struct type *
7841 template_to_static_fixed_type (struct type *type0)
7842 {
7843   struct type *type;
7844   int nfields;
7845   int f;
7846 
7847   if (TYPE_TARGET_TYPE (type0) != NULL)
7848     return TYPE_TARGET_TYPE (type0);
7849 
7850   nfields = TYPE_NFIELDS (type0);
7851   type = type0;
7852 
7853   for (f = 0; f < nfields; f += 1)
7854     {
7855       struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7856       struct type *new_type;
7857 
7858       if (is_dynamic_field (type0, f))
7859         new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7860       else
7861         new_type = static_unwrap_type (field_type);
7862       if (type == type0 && new_type != field_type)
7863         {
7864           TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7865           TYPE_CODE (type) = TYPE_CODE (type0);
7866           INIT_CPLUS_SPECIFIC (type);
7867           TYPE_NFIELDS (type) = nfields;
7868           TYPE_FIELDS (type) = (struct field *)
7869             TYPE_ALLOC (type, nfields * sizeof (struct field));
7870           memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7871                   sizeof (struct field) * nfields);
7872           TYPE_NAME (type) = ada_type_name (type0);
7873           TYPE_TAG_NAME (type) = NULL;
7874 	  TYPE_FIXED_INSTANCE (type) = 1;
7875           TYPE_LENGTH (type) = 0;
7876         }
7877       TYPE_FIELD_TYPE (type, f) = new_type;
7878       TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7879     }
7880   return type;
7881 }
7882 
7883 /* Given an object of type TYPE whose contents are at VALADDR and
7884    whose address in memory is ADDRESS, returns a revision of TYPE,
7885    which should be a non-dynamic-sized record, in which the variant
7886    part, if any, is replaced with the appropriate branch.  Looks
7887    for discriminant values in DVAL0, which can be NULL if the record
7888    contains the necessary discriminant values.  */
7889 
7890 static struct type *
7891 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7892                                    CORE_ADDR address, struct value *dval0)
7893 {
7894   struct value *mark = value_mark ();
7895   struct value *dval;
7896   struct type *rtype;
7897   struct type *branch_type;
7898   int nfields = TYPE_NFIELDS (type);
7899   int variant_field = variant_field_index (type);
7900 
7901   if (variant_field == -1)
7902     return type;
7903 
7904   if (dval0 == NULL)
7905     dval = value_from_contents_and_address (type, valaddr, address);
7906   else
7907     dval = dval0;
7908 
7909   rtype = alloc_type_copy (type);
7910   TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7911   INIT_CPLUS_SPECIFIC (rtype);
7912   TYPE_NFIELDS (rtype) = nfields;
7913   TYPE_FIELDS (rtype) =
7914     (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7915   memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7916           sizeof (struct field) * nfields);
7917   TYPE_NAME (rtype) = ada_type_name (type);
7918   TYPE_TAG_NAME (rtype) = NULL;
7919   TYPE_FIXED_INSTANCE (rtype) = 1;
7920   TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7921 
7922   branch_type = to_fixed_variant_branch_type
7923     (TYPE_FIELD_TYPE (type, variant_field),
7924      cond_offset_host (valaddr,
7925                        TYPE_FIELD_BITPOS (type, variant_field)
7926                        / TARGET_CHAR_BIT),
7927      cond_offset_target (address,
7928                          TYPE_FIELD_BITPOS (type, variant_field)
7929                          / TARGET_CHAR_BIT), dval);
7930   if (branch_type == NULL)
7931     {
7932       int f;
7933 
7934       for (f = variant_field + 1; f < nfields; f += 1)
7935         TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7936       TYPE_NFIELDS (rtype) -= 1;
7937     }
7938   else
7939     {
7940       TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7941       TYPE_FIELD_NAME (rtype, variant_field) = "S";
7942       TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7943       TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7944     }
7945   TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7946 
7947   value_free_to_mark (mark);
7948   return rtype;
7949 }
7950 
7951 /* An ordinary record type (with fixed-length fields) that describes
7952    the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7953    beginning of this section].   Any necessary discriminants' values
7954    should be in DVAL, a record value; it may be NULL if the object
7955    at ADDR itself contains any necessary discriminant values.
7956    Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7957    values from the record are needed.  Except in the case that DVAL,
7958    VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7959    unchecked) is replaced by a particular branch of the variant.
7960 
7961    NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7962    is questionable and may be removed.  It can arise during the
7963    processing of an unconstrained-array-of-record type where all the
7964    variant branches have exactly the same size.  This is because in
7965    such cases, the compiler does not bother to use the XVS convention
7966    when encoding the record.  I am currently dubious of this
7967    shortcut and suspect the compiler should be altered.  FIXME.  */
7968 
7969 static struct type *
7970 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7971                       CORE_ADDR address, struct value *dval)
7972 {
7973   struct type *templ_type;
7974 
7975   if (TYPE_FIXED_INSTANCE (type0))
7976     return type0;
7977 
7978   templ_type = dynamic_template_type (type0);
7979 
7980   if (templ_type != NULL)
7981     return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7982   else if (variant_field_index (type0) >= 0)
7983     {
7984       if (dval == NULL && valaddr == NULL && address == 0)
7985         return type0;
7986       return to_record_with_fixed_variant_part (type0, valaddr, address,
7987                                                 dval);
7988     }
7989   else
7990     {
7991       TYPE_FIXED_INSTANCE (type0) = 1;
7992       return type0;
7993     }
7994 
7995 }
7996 
7997 /* An ordinary record type (with fixed-length fields) that describes
7998    the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7999    union type.  Any necessary discriminants' values should be in DVAL,
8000    a record value.  That is, this routine selects the appropriate
8001    branch of the union at ADDR according to the discriminant value
8002    indicated in the union's type name.  Returns VAR_TYPE0 itself if
8003    it represents a variant subject to a pragma Unchecked_Union.  */
8004 
8005 static struct type *
8006 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8007                               CORE_ADDR address, struct value *dval)
8008 {
8009   int which;
8010   struct type *templ_type;
8011   struct type *var_type;
8012 
8013   if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8014     var_type = TYPE_TARGET_TYPE (var_type0);
8015   else
8016     var_type = var_type0;
8017 
8018   templ_type = ada_find_parallel_type (var_type, "___XVU");
8019 
8020   if (templ_type != NULL)
8021     var_type = templ_type;
8022 
8023   if (is_unchecked_variant (var_type, value_type (dval)))
8024       return var_type0;
8025   which =
8026     ada_which_variant_applies (var_type,
8027                                value_type (dval), value_contents (dval));
8028 
8029   if (which < 0)
8030     return empty_record (var_type);
8031   else if (is_dynamic_field (var_type, which))
8032     return to_fixed_record_type
8033       (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8034        valaddr, address, dval);
8035   else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8036     return
8037       to_fixed_record_type
8038       (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8039   else
8040     return TYPE_FIELD_TYPE (var_type, which);
8041 }
8042 
8043 /* Assuming that TYPE0 is an array type describing the type of a value
8044    at ADDR, and that DVAL describes a record containing any
8045    discriminants used in TYPE0, returns a type for the value that
8046    contains no dynamic components (that is, no components whose sizes
8047    are determined by run-time quantities).  Unless IGNORE_TOO_BIG is
8048    true, gives an error message if the resulting type's size is over
8049    varsize_limit.  */
8050 
8051 static struct type *
8052 to_fixed_array_type (struct type *type0, struct value *dval,
8053                      int ignore_too_big)
8054 {
8055   struct type *index_type_desc;
8056   struct type *result;
8057   int constrained_packed_array_p;
8058 
8059   type0 = ada_check_typedef (type0);
8060   if (TYPE_FIXED_INSTANCE (type0))
8061     return type0;
8062 
8063   constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8064   if (constrained_packed_array_p)
8065     type0 = decode_constrained_packed_array_type (type0);
8066 
8067   index_type_desc = ada_find_parallel_type (type0, "___XA");
8068   ada_fixup_array_indexes_type (index_type_desc);
8069   if (index_type_desc == NULL)
8070     {
8071       struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8072 
8073       /* NOTE: elt_type---the fixed version of elt_type0---should never
8074          depend on the contents of the array in properly constructed
8075          debugging data.  */
8076       /* Create a fixed version of the array element type.
8077          We're not providing the address of an element here,
8078          and thus the actual object value cannot be inspected to do
8079          the conversion.  This should not be a problem, since arrays of
8080          unconstrained objects are not allowed.  In particular, all
8081          the elements of an array of a tagged type should all be of
8082          the same type specified in the debugging info.  No need to
8083          consult the object tag.  */
8084       struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8085 
8086       /* Make sure we always create a new array type when dealing with
8087 	 packed array types, since we're going to fix-up the array
8088 	 type length and element bitsize a little further down.  */
8089       if (elt_type0 == elt_type && !constrained_packed_array_p)
8090         result = type0;
8091       else
8092         result = create_array_type (alloc_type_copy (type0),
8093                                     elt_type, TYPE_INDEX_TYPE (type0));
8094     }
8095   else
8096     {
8097       int i;
8098       struct type *elt_type0;
8099 
8100       elt_type0 = type0;
8101       for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8102         elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8103 
8104       /* NOTE: result---the fixed version of elt_type0---should never
8105          depend on the contents of the array in properly constructed
8106          debugging data.  */
8107       /* Create a fixed version of the array element type.
8108          We're not providing the address of an element here,
8109          and thus the actual object value cannot be inspected to do
8110          the conversion.  This should not be a problem, since arrays of
8111          unconstrained objects are not allowed.  In particular, all
8112          the elements of an array of a tagged type should all be of
8113          the same type specified in the debugging info.  No need to
8114          consult the object tag.  */
8115       result =
8116         ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8117 
8118       elt_type0 = type0;
8119       for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8120         {
8121           struct type *range_type =
8122             to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8123 
8124           result = create_array_type (alloc_type_copy (elt_type0),
8125                                       result, range_type);
8126 	  elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8127         }
8128       if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8129         error (_("array type with dynamic size is larger than varsize-limit"));
8130     }
8131 
8132   /* We want to preserve the type name.  This can be useful when
8133      trying to get the type name of a value that has already been
8134      printed (for instance, if the user did "print VAR; whatis $".  */
8135   TYPE_NAME (result) = TYPE_NAME (type0);
8136 
8137   if (constrained_packed_array_p)
8138     {
8139       /* So far, the resulting type has been created as if the original
8140 	 type was a regular (non-packed) array type.  As a result, the
8141 	 bitsize of the array elements needs to be set again, and the array
8142 	 length needs to be recomputed based on that bitsize.  */
8143       int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8144       int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8145 
8146       TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8147       TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8148       if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8149         TYPE_LENGTH (result)++;
8150     }
8151 
8152   TYPE_FIXED_INSTANCE (result) = 1;
8153   return result;
8154 }
8155 
8156 
8157 /* A standard type (containing no dynamically sized components)
8158    corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8159    DVAL describes a record containing any discriminants used in TYPE0,
8160    and may be NULL if there are none, or if the object of type TYPE at
8161    ADDRESS or in VALADDR contains these discriminants.
8162 
8163    If CHECK_TAG is not null, in the case of tagged types, this function
8164    attempts to locate the object's tag and use it to compute the actual
8165    type.  However, when ADDRESS is null, we cannot use it to determine the
8166    location of the tag, and therefore compute the tagged type's actual type.
8167    So we return the tagged type without consulting the tag.  */
8168 
8169 static struct type *
8170 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8171                    CORE_ADDR address, struct value *dval, int check_tag)
8172 {
8173   type = ada_check_typedef (type);
8174   switch (TYPE_CODE (type))
8175     {
8176     default:
8177       return type;
8178     case TYPE_CODE_STRUCT:
8179       {
8180         struct type *static_type = to_static_fixed_type (type);
8181         struct type *fixed_record_type =
8182           to_fixed_record_type (type, valaddr, address, NULL);
8183 
8184         /* If STATIC_TYPE is a tagged type and we know the object's address,
8185            then we can determine its tag, and compute the object's actual
8186            type from there.  Note that we have to use the fixed record
8187            type (the parent part of the record may have dynamic fields
8188            and the way the location of _tag is expressed may depend on
8189            them).  */
8190 
8191         if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8192           {
8193 	    struct value *tag =
8194 	      value_tag_from_contents_and_address
8195 	      (fixed_record_type,
8196 	       valaddr,
8197 	       address);
8198 	    struct type *real_type = type_from_tag (tag);
8199 	    struct value *obj =
8200 	      value_from_contents_and_address (fixed_record_type,
8201 					       valaddr,
8202 					       address);
8203             if (real_type != NULL)
8204               return to_fixed_record_type
8205 		(real_type, NULL,
8206 		 value_address (ada_tag_value_at_base_address (obj)), NULL);
8207           }
8208 
8209         /* Check to see if there is a parallel ___XVZ variable.
8210            If there is, then it provides the actual size of our type.  */
8211         else if (ada_type_name (fixed_record_type) != NULL)
8212           {
8213             const char *name = ada_type_name (fixed_record_type);
8214             char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8215             int xvz_found = 0;
8216             LONGEST size;
8217 
8218             xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8219             size = get_int_var_value (xvz_name, &xvz_found);
8220             if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8221               {
8222                 fixed_record_type = copy_type (fixed_record_type);
8223                 TYPE_LENGTH (fixed_record_type) = size;
8224 
8225                 /* The FIXED_RECORD_TYPE may have be a stub.  We have
8226                    observed this when the debugging info is STABS, and
8227                    apparently it is something that is hard to fix.
8228 
8229                    In practice, we don't need the actual type definition
8230                    at all, because the presence of the XVZ variable allows us
8231                    to assume that there must be a XVS type as well, which we
8232                    should be able to use later, when we need the actual type
8233                    definition.
8234 
8235                    In the meantime, pretend that the "fixed" type we are
8236                    returning is NOT a stub, because this can cause trouble
8237                    when using this type to create new types targeting it.
8238                    Indeed, the associated creation routines often check
8239                    whether the target type is a stub and will try to replace
8240                    it, thus using a type with the wrong size.  This, in turn,
8241                    might cause the new type to have the wrong size too.
8242                    Consider the case of an array, for instance, where the size
8243                    of the array is computed from the number of elements in
8244                    our array multiplied by the size of its element.  */
8245                 TYPE_STUB (fixed_record_type) = 0;
8246               }
8247           }
8248         return fixed_record_type;
8249       }
8250     case TYPE_CODE_ARRAY:
8251       return to_fixed_array_type (type, dval, 1);
8252     case TYPE_CODE_UNION:
8253       if (dval == NULL)
8254         return type;
8255       else
8256         return to_fixed_variant_branch_type (type, valaddr, address, dval);
8257     }
8258 }
8259 
8260 /* The same as ada_to_fixed_type_1, except that it preserves the type
8261    if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8262 
8263    The typedef layer needs be preserved in order to differentiate between
8264    arrays and array pointers when both types are implemented using the same
8265    fat pointer.  In the array pointer case, the pointer is encoded as
8266    a typedef of the pointer type.  For instance, considering:
8267 
8268 	  type String_Access is access String;
8269 	  S1 : String_Access := null;
8270 
8271    To the debugger, S1 is defined as a typedef of type String.  But
8272    to the user, it is a pointer.  So if the user tries to print S1,
8273    we should not dereference the array, but print the array address
8274    instead.
8275 
8276    If we didn't preserve the typedef layer, we would lose the fact that
8277    the type is to be presented as a pointer (needs de-reference before
8278    being printed).  And we would also use the source-level type name.  */
8279 
8280 struct type *
8281 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8282                    CORE_ADDR address, struct value *dval, int check_tag)
8283 
8284 {
8285   struct type *fixed_type =
8286     ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8287 
8288   /*  If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8289       then preserve the typedef layer.
8290 
8291       Implementation note: We can only check the main-type portion of
8292       the TYPE and FIXED_TYPE, because eliminating the typedef layer
8293       from TYPE now returns a type that has the same instance flags
8294       as TYPE.  For instance, if TYPE is a "typedef const", and its
8295       target type is a "struct", then the typedef elimination will return
8296       a "const" version of the target type.  See check_typedef for more
8297       details about how the typedef layer elimination is done.
8298 
8299       brobecker/2010-11-19: It seems to me that the only case where it is
8300       useful to preserve the typedef layer is when dealing with fat pointers.
8301       Perhaps, we could add a check for that and preserve the typedef layer
8302       only in that situation.  But this seems unecessary so far, probably
8303       because we call check_typedef/ada_check_typedef pretty much everywhere.
8304       */
8305   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8306       && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8307 	  == TYPE_MAIN_TYPE (fixed_type)))
8308     return type;
8309 
8310   return fixed_type;
8311 }
8312 
8313 /* A standard (static-sized) type corresponding as well as possible to
8314    TYPE0, but based on no runtime data.  */
8315 
8316 static struct type *
8317 to_static_fixed_type (struct type *type0)
8318 {
8319   struct type *type;
8320 
8321   if (type0 == NULL)
8322     return NULL;
8323 
8324   if (TYPE_FIXED_INSTANCE (type0))
8325     return type0;
8326 
8327   type0 = ada_check_typedef (type0);
8328 
8329   switch (TYPE_CODE (type0))
8330     {
8331     default:
8332       return type0;
8333     case TYPE_CODE_STRUCT:
8334       type = dynamic_template_type (type0);
8335       if (type != NULL)
8336         return template_to_static_fixed_type (type);
8337       else
8338         return template_to_static_fixed_type (type0);
8339     case TYPE_CODE_UNION:
8340       type = ada_find_parallel_type (type0, "___XVU");
8341       if (type != NULL)
8342         return template_to_static_fixed_type (type);
8343       else
8344         return template_to_static_fixed_type (type0);
8345     }
8346 }
8347 
8348 /* A static approximation of TYPE with all type wrappers removed.  */
8349 
8350 static struct type *
8351 static_unwrap_type (struct type *type)
8352 {
8353   if (ada_is_aligner_type (type))
8354     {
8355       struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8356       if (ada_type_name (type1) == NULL)
8357         TYPE_NAME (type1) = ada_type_name (type);
8358 
8359       return static_unwrap_type (type1);
8360     }
8361   else
8362     {
8363       struct type *raw_real_type = ada_get_base_type (type);
8364 
8365       if (raw_real_type == type)
8366         return type;
8367       else
8368         return to_static_fixed_type (raw_real_type);
8369     }
8370 }
8371 
8372 /* In some cases, incomplete and private types require
8373    cross-references that are not resolved as records (for example,
8374       type Foo;
8375       type FooP is access Foo;
8376       V: FooP;
8377       type Foo is array ...;
8378    ).  In these cases, since there is no mechanism for producing
8379    cross-references to such types, we instead substitute for FooP a
8380    stub enumeration type that is nowhere resolved, and whose tag is
8381    the name of the actual type.  Call these types "non-record stubs".  */
8382 
8383 /* A type equivalent to TYPE that is not a non-record stub, if one
8384    exists, otherwise TYPE.  */
8385 
8386 struct type *
8387 ada_check_typedef (struct type *type)
8388 {
8389   if (type == NULL)
8390     return NULL;
8391 
8392   /* If our type is a typedef type of a fat pointer, then we're done.
8393      We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8394      what allows us to distinguish between fat pointers that represent
8395      array types, and fat pointers that represent array access types
8396      (in both cases, the compiler implements them as fat pointers).  */
8397   if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8398       && is_thick_pntr (ada_typedef_target_type (type)))
8399     return type;
8400 
8401   CHECK_TYPEDEF (type);
8402   if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8403       || !TYPE_STUB (type)
8404       || TYPE_TAG_NAME (type) == NULL)
8405     return type;
8406   else
8407     {
8408       const char *name = TYPE_TAG_NAME (type);
8409       struct type *type1 = ada_find_any_type (name);
8410 
8411       if (type1 == NULL)
8412         return type;
8413 
8414       /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8415 	 stubs pointing to arrays, as we don't create symbols for array
8416 	 types, only for the typedef-to-array types).  If that's the case,
8417 	 strip the typedef layer.  */
8418       if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8419 	type1 = ada_check_typedef (type1);
8420 
8421       return type1;
8422     }
8423 }
8424 
8425 /* A value representing the data at VALADDR/ADDRESS as described by
8426    type TYPE0, but with a standard (static-sized) type that correctly
8427    describes it.  If VAL0 is not NULL and TYPE0 already is a standard
8428    type, then return VAL0 [this feature is simply to avoid redundant
8429    creation of struct values].  */
8430 
8431 static struct value *
8432 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8433                            struct value *val0)
8434 {
8435   struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8436 
8437   if (type == type0 && val0 != NULL)
8438     return val0;
8439   else
8440     return value_from_contents_and_address (type, 0, address);
8441 }
8442 
8443 /* A value representing VAL, but with a standard (static-sized) type
8444    that correctly describes it.  Does not necessarily create a new
8445    value.  */
8446 
8447 struct value *
8448 ada_to_fixed_value (struct value *val)
8449 {
8450   val = unwrap_value (val);
8451   val = ada_to_fixed_value_create (value_type (val),
8452 				      value_address (val),
8453 				      val);
8454   return val;
8455 }
8456 
8457 
8458 /* Attributes */
8459 
8460 /* Table mapping attribute numbers to names.
8461    NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h.  */
8462 
8463 static const char *attribute_names[] = {
8464   "<?>",
8465 
8466   "first",
8467   "last",
8468   "length",
8469   "image",
8470   "max",
8471   "min",
8472   "modulus",
8473   "pos",
8474   "size",
8475   "tag",
8476   "val",
8477   0
8478 };
8479 
8480 const char *
8481 ada_attribute_name (enum exp_opcode n)
8482 {
8483   if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8484     return attribute_names[n - OP_ATR_FIRST + 1];
8485   else
8486     return attribute_names[0];
8487 }
8488 
8489 /* Evaluate the 'POS attribute applied to ARG.  */
8490 
8491 static LONGEST
8492 pos_atr (struct value *arg)
8493 {
8494   struct value *val = coerce_ref (arg);
8495   struct type *type = value_type (val);
8496 
8497   if (!discrete_type_p (type))
8498     error (_("'POS only defined on discrete types"));
8499 
8500   if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8501     {
8502       int i;
8503       LONGEST v = value_as_long (val);
8504 
8505       for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8506         {
8507           if (v == TYPE_FIELD_ENUMVAL (type, i))
8508             return i;
8509         }
8510       error (_("enumeration value is invalid: can't find 'POS"));
8511     }
8512   else
8513     return value_as_long (val);
8514 }
8515 
8516 static struct value *
8517 value_pos_atr (struct type *type, struct value *arg)
8518 {
8519   return value_from_longest (type, pos_atr (arg));
8520 }
8521 
8522 /* Evaluate the TYPE'VAL attribute applied to ARG.  */
8523 
8524 static struct value *
8525 value_val_atr (struct type *type, struct value *arg)
8526 {
8527   if (!discrete_type_p (type))
8528     error (_("'VAL only defined on discrete types"));
8529   if (!integer_type_p (value_type (arg)))
8530     error (_("'VAL requires integral argument"));
8531 
8532   if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8533     {
8534       long pos = value_as_long (arg);
8535 
8536       if (pos < 0 || pos >= TYPE_NFIELDS (type))
8537         error (_("argument to 'VAL out of range"));
8538       return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8539     }
8540   else
8541     return value_from_longest (type, value_as_long (arg));
8542 }
8543 
8544 
8545                                 /* Evaluation */
8546 
8547 /* True if TYPE appears to be an Ada character type.
8548    [At the moment, this is true only for Character and Wide_Character;
8549    It is a heuristic test that could stand improvement].  */
8550 
8551 int
8552 ada_is_character_type (struct type *type)
8553 {
8554   const char *name;
8555 
8556   /* If the type code says it's a character, then assume it really is,
8557      and don't check any further.  */
8558   if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8559     return 1;
8560 
8561   /* Otherwise, assume it's a character type iff it is a discrete type
8562      with a known character type name.  */
8563   name = ada_type_name (type);
8564   return (name != NULL
8565           && (TYPE_CODE (type) == TYPE_CODE_INT
8566               || TYPE_CODE (type) == TYPE_CODE_RANGE)
8567           && (strcmp (name, "character") == 0
8568               || strcmp (name, "wide_character") == 0
8569               || strcmp (name, "wide_wide_character") == 0
8570               || strcmp (name, "unsigned char") == 0));
8571 }
8572 
8573 /* True if TYPE appears to be an Ada string type.  */
8574 
8575 int
8576 ada_is_string_type (struct type *type)
8577 {
8578   type = ada_check_typedef (type);
8579   if (type != NULL
8580       && TYPE_CODE (type) != TYPE_CODE_PTR
8581       && (ada_is_simple_array_type (type)
8582           || ada_is_array_descriptor_type (type))
8583       && ada_array_arity (type) == 1)
8584     {
8585       struct type *elttype = ada_array_element_type (type, 1);
8586 
8587       return ada_is_character_type (elttype);
8588     }
8589   else
8590     return 0;
8591 }
8592 
8593 /* The compiler sometimes provides a parallel XVS type for a given
8594    PAD type.  Normally, it is safe to follow the PAD type directly,
8595    but older versions of the compiler have a bug that causes the offset
8596    of its "F" field to be wrong.  Following that field in that case
8597    would lead to incorrect results, but this can be worked around
8598    by ignoring the PAD type and using the associated XVS type instead.
8599 
8600    Set to True if the debugger should trust the contents of PAD types.
8601    Otherwise, ignore the PAD type if there is a parallel XVS type.  */
8602 static int trust_pad_over_xvs = 1;
8603 
8604 /* True if TYPE is a struct type introduced by the compiler to force the
8605    alignment of a value.  Such types have a single field with a
8606    distinctive name.  */
8607 
8608 int
8609 ada_is_aligner_type (struct type *type)
8610 {
8611   type = ada_check_typedef (type);
8612 
8613   if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8614     return 0;
8615 
8616   return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8617           && TYPE_NFIELDS (type) == 1
8618           && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8619 }
8620 
8621 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8622    the parallel type.  */
8623 
8624 struct type *
8625 ada_get_base_type (struct type *raw_type)
8626 {
8627   struct type *real_type_namer;
8628   struct type *raw_real_type;
8629 
8630   if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8631     return raw_type;
8632 
8633   if (ada_is_aligner_type (raw_type))
8634     /* The encoding specifies that we should always use the aligner type.
8635        So, even if this aligner type has an associated XVS type, we should
8636        simply ignore it.
8637 
8638        According to the compiler gurus, an XVS type parallel to an aligner
8639        type may exist because of a stabs limitation.  In stabs, aligner
8640        types are empty because the field has a variable-sized type, and
8641        thus cannot actually be used as an aligner type.  As a result,
8642        we need the associated parallel XVS type to decode the type.
8643        Since the policy in the compiler is to not change the internal
8644        representation based on the debugging info format, we sometimes
8645        end up having a redundant XVS type parallel to the aligner type.  */
8646     return raw_type;
8647 
8648   real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8649   if (real_type_namer == NULL
8650       || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8651       || TYPE_NFIELDS (real_type_namer) != 1)
8652     return raw_type;
8653 
8654   if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8655     {
8656       /* This is an older encoding form where the base type needs to be
8657 	 looked up by name.  We prefer the newer enconding because it is
8658 	 more efficient.  */
8659       raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8660       if (raw_real_type == NULL)
8661 	return raw_type;
8662       else
8663 	return raw_real_type;
8664     }
8665 
8666   /* The field in our XVS type is a reference to the base type.  */
8667   return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8668 }
8669 
8670 /* The type of value designated by TYPE, with all aligners removed.  */
8671 
8672 struct type *
8673 ada_aligned_type (struct type *type)
8674 {
8675   if (ada_is_aligner_type (type))
8676     return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8677   else
8678     return ada_get_base_type (type);
8679 }
8680 
8681 
8682 /* The address of the aligned value in an object at address VALADDR
8683    having type TYPE.  Assumes ada_is_aligner_type (TYPE).  */
8684 
8685 const gdb_byte *
8686 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8687 {
8688   if (ada_is_aligner_type (type))
8689     return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8690                                    valaddr +
8691                                    TYPE_FIELD_BITPOS (type,
8692                                                       0) / TARGET_CHAR_BIT);
8693   else
8694     return valaddr;
8695 }
8696 
8697 
8698 
8699 /* The printed representation of an enumeration literal with encoded
8700    name NAME.  The value is good to the next call of ada_enum_name.  */
8701 const char *
8702 ada_enum_name (const char *name)
8703 {
8704   static char *result;
8705   static size_t result_len = 0;
8706   char *tmp;
8707 
8708   /* First, unqualify the enumeration name:
8709      1. Search for the last '.' character.  If we find one, then skip
8710      all the preceding characters, the unqualified name starts
8711      right after that dot.
8712      2. Otherwise, we may be debugging on a target where the compiler
8713      translates dots into "__".  Search forward for double underscores,
8714      but stop searching when we hit an overloading suffix, which is
8715      of the form "__" followed by digits.  */
8716 
8717   tmp = strrchr (name, '.');
8718   if (tmp != NULL)
8719     name = tmp + 1;
8720   else
8721     {
8722       while ((tmp = strstr (name, "__")) != NULL)
8723         {
8724           if (isdigit (tmp[2]))
8725             break;
8726           else
8727             name = tmp + 2;
8728         }
8729     }
8730 
8731   if (name[0] == 'Q')
8732     {
8733       int v;
8734 
8735       if (name[1] == 'U' || name[1] == 'W')
8736         {
8737           if (sscanf (name + 2, "%x", &v) != 1)
8738             return name;
8739         }
8740       else
8741         return name;
8742 
8743       GROW_VECT (result, result_len, 16);
8744       if (isascii (v) && isprint (v))
8745         xsnprintf (result, result_len, "'%c'", v);
8746       else if (name[1] == 'U')
8747         xsnprintf (result, result_len, "[\"%02x\"]", v);
8748       else
8749         xsnprintf (result, result_len, "[\"%04x\"]", v);
8750 
8751       return result;
8752     }
8753   else
8754     {
8755       tmp = strstr (name, "__");
8756       if (tmp == NULL)
8757 	tmp = strstr (name, "$");
8758       if (tmp != NULL)
8759         {
8760           GROW_VECT (result, result_len, tmp - name + 1);
8761           strncpy (result, name, tmp - name);
8762           result[tmp - name] = '\0';
8763           return result;
8764         }
8765 
8766       return name;
8767     }
8768 }
8769 
8770 /* Evaluate the subexpression of EXP starting at *POS as for
8771    evaluate_type, updating *POS to point just past the evaluated
8772    expression.  */
8773 
8774 static struct value *
8775 evaluate_subexp_type (struct expression *exp, int *pos)
8776 {
8777   return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8778 }
8779 
8780 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8781    value it wraps.  */
8782 
8783 static struct value *
8784 unwrap_value (struct value *val)
8785 {
8786   struct type *type = ada_check_typedef (value_type (val));
8787 
8788   if (ada_is_aligner_type (type))
8789     {
8790       struct value *v = ada_value_struct_elt (val, "F", 0);
8791       struct type *val_type = ada_check_typedef (value_type (v));
8792 
8793       if (ada_type_name (val_type) == NULL)
8794         TYPE_NAME (val_type) = ada_type_name (type);
8795 
8796       return unwrap_value (v);
8797     }
8798   else
8799     {
8800       struct type *raw_real_type =
8801         ada_check_typedef (ada_get_base_type (type));
8802 
8803       /* If there is no parallel XVS or XVE type, then the value is
8804 	 already unwrapped.  Return it without further modification.  */
8805       if ((type == raw_real_type)
8806 	  && ada_find_parallel_type (type, "___XVE") == NULL)
8807 	return val;
8808 
8809       return
8810         coerce_unspec_val_to_type
8811         (val, ada_to_fixed_type (raw_real_type, 0,
8812                                  value_address (val),
8813                                  NULL, 1));
8814     }
8815 }
8816 
8817 static struct value *
8818 cast_to_fixed (struct type *type, struct value *arg)
8819 {
8820   LONGEST val;
8821 
8822   if (type == value_type (arg))
8823     return arg;
8824   else if (ada_is_fixed_point_type (value_type (arg)))
8825     val = ada_float_to_fixed (type,
8826                               ada_fixed_to_float (value_type (arg),
8827                                                   value_as_long (arg)));
8828   else
8829     {
8830       DOUBLEST argd = value_as_double (arg);
8831 
8832       val = ada_float_to_fixed (type, argd);
8833     }
8834 
8835   return value_from_longest (type, val);
8836 }
8837 
8838 static struct value *
8839 cast_from_fixed (struct type *type, struct value *arg)
8840 {
8841   DOUBLEST val = ada_fixed_to_float (value_type (arg),
8842                                      value_as_long (arg));
8843 
8844   return value_from_double (type, val);
8845 }
8846 
8847 /* Given two array types T1 and T2, return nonzero iff both arrays
8848    contain the same number of elements.  */
8849 
8850 static int
8851 ada_same_array_size_p (struct type *t1, struct type *t2)
8852 {
8853   LONGEST lo1, hi1, lo2, hi2;
8854 
8855   /* Get the array bounds in order to verify that the size of
8856      the two arrays match.  */
8857   if (!get_array_bounds (t1, &lo1, &hi1)
8858       || !get_array_bounds (t2, &lo2, &hi2))
8859     error (_("unable to determine array bounds"));
8860 
8861   /* To make things easier for size comparison, normalize a bit
8862      the case of empty arrays by making sure that the difference
8863      between upper bound and lower bound is always -1.  */
8864   if (lo1 > hi1)
8865     hi1 = lo1 - 1;
8866   if (lo2 > hi2)
8867     hi2 = lo2 - 1;
8868 
8869   return (hi1 - lo1 == hi2 - lo2);
8870 }
8871 
8872 /* Assuming that VAL is an array of integrals, and TYPE represents
8873    an array with the same number of elements, but with wider integral
8874    elements, return an array "casted" to TYPE.  In practice, this
8875    means that the returned array is built by casting each element
8876    of the original array into TYPE's (wider) element type.  */
8877 
8878 static struct value *
8879 ada_promote_array_of_integrals (struct type *type, struct value *val)
8880 {
8881   struct type *elt_type = TYPE_TARGET_TYPE (type);
8882   LONGEST lo, hi;
8883   struct value *res;
8884   LONGEST i;
8885 
8886   /* Verify that both val and type are arrays of scalars, and
8887      that the size of val's elements is smaller than the size
8888      of type's element.  */
8889   gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8890   gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8891   gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8892   gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8893   gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8894 	      > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8895 
8896   if (!get_array_bounds (type, &lo, &hi))
8897     error (_("unable to determine array bounds"));
8898 
8899   res = allocate_value (type);
8900 
8901   /* Promote each array element.  */
8902   for (i = 0; i < hi - lo + 1; i++)
8903     {
8904       struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8905 
8906       memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8907 	      value_contents_all (elt), TYPE_LENGTH (elt_type));
8908     }
8909 
8910   return res;
8911 }
8912 
8913 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8914    return the converted value.  */
8915 
8916 static struct value *
8917 coerce_for_assign (struct type *type, struct value *val)
8918 {
8919   struct type *type2 = value_type (val);
8920 
8921   if (type == type2)
8922     return val;
8923 
8924   type2 = ada_check_typedef (type2);
8925   type = ada_check_typedef (type);
8926 
8927   if (TYPE_CODE (type2) == TYPE_CODE_PTR
8928       && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8929     {
8930       val = ada_value_ind (val);
8931       type2 = value_type (val);
8932     }
8933 
8934   if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8935       && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8936     {
8937       if (!ada_same_array_size_p (type, type2))
8938 	error (_("cannot assign arrays of different length"));
8939 
8940       if (is_integral_type (TYPE_TARGET_TYPE (type))
8941 	  && is_integral_type (TYPE_TARGET_TYPE (type2))
8942 	  && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8943 	       < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8944 	{
8945 	  /* Allow implicit promotion of the array elements to
8946 	     a wider type.  */
8947 	  return ada_promote_array_of_integrals (type, val);
8948 	}
8949 
8950       if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8951           != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8952         error (_("Incompatible types in assignment"));
8953       deprecated_set_value_type (val, type);
8954     }
8955   return val;
8956 }
8957 
8958 static struct value *
8959 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8960 {
8961   struct value *val;
8962   struct type *type1, *type2;
8963   LONGEST v, v1, v2;
8964 
8965   arg1 = coerce_ref (arg1);
8966   arg2 = coerce_ref (arg2);
8967   type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8968   type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8969 
8970   if (TYPE_CODE (type1) != TYPE_CODE_INT
8971       || TYPE_CODE (type2) != TYPE_CODE_INT)
8972     return value_binop (arg1, arg2, op);
8973 
8974   switch (op)
8975     {
8976     case BINOP_MOD:
8977     case BINOP_DIV:
8978     case BINOP_REM:
8979       break;
8980     default:
8981       return value_binop (arg1, arg2, op);
8982     }
8983 
8984   v2 = value_as_long (arg2);
8985   if (v2 == 0)
8986     error (_("second operand of %s must not be zero."), op_string (op));
8987 
8988   if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8989     return value_binop (arg1, arg2, op);
8990 
8991   v1 = value_as_long (arg1);
8992   switch (op)
8993     {
8994     case BINOP_DIV:
8995       v = v1 / v2;
8996       if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8997         v += v > 0 ? -1 : 1;
8998       break;
8999     case BINOP_REM:
9000       v = v1 % v2;
9001       if (v * v1 < 0)
9002         v -= v2;
9003       break;
9004     default:
9005       /* Should not reach this point.  */
9006       v = 0;
9007     }
9008 
9009   val = allocate_value (type1);
9010   store_unsigned_integer (value_contents_raw (val),
9011                           TYPE_LENGTH (value_type (val)),
9012 			  gdbarch_byte_order (get_type_arch (type1)), v);
9013   return val;
9014 }
9015 
9016 static int
9017 ada_value_equal (struct value *arg1, struct value *arg2)
9018 {
9019   if (ada_is_direct_array_type (value_type (arg1))
9020       || ada_is_direct_array_type (value_type (arg2)))
9021     {
9022       /* Automatically dereference any array reference before
9023          we attempt to perform the comparison.  */
9024       arg1 = ada_coerce_ref (arg1);
9025       arg2 = ada_coerce_ref (arg2);
9026 
9027       arg1 = ada_coerce_to_simple_array (arg1);
9028       arg2 = ada_coerce_to_simple_array (arg2);
9029       if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9030           || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9031         error (_("Attempt to compare array with non-array"));
9032       /* FIXME: The following works only for types whose
9033          representations use all bits (no padding or undefined bits)
9034          and do not have user-defined equality.  */
9035       return
9036         TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9037         && memcmp (value_contents (arg1), value_contents (arg2),
9038                    TYPE_LENGTH (value_type (arg1))) == 0;
9039     }
9040   return value_equal (arg1, arg2);
9041 }
9042 
9043 /* Total number of component associations in the aggregate starting at
9044    index PC in EXP.  Assumes that index PC is the start of an
9045    OP_AGGREGATE.  */
9046 
9047 static int
9048 num_component_specs (struct expression *exp, int pc)
9049 {
9050   int n, m, i;
9051 
9052   m = exp->elts[pc + 1].longconst;
9053   pc += 3;
9054   n = 0;
9055   for (i = 0; i < m; i += 1)
9056     {
9057       switch (exp->elts[pc].opcode)
9058 	{
9059 	default:
9060 	  n += 1;
9061 	  break;
9062 	case OP_CHOICES:
9063 	  n += exp->elts[pc + 1].longconst;
9064 	  break;
9065 	}
9066       ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9067     }
9068   return n;
9069 }
9070 
9071 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9072    component of LHS (a simple array or a record), updating *POS past
9073    the expression, assuming that LHS is contained in CONTAINER.  Does
9074    not modify the inferior's memory, nor does it modify LHS (unless
9075    LHS == CONTAINER).  */
9076 
9077 static void
9078 assign_component (struct value *container, struct value *lhs, LONGEST index,
9079 		  struct expression *exp, int *pos)
9080 {
9081   struct value *mark = value_mark ();
9082   struct value *elt;
9083 
9084   if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9085     {
9086       struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9087       struct value *index_val = value_from_longest (index_type, index);
9088 
9089       elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9090     }
9091   else
9092     {
9093       elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9094       elt = ada_to_fixed_value (elt);
9095     }
9096 
9097   if (exp->elts[*pos].opcode == OP_AGGREGATE)
9098     assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9099   else
9100     value_assign_to_component (container, elt,
9101 			       ada_evaluate_subexp (NULL, exp, pos,
9102 						    EVAL_NORMAL));
9103 
9104   value_free_to_mark (mark);
9105 }
9106 
9107 /* Assuming that LHS represents an lvalue having a record or array
9108    type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9109    of that aggregate's value to LHS, advancing *POS past the
9110    aggregate.  NOSIDE is as for evaluate_subexp.  CONTAINER is an
9111    lvalue containing LHS (possibly LHS itself).  Does not modify
9112    the inferior's memory, nor does it modify the contents of
9113    LHS (unless == CONTAINER).  Returns the modified CONTAINER.  */
9114 
9115 static struct value *
9116 assign_aggregate (struct value *container,
9117 		  struct value *lhs, struct expression *exp,
9118 		  int *pos, enum noside noside)
9119 {
9120   struct type *lhs_type;
9121   int n = exp->elts[*pos+1].longconst;
9122   LONGEST low_index, high_index;
9123   int num_specs;
9124   LONGEST *indices;
9125   int max_indices, num_indices;
9126   int i;
9127 
9128   *pos += 3;
9129   if (noside != EVAL_NORMAL)
9130     {
9131       for (i = 0; i < n; i += 1)
9132 	ada_evaluate_subexp (NULL, exp, pos, noside);
9133       return container;
9134     }
9135 
9136   container = ada_coerce_ref (container);
9137   if (ada_is_direct_array_type (value_type (container)))
9138     container = ada_coerce_to_simple_array (container);
9139   lhs = ada_coerce_ref (lhs);
9140   if (!deprecated_value_modifiable (lhs))
9141     error (_("Left operand of assignment is not a modifiable lvalue."));
9142 
9143   lhs_type = value_type (lhs);
9144   if (ada_is_direct_array_type (lhs_type))
9145     {
9146       lhs = ada_coerce_to_simple_array (lhs);
9147       lhs_type = value_type (lhs);
9148       low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9149       high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9150     }
9151   else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9152     {
9153       low_index = 0;
9154       high_index = num_visible_fields (lhs_type) - 1;
9155     }
9156   else
9157     error (_("Left-hand side must be array or record."));
9158 
9159   num_specs = num_component_specs (exp, *pos - 3);
9160   max_indices = 4 * num_specs + 4;
9161   indices = alloca (max_indices * sizeof (indices[0]));
9162   indices[0] = indices[1] = low_index - 1;
9163   indices[2] = indices[3] = high_index + 1;
9164   num_indices = 4;
9165 
9166   for (i = 0; i < n; i += 1)
9167     {
9168       switch (exp->elts[*pos].opcode)
9169 	{
9170 	  case OP_CHOICES:
9171 	    aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9172 					   &num_indices, max_indices,
9173 					   low_index, high_index);
9174 	    break;
9175 	  case OP_POSITIONAL:
9176 	    aggregate_assign_positional (container, lhs, exp, pos, indices,
9177 					 &num_indices, max_indices,
9178 					 low_index, high_index);
9179 	    break;
9180 	  case OP_OTHERS:
9181 	    if (i != n-1)
9182 	      error (_("Misplaced 'others' clause"));
9183 	    aggregate_assign_others (container, lhs, exp, pos, indices,
9184 				     num_indices, low_index, high_index);
9185 	    break;
9186 	  default:
9187 	    error (_("Internal error: bad aggregate clause"));
9188 	}
9189     }
9190 
9191   return container;
9192 }
9193 
9194 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9195    construct at *POS, updating *POS past the construct, given that
9196    the positions are relative to lower bound LOW, where HIGH is the
9197    upper bound.  Record the position in INDICES[0 .. MAX_INDICES-1]
9198    updating *NUM_INDICES as needed.  CONTAINER is as for
9199    assign_aggregate.  */
9200 static void
9201 aggregate_assign_positional (struct value *container,
9202 			     struct value *lhs, struct expression *exp,
9203 			     int *pos, LONGEST *indices, int *num_indices,
9204 			     int max_indices, LONGEST low, LONGEST high)
9205 {
9206   LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9207 
9208   if (ind - 1 == high)
9209     warning (_("Extra components in aggregate ignored."));
9210   if (ind <= high)
9211     {
9212       add_component_interval (ind, ind, indices, num_indices, max_indices);
9213       *pos += 3;
9214       assign_component (container, lhs, ind, exp, pos);
9215     }
9216   else
9217     ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9218 }
9219 
9220 /* Assign into the components of LHS indexed by the OP_CHOICES
9221    construct at *POS, updating *POS past the construct, given that
9222    the allowable indices are LOW..HIGH.  Record the indices assigned
9223    to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9224    needed.  CONTAINER is as for assign_aggregate.  */
9225 static void
9226 aggregate_assign_from_choices (struct value *container,
9227 			       struct value *lhs, struct expression *exp,
9228 			       int *pos, LONGEST *indices, int *num_indices,
9229 			       int max_indices, LONGEST low, LONGEST high)
9230 {
9231   int j;
9232   int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9233   int choice_pos, expr_pc;
9234   int is_array = ada_is_direct_array_type (value_type (lhs));
9235 
9236   choice_pos = *pos += 3;
9237 
9238   for (j = 0; j < n_choices; j += 1)
9239     ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9240   expr_pc = *pos;
9241   ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9242 
9243   for (j = 0; j < n_choices; j += 1)
9244     {
9245       LONGEST lower, upper;
9246       enum exp_opcode op = exp->elts[choice_pos].opcode;
9247 
9248       if (op == OP_DISCRETE_RANGE)
9249 	{
9250 	  choice_pos += 1;
9251 	  lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9252 						      EVAL_NORMAL));
9253 	  upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9254 						      EVAL_NORMAL));
9255 	}
9256       else if (is_array)
9257 	{
9258 	  lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9259 						      EVAL_NORMAL));
9260 	  upper = lower;
9261 	}
9262       else
9263 	{
9264 	  int ind;
9265 	  const char *name;
9266 
9267 	  switch (op)
9268 	    {
9269 	    case OP_NAME:
9270 	      name = &exp->elts[choice_pos + 2].string;
9271 	      break;
9272 	    case OP_VAR_VALUE:
9273 	      name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9274 	      break;
9275 	    default:
9276 	      error (_("Invalid record component association."));
9277 	    }
9278 	  ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9279 	  ind = 0;
9280 	  if (! find_struct_field (name, value_type (lhs), 0,
9281 				   NULL, NULL, NULL, NULL, &ind))
9282 	    error (_("Unknown component name: %s."), name);
9283 	  lower = upper = ind;
9284 	}
9285 
9286       if (lower <= upper && (lower < low || upper > high))
9287 	error (_("Index in component association out of bounds."));
9288 
9289       add_component_interval (lower, upper, indices, num_indices,
9290 			      max_indices);
9291       while (lower <= upper)
9292 	{
9293 	  int pos1;
9294 
9295 	  pos1 = expr_pc;
9296 	  assign_component (container, lhs, lower, exp, &pos1);
9297 	  lower += 1;
9298 	}
9299     }
9300 }
9301 
9302 /* Assign the value of the expression in the OP_OTHERS construct in
9303    EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9304    have not been previously assigned.  The index intervals already assigned
9305    are in INDICES[0 .. NUM_INDICES-1].  Updates *POS to after the
9306    OP_OTHERS clause.  CONTAINER is as for assign_aggregate.  */
9307 static void
9308 aggregate_assign_others (struct value *container,
9309 			 struct value *lhs, struct expression *exp,
9310 			 int *pos, LONGEST *indices, int num_indices,
9311 			 LONGEST low, LONGEST high)
9312 {
9313   int i;
9314   int expr_pc = *pos + 1;
9315 
9316   for (i = 0; i < num_indices - 2; i += 2)
9317     {
9318       LONGEST ind;
9319 
9320       for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9321 	{
9322 	  int localpos;
9323 
9324 	  localpos = expr_pc;
9325 	  assign_component (container, lhs, ind, exp, &localpos);
9326 	}
9327     }
9328   ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9329 }
9330 
9331 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9332    [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9333    modifying *SIZE as needed.  It is an error if *SIZE exceeds
9334    MAX_SIZE.  The resulting intervals do not overlap.  */
9335 static void
9336 add_component_interval (LONGEST low, LONGEST high,
9337 			LONGEST* indices, int *size, int max_size)
9338 {
9339   int i, j;
9340 
9341   for (i = 0; i < *size; i += 2) {
9342     if (high >= indices[i] && low <= indices[i + 1])
9343       {
9344 	int kh;
9345 
9346 	for (kh = i + 2; kh < *size; kh += 2)
9347 	  if (high < indices[kh])
9348 	    break;
9349 	if (low < indices[i])
9350 	  indices[i] = low;
9351 	indices[i + 1] = indices[kh - 1];
9352 	if (high > indices[i + 1])
9353 	  indices[i + 1] = high;
9354 	memcpy (indices + i + 2, indices + kh, *size - kh);
9355 	*size -= kh - i - 2;
9356 	return;
9357       }
9358     else if (high < indices[i])
9359       break;
9360   }
9361 
9362   if (*size == max_size)
9363     error (_("Internal error: miscounted aggregate components."));
9364   *size += 2;
9365   for (j = *size-1; j >= i+2; j -= 1)
9366     indices[j] = indices[j - 2];
9367   indices[i] = low;
9368   indices[i + 1] = high;
9369 }
9370 
9371 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9372    is different.  */
9373 
9374 static struct value *
9375 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9376 {
9377   if (type == ada_check_typedef (value_type (arg2)))
9378     return arg2;
9379 
9380   if (ada_is_fixed_point_type (type))
9381     return (cast_to_fixed (type, arg2));
9382 
9383   if (ada_is_fixed_point_type (value_type (arg2)))
9384     return cast_from_fixed (type, arg2);
9385 
9386   return value_cast (type, arg2);
9387 }
9388 
9389 /*  Evaluating Ada expressions, and printing their result.
9390     ------------------------------------------------------
9391 
9392     1. Introduction:
9393     ----------------
9394 
9395     We usually evaluate an Ada expression in order to print its value.
9396     We also evaluate an expression in order to print its type, which
9397     happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9398     but we'll focus mostly on the EVAL_NORMAL phase.  In practice, the
9399     EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9400     the evaluation compared to the EVAL_NORMAL, but is otherwise very
9401     similar.
9402 
9403     Evaluating expressions is a little more complicated for Ada entities
9404     than it is for entities in languages such as C.  The main reason for
9405     this is that Ada provides types whose definition might be dynamic.
9406     One example of such types is variant records.  Or another example
9407     would be an array whose bounds can only be known at run time.
9408 
9409     The following description is a general guide as to what should be
9410     done (and what should NOT be done) in order to evaluate an expression
9411     involving such types, and when.  This does not cover how the semantic
9412     information is encoded by GNAT as this is covered separatly.  For the
9413     document used as the reference for the GNAT encoding, see exp_dbug.ads
9414     in the GNAT sources.
9415 
9416     Ideally, we should embed each part of this description next to its
9417     associated code.  Unfortunately, the amount of code is so vast right
9418     now that it's hard to see whether the code handling a particular
9419     situation might be duplicated or not.  One day, when the code is
9420     cleaned up, this guide might become redundant with the comments
9421     inserted in the code, and we might want to remove it.
9422 
9423     2. ``Fixing'' an Entity, the Simple Case:
9424     -----------------------------------------
9425 
9426     When evaluating Ada expressions, the tricky issue is that they may
9427     reference entities whose type contents and size are not statically
9428     known.  Consider for instance a variant record:
9429 
9430        type Rec (Empty : Boolean := True) is record
9431           case Empty is
9432              when True => null;
9433              when False => Value : Integer;
9434           end case;
9435        end record;
9436        Yes : Rec := (Empty => False, Value => 1);
9437        No  : Rec := (empty => True);
9438 
9439     The size and contents of that record depends on the value of the
9440     descriminant (Rec.Empty).  At this point, neither the debugging
9441     information nor the associated type structure in GDB are able to
9442     express such dynamic types.  So what the debugger does is to create
9443     "fixed" versions of the type that applies to the specific object.
9444     We also informally refer to this opperation as "fixing" an object,
9445     which means creating its associated fixed type.
9446 
9447     Example: when printing the value of variable "Yes" above, its fixed
9448     type would look like this:
9449 
9450        type Rec is record
9451           Empty : Boolean;
9452           Value : Integer;
9453        end record;
9454 
9455     On the other hand, if we printed the value of "No", its fixed type
9456     would become:
9457 
9458        type Rec is record
9459           Empty : Boolean;
9460        end record;
9461 
9462     Things become a little more complicated when trying to fix an entity
9463     with a dynamic type that directly contains another dynamic type,
9464     such as an array of variant records, for instance.  There are
9465     two possible cases: Arrays, and records.
9466 
9467     3. ``Fixing'' Arrays:
9468     ---------------------
9469 
9470     The type structure in GDB describes an array in terms of its bounds,
9471     and the type of its elements.  By design, all elements in the array
9472     have the same type and we cannot represent an array of variant elements
9473     using the current type structure in GDB.  When fixing an array,
9474     we cannot fix the array element, as we would potentially need one
9475     fixed type per element of the array.  As a result, the best we can do
9476     when fixing an array is to produce an array whose bounds and size
9477     are correct (allowing us to read it from memory), but without having
9478     touched its element type.  Fixing each element will be done later,
9479     when (if) necessary.
9480 
9481     Arrays are a little simpler to handle than records, because the same
9482     amount of memory is allocated for each element of the array, even if
9483     the amount of space actually used by each element differs from element
9484     to element.  Consider for instance the following array of type Rec:
9485 
9486        type Rec_Array is array (1 .. 2) of Rec;
9487 
9488     The actual amount of memory occupied by each element might be different
9489     from element to element, depending on the value of their discriminant.
9490     But the amount of space reserved for each element in the array remains
9491     fixed regardless.  So we simply need to compute that size using
9492     the debugging information available, from which we can then determine
9493     the array size (we multiply the number of elements of the array by
9494     the size of each element).
9495 
9496     The simplest case is when we have an array of a constrained element
9497     type. For instance, consider the following type declarations:
9498 
9499         type Bounded_String (Max_Size : Integer) is
9500            Length : Integer;
9501            Buffer : String (1 .. Max_Size);
9502         end record;
9503         type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9504 
9505     In this case, the compiler describes the array as an array of
9506     variable-size elements (identified by its XVS suffix) for which
9507     the size can be read in the parallel XVZ variable.
9508 
9509     In the case of an array of an unconstrained element type, the compiler
9510     wraps the array element inside a private PAD type.  This type should not
9511     be shown to the user, and must be "unwrap"'ed before printing.  Note
9512     that we also use the adjective "aligner" in our code to designate
9513     these wrapper types.
9514 
9515     In some cases, the size allocated for each element is statically
9516     known.  In that case, the PAD type already has the correct size,
9517     and the array element should remain unfixed.
9518 
9519     But there are cases when this size is not statically known.
9520     For instance, assuming that "Five" is an integer variable:
9521 
9522         type Dynamic is array (1 .. Five) of Integer;
9523         type Wrapper (Has_Length : Boolean := False) is record
9524            Data : Dynamic;
9525            case Has_Length is
9526               when True => Length : Integer;
9527               when False => null;
9528            end case;
9529         end record;
9530         type Wrapper_Array is array (1 .. 2) of Wrapper;
9531 
9532         Hello : Wrapper_Array := (others => (Has_Length => True,
9533                                              Data => (others => 17),
9534                                              Length => 1));
9535 
9536 
9537     The debugging info would describe variable Hello as being an
9538     array of a PAD type.  The size of that PAD type is not statically
9539     known, but can be determined using a parallel XVZ variable.
9540     In that case, a copy of the PAD type with the correct size should
9541     be used for the fixed array.
9542 
9543     3. ``Fixing'' record type objects:
9544     ----------------------------------
9545 
9546     Things are slightly different from arrays in the case of dynamic
9547     record types.  In this case, in order to compute the associated
9548     fixed type, we need to determine the size and offset of each of
9549     its components.  This, in turn, requires us to compute the fixed
9550     type of each of these components.
9551 
9552     Consider for instance the example:
9553 
9554         type Bounded_String (Max_Size : Natural) is record
9555            Str : String (1 .. Max_Size);
9556            Length : Natural;
9557         end record;
9558         My_String : Bounded_String (Max_Size => 10);
9559 
9560     In that case, the position of field "Length" depends on the size
9561     of field Str, which itself depends on the value of the Max_Size
9562     discriminant.  In order to fix the type of variable My_String,
9563     we need to fix the type of field Str.  Therefore, fixing a variant
9564     record requires us to fix each of its components.
9565 
9566     However, if a component does not have a dynamic size, the component
9567     should not be fixed.  In particular, fields that use a PAD type
9568     should not fixed.  Here is an example where this might happen
9569     (assuming type Rec above):
9570 
9571        type Container (Big : Boolean) is record
9572           First : Rec;
9573           After : Integer;
9574           case Big is
9575              when True => Another : Integer;
9576              when False => null;
9577           end case;
9578        end record;
9579        My_Container : Container := (Big => False,
9580                                     First => (Empty => True),
9581                                     After => 42);
9582 
9583     In that example, the compiler creates a PAD type for component First,
9584     whose size is constant, and then positions the component After just
9585     right after it.  The offset of component After is therefore constant
9586     in this case.
9587 
9588     The debugger computes the position of each field based on an algorithm
9589     that uses, among other things, the actual position and size of the field
9590     preceding it.  Let's now imagine that the user is trying to print
9591     the value of My_Container.  If the type fixing was recursive, we would
9592     end up computing the offset of field After based on the size of the
9593     fixed version of field First.  And since in our example First has
9594     only one actual field, the size of the fixed type is actually smaller
9595     than the amount of space allocated to that field, and thus we would
9596     compute the wrong offset of field After.
9597 
9598     To make things more complicated, we need to watch out for dynamic
9599     components of variant records (identified by the ___XVL suffix in
9600     the component name).  Even if the target type is a PAD type, the size
9601     of that type might not be statically known.  So the PAD type needs
9602     to be unwrapped and the resulting type needs to be fixed.  Otherwise,
9603     we might end up with the wrong size for our component.  This can be
9604     observed with the following type declarations:
9605 
9606         type Octal is new Integer range 0 .. 7;
9607         type Octal_Array is array (Positive range <>) of Octal;
9608         pragma Pack (Octal_Array);
9609 
9610         type Octal_Buffer (Size : Positive) is record
9611            Buffer : Octal_Array (1 .. Size);
9612            Length : Integer;
9613         end record;
9614 
9615     In that case, Buffer is a PAD type whose size is unset and needs
9616     to be computed by fixing the unwrapped type.
9617 
9618     4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9619     ----------------------------------------------------------
9620 
9621     Lastly, when should the sub-elements of an entity that remained unfixed
9622     thus far, be actually fixed?
9623 
9624     The answer is: Only when referencing that element.  For instance
9625     when selecting one component of a record, this specific component
9626     should be fixed at that point in time.  Or when printing the value
9627     of a record, each component should be fixed before its value gets
9628     printed.  Similarly for arrays, the element of the array should be
9629     fixed when printing each element of the array, or when extracting
9630     one element out of that array.  On the other hand, fixing should
9631     not be performed on the elements when taking a slice of an array!
9632 
9633     Note that one of the side-effects of miscomputing the offset and
9634     size of each field is that we end up also miscomputing the size
9635     of the containing type.  This can have adverse results when computing
9636     the value of an entity.  GDB fetches the value of an entity based
9637     on the size of its type, and thus a wrong size causes GDB to fetch
9638     the wrong amount of memory.  In the case where the computed size is
9639     too small, GDB fetches too little data to print the value of our
9640     entiry.  Results in this case as unpredicatble, as we usually read
9641     past the buffer containing the data =:-o.  */
9642 
9643 /* Implement the evaluate_exp routine in the exp_descriptor structure
9644    for the Ada language.  */
9645 
9646 static struct value *
9647 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9648                      int *pos, enum noside noside)
9649 {
9650   enum exp_opcode op;
9651   int tem;
9652   int pc;
9653   struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9654   struct type *type;
9655   int nargs, oplen;
9656   struct value **argvec;
9657 
9658   pc = *pos;
9659   *pos += 1;
9660   op = exp->elts[pc].opcode;
9661 
9662   switch (op)
9663     {
9664     default:
9665       *pos -= 1;
9666       arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9667 
9668       if (noside == EVAL_NORMAL)
9669 	arg1 = unwrap_value (arg1);
9670 
9671       /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9672          then we need to perform the conversion manually, because
9673          evaluate_subexp_standard doesn't do it.  This conversion is
9674          necessary in Ada because the different kinds of float/fixed
9675          types in Ada have different representations.
9676 
9677          Similarly, we need to perform the conversion from OP_LONG
9678          ourselves.  */
9679       if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9680         arg1 = ada_value_cast (expect_type, arg1, noside);
9681 
9682       return arg1;
9683 
9684     case OP_STRING:
9685       {
9686         struct value *result;
9687 
9688         *pos -= 1;
9689         result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9690         /* The result type will have code OP_STRING, bashed there from
9691            OP_ARRAY.  Bash it back.  */
9692         if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9693           TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9694         return result;
9695       }
9696 
9697     case UNOP_CAST:
9698       (*pos) += 2;
9699       type = exp->elts[pc + 1].type;
9700       arg1 = evaluate_subexp (type, exp, pos, noside);
9701       if (noside == EVAL_SKIP)
9702         goto nosideret;
9703       arg1 = ada_value_cast (type, arg1, noside);
9704       return arg1;
9705 
9706     case UNOP_QUAL:
9707       (*pos) += 2;
9708       type = exp->elts[pc + 1].type;
9709       return ada_evaluate_subexp (type, exp, pos, noside);
9710 
9711     case BINOP_ASSIGN:
9712       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9713       if (exp->elts[*pos].opcode == OP_AGGREGATE)
9714 	{
9715 	  arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9716 	  if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9717 	    return arg1;
9718 	  return ada_value_assign (arg1, arg1);
9719 	}
9720       /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9721          except if the lhs of our assignment is a convenience variable.
9722          In the case of assigning to a convenience variable, the lhs
9723          should be exactly the result of the evaluation of the rhs.  */
9724       type = value_type (arg1);
9725       if (VALUE_LVAL (arg1) == lval_internalvar)
9726          type = NULL;
9727       arg2 = evaluate_subexp (type, exp, pos, noside);
9728       if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9729         return arg1;
9730       if (ada_is_fixed_point_type (value_type (arg1)))
9731         arg2 = cast_to_fixed (value_type (arg1), arg2);
9732       else if (ada_is_fixed_point_type (value_type (arg2)))
9733         error
9734           (_("Fixed-point values must be assigned to fixed-point variables"));
9735       else
9736         arg2 = coerce_for_assign (value_type (arg1), arg2);
9737       return ada_value_assign (arg1, arg2);
9738 
9739     case BINOP_ADD:
9740       arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9741       arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9742       if (noside == EVAL_SKIP)
9743         goto nosideret;
9744       if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9745         return (value_from_longest
9746                  (value_type (arg1),
9747                   value_as_long (arg1) + value_as_long (arg2)));
9748       if ((ada_is_fixed_point_type (value_type (arg1))
9749            || ada_is_fixed_point_type (value_type (arg2)))
9750           && value_type (arg1) != value_type (arg2))
9751         error (_("Operands of fixed-point addition must have the same type"));
9752       /* Do the addition, and cast the result to the type of the first
9753          argument.  We cannot cast the result to a reference type, so if
9754          ARG1 is a reference type, find its underlying type.  */
9755       type = value_type (arg1);
9756       while (TYPE_CODE (type) == TYPE_CODE_REF)
9757         type = TYPE_TARGET_TYPE (type);
9758       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9759       return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9760 
9761     case BINOP_SUB:
9762       arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9763       arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9764       if (noside == EVAL_SKIP)
9765         goto nosideret;
9766       if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9767         return (value_from_longest
9768                  (value_type (arg1),
9769                   value_as_long (arg1) - value_as_long (arg2)));
9770       if ((ada_is_fixed_point_type (value_type (arg1))
9771            || ada_is_fixed_point_type (value_type (arg2)))
9772           && value_type (arg1) != value_type (arg2))
9773         error (_("Operands of fixed-point subtraction "
9774 		 "must have the same type"));
9775       /* Do the substraction, and cast the result to the type of the first
9776          argument.  We cannot cast the result to a reference type, so if
9777          ARG1 is a reference type, find its underlying type.  */
9778       type = value_type (arg1);
9779       while (TYPE_CODE (type) == TYPE_CODE_REF)
9780         type = TYPE_TARGET_TYPE (type);
9781       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9782       return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9783 
9784     case BINOP_MUL:
9785     case BINOP_DIV:
9786     case BINOP_REM:
9787     case BINOP_MOD:
9788       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9789       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9790       if (noside == EVAL_SKIP)
9791         goto nosideret;
9792       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9793         {
9794           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9795           return value_zero (value_type (arg1), not_lval);
9796         }
9797       else
9798         {
9799           type = builtin_type (exp->gdbarch)->builtin_double;
9800           if (ada_is_fixed_point_type (value_type (arg1)))
9801             arg1 = cast_from_fixed (type, arg1);
9802           if (ada_is_fixed_point_type (value_type (arg2)))
9803             arg2 = cast_from_fixed (type, arg2);
9804           binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9805           return ada_value_binop (arg1, arg2, op);
9806         }
9807 
9808     case BINOP_EQUAL:
9809     case BINOP_NOTEQUAL:
9810       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9811       arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9812       if (noside == EVAL_SKIP)
9813         goto nosideret;
9814       if (noside == EVAL_AVOID_SIDE_EFFECTS)
9815         tem = 0;
9816       else
9817 	{
9818 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9819 	  tem = ada_value_equal (arg1, arg2);
9820 	}
9821       if (op == BINOP_NOTEQUAL)
9822         tem = !tem;
9823       type = language_bool_type (exp->language_defn, exp->gdbarch);
9824       return value_from_longest (type, (LONGEST) tem);
9825 
9826     case UNOP_NEG:
9827       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9828       if (noside == EVAL_SKIP)
9829         goto nosideret;
9830       else if (ada_is_fixed_point_type (value_type (arg1)))
9831         return value_cast (value_type (arg1), value_neg (arg1));
9832       else
9833 	{
9834 	  unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9835 	  return value_neg (arg1);
9836 	}
9837 
9838     case BINOP_LOGICAL_AND:
9839     case BINOP_LOGICAL_OR:
9840     case UNOP_LOGICAL_NOT:
9841       {
9842         struct value *val;
9843 
9844         *pos -= 1;
9845         val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9846 	type = language_bool_type (exp->language_defn, exp->gdbarch);
9847         return value_cast (type, val);
9848       }
9849 
9850     case BINOP_BITWISE_AND:
9851     case BINOP_BITWISE_IOR:
9852     case BINOP_BITWISE_XOR:
9853       {
9854         struct value *val;
9855 
9856         arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9857         *pos = pc;
9858         val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9859 
9860         return value_cast (value_type (arg1), val);
9861       }
9862 
9863     case OP_VAR_VALUE:
9864       *pos -= 1;
9865 
9866       if (noside == EVAL_SKIP)
9867         {
9868           *pos += 4;
9869           goto nosideret;
9870         }
9871       else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9872         /* Only encountered when an unresolved symbol occurs in a
9873            context other than a function call, in which case, it is
9874            invalid.  */
9875         error (_("Unexpected unresolved symbol, %s, during evaluation"),
9876                SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9877       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9878         {
9879           type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9880           /* Check to see if this is a tagged type.  We also need to handle
9881              the case where the type is a reference to a tagged type, but
9882              we have to be careful to exclude pointers to tagged types.
9883              The latter should be shown as usual (as a pointer), whereas
9884              a reference should mostly be transparent to the user.  */
9885           if (ada_is_tagged_type (type, 0)
9886               || (TYPE_CODE(type) == TYPE_CODE_REF
9887                   && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9888           {
9889             /* Tagged types are a little special in the fact that the real
9890                type is dynamic and can only be determined by inspecting the
9891                object's tag.  This means that we need to get the object's
9892                value first (EVAL_NORMAL) and then extract the actual object
9893                type from its tag.
9894 
9895                Note that we cannot skip the final step where we extract
9896                the object type from its tag, because the EVAL_NORMAL phase
9897                results in dynamic components being resolved into fixed ones.
9898                This can cause problems when trying to print the type
9899                description of tagged types whose parent has a dynamic size:
9900                We use the type name of the "_parent" component in order
9901                to print the name of the ancestor type in the type description.
9902                If that component had a dynamic size, the resolution into
9903                a fixed type would result in the loss of that type name,
9904                thus preventing us from printing the name of the ancestor
9905                type in the type description.  */
9906             arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9907 
9908 	    if (TYPE_CODE (type) != TYPE_CODE_REF)
9909 	      {
9910 		struct type *actual_type;
9911 
9912 		actual_type = type_from_tag (ada_value_tag (arg1));
9913 		if (actual_type == NULL)
9914 		  /* If, for some reason, we were unable to determine
9915 		     the actual type from the tag, then use the static
9916 		     approximation that we just computed as a fallback.
9917 		     This can happen if the debugging information is
9918 		     incomplete, for instance.  */
9919 		  actual_type = type;
9920 		return value_zero (actual_type, not_lval);
9921 	      }
9922 	    else
9923 	      {
9924 		/* In the case of a ref, ada_coerce_ref takes care
9925 		   of determining the actual type.  But the evaluation
9926 		   should return a ref as it should be valid to ask
9927 		   for its address; so rebuild a ref after coerce.  */
9928 		arg1 = ada_coerce_ref (arg1);
9929 		return value_ref (arg1);
9930 	      }
9931           }
9932 
9933           *pos += 4;
9934           return value_zero
9935             (to_static_fixed_type
9936              (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9937              not_lval);
9938         }
9939       else
9940         {
9941           arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9942           return ada_to_fixed_value (arg1);
9943         }
9944 
9945     case OP_FUNCALL:
9946       (*pos) += 2;
9947 
9948       /* Allocate arg vector, including space for the function to be
9949          called in argvec[0] and a terminating NULL.  */
9950       nargs = longest_to_int (exp->elts[pc + 1].longconst);
9951       argvec =
9952         (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9953 
9954       if (exp->elts[*pos].opcode == OP_VAR_VALUE
9955           && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9956         error (_("Unexpected unresolved symbol, %s, during evaluation"),
9957                SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9958       else
9959         {
9960           for (tem = 0; tem <= nargs; tem += 1)
9961             argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9962           argvec[tem] = 0;
9963 
9964           if (noside == EVAL_SKIP)
9965             goto nosideret;
9966         }
9967 
9968       if (ada_is_constrained_packed_array_type
9969 	  (desc_base_type (value_type (argvec[0]))))
9970         argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9971       else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9972                && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9973         /* This is a packed array that has already been fixed, and
9974 	   therefore already coerced to a simple array.  Nothing further
9975 	   to do.  */
9976         ;
9977       else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9978                || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9979                    && VALUE_LVAL (argvec[0]) == lval_memory))
9980         argvec[0] = value_addr (argvec[0]);
9981 
9982       type = ada_check_typedef (value_type (argvec[0]));
9983 
9984       /* Ada allows us to implicitly dereference arrays when subscripting
9985 	 them.  So, if this is an array typedef (encoding use for array
9986 	 access types encoded as fat pointers), strip it now.  */
9987       if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9988 	type = ada_typedef_target_type (type);
9989 
9990       if (TYPE_CODE (type) == TYPE_CODE_PTR)
9991         {
9992           switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9993             {
9994             case TYPE_CODE_FUNC:
9995               type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9996               break;
9997             case TYPE_CODE_ARRAY:
9998               break;
9999             case TYPE_CODE_STRUCT:
10000               if (noside != EVAL_AVOID_SIDE_EFFECTS)
10001                 argvec[0] = ada_value_ind (argvec[0]);
10002               type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10003               break;
10004             default:
10005               error (_("cannot subscript or call something of type `%s'"),
10006                      ada_type_name (value_type (argvec[0])));
10007               break;
10008             }
10009         }
10010 
10011       switch (TYPE_CODE (type))
10012         {
10013         case TYPE_CODE_FUNC:
10014           if (noside == EVAL_AVOID_SIDE_EFFECTS)
10015 	    {
10016 	      struct type *rtype = TYPE_TARGET_TYPE (type);
10017 
10018 	      if (TYPE_GNU_IFUNC (type))
10019 		return allocate_value (TYPE_TARGET_TYPE (rtype));
10020 	      return allocate_value (rtype);
10021 	    }
10022           return call_function_by_hand (argvec[0], nargs, argvec + 1);
10023 	case TYPE_CODE_INTERNAL_FUNCTION:
10024 	  if (noside == EVAL_AVOID_SIDE_EFFECTS)
10025 	    /* We don't know anything about what the internal
10026 	       function might return, but we have to return
10027 	       something.  */
10028 	    return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10029 			       not_lval);
10030 	  else
10031 	    return call_internal_function (exp->gdbarch, exp->language_defn,
10032 					   argvec[0], nargs, argvec + 1);
10033 
10034         case TYPE_CODE_STRUCT:
10035           {
10036             int arity;
10037 
10038             arity = ada_array_arity (type);
10039             type = ada_array_element_type (type, nargs);
10040             if (type == NULL)
10041               error (_("cannot subscript or call a record"));
10042             if (arity != nargs)
10043               error (_("wrong number of subscripts; expecting %d"), arity);
10044             if (noside == EVAL_AVOID_SIDE_EFFECTS)
10045               return value_zero (ada_aligned_type (type), lval_memory);
10046             return
10047               unwrap_value (ada_value_subscript
10048                             (argvec[0], nargs, argvec + 1));
10049           }
10050         case TYPE_CODE_ARRAY:
10051           if (noside == EVAL_AVOID_SIDE_EFFECTS)
10052             {
10053               type = ada_array_element_type (type, nargs);
10054               if (type == NULL)
10055                 error (_("element type of array unknown"));
10056               else
10057                 return value_zero (ada_aligned_type (type), lval_memory);
10058             }
10059           return
10060             unwrap_value (ada_value_subscript
10061                           (ada_coerce_to_simple_array (argvec[0]),
10062                            nargs, argvec + 1));
10063         case TYPE_CODE_PTR:     /* Pointer to array */
10064           type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10065           if (noside == EVAL_AVOID_SIDE_EFFECTS)
10066             {
10067               type = ada_array_element_type (type, nargs);
10068               if (type == NULL)
10069                 error (_("element type of array unknown"));
10070               else
10071                 return value_zero (ada_aligned_type (type), lval_memory);
10072             }
10073           return
10074             unwrap_value (ada_value_ptr_subscript (argvec[0], type,
10075                                                    nargs, argvec + 1));
10076 
10077         default:
10078           error (_("Attempt to index or call something other than an "
10079 		   "array or function"));
10080         }
10081 
10082     case TERNOP_SLICE:
10083       {
10084         struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10085         struct value *low_bound_val =
10086           evaluate_subexp (NULL_TYPE, exp, pos, noside);
10087         struct value *high_bound_val =
10088           evaluate_subexp (NULL_TYPE, exp, pos, noside);
10089         LONGEST low_bound;
10090         LONGEST high_bound;
10091 
10092         low_bound_val = coerce_ref (low_bound_val);
10093         high_bound_val = coerce_ref (high_bound_val);
10094         low_bound = pos_atr (low_bound_val);
10095         high_bound = pos_atr (high_bound_val);
10096 
10097         if (noside == EVAL_SKIP)
10098           goto nosideret;
10099 
10100         /* If this is a reference to an aligner type, then remove all
10101            the aligners.  */
10102         if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10103             && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10104           TYPE_TARGET_TYPE (value_type (array)) =
10105             ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10106 
10107         if (ada_is_constrained_packed_array_type (value_type (array)))
10108           error (_("cannot slice a packed array"));
10109 
10110         /* If this is a reference to an array or an array lvalue,
10111            convert to a pointer.  */
10112         if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10113             || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10114                 && VALUE_LVAL (array) == lval_memory))
10115           array = value_addr (array);
10116 
10117         if (noside == EVAL_AVOID_SIDE_EFFECTS
10118             && ada_is_array_descriptor_type (ada_check_typedef
10119                                              (value_type (array))))
10120           return empty_array (ada_type_of_array (array, 0), low_bound);
10121 
10122         array = ada_coerce_to_simple_array_ptr (array);
10123 
10124         /* If we have more than one level of pointer indirection,
10125            dereference the value until we get only one level.  */
10126         while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10127                && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10128                      == TYPE_CODE_PTR))
10129           array = value_ind (array);
10130 
10131         /* Make sure we really do have an array type before going further,
10132            to avoid a SEGV when trying to get the index type or the target
10133            type later down the road if the debug info generated by
10134            the compiler is incorrect or incomplete.  */
10135         if (!ada_is_simple_array_type (value_type (array)))
10136           error (_("cannot take slice of non-array"));
10137 
10138         if (TYPE_CODE (ada_check_typedef (value_type (array)))
10139             == TYPE_CODE_PTR)
10140           {
10141             struct type *type0 = ada_check_typedef (value_type (array));
10142 
10143             if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10144               return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10145             else
10146               {
10147                 struct type *arr_type0 =
10148                   to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10149 
10150                 return ada_value_slice_from_ptr (array, arr_type0,
10151                                                  longest_to_int (low_bound),
10152                                                  longest_to_int (high_bound));
10153               }
10154           }
10155         else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10156           return array;
10157         else if (high_bound < low_bound)
10158           return empty_array (value_type (array), low_bound);
10159         else
10160           return ada_value_slice (array, longest_to_int (low_bound),
10161 				  longest_to_int (high_bound));
10162       }
10163 
10164     case UNOP_IN_RANGE:
10165       (*pos) += 2;
10166       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10167       type = check_typedef (exp->elts[pc + 1].type);
10168 
10169       if (noside == EVAL_SKIP)
10170         goto nosideret;
10171 
10172       switch (TYPE_CODE (type))
10173         {
10174         default:
10175           lim_warning (_("Membership test incompletely implemented; "
10176 			 "always returns true"));
10177 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
10178 	  return value_from_longest (type, (LONGEST) 1);
10179 
10180         case TYPE_CODE_RANGE:
10181 	  arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10182 	  arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10183 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10184 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10185 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
10186 	  return
10187 	    value_from_longest (type,
10188                                 (value_less (arg1, arg3)
10189                                  || value_equal (arg1, arg3))
10190                                 && (value_less (arg2, arg1)
10191                                     || value_equal (arg2, arg1)));
10192         }
10193 
10194     case BINOP_IN_BOUNDS:
10195       (*pos) += 2;
10196       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10197       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10198 
10199       if (noside == EVAL_SKIP)
10200         goto nosideret;
10201 
10202       if (noside == EVAL_AVOID_SIDE_EFFECTS)
10203 	{
10204 	  type = language_bool_type (exp->language_defn, exp->gdbarch);
10205 	  return value_zero (type, not_lval);
10206 	}
10207 
10208       tem = longest_to_int (exp->elts[pc + 1].longconst);
10209 
10210       type = ada_index_type (value_type (arg2), tem, "range");
10211       if (!type)
10212 	type = value_type (arg1);
10213 
10214       arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10215       arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10216 
10217       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10218       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10219       type = language_bool_type (exp->language_defn, exp->gdbarch);
10220       return
10221         value_from_longest (type,
10222                             (value_less (arg1, arg3)
10223                              || value_equal (arg1, arg3))
10224                             && (value_less (arg2, arg1)
10225                                 || value_equal (arg2, arg1)));
10226 
10227     case TERNOP_IN_RANGE:
10228       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10229       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10230       arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10231 
10232       if (noside == EVAL_SKIP)
10233         goto nosideret;
10234 
10235       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10236       binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10237       type = language_bool_type (exp->language_defn, exp->gdbarch);
10238       return
10239         value_from_longest (type,
10240                             (value_less (arg1, arg3)
10241                              || value_equal (arg1, arg3))
10242                             && (value_less (arg2, arg1)
10243                                 || value_equal (arg2, arg1)));
10244 
10245     case OP_ATR_FIRST:
10246     case OP_ATR_LAST:
10247     case OP_ATR_LENGTH:
10248       {
10249         struct type *type_arg;
10250 
10251         if (exp->elts[*pos].opcode == OP_TYPE)
10252           {
10253             evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10254             arg1 = NULL;
10255             type_arg = check_typedef (exp->elts[pc + 2].type);
10256           }
10257         else
10258           {
10259             arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10260             type_arg = NULL;
10261           }
10262 
10263         if (exp->elts[*pos].opcode != OP_LONG)
10264           error (_("Invalid operand to '%s"), ada_attribute_name (op));
10265         tem = longest_to_int (exp->elts[*pos + 2].longconst);
10266         *pos += 4;
10267 
10268         if (noside == EVAL_SKIP)
10269           goto nosideret;
10270 
10271         if (type_arg == NULL)
10272           {
10273             arg1 = ada_coerce_ref (arg1);
10274 
10275             if (ada_is_constrained_packed_array_type (value_type (arg1)))
10276               arg1 = ada_coerce_to_simple_array (arg1);
10277 
10278             type = ada_index_type (value_type (arg1), tem,
10279 				   ada_attribute_name (op));
10280             if (type == NULL)
10281 	      type = builtin_type (exp->gdbarch)->builtin_int;
10282 
10283             if (noside == EVAL_AVOID_SIDE_EFFECTS)
10284               return allocate_value (type);
10285 
10286             switch (op)
10287               {
10288               default:          /* Should never happen.  */
10289                 error (_("unexpected attribute encountered"));
10290               case OP_ATR_FIRST:
10291                 return value_from_longest
10292 			(type, ada_array_bound (arg1, tem, 0));
10293               case OP_ATR_LAST:
10294                 return value_from_longest
10295 			(type, ada_array_bound (arg1, tem, 1));
10296               case OP_ATR_LENGTH:
10297                 return value_from_longest
10298 			(type, ada_array_length (arg1, tem));
10299               }
10300           }
10301         else if (discrete_type_p (type_arg))
10302           {
10303             struct type *range_type;
10304             const char *name = ada_type_name (type_arg);
10305 
10306             range_type = NULL;
10307             if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10308               range_type = to_fixed_range_type (type_arg, NULL);
10309             if (range_type == NULL)
10310               range_type = type_arg;
10311             switch (op)
10312               {
10313               default:
10314                 error (_("unexpected attribute encountered"));
10315               case OP_ATR_FIRST:
10316 		return value_from_longest
10317 		  (range_type, ada_discrete_type_low_bound (range_type));
10318               case OP_ATR_LAST:
10319                 return value_from_longest
10320 		  (range_type, ada_discrete_type_high_bound (range_type));
10321               case OP_ATR_LENGTH:
10322                 error (_("the 'length attribute applies only to array types"));
10323               }
10324           }
10325         else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10326           error (_("unimplemented type attribute"));
10327         else
10328           {
10329             LONGEST low, high;
10330 
10331             if (ada_is_constrained_packed_array_type (type_arg))
10332               type_arg = decode_constrained_packed_array_type (type_arg);
10333 
10334             type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10335             if (type == NULL)
10336 	      type = builtin_type (exp->gdbarch)->builtin_int;
10337 
10338             if (noside == EVAL_AVOID_SIDE_EFFECTS)
10339               return allocate_value (type);
10340 
10341             switch (op)
10342               {
10343               default:
10344                 error (_("unexpected attribute encountered"));
10345               case OP_ATR_FIRST:
10346                 low = ada_array_bound_from_type (type_arg, tem, 0);
10347                 return value_from_longest (type, low);
10348               case OP_ATR_LAST:
10349                 high = ada_array_bound_from_type (type_arg, tem, 1);
10350                 return value_from_longest (type, high);
10351               case OP_ATR_LENGTH:
10352                 low = ada_array_bound_from_type (type_arg, tem, 0);
10353                 high = ada_array_bound_from_type (type_arg, tem, 1);
10354                 return value_from_longest (type, high - low + 1);
10355               }
10356           }
10357       }
10358 
10359     case OP_ATR_TAG:
10360       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10361       if (noside == EVAL_SKIP)
10362         goto nosideret;
10363 
10364       if (noside == EVAL_AVOID_SIDE_EFFECTS)
10365         return value_zero (ada_tag_type (arg1), not_lval);
10366 
10367       return ada_value_tag (arg1);
10368 
10369     case OP_ATR_MIN:
10370     case OP_ATR_MAX:
10371       evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10372       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10373       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10374       if (noside == EVAL_SKIP)
10375         goto nosideret;
10376       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10377         return value_zero (value_type (arg1), not_lval);
10378       else
10379 	{
10380 	  binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10381 	  return value_binop (arg1, arg2,
10382 			      op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10383 	}
10384 
10385     case OP_ATR_MODULUS:
10386       {
10387         struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10388 
10389         evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10390         if (noside == EVAL_SKIP)
10391           goto nosideret;
10392 
10393         if (!ada_is_modular_type (type_arg))
10394           error (_("'modulus must be applied to modular type"));
10395 
10396         return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10397                                    ada_modulus (type_arg));
10398       }
10399 
10400 
10401     case OP_ATR_POS:
10402       evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10403       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10404       if (noside == EVAL_SKIP)
10405         goto nosideret;
10406       type = builtin_type (exp->gdbarch)->builtin_int;
10407       if (noside == EVAL_AVOID_SIDE_EFFECTS)
10408 	return value_zero (type, not_lval);
10409       else
10410 	return value_pos_atr (type, arg1);
10411 
10412     case OP_ATR_SIZE:
10413       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10414       type = value_type (arg1);
10415 
10416       /* If the argument is a reference, then dereference its type, since
10417          the user is really asking for the size of the actual object,
10418          not the size of the pointer.  */
10419       if (TYPE_CODE (type) == TYPE_CODE_REF)
10420         type = TYPE_TARGET_TYPE (type);
10421 
10422       if (noside == EVAL_SKIP)
10423         goto nosideret;
10424       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10425         return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10426       else
10427         return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10428                                    TARGET_CHAR_BIT * TYPE_LENGTH (type));
10429 
10430     case OP_ATR_VAL:
10431       evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10432       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10433       type = exp->elts[pc + 2].type;
10434       if (noside == EVAL_SKIP)
10435         goto nosideret;
10436       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10437         return value_zero (type, not_lval);
10438       else
10439         return value_val_atr (type, arg1);
10440 
10441     case BINOP_EXP:
10442       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10443       arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10444       if (noside == EVAL_SKIP)
10445         goto nosideret;
10446       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10447         return value_zero (value_type (arg1), not_lval);
10448       else
10449 	{
10450 	  /* For integer exponentiation operations,
10451 	     only promote the first argument.  */
10452 	  if (is_integral_type (value_type (arg2)))
10453 	    unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10454 	  else
10455 	    binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10456 
10457 	  return value_binop (arg1, arg2, op);
10458 	}
10459 
10460     case UNOP_PLUS:
10461       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10462       if (noside == EVAL_SKIP)
10463         goto nosideret;
10464       else
10465         return arg1;
10466 
10467     case UNOP_ABS:
10468       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10469       if (noside == EVAL_SKIP)
10470         goto nosideret;
10471       unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10472       if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10473         return value_neg (arg1);
10474       else
10475         return arg1;
10476 
10477     case UNOP_IND:
10478       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10479       if (noside == EVAL_SKIP)
10480         goto nosideret;
10481       type = ada_check_typedef (value_type (arg1));
10482       if (noside == EVAL_AVOID_SIDE_EFFECTS)
10483         {
10484           if (ada_is_array_descriptor_type (type))
10485             /* GDB allows dereferencing GNAT array descriptors.  */
10486             {
10487               struct type *arrType = ada_type_of_array (arg1, 0);
10488 
10489               if (arrType == NULL)
10490                 error (_("Attempt to dereference null array pointer."));
10491               return value_at_lazy (arrType, 0);
10492             }
10493           else if (TYPE_CODE (type) == TYPE_CODE_PTR
10494                    || TYPE_CODE (type) == TYPE_CODE_REF
10495                    /* In C you can dereference an array to get the 1st elt.  */
10496                    || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10497             {
10498               type = to_static_fixed_type
10499                 (ada_aligned_type
10500                  (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10501               check_size (type);
10502               return value_zero (type, lval_memory);
10503             }
10504           else if (TYPE_CODE (type) == TYPE_CODE_INT)
10505 	    {
10506 	      /* GDB allows dereferencing an int.  */
10507 	      if (expect_type == NULL)
10508 		return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10509 				   lval_memory);
10510 	      else
10511 		{
10512 		  expect_type =
10513 		    to_static_fixed_type (ada_aligned_type (expect_type));
10514 		  return value_zero (expect_type, lval_memory);
10515 		}
10516 	    }
10517           else
10518             error (_("Attempt to take contents of a non-pointer value."));
10519         }
10520       arg1 = ada_coerce_ref (arg1);     /* FIXME: What is this for??  */
10521       type = ada_check_typedef (value_type (arg1));
10522 
10523       if (TYPE_CODE (type) == TYPE_CODE_INT)
10524           /* GDB allows dereferencing an int.  If we were given
10525              the expect_type, then use that as the target type.
10526              Otherwise, assume that the target type is an int.  */
10527         {
10528           if (expect_type != NULL)
10529 	    return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10530 					      arg1));
10531 	  else
10532 	    return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10533 				  (CORE_ADDR) value_as_address (arg1));
10534         }
10535 
10536       if (ada_is_array_descriptor_type (type))
10537         /* GDB allows dereferencing GNAT array descriptors.  */
10538         return ada_coerce_to_simple_array (arg1);
10539       else
10540         return ada_value_ind (arg1);
10541 
10542     case STRUCTOP_STRUCT:
10543       tem = longest_to_int (exp->elts[pc + 1].longconst);
10544       (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10545       arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10546       if (noside == EVAL_SKIP)
10547         goto nosideret;
10548       if (noside == EVAL_AVOID_SIDE_EFFECTS)
10549         {
10550           struct type *type1 = value_type (arg1);
10551 
10552           if (ada_is_tagged_type (type1, 1))
10553             {
10554               type = ada_lookup_struct_elt_type (type1,
10555                                                  &exp->elts[pc + 2].string,
10556                                                  1, 1, NULL);
10557               if (type == NULL)
10558                 /* In this case, we assume that the field COULD exist
10559                    in some extension of the type.  Return an object of
10560                    "type" void, which will match any formal
10561                    (see ada_type_match).  */
10562                 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10563 				   lval_memory);
10564             }
10565           else
10566             type =
10567               ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10568                                           0, NULL);
10569 
10570           return value_zero (ada_aligned_type (type), lval_memory);
10571         }
10572       else
10573         arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10574         arg1 = unwrap_value (arg1);
10575         return ada_to_fixed_value (arg1);
10576 
10577     case OP_TYPE:
10578       /* The value is not supposed to be used.  This is here to make it
10579          easier to accommodate expressions that contain types.  */
10580       (*pos) += 2;
10581       if (noside == EVAL_SKIP)
10582         goto nosideret;
10583       else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10584         return allocate_value (exp->elts[pc + 1].type);
10585       else
10586         error (_("Attempt to use a type name as an expression"));
10587 
10588     case OP_AGGREGATE:
10589     case OP_CHOICES:
10590     case OP_OTHERS:
10591     case OP_DISCRETE_RANGE:
10592     case OP_POSITIONAL:
10593     case OP_NAME:
10594       if (noside == EVAL_NORMAL)
10595 	switch (op)
10596 	  {
10597 	  case OP_NAME:
10598 	    error (_("Undefined name, ambiguous name, or renaming used in "
10599 		     "component association: %s."), &exp->elts[pc+2].string);
10600 	  case OP_AGGREGATE:
10601 	    error (_("Aggregates only allowed on the right of an assignment"));
10602 	  default:
10603 	    internal_error (__FILE__, __LINE__,
10604 			    _("aggregate apparently mangled"));
10605 	  }
10606 
10607       ada_forward_operator_length (exp, pc, &oplen, &nargs);
10608       *pos += oplen - 1;
10609       for (tem = 0; tem < nargs; tem += 1)
10610 	ada_evaluate_subexp (NULL, exp, pos, noside);
10611       goto nosideret;
10612     }
10613 
10614 nosideret:
10615   return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10616 }
10617 
10618 
10619                                 /* Fixed point */
10620 
10621 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10622    type name that encodes the 'small and 'delta information.
10623    Otherwise, return NULL.  */
10624 
10625 static const char *
10626 fixed_type_info (struct type *type)
10627 {
10628   const char *name = ada_type_name (type);
10629   enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10630 
10631   if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10632     {
10633       const char *tail = strstr (name, "___XF_");
10634 
10635       if (tail == NULL)
10636         return NULL;
10637       else
10638         return tail + 5;
10639     }
10640   else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10641     return fixed_type_info (TYPE_TARGET_TYPE (type));
10642   else
10643     return NULL;
10644 }
10645 
10646 /* Returns non-zero iff TYPE represents an Ada fixed-point type.  */
10647 
10648 int
10649 ada_is_fixed_point_type (struct type *type)
10650 {
10651   return fixed_type_info (type) != NULL;
10652 }
10653 
10654 /* Return non-zero iff TYPE represents a System.Address type.  */
10655 
10656 int
10657 ada_is_system_address_type (struct type *type)
10658 {
10659   return (TYPE_NAME (type)
10660           && strcmp (TYPE_NAME (type), "system__address") == 0);
10661 }
10662 
10663 /* Assuming that TYPE is the representation of an Ada fixed-point
10664    type, return its delta, or -1 if the type is malformed and the
10665    delta cannot be determined.  */
10666 
10667 DOUBLEST
10668 ada_delta (struct type *type)
10669 {
10670   const char *encoding = fixed_type_info (type);
10671   DOUBLEST num, den;
10672 
10673   /* Strictly speaking, num and den are encoded as integer.  However,
10674      they may not fit into a long, and they will have to be converted
10675      to DOUBLEST anyway.  So scan them as DOUBLEST.  */
10676   if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10677 	      &num, &den) < 2)
10678     return -1.0;
10679   else
10680     return num / den;
10681 }
10682 
10683 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10684    factor ('SMALL value) associated with the type.  */
10685 
10686 static DOUBLEST
10687 scaling_factor (struct type *type)
10688 {
10689   const char *encoding = fixed_type_info (type);
10690   DOUBLEST num0, den0, num1, den1;
10691   int n;
10692 
10693   /* Strictly speaking, num's and den's are encoded as integer.  However,
10694      they may not fit into a long, and they will have to be converted
10695      to DOUBLEST anyway.  So scan them as DOUBLEST.  */
10696   n = sscanf (encoding,
10697 	      "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10698 	      "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10699 	      &num0, &den0, &num1, &den1);
10700 
10701   if (n < 2)
10702     return 1.0;
10703   else if (n == 4)
10704     return num1 / den1;
10705   else
10706     return num0 / den0;
10707 }
10708 
10709 
10710 /* Assuming that X is the representation of a value of fixed-point
10711    type TYPE, return its floating-point equivalent.  */
10712 
10713 DOUBLEST
10714 ada_fixed_to_float (struct type *type, LONGEST x)
10715 {
10716   return (DOUBLEST) x *scaling_factor (type);
10717 }
10718 
10719 /* The representation of a fixed-point value of type TYPE
10720    corresponding to the value X.  */
10721 
10722 LONGEST
10723 ada_float_to_fixed (struct type *type, DOUBLEST x)
10724 {
10725   return (LONGEST) (x / scaling_factor (type) + 0.5);
10726 }
10727 
10728 
10729 
10730                                 /* Range types */
10731 
10732 /* Scan STR beginning at position K for a discriminant name, and
10733    return the value of that discriminant field of DVAL in *PX.  If
10734    PNEW_K is not null, put the position of the character beyond the
10735    name scanned in *PNEW_K.  Return 1 if successful; return 0 and do
10736    not alter *PX and *PNEW_K if unsuccessful.  */
10737 
10738 static int
10739 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10740                     int *pnew_k)
10741 {
10742   static char *bound_buffer = NULL;
10743   static size_t bound_buffer_len = 0;
10744   char *bound;
10745   char *pend;
10746   struct value *bound_val;
10747 
10748   if (dval == NULL || str == NULL || str[k] == '\0')
10749     return 0;
10750 
10751   pend = strstr (str + k, "__");
10752   if (pend == NULL)
10753     {
10754       bound = str + k;
10755       k += strlen (bound);
10756     }
10757   else
10758     {
10759       GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10760       bound = bound_buffer;
10761       strncpy (bound_buffer, str + k, pend - (str + k));
10762       bound[pend - (str + k)] = '\0';
10763       k = pend - str;
10764     }
10765 
10766   bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10767   if (bound_val == NULL)
10768     return 0;
10769 
10770   *px = value_as_long (bound_val);
10771   if (pnew_k != NULL)
10772     *pnew_k = k;
10773   return 1;
10774 }
10775 
10776 /* Value of variable named NAME in the current environment.  If
10777    no such variable found, then if ERR_MSG is null, returns 0, and
10778    otherwise causes an error with message ERR_MSG.  */
10779 
10780 static struct value *
10781 get_var_value (char *name, char *err_msg)
10782 {
10783   struct ada_symbol_info *syms;
10784   int nsyms;
10785 
10786   nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10787                                   &syms);
10788 
10789   if (nsyms != 1)
10790     {
10791       if (err_msg == NULL)
10792         return 0;
10793       else
10794         error (("%s"), err_msg);
10795     }
10796 
10797   return value_of_variable (syms[0].sym, syms[0].block);
10798 }
10799 
10800 /* Value of integer variable named NAME in the current environment.  If
10801    no such variable found, returns 0, and sets *FLAG to 0.  If
10802    successful, sets *FLAG to 1.  */
10803 
10804 LONGEST
10805 get_int_var_value (char *name, int *flag)
10806 {
10807   struct value *var_val = get_var_value (name, 0);
10808 
10809   if (var_val == 0)
10810     {
10811       if (flag != NULL)
10812         *flag = 0;
10813       return 0;
10814     }
10815   else
10816     {
10817       if (flag != NULL)
10818         *flag = 1;
10819       return value_as_long (var_val);
10820     }
10821 }
10822 
10823 
10824 /* Return a range type whose base type is that of the range type named
10825    NAME in the current environment, and whose bounds are calculated
10826    from NAME according to the GNAT range encoding conventions.
10827    Extract discriminant values, if needed, from DVAL.  ORIG_TYPE is the
10828    corresponding range type from debug information; fall back to using it
10829    if symbol lookup fails.  If a new type must be created, allocate it
10830    like ORIG_TYPE was.  The bounds information, in general, is encoded
10831    in NAME, the base type given in the named range type.  */
10832 
10833 static struct type *
10834 to_fixed_range_type (struct type *raw_type, struct value *dval)
10835 {
10836   const char *name;
10837   struct type *base_type;
10838   char *subtype_info;
10839 
10840   gdb_assert (raw_type != NULL);
10841   gdb_assert (TYPE_NAME (raw_type) != NULL);
10842 
10843   if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10844     base_type = TYPE_TARGET_TYPE (raw_type);
10845   else
10846     base_type = raw_type;
10847 
10848   name = TYPE_NAME (raw_type);
10849   subtype_info = strstr (name, "___XD");
10850   if (subtype_info == NULL)
10851     {
10852       LONGEST L = ada_discrete_type_low_bound (raw_type);
10853       LONGEST U = ada_discrete_type_high_bound (raw_type);
10854 
10855       if (L < INT_MIN || U > INT_MAX)
10856 	return raw_type;
10857       else
10858 	return create_range_type (alloc_type_copy (raw_type), raw_type,
10859 				  ada_discrete_type_low_bound (raw_type),
10860 				  ada_discrete_type_high_bound (raw_type));
10861     }
10862   else
10863     {
10864       static char *name_buf = NULL;
10865       static size_t name_len = 0;
10866       int prefix_len = subtype_info - name;
10867       LONGEST L, U;
10868       struct type *type;
10869       char *bounds_str;
10870       int n;
10871 
10872       GROW_VECT (name_buf, name_len, prefix_len + 5);
10873       strncpy (name_buf, name, prefix_len);
10874       name_buf[prefix_len] = '\0';
10875 
10876       subtype_info += 5;
10877       bounds_str = strchr (subtype_info, '_');
10878       n = 1;
10879 
10880       if (*subtype_info == 'L')
10881         {
10882           if (!ada_scan_number (bounds_str, n, &L, &n)
10883               && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10884             return raw_type;
10885           if (bounds_str[n] == '_')
10886             n += 2;
10887           else if (bounds_str[n] == '.')     /* FIXME? SGI Workshop kludge.  */
10888             n += 1;
10889           subtype_info += 1;
10890         }
10891       else
10892         {
10893           int ok;
10894 
10895           strcpy (name_buf + prefix_len, "___L");
10896           L = get_int_var_value (name_buf, &ok);
10897           if (!ok)
10898             {
10899               lim_warning (_("Unknown lower bound, using 1."));
10900               L = 1;
10901             }
10902         }
10903 
10904       if (*subtype_info == 'U')
10905         {
10906           if (!ada_scan_number (bounds_str, n, &U, &n)
10907               && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10908             return raw_type;
10909         }
10910       else
10911         {
10912           int ok;
10913 
10914           strcpy (name_buf + prefix_len, "___U");
10915           U = get_int_var_value (name_buf, &ok);
10916           if (!ok)
10917             {
10918               lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10919               U = L;
10920             }
10921         }
10922 
10923       type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10924       TYPE_NAME (type) = name;
10925       return type;
10926     }
10927 }
10928 
10929 /* True iff NAME is the name of a range type.  */
10930 
10931 int
10932 ada_is_range_type_name (const char *name)
10933 {
10934   return (name != NULL && strstr (name, "___XD"));
10935 }
10936 
10937 
10938                                 /* Modular types */
10939 
10940 /* True iff TYPE is an Ada modular type.  */
10941 
10942 int
10943 ada_is_modular_type (struct type *type)
10944 {
10945   struct type *subranged_type = get_base_type (type);
10946 
10947   return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10948           && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10949           && TYPE_UNSIGNED (subranged_type));
10950 }
10951 
10952 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE.  */
10953 
10954 ULONGEST
10955 ada_modulus (struct type *type)
10956 {
10957   return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10958 }
10959 
10960 
10961 /* Ada exception catchpoint support:
10962    ---------------------------------
10963 
10964    We support 3 kinds of exception catchpoints:
10965      . catchpoints on Ada exceptions
10966      . catchpoints on unhandled Ada exceptions
10967      . catchpoints on failed assertions
10968 
10969    Exceptions raised during failed assertions, or unhandled exceptions
10970    could perfectly be caught with the general catchpoint on Ada exceptions.
10971    However, we can easily differentiate these two special cases, and having
10972    the option to distinguish these two cases from the rest can be useful
10973    to zero-in on certain situations.
10974 
10975    Exception catchpoints are a specialized form of breakpoint,
10976    since they rely on inserting breakpoints inside known routines
10977    of the GNAT runtime.  The implementation therefore uses a standard
10978    breakpoint structure of the BP_BREAKPOINT type, but with its own set
10979    of breakpoint_ops.
10980 
10981    Support in the runtime for exception catchpoints have been changed
10982    a few times already, and these changes affect the implementation
10983    of these catchpoints.  In order to be able to support several
10984    variants of the runtime, we use a sniffer that will determine
10985    the runtime variant used by the program being debugged.  */
10986 
10987 /* Ada's standard exceptions.  */
10988 
10989 static char *standard_exc[] = {
10990   "constraint_error",
10991   "program_error",
10992   "storage_error",
10993   "tasking_error"
10994 };
10995 
10996 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10997 
10998 /* A structure that describes how to support exception catchpoints
10999    for a given executable.  */
11000 
11001 struct exception_support_info
11002 {
11003    /* The name of the symbol to break on in order to insert
11004       a catchpoint on exceptions.  */
11005    const char *catch_exception_sym;
11006 
11007    /* The name of the symbol to break on in order to insert
11008       a catchpoint on unhandled exceptions.  */
11009    const char *catch_exception_unhandled_sym;
11010 
11011    /* The name of the symbol to break on in order to insert
11012       a catchpoint on failed assertions.  */
11013    const char *catch_assert_sym;
11014 
11015    /* Assuming that the inferior just triggered an unhandled exception
11016       catchpoint, this function is responsible for returning the address
11017       in inferior memory where the name of that exception is stored.
11018       Return zero if the address could not be computed.  */
11019    ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11020 };
11021 
11022 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11023 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11024 
11025 /* The following exception support info structure describes how to
11026    implement exception catchpoints with the latest version of the
11027    Ada runtime (as of 2007-03-06).  */
11028 
11029 static const struct exception_support_info default_exception_support_info =
11030 {
11031   "__gnat_debug_raise_exception", /* catch_exception_sym */
11032   "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11033   "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11034   ada_unhandled_exception_name_addr
11035 };
11036 
11037 /* The following exception support info structure describes how to
11038    implement exception catchpoints with a slightly older version
11039    of the Ada runtime.  */
11040 
11041 static const struct exception_support_info exception_support_info_fallback =
11042 {
11043   "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11044   "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11045   "system__assertions__raise_assert_failure",  /* catch_assert_sym */
11046   ada_unhandled_exception_name_addr_from_raise
11047 };
11048 
11049 /* Return nonzero if we can detect the exception support routines
11050    described in EINFO.
11051 
11052    This function errors out if an abnormal situation is detected
11053    (for instance, if we find the exception support routines, but
11054    that support is found to be incomplete).  */
11055 
11056 static int
11057 ada_has_this_exception_support (const struct exception_support_info *einfo)
11058 {
11059   struct symbol *sym;
11060 
11061   /* The symbol we're looking up is provided by a unit in the GNAT runtime
11062      that should be compiled with debugging information.  As a result, we
11063      expect to find that symbol in the symtabs.  */
11064 
11065   sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11066   if (sym == NULL)
11067     {
11068       /* Perhaps we did not find our symbol because the Ada runtime was
11069 	 compiled without debugging info, or simply stripped of it.
11070 	 It happens on some GNU/Linux distributions for instance, where
11071 	 users have to install a separate debug package in order to get
11072 	 the runtime's debugging info.  In that situation, let the user
11073 	 know why we cannot insert an Ada exception catchpoint.
11074 
11075 	 Note: Just for the purpose of inserting our Ada exception
11076 	 catchpoint, we could rely purely on the associated minimal symbol.
11077 	 But we would be operating in degraded mode anyway, since we are
11078 	 still lacking the debugging info needed later on to extract
11079 	 the name of the exception being raised (this name is printed in
11080 	 the catchpoint message, and is also used when trying to catch
11081 	 a specific exception).  We do not handle this case for now.  */
11082       struct minimal_symbol *msym
11083 	= lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11084 
11085       if (msym && MSYMBOL_TYPE (msym) != mst_solib_trampoline)
11086 	error (_("Your Ada runtime appears to be missing some debugging "
11087 		 "information.\nCannot insert Ada exception catchpoint "
11088 		 "in this configuration."));
11089 
11090       return 0;
11091     }
11092 
11093   /* Make sure that the symbol we found corresponds to a function.  */
11094 
11095   if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11096     error (_("Symbol \"%s\" is not a function (class = %d)"),
11097            SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11098 
11099   return 1;
11100 }
11101 
11102 /* Inspect the Ada runtime and determine which exception info structure
11103    should be used to provide support for exception catchpoints.
11104 
11105    This function will always set the per-inferior exception_info,
11106    or raise an error.  */
11107 
11108 static void
11109 ada_exception_support_info_sniffer (void)
11110 {
11111   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11112 
11113   /* If the exception info is already known, then no need to recompute it.  */
11114   if (data->exception_info != NULL)
11115     return;
11116 
11117   /* Check the latest (default) exception support info.  */
11118   if (ada_has_this_exception_support (&default_exception_support_info))
11119     {
11120       data->exception_info = &default_exception_support_info;
11121       return;
11122     }
11123 
11124   /* Try our fallback exception suport info.  */
11125   if (ada_has_this_exception_support (&exception_support_info_fallback))
11126     {
11127       data->exception_info = &exception_support_info_fallback;
11128       return;
11129     }
11130 
11131   /* Sometimes, it is normal for us to not be able to find the routine
11132      we are looking for.  This happens when the program is linked with
11133      the shared version of the GNAT runtime, and the program has not been
11134      started yet.  Inform the user of these two possible causes if
11135      applicable.  */
11136 
11137   if (ada_update_initial_language (language_unknown) != language_ada)
11138     error (_("Unable to insert catchpoint.  Is this an Ada main program?"));
11139 
11140   /* If the symbol does not exist, then check that the program is
11141      already started, to make sure that shared libraries have been
11142      loaded.  If it is not started, this may mean that the symbol is
11143      in a shared library.  */
11144 
11145   if (ptid_get_pid (inferior_ptid) == 0)
11146     error (_("Unable to insert catchpoint. Try to start the program first."));
11147 
11148   /* At this point, we know that we are debugging an Ada program and
11149      that the inferior has been started, but we still are not able to
11150      find the run-time symbols.  That can mean that we are in
11151      configurable run time mode, or that a-except as been optimized
11152      out by the linker...  In any case, at this point it is not worth
11153      supporting this feature.  */
11154 
11155   error (_("Cannot insert Ada exception catchpoints in this configuration."));
11156 }
11157 
11158 /* True iff FRAME is very likely to be that of a function that is
11159    part of the runtime system.  This is all very heuristic, but is
11160    intended to be used as advice as to what frames are uninteresting
11161    to most users.  */
11162 
11163 static int
11164 is_known_support_routine (struct frame_info *frame)
11165 {
11166   struct symtab_and_line sal;
11167   char *func_name;
11168   enum language func_lang;
11169   int i;
11170   const char *fullname;
11171 
11172   /* If this code does not have any debugging information (no symtab),
11173      This cannot be any user code.  */
11174 
11175   find_frame_sal (frame, &sal);
11176   if (sal.symtab == NULL)
11177     return 1;
11178 
11179   /* If there is a symtab, but the associated source file cannot be
11180      located, then assume this is not user code:  Selecting a frame
11181      for which we cannot display the code would not be very helpful
11182      for the user.  This should also take care of case such as VxWorks
11183      where the kernel has some debugging info provided for a few units.  */
11184 
11185   fullname = symtab_to_fullname (sal.symtab);
11186   if (access (fullname, R_OK) != 0)
11187     return 1;
11188 
11189   /* Check the unit filename againt the Ada runtime file naming.
11190      We also check the name of the objfile against the name of some
11191      known system libraries that sometimes come with debugging info
11192      too.  */
11193 
11194   for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11195     {
11196       re_comp (known_runtime_file_name_patterns[i]);
11197       if (re_exec (lbasename (sal.symtab->filename)))
11198         return 1;
11199       if (sal.symtab->objfile != NULL
11200           && re_exec (objfile_name (sal.symtab->objfile)))
11201         return 1;
11202     }
11203 
11204   /* Check whether the function is a GNAT-generated entity.  */
11205 
11206   find_frame_funname (frame, &func_name, &func_lang, NULL);
11207   if (func_name == NULL)
11208     return 1;
11209 
11210   for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11211     {
11212       re_comp (known_auxiliary_function_name_patterns[i]);
11213       if (re_exec (func_name))
11214 	{
11215 	  xfree (func_name);
11216 	  return 1;
11217 	}
11218     }
11219 
11220   xfree (func_name);
11221   return 0;
11222 }
11223 
11224 /* Find the first frame that contains debugging information and that is not
11225    part of the Ada run-time, starting from FI and moving upward.  */
11226 
11227 void
11228 ada_find_printable_frame (struct frame_info *fi)
11229 {
11230   for (; fi != NULL; fi = get_prev_frame (fi))
11231     {
11232       if (!is_known_support_routine (fi))
11233         {
11234           select_frame (fi);
11235           break;
11236         }
11237     }
11238 
11239 }
11240 
11241 /* Assuming that the inferior just triggered an unhandled exception
11242    catchpoint, return the address in inferior memory where the name
11243    of the exception is stored.
11244 
11245    Return zero if the address could not be computed.  */
11246 
11247 static CORE_ADDR
11248 ada_unhandled_exception_name_addr (void)
11249 {
11250   return parse_and_eval_address ("e.full_name");
11251 }
11252 
11253 /* Same as ada_unhandled_exception_name_addr, except that this function
11254    should be used when the inferior uses an older version of the runtime,
11255    where the exception name needs to be extracted from a specific frame
11256    several frames up in the callstack.  */
11257 
11258 static CORE_ADDR
11259 ada_unhandled_exception_name_addr_from_raise (void)
11260 {
11261   int frame_level;
11262   struct frame_info *fi;
11263   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11264   struct cleanup *old_chain;
11265 
11266   /* To determine the name of this exception, we need to select
11267      the frame corresponding to RAISE_SYM_NAME.  This frame is
11268      at least 3 levels up, so we simply skip the first 3 frames
11269      without checking the name of their associated function.  */
11270   fi = get_current_frame ();
11271   for (frame_level = 0; frame_level < 3; frame_level += 1)
11272     if (fi != NULL)
11273       fi = get_prev_frame (fi);
11274 
11275   old_chain = make_cleanup (null_cleanup, NULL);
11276   while (fi != NULL)
11277     {
11278       char *func_name;
11279       enum language func_lang;
11280 
11281       find_frame_funname (fi, &func_name, &func_lang, NULL);
11282       if (func_name != NULL)
11283 	{
11284 	  make_cleanup (xfree, func_name);
11285 
11286           if (strcmp (func_name,
11287 		      data->exception_info->catch_exception_sym) == 0)
11288 	    break; /* We found the frame we were looking for...  */
11289 	  fi = get_prev_frame (fi);
11290 	}
11291     }
11292   do_cleanups (old_chain);
11293 
11294   if (fi == NULL)
11295     return 0;
11296 
11297   select_frame (fi);
11298   return parse_and_eval_address ("id.full_name");
11299 }
11300 
11301 /* Assuming the inferior just triggered an Ada exception catchpoint
11302    (of any type), return the address in inferior memory where the name
11303    of the exception is stored, if applicable.
11304 
11305    Return zero if the address could not be computed, or if not relevant.  */
11306 
11307 static CORE_ADDR
11308 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11309                            struct breakpoint *b)
11310 {
11311   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11312 
11313   switch (ex)
11314     {
11315       case ada_catch_exception:
11316         return (parse_and_eval_address ("e.full_name"));
11317         break;
11318 
11319       case ada_catch_exception_unhandled:
11320         return data->exception_info->unhandled_exception_name_addr ();
11321         break;
11322 
11323       case ada_catch_assert:
11324         return 0;  /* Exception name is not relevant in this case.  */
11325         break;
11326 
11327       default:
11328         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11329         break;
11330     }
11331 
11332   return 0; /* Should never be reached.  */
11333 }
11334 
11335 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11336    any error that ada_exception_name_addr_1 might cause to be thrown.
11337    When an error is intercepted, a warning with the error message is printed,
11338    and zero is returned.  */
11339 
11340 static CORE_ADDR
11341 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11342                          struct breakpoint *b)
11343 {
11344   volatile struct gdb_exception e;
11345   CORE_ADDR result = 0;
11346 
11347   TRY_CATCH (e, RETURN_MASK_ERROR)
11348     {
11349       result = ada_exception_name_addr_1 (ex, b);
11350     }
11351 
11352   if (e.reason < 0)
11353     {
11354       warning (_("failed to get exception name: %s"), e.message);
11355       return 0;
11356     }
11357 
11358   return result;
11359 }
11360 
11361 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11362 
11363 /* Ada catchpoints.
11364 
11365    In the case of catchpoints on Ada exceptions, the catchpoint will
11366    stop the target on every exception the program throws.  When a user
11367    specifies the name of a specific exception, we translate this
11368    request into a condition expression (in text form), and then parse
11369    it into an expression stored in each of the catchpoint's locations.
11370    We then use this condition to check whether the exception that was
11371    raised is the one the user is interested in.  If not, then the
11372    target is resumed again.  We store the name of the requested
11373    exception, in order to be able to re-set the condition expression
11374    when symbols change.  */
11375 
11376 /* An instance of this type is used to represent an Ada catchpoint
11377    breakpoint location.  It includes a "struct bp_location" as a kind
11378    of base class; users downcast to "struct bp_location *" when
11379    needed.  */
11380 
11381 struct ada_catchpoint_location
11382 {
11383   /* The base class.  */
11384   struct bp_location base;
11385 
11386   /* The condition that checks whether the exception that was raised
11387      is the specific exception the user specified on catchpoint
11388      creation.  */
11389   struct expression *excep_cond_expr;
11390 };
11391 
11392 /* Implement the DTOR method in the bp_location_ops structure for all
11393    Ada exception catchpoint kinds.  */
11394 
11395 static void
11396 ada_catchpoint_location_dtor (struct bp_location *bl)
11397 {
11398   struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11399 
11400   xfree (al->excep_cond_expr);
11401 }
11402 
11403 /* The vtable to be used in Ada catchpoint locations.  */
11404 
11405 static const struct bp_location_ops ada_catchpoint_location_ops =
11406 {
11407   ada_catchpoint_location_dtor
11408 };
11409 
11410 /* An instance of this type is used to represent an Ada catchpoint.
11411    It includes a "struct breakpoint" as a kind of base class; users
11412    downcast to "struct breakpoint *" when needed.  */
11413 
11414 struct ada_catchpoint
11415 {
11416   /* The base class.  */
11417   struct breakpoint base;
11418 
11419   /* The name of the specific exception the user specified.  */
11420   char *excep_string;
11421 };
11422 
11423 /* Parse the exception condition string in the context of each of the
11424    catchpoint's locations, and store them for later evaluation.  */
11425 
11426 static void
11427 create_excep_cond_exprs (struct ada_catchpoint *c)
11428 {
11429   struct cleanup *old_chain;
11430   struct bp_location *bl;
11431   char *cond_string;
11432 
11433   /* Nothing to do if there's no specific exception to catch.  */
11434   if (c->excep_string == NULL)
11435     return;
11436 
11437   /* Same if there are no locations... */
11438   if (c->base.loc == NULL)
11439     return;
11440 
11441   /* Compute the condition expression in text form, from the specific
11442      expection we want to catch.  */
11443   cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11444   old_chain = make_cleanup (xfree, cond_string);
11445 
11446   /* Iterate over all the catchpoint's locations, and parse an
11447      expression for each.  */
11448   for (bl = c->base.loc; bl != NULL; bl = bl->next)
11449     {
11450       struct ada_catchpoint_location *ada_loc
11451 	= (struct ada_catchpoint_location *) bl;
11452       struct expression *exp = NULL;
11453 
11454       if (!bl->shlib_disabled)
11455 	{
11456 	  volatile struct gdb_exception e;
11457 	  const char *s;
11458 
11459 	  s = cond_string;
11460 	  TRY_CATCH (e, RETURN_MASK_ERROR)
11461 	    {
11462 	      exp = parse_exp_1 (&s, bl->address,
11463 				 block_for_pc (bl->address), 0);
11464 	    }
11465 	  if (e.reason < 0)
11466 	    {
11467 	      warning (_("failed to reevaluate internal exception condition "
11468 			 "for catchpoint %d: %s"),
11469 		       c->base.number, e.message);
11470 	      /* There is a bug in GCC on sparc-solaris when building with
11471 		 optimization which causes EXP to change unexpectedly
11472 		 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
11473 		 The problem should be fixed starting with GCC 4.9.
11474 		 In the meantime, work around it by forcing EXP back
11475 		 to NULL.  */
11476 	      exp = NULL;
11477 	    }
11478 	}
11479 
11480       ada_loc->excep_cond_expr = exp;
11481     }
11482 
11483   do_cleanups (old_chain);
11484 }
11485 
11486 /* Implement the DTOR method in the breakpoint_ops structure for all
11487    exception catchpoint kinds.  */
11488 
11489 static void
11490 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11491 {
11492   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11493 
11494   xfree (c->excep_string);
11495 
11496   bkpt_breakpoint_ops.dtor (b);
11497 }
11498 
11499 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11500    structure for all exception catchpoint kinds.  */
11501 
11502 static struct bp_location *
11503 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
11504 			     struct breakpoint *self)
11505 {
11506   struct ada_catchpoint_location *loc;
11507 
11508   loc = XNEW (struct ada_catchpoint_location);
11509   init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11510   loc->excep_cond_expr = NULL;
11511   return &loc->base;
11512 }
11513 
11514 /* Implement the RE_SET method in the breakpoint_ops structure for all
11515    exception catchpoint kinds.  */
11516 
11517 static void
11518 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
11519 {
11520   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11521 
11522   /* Call the base class's method.  This updates the catchpoint's
11523      locations.  */
11524   bkpt_breakpoint_ops.re_set (b);
11525 
11526   /* Reparse the exception conditional expressions.  One for each
11527      location.  */
11528   create_excep_cond_exprs (c);
11529 }
11530 
11531 /* Returns true if we should stop for this breakpoint hit.  If the
11532    user specified a specific exception, we only want to cause a stop
11533    if the program thrown that exception.  */
11534 
11535 static int
11536 should_stop_exception (const struct bp_location *bl)
11537 {
11538   struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11539   const struct ada_catchpoint_location *ada_loc
11540     = (const struct ada_catchpoint_location *) bl;
11541   volatile struct gdb_exception ex;
11542   int stop;
11543 
11544   /* With no specific exception, should always stop.  */
11545   if (c->excep_string == NULL)
11546     return 1;
11547 
11548   if (ada_loc->excep_cond_expr == NULL)
11549     {
11550       /* We will have a NULL expression if back when we were creating
11551 	 the expressions, this location's had failed to parse.  */
11552       return 1;
11553     }
11554 
11555   stop = 1;
11556   TRY_CATCH (ex, RETURN_MASK_ALL)
11557     {
11558       struct value *mark;
11559 
11560       mark = value_mark ();
11561       stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11562       value_free_to_mark (mark);
11563     }
11564   if (ex.reason < 0)
11565     exception_fprintf (gdb_stderr, ex,
11566 		       _("Error in testing exception condition:\n"));
11567   return stop;
11568 }
11569 
11570 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11571    for all exception catchpoint kinds.  */
11572 
11573 static void
11574 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11575 {
11576   bs->stop = should_stop_exception (bs->bp_location_at);
11577 }
11578 
11579 /* Implement the PRINT_IT method in the breakpoint_ops structure
11580    for all exception catchpoint kinds.  */
11581 
11582 static enum print_stop_action
11583 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
11584 {
11585   struct ui_out *uiout = current_uiout;
11586   struct breakpoint *b = bs->breakpoint_at;
11587 
11588   annotate_catchpoint (b->number);
11589 
11590   if (ui_out_is_mi_like_p (uiout))
11591     {
11592       ui_out_field_string (uiout, "reason",
11593 			   async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11594       ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11595     }
11596 
11597   ui_out_text (uiout,
11598                b->disposition == disp_del ? "\nTemporary catchpoint "
11599 	                                  : "\nCatchpoint ");
11600   ui_out_field_int (uiout, "bkptno", b->number);
11601   ui_out_text (uiout, ", ");
11602 
11603   switch (ex)
11604     {
11605       case ada_catch_exception:
11606       case ada_catch_exception_unhandled:
11607 	{
11608 	  const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11609 	  char exception_name[256];
11610 
11611 	  if (addr != 0)
11612 	    {
11613 	      read_memory (addr, (gdb_byte *) exception_name,
11614 			   sizeof (exception_name) - 1);
11615 	      exception_name [sizeof (exception_name) - 1] = '\0';
11616 	    }
11617 	  else
11618 	    {
11619 	      /* For some reason, we were unable to read the exception
11620 		 name.  This could happen if the Runtime was compiled
11621 		 without debugging info, for instance.  In that case,
11622 		 just replace the exception name by the generic string
11623 		 "exception" - it will read as "an exception" in the
11624 		 notification we are about to print.  */
11625 	      memcpy (exception_name, "exception", sizeof ("exception"));
11626 	    }
11627 	  /* In the case of unhandled exception breakpoints, we print
11628 	     the exception name as "unhandled EXCEPTION_NAME", to make
11629 	     it clearer to the user which kind of catchpoint just got
11630 	     hit.  We used ui_out_text to make sure that this extra
11631 	     info does not pollute the exception name in the MI case.  */
11632 	  if (ex == ada_catch_exception_unhandled)
11633 	    ui_out_text (uiout, "unhandled ");
11634 	  ui_out_field_string (uiout, "exception-name", exception_name);
11635 	}
11636 	break;
11637       case ada_catch_assert:
11638 	/* In this case, the name of the exception is not really
11639 	   important.  Just print "failed assertion" to make it clearer
11640 	   that his program just hit an assertion-failure catchpoint.
11641 	   We used ui_out_text because this info does not belong in
11642 	   the MI output.  */
11643 	ui_out_text (uiout, "failed assertion");
11644 	break;
11645     }
11646   ui_out_text (uiout, " at ");
11647   ada_find_printable_frame (get_current_frame ());
11648 
11649   return PRINT_SRC_AND_LOC;
11650 }
11651 
11652 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11653    for all exception catchpoint kinds.  */
11654 
11655 static void
11656 print_one_exception (enum ada_exception_catchpoint_kind ex,
11657                      struct breakpoint *b, struct bp_location **last_loc)
11658 {
11659   struct ui_out *uiout = current_uiout;
11660   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11661   struct value_print_options opts;
11662 
11663   get_user_print_options (&opts);
11664   if (opts.addressprint)
11665     {
11666       annotate_field (4);
11667       ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11668     }
11669 
11670   annotate_field (5);
11671   *last_loc = b->loc;
11672   switch (ex)
11673     {
11674       case ada_catch_exception:
11675         if (c->excep_string != NULL)
11676           {
11677             char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11678 
11679             ui_out_field_string (uiout, "what", msg);
11680             xfree (msg);
11681           }
11682         else
11683           ui_out_field_string (uiout, "what", "all Ada exceptions");
11684 
11685         break;
11686 
11687       case ada_catch_exception_unhandled:
11688         ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11689         break;
11690 
11691       case ada_catch_assert:
11692         ui_out_field_string (uiout, "what", "failed Ada assertions");
11693         break;
11694 
11695       default:
11696         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11697         break;
11698     }
11699 }
11700 
11701 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11702    for all exception catchpoint kinds.  */
11703 
11704 static void
11705 print_mention_exception (enum ada_exception_catchpoint_kind ex,
11706                          struct breakpoint *b)
11707 {
11708   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11709   struct ui_out *uiout = current_uiout;
11710 
11711   ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11712                                                  : _("Catchpoint "));
11713   ui_out_field_int (uiout, "bkptno", b->number);
11714   ui_out_text (uiout, ": ");
11715 
11716   switch (ex)
11717     {
11718       case ada_catch_exception:
11719         if (c->excep_string != NULL)
11720 	  {
11721 	    char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11722 	    struct cleanup *old_chain = make_cleanup (xfree, info);
11723 
11724 	    ui_out_text (uiout, info);
11725 	    do_cleanups (old_chain);
11726 	  }
11727         else
11728           ui_out_text (uiout, _("all Ada exceptions"));
11729         break;
11730 
11731       case ada_catch_exception_unhandled:
11732         ui_out_text (uiout, _("unhandled Ada exceptions"));
11733         break;
11734 
11735       case ada_catch_assert:
11736         ui_out_text (uiout, _("failed Ada assertions"));
11737         break;
11738 
11739       default:
11740         internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11741         break;
11742     }
11743 }
11744 
11745 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11746    for all exception catchpoint kinds.  */
11747 
11748 static void
11749 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
11750 			  struct breakpoint *b, struct ui_file *fp)
11751 {
11752   struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11753 
11754   switch (ex)
11755     {
11756       case ada_catch_exception:
11757 	fprintf_filtered (fp, "catch exception");
11758 	if (c->excep_string != NULL)
11759 	  fprintf_filtered (fp, " %s", c->excep_string);
11760 	break;
11761 
11762       case ada_catch_exception_unhandled:
11763 	fprintf_filtered (fp, "catch exception unhandled");
11764 	break;
11765 
11766       case ada_catch_assert:
11767 	fprintf_filtered (fp, "catch assert");
11768 	break;
11769 
11770       default:
11771 	internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11772     }
11773   print_recreate_thread (b, fp);
11774 }
11775 
11776 /* Virtual table for "catch exception" breakpoints.  */
11777 
11778 static void
11779 dtor_catch_exception (struct breakpoint *b)
11780 {
11781   dtor_exception (ada_catch_exception, b);
11782 }
11783 
11784 static struct bp_location *
11785 allocate_location_catch_exception (struct breakpoint *self)
11786 {
11787   return allocate_location_exception (ada_catch_exception, self);
11788 }
11789 
11790 static void
11791 re_set_catch_exception (struct breakpoint *b)
11792 {
11793   re_set_exception (ada_catch_exception, b);
11794 }
11795 
11796 static void
11797 check_status_catch_exception (bpstat bs)
11798 {
11799   check_status_exception (ada_catch_exception, bs);
11800 }
11801 
11802 static enum print_stop_action
11803 print_it_catch_exception (bpstat bs)
11804 {
11805   return print_it_exception (ada_catch_exception, bs);
11806 }
11807 
11808 static void
11809 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11810 {
11811   print_one_exception (ada_catch_exception, b, last_loc);
11812 }
11813 
11814 static void
11815 print_mention_catch_exception (struct breakpoint *b)
11816 {
11817   print_mention_exception (ada_catch_exception, b);
11818 }
11819 
11820 static void
11821 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11822 {
11823   print_recreate_exception (ada_catch_exception, b, fp);
11824 }
11825 
11826 static struct breakpoint_ops catch_exception_breakpoint_ops;
11827 
11828 /* Virtual table for "catch exception unhandled" breakpoints.  */
11829 
11830 static void
11831 dtor_catch_exception_unhandled (struct breakpoint *b)
11832 {
11833   dtor_exception (ada_catch_exception_unhandled, b);
11834 }
11835 
11836 static struct bp_location *
11837 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11838 {
11839   return allocate_location_exception (ada_catch_exception_unhandled, self);
11840 }
11841 
11842 static void
11843 re_set_catch_exception_unhandled (struct breakpoint *b)
11844 {
11845   re_set_exception (ada_catch_exception_unhandled, b);
11846 }
11847 
11848 static void
11849 check_status_catch_exception_unhandled (bpstat bs)
11850 {
11851   check_status_exception (ada_catch_exception_unhandled, bs);
11852 }
11853 
11854 static enum print_stop_action
11855 print_it_catch_exception_unhandled (bpstat bs)
11856 {
11857   return print_it_exception (ada_catch_exception_unhandled, bs);
11858 }
11859 
11860 static void
11861 print_one_catch_exception_unhandled (struct breakpoint *b,
11862 				     struct bp_location **last_loc)
11863 {
11864   print_one_exception (ada_catch_exception_unhandled, b, last_loc);
11865 }
11866 
11867 static void
11868 print_mention_catch_exception_unhandled (struct breakpoint *b)
11869 {
11870   print_mention_exception (ada_catch_exception_unhandled, b);
11871 }
11872 
11873 static void
11874 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11875 					  struct ui_file *fp)
11876 {
11877   print_recreate_exception (ada_catch_exception_unhandled, b, fp);
11878 }
11879 
11880 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11881 
11882 /* Virtual table for "catch assert" breakpoints.  */
11883 
11884 static void
11885 dtor_catch_assert (struct breakpoint *b)
11886 {
11887   dtor_exception (ada_catch_assert, b);
11888 }
11889 
11890 static struct bp_location *
11891 allocate_location_catch_assert (struct breakpoint *self)
11892 {
11893   return allocate_location_exception (ada_catch_assert, self);
11894 }
11895 
11896 static void
11897 re_set_catch_assert (struct breakpoint *b)
11898 {
11899   re_set_exception (ada_catch_assert, b);
11900 }
11901 
11902 static void
11903 check_status_catch_assert (bpstat bs)
11904 {
11905   check_status_exception (ada_catch_assert, bs);
11906 }
11907 
11908 static enum print_stop_action
11909 print_it_catch_assert (bpstat bs)
11910 {
11911   return print_it_exception (ada_catch_assert, bs);
11912 }
11913 
11914 static void
11915 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11916 {
11917   print_one_exception (ada_catch_assert, b, last_loc);
11918 }
11919 
11920 static void
11921 print_mention_catch_assert (struct breakpoint *b)
11922 {
11923   print_mention_exception (ada_catch_assert, b);
11924 }
11925 
11926 static void
11927 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11928 {
11929   print_recreate_exception (ada_catch_assert, b, fp);
11930 }
11931 
11932 static struct breakpoint_ops catch_assert_breakpoint_ops;
11933 
11934 /* Return a newly allocated copy of the first space-separated token
11935    in ARGSP, and then adjust ARGSP to point immediately after that
11936    token.
11937 
11938    Return NULL if ARGPS does not contain any more tokens.  */
11939 
11940 static char *
11941 ada_get_next_arg (char **argsp)
11942 {
11943   char *args = *argsp;
11944   char *end;
11945   char *result;
11946 
11947   args = skip_spaces (args);
11948   if (args[0] == '\0')
11949     return NULL; /* No more arguments.  */
11950 
11951   /* Find the end of the current argument.  */
11952 
11953   end = skip_to_space (args);
11954 
11955   /* Adjust ARGSP to point to the start of the next argument.  */
11956 
11957   *argsp = end;
11958 
11959   /* Make a copy of the current argument and return it.  */
11960 
11961   result = xmalloc (end - args + 1);
11962   strncpy (result, args, end - args);
11963   result[end - args] = '\0';
11964 
11965   return result;
11966 }
11967 
11968 /* Split the arguments specified in a "catch exception" command.
11969    Set EX to the appropriate catchpoint type.
11970    Set EXCEP_STRING to the name of the specific exception if
11971    specified by the user.
11972    If a condition is found at the end of the arguments, the condition
11973    expression is stored in COND_STRING (memory must be deallocated
11974    after use).  Otherwise COND_STRING is set to NULL.  */
11975 
11976 static void
11977 catch_ada_exception_command_split (char *args,
11978                                    enum ada_exception_catchpoint_kind *ex,
11979 				   char **excep_string,
11980 				   char **cond_string)
11981 {
11982   struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11983   char *exception_name;
11984   char *cond = NULL;
11985 
11986   exception_name = ada_get_next_arg (&args);
11987   if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11988     {
11989       /* This is not an exception name; this is the start of a condition
11990 	 expression for a catchpoint on all exceptions.  So, "un-get"
11991 	 this token, and set exception_name to NULL.  */
11992       xfree (exception_name);
11993       exception_name = NULL;
11994       args -= 2;
11995     }
11996   make_cleanup (xfree, exception_name);
11997 
11998   /* Check to see if we have a condition.  */
11999 
12000   args = skip_spaces (args);
12001   if (strncmp (args, "if", 2) == 0
12002       && (isspace (args[2]) || args[2] == '\0'))
12003     {
12004       args += 2;
12005       args = skip_spaces (args);
12006 
12007       if (args[0] == '\0')
12008         error (_("Condition missing after `if' keyword"));
12009       cond = xstrdup (args);
12010       make_cleanup (xfree, cond);
12011 
12012       args += strlen (args);
12013     }
12014 
12015   /* Check that we do not have any more arguments.  Anything else
12016      is unexpected.  */
12017 
12018   if (args[0] != '\0')
12019     error (_("Junk at end of expression"));
12020 
12021   discard_cleanups (old_chain);
12022 
12023   if (exception_name == NULL)
12024     {
12025       /* Catch all exceptions.  */
12026       *ex = ada_catch_exception;
12027       *excep_string = NULL;
12028     }
12029   else if (strcmp (exception_name, "unhandled") == 0)
12030     {
12031       /* Catch unhandled exceptions.  */
12032       *ex = ada_catch_exception_unhandled;
12033       *excep_string = NULL;
12034     }
12035   else
12036     {
12037       /* Catch a specific exception.  */
12038       *ex = ada_catch_exception;
12039       *excep_string = exception_name;
12040     }
12041   *cond_string = cond;
12042 }
12043 
12044 /* Return the name of the symbol on which we should break in order to
12045    implement a catchpoint of the EX kind.  */
12046 
12047 static const char *
12048 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12049 {
12050   struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12051 
12052   gdb_assert (data->exception_info != NULL);
12053 
12054   switch (ex)
12055     {
12056       case ada_catch_exception:
12057         return (data->exception_info->catch_exception_sym);
12058         break;
12059       case ada_catch_exception_unhandled:
12060         return (data->exception_info->catch_exception_unhandled_sym);
12061         break;
12062       case ada_catch_assert:
12063         return (data->exception_info->catch_assert_sym);
12064         break;
12065       default:
12066         internal_error (__FILE__, __LINE__,
12067                         _("unexpected catchpoint kind (%d)"), ex);
12068     }
12069 }
12070 
12071 /* Return the breakpoint ops "virtual table" used for catchpoints
12072    of the EX kind.  */
12073 
12074 static const struct breakpoint_ops *
12075 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12076 {
12077   switch (ex)
12078     {
12079       case ada_catch_exception:
12080         return (&catch_exception_breakpoint_ops);
12081         break;
12082       case ada_catch_exception_unhandled:
12083         return (&catch_exception_unhandled_breakpoint_ops);
12084         break;
12085       case ada_catch_assert:
12086         return (&catch_assert_breakpoint_ops);
12087         break;
12088       default:
12089         internal_error (__FILE__, __LINE__,
12090                         _("unexpected catchpoint kind (%d)"), ex);
12091     }
12092 }
12093 
12094 /* Return the condition that will be used to match the current exception
12095    being raised with the exception that the user wants to catch.  This
12096    assumes that this condition is used when the inferior just triggered
12097    an exception catchpoint.
12098 
12099    The string returned is a newly allocated string that needs to be
12100    deallocated later.  */
12101 
12102 static char *
12103 ada_exception_catchpoint_cond_string (const char *excep_string)
12104 {
12105   int i;
12106 
12107   /* The standard exceptions are a special case.  They are defined in
12108      runtime units that have been compiled without debugging info; if
12109      EXCEP_STRING is the not-fully-qualified name of a standard
12110      exception (e.g. "constraint_error") then, during the evaluation
12111      of the condition expression, the symbol lookup on this name would
12112      *not* return this standard exception.  The catchpoint condition
12113      may then be set only on user-defined exceptions which have the
12114      same not-fully-qualified name (e.g. my_package.constraint_error).
12115 
12116      To avoid this unexcepted behavior, these standard exceptions are
12117      systematically prefixed by "standard".  This means that "catch
12118      exception constraint_error" is rewritten into "catch exception
12119      standard.constraint_error".
12120 
12121      If an exception named contraint_error is defined in another package of
12122      the inferior program, then the only way to specify this exception as a
12123      breakpoint condition is to use its fully-qualified named:
12124      e.g. my_package.constraint_error.  */
12125 
12126   for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12127     {
12128       if (strcmp (standard_exc [i], excep_string) == 0)
12129 	{
12130           return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12131                              excep_string);
12132 	}
12133     }
12134   return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12135 }
12136 
12137 /* Return the symtab_and_line that should be used to insert an exception
12138    catchpoint of the TYPE kind.
12139 
12140    EXCEP_STRING should contain the name of a specific exception that
12141    the catchpoint should catch, or NULL otherwise.
12142 
12143    ADDR_STRING returns the name of the function where the real
12144    breakpoint that implements the catchpoints is set, depending on the
12145    type of catchpoint we need to create.  */
12146 
12147 static struct symtab_and_line
12148 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12149 		   char **addr_string, const struct breakpoint_ops **ops)
12150 {
12151   const char *sym_name;
12152   struct symbol *sym;
12153 
12154   /* First, find out which exception support info to use.  */
12155   ada_exception_support_info_sniffer ();
12156 
12157   /* Then lookup the function on which we will break in order to catch
12158      the Ada exceptions requested by the user.  */
12159   sym_name = ada_exception_sym_name (ex);
12160   sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12161 
12162   /* We can assume that SYM is not NULL at this stage.  If the symbol
12163      did not exist, ada_exception_support_info_sniffer would have
12164      raised an exception.
12165 
12166      Also, ada_exception_support_info_sniffer should have already
12167      verified that SYM is a function symbol.  */
12168   gdb_assert (sym != NULL);
12169   gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12170 
12171   /* Set ADDR_STRING.  */
12172   *addr_string = xstrdup (sym_name);
12173 
12174   /* Set OPS.  */
12175   *ops = ada_exception_breakpoint_ops (ex);
12176 
12177   return find_function_start_sal (sym, 1);
12178 }
12179 
12180 /* Create an Ada exception catchpoint.
12181 
12182    EX_KIND is the kind of exception catchpoint to be created.
12183 
12184    If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12185    for all exceptions.  Otherwise, EXCEPT_STRING indicates the name
12186    of the exception to which this catchpoint applies.  When not NULL,
12187    the string must be allocated on the heap, and its deallocation
12188    is no longer the responsibility of the caller.
12189 
12190    COND_STRING, if not NULL, is the catchpoint condition.  This string
12191    must be allocated on the heap, and its deallocation is no longer
12192    the responsibility of the caller.
12193 
12194    TEMPFLAG, if nonzero, means that the underlying breakpoint
12195    should be temporary.
12196 
12197    FROM_TTY is the usual argument passed to all commands implementations.  */
12198 
12199 void
12200 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12201 				 enum ada_exception_catchpoint_kind ex_kind,
12202 				 char *excep_string,
12203 				 char *cond_string,
12204 				 int tempflag,
12205 				 int disabled,
12206 				 int from_tty)
12207 {
12208   struct ada_catchpoint *c;
12209   char *addr_string = NULL;
12210   const struct breakpoint_ops *ops = NULL;
12211   struct symtab_and_line sal
12212     = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12213 
12214   c = XNEW (struct ada_catchpoint);
12215   init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
12216 				 ops, tempflag, disabled, from_tty);
12217   c->excep_string = excep_string;
12218   create_excep_cond_exprs (c);
12219   if (cond_string != NULL)
12220     set_breakpoint_condition (&c->base, cond_string, from_tty);
12221   install_breakpoint (0, &c->base, 1);
12222 }
12223 
12224 /* Implement the "catch exception" command.  */
12225 
12226 static void
12227 catch_ada_exception_command (char *arg, int from_tty,
12228 			     struct cmd_list_element *command)
12229 {
12230   struct gdbarch *gdbarch = get_current_arch ();
12231   int tempflag;
12232   enum ada_exception_catchpoint_kind ex_kind;
12233   char *excep_string = NULL;
12234   char *cond_string = NULL;
12235 
12236   tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12237 
12238   if (!arg)
12239     arg = "";
12240   catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12241 				     &cond_string);
12242   create_ada_exception_catchpoint (gdbarch, ex_kind,
12243 				   excep_string, cond_string,
12244 				   tempflag, 1 /* enabled */,
12245 				   from_tty);
12246 }
12247 
12248 /* Split the arguments specified in a "catch assert" command.
12249 
12250    ARGS contains the command's arguments (or the empty string if
12251    no arguments were passed).
12252 
12253    If ARGS contains a condition, set COND_STRING to that condition
12254    (the memory needs to be deallocated after use).  */
12255 
12256 static void
12257 catch_ada_assert_command_split (char *args, char **cond_string)
12258 {
12259   args = skip_spaces (args);
12260 
12261   /* Check whether a condition was provided.  */
12262   if (strncmp (args, "if", 2) == 0
12263       && (isspace (args[2]) || args[2] == '\0'))
12264     {
12265       args += 2;
12266       args = skip_spaces (args);
12267       if (args[0] == '\0')
12268         error (_("condition missing after `if' keyword"));
12269       *cond_string = xstrdup (args);
12270     }
12271 
12272   /* Otherwise, there should be no other argument at the end of
12273      the command.  */
12274   else if (args[0] != '\0')
12275     error (_("Junk at end of arguments."));
12276 }
12277 
12278 /* Implement the "catch assert" command.  */
12279 
12280 static void
12281 catch_assert_command (char *arg, int from_tty,
12282 		      struct cmd_list_element *command)
12283 {
12284   struct gdbarch *gdbarch = get_current_arch ();
12285   int tempflag;
12286   char *cond_string = NULL;
12287 
12288   tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12289 
12290   if (!arg)
12291     arg = "";
12292   catch_ada_assert_command_split (arg, &cond_string);
12293   create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12294 				   NULL, cond_string,
12295 				   tempflag, 1 /* enabled */,
12296 				   from_tty);
12297 }
12298 
12299 /* Return non-zero if the symbol SYM is an Ada exception object.  */
12300 
12301 static int
12302 ada_is_exception_sym (struct symbol *sym)
12303 {
12304   const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12305 
12306   return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12307           && SYMBOL_CLASS (sym) != LOC_BLOCK
12308           && SYMBOL_CLASS (sym) != LOC_CONST
12309           && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12310           && type_name != NULL && strcmp (type_name, "exception") == 0);
12311 }
12312 
12313 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12314    Ada exception object.  This matches all exceptions except the ones
12315    defined by the Ada language.  */
12316 
12317 static int
12318 ada_is_non_standard_exception_sym (struct symbol *sym)
12319 {
12320   int i;
12321 
12322   if (!ada_is_exception_sym (sym))
12323     return 0;
12324 
12325   for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12326     if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
12327       return 0;  /* A standard exception.  */
12328 
12329   /* Numeric_Error is also a standard exception, so exclude it.
12330      See the STANDARD_EXC description for more details as to why
12331      this exception is not listed in that array.  */
12332   if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
12333     return 0;
12334 
12335   return 1;
12336 }
12337 
12338 /* A helper function for qsort, comparing two struct ada_exc_info
12339    objects.
12340 
12341    The comparison is determined first by exception name, and then
12342    by exception address.  */
12343 
12344 static int
12345 compare_ada_exception_info (const void *a, const void *b)
12346 {
12347   const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
12348   const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
12349   int result;
12350 
12351   result = strcmp (exc_a->name, exc_b->name);
12352   if (result != 0)
12353     return result;
12354 
12355   if (exc_a->addr < exc_b->addr)
12356     return -1;
12357   if (exc_a->addr > exc_b->addr)
12358     return 1;
12359 
12360   return 0;
12361 }
12362 
12363 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12364    routine, but keeping the first SKIP elements untouched.
12365 
12366    All duplicates are also removed.  */
12367 
12368 static void
12369 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
12370 				      int skip)
12371 {
12372   struct ada_exc_info *to_sort
12373     = VEC_address (ada_exc_info, *exceptions) + skip;
12374   int to_sort_len
12375     = VEC_length (ada_exc_info, *exceptions) - skip;
12376   int i, j;
12377 
12378   qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
12379 	 compare_ada_exception_info);
12380 
12381   for (i = 1, j = 1; i < to_sort_len; i++)
12382     if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
12383       to_sort[j++] = to_sort[i];
12384   to_sort_len = j;
12385   VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
12386 }
12387 
12388 /* A function intended as the "name_matcher" callback in the struct
12389    quick_symbol_functions' expand_symtabs_matching method.
12390 
12391    SEARCH_NAME is the symbol's search name.
12392 
12393    If USER_DATA is not NULL, it is a pointer to a regext_t object
12394    used to match the symbol (by natural name).  Otherwise, when USER_DATA
12395    is null, no filtering is performed, and all symbols are a positive
12396    match.  */
12397 
12398 static int
12399 ada_exc_search_name_matches (const char *search_name, void *user_data)
12400 {
12401   regex_t *preg = user_data;
12402 
12403   if (preg == NULL)
12404     return 1;
12405 
12406   /* In Ada, the symbol "search name" is a linkage name, whereas
12407      the regular expression used to do the matching refers to
12408      the natural name.  So match against the decoded name.  */
12409   return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
12410 }
12411 
12412 /* Add all exceptions defined by the Ada standard whose name match
12413    a regular expression.
12414 
12415    If PREG is not NULL, then this regexp_t object is used to
12416    perform the symbol name matching.  Otherwise, no name-based
12417    filtering is performed.
12418 
12419    EXCEPTIONS is a vector of exceptions to which matching exceptions
12420    gets pushed.  */
12421 
12422 static void
12423 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12424 {
12425   int i;
12426 
12427   for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
12428     {
12429       if (preg == NULL
12430 	  || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
12431 	{
12432 	  struct bound_minimal_symbol msymbol
12433 	    = ada_lookup_simple_minsym (standard_exc[i]);
12434 
12435 	  if (msymbol.minsym != NULL)
12436 	    {
12437 	      struct ada_exc_info info
12438 		= {standard_exc[i], SYMBOL_VALUE_ADDRESS (msymbol.minsym)};
12439 
12440 	      VEC_safe_push (ada_exc_info, *exceptions, &info);
12441 	    }
12442 	}
12443     }
12444 }
12445 
12446 /* Add all Ada exceptions defined locally and accessible from the given
12447    FRAME.
12448 
12449    If PREG is not NULL, then this regexp_t object is used to
12450    perform the symbol name matching.  Otherwise, no name-based
12451    filtering is performed.
12452 
12453    EXCEPTIONS is a vector of exceptions to which matching exceptions
12454    gets pushed.  */
12455 
12456 static void
12457 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
12458 			       VEC(ada_exc_info) **exceptions)
12459 {
12460   struct block *block = get_frame_block (frame, 0);
12461 
12462   while (block != 0)
12463     {
12464       struct block_iterator iter;
12465       struct symbol *sym;
12466 
12467       ALL_BLOCK_SYMBOLS (block, iter, sym)
12468 	{
12469 	  switch (SYMBOL_CLASS (sym))
12470 	    {
12471 	    case LOC_TYPEDEF:
12472 	    case LOC_BLOCK:
12473 	    case LOC_CONST:
12474 	      break;
12475 	    default:
12476 	      if (ada_is_exception_sym (sym))
12477 		{
12478 		  struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
12479 					      SYMBOL_VALUE_ADDRESS (sym)};
12480 
12481 		  VEC_safe_push (ada_exc_info, *exceptions, &info);
12482 		}
12483 	    }
12484 	}
12485       if (BLOCK_FUNCTION (block) != NULL)
12486 	break;
12487       block = BLOCK_SUPERBLOCK (block);
12488     }
12489 }
12490 
12491 /* Add all exceptions defined globally whose name name match
12492    a regular expression, excluding standard exceptions.
12493 
12494    The reason we exclude standard exceptions is that they need
12495    to be handled separately: Standard exceptions are defined inside
12496    a runtime unit which is normally not compiled with debugging info,
12497    and thus usually do not show up in our symbol search.  However,
12498    if the unit was in fact built with debugging info, we need to
12499    exclude them because they would duplicate the entry we found
12500    during the special loop that specifically searches for those
12501    standard exceptions.
12502 
12503    If PREG is not NULL, then this regexp_t object is used to
12504    perform the symbol name matching.  Otherwise, no name-based
12505    filtering is performed.
12506 
12507    EXCEPTIONS is a vector of exceptions to which matching exceptions
12508    gets pushed.  */
12509 
12510 static void
12511 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
12512 {
12513   struct objfile *objfile;
12514   struct symtab *s;
12515 
12516   ALL_OBJFILES (objfile)
12517     if (objfile->sf)
12518       objfile->sf->qf->expand_symtabs_matching
12519 	(objfile, NULL, ada_exc_search_name_matches,
12520 	 VARIABLES_DOMAIN, preg);
12521 
12522   ALL_PRIMARY_SYMTABS (objfile, s)
12523     {
12524       struct blockvector *bv = BLOCKVECTOR (s);
12525       int i;
12526 
12527       for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12528 	{
12529 	  struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12530 	  struct block_iterator iter;
12531 	  struct symbol *sym;
12532 
12533 	  ALL_BLOCK_SYMBOLS (b, iter, sym)
12534 	    if (ada_is_non_standard_exception_sym (sym)
12535 		&& (preg == NULL
12536 		    || regexec (preg, SYMBOL_NATURAL_NAME (sym),
12537 				0, NULL, 0) == 0))
12538 	      {
12539 		struct ada_exc_info info
12540 		  = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
12541 
12542 		VEC_safe_push (ada_exc_info, *exceptions, &info);
12543 	      }
12544 	}
12545     }
12546 }
12547 
12548 /* Implements ada_exceptions_list with the regular expression passed
12549    as a regex_t, rather than a string.
12550 
12551    If not NULL, PREG is used to filter out exceptions whose names
12552    do not match.  Otherwise, all exceptions are listed.  */
12553 
12554 static VEC(ada_exc_info) *
12555 ada_exceptions_list_1 (regex_t *preg)
12556 {
12557   VEC(ada_exc_info) *result = NULL;
12558   struct cleanup *old_chain
12559     = make_cleanup (VEC_cleanup (ada_exc_info), &result);
12560   int prev_len;
12561 
12562   /* First, list the known standard exceptions.  These exceptions
12563      need to be handled separately, as they are usually defined in
12564      runtime units that have been compiled without debugging info.  */
12565 
12566   ada_add_standard_exceptions (preg, &result);
12567 
12568   /* Next, find all exceptions whose scope is local and accessible
12569      from the currently selected frame.  */
12570 
12571   if (has_stack_frames ())
12572     {
12573       prev_len = VEC_length (ada_exc_info, result);
12574       ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12575 				     &result);
12576       if (VEC_length (ada_exc_info, result) > prev_len)
12577 	sort_remove_dups_ada_exceptions_list (&result, prev_len);
12578     }
12579 
12580   /* Add all exceptions whose scope is global.  */
12581 
12582   prev_len = VEC_length (ada_exc_info, result);
12583   ada_add_global_exceptions (preg, &result);
12584   if (VEC_length (ada_exc_info, result) > prev_len)
12585     sort_remove_dups_ada_exceptions_list (&result, prev_len);
12586 
12587   discard_cleanups (old_chain);
12588   return result;
12589 }
12590 
12591 /* Return a vector of ada_exc_info.
12592 
12593    If REGEXP is NULL, all exceptions are included in the result.
12594    Otherwise, it should contain a valid regular expression,
12595    and only the exceptions whose names match that regular expression
12596    are included in the result.
12597 
12598    The exceptions are sorted in the following order:
12599      - Standard exceptions (defined by the Ada language), in
12600        alphabetical order;
12601      - Exceptions only visible from the current frame, in
12602        alphabetical order;
12603      - Exceptions whose scope is global, in alphabetical order.  */
12604 
12605 VEC(ada_exc_info) *
12606 ada_exceptions_list (const char *regexp)
12607 {
12608   VEC(ada_exc_info) *result = NULL;
12609   struct cleanup *old_chain = NULL;
12610   regex_t reg;
12611 
12612   if (regexp != NULL)
12613     old_chain = compile_rx_or_error (&reg, regexp,
12614 				     _("invalid regular expression"));
12615 
12616   result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
12617 
12618   if (old_chain != NULL)
12619     do_cleanups (old_chain);
12620   return result;
12621 }
12622 
12623 /* Implement the "info exceptions" command.  */
12624 
12625 static void
12626 info_exceptions_command (char *regexp, int from_tty)
12627 {
12628   VEC(ada_exc_info) *exceptions;
12629   struct cleanup *cleanup;
12630   struct gdbarch *gdbarch = get_current_arch ();
12631   int ix;
12632   struct ada_exc_info *info;
12633 
12634   exceptions = ada_exceptions_list (regexp);
12635   cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
12636 
12637   if (regexp != NULL)
12638     printf_filtered
12639       (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12640   else
12641     printf_filtered (_("All defined Ada exceptions:\n"));
12642 
12643   for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
12644     printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
12645 
12646   do_cleanups (cleanup);
12647 }
12648 
12649                                 /* Operators */
12650 /* Information about operators given special treatment in functions
12651    below.  */
12652 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>).  */
12653 
12654 #define ADA_OPERATORS \
12655     OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12656     OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12657     OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12658     OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12659     OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12660     OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12661     OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12662     OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12663     OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12664     OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12665     OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12666     OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12667     OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12668     OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12669     OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12670     OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12671     OP_DEFN (OP_OTHERS, 1, 1, 0) \
12672     OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12673     OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12674 
12675 static void
12676 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12677 		     int *argsp)
12678 {
12679   switch (exp->elts[pc - 1].opcode)
12680     {
12681     default:
12682       operator_length_standard (exp, pc, oplenp, argsp);
12683       break;
12684 
12685 #define OP_DEFN(op, len, args, binop) \
12686     case op: *oplenp = len; *argsp = args; break;
12687       ADA_OPERATORS;
12688 #undef OP_DEFN
12689 
12690     case OP_AGGREGATE:
12691       *oplenp = 3;
12692       *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12693       break;
12694 
12695     case OP_CHOICES:
12696       *oplenp = 3;
12697       *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12698       break;
12699     }
12700 }
12701 
12702 /* Implementation of the exp_descriptor method operator_check.  */
12703 
12704 static int
12705 ada_operator_check (struct expression *exp, int pos,
12706 		    int (*objfile_func) (struct objfile *objfile, void *data),
12707 		    void *data)
12708 {
12709   const union exp_element *const elts = exp->elts;
12710   struct type *type = NULL;
12711 
12712   switch (elts[pos].opcode)
12713     {
12714       case UNOP_IN_RANGE:
12715       case UNOP_QUAL:
12716 	type = elts[pos + 1].type;
12717 	break;
12718 
12719       default:
12720 	return operator_check_standard (exp, pos, objfile_func, data);
12721     }
12722 
12723   /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL.  */
12724 
12725   if (type && TYPE_OBJFILE (type)
12726       && (*objfile_func) (TYPE_OBJFILE (type), data))
12727     return 1;
12728 
12729   return 0;
12730 }
12731 
12732 static char *
12733 ada_op_name (enum exp_opcode opcode)
12734 {
12735   switch (opcode)
12736     {
12737     default:
12738       return op_name_standard (opcode);
12739 
12740 #define OP_DEFN(op, len, args, binop) case op: return #op;
12741       ADA_OPERATORS;
12742 #undef OP_DEFN
12743 
12744     case OP_AGGREGATE:
12745       return "OP_AGGREGATE";
12746     case OP_CHOICES:
12747       return "OP_CHOICES";
12748     case OP_NAME:
12749       return "OP_NAME";
12750     }
12751 }
12752 
12753 /* As for operator_length, but assumes PC is pointing at the first
12754    element of the operator, and gives meaningful results only for the
12755    Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise.  */
12756 
12757 static void
12758 ada_forward_operator_length (struct expression *exp, int pc,
12759                              int *oplenp, int *argsp)
12760 {
12761   switch (exp->elts[pc].opcode)
12762     {
12763     default:
12764       *oplenp = *argsp = 0;
12765       break;
12766 
12767 #define OP_DEFN(op, len, args, binop) \
12768     case op: *oplenp = len; *argsp = args; break;
12769       ADA_OPERATORS;
12770 #undef OP_DEFN
12771 
12772     case OP_AGGREGATE:
12773       *oplenp = 3;
12774       *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12775       break;
12776 
12777     case OP_CHOICES:
12778       *oplenp = 3;
12779       *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12780       break;
12781 
12782     case OP_STRING:
12783     case OP_NAME:
12784       {
12785 	int len = longest_to_int (exp->elts[pc + 1].longconst);
12786 
12787 	*oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12788 	*argsp = 0;
12789 	break;
12790       }
12791     }
12792 }
12793 
12794 static int
12795 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12796 {
12797   enum exp_opcode op = exp->elts[elt].opcode;
12798   int oplen, nargs;
12799   int pc = elt;
12800   int i;
12801 
12802   ada_forward_operator_length (exp, elt, &oplen, &nargs);
12803 
12804   switch (op)
12805     {
12806       /* Ada attributes ('Foo).  */
12807     case OP_ATR_FIRST:
12808     case OP_ATR_LAST:
12809     case OP_ATR_LENGTH:
12810     case OP_ATR_IMAGE:
12811     case OP_ATR_MAX:
12812     case OP_ATR_MIN:
12813     case OP_ATR_MODULUS:
12814     case OP_ATR_POS:
12815     case OP_ATR_SIZE:
12816     case OP_ATR_TAG:
12817     case OP_ATR_VAL:
12818       break;
12819 
12820     case UNOP_IN_RANGE:
12821     case UNOP_QUAL:
12822       /* XXX: gdb_sprint_host_address, type_sprint */
12823       fprintf_filtered (stream, _("Type @"));
12824       gdb_print_host_address (exp->elts[pc + 1].type, stream);
12825       fprintf_filtered (stream, " (");
12826       type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12827       fprintf_filtered (stream, ")");
12828       break;
12829     case BINOP_IN_BOUNDS:
12830       fprintf_filtered (stream, " (%d)",
12831 			longest_to_int (exp->elts[pc + 2].longconst));
12832       break;
12833     case TERNOP_IN_RANGE:
12834       break;
12835 
12836     case OP_AGGREGATE:
12837     case OP_OTHERS:
12838     case OP_DISCRETE_RANGE:
12839     case OP_POSITIONAL:
12840     case OP_CHOICES:
12841       break;
12842 
12843     case OP_NAME:
12844     case OP_STRING:
12845       {
12846 	char *name = &exp->elts[elt + 2].string;
12847 	int len = longest_to_int (exp->elts[elt + 1].longconst);
12848 
12849 	fprintf_filtered (stream, "Text: `%.*s'", len, name);
12850 	break;
12851       }
12852 
12853     default:
12854       return dump_subexp_body_standard (exp, stream, elt);
12855     }
12856 
12857   elt += oplen;
12858   for (i = 0; i < nargs; i += 1)
12859     elt = dump_subexp (exp, stream, elt);
12860 
12861   return elt;
12862 }
12863 
12864 /* The Ada extension of print_subexp (q.v.).  */
12865 
12866 static void
12867 ada_print_subexp (struct expression *exp, int *pos,
12868                   struct ui_file *stream, enum precedence prec)
12869 {
12870   int oplen, nargs, i;
12871   int pc = *pos;
12872   enum exp_opcode op = exp->elts[pc].opcode;
12873 
12874   ada_forward_operator_length (exp, pc, &oplen, &nargs);
12875 
12876   *pos += oplen;
12877   switch (op)
12878     {
12879     default:
12880       *pos -= oplen;
12881       print_subexp_standard (exp, pos, stream, prec);
12882       return;
12883 
12884     case OP_VAR_VALUE:
12885       fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12886       return;
12887 
12888     case BINOP_IN_BOUNDS:
12889       /* XXX: sprint_subexp */
12890       print_subexp (exp, pos, stream, PREC_SUFFIX);
12891       fputs_filtered (" in ", stream);
12892       print_subexp (exp, pos, stream, PREC_SUFFIX);
12893       fputs_filtered ("'range", stream);
12894       if (exp->elts[pc + 1].longconst > 1)
12895         fprintf_filtered (stream, "(%ld)",
12896                           (long) exp->elts[pc + 1].longconst);
12897       return;
12898 
12899     case TERNOP_IN_RANGE:
12900       if (prec >= PREC_EQUAL)
12901         fputs_filtered ("(", stream);
12902       /* XXX: sprint_subexp */
12903       print_subexp (exp, pos, stream, PREC_SUFFIX);
12904       fputs_filtered (" in ", stream);
12905       print_subexp (exp, pos, stream, PREC_EQUAL);
12906       fputs_filtered (" .. ", stream);
12907       print_subexp (exp, pos, stream, PREC_EQUAL);
12908       if (prec >= PREC_EQUAL)
12909         fputs_filtered (")", stream);
12910       return;
12911 
12912     case OP_ATR_FIRST:
12913     case OP_ATR_LAST:
12914     case OP_ATR_LENGTH:
12915     case OP_ATR_IMAGE:
12916     case OP_ATR_MAX:
12917     case OP_ATR_MIN:
12918     case OP_ATR_MODULUS:
12919     case OP_ATR_POS:
12920     case OP_ATR_SIZE:
12921     case OP_ATR_TAG:
12922     case OP_ATR_VAL:
12923       if (exp->elts[*pos].opcode == OP_TYPE)
12924         {
12925           if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12926             LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
12927 			   &type_print_raw_options);
12928           *pos += 3;
12929         }
12930       else
12931         print_subexp (exp, pos, stream, PREC_SUFFIX);
12932       fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12933       if (nargs > 1)
12934         {
12935           int tem;
12936 
12937           for (tem = 1; tem < nargs; tem += 1)
12938             {
12939               fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12940               print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12941             }
12942           fputs_filtered (")", stream);
12943         }
12944       return;
12945 
12946     case UNOP_QUAL:
12947       type_print (exp->elts[pc + 1].type, "", stream, 0);
12948       fputs_filtered ("'(", stream);
12949       print_subexp (exp, pos, stream, PREC_PREFIX);
12950       fputs_filtered (")", stream);
12951       return;
12952 
12953     case UNOP_IN_RANGE:
12954       /* XXX: sprint_subexp */
12955       print_subexp (exp, pos, stream, PREC_SUFFIX);
12956       fputs_filtered (" in ", stream);
12957       LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
12958 		     &type_print_raw_options);
12959       return;
12960 
12961     case OP_DISCRETE_RANGE:
12962       print_subexp (exp, pos, stream, PREC_SUFFIX);
12963       fputs_filtered ("..", stream);
12964       print_subexp (exp, pos, stream, PREC_SUFFIX);
12965       return;
12966 
12967     case OP_OTHERS:
12968       fputs_filtered ("others => ", stream);
12969       print_subexp (exp, pos, stream, PREC_SUFFIX);
12970       return;
12971 
12972     case OP_CHOICES:
12973       for (i = 0; i < nargs-1; i += 1)
12974 	{
12975 	  if (i > 0)
12976 	    fputs_filtered ("|", stream);
12977 	  print_subexp (exp, pos, stream, PREC_SUFFIX);
12978 	}
12979       fputs_filtered (" => ", stream);
12980       print_subexp (exp, pos, stream, PREC_SUFFIX);
12981       return;
12982 
12983     case OP_POSITIONAL:
12984       print_subexp (exp, pos, stream, PREC_SUFFIX);
12985       return;
12986 
12987     case OP_AGGREGATE:
12988       fputs_filtered ("(", stream);
12989       for (i = 0; i < nargs; i += 1)
12990 	{
12991 	  if (i > 0)
12992 	    fputs_filtered (", ", stream);
12993 	  print_subexp (exp, pos, stream, PREC_SUFFIX);
12994 	}
12995       fputs_filtered (")", stream);
12996       return;
12997     }
12998 }
12999 
13000 /* Table mapping opcodes into strings for printing operators
13001    and precedences of the operators.  */
13002 
13003 static const struct op_print ada_op_print_tab[] = {
13004   {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13005   {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13006   {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13007   {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13008   {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13009   {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13010   {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13011   {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13012   {"<=", BINOP_LEQ, PREC_ORDER, 0},
13013   {">=", BINOP_GEQ, PREC_ORDER, 0},
13014   {">", BINOP_GTR, PREC_ORDER, 0},
13015   {"<", BINOP_LESS, PREC_ORDER, 0},
13016   {">>", BINOP_RSH, PREC_SHIFT, 0},
13017   {"<<", BINOP_LSH, PREC_SHIFT, 0},
13018   {"+", BINOP_ADD, PREC_ADD, 0},
13019   {"-", BINOP_SUB, PREC_ADD, 0},
13020   {"&", BINOP_CONCAT, PREC_ADD, 0},
13021   {"*", BINOP_MUL, PREC_MUL, 0},
13022   {"/", BINOP_DIV, PREC_MUL, 0},
13023   {"rem", BINOP_REM, PREC_MUL, 0},
13024   {"mod", BINOP_MOD, PREC_MUL, 0},
13025   {"**", BINOP_EXP, PREC_REPEAT, 0},
13026   {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13027   {"-", UNOP_NEG, PREC_PREFIX, 0},
13028   {"+", UNOP_PLUS, PREC_PREFIX, 0},
13029   {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13030   {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13031   {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13032   {".all", UNOP_IND, PREC_SUFFIX, 1},
13033   {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13034   {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13035   {NULL, 0, 0, 0}
13036 };
13037 
13038 enum ada_primitive_types {
13039   ada_primitive_type_int,
13040   ada_primitive_type_long,
13041   ada_primitive_type_short,
13042   ada_primitive_type_char,
13043   ada_primitive_type_float,
13044   ada_primitive_type_double,
13045   ada_primitive_type_void,
13046   ada_primitive_type_long_long,
13047   ada_primitive_type_long_double,
13048   ada_primitive_type_natural,
13049   ada_primitive_type_positive,
13050   ada_primitive_type_system_address,
13051   nr_ada_primitive_types
13052 };
13053 
13054 static void
13055 ada_language_arch_info (struct gdbarch *gdbarch,
13056 			struct language_arch_info *lai)
13057 {
13058   const struct builtin_type *builtin = builtin_type (gdbarch);
13059 
13060   lai->primitive_type_vector
13061     = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13062 			      struct type *);
13063 
13064   lai->primitive_type_vector [ada_primitive_type_int]
13065     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13066 			 0, "integer");
13067   lai->primitive_type_vector [ada_primitive_type_long]
13068     = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13069 			 0, "long_integer");
13070   lai->primitive_type_vector [ada_primitive_type_short]
13071     = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13072 			 0, "short_integer");
13073   lai->string_char_type
13074     = lai->primitive_type_vector [ada_primitive_type_char]
13075     = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13076   lai->primitive_type_vector [ada_primitive_type_float]
13077     = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13078 		       "float", NULL);
13079   lai->primitive_type_vector [ada_primitive_type_double]
13080     = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13081 		       "long_float", NULL);
13082   lai->primitive_type_vector [ada_primitive_type_long_long]
13083     = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13084 			 0, "long_long_integer");
13085   lai->primitive_type_vector [ada_primitive_type_long_double]
13086     = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13087 		       "long_long_float", NULL);
13088   lai->primitive_type_vector [ada_primitive_type_natural]
13089     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13090 			 0, "natural");
13091   lai->primitive_type_vector [ada_primitive_type_positive]
13092     = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13093 			 0, "positive");
13094   lai->primitive_type_vector [ada_primitive_type_void]
13095     = builtin->builtin_void;
13096 
13097   lai->primitive_type_vector [ada_primitive_type_system_address]
13098     = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13099   TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13100     = "system__address";
13101 
13102   lai->bool_type_symbol = NULL;
13103   lai->bool_type_default = builtin->builtin_bool;
13104 }
13105 
13106 				/* Language vector */
13107 
13108 /* Not really used, but needed in the ada_language_defn.  */
13109 
13110 static void
13111 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13112 {
13113   ada_emit_char (c, type, stream, quoter, 1);
13114 }
13115 
13116 static int
13117 parse (void)
13118 {
13119   warnings_issued = 0;
13120   return ada_parse ();
13121 }
13122 
13123 static const struct exp_descriptor ada_exp_descriptor = {
13124   ada_print_subexp,
13125   ada_operator_length,
13126   ada_operator_check,
13127   ada_op_name,
13128   ada_dump_subexp_body,
13129   ada_evaluate_subexp
13130 };
13131 
13132 /* Implement the "la_get_symbol_name_cmp" language_defn method
13133    for Ada.  */
13134 
13135 static symbol_name_cmp_ftype
13136 ada_get_symbol_name_cmp (const char *lookup_name)
13137 {
13138   if (should_use_wild_match (lookup_name))
13139     return wild_match;
13140   else
13141     return compare_names;
13142 }
13143 
13144 /* Implement the "la_read_var_value" language_defn method for Ada.  */
13145 
13146 static struct value *
13147 ada_read_var_value (struct symbol *var, struct frame_info *frame)
13148 {
13149   struct block *frame_block = NULL;
13150   struct symbol *renaming_sym = NULL;
13151 
13152   /* The only case where default_read_var_value is not sufficient
13153      is when VAR is a renaming...  */
13154   if (frame)
13155     frame_block = get_frame_block (frame, NULL);
13156   if (frame_block)
13157     renaming_sym = ada_find_renaming_symbol (var, frame_block);
13158   if (renaming_sym != NULL)
13159     return ada_read_renaming_var_value (renaming_sym, frame_block);
13160 
13161   /* This is a typical case where we expect the default_read_var_value
13162      function to work.  */
13163   return default_read_var_value (var, frame);
13164 }
13165 
13166 const struct language_defn ada_language_defn = {
13167   "ada",                        /* Language name */
13168   "Ada",
13169   language_ada,
13170   range_check_off,
13171   case_sensitive_on,            /* Yes, Ada is case-insensitive, but
13172                                    that's not quite what this means.  */
13173   array_row_major,
13174   macro_expansion_no,
13175   &ada_exp_descriptor,
13176   parse,
13177   ada_error,
13178   resolve,
13179   ada_printchar,                /* Print a character constant */
13180   ada_printstr,                 /* Function to print string constant */
13181   emit_char,                    /* Function to print single char (not used) */
13182   ada_print_type,               /* Print a type using appropriate syntax */
13183   ada_print_typedef,            /* Print a typedef using appropriate syntax */
13184   ada_val_print,                /* Print a value using appropriate syntax */
13185   ada_value_print,              /* Print a top-level value */
13186   ada_read_var_value,		/* la_read_var_value */
13187   NULL,                         /* Language specific skip_trampoline */
13188   NULL,                         /* name_of_this */
13189   ada_lookup_symbol_nonlocal,   /* Looking up non-local symbols.  */
13190   basic_lookup_transparent_type,        /* lookup_transparent_type */
13191   ada_la_decode,                /* Language specific symbol demangler */
13192   NULL,                         /* Language specific
13193 				   class_name_from_physname */
13194   ada_op_print_tab,             /* expression operators for printing */
13195   0,                            /* c-style arrays */
13196   1,                            /* String lower bound */
13197   ada_get_gdb_completer_word_break_characters,
13198   ada_make_symbol_completion_list,
13199   ada_language_arch_info,
13200   ada_print_array_index,
13201   default_pass_by_reference,
13202   c_get_string,
13203   ada_get_symbol_name_cmp,	/* la_get_symbol_name_cmp */
13204   ada_iterate_over_symbols,
13205   &ada_varobj_ops,
13206   LANG_MAGIC
13207 };
13208 
13209 /* Provide a prototype to silence -Wmissing-prototypes.  */
13210 extern initialize_file_ftype _initialize_ada_language;
13211 
13212 /* Command-list for the "set/show ada" prefix command.  */
13213 static struct cmd_list_element *set_ada_list;
13214 static struct cmd_list_element *show_ada_list;
13215 
13216 /* Implement the "set ada" prefix command.  */
13217 
13218 static void
13219 set_ada_command (char *arg, int from_tty)
13220 {
13221   printf_unfiltered (_(\
13222 "\"set ada\" must be followed by the name of a setting.\n"));
13223   help_list (set_ada_list, "set ada ", -1, gdb_stdout);
13224 }
13225 
13226 /* Implement the "show ada" prefix command.  */
13227 
13228 static void
13229 show_ada_command (char *args, int from_tty)
13230 {
13231   cmd_show_list (show_ada_list, from_tty, "");
13232 }
13233 
13234 static void
13235 initialize_ada_catchpoint_ops (void)
13236 {
13237   struct breakpoint_ops *ops;
13238 
13239   initialize_breakpoint_ops ();
13240 
13241   ops = &catch_exception_breakpoint_ops;
13242   *ops = bkpt_breakpoint_ops;
13243   ops->dtor = dtor_catch_exception;
13244   ops->allocate_location = allocate_location_catch_exception;
13245   ops->re_set = re_set_catch_exception;
13246   ops->check_status = check_status_catch_exception;
13247   ops->print_it = print_it_catch_exception;
13248   ops->print_one = print_one_catch_exception;
13249   ops->print_mention = print_mention_catch_exception;
13250   ops->print_recreate = print_recreate_catch_exception;
13251 
13252   ops = &catch_exception_unhandled_breakpoint_ops;
13253   *ops = bkpt_breakpoint_ops;
13254   ops->dtor = dtor_catch_exception_unhandled;
13255   ops->allocate_location = allocate_location_catch_exception_unhandled;
13256   ops->re_set = re_set_catch_exception_unhandled;
13257   ops->check_status = check_status_catch_exception_unhandled;
13258   ops->print_it = print_it_catch_exception_unhandled;
13259   ops->print_one = print_one_catch_exception_unhandled;
13260   ops->print_mention = print_mention_catch_exception_unhandled;
13261   ops->print_recreate = print_recreate_catch_exception_unhandled;
13262 
13263   ops = &catch_assert_breakpoint_ops;
13264   *ops = bkpt_breakpoint_ops;
13265   ops->dtor = dtor_catch_assert;
13266   ops->allocate_location = allocate_location_catch_assert;
13267   ops->re_set = re_set_catch_assert;
13268   ops->check_status = check_status_catch_assert;
13269   ops->print_it = print_it_catch_assert;
13270   ops->print_one = print_one_catch_assert;
13271   ops->print_mention = print_mention_catch_assert;
13272   ops->print_recreate = print_recreate_catch_assert;
13273 }
13274 
13275 void
13276 _initialize_ada_language (void)
13277 {
13278   add_language (&ada_language_defn);
13279 
13280   initialize_ada_catchpoint_ops ();
13281 
13282   add_prefix_cmd ("ada", no_class, set_ada_command,
13283                   _("Prefix command for changing Ada-specfic settings"),
13284                   &set_ada_list, "set ada ", 0, &setlist);
13285 
13286   add_prefix_cmd ("ada", no_class, show_ada_command,
13287                   _("Generic command for showing Ada-specific settings."),
13288                   &show_ada_list, "show ada ", 0, &showlist);
13289 
13290   add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13291                            &trust_pad_over_xvs, _("\
13292 Enable or disable an optimization trusting PAD types over XVS types"), _("\
13293 Show whether an optimization trusting PAD types over XVS types is activated"),
13294                            _("\
13295 This is related to the encoding used by the GNAT compiler.  The debugger\n\
13296 should normally trust the contents of PAD types, but certain older versions\n\
13297 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13298 to be incorrect.  Turning this setting \"off\" allows the debugger to\n\
13299 work around this bug.  It is always safe to turn this option \"off\", but\n\
13300 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13301 this option to \"off\" unless necessary."),
13302                             NULL, NULL, &set_ada_list, &show_ada_list);
13303 
13304   add_catch_command ("exception", _("\
13305 Catch Ada exceptions, when raised.\n\
13306 With an argument, catch only exceptions with the given name."),
13307 		     catch_ada_exception_command,
13308                      NULL,
13309 		     CATCH_PERMANENT,
13310 		     CATCH_TEMPORARY);
13311   add_catch_command ("assert", _("\
13312 Catch failed Ada assertions, when raised.\n\
13313 With an argument, catch only exceptions with the given name."),
13314 		     catch_assert_command,
13315                      NULL,
13316 		     CATCH_PERMANENT,
13317 		     CATCH_TEMPORARY);
13318 
13319   varsize_limit = 65536;
13320 
13321   add_info ("exceptions", info_exceptions_command,
13322 	    _("\
13323 List all Ada exception names.\n\
13324 If a regular expression is passed as an argument, only those matching\n\
13325 the regular expression are listed."));
13326 
13327   obstack_init (&symbol_list_obstack);
13328 
13329   decoded_names_store = htab_create_alloc
13330     (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
13331      NULL, xcalloc, xfree);
13332 
13333   /* Setup per-inferior data.  */
13334   observer_attach_inferior_exit (ada_inferior_exit);
13335   ada_inferior_data
13336     = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
13337 }
13338