1 /* Ada language support routines for GDB, the GNU debugger. 2 3 Copyright (C) 1992-2014 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 21 #include "defs.h" 22 #include <stdio.h> 23 #include <string.h> 24 #include <ctype.h> 25 #include <stdarg.h> 26 #include "demangle.h" 27 #include "gdb_regex.h" 28 #include "frame.h" 29 #include "symtab.h" 30 #include "gdbtypes.h" 31 #include "gdbcmd.h" 32 #include "expression.h" 33 #include "parser-defs.h" 34 #include "language.h" 35 #include "varobj.h" 36 #include "c-lang.h" 37 #include "inferior.h" 38 #include "symfile.h" 39 #include "objfiles.h" 40 #include "breakpoint.h" 41 #include "gdbcore.h" 42 #include "hashtab.h" 43 #include "gdb_obstack.h" 44 #include "ada-lang.h" 45 #include "completer.h" 46 #include <sys/stat.h> 47 #ifdef UI_OUT 48 #include "ui-out.h" 49 #endif 50 #include "block.h" 51 #include "infcall.h" 52 #include "dictionary.h" 53 #include "exceptions.h" 54 #include "annotate.h" 55 #include "valprint.h" 56 #include "source.h" 57 #include "observer.h" 58 #include "vec.h" 59 #include "stack.h" 60 #include "gdb_vecs.h" 61 #include "typeprint.h" 62 63 #include "psymtab.h" 64 #include "value.h" 65 #include "mi/mi-common.h" 66 #include "arch-utils.h" 67 #include "cli/cli-utils.h" 68 69 /* Define whether or not the C operator '/' truncates towards zero for 70 differently signed operands (truncation direction is undefined in C). 71 Copied from valarith.c. */ 72 73 #ifndef TRUNCATION_TOWARDS_ZERO 74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2) 75 #endif 76 77 static struct type *desc_base_type (struct type *); 78 79 static struct type *desc_bounds_type (struct type *); 80 81 static struct value *desc_bounds (struct value *); 82 83 static int fat_pntr_bounds_bitpos (struct type *); 84 85 static int fat_pntr_bounds_bitsize (struct type *); 86 87 static struct type *desc_data_target_type (struct type *); 88 89 static struct value *desc_data (struct value *); 90 91 static int fat_pntr_data_bitpos (struct type *); 92 93 static int fat_pntr_data_bitsize (struct type *); 94 95 static struct value *desc_one_bound (struct value *, int, int); 96 97 static int desc_bound_bitpos (struct type *, int, int); 98 99 static int desc_bound_bitsize (struct type *, int, int); 100 101 static struct type *desc_index_type (struct type *, int); 102 103 static int desc_arity (struct type *); 104 105 static int ada_type_match (struct type *, struct type *, int); 106 107 static int ada_args_match (struct symbol *, struct value **, int); 108 109 static int full_match (const char *, const char *); 110 111 static struct value *make_array_descriptor (struct type *, struct value *); 112 113 static void ada_add_block_symbols (struct obstack *, 114 struct block *, const char *, 115 domain_enum, struct objfile *, int); 116 117 static int is_nonfunction (struct ada_symbol_info *, int); 118 119 static void add_defn_to_vec (struct obstack *, struct symbol *, 120 struct block *); 121 122 static int num_defns_collected (struct obstack *); 123 124 static struct ada_symbol_info *defns_collected (struct obstack *, int); 125 126 static struct value *resolve_subexp (struct expression **, int *, int, 127 struct type *); 128 129 static void replace_operator_with_call (struct expression **, int, int, int, 130 struct symbol *, const struct block *); 131 132 static int possible_user_operator_p (enum exp_opcode, struct value **); 133 134 static char *ada_op_name (enum exp_opcode); 135 136 static const char *ada_decoded_op_name (enum exp_opcode); 137 138 static int numeric_type_p (struct type *); 139 140 static int integer_type_p (struct type *); 141 142 static int scalar_type_p (struct type *); 143 144 static int discrete_type_p (struct type *); 145 146 static enum ada_renaming_category parse_old_style_renaming (struct type *, 147 const char **, 148 int *, 149 const char **); 150 151 static struct symbol *find_old_style_renaming_symbol (const char *, 152 const struct block *); 153 154 static struct type *ada_lookup_struct_elt_type (struct type *, char *, 155 int, int, int *); 156 157 static struct value *evaluate_subexp_type (struct expression *, int *); 158 159 static struct type *ada_find_parallel_type_with_name (struct type *, 160 const char *); 161 162 static int is_dynamic_field (struct type *, int); 163 164 static struct type *to_fixed_variant_branch_type (struct type *, 165 const gdb_byte *, 166 CORE_ADDR, struct value *); 167 168 static struct type *to_fixed_array_type (struct type *, struct value *, int); 169 170 static struct type *to_fixed_range_type (struct type *, struct value *); 171 172 static struct type *to_static_fixed_type (struct type *); 173 static struct type *static_unwrap_type (struct type *type); 174 175 static struct value *unwrap_value (struct value *); 176 177 static struct type *constrained_packed_array_type (struct type *, long *); 178 179 static struct type *decode_constrained_packed_array_type (struct type *); 180 181 static long decode_packed_array_bitsize (struct type *); 182 183 static struct value *decode_constrained_packed_array (struct value *); 184 185 static int ada_is_packed_array_type (struct type *); 186 187 static int ada_is_unconstrained_packed_array_type (struct type *); 188 189 static struct value *value_subscript_packed (struct value *, int, 190 struct value **); 191 192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int); 193 194 static struct value *coerce_unspec_val_to_type (struct value *, 195 struct type *); 196 197 static struct value *get_var_value (char *, char *); 198 199 static int lesseq_defined_than (struct symbol *, struct symbol *); 200 201 static int equiv_types (struct type *, struct type *); 202 203 static int is_name_suffix (const char *); 204 205 static int advance_wild_match (const char **, const char *, int); 206 207 static int wild_match (const char *, const char *); 208 209 static struct value *ada_coerce_ref (struct value *); 210 211 static LONGEST pos_atr (struct value *); 212 213 static struct value *value_pos_atr (struct type *, struct value *); 214 215 static struct value *value_val_atr (struct type *, struct value *); 216 217 static struct symbol *standard_lookup (const char *, const struct block *, 218 domain_enum); 219 220 static struct value *ada_search_struct_field (char *, struct value *, int, 221 struct type *); 222 223 static struct value *ada_value_primitive_field (struct value *, int, int, 224 struct type *); 225 226 static int find_struct_field (const char *, struct type *, int, 227 struct type **, int *, int *, int *, int *); 228 229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR, 230 struct value *); 231 232 static int ada_resolve_function (struct ada_symbol_info *, int, 233 struct value **, int, const char *, 234 struct type *); 235 236 static int ada_is_direct_array_type (struct type *); 237 238 static void ada_language_arch_info (struct gdbarch *, 239 struct language_arch_info *); 240 241 static void check_size (const struct type *); 242 243 static struct value *ada_index_struct_field (int, struct value *, int, 244 struct type *); 245 246 static struct value *assign_aggregate (struct value *, struct value *, 247 struct expression *, 248 int *, enum noside); 249 250 static void aggregate_assign_from_choices (struct value *, struct value *, 251 struct expression *, 252 int *, LONGEST *, int *, 253 int, LONGEST, LONGEST); 254 255 static void aggregate_assign_positional (struct value *, struct value *, 256 struct expression *, 257 int *, LONGEST *, int *, int, 258 LONGEST, LONGEST); 259 260 261 static void aggregate_assign_others (struct value *, struct value *, 262 struct expression *, 263 int *, LONGEST *, int, LONGEST, LONGEST); 264 265 266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int); 267 268 269 static struct value *ada_evaluate_subexp (struct type *, struct expression *, 270 int *, enum noside); 271 272 static void ada_forward_operator_length (struct expression *, int, int *, 273 int *); 274 275 static struct type *ada_find_any_type (const char *name); 276 277 278 279 /* Maximum-sized dynamic type. */ 280 static unsigned int varsize_limit; 281 282 /* FIXME: brobecker/2003-09-17: No longer a const because it is 283 returned by a function that does not return a const char *. */ 284 static char *ada_completer_word_break_characters = 285 #ifdef VMS 286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-"; 287 #else 288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; 289 #endif 290 291 /* The name of the symbol to use to get the name of the main subprogram. */ 292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[] 293 = "__gnat_ada_main_program_name"; 294 295 /* Limit on the number of warnings to raise per expression evaluation. */ 296 static int warning_limit = 2; 297 298 /* Number of warning messages issued; reset to 0 by cleanups after 299 expression evaluation. */ 300 static int warnings_issued = 0; 301 302 static const char *known_runtime_file_name_patterns[] = { 303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL 304 }; 305 306 static const char *known_auxiliary_function_name_patterns[] = { 307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL 308 }; 309 310 /* Space for allocating results of ada_lookup_symbol_list. */ 311 static struct obstack symbol_list_obstack; 312 313 /* Inferior-specific data. */ 314 315 /* Per-inferior data for this module. */ 316 317 struct ada_inferior_data 318 { 319 /* The ada__tags__type_specific_data type, which is used when decoding 320 tagged types. With older versions of GNAT, this type was directly 321 accessible through a component ("tsd") in the object tag. But this 322 is no longer the case, so we cache it for each inferior. */ 323 struct type *tsd_type; 324 325 /* The exception_support_info data. This data is used to determine 326 how to implement support for Ada exception catchpoints in a given 327 inferior. */ 328 const struct exception_support_info *exception_info; 329 }; 330 331 /* Our key to this module's inferior data. */ 332 static const struct inferior_data *ada_inferior_data; 333 334 /* A cleanup routine for our inferior data. */ 335 static void 336 ada_inferior_data_cleanup (struct inferior *inf, void *arg) 337 { 338 struct ada_inferior_data *data; 339 340 data = inferior_data (inf, ada_inferior_data); 341 if (data != NULL) 342 xfree (data); 343 } 344 345 /* Return our inferior data for the given inferior (INF). 346 347 This function always returns a valid pointer to an allocated 348 ada_inferior_data structure. If INF's inferior data has not 349 been previously set, this functions creates a new one with all 350 fields set to zero, sets INF's inferior to it, and then returns 351 a pointer to that newly allocated ada_inferior_data. */ 352 353 static struct ada_inferior_data * 354 get_ada_inferior_data (struct inferior *inf) 355 { 356 struct ada_inferior_data *data; 357 358 data = inferior_data (inf, ada_inferior_data); 359 if (data == NULL) 360 { 361 data = XZALLOC (struct ada_inferior_data); 362 set_inferior_data (inf, ada_inferior_data, data); 363 } 364 365 return data; 366 } 367 368 /* Perform all necessary cleanups regarding our module's inferior data 369 that is required after the inferior INF just exited. */ 370 371 static void 372 ada_inferior_exit (struct inferior *inf) 373 { 374 ada_inferior_data_cleanup (inf, NULL); 375 set_inferior_data (inf, ada_inferior_data, NULL); 376 } 377 378 /* Utilities */ 379 380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after 381 all typedef layers have been peeled. Otherwise, return TYPE. 382 383 Normally, we really expect a typedef type to only have 1 typedef layer. 384 In other words, we really expect the target type of a typedef type to be 385 a non-typedef type. This is particularly true for Ada units, because 386 the language does not have a typedef vs not-typedef distinction. 387 In that respect, the Ada compiler has been trying to eliminate as many 388 typedef definitions in the debugging information, since they generally 389 do not bring any extra information (we still use typedef under certain 390 circumstances related mostly to the GNAT encoding). 391 392 Unfortunately, we have seen situations where the debugging information 393 generated by the compiler leads to such multiple typedef layers. For 394 instance, consider the following example with stabs: 395 396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...] 397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0 398 399 This is an error in the debugging information which causes type 400 pck__float_array___XUP to be defined twice, and the second time, 401 it is defined as a typedef of a typedef. 402 403 This is on the fringe of legality as far as debugging information is 404 concerned, and certainly unexpected. But it is easy to handle these 405 situations correctly, so we can afford to be lenient in this case. */ 406 407 static struct type * 408 ada_typedef_target_type (struct type *type) 409 { 410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) 411 type = TYPE_TARGET_TYPE (type); 412 return type; 413 } 414 415 /* Given DECODED_NAME a string holding a symbol name in its 416 decoded form (ie using the Ada dotted notation), returns 417 its unqualified name. */ 418 419 static const char * 420 ada_unqualified_name (const char *decoded_name) 421 { 422 const char *result = strrchr (decoded_name, '.'); 423 424 if (result != NULL) 425 result++; /* Skip the dot... */ 426 else 427 result = decoded_name; 428 429 return result; 430 } 431 432 /* Return a string starting with '<', followed by STR, and '>'. 433 The result is good until the next call. */ 434 435 static char * 436 add_angle_brackets (const char *str) 437 { 438 static char *result = NULL; 439 440 xfree (result); 441 result = xstrprintf ("<%s>", str); 442 return result; 443 } 444 445 static char * 446 ada_get_gdb_completer_word_break_characters (void) 447 { 448 return ada_completer_word_break_characters; 449 } 450 451 /* Print an array element index using the Ada syntax. */ 452 453 static void 454 ada_print_array_index (struct value *index_value, struct ui_file *stream, 455 const struct value_print_options *options) 456 { 457 LA_VALUE_PRINT (index_value, stream, options); 458 fprintf_filtered (stream, " => "); 459 } 460 461 /* Assuming VECT points to an array of *SIZE objects of size 462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, 463 updating *SIZE as necessary and returning the (new) array. */ 464 465 void * 466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size) 467 { 468 if (*size < min_size) 469 { 470 *size *= 2; 471 if (*size < min_size) 472 *size = min_size; 473 vect = xrealloc (vect, *size * element_size); 474 } 475 return vect; 476 } 477 478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing 479 suffix of FIELD_NAME beginning "___". */ 480 481 static int 482 field_name_match (const char *field_name, const char *target) 483 { 484 int len = strlen (target); 485 486 return 487 (strncmp (field_name, target, len) == 0 488 && (field_name[len] == '\0' 489 || (strncmp (field_name + len, "___", 3) == 0 490 && strcmp (field_name + strlen (field_name) - 6, 491 "___XVN") != 0))); 492 } 493 494 495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to 496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME, 497 and return its index. This function also handles fields whose name 498 have ___ suffixes because the compiler sometimes alters their name 499 by adding such a suffix to represent fields with certain constraints. 500 If the field could not be found, return a negative number if 501 MAYBE_MISSING is set. Otherwise raise an error. */ 502 503 int 504 ada_get_field_index (const struct type *type, const char *field_name, 505 int maybe_missing) 506 { 507 int fieldno; 508 struct type *struct_type = check_typedef ((struct type *) type); 509 510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++) 511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name)) 512 return fieldno; 513 514 if (!maybe_missing) 515 error (_("Unable to find field %s in struct %s. Aborting"), 516 field_name, TYPE_NAME (struct_type)); 517 518 return -1; 519 } 520 521 /* The length of the prefix of NAME prior to any "___" suffix. */ 522 523 int 524 ada_name_prefix_len (const char *name) 525 { 526 if (name == NULL) 527 return 0; 528 else 529 { 530 const char *p = strstr (name, "___"); 531 532 if (p == NULL) 533 return strlen (name); 534 else 535 return p - name; 536 } 537 } 538 539 /* Return non-zero if SUFFIX is a suffix of STR. 540 Return zero if STR is null. */ 541 542 static int 543 is_suffix (const char *str, const char *suffix) 544 { 545 int len1, len2; 546 547 if (str == NULL) 548 return 0; 549 len1 = strlen (str); 550 len2 = strlen (suffix); 551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0); 552 } 553 554 /* The contents of value VAL, treated as a value of type TYPE. The 555 result is an lval in memory if VAL is. */ 556 557 static struct value * 558 coerce_unspec_val_to_type (struct value *val, struct type *type) 559 { 560 type = ada_check_typedef (type); 561 if (value_type (val) == type) 562 return val; 563 else 564 { 565 struct value *result; 566 567 /* Make sure that the object size is not unreasonable before 568 trying to allocate some memory for it. */ 569 check_size (type); 570 571 if (value_lazy (val) 572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))) 573 result = allocate_value_lazy (type); 574 else 575 { 576 result = allocate_value (type); 577 memcpy (value_contents_raw (result), value_contents (val), 578 TYPE_LENGTH (type)); 579 } 580 set_value_component_location (result, val); 581 set_value_bitsize (result, value_bitsize (val)); 582 set_value_bitpos (result, value_bitpos (val)); 583 set_value_address (result, value_address (val)); 584 set_value_optimized_out (result, value_optimized_out_const (val)); 585 return result; 586 } 587 } 588 589 static const gdb_byte * 590 cond_offset_host (const gdb_byte *valaddr, long offset) 591 { 592 if (valaddr == NULL) 593 return NULL; 594 else 595 return valaddr + offset; 596 } 597 598 static CORE_ADDR 599 cond_offset_target (CORE_ADDR address, long offset) 600 { 601 if (address == 0) 602 return 0; 603 else 604 return address + offset; 605 } 606 607 /* Issue a warning (as for the definition of warning in utils.c, but 608 with exactly one argument rather than ...), unless the limit on the 609 number of warnings has passed during the evaluation of the current 610 expression. */ 611 612 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior 613 provided by "complaint". */ 614 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2); 615 616 static void 617 lim_warning (const char *format, ...) 618 { 619 va_list args; 620 621 va_start (args, format); 622 warnings_issued += 1; 623 if (warnings_issued <= warning_limit) 624 vwarning (format, args); 625 626 va_end (args); 627 } 628 629 /* Issue an error if the size of an object of type T is unreasonable, 630 i.e. if it would be a bad idea to allocate a value of this type in 631 GDB. */ 632 633 static void 634 check_size (const struct type *type) 635 { 636 if (TYPE_LENGTH (type) > varsize_limit) 637 error (_("object size is larger than varsize-limit")); 638 } 639 640 /* Maximum value of a SIZE-byte signed integer type. */ 641 static LONGEST 642 max_of_size (int size) 643 { 644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2); 645 646 return top_bit | (top_bit - 1); 647 } 648 649 /* Minimum value of a SIZE-byte signed integer type. */ 650 static LONGEST 651 min_of_size (int size) 652 { 653 return -max_of_size (size) - 1; 654 } 655 656 /* Maximum value of a SIZE-byte unsigned integer type. */ 657 static ULONGEST 658 umax_of_size (int size) 659 { 660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1); 661 662 return top_bit | (top_bit - 1); 663 } 664 665 /* Maximum value of integral type T, as a signed quantity. */ 666 static LONGEST 667 max_of_type (struct type *t) 668 { 669 if (TYPE_UNSIGNED (t)) 670 return (LONGEST) umax_of_size (TYPE_LENGTH (t)); 671 else 672 return max_of_size (TYPE_LENGTH (t)); 673 } 674 675 /* Minimum value of integral type T, as a signed quantity. */ 676 static LONGEST 677 min_of_type (struct type *t) 678 { 679 if (TYPE_UNSIGNED (t)) 680 return 0; 681 else 682 return min_of_size (TYPE_LENGTH (t)); 683 } 684 685 /* The largest value in the domain of TYPE, a discrete type, as an integer. */ 686 LONGEST 687 ada_discrete_type_high_bound (struct type *type) 688 { 689 switch (TYPE_CODE (type)) 690 { 691 case TYPE_CODE_RANGE: 692 return TYPE_HIGH_BOUND (type); 693 case TYPE_CODE_ENUM: 694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1); 695 case TYPE_CODE_BOOL: 696 return 1; 697 case TYPE_CODE_CHAR: 698 case TYPE_CODE_INT: 699 return max_of_type (type); 700 default: 701 error (_("Unexpected type in ada_discrete_type_high_bound.")); 702 } 703 } 704 705 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */ 706 LONGEST 707 ada_discrete_type_low_bound (struct type *type) 708 { 709 switch (TYPE_CODE (type)) 710 { 711 case TYPE_CODE_RANGE: 712 return TYPE_LOW_BOUND (type); 713 case TYPE_CODE_ENUM: 714 return TYPE_FIELD_ENUMVAL (type, 0); 715 case TYPE_CODE_BOOL: 716 return 0; 717 case TYPE_CODE_CHAR: 718 case TYPE_CODE_INT: 719 return min_of_type (type); 720 default: 721 error (_("Unexpected type in ada_discrete_type_low_bound.")); 722 } 723 } 724 725 /* The identity on non-range types. For range types, the underlying 726 non-range scalar type. */ 727 728 static struct type * 729 get_base_type (struct type *type) 730 { 731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE) 732 { 733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL) 734 return type; 735 type = TYPE_TARGET_TYPE (type); 736 } 737 return type; 738 } 739 740 /* Return a decoded version of the given VALUE. This means returning 741 a value whose type is obtained by applying all the GNAT-specific 742 encondings, making the resulting type a static but standard description 743 of the initial type. */ 744 745 struct value * 746 ada_get_decoded_value (struct value *value) 747 { 748 struct type *type = ada_check_typedef (value_type (value)); 749 750 if (ada_is_array_descriptor_type (type) 751 || (ada_is_constrained_packed_array_type (type) 752 && TYPE_CODE (type) != TYPE_CODE_PTR)) 753 { 754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */ 755 value = ada_coerce_to_simple_array_ptr (value); 756 else 757 value = ada_coerce_to_simple_array (value); 758 } 759 else 760 value = ada_to_fixed_value (value); 761 762 return value; 763 } 764 765 /* Same as ada_get_decoded_value, but with the given TYPE. 766 Because there is no associated actual value for this type, 767 the resulting type might be a best-effort approximation in 768 the case of dynamic types. */ 769 770 struct type * 771 ada_get_decoded_type (struct type *type) 772 { 773 type = to_static_fixed_type (type); 774 if (ada_is_constrained_packed_array_type (type)) 775 type = ada_coerce_to_simple_array_type (type); 776 return type; 777 } 778 779 780 781 /* Language Selection */ 782 783 /* If the main program is in Ada, return language_ada, otherwise return LANG 784 (the main program is in Ada iif the adainit symbol is found). */ 785 786 enum language 787 ada_update_initial_language (enum language lang) 788 { 789 if (lookup_minimal_symbol ("adainit", (const char *) NULL, 790 (struct objfile *) NULL) != NULL) 791 return language_ada; 792 793 return lang; 794 } 795 796 /* If the main procedure is written in Ada, then return its name. 797 The result is good until the next call. Return NULL if the main 798 procedure doesn't appear to be in Ada. */ 799 800 char * 801 ada_main_name (void) 802 { 803 struct minimal_symbol *msym; 804 static char *main_program_name = NULL; 805 806 /* For Ada, the name of the main procedure is stored in a specific 807 string constant, generated by the binder. Look for that symbol, 808 extract its address, and then read that string. If we didn't find 809 that string, then most probably the main procedure is not written 810 in Ada. */ 811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); 812 813 if (msym != NULL) 814 { 815 CORE_ADDR main_program_name_addr; 816 int err_code; 817 818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); 819 if (main_program_name_addr == 0) 820 error (_("Invalid address for Ada main program name.")); 821 822 xfree (main_program_name); 823 target_read_string (main_program_name_addr, &main_program_name, 824 1024, &err_code); 825 826 if (err_code != 0) 827 return NULL; 828 return main_program_name; 829 } 830 831 /* The main procedure doesn't seem to be in Ada. */ 832 return NULL; 833 } 834 835 /* Symbols */ 836 837 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair 838 of NULLs. */ 839 840 const struct ada_opname_map ada_opname_table[] = { 841 {"Oadd", "\"+\"", BINOP_ADD}, 842 {"Osubtract", "\"-\"", BINOP_SUB}, 843 {"Omultiply", "\"*\"", BINOP_MUL}, 844 {"Odivide", "\"/\"", BINOP_DIV}, 845 {"Omod", "\"mod\"", BINOP_MOD}, 846 {"Orem", "\"rem\"", BINOP_REM}, 847 {"Oexpon", "\"**\"", BINOP_EXP}, 848 {"Olt", "\"<\"", BINOP_LESS}, 849 {"Ole", "\"<=\"", BINOP_LEQ}, 850 {"Ogt", "\">\"", BINOP_GTR}, 851 {"Oge", "\">=\"", BINOP_GEQ}, 852 {"Oeq", "\"=\"", BINOP_EQUAL}, 853 {"One", "\"/=\"", BINOP_NOTEQUAL}, 854 {"Oand", "\"and\"", BINOP_BITWISE_AND}, 855 {"Oor", "\"or\"", BINOP_BITWISE_IOR}, 856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR}, 857 {"Oconcat", "\"&\"", BINOP_CONCAT}, 858 {"Oabs", "\"abs\"", UNOP_ABS}, 859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT}, 860 {"Oadd", "\"+\"", UNOP_PLUS}, 861 {"Osubtract", "\"-\"", UNOP_NEG}, 862 {NULL, NULL} 863 }; 864 865 /* The "encoded" form of DECODED, according to GNAT conventions. 866 The result is valid until the next call to ada_encode. */ 867 868 char * 869 ada_encode (const char *decoded) 870 { 871 static char *encoding_buffer = NULL; 872 static size_t encoding_buffer_size = 0; 873 const char *p; 874 int k; 875 876 if (decoded == NULL) 877 return NULL; 878 879 GROW_VECT (encoding_buffer, encoding_buffer_size, 880 2 * strlen (decoded) + 10); 881 882 k = 0; 883 for (p = decoded; *p != '\0'; p += 1) 884 { 885 if (*p == '.') 886 { 887 encoding_buffer[k] = encoding_buffer[k + 1] = '_'; 888 k += 2; 889 } 890 else if (*p == '"') 891 { 892 const struct ada_opname_map *mapping; 893 894 for (mapping = ada_opname_table; 895 mapping->encoded != NULL 896 && strncmp (mapping->decoded, p, 897 strlen (mapping->decoded)) != 0; mapping += 1) 898 ; 899 if (mapping->encoded == NULL) 900 error (_("invalid Ada operator name: %s"), p); 901 strcpy (encoding_buffer + k, mapping->encoded); 902 k += strlen (mapping->encoded); 903 break; 904 } 905 else 906 { 907 encoding_buffer[k] = *p; 908 k += 1; 909 } 910 } 911 912 encoding_buffer[k] = '\0'; 913 return encoding_buffer; 914 } 915 916 /* Return NAME folded to lower case, or, if surrounded by single 917 quotes, unfolded, but with the quotes stripped away. Result good 918 to next call. */ 919 920 char * 921 ada_fold_name (const char *name) 922 { 923 static char *fold_buffer = NULL; 924 static size_t fold_buffer_size = 0; 925 926 int len = strlen (name); 927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1); 928 929 if (name[0] == '\'') 930 { 931 strncpy (fold_buffer, name + 1, len - 2); 932 fold_buffer[len - 2] = '\000'; 933 } 934 else 935 { 936 int i; 937 938 for (i = 0; i <= len; i += 1) 939 fold_buffer[i] = tolower (name[i]); 940 } 941 942 return fold_buffer; 943 } 944 945 /* Return nonzero if C is either a digit or a lowercase alphabet character. */ 946 947 static int 948 is_lower_alphanum (const char c) 949 { 950 return (isdigit (c) || (isalpha (c) && islower (c))); 951 } 952 953 /* ENCODED is the linkage name of a symbol and LEN contains its length. 954 This function saves in LEN the length of that same symbol name but 955 without either of these suffixes: 956 . .{DIGIT}+ 957 . ${DIGIT}+ 958 . ___{DIGIT}+ 959 . __{DIGIT}+. 960 961 These are suffixes introduced by the compiler for entities such as 962 nested subprogram for instance, in order to avoid name clashes. 963 They do not serve any purpose for the debugger. */ 964 965 static void 966 ada_remove_trailing_digits (const char *encoded, int *len) 967 { 968 if (*len > 1 && isdigit (encoded[*len - 1])) 969 { 970 int i = *len - 2; 971 972 while (i > 0 && isdigit (encoded[i])) 973 i--; 974 if (i >= 0 && encoded[i] == '.') 975 *len = i; 976 else if (i >= 0 && encoded[i] == '$') 977 *len = i; 978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0) 979 *len = i - 2; 980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0) 981 *len = i - 1; 982 } 983 } 984 985 /* Remove the suffix introduced by the compiler for protected object 986 subprograms. */ 987 988 static void 989 ada_remove_po_subprogram_suffix (const char *encoded, int *len) 990 { 991 /* Remove trailing N. */ 992 993 /* Protected entry subprograms are broken into two 994 separate subprograms: The first one is unprotected, and has 995 a 'N' suffix; the second is the protected version, and has 996 the 'P' suffix. The second calls the first one after handling 997 the protection. Since the P subprograms are internally generated, 998 we leave these names undecoded, giving the user a clue that this 999 entity is internal. */ 1000 1001 if (*len > 1 1002 && encoded[*len - 1] == 'N' 1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2]))) 1004 *len = *len - 1; 1005 } 1006 1007 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */ 1008 1009 static void 1010 ada_remove_Xbn_suffix (const char *encoded, int *len) 1011 { 1012 int i = *len - 1; 1013 1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n')) 1015 i--; 1016 1017 if (encoded[i] != 'X') 1018 return; 1019 1020 if (i == 0) 1021 return; 1022 1023 if (isalnum (encoded[i-1])) 1024 *len = i; 1025 } 1026 1027 /* If ENCODED follows the GNAT entity encoding conventions, then return 1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is 1029 replaced by ENCODED. 1030 1031 The resulting string is valid until the next call of ada_decode. 1032 If the string is unchanged by decoding, the original string pointer 1033 is returned. */ 1034 1035 const char * 1036 ada_decode (const char *encoded) 1037 { 1038 int i, j; 1039 int len0; 1040 const char *p; 1041 char *decoded; 1042 int at_start_name; 1043 static char *decoding_buffer = NULL; 1044 static size_t decoding_buffer_size = 0; 1045 1046 /* The name of the Ada main procedure starts with "_ada_". 1047 This prefix is not part of the decoded name, so skip this part 1048 if we see this prefix. */ 1049 if (strncmp (encoded, "_ada_", 5) == 0) 1050 encoded += 5; 1051 1052 /* If the name starts with '_', then it is not a properly encoded 1053 name, so do not attempt to decode it. Similarly, if the name 1054 starts with '<', the name should not be decoded. */ 1055 if (encoded[0] == '_' || encoded[0] == '<') 1056 goto Suppress; 1057 1058 len0 = strlen (encoded); 1059 1060 ada_remove_trailing_digits (encoded, &len0); 1061 ada_remove_po_subprogram_suffix (encoded, &len0); 1062 1063 /* Remove the ___X.* suffix if present. Do not forget to verify that 1064 the suffix is located before the current "end" of ENCODED. We want 1065 to avoid re-matching parts of ENCODED that have previously been 1066 marked as discarded (by decrementing LEN0). */ 1067 p = strstr (encoded, "___"); 1068 if (p != NULL && p - encoded < len0 - 3) 1069 { 1070 if (p[3] == 'X') 1071 len0 = p - encoded; 1072 else 1073 goto Suppress; 1074 } 1075 1076 /* Remove any trailing TKB suffix. It tells us that this symbol 1077 is for the body of a task, but that information does not actually 1078 appear in the decoded name. */ 1079 1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0) 1081 len0 -= 3; 1082 1083 /* Remove any trailing TB suffix. The TB suffix is slightly different 1084 from the TKB suffix because it is used for non-anonymous task 1085 bodies. */ 1086 1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0) 1088 len0 -= 2; 1089 1090 /* Remove trailing "B" suffixes. */ 1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */ 1092 1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0) 1094 len0 -= 1; 1095 1096 /* Make decoded big enough for possible expansion by operator name. */ 1097 1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1); 1099 decoded = decoding_buffer; 1100 1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */ 1102 1103 if (len0 > 1 && isdigit (encoded[len0 - 1])) 1104 { 1105 i = len0 - 2; 1106 while ((i >= 0 && isdigit (encoded[i])) 1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1]))) 1108 i -= 1; 1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_') 1110 len0 = i - 1; 1111 else if (encoded[i] == '$') 1112 len0 = i; 1113 } 1114 1115 /* The first few characters that are not alphabetic are not part 1116 of any encoding we use, so we can copy them over verbatim. */ 1117 1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1) 1119 decoded[j] = encoded[i]; 1120 1121 at_start_name = 1; 1122 while (i < len0) 1123 { 1124 /* Is this a symbol function? */ 1125 if (at_start_name && encoded[i] == 'O') 1126 { 1127 int k; 1128 1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1) 1130 { 1131 int op_len = strlen (ada_opname_table[k].encoded); 1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1, 1133 op_len - 1) == 0) 1134 && !isalnum (encoded[i + op_len])) 1135 { 1136 strcpy (decoded + j, ada_opname_table[k].decoded); 1137 at_start_name = 0; 1138 i += op_len; 1139 j += strlen (ada_opname_table[k].decoded); 1140 break; 1141 } 1142 } 1143 if (ada_opname_table[k].encoded != NULL) 1144 continue; 1145 } 1146 at_start_name = 0; 1147 1148 /* Replace "TK__" with "__", which will eventually be translated 1149 into "." (just below). */ 1150 1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0) 1152 i += 2; 1153 1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually 1155 be translated into "." (just below). These are internal names 1156 generated for anonymous blocks inside which our symbol is nested. */ 1157 1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_' 1159 && encoded [i+2] == 'B' && encoded [i+3] == '_' 1160 && isdigit (encoded [i+4])) 1161 { 1162 int k = i + 5; 1163 1164 while (k < len0 && isdigit (encoded[k])) 1165 k++; /* Skip any extra digit. */ 1166 1167 /* Double-check that the "__B_{DIGITS}+" sequence we found 1168 is indeed followed by "__". */ 1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_') 1170 i = k; 1171 } 1172 1173 /* Remove _E{DIGITS}+[sb] */ 1174 1175 /* Just as for protected object subprograms, there are 2 categories 1176 of subprograms created by the compiler for each entry. The first 1177 one implements the actual entry code, and has a suffix following 1178 the convention above; the second one implements the barrier and 1179 uses the same convention as above, except that the 'E' is replaced 1180 by a 'B'. 1181 1182 Just as above, we do not decode the name of barrier functions 1183 to give the user a clue that the code he is debugging has been 1184 internally generated. */ 1185 1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E' 1187 && isdigit (encoded[i+2])) 1188 { 1189 int k = i + 3; 1190 1191 while (k < len0 && isdigit (encoded[k])) 1192 k++; 1193 1194 if (k < len0 1195 && (encoded[k] == 'b' || encoded[k] == 's')) 1196 { 1197 k++; 1198 /* Just as an extra precaution, make sure that if this 1199 suffix is followed by anything else, it is a '_'. 1200 Otherwise, we matched this sequence by accident. */ 1201 if (k == len0 1202 || (k < len0 && encoded[k] == '_')) 1203 i = k; 1204 } 1205 } 1206 1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by 1208 the GNAT front-end in protected object subprograms. */ 1209 1210 if (i < len0 + 3 1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_') 1212 { 1213 /* Backtrack a bit up until we reach either the begining of 1214 the encoded name, or "__". Make sure that we only find 1215 digits or lowercase characters. */ 1216 const char *ptr = encoded + i - 1; 1217 1218 while (ptr >= encoded && is_lower_alphanum (ptr[0])) 1219 ptr--; 1220 if (ptr < encoded 1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_')) 1222 i++; 1223 } 1224 1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1])) 1226 { 1227 /* This is a X[bn]* sequence not separated from the previous 1228 part of the name with a non-alpha-numeric character (in other 1229 words, immediately following an alpha-numeric character), then 1230 verify that it is placed at the end of the encoded name. If 1231 not, then the encoding is not valid and we should abort the 1232 decoding. Otherwise, just skip it, it is used in body-nested 1233 package names. */ 1234 do 1235 i += 1; 1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n')); 1237 if (i < len0) 1238 goto Suppress; 1239 } 1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_') 1241 { 1242 /* Replace '__' by '.'. */ 1243 decoded[j] = '.'; 1244 at_start_name = 1; 1245 i += 2; 1246 j += 1; 1247 } 1248 else 1249 { 1250 /* It's a character part of the decoded name, so just copy it 1251 over. */ 1252 decoded[j] = encoded[i]; 1253 i += 1; 1254 j += 1; 1255 } 1256 } 1257 decoded[j] = '\000'; 1258 1259 /* Decoded names should never contain any uppercase character. 1260 Double-check this, and abort the decoding if we find one. */ 1261 1262 for (i = 0; decoded[i] != '\0'; i += 1) 1263 if (isupper (decoded[i]) || decoded[i] == ' ') 1264 goto Suppress; 1265 1266 if (strcmp (decoded, encoded) == 0) 1267 return encoded; 1268 else 1269 return decoded; 1270 1271 Suppress: 1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3); 1273 decoded = decoding_buffer; 1274 if (encoded[0] == '<') 1275 strcpy (decoded, encoded); 1276 else 1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded); 1278 return decoded; 1279 1280 } 1281 1282 /* Table for keeping permanent unique copies of decoded names. Once 1283 allocated, names in this table are never released. While this is a 1284 storage leak, it should not be significant unless there are massive 1285 changes in the set of decoded names in successive versions of a 1286 symbol table loaded during a single session. */ 1287 static struct htab *decoded_names_store; 1288 1289 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it 1290 in the language-specific part of GSYMBOL, if it has not been 1291 previously computed. Tries to save the decoded name in the same 1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that, 1293 in any case, the decoded symbol has a lifetime at least that of 1294 GSYMBOL). 1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically 1296 const, but nevertheless modified to a semantically equivalent form 1297 when a decoded name is cached in it. */ 1298 1299 const char * 1300 ada_decode_symbol (const struct general_symbol_info *arg) 1301 { 1302 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg; 1303 const char **resultp = 1304 &gsymbol->language_specific.mangled_lang.demangled_name; 1305 1306 if (!gsymbol->ada_mangled) 1307 { 1308 const char *decoded = ada_decode (gsymbol->name); 1309 struct obstack *obstack = gsymbol->language_specific.obstack; 1310 1311 gsymbol->ada_mangled = 1; 1312 1313 if (obstack != NULL) 1314 *resultp = obstack_copy0 (obstack, decoded, strlen (decoded)); 1315 else 1316 { 1317 /* Sometimes, we can't find a corresponding objfile, in 1318 which case, we put the result on the heap. Since we only 1319 decode when needed, we hope this usually does not cause a 1320 significant memory leak (FIXME). */ 1321 1322 char **slot = (char **) htab_find_slot (decoded_names_store, 1323 decoded, INSERT); 1324 1325 if (*slot == NULL) 1326 *slot = xstrdup (decoded); 1327 *resultp = *slot; 1328 } 1329 } 1330 1331 return *resultp; 1332 } 1333 1334 static char * 1335 ada_la_decode (const char *encoded, int options) 1336 { 1337 return xstrdup (ada_decode (encoded)); 1338 } 1339 1340 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing 1341 suffixes that encode debugging information or leading _ada_ on 1342 SYM_NAME (see is_name_suffix commentary for the debugging 1343 information that is ignored). If WILD, then NAME need only match a 1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if 1345 either argument is NULL. */ 1346 1347 static int 1348 match_name (const char *sym_name, const char *name, int wild) 1349 { 1350 if (sym_name == NULL || name == NULL) 1351 return 0; 1352 else if (wild) 1353 return wild_match (sym_name, name) == 0; 1354 else 1355 { 1356 int len_name = strlen (name); 1357 1358 return (strncmp (sym_name, name, len_name) == 0 1359 && is_name_suffix (sym_name + len_name)) 1360 || (strncmp (sym_name, "_ada_", 5) == 0 1361 && strncmp (sym_name + 5, name, len_name) == 0 1362 && is_name_suffix (sym_name + len_name + 5)); 1363 } 1364 } 1365 1366 1367 /* Arrays */ 1368 1369 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure 1370 generated by the GNAT compiler to describe the index type used 1371 for each dimension of an array, check whether it follows the latest 1372 known encoding. If not, fix it up to conform to the latest encoding. 1373 Otherwise, do nothing. This function also does nothing if 1374 INDEX_DESC_TYPE is NULL. 1375 1376 The GNAT encoding used to describle the array index type evolved a bit. 1377 Initially, the information would be provided through the name of each 1378 field of the structure type only, while the type of these fields was 1379 described as unspecified and irrelevant. The debugger was then expected 1380 to perform a global type lookup using the name of that field in order 1381 to get access to the full index type description. Because these global 1382 lookups can be very expensive, the encoding was later enhanced to make 1383 the global lookup unnecessary by defining the field type as being 1384 the full index type description. 1385 1386 The purpose of this routine is to allow us to support older versions 1387 of the compiler by detecting the use of the older encoding, and by 1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point, 1389 we essentially replace each field's meaningless type by the associated 1390 index subtype). */ 1391 1392 void 1393 ada_fixup_array_indexes_type (struct type *index_desc_type) 1394 { 1395 int i; 1396 1397 if (index_desc_type == NULL) 1398 return; 1399 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0); 1400 1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient 1402 to check one field only, no need to check them all). If not, return 1403 now. 1404 1405 If our INDEX_DESC_TYPE was generated using the older encoding, 1406 the field type should be a meaningless integer type whose name 1407 is not equal to the field name. */ 1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL 1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)), 1410 TYPE_FIELD_NAME (index_desc_type, 0)) == 0) 1411 return; 1412 1413 /* Fixup each field of INDEX_DESC_TYPE. */ 1414 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++) 1415 { 1416 const char *name = TYPE_FIELD_NAME (index_desc_type, i); 1417 struct type *raw_type = ada_check_typedef (ada_find_any_type (name)); 1418 1419 if (raw_type) 1420 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type; 1421 } 1422 } 1423 1424 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */ 1425 1426 static char *bound_name[] = { 1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", 1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" 1429 }; 1430 1431 /* Maximum number of array dimensions we are prepared to handle. */ 1432 1433 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *))) 1434 1435 1436 /* The desc_* routines return primitive portions of array descriptors 1437 (fat pointers). */ 1438 1439 /* The descriptor or array type, if any, indicated by TYPE; removes 1440 level of indirection, if needed. */ 1441 1442 static struct type * 1443 desc_base_type (struct type *type) 1444 { 1445 if (type == NULL) 1446 return NULL; 1447 type = ada_check_typedef (type); 1448 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) 1449 type = ada_typedef_target_type (type); 1450 1451 if (type != NULL 1452 && (TYPE_CODE (type) == TYPE_CODE_PTR 1453 || TYPE_CODE (type) == TYPE_CODE_REF)) 1454 return ada_check_typedef (TYPE_TARGET_TYPE (type)); 1455 else 1456 return type; 1457 } 1458 1459 /* True iff TYPE indicates a "thin" array pointer type. */ 1460 1461 static int 1462 is_thin_pntr (struct type *type) 1463 { 1464 return 1465 is_suffix (ada_type_name (desc_base_type (type)), "___XUT") 1466 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); 1467 } 1468 1469 /* The descriptor type for thin pointer type TYPE. */ 1470 1471 static struct type * 1472 thin_descriptor_type (struct type *type) 1473 { 1474 struct type *base_type = desc_base_type (type); 1475 1476 if (base_type == NULL) 1477 return NULL; 1478 if (is_suffix (ada_type_name (base_type), "___XVE")) 1479 return base_type; 1480 else 1481 { 1482 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE"); 1483 1484 if (alt_type == NULL) 1485 return base_type; 1486 else 1487 return alt_type; 1488 } 1489 } 1490 1491 /* A pointer to the array data for thin-pointer value VAL. */ 1492 1493 static struct value * 1494 thin_data_pntr (struct value *val) 1495 { 1496 struct type *type = ada_check_typedef (value_type (val)); 1497 struct type *data_type = desc_data_target_type (thin_descriptor_type (type)); 1498 1499 data_type = lookup_pointer_type (data_type); 1500 1501 if (TYPE_CODE (type) == TYPE_CODE_PTR) 1502 return value_cast (data_type, value_copy (val)); 1503 else 1504 return value_from_longest (data_type, value_address (val)); 1505 } 1506 1507 /* True iff TYPE indicates a "thick" array pointer type. */ 1508 1509 static int 1510 is_thick_pntr (struct type *type) 1511 { 1512 type = desc_base_type (type); 1513 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT 1514 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); 1515 } 1516 1517 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a 1518 pointer to one, the type of its bounds data; otherwise, NULL. */ 1519 1520 static struct type * 1521 desc_bounds_type (struct type *type) 1522 { 1523 struct type *r; 1524 1525 type = desc_base_type (type); 1526 1527 if (type == NULL) 1528 return NULL; 1529 else if (is_thin_pntr (type)) 1530 { 1531 type = thin_descriptor_type (type); 1532 if (type == NULL) 1533 return NULL; 1534 r = lookup_struct_elt_type (type, "BOUNDS", 1); 1535 if (r != NULL) 1536 return ada_check_typedef (r); 1537 } 1538 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) 1539 { 1540 r = lookup_struct_elt_type (type, "P_BOUNDS", 1); 1541 if (r != NULL) 1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r))); 1543 } 1544 return NULL; 1545 } 1546 1547 /* If ARR is an array descriptor (fat or thin pointer), or pointer to 1548 one, a pointer to its bounds data. Otherwise NULL. */ 1549 1550 static struct value * 1551 desc_bounds (struct value *arr) 1552 { 1553 struct type *type = ada_check_typedef (value_type (arr)); 1554 1555 if (is_thin_pntr (type)) 1556 { 1557 struct type *bounds_type = 1558 desc_bounds_type (thin_descriptor_type (type)); 1559 LONGEST addr; 1560 1561 if (bounds_type == NULL) 1562 error (_("Bad GNAT array descriptor")); 1563 1564 /* NOTE: The following calculation is not really kosher, but 1565 since desc_type is an XVE-encoded type (and shouldn't be), 1566 the correct calculation is a real pain. FIXME (and fix GCC). */ 1567 if (TYPE_CODE (type) == TYPE_CODE_PTR) 1568 addr = value_as_long (arr); 1569 else 1570 addr = value_address (arr); 1571 1572 return 1573 value_from_longest (lookup_pointer_type (bounds_type), 1574 addr - TYPE_LENGTH (bounds_type)); 1575 } 1576 1577 else if (is_thick_pntr (type)) 1578 { 1579 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, 1580 _("Bad GNAT array descriptor")); 1581 struct type *p_bounds_type = value_type (p_bounds); 1582 1583 if (p_bounds_type 1584 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR) 1585 { 1586 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type); 1587 1588 if (TYPE_STUB (target_type)) 1589 p_bounds = value_cast (lookup_pointer_type 1590 (ada_check_typedef (target_type)), 1591 p_bounds); 1592 } 1593 else 1594 error (_("Bad GNAT array descriptor")); 1595 1596 return p_bounds; 1597 } 1598 else 1599 return NULL; 1600 } 1601 1602 /* If TYPE is the type of an array-descriptor (fat pointer), the bit 1603 position of the field containing the address of the bounds data. */ 1604 1605 static int 1606 fat_pntr_bounds_bitpos (struct type *type) 1607 { 1608 return TYPE_FIELD_BITPOS (desc_base_type (type), 1); 1609 } 1610 1611 /* If TYPE is the type of an array-descriptor (fat pointer), the bit 1612 size of the field containing the address of the bounds data. */ 1613 1614 static int 1615 fat_pntr_bounds_bitsize (struct type *type) 1616 { 1617 type = desc_base_type (type); 1618 1619 if (TYPE_FIELD_BITSIZE (type, 1) > 0) 1620 return TYPE_FIELD_BITSIZE (type, 1); 1621 else 1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1))); 1623 } 1624 1625 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a 1626 pointer to one, the type of its array data (a array-with-no-bounds type); 1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds 1628 data. */ 1629 1630 static struct type * 1631 desc_data_target_type (struct type *type) 1632 { 1633 type = desc_base_type (type); 1634 1635 /* NOTE: The following is bogus; see comment in desc_bounds. */ 1636 if (is_thin_pntr (type)) 1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1)); 1638 else if (is_thick_pntr (type)) 1639 { 1640 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1); 1641 1642 if (data_type 1643 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR) 1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type)); 1645 } 1646 1647 return NULL; 1648 } 1649 1650 /* If ARR is an array descriptor (fat or thin pointer), a pointer to 1651 its array data. */ 1652 1653 static struct value * 1654 desc_data (struct value *arr) 1655 { 1656 struct type *type = value_type (arr); 1657 1658 if (is_thin_pntr (type)) 1659 return thin_data_pntr (arr); 1660 else if (is_thick_pntr (type)) 1661 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, 1662 _("Bad GNAT array descriptor")); 1663 else 1664 return NULL; 1665 } 1666 1667 1668 /* If TYPE is the type of an array-descriptor (fat pointer), the bit 1669 position of the field containing the address of the data. */ 1670 1671 static int 1672 fat_pntr_data_bitpos (struct type *type) 1673 { 1674 return TYPE_FIELD_BITPOS (desc_base_type (type), 0); 1675 } 1676 1677 /* If TYPE is the type of an array-descriptor (fat pointer), the bit 1678 size of the field containing the address of the data. */ 1679 1680 static int 1681 fat_pntr_data_bitsize (struct type *type) 1682 { 1683 type = desc_base_type (type); 1684 1685 if (TYPE_FIELD_BITSIZE (type, 0) > 0) 1686 return TYPE_FIELD_BITSIZE (type, 0); 1687 else 1688 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); 1689 } 1690 1691 /* If BOUNDS is an array-bounds structure (or pointer to one), return 1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper 1693 bound, if WHICH is 1. The first bound is I=1. */ 1694 1695 static struct value * 1696 desc_one_bound (struct value *bounds, int i, int which) 1697 { 1698 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL, 1699 _("Bad GNAT array descriptor bounds")); 1700 } 1701 1702 /* If BOUNDS is an array-bounds structure type, return the bit position 1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper 1704 bound, if WHICH is 1. The first bound is I=1. */ 1705 1706 static int 1707 desc_bound_bitpos (struct type *type, int i, int which) 1708 { 1709 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2); 1710 } 1711 1712 /* If BOUNDS is an array-bounds structure type, return the bit field size 1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper 1714 bound, if WHICH is 1. The first bound is I=1. */ 1715 1716 static int 1717 desc_bound_bitsize (struct type *type, int i, int which) 1718 { 1719 type = desc_base_type (type); 1720 1721 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0) 1722 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2); 1723 else 1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2)); 1725 } 1726 1727 /* If TYPE is the type of an array-bounds structure, the type of its 1728 Ith bound (numbering from 1). Otherwise, NULL. */ 1729 1730 static struct type * 1731 desc_index_type (struct type *type, int i) 1732 { 1733 type = desc_base_type (type); 1734 1735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT) 1736 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1); 1737 else 1738 return NULL; 1739 } 1740 1741 /* The number of index positions in the array-bounds type TYPE. 1742 Return 0 if TYPE is NULL. */ 1743 1744 static int 1745 desc_arity (struct type *type) 1746 { 1747 type = desc_base_type (type); 1748 1749 if (type != NULL) 1750 return TYPE_NFIELDS (type) / 2; 1751 return 0; 1752 } 1753 1754 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or 1755 an array descriptor type (representing an unconstrained array 1756 type). */ 1757 1758 static int 1759 ada_is_direct_array_type (struct type *type) 1760 { 1761 if (type == NULL) 1762 return 0; 1763 type = ada_check_typedef (type); 1764 return (TYPE_CODE (type) == TYPE_CODE_ARRAY 1765 || ada_is_array_descriptor_type (type)); 1766 } 1767 1768 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer 1769 * to one. */ 1770 1771 static int 1772 ada_is_array_type (struct type *type) 1773 { 1774 while (type != NULL 1775 && (TYPE_CODE (type) == TYPE_CODE_PTR 1776 || TYPE_CODE (type) == TYPE_CODE_REF)) 1777 type = TYPE_TARGET_TYPE (type); 1778 return ada_is_direct_array_type (type); 1779 } 1780 1781 /* Non-zero iff TYPE is a simple array type or pointer to one. */ 1782 1783 int 1784 ada_is_simple_array_type (struct type *type) 1785 { 1786 if (type == NULL) 1787 return 0; 1788 type = ada_check_typedef (type); 1789 return (TYPE_CODE (type) == TYPE_CODE_ARRAY 1790 || (TYPE_CODE (type) == TYPE_CODE_PTR 1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))) 1792 == TYPE_CODE_ARRAY)); 1793 } 1794 1795 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */ 1796 1797 int 1798 ada_is_array_descriptor_type (struct type *type) 1799 { 1800 struct type *data_type = desc_data_target_type (type); 1801 1802 if (type == NULL) 1803 return 0; 1804 type = ada_check_typedef (type); 1805 return (data_type != NULL 1806 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY 1807 && desc_arity (desc_bounds_type (type)) > 0); 1808 } 1809 1810 /* Non-zero iff type is a partially mal-formed GNAT array 1811 descriptor. FIXME: This is to compensate for some problems with 1812 debugging output from GNAT. Re-examine periodically to see if it 1813 is still needed. */ 1814 1815 int 1816 ada_is_bogus_array_descriptor (struct type *type) 1817 { 1818 return 1819 type != NULL 1820 && TYPE_CODE (type) == TYPE_CODE_STRUCT 1821 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL 1822 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) 1823 && !ada_is_array_descriptor_type (type); 1824 } 1825 1826 1827 /* If ARR has a record type in the form of a standard GNAT array descriptor, 1828 (fat pointer) returns the type of the array data described---specifically, 1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled 1830 in from the descriptor; otherwise, they are left unspecified. If 1831 the ARR denotes a null array descriptor and BOUNDS is non-zero, 1832 returns NULL. The result is simply the type of ARR if ARR is not 1833 a descriptor. */ 1834 struct type * 1835 ada_type_of_array (struct value *arr, int bounds) 1836 { 1837 if (ada_is_constrained_packed_array_type (value_type (arr))) 1838 return decode_constrained_packed_array_type (value_type (arr)); 1839 1840 if (!ada_is_array_descriptor_type (value_type (arr))) 1841 return value_type (arr); 1842 1843 if (!bounds) 1844 { 1845 struct type *array_type = 1846 ada_check_typedef (desc_data_target_type (value_type (arr))); 1847 1848 if (ada_is_unconstrained_packed_array_type (value_type (arr))) 1849 TYPE_FIELD_BITSIZE (array_type, 0) = 1850 decode_packed_array_bitsize (value_type (arr)); 1851 1852 return array_type; 1853 } 1854 else 1855 { 1856 struct type *elt_type; 1857 int arity; 1858 struct value *descriptor; 1859 1860 elt_type = ada_array_element_type (value_type (arr), -1); 1861 arity = ada_array_arity (value_type (arr)); 1862 1863 if (elt_type == NULL || arity == 0) 1864 return ada_check_typedef (value_type (arr)); 1865 1866 descriptor = desc_bounds (arr); 1867 if (value_as_long (descriptor) == 0) 1868 return NULL; 1869 while (arity > 0) 1870 { 1871 struct type *range_type = alloc_type_copy (value_type (arr)); 1872 struct type *array_type = alloc_type_copy (value_type (arr)); 1873 struct value *low = desc_one_bound (descriptor, arity, 0); 1874 struct value *high = desc_one_bound (descriptor, arity, 1); 1875 1876 arity -= 1; 1877 create_range_type (range_type, value_type (low), 1878 longest_to_int (value_as_long (low)), 1879 longest_to_int (value_as_long (high))); 1880 elt_type = create_array_type (array_type, elt_type, range_type); 1881 1882 if (ada_is_unconstrained_packed_array_type (value_type (arr))) 1883 { 1884 /* We need to store the element packed bitsize, as well as 1885 recompute the array size, because it was previously 1886 computed based on the unpacked element size. */ 1887 LONGEST lo = value_as_long (low); 1888 LONGEST hi = value_as_long (high); 1889 1890 TYPE_FIELD_BITSIZE (elt_type, 0) = 1891 decode_packed_array_bitsize (value_type (arr)); 1892 /* If the array has no element, then the size is already 1893 zero, and does not need to be recomputed. */ 1894 if (lo < hi) 1895 { 1896 int array_bitsize = 1897 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0); 1898 1899 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8; 1900 } 1901 } 1902 } 1903 1904 return lookup_pointer_type (elt_type); 1905 } 1906 } 1907 1908 /* If ARR does not represent an array, returns ARR unchanged. 1909 Otherwise, returns either a standard GDB array with bounds set 1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard 1911 GDB array. Returns NULL if ARR is a null fat pointer. */ 1912 1913 struct value * 1914 ada_coerce_to_simple_array_ptr (struct value *arr) 1915 { 1916 if (ada_is_array_descriptor_type (value_type (arr))) 1917 { 1918 struct type *arrType = ada_type_of_array (arr, 1); 1919 1920 if (arrType == NULL) 1921 return NULL; 1922 return value_cast (arrType, value_copy (desc_data (arr))); 1923 } 1924 else if (ada_is_constrained_packed_array_type (value_type (arr))) 1925 return decode_constrained_packed_array (arr); 1926 else 1927 return arr; 1928 } 1929 1930 /* If ARR does not represent an array, returns ARR unchanged. 1931 Otherwise, returns a standard GDB array describing ARR (which may 1932 be ARR itself if it already is in the proper form). */ 1933 1934 struct value * 1935 ada_coerce_to_simple_array (struct value *arr) 1936 { 1937 if (ada_is_array_descriptor_type (value_type (arr))) 1938 { 1939 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr); 1940 1941 if (arrVal == NULL) 1942 error (_("Bounds unavailable for null array pointer.")); 1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal))); 1944 return value_ind (arrVal); 1945 } 1946 else if (ada_is_constrained_packed_array_type (value_type (arr))) 1947 return decode_constrained_packed_array (arr); 1948 else 1949 return arr; 1950 } 1951 1952 /* If TYPE represents a GNAT array type, return it translated to an 1953 ordinary GDB array type (possibly with BITSIZE fields indicating 1954 packing). For other types, is the identity. */ 1955 1956 struct type * 1957 ada_coerce_to_simple_array_type (struct type *type) 1958 { 1959 if (ada_is_constrained_packed_array_type (type)) 1960 return decode_constrained_packed_array_type (type); 1961 1962 if (ada_is_array_descriptor_type (type)) 1963 return ada_check_typedef (desc_data_target_type (type)); 1964 1965 return type; 1966 } 1967 1968 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */ 1969 1970 static int 1971 ada_is_packed_array_type (struct type *type) 1972 { 1973 if (type == NULL) 1974 return 0; 1975 type = desc_base_type (type); 1976 type = ada_check_typedef (type); 1977 return 1978 ada_type_name (type) != NULL 1979 && strstr (ada_type_name (type), "___XP") != NULL; 1980 } 1981 1982 /* Non-zero iff TYPE represents a standard GNAT constrained 1983 packed-array type. */ 1984 1985 int 1986 ada_is_constrained_packed_array_type (struct type *type) 1987 { 1988 return ada_is_packed_array_type (type) 1989 && !ada_is_array_descriptor_type (type); 1990 } 1991 1992 /* Non-zero iff TYPE represents an array descriptor for a 1993 unconstrained packed-array type. */ 1994 1995 static int 1996 ada_is_unconstrained_packed_array_type (struct type *type) 1997 { 1998 return ada_is_packed_array_type (type) 1999 && ada_is_array_descriptor_type (type); 2000 } 2001 2002 /* Given that TYPE encodes a packed array type (constrained or unconstrained), 2003 return the size of its elements in bits. */ 2004 2005 static long 2006 decode_packed_array_bitsize (struct type *type) 2007 { 2008 const char *raw_name; 2009 const char *tail; 2010 long bits; 2011 2012 /* Access to arrays implemented as fat pointers are encoded as a typedef 2013 of the fat pointer type. We need the name of the fat pointer type 2014 to do the decoding, so strip the typedef layer. */ 2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) 2016 type = ada_typedef_target_type (type); 2017 2018 raw_name = ada_type_name (ada_check_typedef (type)); 2019 if (!raw_name) 2020 raw_name = ada_type_name (desc_base_type (type)); 2021 2022 if (!raw_name) 2023 return 0; 2024 2025 tail = strstr (raw_name, "___XP"); 2026 gdb_assert (tail != NULL); 2027 2028 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) 2029 { 2030 lim_warning 2031 (_("could not understand bit size information on packed array")); 2032 return 0; 2033 } 2034 2035 return bits; 2036 } 2037 2038 /* Given that TYPE is a standard GDB array type with all bounds filled 2039 in, and that the element size of its ultimate scalar constituents 2040 (that is, either its elements, or, if it is an array of arrays, its 2041 elements' elements, etc.) is *ELT_BITS, return an identical type, 2042 but with the bit sizes of its elements (and those of any 2043 constituent arrays) recorded in the BITSIZE components of its 2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size 2045 in bits. */ 2046 2047 static struct type * 2048 constrained_packed_array_type (struct type *type, long *elt_bits) 2049 { 2050 struct type *new_elt_type; 2051 struct type *new_type; 2052 struct type *index_type_desc; 2053 struct type *index_type; 2054 LONGEST low_bound, high_bound; 2055 2056 type = ada_check_typedef (type); 2057 if (TYPE_CODE (type) != TYPE_CODE_ARRAY) 2058 return type; 2059 2060 index_type_desc = ada_find_parallel_type (type, "___XA"); 2061 if (index_type_desc) 2062 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0), 2063 NULL); 2064 else 2065 index_type = TYPE_INDEX_TYPE (type); 2066 2067 new_type = alloc_type_copy (type); 2068 new_elt_type = 2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)), 2070 elt_bits); 2071 create_array_type (new_type, new_elt_type, index_type); 2072 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; 2073 TYPE_NAME (new_type) = ada_type_name (type); 2074 2075 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0) 2076 low_bound = high_bound = 0; 2077 if (high_bound < low_bound) 2078 *elt_bits = TYPE_LENGTH (new_type) = 0; 2079 else 2080 { 2081 *elt_bits *= (high_bound - low_bound + 1); 2082 TYPE_LENGTH (new_type) = 2083 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; 2084 } 2085 2086 TYPE_FIXED_INSTANCE (new_type) = 1; 2087 return new_type; 2088 } 2089 2090 /* The array type encoded by TYPE, where 2091 ada_is_constrained_packed_array_type (TYPE). */ 2092 2093 static struct type * 2094 decode_constrained_packed_array_type (struct type *type) 2095 { 2096 const char *raw_name = ada_type_name (ada_check_typedef (type)); 2097 char *name; 2098 const char *tail; 2099 struct type *shadow_type; 2100 long bits; 2101 2102 if (!raw_name) 2103 raw_name = ada_type_name (desc_base_type (type)); 2104 2105 if (!raw_name) 2106 return NULL; 2107 2108 name = (char *) alloca (strlen (raw_name) + 1); 2109 tail = strstr (raw_name, "___XP"); 2110 type = desc_base_type (type); 2111 2112 memcpy (name, raw_name, tail - raw_name); 2113 name[tail - raw_name] = '\000'; 2114 2115 shadow_type = ada_find_parallel_type_with_name (type, name); 2116 2117 if (shadow_type == NULL) 2118 { 2119 lim_warning (_("could not find bounds information on packed array")); 2120 return NULL; 2121 } 2122 CHECK_TYPEDEF (shadow_type); 2123 2124 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) 2125 { 2126 lim_warning (_("could not understand bounds " 2127 "information on packed array")); 2128 return NULL; 2129 } 2130 2131 bits = decode_packed_array_bitsize (type); 2132 return constrained_packed_array_type (shadow_type, &bits); 2133 } 2134 2135 /* Given that ARR is a struct value *indicating a GNAT constrained packed 2136 array, returns a simple array that denotes that array. Its type is a 2137 standard GDB array type except that the BITSIZEs of the array 2138 target types are set to the number of bits in each element, and the 2139 type length is set appropriately. */ 2140 2141 static struct value * 2142 decode_constrained_packed_array (struct value *arr) 2143 { 2144 struct type *type; 2145 2146 arr = ada_coerce_ref (arr); 2147 2148 /* If our value is a pointer, then dererence it. Make sure that 2149 this operation does not cause the target type to be fixed, as 2150 this would indirectly cause this array to be decoded. The rest 2151 of the routine assumes that the array hasn't been decoded yet, 2152 so we use the basic "value_ind" routine to perform the dereferencing, 2153 as opposed to using "ada_value_ind". */ 2154 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR) 2155 arr = value_ind (arr); 2156 2157 type = decode_constrained_packed_array_type (value_type (arr)); 2158 if (type == NULL) 2159 { 2160 error (_("can't unpack array")); 2161 return NULL; 2162 } 2163 2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr))) 2165 && ada_is_modular_type (value_type (arr))) 2166 { 2167 /* This is a (right-justified) modular type representing a packed 2168 array with no wrapper. In order to interpret the value through 2169 the (left-justified) packed array type we just built, we must 2170 first left-justify it. */ 2171 int bit_size, bit_pos; 2172 ULONGEST mod; 2173 2174 mod = ada_modulus (value_type (arr)) - 1; 2175 bit_size = 0; 2176 while (mod > 0) 2177 { 2178 bit_size += 1; 2179 mod >>= 1; 2180 } 2181 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size; 2182 arr = ada_value_primitive_packed_val (arr, NULL, 2183 bit_pos / HOST_CHAR_BIT, 2184 bit_pos % HOST_CHAR_BIT, 2185 bit_size, 2186 type); 2187 } 2188 2189 return coerce_unspec_val_to_type (arr, type); 2190 } 2191 2192 2193 /* The value of the element of packed array ARR at the ARITY indices 2194 given in IND. ARR must be a simple array. */ 2195 2196 static struct value * 2197 value_subscript_packed (struct value *arr, int arity, struct value **ind) 2198 { 2199 int i; 2200 int bits, elt_off, bit_off; 2201 long elt_total_bit_offset; 2202 struct type *elt_type; 2203 struct value *v; 2204 2205 bits = 0; 2206 elt_total_bit_offset = 0; 2207 elt_type = ada_check_typedef (value_type (arr)); 2208 for (i = 0; i < arity; i += 1) 2209 { 2210 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY 2211 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) 2212 error 2213 (_("attempt to do packed indexing of " 2214 "something other than a packed array")); 2215 else 2216 { 2217 struct type *range_type = TYPE_INDEX_TYPE (elt_type); 2218 LONGEST lowerbound, upperbound; 2219 LONGEST idx; 2220 2221 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0) 2222 { 2223 lim_warning (_("don't know bounds of array")); 2224 lowerbound = upperbound = 0; 2225 } 2226 2227 idx = pos_atr (ind[i]); 2228 if (idx < lowerbound || idx > upperbound) 2229 lim_warning (_("packed array index %ld out of bounds"), 2230 (long) idx); 2231 bits = TYPE_FIELD_BITSIZE (elt_type, 0); 2232 elt_total_bit_offset += (idx - lowerbound) * bits; 2233 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type)); 2234 } 2235 } 2236 elt_off = elt_total_bit_offset / HOST_CHAR_BIT; 2237 bit_off = elt_total_bit_offset % HOST_CHAR_BIT; 2238 2239 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, 2240 bits, elt_type); 2241 return v; 2242 } 2243 2244 /* Non-zero iff TYPE includes negative integer values. */ 2245 2246 static int 2247 has_negatives (struct type *type) 2248 { 2249 switch (TYPE_CODE (type)) 2250 { 2251 default: 2252 return 0; 2253 case TYPE_CODE_INT: 2254 return !TYPE_UNSIGNED (type); 2255 case TYPE_CODE_RANGE: 2256 return TYPE_LOW_BOUND (type) < 0; 2257 } 2258 } 2259 2260 2261 /* Create a new value of type TYPE from the contents of OBJ starting 2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte, 2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then 2264 assigning through the result will set the field fetched from. 2265 VALADDR is ignored unless OBJ is NULL, in which case, 2266 VALADDR+OFFSET must address the start of storage containing the 2267 packed value. The value returned in this case is never an lval. 2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ 2269 2270 struct value * 2271 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr, 2272 long offset, int bit_offset, int bit_size, 2273 struct type *type) 2274 { 2275 struct value *v; 2276 int src, /* Index into the source area */ 2277 targ, /* Index into the target area */ 2278 srcBitsLeft, /* Number of source bits left to move */ 2279 nsrc, ntarg, /* Number of source and target bytes */ 2280 unusedLS, /* Number of bits in next significant 2281 byte of source that are unused */ 2282 accumSize; /* Number of meaningful bits in accum */ 2283 unsigned char *bytes; /* First byte containing data to unpack */ 2284 unsigned char *unpacked; 2285 unsigned long accum; /* Staging area for bits being transferred */ 2286 unsigned char sign; 2287 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; 2288 /* Transmit bytes from least to most significant; delta is the direction 2289 the indices move. */ 2290 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1; 2291 2292 type = ada_check_typedef (type); 2293 2294 if (obj == NULL) 2295 { 2296 v = allocate_value (type); 2297 bytes = (unsigned char *) (valaddr + offset); 2298 } 2299 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj)) 2300 { 2301 v = value_at (type, value_address (obj)); 2302 bytes = (unsigned char *) alloca (len); 2303 read_memory (value_address (v) + offset, bytes, len); 2304 } 2305 else 2306 { 2307 v = allocate_value (type); 2308 bytes = (unsigned char *) value_contents (obj) + offset; 2309 } 2310 2311 if (obj != NULL) 2312 { 2313 long new_offset = offset; 2314 2315 set_value_component_location (v, obj); 2316 set_value_bitpos (v, bit_offset + value_bitpos (obj)); 2317 set_value_bitsize (v, bit_size); 2318 if (value_bitpos (v) >= HOST_CHAR_BIT) 2319 { 2320 ++new_offset; 2321 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT); 2322 } 2323 set_value_offset (v, new_offset); 2324 2325 /* Also set the parent value. This is needed when trying to 2326 assign a new value (in inferior memory). */ 2327 set_value_parent (v, obj); 2328 } 2329 else 2330 set_value_bitsize (v, bit_size); 2331 unpacked = (unsigned char *) value_contents (v); 2332 2333 srcBitsLeft = bit_size; 2334 nsrc = len; 2335 ntarg = TYPE_LENGTH (type); 2336 sign = 0; 2337 if (bit_size == 0) 2338 { 2339 memset (unpacked, 0, TYPE_LENGTH (type)); 2340 return v; 2341 } 2342 else if (gdbarch_bits_big_endian (get_type_arch (type))) 2343 { 2344 src = len - 1; 2345 if (has_negatives (type) 2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1)))) 2347 sign = ~0; 2348 2349 unusedLS = 2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) 2351 % HOST_CHAR_BIT; 2352 2353 switch (TYPE_CODE (type)) 2354 { 2355 case TYPE_CODE_ARRAY: 2356 case TYPE_CODE_UNION: 2357 case TYPE_CODE_STRUCT: 2358 /* Non-scalar values must be aligned at a byte boundary... */ 2359 accumSize = 2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; 2361 /* ... And are placed at the beginning (most-significant) bytes 2362 of the target. */ 2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1; 2364 ntarg = targ + 1; 2365 break; 2366 default: 2367 accumSize = 0; 2368 targ = TYPE_LENGTH (type) - 1; 2369 break; 2370 } 2371 } 2372 else 2373 { 2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8; 2375 2376 src = targ = 0; 2377 unusedLS = bit_offset; 2378 accumSize = 0; 2379 2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset))) 2381 sign = ~0; 2382 } 2383 2384 accum = 0; 2385 while (nsrc > 0) 2386 { 2387 /* Mask for removing bits of the next source byte that are not 2388 part of the value. */ 2389 unsigned int unusedMSMask = 2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) - 2391 1; 2392 /* Sign-extend bits for this byte. */ 2393 unsigned int signMask = sign & ~unusedMSMask; 2394 2395 accum |= 2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; 2397 accumSize += HOST_CHAR_BIT - unusedLS; 2398 if (accumSize >= HOST_CHAR_BIT) 2399 { 2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); 2401 accumSize -= HOST_CHAR_BIT; 2402 accum >>= HOST_CHAR_BIT; 2403 ntarg -= 1; 2404 targ += delta; 2405 } 2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS; 2407 unusedLS = 0; 2408 nsrc -= 1; 2409 src += delta; 2410 } 2411 while (ntarg > 0) 2412 { 2413 accum |= sign << accumSize; 2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); 2415 accumSize -= HOST_CHAR_BIT; 2416 accum >>= HOST_CHAR_BIT; 2417 ntarg -= 1; 2418 targ += delta; 2419 } 2420 2421 return v; 2422 } 2423 2424 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to 2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must 2426 not overlap. */ 2427 static void 2428 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source, 2429 int src_offset, int n, int bits_big_endian_p) 2430 { 2431 unsigned int accum, mask; 2432 int accum_bits, chunk_size; 2433 2434 target += targ_offset / HOST_CHAR_BIT; 2435 targ_offset %= HOST_CHAR_BIT; 2436 source += src_offset / HOST_CHAR_BIT; 2437 src_offset %= HOST_CHAR_BIT; 2438 if (bits_big_endian_p) 2439 { 2440 accum = (unsigned char) *source; 2441 source += 1; 2442 accum_bits = HOST_CHAR_BIT - src_offset; 2443 2444 while (n > 0) 2445 { 2446 int unused_right; 2447 2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; 2449 accum_bits += HOST_CHAR_BIT; 2450 source += 1; 2451 chunk_size = HOST_CHAR_BIT - targ_offset; 2452 if (chunk_size > n) 2453 chunk_size = n; 2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); 2455 mask = ((1 << chunk_size) - 1) << unused_right; 2456 *target = 2457 (*target & ~mask) 2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); 2459 n -= chunk_size; 2460 accum_bits -= chunk_size; 2461 target += 1; 2462 targ_offset = 0; 2463 } 2464 } 2465 else 2466 { 2467 accum = (unsigned char) *source >> src_offset; 2468 source += 1; 2469 accum_bits = HOST_CHAR_BIT - src_offset; 2470 2471 while (n > 0) 2472 { 2473 accum = accum + ((unsigned char) *source << accum_bits); 2474 accum_bits += HOST_CHAR_BIT; 2475 source += 1; 2476 chunk_size = HOST_CHAR_BIT - targ_offset; 2477 if (chunk_size > n) 2478 chunk_size = n; 2479 mask = ((1 << chunk_size) - 1) << targ_offset; 2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask); 2481 n -= chunk_size; 2482 accum_bits -= chunk_size; 2483 accum >>= chunk_size; 2484 target += 1; 2485 targ_offset = 0; 2486 } 2487 } 2488 } 2489 2490 /* Store the contents of FROMVAL into the location of TOVAL. 2491 Return a new value with the location of TOVAL and contents of 2492 FROMVAL. Handles assignment into packed fields that have 2493 floating-point or non-scalar types. */ 2494 2495 static struct value * 2496 ada_value_assign (struct value *toval, struct value *fromval) 2497 { 2498 struct type *type = value_type (toval); 2499 int bits = value_bitsize (toval); 2500 2501 toval = ada_coerce_ref (toval); 2502 fromval = ada_coerce_ref (fromval); 2503 2504 if (ada_is_direct_array_type (value_type (toval))) 2505 toval = ada_coerce_to_simple_array (toval); 2506 if (ada_is_direct_array_type (value_type (fromval))) 2507 fromval = ada_coerce_to_simple_array (fromval); 2508 2509 if (!deprecated_value_modifiable (toval)) 2510 error (_("Left operand of assignment is not a modifiable lvalue.")); 2511 2512 if (VALUE_LVAL (toval) == lval_memory 2513 && bits > 0 2514 && (TYPE_CODE (type) == TYPE_CODE_FLT 2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT)) 2516 { 2517 int len = (value_bitpos (toval) 2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; 2519 int from_size; 2520 gdb_byte *buffer = alloca (len); 2521 struct value *val; 2522 CORE_ADDR to_addr = value_address (toval); 2523 2524 if (TYPE_CODE (type) == TYPE_CODE_FLT) 2525 fromval = value_cast (type, fromval); 2526 2527 read_memory (to_addr, buffer, len); 2528 from_size = value_bitsize (fromval); 2529 if (from_size == 0) 2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT; 2531 if (gdbarch_bits_big_endian (get_type_arch (type))) 2532 move_bits (buffer, value_bitpos (toval), 2533 value_contents (fromval), from_size - bits, bits, 1); 2534 else 2535 move_bits (buffer, value_bitpos (toval), 2536 value_contents (fromval), 0, bits, 0); 2537 write_memory_with_notification (to_addr, buffer, len); 2538 2539 val = value_copy (toval); 2540 memcpy (value_contents_raw (val), value_contents (fromval), 2541 TYPE_LENGTH (type)); 2542 deprecated_set_value_type (val, type); 2543 2544 return val; 2545 } 2546 2547 return value_assign (toval, fromval); 2548 } 2549 2550 2551 /* Given that COMPONENT is a memory lvalue that is part of the lvalue 2552 * CONTAINER, assign the contents of VAL to COMPONENTS's place in 2553 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not 2554 * COMPONENT, and not the inferior's memory. The current contents 2555 * of COMPONENT are ignored. */ 2556 static void 2557 value_assign_to_component (struct value *container, struct value *component, 2558 struct value *val) 2559 { 2560 LONGEST offset_in_container = 2561 (LONGEST) (value_address (component) - value_address (container)); 2562 int bit_offset_in_container = 2563 value_bitpos (component) - value_bitpos (container); 2564 int bits; 2565 2566 val = value_cast (value_type (component), val); 2567 2568 if (value_bitsize (component) == 0) 2569 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component)); 2570 else 2571 bits = value_bitsize (component); 2572 2573 if (gdbarch_bits_big_endian (get_type_arch (value_type (container)))) 2574 move_bits (value_contents_writeable (container) + offset_in_container, 2575 value_bitpos (container) + bit_offset_in_container, 2576 value_contents (val), 2577 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits, 2578 bits, 1); 2579 else 2580 move_bits (value_contents_writeable (container) + offset_in_container, 2581 value_bitpos (container) + bit_offset_in_container, 2582 value_contents (val), 0, bits, 0); 2583 } 2584 2585 /* The value of the element of array ARR at the ARITY indices given in IND. 2586 ARR may be either a simple array, GNAT array descriptor, or pointer 2587 thereto. */ 2588 2589 struct value * 2590 ada_value_subscript (struct value *arr, int arity, struct value **ind) 2591 { 2592 int k; 2593 struct value *elt; 2594 struct type *elt_type; 2595 2596 elt = ada_coerce_to_simple_array (arr); 2597 2598 elt_type = ada_check_typedef (value_type (elt)); 2599 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY 2600 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) 2601 return value_subscript_packed (elt, arity, ind); 2602 2603 for (k = 0; k < arity; k += 1) 2604 { 2605 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) 2606 error (_("too many subscripts (%d expected)"), k); 2607 elt = value_subscript (elt, pos_atr (ind[k])); 2608 } 2609 return elt; 2610 } 2611 2612 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the 2613 value of the element of *ARR at the ARITY indices given in 2614 IND. Does not read the entire array into memory. */ 2615 2616 static struct value * 2617 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity, 2618 struct value **ind) 2619 { 2620 int k; 2621 2622 for (k = 0; k < arity; k += 1) 2623 { 2624 LONGEST lwb, upb; 2625 2626 if (TYPE_CODE (type) != TYPE_CODE_ARRAY) 2627 error (_("too many subscripts (%d expected)"), k); 2628 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), 2629 value_copy (arr)); 2630 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); 2631 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb); 2632 type = TYPE_TARGET_TYPE (type); 2633 } 2634 2635 return value_ind (arr); 2636 } 2637 2638 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the 2639 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1 2640 elements starting at index LOW. The lower bound of this array is LOW, as 2641 per Ada rules. */ 2642 static struct value * 2643 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type, 2644 int low, int high) 2645 { 2646 struct type *type0 = ada_check_typedef (type); 2647 CORE_ADDR base = value_as_address (array_ptr) 2648 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0))) 2649 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0))); 2650 struct type *index_type = 2651 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)), 2652 low, high); 2653 struct type *slice_type = 2654 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type); 2655 2656 return value_at_lazy (slice_type, base); 2657 } 2658 2659 2660 static struct value * 2661 ada_value_slice (struct value *array, int low, int high) 2662 { 2663 struct type *type = ada_check_typedef (value_type (array)); 2664 struct type *index_type = 2665 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high); 2666 struct type *slice_type = 2667 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type); 2668 2669 return value_cast (slice_type, value_slice (array, low, high - low + 1)); 2670 } 2671 2672 /* If type is a record type in the form of a standard GNAT array 2673 descriptor, returns the number of dimensions for type. If arr is a 2674 simple array, returns the number of "array of"s that prefix its 2675 type designation. Otherwise, returns 0. */ 2676 2677 int 2678 ada_array_arity (struct type *type) 2679 { 2680 int arity; 2681 2682 if (type == NULL) 2683 return 0; 2684 2685 type = desc_base_type (type); 2686 2687 arity = 0; 2688 if (TYPE_CODE (type) == TYPE_CODE_STRUCT) 2689 return desc_arity (desc_bounds_type (type)); 2690 else 2691 while (TYPE_CODE (type) == TYPE_CODE_ARRAY) 2692 { 2693 arity += 1; 2694 type = ada_check_typedef (TYPE_TARGET_TYPE (type)); 2695 } 2696 2697 return arity; 2698 } 2699 2700 /* If TYPE is a record type in the form of a standard GNAT array 2701 descriptor or a simple array type, returns the element type for 2702 TYPE after indexing by NINDICES indices, or by all indices if 2703 NINDICES is -1. Otherwise, returns NULL. */ 2704 2705 struct type * 2706 ada_array_element_type (struct type *type, int nindices) 2707 { 2708 type = desc_base_type (type); 2709 2710 if (TYPE_CODE (type) == TYPE_CODE_STRUCT) 2711 { 2712 int k; 2713 struct type *p_array_type; 2714 2715 p_array_type = desc_data_target_type (type); 2716 2717 k = ada_array_arity (type); 2718 if (k == 0) 2719 return NULL; 2720 2721 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */ 2722 if (nindices >= 0 && k > nindices) 2723 k = nindices; 2724 while (k > 0 && p_array_type != NULL) 2725 { 2726 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type)); 2727 k -= 1; 2728 } 2729 return p_array_type; 2730 } 2731 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) 2732 { 2733 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) 2734 { 2735 type = TYPE_TARGET_TYPE (type); 2736 nindices -= 1; 2737 } 2738 return type; 2739 } 2740 2741 return NULL; 2742 } 2743 2744 /* The type of nth index in arrays of given type (n numbering from 1). 2745 Does not examine memory. Throws an error if N is invalid or TYPE 2746 is not an array type. NAME is the name of the Ada attribute being 2747 evaluated ('range, 'first, 'last, or 'length); it is used in building 2748 the error message. */ 2749 2750 static struct type * 2751 ada_index_type (struct type *type, int n, const char *name) 2752 { 2753 struct type *result_type; 2754 2755 type = desc_base_type (type); 2756 2757 if (n < 0 || n > ada_array_arity (type)) 2758 error (_("invalid dimension number to '%s"), name); 2759 2760 if (ada_is_simple_array_type (type)) 2761 { 2762 int i; 2763 2764 for (i = 1; i < n; i += 1) 2765 type = TYPE_TARGET_TYPE (type); 2766 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type)); 2767 /* FIXME: The stabs type r(0,0);bound;bound in an array type 2768 has a target type of TYPE_CODE_UNDEF. We compensate here, but 2769 perhaps stabsread.c would make more sense. */ 2770 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF) 2771 result_type = NULL; 2772 } 2773 else 2774 { 2775 result_type = desc_index_type (desc_bounds_type (type), n); 2776 if (result_type == NULL) 2777 error (_("attempt to take bound of something that is not an array")); 2778 } 2779 2780 return result_type; 2781 } 2782 2783 /* Given that arr is an array type, returns the lower bound of the 2784 Nth index (numbering from 1) if WHICH is 0, and the upper bound if 2785 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an 2786 array-descriptor type. It works for other arrays with bounds supplied 2787 by run-time quantities other than discriminants. */ 2788 2789 static LONGEST 2790 ada_array_bound_from_type (struct type *arr_type, int n, int which) 2791 { 2792 struct type *type, *index_type_desc, *index_type; 2793 int i; 2794 2795 gdb_assert (which == 0 || which == 1); 2796 2797 if (ada_is_constrained_packed_array_type (arr_type)) 2798 arr_type = decode_constrained_packed_array_type (arr_type); 2799 2800 if (arr_type == NULL || !ada_is_simple_array_type (arr_type)) 2801 return (LONGEST) - which; 2802 2803 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) 2804 type = TYPE_TARGET_TYPE (arr_type); 2805 else 2806 type = arr_type; 2807 2808 index_type_desc = ada_find_parallel_type (type, "___XA"); 2809 ada_fixup_array_indexes_type (index_type_desc); 2810 if (index_type_desc != NULL) 2811 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1), 2812 NULL); 2813 else 2814 { 2815 struct type *elt_type = check_typedef (type); 2816 2817 for (i = 1; i < n; i++) 2818 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type)); 2819 2820 index_type = TYPE_INDEX_TYPE (elt_type); 2821 } 2822 2823 return 2824 (LONGEST) (which == 0 2825 ? ada_discrete_type_low_bound (index_type) 2826 : ada_discrete_type_high_bound (index_type)); 2827 } 2828 2829 /* Given that arr is an array value, returns the lower bound of the 2830 nth index (numbering from 1) if WHICH is 0, and the upper bound if 2831 WHICH is 1. This routine will also work for arrays with bounds 2832 supplied by run-time quantities other than discriminants. */ 2833 2834 static LONGEST 2835 ada_array_bound (struct value *arr, int n, int which) 2836 { 2837 struct type *arr_type = value_type (arr); 2838 2839 if (ada_is_constrained_packed_array_type (arr_type)) 2840 return ada_array_bound (decode_constrained_packed_array (arr), n, which); 2841 else if (ada_is_simple_array_type (arr_type)) 2842 return ada_array_bound_from_type (arr_type, n, which); 2843 else 2844 return value_as_long (desc_one_bound (desc_bounds (arr), n, which)); 2845 } 2846 2847 /* Given that arr is an array value, returns the length of the 2848 nth index. This routine will also work for arrays with bounds 2849 supplied by run-time quantities other than discriminants. 2850 Does not work for arrays indexed by enumeration types with representation 2851 clauses at the moment. */ 2852 2853 static LONGEST 2854 ada_array_length (struct value *arr, int n) 2855 { 2856 struct type *arr_type = ada_check_typedef (value_type (arr)); 2857 2858 if (ada_is_constrained_packed_array_type (arr_type)) 2859 return ada_array_length (decode_constrained_packed_array (arr), n); 2860 2861 if (ada_is_simple_array_type (arr_type)) 2862 return (ada_array_bound_from_type (arr_type, n, 1) 2863 - ada_array_bound_from_type (arr_type, n, 0) + 1); 2864 else 2865 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1)) 2866 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1); 2867 } 2868 2869 /* An empty array whose type is that of ARR_TYPE (an array type), 2870 with bounds LOW to LOW-1. */ 2871 2872 static struct value * 2873 empty_array (struct type *arr_type, int low) 2874 { 2875 struct type *arr_type0 = ada_check_typedef (arr_type); 2876 struct type *index_type = 2877 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), 2878 low, low - 1); 2879 struct type *elt_type = ada_array_element_type (arr_type0, 1); 2880 2881 return allocate_value (create_array_type (NULL, elt_type, index_type)); 2882 } 2883 2884 2885 /* Name resolution */ 2886 2887 /* The "decoded" name for the user-definable Ada operator corresponding 2888 to OP. */ 2889 2890 static const char * 2891 ada_decoded_op_name (enum exp_opcode op) 2892 { 2893 int i; 2894 2895 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1) 2896 { 2897 if (ada_opname_table[i].op == op) 2898 return ada_opname_table[i].decoded; 2899 } 2900 error (_("Could not find operator name for opcode")); 2901 } 2902 2903 2904 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol 2905 references (marked by OP_VAR_VALUE nodes in which the symbol has an 2906 undefined namespace) and converts operators that are 2907 user-defined into appropriate function calls. If CONTEXT_TYPE is 2908 non-null, it provides a preferred result type [at the moment, only 2909 type void has any effect---causing procedures to be preferred over 2910 functions in calls]. A null CONTEXT_TYPE indicates that a non-void 2911 return type is preferred. May change (expand) *EXP. */ 2912 2913 static void 2914 resolve (struct expression **expp, int void_context_p) 2915 { 2916 struct type *context_type = NULL; 2917 int pc = 0; 2918 2919 if (void_context_p) 2920 context_type = builtin_type ((*expp)->gdbarch)->builtin_void; 2921 2922 resolve_subexp (expp, &pc, 1, context_type); 2923 } 2924 2925 /* Resolve the operator of the subexpression beginning at 2926 position *POS of *EXPP. "Resolving" consists of replacing 2927 the symbols that have undefined namespaces in OP_VAR_VALUE nodes 2928 with their resolutions, replacing built-in operators with 2929 function calls to user-defined operators, where appropriate, and, 2930 when DEPROCEDURE_P is non-zero, converting function-valued variables 2931 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions 2932 are as in ada_resolve, above. */ 2933 2934 static struct value * 2935 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p, 2936 struct type *context_type) 2937 { 2938 int pc = *pos; 2939 int i; 2940 struct expression *exp; /* Convenience: == *expp. */ 2941 enum exp_opcode op = (*expp)->elts[pc].opcode; 2942 struct value **argvec; /* Vector of operand types (alloca'ed). */ 2943 int nargs; /* Number of operands. */ 2944 int oplen; 2945 2946 argvec = NULL; 2947 nargs = 0; 2948 exp = *expp; 2949 2950 /* Pass one: resolve operands, saving their types and updating *pos, 2951 if needed. */ 2952 switch (op) 2953 { 2954 case OP_FUNCALL: 2955 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE 2956 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) 2957 *pos += 7; 2958 else 2959 { 2960 *pos += 3; 2961 resolve_subexp (expp, pos, 0, NULL); 2962 } 2963 nargs = longest_to_int (exp->elts[pc + 1].longconst); 2964 break; 2965 2966 case UNOP_ADDR: 2967 *pos += 1; 2968 resolve_subexp (expp, pos, 0, NULL); 2969 break; 2970 2971 case UNOP_QUAL: 2972 *pos += 3; 2973 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type)); 2974 break; 2975 2976 case OP_ATR_MODULUS: 2977 case OP_ATR_SIZE: 2978 case OP_ATR_TAG: 2979 case OP_ATR_FIRST: 2980 case OP_ATR_LAST: 2981 case OP_ATR_LENGTH: 2982 case OP_ATR_POS: 2983 case OP_ATR_VAL: 2984 case OP_ATR_MIN: 2985 case OP_ATR_MAX: 2986 case TERNOP_IN_RANGE: 2987 case BINOP_IN_BOUNDS: 2988 case UNOP_IN_RANGE: 2989 case OP_AGGREGATE: 2990 case OP_OTHERS: 2991 case OP_CHOICES: 2992 case OP_POSITIONAL: 2993 case OP_DISCRETE_RANGE: 2994 case OP_NAME: 2995 ada_forward_operator_length (exp, pc, &oplen, &nargs); 2996 *pos += oplen; 2997 break; 2998 2999 case BINOP_ASSIGN: 3000 { 3001 struct value *arg1; 3002 3003 *pos += 1; 3004 arg1 = resolve_subexp (expp, pos, 0, NULL); 3005 if (arg1 == NULL) 3006 resolve_subexp (expp, pos, 1, NULL); 3007 else 3008 resolve_subexp (expp, pos, 1, value_type (arg1)); 3009 break; 3010 } 3011 3012 case UNOP_CAST: 3013 *pos += 3; 3014 nargs = 1; 3015 break; 3016 3017 case BINOP_ADD: 3018 case BINOP_SUB: 3019 case BINOP_MUL: 3020 case BINOP_DIV: 3021 case BINOP_REM: 3022 case BINOP_MOD: 3023 case BINOP_EXP: 3024 case BINOP_CONCAT: 3025 case BINOP_LOGICAL_AND: 3026 case BINOP_LOGICAL_OR: 3027 case BINOP_BITWISE_AND: 3028 case BINOP_BITWISE_IOR: 3029 case BINOP_BITWISE_XOR: 3030 3031 case BINOP_EQUAL: 3032 case BINOP_NOTEQUAL: 3033 case BINOP_LESS: 3034 case BINOP_GTR: 3035 case BINOP_LEQ: 3036 case BINOP_GEQ: 3037 3038 case BINOP_REPEAT: 3039 case BINOP_SUBSCRIPT: 3040 case BINOP_COMMA: 3041 *pos += 1; 3042 nargs = 2; 3043 break; 3044 3045 case UNOP_NEG: 3046 case UNOP_PLUS: 3047 case UNOP_LOGICAL_NOT: 3048 case UNOP_ABS: 3049 case UNOP_IND: 3050 *pos += 1; 3051 nargs = 1; 3052 break; 3053 3054 case OP_LONG: 3055 case OP_DOUBLE: 3056 case OP_VAR_VALUE: 3057 *pos += 4; 3058 break; 3059 3060 case OP_TYPE: 3061 case OP_BOOL: 3062 case OP_LAST: 3063 case OP_INTERNALVAR: 3064 *pos += 3; 3065 break; 3066 3067 case UNOP_MEMVAL: 3068 *pos += 3; 3069 nargs = 1; 3070 break; 3071 3072 case OP_REGISTER: 3073 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); 3074 break; 3075 3076 case STRUCTOP_STRUCT: 3077 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); 3078 nargs = 1; 3079 break; 3080 3081 case TERNOP_SLICE: 3082 *pos += 1; 3083 nargs = 3; 3084 break; 3085 3086 case OP_STRING: 3087 break; 3088 3089 default: 3090 error (_("Unexpected operator during name resolution")); 3091 } 3092 3093 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1)); 3094 for (i = 0; i < nargs; i += 1) 3095 argvec[i] = resolve_subexp (expp, pos, 1, NULL); 3096 argvec[i] = NULL; 3097 exp = *expp; 3098 3099 /* Pass two: perform any resolution on principal operator. */ 3100 switch (op) 3101 { 3102 default: 3103 break; 3104 3105 case OP_VAR_VALUE: 3106 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) 3107 { 3108 struct ada_symbol_info *candidates; 3109 int n_candidates; 3110 3111 n_candidates = 3112 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME 3113 (exp->elts[pc + 2].symbol), 3114 exp->elts[pc + 1].block, VAR_DOMAIN, 3115 &candidates); 3116 3117 if (n_candidates > 1) 3118 { 3119 /* Types tend to get re-introduced locally, so if there 3120 are any local symbols that are not types, first filter 3121 out all types. */ 3122 int j; 3123 for (j = 0; j < n_candidates; j += 1) 3124 switch (SYMBOL_CLASS (candidates[j].sym)) 3125 { 3126 case LOC_REGISTER: 3127 case LOC_ARG: 3128 case LOC_REF_ARG: 3129 case LOC_REGPARM_ADDR: 3130 case LOC_LOCAL: 3131 case LOC_COMPUTED: 3132 goto FoundNonType; 3133 default: 3134 break; 3135 } 3136 FoundNonType: 3137 if (j < n_candidates) 3138 { 3139 j = 0; 3140 while (j < n_candidates) 3141 { 3142 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF) 3143 { 3144 candidates[j] = candidates[n_candidates - 1]; 3145 n_candidates -= 1; 3146 } 3147 else 3148 j += 1; 3149 } 3150 } 3151 } 3152 3153 if (n_candidates == 0) 3154 error (_("No definition found for %s"), 3155 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); 3156 else if (n_candidates == 1) 3157 i = 0; 3158 else if (deprocedure_p 3159 && !is_nonfunction (candidates, n_candidates)) 3160 { 3161 i = ada_resolve_function 3162 (candidates, n_candidates, NULL, 0, 3163 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol), 3164 context_type); 3165 if (i < 0) 3166 error (_("Could not find a match for %s"), 3167 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); 3168 } 3169 else 3170 { 3171 printf_filtered (_("Multiple matches for %s\n"), 3172 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); 3173 user_select_syms (candidates, n_candidates, 1); 3174 i = 0; 3175 } 3176 3177 exp->elts[pc + 1].block = candidates[i].block; 3178 exp->elts[pc + 2].symbol = candidates[i].sym; 3179 if (innermost_block == NULL 3180 || contained_in (candidates[i].block, innermost_block)) 3181 innermost_block = candidates[i].block; 3182 } 3183 3184 if (deprocedure_p 3185 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol)) 3186 == TYPE_CODE_FUNC)) 3187 { 3188 replace_operator_with_call (expp, pc, 0, 0, 3189 exp->elts[pc + 2].symbol, 3190 exp->elts[pc + 1].block); 3191 exp = *expp; 3192 } 3193 break; 3194 3195 case OP_FUNCALL: 3196 { 3197 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE 3198 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) 3199 { 3200 struct ada_symbol_info *candidates; 3201 int n_candidates; 3202 3203 n_candidates = 3204 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME 3205 (exp->elts[pc + 5].symbol), 3206 exp->elts[pc + 4].block, VAR_DOMAIN, 3207 &candidates); 3208 if (n_candidates == 1) 3209 i = 0; 3210 else 3211 { 3212 i = ada_resolve_function 3213 (candidates, n_candidates, 3214 argvec, nargs, 3215 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol), 3216 context_type); 3217 if (i < 0) 3218 error (_("Could not find a match for %s"), 3219 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); 3220 } 3221 3222 exp->elts[pc + 4].block = candidates[i].block; 3223 exp->elts[pc + 5].symbol = candidates[i].sym; 3224 if (innermost_block == NULL 3225 || contained_in (candidates[i].block, innermost_block)) 3226 innermost_block = candidates[i].block; 3227 } 3228 } 3229 break; 3230 case BINOP_ADD: 3231 case BINOP_SUB: 3232 case BINOP_MUL: 3233 case BINOP_DIV: 3234 case BINOP_REM: 3235 case BINOP_MOD: 3236 case BINOP_CONCAT: 3237 case BINOP_BITWISE_AND: 3238 case BINOP_BITWISE_IOR: 3239 case BINOP_BITWISE_XOR: 3240 case BINOP_EQUAL: 3241 case BINOP_NOTEQUAL: 3242 case BINOP_LESS: 3243 case BINOP_GTR: 3244 case BINOP_LEQ: 3245 case BINOP_GEQ: 3246 case BINOP_EXP: 3247 case UNOP_NEG: 3248 case UNOP_PLUS: 3249 case UNOP_LOGICAL_NOT: 3250 case UNOP_ABS: 3251 if (possible_user_operator_p (op, argvec)) 3252 { 3253 struct ada_symbol_info *candidates; 3254 int n_candidates; 3255 3256 n_candidates = 3257 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)), 3258 (struct block *) NULL, VAR_DOMAIN, 3259 &candidates); 3260 i = ada_resolve_function (candidates, n_candidates, argvec, nargs, 3261 ada_decoded_op_name (op), NULL); 3262 if (i < 0) 3263 break; 3264 3265 replace_operator_with_call (expp, pc, nargs, 1, 3266 candidates[i].sym, candidates[i].block); 3267 exp = *expp; 3268 } 3269 break; 3270 3271 case OP_TYPE: 3272 case OP_REGISTER: 3273 return NULL; 3274 } 3275 3276 *pos = pc; 3277 return evaluate_subexp_type (exp, pos); 3278 } 3279 3280 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If 3281 MAY_DEREF is non-zero, the formal may be a pointer and the actual 3282 a non-pointer. */ 3283 /* The term "match" here is rather loose. The match is heuristic and 3284 liberal. */ 3285 3286 static int 3287 ada_type_match (struct type *ftype, struct type *atype, int may_deref) 3288 { 3289 ftype = ada_check_typedef (ftype); 3290 atype = ada_check_typedef (atype); 3291 3292 if (TYPE_CODE (ftype) == TYPE_CODE_REF) 3293 ftype = TYPE_TARGET_TYPE (ftype); 3294 if (TYPE_CODE (atype) == TYPE_CODE_REF) 3295 atype = TYPE_TARGET_TYPE (atype); 3296 3297 switch (TYPE_CODE (ftype)) 3298 { 3299 default: 3300 return TYPE_CODE (ftype) == TYPE_CODE (atype); 3301 case TYPE_CODE_PTR: 3302 if (TYPE_CODE (atype) == TYPE_CODE_PTR) 3303 return ada_type_match (TYPE_TARGET_TYPE (ftype), 3304 TYPE_TARGET_TYPE (atype), 0); 3305 else 3306 return (may_deref 3307 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); 3308 case TYPE_CODE_INT: 3309 case TYPE_CODE_ENUM: 3310 case TYPE_CODE_RANGE: 3311 switch (TYPE_CODE (atype)) 3312 { 3313 case TYPE_CODE_INT: 3314 case TYPE_CODE_ENUM: 3315 case TYPE_CODE_RANGE: 3316 return 1; 3317 default: 3318 return 0; 3319 } 3320 3321 case TYPE_CODE_ARRAY: 3322 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY 3323 || ada_is_array_descriptor_type (atype)); 3324 3325 case TYPE_CODE_STRUCT: 3326 if (ada_is_array_descriptor_type (ftype)) 3327 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY 3328 || ada_is_array_descriptor_type (atype)); 3329 else 3330 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT 3331 && !ada_is_array_descriptor_type (atype)); 3332 3333 case TYPE_CODE_UNION: 3334 case TYPE_CODE_FLT: 3335 return (TYPE_CODE (atype) == TYPE_CODE (ftype)); 3336 } 3337 } 3338 3339 /* Return non-zero if the formals of FUNC "sufficiently match" the 3340 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC 3341 may also be an enumeral, in which case it is treated as a 0- 3342 argument function. */ 3343 3344 static int 3345 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals) 3346 { 3347 int i; 3348 struct type *func_type = SYMBOL_TYPE (func); 3349 3350 if (SYMBOL_CLASS (func) == LOC_CONST 3351 && TYPE_CODE (func_type) == TYPE_CODE_ENUM) 3352 return (n_actuals == 0); 3353 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) 3354 return 0; 3355 3356 if (TYPE_NFIELDS (func_type) != n_actuals) 3357 return 0; 3358 3359 for (i = 0; i < n_actuals; i += 1) 3360 { 3361 if (actuals[i] == NULL) 3362 return 0; 3363 else 3364 { 3365 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type, 3366 i)); 3367 struct type *atype = ada_check_typedef (value_type (actuals[i])); 3368 3369 if (!ada_type_match (ftype, atype, 1)) 3370 return 0; 3371 } 3372 } 3373 return 1; 3374 } 3375 3376 /* False iff function type FUNC_TYPE definitely does not produce a value 3377 compatible with type CONTEXT_TYPE. Conservatively returns 1 if 3378 FUNC_TYPE is not a valid function type with a non-null return type 3379 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ 3380 3381 static int 3382 return_match (struct type *func_type, struct type *context_type) 3383 { 3384 struct type *return_type; 3385 3386 if (func_type == NULL) 3387 return 1; 3388 3389 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) 3390 return_type = get_base_type (TYPE_TARGET_TYPE (func_type)); 3391 else 3392 return_type = get_base_type (func_type); 3393 if (return_type == NULL) 3394 return 1; 3395 3396 context_type = get_base_type (context_type); 3397 3398 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) 3399 return context_type == NULL || return_type == context_type; 3400 else if (context_type == NULL) 3401 return TYPE_CODE (return_type) != TYPE_CODE_VOID; 3402 else 3403 return TYPE_CODE (return_type) == TYPE_CODE (context_type); 3404 } 3405 3406 3407 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the 3408 function (if any) that matches the types of the NARGS arguments in 3409 ARGS. If CONTEXT_TYPE is non-null and there is at least one match 3410 that returns that type, then eliminate matches that don't. If 3411 CONTEXT_TYPE is void and there is at least one match that does not 3412 return void, eliminate all matches that do. 3413 3414 Asks the user if there is more than one match remaining. Returns -1 3415 if there is no such symbol or none is selected. NAME is used 3416 solely for messages. May re-arrange and modify SYMS in 3417 the process; the index returned is for the modified vector. */ 3418 3419 static int 3420 ada_resolve_function (struct ada_symbol_info syms[], 3421 int nsyms, struct value **args, int nargs, 3422 const char *name, struct type *context_type) 3423 { 3424 int fallback; 3425 int k; 3426 int m; /* Number of hits */ 3427 3428 m = 0; 3429 /* In the first pass of the loop, we only accept functions matching 3430 context_type. If none are found, we add a second pass of the loop 3431 where every function is accepted. */ 3432 for (fallback = 0; m == 0 && fallback < 2; fallback++) 3433 { 3434 for (k = 0; k < nsyms; k += 1) 3435 { 3436 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym)); 3437 3438 if (ada_args_match (syms[k].sym, args, nargs) 3439 && (fallback || return_match (type, context_type))) 3440 { 3441 syms[m] = syms[k]; 3442 m += 1; 3443 } 3444 } 3445 } 3446 3447 if (m == 0) 3448 return -1; 3449 else if (m > 1) 3450 { 3451 printf_filtered (_("Multiple matches for %s\n"), name); 3452 user_select_syms (syms, m, 1); 3453 return 0; 3454 } 3455 return 0; 3456 } 3457 3458 /* Returns true (non-zero) iff decoded name N0 should appear before N1 3459 in a listing of choices during disambiguation (see sort_choices, below). 3460 The idea is that overloadings of a subprogram name from the 3461 same package should sort in their source order. We settle for ordering 3462 such symbols by their trailing number (__N or $N). */ 3463 3464 static int 3465 encoded_ordered_before (const char *N0, const char *N1) 3466 { 3467 if (N1 == NULL) 3468 return 0; 3469 else if (N0 == NULL) 3470 return 1; 3471 else 3472 { 3473 int k0, k1; 3474 3475 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) 3476 ; 3477 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) 3478 ; 3479 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000' 3480 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000') 3481 { 3482 int n0, n1; 3483 3484 n0 = k0; 3485 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_') 3486 n0 -= 1; 3487 n1 = k1; 3488 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_') 3489 n1 -= 1; 3490 if (n0 == n1 && strncmp (N0, N1, n0) == 0) 3491 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1)); 3492 } 3493 return (strcmp (N0, N1) < 0); 3494 } 3495 } 3496 3497 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the 3498 encoded names. */ 3499 3500 static void 3501 sort_choices (struct ada_symbol_info syms[], int nsyms) 3502 { 3503 int i; 3504 3505 for (i = 1; i < nsyms; i += 1) 3506 { 3507 struct ada_symbol_info sym = syms[i]; 3508 int j; 3509 3510 for (j = i - 1; j >= 0; j -= 1) 3511 { 3512 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym), 3513 SYMBOL_LINKAGE_NAME (sym.sym))) 3514 break; 3515 syms[j + 1] = syms[j]; 3516 } 3517 syms[j + 1] = sym; 3518 } 3519 } 3520 3521 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0 3522 by asking the user (if necessary), returning the number selected, 3523 and setting the first elements of SYMS items. Error if no symbols 3524 selected. */ 3525 3526 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought 3527 to be re-integrated one of these days. */ 3528 3529 int 3530 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results) 3531 { 3532 int i; 3533 int *chosen = (int *) alloca (sizeof (int) * nsyms); 3534 int n_chosen; 3535 int first_choice = (max_results == 1) ? 1 : 2; 3536 const char *select_mode = multiple_symbols_select_mode (); 3537 3538 if (max_results < 1) 3539 error (_("Request to select 0 symbols!")); 3540 if (nsyms <= 1) 3541 return nsyms; 3542 3543 if (select_mode == multiple_symbols_cancel) 3544 error (_("\ 3545 canceled because the command is ambiguous\n\ 3546 See set/show multiple-symbol.")); 3547 3548 /* If select_mode is "all", then return all possible symbols. 3549 Only do that if more than one symbol can be selected, of course. 3550 Otherwise, display the menu as usual. */ 3551 if (select_mode == multiple_symbols_all && max_results > 1) 3552 return nsyms; 3553 3554 printf_unfiltered (_("[0] cancel\n")); 3555 if (max_results > 1) 3556 printf_unfiltered (_("[1] all\n")); 3557 3558 sort_choices (syms, nsyms); 3559 3560 for (i = 0; i < nsyms; i += 1) 3561 { 3562 if (syms[i].sym == NULL) 3563 continue; 3564 3565 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK) 3566 { 3567 struct symtab_and_line sal = 3568 find_function_start_sal (syms[i].sym, 1); 3569 3570 if (sal.symtab == NULL) 3571 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"), 3572 i + first_choice, 3573 SYMBOL_PRINT_NAME (syms[i].sym), 3574 sal.line); 3575 else 3576 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice, 3577 SYMBOL_PRINT_NAME (syms[i].sym), 3578 symtab_to_filename_for_display (sal.symtab), 3579 sal.line); 3580 continue; 3581 } 3582 else 3583 { 3584 int is_enumeral = 3585 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST 3586 && SYMBOL_TYPE (syms[i].sym) != NULL 3587 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM); 3588 struct symtab *symtab = SYMBOL_SYMTAB (syms[i].sym); 3589 3590 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL) 3591 printf_unfiltered (_("[%d] %s at %s:%d\n"), 3592 i + first_choice, 3593 SYMBOL_PRINT_NAME (syms[i].sym), 3594 symtab_to_filename_for_display (symtab), 3595 SYMBOL_LINE (syms[i].sym)); 3596 else if (is_enumeral 3597 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL) 3598 { 3599 printf_unfiltered (("[%d] "), i + first_choice); 3600 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL, 3601 gdb_stdout, -1, 0, &type_print_raw_options); 3602 printf_unfiltered (_("'(%s) (enumeral)\n"), 3603 SYMBOL_PRINT_NAME (syms[i].sym)); 3604 } 3605 else if (symtab != NULL) 3606 printf_unfiltered (is_enumeral 3607 ? _("[%d] %s in %s (enumeral)\n") 3608 : _("[%d] %s at %s:?\n"), 3609 i + first_choice, 3610 SYMBOL_PRINT_NAME (syms[i].sym), 3611 symtab_to_filename_for_display (symtab)); 3612 else 3613 printf_unfiltered (is_enumeral 3614 ? _("[%d] %s (enumeral)\n") 3615 : _("[%d] %s at ?\n"), 3616 i + first_choice, 3617 SYMBOL_PRINT_NAME (syms[i].sym)); 3618 } 3619 } 3620 3621 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, 3622 "overload-choice"); 3623 3624 for (i = 0; i < n_chosen; i += 1) 3625 syms[i] = syms[chosen[i]]; 3626 3627 return n_chosen; 3628 } 3629 3630 /* Read and validate a set of numeric choices from the user in the 3631 range 0 .. N_CHOICES-1. Place the results in increasing 3632 order in CHOICES[0 .. N-1], and return N. 3633 3634 The user types choices as a sequence of numbers on one line 3635 separated by blanks, encoding them as follows: 3636 3637 + A choice of 0 means to cancel the selection, throwing an error. 3638 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. 3639 + The user chooses k by typing k+IS_ALL_CHOICE+1. 3640 3641 The user is not allowed to choose more than MAX_RESULTS values. 3642 3643 ANNOTATION_SUFFIX, if present, is used to annotate the input 3644 prompts (for use with the -f switch). */ 3645 3646 int 3647 get_selections (int *choices, int n_choices, int max_results, 3648 int is_all_choice, char *annotation_suffix) 3649 { 3650 char *args; 3651 char *prompt; 3652 int n_chosen; 3653 int first_choice = is_all_choice ? 2 : 1; 3654 3655 prompt = getenv ("PS2"); 3656 if (prompt == NULL) 3657 prompt = "> "; 3658 3659 args = command_line_input (prompt, 0, annotation_suffix); 3660 3661 if (args == NULL) 3662 error_no_arg (_("one or more choice numbers")); 3663 3664 n_chosen = 0; 3665 3666 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending 3667 order, as given in args. Choices are validated. */ 3668 while (1) 3669 { 3670 char *args2; 3671 int choice, j; 3672 3673 args = skip_spaces (args); 3674 if (*args == '\0' && n_chosen == 0) 3675 error_no_arg (_("one or more choice numbers")); 3676 else if (*args == '\0') 3677 break; 3678 3679 choice = strtol (args, &args2, 10); 3680 if (args == args2 || choice < 0 3681 || choice > n_choices + first_choice - 1) 3682 error (_("Argument must be choice number")); 3683 args = args2; 3684 3685 if (choice == 0) 3686 error (_("cancelled")); 3687 3688 if (choice < first_choice) 3689 { 3690 n_chosen = n_choices; 3691 for (j = 0; j < n_choices; j += 1) 3692 choices[j] = j; 3693 break; 3694 } 3695 choice -= first_choice; 3696 3697 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1) 3698 { 3699 } 3700 3701 if (j < 0 || choice != choices[j]) 3702 { 3703 int k; 3704 3705 for (k = n_chosen - 1; k > j; k -= 1) 3706 choices[k + 1] = choices[k]; 3707 choices[j + 1] = choice; 3708 n_chosen += 1; 3709 } 3710 } 3711 3712 if (n_chosen > max_results) 3713 error (_("Select no more than %d of the above"), max_results); 3714 3715 return n_chosen; 3716 } 3717 3718 /* Replace the operator of length OPLEN at position PC in *EXPP with a call 3719 on the function identified by SYM and BLOCK, and taking NARGS 3720 arguments. Update *EXPP as needed to hold more space. */ 3721 3722 static void 3723 replace_operator_with_call (struct expression **expp, int pc, int nargs, 3724 int oplen, struct symbol *sym, 3725 const struct block *block) 3726 { 3727 /* A new expression, with 6 more elements (3 for funcall, 4 for function 3728 symbol, -oplen for operator being replaced). */ 3729 struct expression *newexp = (struct expression *) 3730 xzalloc (sizeof (struct expression) 3731 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); 3732 struct expression *exp = *expp; 3733 3734 newexp->nelts = exp->nelts + 7 - oplen; 3735 newexp->language_defn = exp->language_defn; 3736 newexp->gdbarch = exp->gdbarch; 3737 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); 3738 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, 3739 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); 3740 3741 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; 3742 newexp->elts[pc + 1].longconst = (LONGEST) nargs; 3743 3744 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; 3745 newexp->elts[pc + 4].block = block; 3746 newexp->elts[pc + 5].symbol = sym; 3747 3748 *expp = newexp; 3749 xfree (exp); 3750 } 3751 3752 /* Type-class predicates */ 3753 3754 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), 3755 or FLOAT). */ 3756 3757 static int 3758 numeric_type_p (struct type *type) 3759 { 3760 if (type == NULL) 3761 return 0; 3762 else 3763 { 3764 switch (TYPE_CODE (type)) 3765 { 3766 case TYPE_CODE_INT: 3767 case TYPE_CODE_FLT: 3768 return 1; 3769 case TYPE_CODE_RANGE: 3770 return (type == TYPE_TARGET_TYPE (type) 3771 || numeric_type_p (TYPE_TARGET_TYPE (type))); 3772 default: 3773 return 0; 3774 } 3775 } 3776 } 3777 3778 /* True iff TYPE is integral (an INT or RANGE of INTs). */ 3779 3780 static int 3781 integer_type_p (struct type *type) 3782 { 3783 if (type == NULL) 3784 return 0; 3785 else 3786 { 3787 switch (TYPE_CODE (type)) 3788 { 3789 case TYPE_CODE_INT: 3790 return 1; 3791 case TYPE_CODE_RANGE: 3792 return (type == TYPE_TARGET_TYPE (type) 3793 || integer_type_p (TYPE_TARGET_TYPE (type))); 3794 default: 3795 return 0; 3796 } 3797 } 3798 } 3799 3800 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ 3801 3802 static int 3803 scalar_type_p (struct type *type) 3804 { 3805 if (type == NULL) 3806 return 0; 3807 else 3808 { 3809 switch (TYPE_CODE (type)) 3810 { 3811 case TYPE_CODE_INT: 3812 case TYPE_CODE_RANGE: 3813 case TYPE_CODE_ENUM: 3814 case TYPE_CODE_FLT: 3815 return 1; 3816 default: 3817 return 0; 3818 } 3819 } 3820 } 3821 3822 /* True iff TYPE is discrete (INT, RANGE, ENUM). */ 3823 3824 static int 3825 discrete_type_p (struct type *type) 3826 { 3827 if (type == NULL) 3828 return 0; 3829 else 3830 { 3831 switch (TYPE_CODE (type)) 3832 { 3833 case TYPE_CODE_INT: 3834 case TYPE_CODE_RANGE: 3835 case TYPE_CODE_ENUM: 3836 case TYPE_CODE_BOOL: 3837 return 1; 3838 default: 3839 return 0; 3840 } 3841 } 3842 } 3843 3844 /* Returns non-zero if OP with operands in the vector ARGS could be 3845 a user-defined function. Errs on the side of pre-defined operators 3846 (i.e., result 0). */ 3847 3848 static int 3849 possible_user_operator_p (enum exp_opcode op, struct value *args[]) 3850 { 3851 struct type *type0 = 3852 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0])); 3853 struct type *type1 = 3854 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1])); 3855 3856 if (type0 == NULL) 3857 return 0; 3858 3859 switch (op) 3860 { 3861 default: 3862 return 0; 3863 3864 case BINOP_ADD: 3865 case BINOP_SUB: 3866 case BINOP_MUL: 3867 case BINOP_DIV: 3868 return (!(numeric_type_p (type0) && numeric_type_p (type1))); 3869 3870 case BINOP_REM: 3871 case BINOP_MOD: 3872 case BINOP_BITWISE_AND: 3873 case BINOP_BITWISE_IOR: 3874 case BINOP_BITWISE_XOR: 3875 return (!(integer_type_p (type0) && integer_type_p (type1))); 3876 3877 case BINOP_EQUAL: 3878 case BINOP_NOTEQUAL: 3879 case BINOP_LESS: 3880 case BINOP_GTR: 3881 case BINOP_LEQ: 3882 case BINOP_GEQ: 3883 return (!(scalar_type_p (type0) && scalar_type_p (type1))); 3884 3885 case BINOP_CONCAT: 3886 return !ada_is_array_type (type0) || !ada_is_array_type (type1); 3887 3888 case BINOP_EXP: 3889 return (!(numeric_type_p (type0) && integer_type_p (type1))); 3890 3891 case UNOP_NEG: 3892 case UNOP_PLUS: 3893 case UNOP_LOGICAL_NOT: 3894 case UNOP_ABS: 3895 return (!numeric_type_p (type0)); 3896 3897 } 3898 } 3899 3900 /* Renaming */ 3901 3902 /* NOTES: 3903 3904 1. In the following, we assume that a renaming type's name may 3905 have an ___XD suffix. It would be nice if this went away at some 3906 point. 3907 2. We handle both the (old) purely type-based representation of 3908 renamings and the (new) variable-based encoding. At some point, 3909 it is devoutly to be hoped that the former goes away 3910 (FIXME: hilfinger-2007-07-09). 3911 3. Subprogram renamings are not implemented, although the XRS 3912 suffix is recognized (FIXME: hilfinger-2007-07-09). */ 3913 3914 /* If SYM encodes a renaming, 3915 3916 <renaming> renames <renamed entity>, 3917 3918 sets *LEN to the length of the renamed entity's name, 3919 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to 3920 the string describing the subcomponent selected from the renamed 3921 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming 3922 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR 3923 are undefined). Otherwise, returns a value indicating the category 3924 of entity renamed: an object (ADA_OBJECT_RENAMING), exception 3925 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or 3926 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the 3927 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be 3928 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR 3929 may be NULL, in which case they are not assigned. 3930 3931 [Currently, however, GCC does not generate subprogram renamings.] */ 3932 3933 enum ada_renaming_category 3934 ada_parse_renaming (struct symbol *sym, 3935 const char **renamed_entity, int *len, 3936 const char **renaming_expr) 3937 { 3938 enum ada_renaming_category kind; 3939 const char *info; 3940 const char *suffix; 3941 3942 if (sym == NULL) 3943 return ADA_NOT_RENAMING; 3944 switch (SYMBOL_CLASS (sym)) 3945 { 3946 default: 3947 return ADA_NOT_RENAMING; 3948 case LOC_TYPEDEF: 3949 return parse_old_style_renaming (SYMBOL_TYPE (sym), 3950 renamed_entity, len, renaming_expr); 3951 case LOC_LOCAL: 3952 case LOC_STATIC: 3953 case LOC_COMPUTED: 3954 case LOC_OPTIMIZED_OUT: 3955 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR"); 3956 if (info == NULL) 3957 return ADA_NOT_RENAMING; 3958 switch (info[5]) 3959 { 3960 case '_': 3961 kind = ADA_OBJECT_RENAMING; 3962 info += 6; 3963 break; 3964 case 'E': 3965 kind = ADA_EXCEPTION_RENAMING; 3966 info += 7; 3967 break; 3968 case 'P': 3969 kind = ADA_PACKAGE_RENAMING; 3970 info += 7; 3971 break; 3972 case 'S': 3973 kind = ADA_SUBPROGRAM_RENAMING; 3974 info += 7; 3975 break; 3976 default: 3977 return ADA_NOT_RENAMING; 3978 } 3979 } 3980 3981 if (renamed_entity != NULL) 3982 *renamed_entity = info; 3983 suffix = strstr (info, "___XE"); 3984 if (suffix == NULL || suffix == info) 3985 return ADA_NOT_RENAMING; 3986 if (len != NULL) 3987 *len = strlen (info) - strlen (suffix); 3988 suffix += 5; 3989 if (renaming_expr != NULL) 3990 *renaming_expr = suffix; 3991 return kind; 3992 } 3993 3994 /* Assuming TYPE encodes a renaming according to the old encoding in 3995 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY, 3996 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns 3997 ADA_NOT_RENAMING otherwise. */ 3998 static enum ada_renaming_category 3999 parse_old_style_renaming (struct type *type, 4000 const char **renamed_entity, int *len, 4001 const char **renaming_expr) 4002 { 4003 enum ada_renaming_category kind; 4004 const char *name; 4005 const char *info; 4006 const char *suffix; 4007 4008 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM 4009 || TYPE_NFIELDS (type) != 1) 4010 return ADA_NOT_RENAMING; 4011 4012 name = type_name_no_tag (type); 4013 if (name == NULL) 4014 return ADA_NOT_RENAMING; 4015 4016 name = strstr (name, "___XR"); 4017 if (name == NULL) 4018 return ADA_NOT_RENAMING; 4019 switch (name[5]) 4020 { 4021 case '\0': 4022 case '_': 4023 kind = ADA_OBJECT_RENAMING; 4024 break; 4025 case 'E': 4026 kind = ADA_EXCEPTION_RENAMING; 4027 break; 4028 case 'P': 4029 kind = ADA_PACKAGE_RENAMING; 4030 break; 4031 case 'S': 4032 kind = ADA_SUBPROGRAM_RENAMING; 4033 break; 4034 default: 4035 return ADA_NOT_RENAMING; 4036 } 4037 4038 info = TYPE_FIELD_NAME (type, 0); 4039 if (info == NULL) 4040 return ADA_NOT_RENAMING; 4041 if (renamed_entity != NULL) 4042 *renamed_entity = info; 4043 suffix = strstr (info, "___XE"); 4044 if (renaming_expr != NULL) 4045 *renaming_expr = suffix + 5; 4046 if (suffix == NULL || suffix == info) 4047 return ADA_NOT_RENAMING; 4048 if (len != NULL) 4049 *len = suffix - info; 4050 return kind; 4051 } 4052 4053 /* Compute the value of the given RENAMING_SYM, which is expected to 4054 be a symbol encoding a renaming expression. BLOCK is the block 4055 used to evaluate the renaming. */ 4056 4057 static struct value * 4058 ada_read_renaming_var_value (struct symbol *renaming_sym, 4059 struct block *block) 4060 { 4061 const char *sym_name; 4062 struct expression *expr; 4063 struct value *value; 4064 struct cleanup *old_chain = NULL; 4065 4066 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym); 4067 expr = parse_exp_1 (&sym_name, 0, block, 0); 4068 old_chain = make_cleanup (free_current_contents, &expr); 4069 value = evaluate_expression (expr); 4070 4071 do_cleanups (old_chain); 4072 return value; 4073 } 4074 4075 4076 /* Evaluation: Function Calls */ 4077 4078 /* Return an lvalue containing the value VAL. This is the identity on 4079 lvalues, and otherwise has the side-effect of allocating memory 4080 in the inferior where a copy of the value contents is copied. */ 4081 4082 static struct value * 4083 ensure_lval (struct value *val) 4084 { 4085 if (VALUE_LVAL (val) == not_lval 4086 || VALUE_LVAL (val) == lval_internalvar) 4087 { 4088 int len = TYPE_LENGTH (ada_check_typedef (value_type (val))); 4089 const CORE_ADDR addr = 4090 value_as_long (value_allocate_space_in_inferior (len)); 4091 4092 set_value_address (val, addr); 4093 VALUE_LVAL (val) = lval_memory; 4094 write_memory (addr, value_contents (val), len); 4095 } 4096 4097 return val; 4098 } 4099 4100 /* Return the value ACTUAL, converted to be an appropriate value for a 4101 formal of type FORMAL_TYPE. Use *SP as a stack pointer for 4102 allocating any necessary descriptors (fat pointers), or copies of 4103 values not residing in memory, updating it as needed. */ 4104 4105 struct value * 4106 ada_convert_actual (struct value *actual, struct type *formal_type0) 4107 { 4108 struct type *actual_type = ada_check_typedef (value_type (actual)); 4109 struct type *formal_type = ada_check_typedef (formal_type0); 4110 struct type *formal_target = 4111 TYPE_CODE (formal_type) == TYPE_CODE_PTR 4112 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; 4113 struct type *actual_target = 4114 TYPE_CODE (actual_type) == TYPE_CODE_PTR 4115 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; 4116 4117 if (ada_is_array_descriptor_type (formal_target) 4118 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) 4119 return make_array_descriptor (formal_type, actual); 4120 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR 4121 || TYPE_CODE (formal_type) == TYPE_CODE_REF) 4122 { 4123 struct value *result; 4124 4125 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY 4126 && ada_is_array_descriptor_type (actual_target)) 4127 result = desc_data (actual); 4128 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) 4129 { 4130 if (VALUE_LVAL (actual) != lval_memory) 4131 { 4132 struct value *val; 4133 4134 actual_type = ada_check_typedef (value_type (actual)); 4135 val = allocate_value (actual_type); 4136 memcpy ((char *) value_contents_raw (val), 4137 (char *) value_contents (actual), 4138 TYPE_LENGTH (actual_type)); 4139 actual = ensure_lval (val); 4140 } 4141 result = value_addr (actual); 4142 } 4143 else 4144 return actual; 4145 return value_cast_pointers (formal_type, result, 0); 4146 } 4147 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) 4148 return ada_value_ind (actual); 4149 4150 return actual; 4151 } 4152 4153 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of 4154 type TYPE. This is usually an inefficient no-op except on some targets 4155 (such as AVR) where the representation of a pointer and an address 4156 differs. */ 4157 4158 static CORE_ADDR 4159 value_pointer (struct value *value, struct type *type) 4160 { 4161 struct gdbarch *gdbarch = get_type_arch (type); 4162 unsigned len = TYPE_LENGTH (type); 4163 gdb_byte *buf = alloca (len); 4164 CORE_ADDR addr; 4165 4166 addr = value_address (value); 4167 gdbarch_address_to_pointer (gdbarch, type, buf, addr); 4168 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch)); 4169 return addr; 4170 } 4171 4172 4173 /* Push a descriptor of type TYPE for array value ARR on the stack at 4174 *SP, updating *SP to reflect the new descriptor. Return either 4175 an lvalue representing the new descriptor, or (if TYPE is a pointer- 4176 to-descriptor type rather than a descriptor type), a struct value * 4177 representing a pointer to this descriptor. */ 4178 4179 static struct value * 4180 make_array_descriptor (struct type *type, struct value *arr) 4181 { 4182 struct type *bounds_type = desc_bounds_type (type); 4183 struct type *desc_type = desc_base_type (type); 4184 struct value *descriptor = allocate_value (desc_type); 4185 struct value *bounds = allocate_value (bounds_type); 4186 int i; 4187 4188 for (i = ada_array_arity (ada_check_typedef (value_type (arr))); 4189 i > 0; i -= 1) 4190 { 4191 modify_field (value_type (bounds), value_contents_writeable (bounds), 4192 ada_array_bound (arr, i, 0), 4193 desc_bound_bitpos (bounds_type, i, 0), 4194 desc_bound_bitsize (bounds_type, i, 0)); 4195 modify_field (value_type (bounds), value_contents_writeable (bounds), 4196 ada_array_bound (arr, i, 1), 4197 desc_bound_bitpos (bounds_type, i, 1), 4198 desc_bound_bitsize (bounds_type, i, 1)); 4199 } 4200 4201 bounds = ensure_lval (bounds); 4202 4203 modify_field (value_type (descriptor), 4204 value_contents_writeable (descriptor), 4205 value_pointer (ensure_lval (arr), 4206 TYPE_FIELD_TYPE (desc_type, 0)), 4207 fat_pntr_data_bitpos (desc_type), 4208 fat_pntr_data_bitsize (desc_type)); 4209 4210 modify_field (value_type (descriptor), 4211 value_contents_writeable (descriptor), 4212 value_pointer (bounds, 4213 TYPE_FIELD_TYPE (desc_type, 1)), 4214 fat_pntr_bounds_bitpos (desc_type), 4215 fat_pntr_bounds_bitsize (desc_type)); 4216 4217 descriptor = ensure_lval (descriptor); 4218 4219 if (TYPE_CODE (type) == TYPE_CODE_PTR) 4220 return value_addr (descriptor); 4221 else 4222 return descriptor; 4223 } 4224 4225 /* Dummy definitions for an experimental caching module that is not 4226 * used in the public sources. */ 4227 4228 static int 4229 lookup_cached_symbol (const char *name, domain_enum namespace, 4230 struct symbol **sym, struct block **block) 4231 { 4232 return 0; 4233 } 4234 4235 static void 4236 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym, 4237 const struct block *block) 4238 { 4239 } 4240 4241 /* Symbol Lookup */ 4242 4243 /* Return nonzero if wild matching should be used when searching for 4244 all symbols matching LOOKUP_NAME. 4245 4246 LOOKUP_NAME is expected to be a symbol name after transformation 4247 for Ada lookups (see ada_name_for_lookup). */ 4248 4249 static int 4250 should_use_wild_match (const char *lookup_name) 4251 { 4252 return (strstr (lookup_name, "__") == NULL); 4253 } 4254 4255 /* Return the result of a standard (literal, C-like) lookup of NAME in 4256 given DOMAIN, visible from lexical block BLOCK. */ 4257 4258 static struct symbol * 4259 standard_lookup (const char *name, const struct block *block, 4260 domain_enum domain) 4261 { 4262 /* Initialize it just to avoid a GCC false warning. */ 4263 struct symbol *sym = NULL; 4264 4265 if (lookup_cached_symbol (name, domain, &sym, NULL)) 4266 return sym; 4267 sym = lookup_symbol_in_language (name, block, domain, language_c, 0); 4268 cache_symbol (name, domain, sym, block_found); 4269 return sym; 4270 } 4271 4272 4273 /* Non-zero iff there is at least one non-function/non-enumeral symbol 4274 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions, 4275 since they contend in overloading in the same way. */ 4276 static int 4277 is_nonfunction (struct ada_symbol_info syms[], int n) 4278 { 4279 int i; 4280 4281 for (i = 0; i < n; i += 1) 4282 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC 4283 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM 4284 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST)) 4285 return 1; 4286 4287 return 0; 4288 } 4289 4290 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent 4291 struct types. Otherwise, they may not. */ 4292 4293 static int 4294 equiv_types (struct type *type0, struct type *type1) 4295 { 4296 if (type0 == type1) 4297 return 1; 4298 if (type0 == NULL || type1 == NULL 4299 || TYPE_CODE (type0) != TYPE_CODE (type1)) 4300 return 0; 4301 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT 4302 || TYPE_CODE (type0) == TYPE_CODE_ENUM) 4303 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL 4304 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0) 4305 return 1; 4306 4307 return 0; 4308 } 4309 4310 /* True iff SYM0 represents the same entity as SYM1, or one that is 4311 no more defined than that of SYM1. */ 4312 4313 static int 4314 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1) 4315 { 4316 if (sym0 == sym1) 4317 return 1; 4318 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1) 4319 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) 4320 return 0; 4321 4322 switch (SYMBOL_CLASS (sym0)) 4323 { 4324 case LOC_UNDEF: 4325 return 1; 4326 case LOC_TYPEDEF: 4327 { 4328 struct type *type0 = SYMBOL_TYPE (sym0); 4329 struct type *type1 = SYMBOL_TYPE (sym1); 4330 const char *name0 = SYMBOL_LINKAGE_NAME (sym0); 4331 const char *name1 = SYMBOL_LINKAGE_NAME (sym1); 4332 int len0 = strlen (name0); 4333 4334 return 4335 TYPE_CODE (type0) == TYPE_CODE (type1) 4336 && (equiv_types (type0, type1) 4337 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0 4338 && strncmp (name1 + len0, "___XV", 5) == 0)); 4339 } 4340 case LOC_CONST: 4341 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) 4342 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); 4343 default: 4344 return 0; 4345 } 4346 } 4347 4348 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info 4349 records in OBSTACKP. Do nothing if SYM is a duplicate. */ 4350 4351 static void 4352 add_defn_to_vec (struct obstack *obstackp, 4353 struct symbol *sym, 4354 struct block *block) 4355 { 4356 int i; 4357 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0); 4358 4359 /* Do not try to complete stub types, as the debugger is probably 4360 already scanning all symbols matching a certain name at the 4361 time when this function is called. Trying to replace the stub 4362 type by its associated full type will cause us to restart a scan 4363 which may lead to an infinite recursion. Instead, the client 4364 collecting the matching symbols will end up collecting several 4365 matches, with at least one of them complete. It can then filter 4366 out the stub ones if needed. */ 4367 4368 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1) 4369 { 4370 if (lesseq_defined_than (sym, prevDefns[i].sym)) 4371 return; 4372 else if (lesseq_defined_than (prevDefns[i].sym, sym)) 4373 { 4374 prevDefns[i].sym = sym; 4375 prevDefns[i].block = block; 4376 return; 4377 } 4378 } 4379 4380 { 4381 struct ada_symbol_info info; 4382 4383 info.sym = sym; 4384 info.block = block; 4385 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info)); 4386 } 4387 } 4388 4389 /* Number of ada_symbol_info structures currently collected in 4390 current vector in *OBSTACKP. */ 4391 4392 static int 4393 num_defns_collected (struct obstack *obstackp) 4394 { 4395 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info); 4396 } 4397 4398 /* Vector of ada_symbol_info structures currently collected in current 4399 vector in *OBSTACKP. If FINISH, close off the vector and return 4400 its final address. */ 4401 4402 static struct ada_symbol_info * 4403 defns_collected (struct obstack *obstackp, int finish) 4404 { 4405 if (finish) 4406 return obstack_finish (obstackp); 4407 else 4408 return (struct ada_symbol_info *) obstack_base (obstackp); 4409 } 4410 4411 /* Return a bound minimal symbol matching NAME according to Ada 4412 decoding rules. Returns an invalid symbol if there is no such 4413 minimal symbol. Names prefixed with "standard__" are handled 4414 specially: "standard__" is first stripped off, and only static and 4415 global symbols are searched. */ 4416 4417 struct bound_minimal_symbol 4418 ada_lookup_simple_minsym (const char *name) 4419 { 4420 struct bound_minimal_symbol result; 4421 struct objfile *objfile; 4422 struct minimal_symbol *msymbol; 4423 const int wild_match_p = should_use_wild_match (name); 4424 4425 memset (&result, 0, sizeof (result)); 4426 4427 /* Special case: If the user specifies a symbol name inside package 4428 Standard, do a non-wild matching of the symbol name without 4429 the "standard__" prefix. This was primarily introduced in order 4430 to allow the user to specifically access the standard exceptions 4431 using, for instance, Standard.Constraint_Error when Constraint_Error 4432 is ambiguous (due to the user defining its own Constraint_Error 4433 entity inside its program). */ 4434 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0) 4435 name += sizeof ("standard__") - 1; 4436 4437 ALL_MSYMBOLS (objfile, msymbol) 4438 { 4439 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p) 4440 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) 4441 { 4442 result.minsym = msymbol; 4443 result.objfile = objfile; 4444 break; 4445 } 4446 } 4447 4448 return result; 4449 } 4450 4451 /* For all subprograms that statically enclose the subprogram of the 4452 selected frame, add symbols matching identifier NAME in DOMAIN 4453 and their blocks to the list of data in OBSTACKP, as for 4454 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME 4455 with a wildcard prefix. */ 4456 4457 static void 4458 add_symbols_from_enclosing_procs (struct obstack *obstackp, 4459 const char *name, domain_enum namespace, 4460 int wild_match_p) 4461 { 4462 } 4463 4464 /* True if TYPE is definitely an artificial type supplied to a symbol 4465 for which no debugging information was given in the symbol file. */ 4466 4467 static int 4468 is_nondebugging_type (struct type *type) 4469 { 4470 const char *name = ada_type_name (type); 4471 4472 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0); 4473 } 4474 4475 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types 4476 that are deemed "identical" for practical purposes. 4477 4478 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM 4479 types and that their number of enumerals is identical (in other 4480 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */ 4481 4482 static int 4483 ada_identical_enum_types_p (struct type *type1, struct type *type2) 4484 { 4485 int i; 4486 4487 /* The heuristic we use here is fairly conservative. We consider 4488 that 2 enumerate types are identical if they have the same 4489 number of enumerals and that all enumerals have the same 4490 underlying value and name. */ 4491 4492 /* All enums in the type should have an identical underlying value. */ 4493 for (i = 0; i < TYPE_NFIELDS (type1); i++) 4494 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i)) 4495 return 0; 4496 4497 /* All enumerals should also have the same name (modulo any numerical 4498 suffix). */ 4499 for (i = 0; i < TYPE_NFIELDS (type1); i++) 4500 { 4501 const char *name_1 = TYPE_FIELD_NAME (type1, i); 4502 const char *name_2 = TYPE_FIELD_NAME (type2, i); 4503 int len_1 = strlen (name_1); 4504 int len_2 = strlen (name_2); 4505 4506 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1); 4507 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2); 4508 if (len_1 != len_2 4509 || strncmp (TYPE_FIELD_NAME (type1, i), 4510 TYPE_FIELD_NAME (type2, i), 4511 len_1) != 0) 4512 return 0; 4513 } 4514 4515 return 1; 4516 } 4517 4518 /* Return nonzero if all the symbols in SYMS are all enumeral symbols 4519 that are deemed "identical" for practical purposes. Sometimes, 4520 enumerals are not strictly identical, but their types are so similar 4521 that they can be considered identical. 4522 4523 For instance, consider the following code: 4524 4525 type Color is (Black, Red, Green, Blue, White); 4526 type RGB_Color is new Color range Red .. Blue; 4527 4528 Type RGB_Color is a subrange of an implicit type which is a copy 4529 of type Color. If we call that implicit type RGB_ColorB ("B" is 4530 for "Base Type"), then type RGB_ColorB is a copy of type Color. 4531 As a result, when an expression references any of the enumeral 4532 by name (Eg. "print green"), the expression is technically 4533 ambiguous and the user should be asked to disambiguate. But 4534 doing so would only hinder the user, since it wouldn't matter 4535 what choice he makes, the outcome would always be the same. 4536 So, for practical purposes, we consider them as the same. */ 4537 4538 static int 4539 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms) 4540 { 4541 int i; 4542 4543 /* Before performing a thorough comparison check of each type, 4544 we perform a series of inexpensive checks. We expect that these 4545 checks will quickly fail in the vast majority of cases, and thus 4546 help prevent the unnecessary use of a more expensive comparison. 4547 Said comparison also expects us to make some of these checks 4548 (see ada_identical_enum_types_p). */ 4549 4550 /* Quick check: All symbols should have an enum type. */ 4551 for (i = 0; i < nsyms; i++) 4552 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM) 4553 return 0; 4554 4555 /* Quick check: They should all have the same value. */ 4556 for (i = 1; i < nsyms; i++) 4557 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym)) 4558 return 0; 4559 4560 /* Quick check: They should all have the same number of enumerals. */ 4561 for (i = 1; i < nsyms; i++) 4562 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym)) 4563 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym))) 4564 return 0; 4565 4566 /* All the sanity checks passed, so we might have a set of 4567 identical enumeration types. Perform a more complete 4568 comparison of the type of each symbol. */ 4569 for (i = 1; i < nsyms; i++) 4570 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym), 4571 SYMBOL_TYPE (syms[0].sym))) 4572 return 0; 4573 4574 return 1; 4575 } 4576 4577 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely 4578 duplicate other symbols in the list (The only case I know of where 4579 this happens is when object files containing stabs-in-ecoff are 4580 linked with files containing ordinary ecoff debugging symbols (or no 4581 debugging symbols)). Modifies SYMS to squeeze out deleted entries. 4582 Returns the number of items in the modified list. */ 4583 4584 static int 4585 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms) 4586 { 4587 int i, j; 4588 4589 /* We should never be called with less than 2 symbols, as there 4590 cannot be any extra symbol in that case. But it's easy to 4591 handle, since we have nothing to do in that case. */ 4592 if (nsyms < 2) 4593 return nsyms; 4594 4595 i = 0; 4596 while (i < nsyms) 4597 { 4598 int remove_p = 0; 4599 4600 /* If two symbols have the same name and one of them is a stub type, 4601 the get rid of the stub. */ 4602 4603 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym)) 4604 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL) 4605 { 4606 for (j = 0; j < nsyms; j++) 4607 { 4608 if (j != i 4609 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym)) 4610 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL 4611 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), 4612 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0) 4613 remove_p = 1; 4614 } 4615 } 4616 4617 /* Two symbols with the same name, same class and same address 4618 should be identical. */ 4619 4620 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL 4621 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC 4622 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym))) 4623 { 4624 for (j = 0; j < nsyms; j += 1) 4625 { 4626 if (i != j 4627 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL 4628 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym), 4629 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0 4630 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym) 4631 && SYMBOL_VALUE_ADDRESS (syms[i].sym) 4632 == SYMBOL_VALUE_ADDRESS (syms[j].sym)) 4633 remove_p = 1; 4634 } 4635 } 4636 4637 if (remove_p) 4638 { 4639 for (j = i + 1; j < nsyms; j += 1) 4640 syms[j - 1] = syms[j]; 4641 nsyms -= 1; 4642 } 4643 4644 i += 1; 4645 } 4646 4647 /* If all the remaining symbols are identical enumerals, then 4648 just keep the first one and discard the rest. 4649 4650 Unlike what we did previously, we do not discard any entry 4651 unless they are ALL identical. This is because the symbol 4652 comparison is not a strict comparison, but rather a practical 4653 comparison. If all symbols are considered identical, then 4654 we can just go ahead and use the first one and discard the rest. 4655 But if we cannot reduce the list to a single element, we have 4656 to ask the user to disambiguate anyways. And if we have to 4657 present a multiple-choice menu, it's less confusing if the list 4658 isn't missing some choices that were identical and yet distinct. */ 4659 if (symbols_are_identical_enums (syms, nsyms)) 4660 nsyms = 1; 4661 4662 return nsyms; 4663 } 4664 4665 /* Given a type that corresponds to a renaming entity, use the type name 4666 to extract the scope (package name or function name, fully qualified, 4667 and following the GNAT encoding convention) where this renaming has been 4668 defined. The string returned needs to be deallocated after use. */ 4669 4670 static char * 4671 xget_renaming_scope (struct type *renaming_type) 4672 { 4673 /* The renaming types adhere to the following convention: 4674 <scope>__<rename>___<XR extension>. 4675 So, to extract the scope, we search for the "___XR" extension, 4676 and then backtrack until we find the first "__". */ 4677 4678 const char *name = type_name_no_tag (renaming_type); 4679 char *suffix = strstr (name, "___XR"); 4680 char *last; 4681 int scope_len; 4682 char *scope; 4683 4684 /* Now, backtrack a bit until we find the first "__". Start looking 4685 at suffix - 3, as the <rename> part is at least one character long. */ 4686 4687 for (last = suffix - 3; last > name; last--) 4688 if (last[0] == '_' && last[1] == '_') 4689 break; 4690 4691 /* Make a copy of scope and return it. */ 4692 4693 scope_len = last - name; 4694 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char)); 4695 4696 strncpy (scope, name, scope_len); 4697 scope[scope_len] = '\0'; 4698 4699 return scope; 4700 } 4701 4702 /* Return nonzero if NAME corresponds to a package name. */ 4703 4704 static int 4705 is_package_name (const char *name) 4706 { 4707 /* Here, We take advantage of the fact that no symbols are generated 4708 for packages, while symbols are generated for each function. 4709 So the condition for NAME represent a package becomes equivalent 4710 to NAME not existing in our list of symbols. There is only one 4711 small complication with library-level functions (see below). */ 4712 4713 char *fun_name; 4714 4715 /* If it is a function that has not been defined at library level, 4716 then we should be able to look it up in the symbols. */ 4717 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL) 4718 return 0; 4719 4720 /* Library-level function names start with "_ada_". See if function 4721 "_ada_" followed by NAME can be found. */ 4722 4723 /* Do a quick check that NAME does not contain "__", since library-level 4724 functions names cannot contain "__" in them. */ 4725 if (strstr (name, "__") != NULL) 4726 return 0; 4727 4728 fun_name = xstrprintf ("_ada_%s", name); 4729 4730 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL); 4731 } 4732 4733 /* Return nonzero if SYM corresponds to a renaming entity that is 4734 not visible from FUNCTION_NAME. */ 4735 4736 static int 4737 old_renaming_is_invisible (const struct symbol *sym, const char *function_name) 4738 { 4739 char *scope; 4740 struct cleanup *old_chain; 4741 4742 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF) 4743 return 0; 4744 4745 scope = xget_renaming_scope (SYMBOL_TYPE (sym)); 4746 old_chain = make_cleanup (xfree, scope); 4747 4748 /* If the rename has been defined in a package, then it is visible. */ 4749 if (is_package_name (scope)) 4750 { 4751 do_cleanups (old_chain); 4752 return 0; 4753 } 4754 4755 /* Check that the rename is in the current function scope by checking 4756 that its name starts with SCOPE. */ 4757 4758 /* If the function name starts with "_ada_", it means that it is 4759 a library-level function. Strip this prefix before doing the 4760 comparison, as the encoding for the renaming does not contain 4761 this prefix. */ 4762 if (strncmp (function_name, "_ada_", 5) == 0) 4763 function_name += 5; 4764 4765 { 4766 int is_invisible = strncmp (function_name, scope, strlen (scope)) != 0; 4767 4768 do_cleanups (old_chain); 4769 return is_invisible; 4770 } 4771 } 4772 4773 /* Remove entries from SYMS that corresponds to a renaming entity that 4774 is not visible from the function associated with CURRENT_BLOCK or 4775 that is superfluous due to the presence of more specific renaming 4776 information. Places surviving symbols in the initial entries of 4777 SYMS and returns the number of surviving symbols. 4778 4779 Rationale: 4780 First, in cases where an object renaming is implemented as a 4781 reference variable, GNAT may produce both the actual reference 4782 variable and the renaming encoding. In this case, we discard the 4783 latter. 4784 4785 Second, GNAT emits a type following a specified encoding for each renaming 4786 entity. Unfortunately, STABS currently does not support the definition 4787 of types that are local to a given lexical block, so all renamings types 4788 are emitted at library level. As a consequence, if an application 4789 contains two renaming entities using the same name, and a user tries to 4790 print the value of one of these entities, the result of the ada symbol 4791 lookup will also contain the wrong renaming type. 4792 4793 This function partially covers for this limitation by attempting to 4794 remove from the SYMS list renaming symbols that should be visible 4795 from CURRENT_BLOCK. However, there does not seem be a 100% reliable 4796 method with the current information available. The implementation 4797 below has a couple of limitations (FIXME: brobecker-2003-05-12): 4798 4799 - When the user tries to print a rename in a function while there 4800 is another rename entity defined in a package: Normally, the 4801 rename in the function has precedence over the rename in the 4802 package, so the latter should be removed from the list. This is 4803 currently not the case. 4804 4805 - This function will incorrectly remove valid renames if 4806 the CURRENT_BLOCK corresponds to a function which symbol name 4807 has been changed by an "Export" pragma. As a consequence, 4808 the user will be unable to print such rename entities. */ 4809 4810 static int 4811 remove_irrelevant_renamings (struct ada_symbol_info *syms, 4812 int nsyms, const struct block *current_block) 4813 { 4814 struct symbol *current_function; 4815 const char *current_function_name; 4816 int i; 4817 int is_new_style_renaming; 4818 4819 /* If there is both a renaming foo___XR... encoded as a variable and 4820 a simple variable foo in the same block, discard the latter. 4821 First, zero out such symbols, then compress. */ 4822 is_new_style_renaming = 0; 4823 for (i = 0; i < nsyms; i += 1) 4824 { 4825 struct symbol *sym = syms[i].sym; 4826 const struct block *block = syms[i].block; 4827 const char *name; 4828 const char *suffix; 4829 4830 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF) 4831 continue; 4832 name = SYMBOL_LINKAGE_NAME (sym); 4833 suffix = strstr (name, "___XR"); 4834 4835 if (suffix != NULL) 4836 { 4837 int name_len = suffix - name; 4838 int j; 4839 4840 is_new_style_renaming = 1; 4841 for (j = 0; j < nsyms; j += 1) 4842 if (i != j && syms[j].sym != NULL 4843 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym), 4844 name_len) == 0 4845 && block == syms[j].block) 4846 syms[j].sym = NULL; 4847 } 4848 } 4849 if (is_new_style_renaming) 4850 { 4851 int j, k; 4852 4853 for (j = k = 0; j < nsyms; j += 1) 4854 if (syms[j].sym != NULL) 4855 { 4856 syms[k] = syms[j]; 4857 k += 1; 4858 } 4859 return k; 4860 } 4861 4862 /* Extract the function name associated to CURRENT_BLOCK. 4863 Abort if unable to do so. */ 4864 4865 if (current_block == NULL) 4866 return nsyms; 4867 4868 current_function = block_linkage_function (current_block); 4869 if (current_function == NULL) 4870 return nsyms; 4871 4872 current_function_name = SYMBOL_LINKAGE_NAME (current_function); 4873 if (current_function_name == NULL) 4874 return nsyms; 4875 4876 /* Check each of the symbols, and remove it from the list if it is 4877 a type corresponding to a renaming that is out of the scope of 4878 the current block. */ 4879 4880 i = 0; 4881 while (i < nsyms) 4882 { 4883 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL) 4884 == ADA_OBJECT_RENAMING 4885 && old_renaming_is_invisible (syms[i].sym, current_function_name)) 4886 { 4887 int j; 4888 4889 for (j = i + 1; j < nsyms; j += 1) 4890 syms[j - 1] = syms[j]; 4891 nsyms -= 1; 4892 } 4893 else 4894 i += 1; 4895 } 4896 4897 return nsyms; 4898 } 4899 4900 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks) 4901 whose name and domain match NAME and DOMAIN respectively. 4902 If no match was found, then extend the search to "enclosing" 4903 routines (in other words, if we're inside a nested function, 4904 search the symbols defined inside the enclosing functions). 4905 If WILD_MATCH_P is nonzero, perform the naming matching in 4906 "wild" mode (see function "wild_match" for more info). 4907 4908 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */ 4909 4910 static void 4911 ada_add_local_symbols (struct obstack *obstackp, const char *name, 4912 struct block *block, domain_enum domain, 4913 int wild_match_p) 4914 { 4915 int block_depth = 0; 4916 4917 while (block != NULL) 4918 { 4919 block_depth += 1; 4920 ada_add_block_symbols (obstackp, block, name, domain, NULL, 4921 wild_match_p); 4922 4923 /* If we found a non-function match, assume that's the one. */ 4924 if (is_nonfunction (defns_collected (obstackp, 0), 4925 num_defns_collected (obstackp))) 4926 return; 4927 4928 block = BLOCK_SUPERBLOCK (block); 4929 } 4930 4931 /* If no luck so far, try to find NAME as a local symbol in some lexically 4932 enclosing subprogram. */ 4933 if (num_defns_collected (obstackp) == 0 && block_depth > 2) 4934 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p); 4935 } 4936 4937 /* An object of this type is used as the user_data argument when 4938 calling the map_matching_symbols method. */ 4939 4940 struct match_data 4941 { 4942 struct objfile *objfile; 4943 struct obstack *obstackp; 4944 struct symbol *arg_sym; 4945 int found_sym; 4946 }; 4947 4948 /* A callback for add_matching_symbols that adds SYM, found in BLOCK, 4949 to a list of symbols. DATA0 is a pointer to a struct match_data * 4950 containing the obstack that collects the symbol list, the file that SYM 4951 must come from, a flag indicating whether a non-argument symbol has 4952 been found in the current block, and the last argument symbol 4953 passed in SYM within the current block (if any). When SYM is null, 4954 marking the end of a block, the argument symbol is added if no 4955 other has been found. */ 4956 4957 static int 4958 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0) 4959 { 4960 struct match_data *data = (struct match_data *) data0; 4961 4962 if (sym == NULL) 4963 { 4964 if (!data->found_sym && data->arg_sym != NULL) 4965 add_defn_to_vec (data->obstackp, 4966 fixup_symbol_section (data->arg_sym, data->objfile), 4967 block); 4968 data->found_sym = 0; 4969 data->arg_sym = NULL; 4970 } 4971 else 4972 { 4973 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) 4974 return 0; 4975 else if (SYMBOL_IS_ARGUMENT (sym)) 4976 data->arg_sym = sym; 4977 else 4978 { 4979 data->found_sym = 1; 4980 add_defn_to_vec (data->obstackp, 4981 fixup_symbol_section (sym, data->objfile), 4982 block); 4983 } 4984 } 4985 return 0; 4986 } 4987 4988 /* Implements compare_names, but only applying the comparision using 4989 the given CASING. */ 4990 4991 static int 4992 compare_names_with_case (const char *string1, const char *string2, 4993 enum case_sensitivity casing) 4994 { 4995 while (*string1 != '\0' && *string2 != '\0') 4996 { 4997 char c1, c2; 4998 4999 if (isspace (*string1) || isspace (*string2)) 5000 return strcmp_iw_ordered (string1, string2); 5001 5002 if (casing == case_sensitive_off) 5003 { 5004 c1 = tolower (*string1); 5005 c2 = tolower (*string2); 5006 } 5007 else 5008 { 5009 c1 = *string1; 5010 c2 = *string2; 5011 } 5012 if (c1 != c2) 5013 break; 5014 5015 string1 += 1; 5016 string2 += 1; 5017 } 5018 5019 switch (*string1) 5020 { 5021 case '(': 5022 return strcmp_iw_ordered (string1, string2); 5023 case '_': 5024 if (*string2 == '\0') 5025 { 5026 if (is_name_suffix (string1)) 5027 return 0; 5028 else 5029 return 1; 5030 } 5031 /* FALLTHROUGH */ 5032 default: 5033 if (*string2 == '(') 5034 return strcmp_iw_ordered (string1, string2); 5035 else 5036 { 5037 if (casing == case_sensitive_off) 5038 return tolower (*string1) - tolower (*string2); 5039 else 5040 return *string1 - *string2; 5041 } 5042 } 5043 } 5044 5045 /* Compare STRING1 to STRING2, with results as for strcmp. 5046 Compatible with strcmp_iw_ordered in that... 5047 5048 strcmp_iw_ordered (STRING1, STRING2) <= 0 5049 5050 ... implies... 5051 5052 compare_names (STRING1, STRING2) <= 0 5053 5054 (they may differ as to what symbols compare equal). */ 5055 5056 static int 5057 compare_names (const char *string1, const char *string2) 5058 { 5059 int result; 5060 5061 /* Similar to what strcmp_iw_ordered does, we need to perform 5062 a case-insensitive comparison first, and only resort to 5063 a second, case-sensitive, comparison if the first one was 5064 not sufficient to differentiate the two strings. */ 5065 5066 result = compare_names_with_case (string1, string2, case_sensitive_off); 5067 if (result == 0) 5068 result = compare_names_with_case (string1, string2, case_sensitive_on); 5069 5070 return result; 5071 } 5072 5073 /* Add to OBSTACKP all non-local symbols whose name and domain match 5074 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK 5075 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */ 5076 5077 static void 5078 add_nonlocal_symbols (struct obstack *obstackp, const char *name, 5079 domain_enum domain, int global, 5080 int is_wild_match) 5081 { 5082 struct objfile *objfile; 5083 struct match_data data; 5084 5085 memset (&data, 0, sizeof data); 5086 data.obstackp = obstackp; 5087 5088 ALL_OBJFILES (objfile) 5089 { 5090 data.objfile = objfile; 5091 5092 if (is_wild_match) 5093 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, 5094 aux_add_nonlocal_symbols, &data, 5095 wild_match, NULL); 5096 else 5097 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global, 5098 aux_add_nonlocal_symbols, &data, 5099 full_match, compare_names); 5100 } 5101 5102 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match) 5103 { 5104 ALL_OBJFILES (objfile) 5105 { 5106 char *name1 = alloca (strlen (name) + sizeof ("_ada_")); 5107 strcpy (name1, "_ada_"); 5108 strcpy (name1 + sizeof ("_ada_") - 1, name); 5109 data.objfile = objfile; 5110 objfile->sf->qf->map_matching_symbols (objfile, name1, domain, 5111 global, 5112 aux_add_nonlocal_symbols, 5113 &data, 5114 full_match, compare_names); 5115 } 5116 } 5117 } 5118 5119 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and, if full_search is 5120 non-zero, enclosing scope and in global scopes, returning the number of 5121 matches. 5122 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples, 5123 indicating the symbols found and the blocks and symbol tables (if 5124 any) in which they were found. This vector is transient---good only to 5125 the next call of ada_lookup_symbol_list. 5126 5127 When full_search is non-zero, any non-function/non-enumeral 5128 symbol match within the nest of blocks whose innermost member is BLOCK0, 5129 is the one match returned (no other matches in that or 5130 enclosing blocks is returned). If there are any matches in or 5131 surrounding BLOCK0, then these alone are returned. 5132 5133 Names prefixed with "standard__" are handled specially: "standard__" 5134 is first stripped off, and only static and global symbols are searched. */ 5135 5136 static int 5137 ada_lookup_symbol_list_worker (const char *name0, const struct block *block0, 5138 domain_enum namespace, 5139 struct ada_symbol_info **results, 5140 int full_search) 5141 { 5142 struct symbol *sym; 5143 struct block *block; 5144 const char *name; 5145 const int wild_match_p = should_use_wild_match (name0); 5146 int cacheIfUnique; 5147 int ndefns; 5148 5149 obstack_free (&symbol_list_obstack, NULL); 5150 obstack_init (&symbol_list_obstack); 5151 5152 cacheIfUnique = 0; 5153 5154 /* Search specified block and its superiors. */ 5155 5156 name = name0; 5157 block = (struct block *) block0; /* FIXME: No cast ought to be 5158 needed, but adding const will 5159 have a cascade effect. */ 5160 5161 /* Special case: If the user specifies a symbol name inside package 5162 Standard, do a non-wild matching of the symbol name without 5163 the "standard__" prefix. This was primarily introduced in order 5164 to allow the user to specifically access the standard exceptions 5165 using, for instance, Standard.Constraint_Error when Constraint_Error 5166 is ambiguous (due to the user defining its own Constraint_Error 5167 entity inside its program). */ 5168 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0) 5169 { 5170 block = NULL; 5171 name = name0 + sizeof ("standard__") - 1; 5172 } 5173 5174 /* Check the non-global symbols. If we have ANY match, then we're done. */ 5175 5176 if (block != NULL) 5177 { 5178 if (full_search) 5179 { 5180 ada_add_local_symbols (&symbol_list_obstack, name, block, 5181 namespace, wild_match_p); 5182 } 5183 else 5184 { 5185 /* In the !full_search case we're are being called by 5186 ada_iterate_over_symbols, and we don't want to search 5187 superblocks. */ 5188 ada_add_block_symbols (&symbol_list_obstack, block, name, 5189 namespace, NULL, wild_match_p); 5190 } 5191 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search) 5192 goto done; 5193 } 5194 5195 /* No non-global symbols found. Check our cache to see if we have 5196 already performed this search before. If we have, then return 5197 the same result. */ 5198 5199 cacheIfUnique = 1; 5200 if (lookup_cached_symbol (name0, namespace, &sym, &block)) 5201 { 5202 if (sym != NULL) 5203 add_defn_to_vec (&symbol_list_obstack, sym, block); 5204 goto done; 5205 } 5206 5207 /* Search symbols from all global blocks. */ 5208 5209 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1, 5210 wild_match_p); 5211 5212 /* Now add symbols from all per-file blocks if we've gotten no hits 5213 (not strictly correct, but perhaps better than an error). */ 5214 5215 if (num_defns_collected (&symbol_list_obstack) == 0) 5216 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0, 5217 wild_match_p); 5218 5219 done: 5220 ndefns = num_defns_collected (&symbol_list_obstack); 5221 *results = defns_collected (&symbol_list_obstack, 1); 5222 5223 ndefns = remove_extra_symbols (*results, ndefns); 5224 5225 if (ndefns == 0 && full_search) 5226 cache_symbol (name0, namespace, NULL, NULL); 5227 5228 if (ndefns == 1 && full_search && cacheIfUnique) 5229 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block); 5230 5231 ndefns = remove_irrelevant_renamings (*results, ndefns, block0); 5232 5233 return ndefns; 5234 } 5235 5236 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and 5237 in global scopes, returning the number of matches, and setting *RESULTS 5238 to a vector of (SYM,BLOCK) tuples. 5239 See ada_lookup_symbol_list_worker for further details. */ 5240 5241 int 5242 ada_lookup_symbol_list (const char *name0, const struct block *block0, 5243 domain_enum domain, struct ada_symbol_info **results) 5244 { 5245 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1); 5246 } 5247 5248 /* Implementation of the la_iterate_over_symbols method. */ 5249 5250 static void 5251 ada_iterate_over_symbols (const struct block *block, 5252 const char *name, domain_enum domain, 5253 symbol_found_callback_ftype *callback, 5254 void *data) 5255 { 5256 int ndefs, i; 5257 struct ada_symbol_info *results; 5258 5259 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0); 5260 for (i = 0; i < ndefs; ++i) 5261 { 5262 if (! (*callback) (results[i].sym, data)) 5263 break; 5264 } 5265 } 5266 5267 /* If NAME is the name of an entity, return a string that should 5268 be used to look that entity up in Ada units. This string should 5269 be deallocated after use using xfree. 5270 5271 NAME can have any form that the "break" or "print" commands might 5272 recognize. In other words, it does not have to be the "natural" 5273 name, or the "encoded" name. */ 5274 5275 char * 5276 ada_name_for_lookup (const char *name) 5277 { 5278 char *canon; 5279 int nlen = strlen (name); 5280 5281 if (name[0] == '<' && name[nlen - 1] == '>') 5282 { 5283 canon = xmalloc (nlen - 1); 5284 memcpy (canon, name + 1, nlen - 2); 5285 canon[nlen - 2] = '\0'; 5286 } 5287 else 5288 canon = xstrdup (ada_encode (ada_fold_name (name))); 5289 return canon; 5290 } 5291 5292 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set 5293 to 1, but choosing the first symbol found if there are multiple 5294 choices. 5295 5296 The result is stored in *INFO, which must be non-NULL. 5297 If no match is found, INFO->SYM is set to NULL. */ 5298 5299 void 5300 ada_lookup_encoded_symbol (const char *name, const struct block *block, 5301 domain_enum namespace, 5302 struct ada_symbol_info *info) 5303 { 5304 struct ada_symbol_info *candidates; 5305 int n_candidates; 5306 5307 gdb_assert (info != NULL); 5308 memset (info, 0, sizeof (struct ada_symbol_info)); 5309 5310 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates); 5311 if (n_candidates == 0) 5312 return; 5313 5314 *info = candidates[0]; 5315 info->sym = fixup_symbol_section (info->sym, NULL); 5316 } 5317 5318 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing 5319 scope and in global scopes, or NULL if none. NAME is folded and 5320 encoded first. Otherwise, the result is as for ada_lookup_symbol_list, 5321 choosing the first symbol if there are multiple choices. 5322 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */ 5323 5324 struct symbol * 5325 ada_lookup_symbol (const char *name, const struct block *block0, 5326 domain_enum namespace, int *is_a_field_of_this) 5327 { 5328 struct ada_symbol_info info; 5329 5330 if (is_a_field_of_this != NULL) 5331 *is_a_field_of_this = 0; 5332 5333 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)), 5334 block0, namespace, &info); 5335 return info.sym; 5336 } 5337 5338 static struct symbol * 5339 ada_lookup_symbol_nonlocal (const char *name, 5340 const struct block *block, 5341 const domain_enum domain) 5342 { 5343 return ada_lookup_symbol (name, block_static_block (block), domain, NULL); 5344 } 5345 5346 5347 /* True iff STR is a possible encoded suffix of a normal Ada name 5348 that is to be ignored for matching purposes. Suffixes of parallel 5349 names (e.g., XVE) are not included here. Currently, the possible suffixes 5350 are given by any of the regular expressions: 5351 5352 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux] 5353 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX] 5354 TKB [subprogram suffix for task bodies] 5355 _E[0-9]+[bs]$ [protected object entry suffixes] 5356 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$ 5357 5358 Also, any leading "__[0-9]+" sequence is skipped before the suffix 5359 match is performed. This sequence is used to differentiate homonyms, 5360 is an optional part of a valid name suffix. */ 5361 5362 static int 5363 is_name_suffix (const char *str) 5364 { 5365 int k; 5366 const char *matching; 5367 const int len = strlen (str); 5368 5369 /* Skip optional leading __[0-9]+. */ 5370 5371 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2])) 5372 { 5373 str += 3; 5374 while (isdigit (str[0])) 5375 str += 1; 5376 } 5377 5378 /* [.$][0-9]+ */ 5379 5380 if (str[0] == '.' || str[0] == '$') 5381 { 5382 matching = str + 1; 5383 while (isdigit (matching[0])) 5384 matching += 1; 5385 if (matching[0] == '\0') 5386 return 1; 5387 } 5388 5389 /* ___[0-9]+ */ 5390 5391 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_') 5392 { 5393 matching = str + 3; 5394 while (isdigit (matching[0])) 5395 matching += 1; 5396 if (matching[0] == '\0') 5397 return 1; 5398 } 5399 5400 /* "TKB" suffixes are used for subprograms implementing task bodies. */ 5401 5402 if (strcmp (str, "TKB") == 0) 5403 return 1; 5404 5405 #if 0 5406 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end 5407 with a N at the end. Unfortunately, the compiler uses the same 5408 convention for other internal types it creates. So treating 5409 all entity names that end with an "N" as a name suffix causes 5410 some regressions. For instance, consider the case of an enumerated 5411 type. To support the 'Image attribute, it creates an array whose 5412 name ends with N. 5413 Having a single character like this as a suffix carrying some 5414 information is a bit risky. Perhaps we should change the encoding 5415 to be something like "_N" instead. In the meantime, do not do 5416 the following check. */ 5417 /* Protected Object Subprograms */ 5418 if (len == 1 && str [0] == 'N') 5419 return 1; 5420 #endif 5421 5422 /* _E[0-9]+[bs]$ */ 5423 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2])) 5424 { 5425 matching = str + 3; 5426 while (isdigit (matching[0])) 5427 matching += 1; 5428 if ((matching[0] == 'b' || matching[0] == 's') 5429 && matching [1] == '\0') 5430 return 1; 5431 } 5432 5433 /* ??? We should not modify STR directly, as we are doing below. This 5434 is fine in this case, but may become problematic later if we find 5435 that this alternative did not work, and want to try matching 5436 another one from the begining of STR. Since we modified it, we 5437 won't be able to find the begining of the string anymore! */ 5438 if (str[0] == 'X') 5439 { 5440 str += 1; 5441 while (str[0] != '_' && str[0] != '\0') 5442 { 5443 if (str[0] != 'n' && str[0] != 'b') 5444 return 0; 5445 str += 1; 5446 } 5447 } 5448 5449 if (str[0] == '\000') 5450 return 1; 5451 5452 if (str[0] == '_') 5453 { 5454 if (str[1] != '_' || str[2] == '\000') 5455 return 0; 5456 if (str[2] == '_') 5457 { 5458 if (strcmp (str + 3, "JM") == 0) 5459 return 1; 5460 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using 5461 the LJM suffix in favor of the JM one. But we will 5462 still accept LJM as a valid suffix for a reasonable 5463 amount of time, just to allow ourselves to debug programs 5464 compiled using an older version of GNAT. */ 5465 if (strcmp (str + 3, "LJM") == 0) 5466 return 1; 5467 if (str[3] != 'X') 5468 return 0; 5469 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' 5470 || str[4] == 'U' || str[4] == 'P') 5471 return 1; 5472 if (str[4] == 'R' && str[5] != 'T') 5473 return 1; 5474 return 0; 5475 } 5476 if (!isdigit (str[2])) 5477 return 0; 5478 for (k = 3; str[k] != '\0'; k += 1) 5479 if (!isdigit (str[k]) && str[k] != '_') 5480 return 0; 5481 return 1; 5482 } 5483 if (str[0] == '$' && isdigit (str[1])) 5484 { 5485 for (k = 2; str[k] != '\0'; k += 1) 5486 if (!isdigit (str[k]) && str[k] != '_') 5487 return 0; 5488 return 1; 5489 } 5490 return 0; 5491 } 5492 5493 /* Return non-zero if the string starting at NAME and ending before 5494 NAME_END contains no capital letters. */ 5495 5496 static int 5497 is_valid_name_for_wild_match (const char *name0) 5498 { 5499 const char *decoded_name = ada_decode (name0); 5500 int i; 5501 5502 /* If the decoded name starts with an angle bracket, it means that 5503 NAME0 does not follow the GNAT encoding format. It should then 5504 not be allowed as a possible wild match. */ 5505 if (decoded_name[0] == '<') 5506 return 0; 5507 5508 for (i=0; decoded_name[i] != '\0'; i++) 5509 if (isalpha (decoded_name[i]) && !islower (decoded_name[i])) 5510 return 0; 5511 5512 return 1; 5513 } 5514 5515 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0 5516 that could start a simple name. Assumes that *NAMEP points into 5517 the string beginning at NAME0. */ 5518 5519 static int 5520 advance_wild_match (const char **namep, const char *name0, int target0) 5521 { 5522 const char *name = *namep; 5523 5524 while (1) 5525 { 5526 int t0, t1; 5527 5528 t0 = *name; 5529 if (t0 == '_') 5530 { 5531 t1 = name[1]; 5532 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9')) 5533 { 5534 name += 1; 5535 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0) 5536 break; 5537 else 5538 name += 1; 5539 } 5540 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z') 5541 || name[2] == target0)) 5542 { 5543 name += 2; 5544 break; 5545 } 5546 else 5547 return 0; 5548 } 5549 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9')) 5550 name += 1; 5551 else 5552 return 0; 5553 } 5554 5555 *namep = name; 5556 return 1; 5557 } 5558 5559 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any 5560 informational suffixes of NAME (i.e., for which is_name_suffix is 5561 true). Assumes that PATN is a lower-cased Ada simple name. */ 5562 5563 static int 5564 wild_match (const char *name, const char *patn) 5565 { 5566 const char *p; 5567 const char *name0 = name; 5568 5569 while (1) 5570 { 5571 const char *match = name; 5572 5573 if (*name == *patn) 5574 { 5575 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1) 5576 if (*p != *name) 5577 break; 5578 if (*p == '\0' && is_name_suffix (name)) 5579 return match != name0 && !is_valid_name_for_wild_match (name0); 5580 5581 if (name[-1] == '_') 5582 name -= 1; 5583 } 5584 if (!advance_wild_match (&name, name0, *patn)) 5585 return 1; 5586 } 5587 } 5588 5589 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from 5590 informational suffix. */ 5591 5592 static int 5593 full_match (const char *sym_name, const char *search_name) 5594 { 5595 return !match_name (sym_name, search_name, 0); 5596 } 5597 5598 5599 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to 5600 vector *defn_symbols, updating the list of symbols in OBSTACKP 5601 (if necessary). If WILD, treat as NAME with a wildcard prefix. 5602 OBJFILE is the section containing BLOCK. */ 5603 5604 static void 5605 ada_add_block_symbols (struct obstack *obstackp, 5606 struct block *block, const char *name, 5607 domain_enum domain, struct objfile *objfile, 5608 int wild) 5609 { 5610 struct block_iterator iter; 5611 int name_len = strlen (name); 5612 /* A matching argument symbol, if any. */ 5613 struct symbol *arg_sym; 5614 /* Set true when we find a matching non-argument symbol. */ 5615 int found_sym; 5616 struct symbol *sym; 5617 5618 arg_sym = NULL; 5619 found_sym = 0; 5620 if (wild) 5621 { 5622 for (sym = block_iter_match_first (block, name, wild_match, &iter); 5623 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter)) 5624 { 5625 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), 5626 SYMBOL_DOMAIN (sym), domain) 5627 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0) 5628 { 5629 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED) 5630 continue; 5631 else if (SYMBOL_IS_ARGUMENT (sym)) 5632 arg_sym = sym; 5633 else 5634 { 5635 found_sym = 1; 5636 add_defn_to_vec (obstackp, 5637 fixup_symbol_section (sym, objfile), 5638 block); 5639 } 5640 } 5641 } 5642 } 5643 else 5644 { 5645 for (sym = block_iter_match_first (block, name, full_match, &iter); 5646 sym != NULL; sym = block_iter_match_next (name, full_match, &iter)) 5647 { 5648 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), 5649 SYMBOL_DOMAIN (sym), domain)) 5650 { 5651 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) 5652 { 5653 if (SYMBOL_IS_ARGUMENT (sym)) 5654 arg_sym = sym; 5655 else 5656 { 5657 found_sym = 1; 5658 add_defn_to_vec (obstackp, 5659 fixup_symbol_section (sym, objfile), 5660 block); 5661 } 5662 } 5663 } 5664 } 5665 } 5666 5667 if (!found_sym && arg_sym != NULL) 5668 { 5669 add_defn_to_vec (obstackp, 5670 fixup_symbol_section (arg_sym, objfile), 5671 block); 5672 } 5673 5674 if (!wild) 5675 { 5676 arg_sym = NULL; 5677 found_sym = 0; 5678 5679 ALL_BLOCK_SYMBOLS (block, iter, sym) 5680 { 5681 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym), 5682 SYMBOL_DOMAIN (sym), domain)) 5683 { 5684 int cmp; 5685 5686 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0]; 5687 if (cmp == 0) 5688 { 5689 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5); 5690 if (cmp == 0) 5691 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5, 5692 name_len); 5693 } 5694 5695 if (cmp == 0 5696 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5)) 5697 { 5698 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED) 5699 { 5700 if (SYMBOL_IS_ARGUMENT (sym)) 5701 arg_sym = sym; 5702 else 5703 { 5704 found_sym = 1; 5705 add_defn_to_vec (obstackp, 5706 fixup_symbol_section (sym, objfile), 5707 block); 5708 } 5709 } 5710 } 5711 } 5712 } 5713 5714 /* NOTE: This really shouldn't be needed for _ada_ symbols. 5715 They aren't parameters, right? */ 5716 if (!found_sym && arg_sym != NULL) 5717 { 5718 add_defn_to_vec (obstackp, 5719 fixup_symbol_section (arg_sym, objfile), 5720 block); 5721 } 5722 } 5723 } 5724 5725 5726 /* Symbol Completion */ 5727 5728 /* If SYM_NAME is a completion candidate for TEXT, return this symbol 5729 name in a form that's appropriate for the completion. The result 5730 does not need to be deallocated, but is only good until the next call. 5731 5732 TEXT_LEN is equal to the length of TEXT. 5733 Perform a wild match if WILD_MATCH_P is set. 5734 ENCODED_P should be set if TEXT represents the start of a symbol name 5735 in its encoded form. */ 5736 5737 static const char * 5738 symbol_completion_match (const char *sym_name, 5739 const char *text, int text_len, 5740 int wild_match_p, int encoded_p) 5741 { 5742 const int verbatim_match = (text[0] == '<'); 5743 int match = 0; 5744 5745 if (verbatim_match) 5746 { 5747 /* Strip the leading angle bracket. */ 5748 text = text + 1; 5749 text_len--; 5750 } 5751 5752 /* First, test against the fully qualified name of the symbol. */ 5753 5754 if (strncmp (sym_name, text, text_len) == 0) 5755 match = 1; 5756 5757 if (match && !encoded_p) 5758 { 5759 /* One needed check before declaring a positive match is to verify 5760 that iff we are doing a verbatim match, the decoded version 5761 of the symbol name starts with '<'. Otherwise, this symbol name 5762 is not a suitable completion. */ 5763 const char *sym_name_copy = sym_name; 5764 int has_angle_bracket; 5765 5766 sym_name = ada_decode (sym_name); 5767 has_angle_bracket = (sym_name[0] == '<'); 5768 match = (has_angle_bracket == verbatim_match); 5769 sym_name = sym_name_copy; 5770 } 5771 5772 if (match && !verbatim_match) 5773 { 5774 /* When doing non-verbatim match, another check that needs to 5775 be done is to verify that the potentially matching symbol name 5776 does not include capital letters, because the ada-mode would 5777 not be able to understand these symbol names without the 5778 angle bracket notation. */ 5779 const char *tmp; 5780 5781 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++); 5782 if (*tmp != '\0') 5783 match = 0; 5784 } 5785 5786 /* Second: Try wild matching... */ 5787 5788 if (!match && wild_match_p) 5789 { 5790 /* Since we are doing wild matching, this means that TEXT 5791 may represent an unqualified symbol name. We therefore must 5792 also compare TEXT against the unqualified name of the symbol. */ 5793 sym_name = ada_unqualified_name (ada_decode (sym_name)); 5794 5795 if (strncmp (sym_name, text, text_len) == 0) 5796 match = 1; 5797 } 5798 5799 /* Finally: If we found a mach, prepare the result to return. */ 5800 5801 if (!match) 5802 return NULL; 5803 5804 if (verbatim_match) 5805 sym_name = add_angle_brackets (sym_name); 5806 5807 if (!encoded_p) 5808 sym_name = ada_decode (sym_name); 5809 5810 return sym_name; 5811 } 5812 5813 /* A companion function to ada_make_symbol_completion_list(). 5814 Check if SYM_NAME represents a symbol which name would be suitable 5815 to complete TEXT (TEXT_LEN is the length of TEXT), in which case 5816 it is appended at the end of the given string vector SV. 5817 5818 ORIG_TEXT is the string original string from the user command 5819 that needs to be completed. WORD is the entire command on which 5820 completion should be performed. These two parameters are used to 5821 determine which part of the symbol name should be added to the 5822 completion vector. 5823 if WILD_MATCH_P is set, then wild matching is performed. 5824 ENCODED_P should be set if TEXT represents a symbol name in its 5825 encoded formed (in which case the completion should also be 5826 encoded). */ 5827 5828 static void 5829 symbol_completion_add (VEC(char_ptr) **sv, 5830 const char *sym_name, 5831 const char *text, int text_len, 5832 const char *orig_text, const char *word, 5833 int wild_match_p, int encoded_p) 5834 { 5835 const char *match = symbol_completion_match (sym_name, text, text_len, 5836 wild_match_p, encoded_p); 5837 char *completion; 5838 5839 if (match == NULL) 5840 return; 5841 5842 /* We found a match, so add the appropriate completion to the given 5843 string vector. */ 5844 5845 if (word == orig_text) 5846 { 5847 completion = xmalloc (strlen (match) + 5); 5848 strcpy (completion, match); 5849 } 5850 else if (word > orig_text) 5851 { 5852 /* Return some portion of sym_name. */ 5853 completion = xmalloc (strlen (match) + 5); 5854 strcpy (completion, match + (word - orig_text)); 5855 } 5856 else 5857 { 5858 /* Return some of ORIG_TEXT plus sym_name. */ 5859 completion = xmalloc (strlen (match) + (orig_text - word) + 5); 5860 strncpy (completion, word, orig_text - word); 5861 completion[orig_text - word] = '\0'; 5862 strcat (completion, match); 5863 } 5864 5865 VEC_safe_push (char_ptr, *sv, completion); 5866 } 5867 5868 /* An object of this type is passed as the user_data argument to the 5869 expand_partial_symbol_names method. */ 5870 struct add_partial_datum 5871 { 5872 VEC(char_ptr) **completions; 5873 const char *text; 5874 int text_len; 5875 const char *text0; 5876 const char *word; 5877 int wild_match; 5878 int encoded; 5879 }; 5880 5881 /* A callback for expand_partial_symbol_names. */ 5882 static int 5883 ada_expand_partial_symbol_name (const char *name, void *user_data) 5884 { 5885 struct add_partial_datum *data = user_data; 5886 5887 return symbol_completion_match (name, data->text, data->text_len, 5888 data->wild_match, data->encoded) != NULL; 5889 } 5890 5891 /* Return a list of possible symbol names completing TEXT0. WORD is 5892 the entire command on which completion is made. */ 5893 5894 static VEC (char_ptr) * 5895 ada_make_symbol_completion_list (const char *text0, const char *word, 5896 enum type_code code) 5897 { 5898 char *text; 5899 int text_len; 5900 int wild_match_p; 5901 int encoded_p; 5902 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128); 5903 struct symbol *sym; 5904 struct symtab *s; 5905 struct minimal_symbol *msymbol; 5906 struct objfile *objfile; 5907 struct block *b, *surrounding_static_block = 0; 5908 int i; 5909 struct block_iterator iter; 5910 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); 5911 5912 gdb_assert (code == TYPE_CODE_UNDEF); 5913 5914 if (text0[0] == '<') 5915 { 5916 text = xstrdup (text0); 5917 make_cleanup (xfree, text); 5918 text_len = strlen (text); 5919 wild_match_p = 0; 5920 encoded_p = 1; 5921 } 5922 else 5923 { 5924 text = xstrdup (ada_encode (text0)); 5925 make_cleanup (xfree, text); 5926 text_len = strlen (text); 5927 for (i = 0; i < text_len; i++) 5928 text[i] = tolower (text[i]); 5929 5930 encoded_p = (strstr (text0, "__") != NULL); 5931 /* If the name contains a ".", then the user is entering a fully 5932 qualified entity name, and the match must not be done in wild 5933 mode. Similarly, if the user wants to complete what looks like 5934 an encoded name, the match must not be done in wild mode. */ 5935 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p); 5936 } 5937 5938 /* First, look at the partial symtab symbols. */ 5939 { 5940 struct add_partial_datum data; 5941 5942 data.completions = &completions; 5943 data.text = text; 5944 data.text_len = text_len; 5945 data.text0 = text0; 5946 data.word = word; 5947 data.wild_match = wild_match_p; 5948 data.encoded = encoded_p; 5949 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data); 5950 } 5951 5952 /* At this point scan through the misc symbol vectors and add each 5953 symbol you find to the list. Eventually we want to ignore 5954 anything that isn't a text symbol (everything else will be 5955 handled by the psymtab code above). */ 5956 5957 ALL_MSYMBOLS (objfile, msymbol) 5958 { 5959 QUIT; 5960 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol), 5961 text, text_len, text0, word, wild_match_p, 5962 encoded_p); 5963 } 5964 5965 /* Search upwards from currently selected frame (so that we can 5966 complete on local vars. */ 5967 5968 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b)) 5969 { 5970 if (!BLOCK_SUPERBLOCK (b)) 5971 surrounding_static_block = b; /* For elmin of dups */ 5972 5973 ALL_BLOCK_SYMBOLS (b, iter, sym) 5974 { 5975 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), 5976 text, text_len, text0, word, 5977 wild_match_p, encoded_p); 5978 } 5979 } 5980 5981 /* Go through the symtabs and check the externs and statics for 5982 symbols which match. */ 5983 5984 ALL_SYMTABS (objfile, s) 5985 { 5986 QUIT; 5987 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); 5988 ALL_BLOCK_SYMBOLS (b, iter, sym) 5989 { 5990 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), 5991 text, text_len, text0, word, 5992 wild_match_p, encoded_p); 5993 } 5994 } 5995 5996 ALL_SYMTABS (objfile, s) 5997 { 5998 QUIT; 5999 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); 6000 /* Don't do this block twice. */ 6001 if (b == surrounding_static_block) 6002 continue; 6003 ALL_BLOCK_SYMBOLS (b, iter, sym) 6004 { 6005 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym), 6006 text, text_len, text0, word, 6007 wild_match_p, encoded_p); 6008 } 6009 } 6010 6011 do_cleanups (old_chain); 6012 return completions; 6013 } 6014 6015 /* Field Access */ 6016 6017 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used 6018 for tagged types. */ 6019 6020 static int 6021 ada_is_dispatch_table_ptr_type (struct type *type) 6022 { 6023 const char *name; 6024 6025 if (TYPE_CODE (type) != TYPE_CODE_PTR) 6026 return 0; 6027 6028 name = TYPE_NAME (TYPE_TARGET_TYPE (type)); 6029 if (name == NULL) 6030 return 0; 6031 6032 return (strcmp (name, "ada__tags__dispatch_table") == 0); 6033 } 6034 6035 /* Return non-zero if TYPE is an interface tag. */ 6036 6037 static int 6038 ada_is_interface_tag (struct type *type) 6039 { 6040 const char *name = TYPE_NAME (type); 6041 6042 if (name == NULL) 6043 return 0; 6044 6045 return (strcmp (name, "ada__tags__interface_tag") == 0); 6046 } 6047 6048 /* True if field number FIELD_NUM in struct or union type TYPE is supposed 6049 to be invisible to users. */ 6050 6051 int 6052 ada_is_ignored_field (struct type *type, int field_num) 6053 { 6054 if (field_num < 0 || field_num > TYPE_NFIELDS (type)) 6055 return 1; 6056 6057 /* Check the name of that field. */ 6058 { 6059 const char *name = TYPE_FIELD_NAME (type, field_num); 6060 6061 /* Anonymous field names should not be printed. 6062 brobecker/2007-02-20: I don't think this can actually happen 6063 but we don't want to print the value of annonymous fields anyway. */ 6064 if (name == NULL) 6065 return 1; 6066 6067 /* Normally, fields whose name start with an underscore ("_") 6068 are fields that have been internally generated by the compiler, 6069 and thus should not be printed. The "_parent" field is special, 6070 however: This is a field internally generated by the compiler 6071 for tagged types, and it contains the components inherited from 6072 the parent type. This field should not be printed as is, but 6073 should not be ignored either. */ 6074 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0) 6075 return 1; 6076 } 6077 6078 /* If this is the dispatch table of a tagged type or an interface tag, 6079 then ignore. */ 6080 if (ada_is_tagged_type (type, 1) 6081 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)) 6082 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num)))) 6083 return 1; 6084 6085 /* Not a special field, so it should not be ignored. */ 6086 return 0; 6087 } 6088 6089 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a 6090 pointer or reference type whose ultimate target has a tag field. */ 6091 6092 int 6093 ada_is_tagged_type (struct type *type, int refok) 6094 { 6095 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL); 6096 } 6097 6098 /* True iff TYPE represents the type of X'Tag */ 6099 6100 int 6101 ada_is_tag_type (struct type *type) 6102 { 6103 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR) 6104 return 0; 6105 else 6106 { 6107 const char *name = ada_type_name (TYPE_TARGET_TYPE (type)); 6108 6109 return (name != NULL 6110 && strcmp (name, "ada__tags__dispatch_table") == 0); 6111 } 6112 } 6113 6114 /* The type of the tag on VAL. */ 6115 6116 struct type * 6117 ada_tag_type (struct value *val) 6118 { 6119 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL); 6120 } 6121 6122 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95, 6123 retired at Ada 05). */ 6124 6125 static int 6126 is_ada95_tag (struct value *tag) 6127 { 6128 return ada_value_struct_elt (tag, "tsd", 1) != NULL; 6129 } 6130 6131 /* The value of the tag on VAL. */ 6132 6133 struct value * 6134 ada_value_tag (struct value *val) 6135 { 6136 return ada_value_struct_elt (val, "_tag", 0); 6137 } 6138 6139 /* The value of the tag on the object of type TYPE whose contents are 6140 saved at VALADDR, if it is non-null, or is at memory address 6141 ADDRESS. */ 6142 6143 static struct value * 6144 value_tag_from_contents_and_address (struct type *type, 6145 const gdb_byte *valaddr, 6146 CORE_ADDR address) 6147 { 6148 int tag_byte_offset; 6149 struct type *tag_type; 6150 6151 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset, 6152 NULL, NULL, NULL)) 6153 { 6154 const gdb_byte *valaddr1 = ((valaddr == NULL) 6155 ? NULL 6156 : valaddr + tag_byte_offset); 6157 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset; 6158 6159 return value_from_contents_and_address (tag_type, valaddr1, address1); 6160 } 6161 return NULL; 6162 } 6163 6164 static struct type * 6165 type_from_tag (struct value *tag) 6166 { 6167 const char *type_name = ada_tag_name (tag); 6168 6169 if (type_name != NULL) 6170 return ada_find_any_type (ada_encode (type_name)); 6171 return NULL; 6172 } 6173 6174 /* Given a value OBJ of a tagged type, return a value of this 6175 type at the base address of the object. The base address, as 6176 defined in Ada.Tags, it is the address of the primary tag of 6177 the object, and therefore where the field values of its full 6178 view can be fetched. */ 6179 6180 struct value * 6181 ada_tag_value_at_base_address (struct value *obj) 6182 { 6183 volatile struct gdb_exception e; 6184 struct value *val; 6185 LONGEST offset_to_top = 0; 6186 struct type *ptr_type, *obj_type; 6187 struct value *tag; 6188 CORE_ADDR base_address; 6189 6190 obj_type = value_type (obj); 6191 6192 /* It is the responsability of the caller to deref pointers. */ 6193 6194 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR 6195 || TYPE_CODE (obj_type) == TYPE_CODE_REF) 6196 return obj; 6197 6198 tag = ada_value_tag (obj); 6199 if (!tag) 6200 return obj; 6201 6202 /* Base addresses only appeared with Ada 05 and multiple inheritance. */ 6203 6204 if (is_ada95_tag (tag)) 6205 return obj; 6206 6207 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; 6208 ptr_type = lookup_pointer_type (ptr_type); 6209 val = value_cast (ptr_type, tag); 6210 if (!val) 6211 return obj; 6212 6213 /* It is perfectly possible that an exception be raised while 6214 trying to determine the base address, just like for the tag; 6215 see ada_tag_name for more details. We do not print the error 6216 message for the same reason. */ 6217 6218 TRY_CATCH (e, RETURN_MASK_ERROR) 6219 { 6220 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2))); 6221 } 6222 6223 if (e.reason < 0) 6224 return obj; 6225 6226 /* If offset is null, nothing to do. */ 6227 6228 if (offset_to_top == 0) 6229 return obj; 6230 6231 /* -1 is a special case in Ada.Tags; however, what should be done 6232 is not quite clear from the documentation. So do nothing for 6233 now. */ 6234 6235 if (offset_to_top == -1) 6236 return obj; 6237 6238 base_address = value_address (obj) - offset_to_top; 6239 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address); 6240 6241 /* Make sure that we have a proper tag at the new address. 6242 Otherwise, offset_to_top is bogus (which can happen when 6243 the object is not initialized yet). */ 6244 6245 if (!tag) 6246 return obj; 6247 6248 obj_type = type_from_tag (tag); 6249 6250 if (!obj_type) 6251 return obj; 6252 6253 return value_from_contents_and_address (obj_type, NULL, base_address); 6254 } 6255 6256 /* Return the "ada__tags__type_specific_data" type. */ 6257 6258 static struct type * 6259 ada_get_tsd_type (struct inferior *inf) 6260 { 6261 struct ada_inferior_data *data = get_ada_inferior_data (inf); 6262 6263 if (data->tsd_type == 0) 6264 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data"); 6265 return data->tsd_type; 6266 } 6267 6268 /* Return the TSD (type-specific data) associated to the given TAG. 6269 TAG is assumed to be the tag of a tagged-type entity. 6270 6271 May return NULL if we are unable to get the TSD. */ 6272 6273 static struct value * 6274 ada_get_tsd_from_tag (struct value *tag) 6275 { 6276 struct value *val; 6277 struct type *type; 6278 6279 /* First option: The TSD is simply stored as a field of our TAG. 6280 Only older versions of GNAT would use this format, but we have 6281 to test it first, because there are no visible markers for 6282 the current approach except the absence of that field. */ 6283 6284 val = ada_value_struct_elt (tag, "tsd", 1); 6285 if (val) 6286 return val; 6287 6288 /* Try the second representation for the dispatch table (in which 6289 there is no explicit 'tsd' field in the referent of the tag pointer, 6290 and instead the tsd pointer is stored just before the dispatch 6291 table. */ 6292 6293 type = ada_get_tsd_type (current_inferior()); 6294 if (type == NULL) 6295 return NULL; 6296 type = lookup_pointer_type (lookup_pointer_type (type)); 6297 val = value_cast (type, tag); 6298 if (val == NULL) 6299 return NULL; 6300 return value_ind (value_ptradd (val, -1)); 6301 } 6302 6303 /* Given the TSD of a tag (type-specific data), return a string 6304 containing the name of the associated type. 6305 6306 The returned value is good until the next call. May return NULL 6307 if we are unable to determine the tag name. */ 6308 6309 static char * 6310 ada_tag_name_from_tsd (struct value *tsd) 6311 { 6312 static char name[1024]; 6313 char *p; 6314 struct value *val; 6315 6316 val = ada_value_struct_elt (tsd, "expanded_name", 1); 6317 if (val == NULL) 6318 return NULL; 6319 read_memory_string (value_as_address (val), name, sizeof (name) - 1); 6320 for (p = name; *p != '\0'; p += 1) 6321 if (isalpha (*p)) 6322 *p = tolower (*p); 6323 return name; 6324 } 6325 6326 /* The type name of the dynamic type denoted by the 'tag value TAG, as 6327 a C string. 6328 6329 Return NULL if the TAG is not an Ada tag, or if we were unable to 6330 determine the name of that tag. The result is good until the next 6331 call. */ 6332 6333 const char * 6334 ada_tag_name (struct value *tag) 6335 { 6336 volatile struct gdb_exception e; 6337 char *name = NULL; 6338 6339 if (!ada_is_tag_type (value_type (tag))) 6340 return NULL; 6341 6342 /* It is perfectly possible that an exception be raised while trying 6343 to determine the TAG's name, even under normal circumstances: 6344 The associated variable may be uninitialized or corrupted, for 6345 instance. We do not let any exception propagate past this point. 6346 instead we return NULL. 6347 6348 We also do not print the error message either (which often is very 6349 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let 6350 the caller print a more meaningful message if necessary. */ 6351 TRY_CATCH (e, RETURN_MASK_ERROR) 6352 { 6353 struct value *tsd = ada_get_tsd_from_tag (tag); 6354 6355 if (tsd != NULL) 6356 name = ada_tag_name_from_tsd (tsd); 6357 } 6358 6359 return name; 6360 } 6361 6362 /* The parent type of TYPE, or NULL if none. */ 6363 6364 struct type * 6365 ada_parent_type (struct type *type) 6366 { 6367 int i; 6368 6369 type = ada_check_typedef (type); 6370 6371 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) 6372 return NULL; 6373 6374 for (i = 0; i < TYPE_NFIELDS (type); i += 1) 6375 if (ada_is_parent_field (type, i)) 6376 { 6377 struct type *parent_type = TYPE_FIELD_TYPE (type, i); 6378 6379 /* If the _parent field is a pointer, then dereference it. */ 6380 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR) 6381 parent_type = TYPE_TARGET_TYPE (parent_type); 6382 /* If there is a parallel XVS type, get the actual base type. */ 6383 parent_type = ada_get_base_type (parent_type); 6384 6385 return ada_check_typedef (parent_type); 6386 } 6387 6388 return NULL; 6389 } 6390 6391 /* True iff field number FIELD_NUM of structure type TYPE contains the 6392 parent-type (inherited) fields of a derived type. Assumes TYPE is 6393 a structure type with at least FIELD_NUM+1 fields. */ 6394 6395 int 6396 ada_is_parent_field (struct type *type, int field_num) 6397 { 6398 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num); 6399 6400 return (name != NULL 6401 && (strncmp (name, "PARENT", 6) == 0 6402 || strncmp (name, "_parent", 7) == 0)); 6403 } 6404 6405 /* True iff field number FIELD_NUM of structure type TYPE is a 6406 transparent wrapper field (which should be silently traversed when doing 6407 field selection and flattened when printing). Assumes TYPE is a 6408 structure type with at least FIELD_NUM+1 fields. Such fields are always 6409 structures. */ 6410 6411 int 6412 ada_is_wrapper_field (struct type *type, int field_num) 6413 { 6414 const char *name = TYPE_FIELD_NAME (type, field_num); 6415 6416 return (name != NULL 6417 && (strncmp (name, "PARENT", 6) == 0 6418 || strcmp (name, "REP") == 0 6419 || strncmp (name, "_parent", 7) == 0 6420 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); 6421 } 6422 6423 /* True iff field number FIELD_NUM of structure or union type TYPE 6424 is a variant wrapper. Assumes TYPE is a structure type with at least 6425 FIELD_NUM+1 fields. */ 6426 6427 int 6428 ada_is_variant_part (struct type *type, int field_num) 6429 { 6430 struct type *field_type = TYPE_FIELD_TYPE (type, field_num); 6431 6432 return (TYPE_CODE (field_type) == TYPE_CODE_UNION 6433 || (is_dynamic_field (type, field_num) 6434 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type)) 6435 == TYPE_CODE_UNION))); 6436 } 6437 6438 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) 6439 whose discriminants are contained in the record type OUTER_TYPE, 6440 returns the type of the controlling discriminant for the variant. 6441 May return NULL if the type could not be found. */ 6442 6443 struct type * 6444 ada_variant_discrim_type (struct type *var_type, struct type *outer_type) 6445 { 6446 char *name = ada_variant_discrim_name (var_type); 6447 6448 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL); 6449 } 6450 6451 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a 6452 valid field number within it, returns 1 iff field FIELD_NUM of TYPE 6453 represents a 'when others' clause; otherwise 0. */ 6454 6455 int 6456 ada_is_others_clause (struct type *type, int field_num) 6457 { 6458 const char *name = TYPE_FIELD_NAME (type, field_num); 6459 6460 return (name != NULL && name[0] == 'O'); 6461 } 6462 6463 /* Assuming that TYPE0 is the type of the variant part of a record, 6464 returns the name of the discriminant controlling the variant. 6465 The value is valid until the next call to ada_variant_discrim_name. */ 6466 6467 char * 6468 ada_variant_discrim_name (struct type *type0) 6469 { 6470 static char *result = NULL; 6471 static size_t result_len = 0; 6472 struct type *type; 6473 const char *name; 6474 const char *discrim_end; 6475 const char *discrim_start; 6476 6477 if (TYPE_CODE (type0) == TYPE_CODE_PTR) 6478 type = TYPE_TARGET_TYPE (type0); 6479 else 6480 type = type0; 6481 6482 name = ada_type_name (type); 6483 6484 if (name == NULL || name[0] == '\000') 6485 return ""; 6486 6487 for (discrim_end = name + strlen (name) - 6; discrim_end != name; 6488 discrim_end -= 1) 6489 { 6490 if (strncmp (discrim_end, "___XVN", 6) == 0) 6491 break; 6492 } 6493 if (discrim_end == name) 6494 return ""; 6495 6496 for (discrim_start = discrim_end; discrim_start != name + 3; 6497 discrim_start -= 1) 6498 { 6499 if (discrim_start == name + 1) 6500 return ""; 6501 if ((discrim_start > name + 3 6502 && strncmp (discrim_start - 3, "___", 3) == 0) 6503 || discrim_start[-1] == '.') 6504 break; 6505 } 6506 6507 GROW_VECT (result, result_len, discrim_end - discrim_start + 1); 6508 strncpy (result, discrim_start, discrim_end - discrim_start); 6509 result[discrim_end - discrim_start] = '\0'; 6510 return result; 6511 } 6512 6513 /* Scan STR for a subtype-encoded number, beginning at position K. 6514 Put the position of the character just past the number scanned in 6515 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. 6516 Return 1 if there was a valid number at the given position, and 0 6517 otherwise. A "subtype-encoded" number consists of the absolute value 6518 in decimal, followed by the letter 'm' to indicate a negative number. 6519 Assumes 0m does not occur. */ 6520 6521 int 6522 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k) 6523 { 6524 ULONGEST RU; 6525 6526 if (!isdigit (str[k])) 6527 return 0; 6528 6529 /* Do it the hard way so as not to make any assumption about 6530 the relationship of unsigned long (%lu scan format code) and 6531 LONGEST. */ 6532 RU = 0; 6533 while (isdigit (str[k])) 6534 { 6535 RU = RU * 10 + (str[k] - '0'); 6536 k += 1; 6537 } 6538 6539 if (str[k] == 'm') 6540 { 6541 if (R != NULL) 6542 *R = (-(LONGEST) (RU - 1)) - 1; 6543 k += 1; 6544 } 6545 else if (R != NULL) 6546 *R = (LONGEST) RU; 6547 6548 /* NOTE on the above: Technically, C does not say what the results of 6549 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive 6550 number representable as a LONGEST (although either would probably work 6551 in most implementations). When RU>0, the locution in the then branch 6552 above is always equivalent to the negative of RU. */ 6553 6554 if (new_k != NULL) 6555 *new_k = k; 6556 return 1; 6557 } 6558 6559 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), 6560 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is 6561 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ 6562 6563 int 6564 ada_in_variant (LONGEST val, struct type *type, int field_num) 6565 { 6566 const char *name = TYPE_FIELD_NAME (type, field_num); 6567 int p; 6568 6569 p = 0; 6570 while (1) 6571 { 6572 switch (name[p]) 6573 { 6574 case '\0': 6575 return 0; 6576 case 'S': 6577 { 6578 LONGEST W; 6579 6580 if (!ada_scan_number (name, p + 1, &W, &p)) 6581 return 0; 6582 if (val == W) 6583 return 1; 6584 break; 6585 } 6586 case 'R': 6587 { 6588 LONGEST L, U; 6589 6590 if (!ada_scan_number (name, p + 1, &L, &p) 6591 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p)) 6592 return 0; 6593 if (val >= L && val <= U) 6594 return 1; 6595 break; 6596 } 6597 case 'O': 6598 return 1; 6599 default: 6600 return 0; 6601 } 6602 } 6603 } 6604 6605 /* FIXME: Lots of redundancy below. Try to consolidate. */ 6606 6607 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type 6608 ARG_TYPE, extract and return the value of one of its (non-static) 6609 fields. FIELDNO says which field. Differs from value_primitive_field 6610 only in that it can handle packed values of arbitrary type. */ 6611 6612 static struct value * 6613 ada_value_primitive_field (struct value *arg1, int offset, int fieldno, 6614 struct type *arg_type) 6615 { 6616 struct type *type; 6617 6618 arg_type = ada_check_typedef (arg_type); 6619 type = TYPE_FIELD_TYPE (arg_type, fieldno); 6620 6621 /* Handle packed fields. */ 6622 6623 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) 6624 { 6625 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); 6626 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); 6627 6628 return ada_value_primitive_packed_val (arg1, value_contents (arg1), 6629 offset + bit_pos / 8, 6630 bit_pos % 8, bit_size, type); 6631 } 6632 else 6633 return value_primitive_field (arg1, offset, fieldno, arg_type); 6634 } 6635 6636 /* Find field with name NAME in object of type TYPE. If found, 6637 set the following for each argument that is non-null: 6638 - *FIELD_TYPE_P to the field's type; 6639 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within 6640 an object of that type; 6641 - *BIT_OFFSET_P to the bit offset modulo byte size of the field; 6642 - *BIT_SIZE_P to its size in bits if the field is packed, and 6643 0 otherwise; 6644 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible 6645 fields up to but not including the desired field, or by the total 6646 number of fields if not found. A NULL value of NAME never 6647 matches; the function just counts visible fields in this case. 6648 6649 Returns 1 if found, 0 otherwise. */ 6650 6651 static int 6652 find_struct_field (const char *name, struct type *type, int offset, 6653 struct type **field_type_p, 6654 int *byte_offset_p, int *bit_offset_p, int *bit_size_p, 6655 int *index_p) 6656 { 6657 int i; 6658 6659 type = ada_check_typedef (type); 6660 6661 if (field_type_p != NULL) 6662 *field_type_p = NULL; 6663 if (byte_offset_p != NULL) 6664 *byte_offset_p = 0; 6665 if (bit_offset_p != NULL) 6666 *bit_offset_p = 0; 6667 if (bit_size_p != NULL) 6668 *bit_size_p = 0; 6669 6670 for (i = 0; i < TYPE_NFIELDS (type); i += 1) 6671 { 6672 int bit_pos = TYPE_FIELD_BITPOS (type, i); 6673 int fld_offset = offset + bit_pos / 8; 6674 const char *t_field_name = TYPE_FIELD_NAME (type, i); 6675 6676 if (t_field_name == NULL) 6677 continue; 6678 6679 else if (name != NULL && field_name_match (t_field_name, name)) 6680 { 6681 int bit_size = TYPE_FIELD_BITSIZE (type, i); 6682 6683 if (field_type_p != NULL) 6684 *field_type_p = TYPE_FIELD_TYPE (type, i); 6685 if (byte_offset_p != NULL) 6686 *byte_offset_p = fld_offset; 6687 if (bit_offset_p != NULL) 6688 *bit_offset_p = bit_pos % 8; 6689 if (bit_size_p != NULL) 6690 *bit_size_p = bit_size; 6691 return 1; 6692 } 6693 else if (ada_is_wrapper_field (type, i)) 6694 { 6695 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset, 6696 field_type_p, byte_offset_p, bit_offset_p, 6697 bit_size_p, index_p)) 6698 return 1; 6699 } 6700 else if (ada_is_variant_part (type, i)) 6701 { 6702 /* PNH: Wait. Do we ever execute this section, or is ARG always of 6703 fixed type?? */ 6704 int j; 6705 struct type *field_type 6706 = ada_check_typedef (TYPE_FIELD_TYPE (type, i)); 6707 6708 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) 6709 { 6710 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j), 6711 fld_offset 6712 + TYPE_FIELD_BITPOS (field_type, j) / 8, 6713 field_type_p, byte_offset_p, 6714 bit_offset_p, bit_size_p, index_p)) 6715 return 1; 6716 } 6717 } 6718 else if (index_p != NULL) 6719 *index_p += 1; 6720 } 6721 return 0; 6722 } 6723 6724 /* Number of user-visible fields in record type TYPE. */ 6725 6726 static int 6727 num_visible_fields (struct type *type) 6728 { 6729 int n; 6730 6731 n = 0; 6732 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n); 6733 return n; 6734 } 6735 6736 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, 6737 and search in it assuming it has (class) type TYPE. 6738 If found, return value, else return NULL. 6739 6740 Searches recursively through wrapper fields (e.g., '_parent'). */ 6741 6742 static struct value * 6743 ada_search_struct_field (char *name, struct value *arg, int offset, 6744 struct type *type) 6745 { 6746 int i; 6747 6748 type = ada_check_typedef (type); 6749 for (i = 0; i < TYPE_NFIELDS (type); i += 1) 6750 { 6751 const char *t_field_name = TYPE_FIELD_NAME (type, i); 6752 6753 if (t_field_name == NULL) 6754 continue; 6755 6756 else if (field_name_match (t_field_name, name)) 6757 return ada_value_primitive_field (arg, offset, i, type); 6758 6759 else if (ada_is_wrapper_field (type, i)) 6760 { 6761 struct value *v = /* Do not let indent join lines here. */ 6762 ada_search_struct_field (name, arg, 6763 offset + TYPE_FIELD_BITPOS (type, i) / 8, 6764 TYPE_FIELD_TYPE (type, i)); 6765 6766 if (v != NULL) 6767 return v; 6768 } 6769 6770 else if (ada_is_variant_part (type, i)) 6771 { 6772 /* PNH: Do we ever get here? See find_struct_field. */ 6773 int j; 6774 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, 6775 i)); 6776 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; 6777 6778 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1) 6779 { 6780 struct value *v = ada_search_struct_field /* Force line 6781 break. */ 6782 (name, arg, 6783 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8, 6784 TYPE_FIELD_TYPE (field_type, j)); 6785 6786 if (v != NULL) 6787 return v; 6788 } 6789 } 6790 } 6791 return NULL; 6792 } 6793 6794 static struct value *ada_index_struct_field_1 (int *, struct value *, 6795 int, struct type *); 6796 6797 6798 /* Return field #INDEX in ARG, where the index is that returned by 6799 * find_struct_field through its INDEX_P argument. Adjust the address 6800 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE. 6801 * If found, return value, else return NULL. */ 6802 6803 static struct value * 6804 ada_index_struct_field (int index, struct value *arg, int offset, 6805 struct type *type) 6806 { 6807 return ada_index_struct_field_1 (&index, arg, offset, type); 6808 } 6809 6810 6811 /* Auxiliary function for ada_index_struct_field. Like 6812 * ada_index_struct_field, but takes index from *INDEX_P and modifies 6813 * *INDEX_P. */ 6814 6815 static struct value * 6816 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset, 6817 struct type *type) 6818 { 6819 int i; 6820 type = ada_check_typedef (type); 6821 6822 for (i = 0; i < TYPE_NFIELDS (type); i += 1) 6823 { 6824 if (TYPE_FIELD_NAME (type, i) == NULL) 6825 continue; 6826 else if (ada_is_wrapper_field (type, i)) 6827 { 6828 struct value *v = /* Do not let indent join lines here. */ 6829 ada_index_struct_field_1 (index_p, arg, 6830 offset + TYPE_FIELD_BITPOS (type, i) / 8, 6831 TYPE_FIELD_TYPE (type, i)); 6832 6833 if (v != NULL) 6834 return v; 6835 } 6836 6837 else if (ada_is_variant_part (type, i)) 6838 { 6839 /* PNH: Do we ever get here? See ada_search_struct_field, 6840 find_struct_field. */ 6841 error (_("Cannot assign this kind of variant record")); 6842 } 6843 else if (*index_p == 0) 6844 return ada_value_primitive_field (arg, offset, i, type); 6845 else 6846 *index_p -= 1; 6847 } 6848 return NULL; 6849 } 6850 6851 /* Given ARG, a value of type (pointer or reference to a)* 6852 structure/union, extract the component named NAME from the ultimate 6853 target structure/union and return it as a value with its 6854 appropriate type. 6855 6856 The routine searches for NAME among all members of the structure itself 6857 and (recursively) among all members of any wrapper members 6858 (e.g., '_parent'). 6859 6860 If NO_ERR, then simply return NULL in case of error, rather than 6861 calling error. */ 6862 6863 struct value * 6864 ada_value_struct_elt (struct value *arg, char *name, int no_err) 6865 { 6866 struct type *t, *t1; 6867 struct value *v; 6868 6869 v = NULL; 6870 t1 = t = ada_check_typedef (value_type (arg)); 6871 if (TYPE_CODE (t) == TYPE_CODE_REF) 6872 { 6873 t1 = TYPE_TARGET_TYPE (t); 6874 if (t1 == NULL) 6875 goto BadValue; 6876 t1 = ada_check_typedef (t1); 6877 if (TYPE_CODE (t1) == TYPE_CODE_PTR) 6878 { 6879 arg = coerce_ref (arg); 6880 t = t1; 6881 } 6882 } 6883 6884 while (TYPE_CODE (t) == TYPE_CODE_PTR) 6885 { 6886 t1 = TYPE_TARGET_TYPE (t); 6887 if (t1 == NULL) 6888 goto BadValue; 6889 t1 = ada_check_typedef (t1); 6890 if (TYPE_CODE (t1) == TYPE_CODE_PTR) 6891 { 6892 arg = value_ind (arg); 6893 t = t1; 6894 } 6895 else 6896 break; 6897 } 6898 6899 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION) 6900 goto BadValue; 6901 6902 if (t1 == t) 6903 v = ada_search_struct_field (name, arg, 0, t); 6904 else 6905 { 6906 int bit_offset, bit_size, byte_offset; 6907 struct type *field_type; 6908 CORE_ADDR address; 6909 6910 if (TYPE_CODE (t) == TYPE_CODE_PTR) 6911 address = value_address (ada_value_ind (arg)); 6912 else 6913 address = value_address (ada_coerce_ref (arg)); 6914 6915 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1); 6916 if (find_struct_field (name, t1, 0, 6917 &field_type, &byte_offset, &bit_offset, 6918 &bit_size, NULL)) 6919 { 6920 if (bit_size != 0) 6921 { 6922 if (TYPE_CODE (t) == TYPE_CODE_REF) 6923 arg = ada_coerce_ref (arg); 6924 else 6925 arg = ada_value_ind (arg); 6926 v = ada_value_primitive_packed_val (arg, NULL, byte_offset, 6927 bit_offset, bit_size, 6928 field_type); 6929 } 6930 else 6931 v = value_at_lazy (field_type, address + byte_offset); 6932 } 6933 } 6934 6935 if (v != NULL || no_err) 6936 return v; 6937 else 6938 error (_("There is no member named %s."), name); 6939 6940 BadValue: 6941 if (no_err) 6942 return NULL; 6943 else 6944 error (_("Attempt to extract a component of " 6945 "a value that is not a record.")); 6946 } 6947 6948 /* Given a type TYPE, look up the type of the component of type named NAME. 6949 If DISPP is non-null, add its byte displacement from the beginning of a 6950 structure (pointed to by a value) of type TYPE to *DISPP (does not 6951 work for packed fields). 6952 6953 Matches any field whose name has NAME as a prefix, possibly 6954 followed by "___". 6955 6956 TYPE can be either a struct or union. If REFOK, TYPE may also 6957 be a (pointer or reference)+ to a struct or union, and the 6958 ultimate target type will be searched. 6959 6960 Looks recursively into variant clauses and parent types. 6961 6962 If NOERR is nonzero, return NULL if NAME is not suitably defined or 6963 TYPE is not a type of the right kind. */ 6964 6965 static struct type * 6966 ada_lookup_struct_elt_type (struct type *type, char *name, int refok, 6967 int noerr, int *dispp) 6968 { 6969 int i; 6970 6971 if (name == NULL) 6972 goto BadName; 6973 6974 if (refok && type != NULL) 6975 while (1) 6976 { 6977 type = ada_check_typedef (type); 6978 if (TYPE_CODE (type) != TYPE_CODE_PTR 6979 && TYPE_CODE (type) != TYPE_CODE_REF) 6980 break; 6981 type = TYPE_TARGET_TYPE (type); 6982 } 6983 6984 if (type == NULL 6985 || (TYPE_CODE (type) != TYPE_CODE_STRUCT 6986 && TYPE_CODE (type) != TYPE_CODE_UNION)) 6987 { 6988 if (noerr) 6989 return NULL; 6990 else 6991 { 6992 target_terminal_ours (); 6993 gdb_flush (gdb_stdout); 6994 if (type == NULL) 6995 error (_("Type (null) is not a structure or union type")); 6996 else 6997 { 6998 /* XXX: type_sprint */ 6999 fprintf_unfiltered (gdb_stderr, _("Type ")); 7000 type_print (type, "", gdb_stderr, -1); 7001 error (_(" is not a structure or union type")); 7002 } 7003 } 7004 } 7005 7006 type = to_static_fixed_type (type); 7007 7008 for (i = 0; i < TYPE_NFIELDS (type); i += 1) 7009 { 7010 const char *t_field_name = TYPE_FIELD_NAME (type, i); 7011 struct type *t; 7012 int disp; 7013 7014 if (t_field_name == NULL) 7015 continue; 7016 7017 else if (field_name_match (t_field_name, name)) 7018 { 7019 if (dispp != NULL) 7020 *dispp += TYPE_FIELD_BITPOS (type, i) / 8; 7021 return ada_check_typedef (TYPE_FIELD_TYPE (type, i)); 7022 } 7023 7024 else if (ada_is_wrapper_field (type, i)) 7025 { 7026 disp = 0; 7027 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 7028 0, 1, &disp); 7029 if (t != NULL) 7030 { 7031 if (dispp != NULL) 7032 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; 7033 return t; 7034 } 7035 } 7036 7037 else if (ada_is_variant_part (type, i)) 7038 { 7039 int j; 7040 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type, 7041 i)); 7042 7043 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) 7044 { 7045 /* FIXME pnh 2008/01/26: We check for a field that is 7046 NOT wrapped in a struct, since the compiler sometimes 7047 generates these for unchecked variant types. Revisit 7048 if the compiler changes this practice. */ 7049 const char *v_field_name = TYPE_FIELD_NAME (field_type, j); 7050 disp = 0; 7051 if (v_field_name != NULL 7052 && field_name_match (v_field_name, name)) 7053 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j)); 7054 else 7055 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, 7056 j), 7057 name, 0, 1, &disp); 7058 7059 if (t != NULL) 7060 { 7061 if (dispp != NULL) 7062 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; 7063 return t; 7064 } 7065 } 7066 } 7067 7068 } 7069 7070 BadName: 7071 if (!noerr) 7072 { 7073 target_terminal_ours (); 7074 gdb_flush (gdb_stdout); 7075 if (name == NULL) 7076 { 7077 /* XXX: type_sprint */ 7078 fprintf_unfiltered (gdb_stderr, _("Type ")); 7079 type_print (type, "", gdb_stderr, -1); 7080 error (_(" has no component named <null>")); 7081 } 7082 else 7083 { 7084 /* XXX: type_sprint */ 7085 fprintf_unfiltered (gdb_stderr, _("Type ")); 7086 type_print (type, "", gdb_stderr, -1); 7087 error (_(" has no component named %s"), name); 7088 } 7089 } 7090 7091 return NULL; 7092 } 7093 7094 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), 7095 within a value of type OUTER_TYPE, return true iff VAR_TYPE 7096 represents an unchecked union (that is, the variant part of a 7097 record that is named in an Unchecked_Union pragma). */ 7098 7099 static int 7100 is_unchecked_variant (struct type *var_type, struct type *outer_type) 7101 { 7102 char *discrim_name = ada_variant_discrim_name (var_type); 7103 7104 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL) 7105 == NULL); 7106 } 7107 7108 7109 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union), 7110 within a value of type OUTER_TYPE that is stored in GDB at 7111 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, 7112 numbering from 0) is applicable. Returns -1 if none are. */ 7113 7114 int 7115 ada_which_variant_applies (struct type *var_type, struct type *outer_type, 7116 const gdb_byte *outer_valaddr) 7117 { 7118 int others_clause; 7119 int i; 7120 char *discrim_name = ada_variant_discrim_name (var_type); 7121 struct value *outer; 7122 struct value *discrim; 7123 LONGEST discrim_val; 7124 7125 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0); 7126 discrim = ada_value_struct_elt (outer, discrim_name, 1); 7127 if (discrim == NULL) 7128 return -1; 7129 discrim_val = value_as_long (discrim); 7130 7131 others_clause = -1; 7132 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) 7133 { 7134 if (ada_is_others_clause (var_type, i)) 7135 others_clause = i; 7136 else if (ada_in_variant (discrim_val, var_type, i)) 7137 return i; 7138 } 7139 7140 return others_clause; 7141 } 7142 7143 7144 7145 /* Dynamic-Sized Records */ 7146 7147 /* Strategy: The type ostensibly attached to a value with dynamic size 7148 (i.e., a size that is not statically recorded in the debugging 7149 data) does not accurately reflect the size or layout of the value. 7150 Our strategy is to convert these values to values with accurate, 7151 conventional types that are constructed on the fly. */ 7152 7153 /* There is a subtle and tricky problem here. In general, we cannot 7154 determine the size of dynamic records without its data. However, 7155 the 'struct value' data structure, which GDB uses to represent 7156 quantities in the inferior process (the target), requires the size 7157 of the type at the time of its allocation in order to reserve space 7158 for GDB's internal copy of the data. That's why the 7159 'to_fixed_xxx_type' routines take (target) addresses as parameters, 7160 rather than struct value*s. 7161 7162 However, GDB's internal history variables ($1, $2, etc.) are 7163 struct value*s containing internal copies of the data that are not, in 7164 general, the same as the data at their corresponding addresses in 7165 the target. Fortunately, the types we give to these values are all 7166 conventional, fixed-size types (as per the strategy described 7167 above), so that we don't usually have to perform the 7168 'to_fixed_xxx_type' conversions to look at their values. 7169 Unfortunately, there is one exception: if one of the internal 7170 history variables is an array whose elements are unconstrained 7171 records, then we will need to create distinct fixed types for each 7172 element selected. */ 7173 7174 /* The upshot of all of this is that many routines take a (type, host 7175 address, target address) triple as arguments to represent a value. 7176 The host address, if non-null, is supposed to contain an internal 7177 copy of the relevant data; otherwise, the program is to consult the 7178 target at the target address. */ 7179 7180 /* Assuming that VAL0 represents a pointer value, the result of 7181 dereferencing it. Differs from value_ind in its treatment of 7182 dynamic-sized types. */ 7183 7184 struct value * 7185 ada_value_ind (struct value *val0) 7186 { 7187 struct value *val = value_ind (val0); 7188 7189 if (ada_is_tagged_type (value_type (val), 0)) 7190 val = ada_tag_value_at_base_address (val); 7191 7192 return ada_to_fixed_value (val); 7193 } 7194 7195 /* The value resulting from dereferencing any "reference to" 7196 qualifiers on VAL0. */ 7197 7198 static struct value * 7199 ada_coerce_ref (struct value *val0) 7200 { 7201 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF) 7202 { 7203 struct value *val = val0; 7204 7205 val = coerce_ref (val); 7206 7207 if (ada_is_tagged_type (value_type (val), 0)) 7208 val = ada_tag_value_at_base_address (val); 7209 7210 return ada_to_fixed_value (val); 7211 } 7212 else 7213 return val0; 7214 } 7215 7216 /* Return OFF rounded upward if necessary to a multiple of 7217 ALIGNMENT (a power of 2). */ 7218 7219 static unsigned int 7220 align_value (unsigned int off, unsigned int alignment) 7221 { 7222 return (off + alignment - 1) & ~(alignment - 1); 7223 } 7224 7225 /* Return the bit alignment required for field #F of template type TYPE. */ 7226 7227 static unsigned int 7228 field_alignment (struct type *type, int f) 7229 { 7230 const char *name = TYPE_FIELD_NAME (type, f); 7231 int len; 7232 int align_offset; 7233 7234 /* The field name should never be null, unless the debugging information 7235 is somehow malformed. In this case, we assume the field does not 7236 require any alignment. */ 7237 if (name == NULL) 7238 return 1; 7239 7240 len = strlen (name); 7241 7242 if (!isdigit (name[len - 1])) 7243 return 1; 7244 7245 if (isdigit (name[len - 2])) 7246 align_offset = len - 2; 7247 else 7248 align_offset = len - 1; 7249 7250 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0) 7251 return TARGET_CHAR_BIT; 7252 7253 return atoi (name + align_offset) * TARGET_CHAR_BIT; 7254 } 7255 7256 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */ 7257 7258 static struct symbol * 7259 ada_find_any_type_symbol (const char *name) 7260 { 7261 struct symbol *sym; 7262 7263 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN); 7264 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) 7265 return sym; 7266 7267 sym = standard_lookup (name, NULL, STRUCT_DOMAIN); 7268 return sym; 7269 } 7270 7271 /* Find a type named NAME. Ignores ambiguity. This routine will look 7272 solely for types defined by debug info, it will not search the GDB 7273 primitive types. */ 7274 7275 static struct type * 7276 ada_find_any_type (const char *name) 7277 { 7278 struct symbol *sym = ada_find_any_type_symbol (name); 7279 7280 if (sym != NULL) 7281 return SYMBOL_TYPE (sym); 7282 7283 return NULL; 7284 } 7285 7286 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol 7287 associated with NAME_SYM's name. NAME_SYM may itself be a renaming 7288 symbol, in which case it is returned. Otherwise, this looks for 7289 symbols whose name is that of NAME_SYM suffixed with "___XR". 7290 Return symbol if found, and NULL otherwise. */ 7291 7292 struct symbol * 7293 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block) 7294 { 7295 const char *name = SYMBOL_LINKAGE_NAME (name_sym); 7296 struct symbol *sym; 7297 7298 if (strstr (name, "___XR") != NULL) 7299 return name_sym; 7300 7301 sym = find_old_style_renaming_symbol (name, block); 7302 7303 if (sym != NULL) 7304 return sym; 7305 7306 /* Not right yet. FIXME pnh 7/20/2007. */ 7307 sym = ada_find_any_type_symbol (name); 7308 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL) 7309 return sym; 7310 else 7311 return NULL; 7312 } 7313 7314 static struct symbol * 7315 find_old_style_renaming_symbol (const char *name, const struct block *block) 7316 { 7317 const struct symbol *function_sym = block_linkage_function (block); 7318 char *rename; 7319 7320 if (function_sym != NULL) 7321 { 7322 /* If the symbol is defined inside a function, NAME is not fully 7323 qualified. This means we need to prepend the function name 7324 as well as adding the ``___XR'' suffix to build the name of 7325 the associated renaming symbol. */ 7326 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym); 7327 /* Function names sometimes contain suffixes used 7328 for instance to qualify nested subprograms. When building 7329 the XR type name, we need to make sure that this suffix is 7330 not included. So do not include any suffix in the function 7331 name length below. */ 7332 int function_name_len = ada_name_prefix_len (function_name); 7333 const int rename_len = function_name_len + 2 /* "__" */ 7334 + strlen (name) + 6 /* "___XR\0" */ ; 7335 7336 /* Strip the suffix if necessary. */ 7337 ada_remove_trailing_digits (function_name, &function_name_len); 7338 ada_remove_po_subprogram_suffix (function_name, &function_name_len); 7339 ada_remove_Xbn_suffix (function_name, &function_name_len); 7340 7341 /* Library-level functions are a special case, as GNAT adds 7342 a ``_ada_'' prefix to the function name to avoid namespace 7343 pollution. However, the renaming symbols themselves do not 7344 have this prefix, so we need to skip this prefix if present. */ 7345 if (function_name_len > 5 /* "_ada_" */ 7346 && strstr (function_name, "_ada_") == function_name) 7347 { 7348 function_name += 5; 7349 function_name_len -= 5; 7350 } 7351 7352 rename = (char *) alloca (rename_len * sizeof (char)); 7353 strncpy (rename, function_name, function_name_len); 7354 xsnprintf (rename + function_name_len, rename_len - function_name_len, 7355 "__%s___XR", name); 7356 } 7357 else 7358 { 7359 const int rename_len = strlen (name) + 6; 7360 7361 rename = (char *) alloca (rename_len * sizeof (char)); 7362 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name); 7363 } 7364 7365 return ada_find_any_type_symbol (rename); 7366 } 7367 7368 /* Because of GNAT encoding conventions, several GDB symbols may match a 7369 given type name. If the type denoted by TYPE0 is to be preferred to 7370 that of TYPE1 for purposes of type printing, return non-zero; 7371 otherwise return 0. */ 7372 7373 int 7374 ada_prefer_type (struct type *type0, struct type *type1) 7375 { 7376 if (type1 == NULL) 7377 return 1; 7378 else if (type0 == NULL) 7379 return 0; 7380 else if (TYPE_CODE (type1) == TYPE_CODE_VOID) 7381 return 1; 7382 else if (TYPE_CODE (type0) == TYPE_CODE_VOID) 7383 return 0; 7384 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL) 7385 return 1; 7386 else if (ada_is_constrained_packed_array_type (type0)) 7387 return 1; 7388 else if (ada_is_array_descriptor_type (type0) 7389 && !ada_is_array_descriptor_type (type1)) 7390 return 1; 7391 else 7392 { 7393 const char *type0_name = type_name_no_tag (type0); 7394 const char *type1_name = type_name_no_tag (type1); 7395 7396 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL 7397 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL)) 7398 return 1; 7399 } 7400 return 0; 7401 } 7402 7403 /* The name of TYPE, which is either its TYPE_NAME, or, if that is 7404 null, its TYPE_TAG_NAME. Null if TYPE is null. */ 7405 7406 const char * 7407 ada_type_name (struct type *type) 7408 { 7409 if (type == NULL) 7410 return NULL; 7411 else if (TYPE_NAME (type) != NULL) 7412 return TYPE_NAME (type); 7413 else 7414 return TYPE_TAG_NAME (type); 7415 } 7416 7417 /* Search the list of "descriptive" types associated to TYPE for a type 7418 whose name is NAME. */ 7419 7420 static struct type * 7421 find_parallel_type_by_descriptive_type (struct type *type, const char *name) 7422 { 7423 struct type *result; 7424 7425 /* If there no descriptive-type info, then there is no parallel type 7426 to be found. */ 7427 if (!HAVE_GNAT_AUX_INFO (type)) 7428 return NULL; 7429 7430 result = TYPE_DESCRIPTIVE_TYPE (type); 7431 while (result != NULL) 7432 { 7433 const char *result_name = ada_type_name (result); 7434 7435 if (result_name == NULL) 7436 { 7437 warning (_("unexpected null name on descriptive type")); 7438 return NULL; 7439 } 7440 7441 /* If the names match, stop. */ 7442 if (strcmp (result_name, name) == 0) 7443 break; 7444 7445 /* Otherwise, look at the next item on the list, if any. */ 7446 if (HAVE_GNAT_AUX_INFO (result)) 7447 result = TYPE_DESCRIPTIVE_TYPE (result); 7448 else 7449 result = NULL; 7450 } 7451 7452 /* If we didn't find a match, see whether this is a packed array. With 7453 older compilers, the descriptive type information is either absent or 7454 irrelevant when it comes to packed arrays so the above lookup fails. 7455 Fall back to using a parallel lookup by name in this case. */ 7456 if (result == NULL && ada_is_constrained_packed_array_type (type)) 7457 return ada_find_any_type (name); 7458 7459 return result; 7460 } 7461 7462 /* Find a parallel type to TYPE with the specified NAME, using the 7463 descriptive type taken from the debugging information, if available, 7464 and otherwise using the (slower) name-based method. */ 7465 7466 static struct type * 7467 ada_find_parallel_type_with_name (struct type *type, const char *name) 7468 { 7469 struct type *result = NULL; 7470 7471 if (HAVE_GNAT_AUX_INFO (type)) 7472 result = find_parallel_type_by_descriptive_type (type, name); 7473 else 7474 result = ada_find_any_type (name); 7475 7476 return result; 7477 } 7478 7479 /* Same as above, but specify the name of the parallel type by appending 7480 SUFFIX to the name of TYPE. */ 7481 7482 struct type * 7483 ada_find_parallel_type (struct type *type, const char *suffix) 7484 { 7485 char *name; 7486 const char *typename = ada_type_name (type); 7487 int len; 7488 7489 if (typename == NULL) 7490 return NULL; 7491 7492 len = strlen (typename); 7493 7494 name = (char *) alloca (len + strlen (suffix) + 1); 7495 7496 strcpy (name, typename); 7497 strcpy (name + len, suffix); 7498 7499 return ada_find_parallel_type_with_name (type, name); 7500 } 7501 7502 /* If TYPE is a variable-size record type, return the corresponding template 7503 type describing its fields. Otherwise, return NULL. */ 7504 7505 static struct type * 7506 dynamic_template_type (struct type *type) 7507 { 7508 type = ada_check_typedef (type); 7509 7510 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT 7511 || ada_type_name (type) == NULL) 7512 return NULL; 7513 else 7514 { 7515 int len = strlen (ada_type_name (type)); 7516 7517 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0) 7518 return type; 7519 else 7520 return ada_find_parallel_type (type, "___XVE"); 7521 } 7522 } 7523 7524 /* Assuming that TEMPL_TYPE is a union or struct type, returns 7525 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ 7526 7527 static int 7528 is_dynamic_field (struct type *templ_type, int field_num) 7529 { 7530 const char *name = TYPE_FIELD_NAME (templ_type, field_num); 7531 7532 return name != NULL 7533 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR 7534 && strstr (name, "___XVL") != NULL; 7535 } 7536 7537 /* The index of the variant field of TYPE, or -1 if TYPE does not 7538 represent a variant record type. */ 7539 7540 static int 7541 variant_field_index (struct type *type) 7542 { 7543 int f; 7544 7545 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) 7546 return -1; 7547 7548 for (f = 0; f < TYPE_NFIELDS (type); f += 1) 7549 { 7550 if (ada_is_variant_part (type, f)) 7551 return f; 7552 } 7553 return -1; 7554 } 7555 7556 /* A record type with no fields. */ 7557 7558 static struct type * 7559 empty_record (struct type *template) 7560 { 7561 struct type *type = alloc_type_copy (template); 7562 7563 TYPE_CODE (type) = TYPE_CODE_STRUCT; 7564 TYPE_NFIELDS (type) = 0; 7565 TYPE_FIELDS (type) = NULL; 7566 INIT_CPLUS_SPECIFIC (type); 7567 TYPE_NAME (type) = "<empty>"; 7568 TYPE_TAG_NAME (type) = NULL; 7569 TYPE_LENGTH (type) = 0; 7570 return type; 7571 } 7572 7573 /* An ordinary record type (with fixed-length fields) that describes 7574 the value of type TYPE at VALADDR or ADDRESS (see comments at 7575 the beginning of this section) VAL according to GNAT conventions. 7576 DVAL0 should describe the (portion of a) record that contains any 7577 necessary discriminants. It should be NULL if value_type (VAL) is 7578 an outer-level type (i.e., as opposed to a branch of a variant.) A 7579 variant field (unless unchecked) is replaced by a particular branch 7580 of the variant. 7581 7582 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or 7583 length are not statically known are discarded. As a consequence, 7584 VALADDR, ADDRESS and DVAL0 are ignored. 7585 7586 NOTE: Limitations: For now, we assume that dynamic fields and 7587 variants occupy whole numbers of bytes. However, they need not be 7588 byte-aligned. */ 7589 7590 struct type * 7591 ada_template_to_fixed_record_type_1 (struct type *type, 7592 const gdb_byte *valaddr, 7593 CORE_ADDR address, struct value *dval0, 7594 int keep_dynamic_fields) 7595 { 7596 struct value *mark = value_mark (); 7597 struct value *dval; 7598 struct type *rtype; 7599 int nfields, bit_len; 7600 int variant_field; 7601 long off; 7602 int fld_bit_len; 7603 int f; 7604 7605 /* Compute the number of fields in this record type that are going 7606 to be processed: unless keep_dynamic_fields, this includes only 7607 fields whose position and length are static will be processed. */ 7608 if (keep_dynamic_fields) 7609 nfields = TYPE_NFIELDS (type); 7610 else 7611 { 7612 nfields = 0; 7613 while (nfields < TYPE_NFIELDS (type) 7614 && !ada_is_variant_part (type, nfields) 7615 && !is_dynamic_field (type, nfields)) 7616 nfields++; 7617 } 7618 7619 rtype = alloc_type_copy (type); 7620 TYPE_CODE (rtype) = TYPE_CODE_STRUCT; 7621 INIT_CPLUS_SPECIFIC (rtype); 7622 TYPE_NFIELDS (rtype) = nfields; 7623 TYPE_FIELDS (rtype) = (struct field *) 7624 TYPE_ALLOC (rtype, nfields * sizeof (struct field)); 7625 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); 7626 TYPE_NAME (rtype) = ada_type_name (type); 7627 TYPE_TAG_NAME (rtype) = NULL; 7628 TYPE_FIXED_INSTANCE (rtype) = 1; 7629 7630 off = 0; 7631 bit_len = 0; 7632 variant_field = -1; 7633 7634 for (f = 0; f < nfields; f += 1) 7635 { 7636 off = align_value (off, field_alignment (type, f)) 7637 + TYPE_FIELD_BITPOS (type, f); 7638 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off); 7639 TYPE_FIELD_BITSIZE (rtype, f) = 0; 7640 7641 if (ada_is_variant_part (type, f)) 7642 { 7643 variant_field = f; 7644 fld_bit_len = 0; 7645 } 7646 else if (is_dynamic_field (type, f)) 7647 { 7648 const gdb_byte *field_valaddr = valaddr; 7649 CORE_ADDR field_address = address; 7650 struct type *field_type = 7651 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f)); 7652 7653 if (dval0 == NULL) 7654 { 7655 /* rtype's length is computed based on the run-time 7656 value of discriminants. If the discriminants are not 7657 initialized, the type size may be completely bogus and 7658 GDB may fail to allocate a value for it. So check the 7659 size first before creating the value. */ 7660 check_size (rtype); 7661 dval = value_from_contents_and_address (rtype, valaddr, address); 7662 } 7663 else 7664 dval = dval0; 7665 7666 /* If the type referenced by this field is an aligner type, we need 7667 to unwrap that aligner type, because its size might not be set. 7668 Keeping the aligner type would cause us to compute the wrong 7669 size for this field, impacting the offset of the all the fields 7670 that follow this one. */ 7671 if (ada_is_aligner_type (field_type)) 7672 { 7673 long field_offset = TYPE_FIELD_BITPOS (field_type, f); 7674 7675 field_valaddr = cond_offset_host (field_valaddr, field_offset); 7676 field_address = cond_offset_target (field_address, field_offset); 7677 field_type = ada_aligned_type (field_type); 7678 } 7679 7680 field_valaddr = cond_offset_host (field_valaddr, 7681 off / TARGET_CHAR_BIT); 7682 field_address = cond_offset_target (field_address, 7683 off / TARGET_CHAR_BIT); 7684 7685 /* Get the fixed type of the field. Note that, in this case, 7686 we do not want to get the real type out of the tag: if 7687 the current field is the parent part of a tagged record, 7688 we will get the tag of the object. Clearly wrong: the real 7689 type of the parent is not the real type of the child. We 7690 would end up in an infinite loop. */ 7691 field_type = ada_get_base_type (field_type); 7692 field_type = ada_to_fixed_type (field_type, field_valaddr, 7693 field_address, dval, 0); 7694 /* If the field size is already larger than the maximum 7695 object size, then the record itself will necessarily 7696 be larger than the maximum object size. We need to make 7697 this check now, because the size might be so ridiculously 7698 large (due to an uninitialized variable in the inferior) 7699 that it would cause an overflow when adding it to the 7700 record size. */ 7701 check_size (field_type); 7702 7703 TYPE_FIELD_TYPE (rtype, f) = field_type; 7704 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); 7705 /* The multiplication can potentially overflow. But because 7706 the field length has been size-checked just above, and 7707 assuming that the maximum size is a reasonable value, 7708 an overflow should not happen in practice. So rather than 7709 adding overflow recovery code to this already complex code, 7710 we just assume that it's not going to happen. */ 7711 fld_bit_len = 7712 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; 7713 } 7714 else 7715 { 7716 /* Note: If this field's type is a typedef, it is important 7717 to preserve the typedef layer. 7718 7719 Otherwise, we might be transforming a typedef to a fat 7720 pointer (encoding a pointer to an unconstrained array), 7721 into a basic fat pointer (encoding an unconstrained 7722 array). As both types are implemented using the same 7723 structure, the typedef is the only clue which allows us 7724 to distinguish between the two options. Stripping it 7725 would prevent us from printing this field appropriately. */ 7726 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); 7727 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); 7728 if (TYPE_FIELD_BITSIZE (type, f) > 0) 7729 fld_bit_len = 7730 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); 7731 else 7732 { 7733 struct type *field_type = TYPE_FIELD_TYPE (type, f); 7734 7735 /* We need to be careful of typedefs when computing 7736 the length of our field. If this is a typedef, 7737 get the length of the target type, not the length 7738 of the typedef. */ 7739 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF) 7740 field_type = ada_typedef_target_type (field_type); 7741 7742 fld_bit_len = 7743 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT; 7744 } 7745 } 7746 if (off + fld_bit_len > bit_len) 7747 bit_len = off + fld_bit_len; 7748 off += fld_bit_len; 7749 TYPE_LENGTH (rtype) = 7750 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; 7751 } 7752 7753 /* We handle the variant part, if any, at the end because of certain 7754 odd cases in which it is re-ordered so as NOT to be the last field of 7755 the record. This can happen in the presence of representation 7756 clauses. */ 7757 if (variant_field >= 0) 7758 { 7759 struct type *branch_type; 7760 7761 off = TYPE_FIELD_BITPOS (rtype, variant_field); 7762 7763 if (dval0 == NULL) 7764 dval = value_from_contents_and_address (rtype, valaddr, address); 7765 else 7766 dval = dval0; 7767 7768 branch_type = 7769 to_fixed_variant_branch_type 7770 (TYPE_FIELD_TYPE (type, variant_field), 7771 cond_offset_host (valaddr, off / TARGET_CHAR_BIT), 7772 cond_offset_target (address, off / TARGET_CHAR_BIT), dval); 7773 if (branch_type == NULL) 7774 { 7775 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1) 7776 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; 7777 TYPE_NFIELDS (rtype) -= 1; 7778 } 7779 else 7780 { 7781 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; 7782 TYPE_FIELD_NAME (rtype, variant_field) = "S"; 7783 fld_bit_len = 7784 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) * 7785 TARGET_CHAR_BIT; 7786 if (off + fld_bit_len > bit_len) 7787 bit_len = off + fld_bit_len; 7788 TYPE_LENGTH (rtype) = 7789 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT; 7790 } 7791 } 7792 7793 /* According to exp_dbug.ads, the size of TYPE for variable-size records 7794 should contain the alignment of that record, which should be a strictly 7795 positive value. If null or negative, then something is wrong, most 7796 probably in the debug info. In that case, we don't round up the size 7797 of the resulting type. If this record is not part of another structure, 7798 the current RTYPE length might be good enough for our purposes. */ 7799 if (TYPE_LENGTH (type) <= 0) 7800 { 7801 if (TYPE_NAME (rtype)) 7802 warning (_("Invalid type size for `%s' detected: %d."), 7803 TYPE_NAME (rtype), TYPE_LENGTH (type)); 7804 else 7805 warning (_("Invalid type size for <unnamed> detected: %d."), 7806 TYPE_LENGTH (type)); 7807 } 7808 else 7809 { 7810 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), 7811 TYPE_LENGTH (type)); 7812 } 7813 7814 value_free_to_mark (mark); 7815 if (TYPE_LENGTH (rtype) > varsize_limit) 7816 error (_("record type with dynamic size is larger than varsize-limit")); 7817 return rtype; 7818 } 7819 7820 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS 7821 of 1. */ 7822 7823 static struct type * 7824 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr, 7825 CORE_ADDR address, struct value *dval0) 7826 { 7827 return ada_template_to_fixed_record_type_1 (type, valaddr, 7828 address, dval0, 1); 7829 } 7830 7831 /* An ordinary record type in which ___XVL-convention fields and 7832 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with 7833 static approximations, containing all possible fields. Uses 7834 no runtime values. Useless for use in values, but that's OK, 7835 since the results are used only for type determinations. Works on both 7836 structs and unions. Representation note: to save space, we memorize 7837 the result of this function in the TYPE_TARGET_TYPE of the 7838 template type. */ 7839 7840 static struct type * 7841 template_to_static_fixed_type (struct type *type0) 7842 { 7843 struct type *type; 7844 int nfields; 7845 int f; 7846 7847 if (TYPE_TARGET_TYPE (type0) != NULL) 7848 return TYPE_TARGET_TYPE (type0); 7849 7850 nfields = TYPE_NFIELDS (type0); 7851 type = type0; 7852 7853 for (f = 0; f < nfields; f += 1) 7854 { 7855 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f)); 7856 struct type *new_type; 7857 7858 if (is_dynamic_field (type0, f)) 7859 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type)); 7860 else 7861 new_type = static_unwrap_type (field_type); 7862 if (type == type0 && new_type != field_type) 7863 { 7864 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0); 7865 TYPE_CODE (type) = TYPE_CODE (type0); 7866 INIT_CPLUS_SPECIFIC (type); 7867 TYPE_NFIELDS (type) = nfields; 7868 TYPE_FIELDS (type) = (struct field *) 7869 TYPE_ALLOC (type, nfields * sizeof (struct field)); 7870 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0), 7871 sizeof (struct field) * nfields); 7872 TYPE_NAME (type) = ada_type_name (type0); 7873 TYPE_TAG_NAME (type) = NULL; 7874 TYPE_FIXED_INSTANCE (type) = 1; 7875 TYPE_LENGTH (type) = 0; 7876 } 7877 TYPE_FIELD_TYPE (type, f) = new_type; 7878 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f); 7879 } 7880 return type; 7881 } 7882 7883 /* Given an object of type TYPE whose contents are at VALADDR and 7884 whose address in memory is ADDRESS, returns a revision of TYPE, 7885 which should be a non-dynamic-sized record, in which the variant 7886 part, if any, is replaced with the appropriate branch. Looks 7887 for discriminant values in DVAL0, which can be NULL if the record 7888 contains the necessary discriminant values. */ 7889 7890 static struct type * 7891 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr, 7892 CORE_ADDR address, struct value *dval0) 7893 { 7894 struct value *mark = value_mark (); 7895 struct value *dval; 7896 struct type *rtype; 7897 struct type *branch_type; 7898 int nfields = TYPE_NFIELDS (type); 7899 int variant_field = variant_field_index (type); 7900 7901 if (variant_field == -1) 7902 return type; 7903 7904 if (dval0 == NULL) 7905 dval = value_from_contents_and_address (type, valaddr, address); 7906 else 7907 dval = dval0; 7908 7909 rtype = alloc_type_copy (type); 7910 TYPE_CODE (rtype) = TYPE_CODE_STRUCT; 7911 INIT_CPLUS_SPECIFIC (rtype); 7912 TYPE_NFIELDS (rtype) = nfields; 7913 TYPE_FIELDS (rtype) = 7914 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); 7915 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), 7916 sizeof (struct field) * nfields); 7917 TYPE_NAME (rtype) = ada_type_name (type); 7918 TYPE_TAG_NAME (rtype) = NULL; 7919 TYPE_FIXED_INSTANCE (rtype) = 1; 7920 TYPE_LENGTH (rtype) = TYPE_LENGTH (type); 7921 7922 branch_type = to_fixed_variant_branch_type 7923 (TYPE_FIELD_TYPE (type, variant_field), 7924 cond_offset_host (valaddr, 7925 TYPE_FIELD_BITPOS (type, variant_field) 7926 / TARGET_CHAR_BIT), 7927 cond_offset_target (address, 7928 TYPE_FIELD_BITPOS (type, variant_field) 7929 / TARGET_CHAR_BIT), dval); 7930 if (branch_type == NULL) 7931 { 7932 int f; 7933 7934 for (f = variant_field + 1; f < nfields; f += 1) 7935 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f]; 7936 TYPE_NFIELDS (rtype) -= 1; 7937 } 7938 else 7939 { 7940 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type; 7941 TYPE_FIELD_NAME (rtype, variant_field) = "S"; 7942 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0; 7943 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); 7944 } 7945 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field)); 7946 7947 value_free_to_mark (mark); 7948 return rtype; 7949 } 7950 7951 /* An ordinary record type (with fixed-length fields) that describes 7952 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at 7953 beginning of this section]. Any necessary discriminants' values 7954 should be in DVAL, a record value; it may be NULL if the object 7955 at ADDR itself contains any necessary discriminant values. 7956 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant 7957 values from the record are needed. Except in the case that DVAL, 7958 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless 7959 unchecked) is replaced by a particular branch of the variant. 7960 7961 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0 7962 is questionable and may be removed. It can arise during the 7963 processing of an unconstrained-array-of-record type where all the 7964 variant branches have exactly the same size. This is because in 7965 such cases, the compiler does not bother to use the XVS convention 7966 when encoding the record. I am currently dubious of this 7967 shortcut and suspect the compiler should be altered. FIXME. */ 7968 7969 static struct type * 7970 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr, 7971 CORE_ADDR address, struct value *dval) 7972 { 7973 struct type *templ_type; 7974 7975 if (TYPE_FIXED_INSTANCE (type0)) 7976 return type0; 7977 7978 templ_type = dynamic_template_type (type0); 7979 7980 if (templ_type != NULL) 7981 return template_to_fixed_record_type (templ_type, valaddr, address, dval); 7982 else if (variant_field_index (type0) >= 0) 7983 { 7984 if (dval == NULL && valaddr == NULL && address == 0) 7985 return type0; 7986 return to_record_with_fixed_variant_part (type0, valaddr, address, 7987 dval); 7988 } 7989 else 7990 { 7991 TYPE_FIXED_INSTANCE (type0) = 1; 7992 return type0; 7993 } 7994 7995 } 7996 7997 /* An ordinary record type (with fixed-length fields) that describes 7998 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a 7999 union type. Any necessary discriminants' values should be in DVAL, 8000 a record value. That is, this routine selects the appropriate 8001 branch of the union at ADDR according to the discriminant value 8002 indicated in the union's type name. Returns VAR_TYPE0 itself if 8003 it represents a variant subject to a pragma Unchecked_Union. */ 8004 8005 static struct type * 8006 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr, 8007 CORE_ADDR address, struct value *dval) 8008 { 8009 int which; 8010 struct type *templ_type; 8011 struct type *var_type; 8012 8013 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) 8014 var_type = TYPE_TARGET_TYPE (var_type0); 8015 else 8016 var_type = var_type0; 8017 8018 templ_type = ada_find_parallel_type (var_type, "___XVU"); 8019 8020 if (templ_type != NULL) 8021 var_type = templ_type; 8022 8023 if (is_unchecked_variant (var_type, value_type (dval))) 8024 return var_type0; 8025 which = 8026 ada_which_variant_applies (var_type, 8027 value_type (dval), value_contents (dval)); 8028 8029 if (which < 0) 8030 return empty_record (var_type); 8031 else if (is_dynamic_field (var_type, which)) 8032 return to_fixed_record_type 8033 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), 8034 valaddr, address, dval); 8035 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0) 8036 return 8037 to_fixed_record_type 8038 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); 8039 else 8040 return TYPE_FIELD_TYPE (var_type, which); 8041 } 8042 8043 /* Assuming that TYPE0 is an array type describing the type of a value 8044 at ADDR, and that DVAL describes a record containing any 8045 discriminants used in TYPE0, returns a type for the value that 8046 contains no dynamic components (that is, no components whose sizes 8047 are determined by run-time quantities). Unless IGNORE_TOO_BIG is 8048 true, gives an error message if the resulting type's size is over 8049 varsize_limit. */ 8050 8051 static struct type * 8052 to_fixed_array_type (struct type *type0, struct value *dval, 8053 int ignore_too_big) 8054 { 8055 struct type *index_type_desc; 8056 struct type *result; 8057 int constrained_packed_array_p; 8058 8059 type0 = ada_check_typedef (type0); 8060 if (TYPE_FIXED_INSTANCE (type0)) 8061 return type0; 8062 8063 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0); 8064 if (constrained_packed_array_p) 8065 type0 = decode_constrained_packed_array_type (type0); 8066 8067 index_type_desc = ada_find_parallel_type (type0, "___XA"); 8068 ada_fixup_array_indexes_type (index_type_desc); 8069 if (index_type_desc == NULL) 8070 { 8071 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0)); 8072 8073 /* NOTE: elt_type---the fixed version of elt_type0---should never 8074 depend on the contents of the array in properly constructed 8075 debugging data. */ 8076 /* Create a fixed version of the array element type. 8077 We're not providing the address of an element here, 8078 and thus the actual object value cannot be inspected to do 8079 the conversion. This should not be a problem, since arrays of 8080 unconstrained objects are not allowed. In particular, all 8081 the elements of an array of a tagged type should all be of 8082 the same type specified in the debugging info. No need to 8083 consult the object tag. */ 8084 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1); 8085 8086 /* Make sure we always create a new array type when dealing with 8087 packed array types, since we're going to fix-up the array 8088 type length and element bitsize a little further down. */ 8089 if (elt_type0 == elt_type && !constrained_packed_array_p) 8090 result = type0; 8091 else 8092 result = create_array_type (alloc_type_copy (type0), 8093 elt_type, TYPE_INDEX_TYPE (type0)); 8094 } 8095 else 8096 { 8097 int i; 8098 struct type *elt_type0; 8099 8100 elt_type0 = type0; 8101 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) 8102 elt_type0 = TYPE_TARGET_TYPE (elt_type0); 8103 8104 /* NOTE: result---the fixed version of elt_type0---should never 8105 depend on the contents of the array in properly constructed 8106 debugging data. */ 8107 /* Create a fixed version of the array element type. 8108 We're not providing the address of an element here, 8109 and thus the actual object value cannot be inspected to do 8110 the conversion. This should not be a problem, since arrays of 8111 unconstrained objects are not allowed. In particular, all 8112 the elements of an array of a tagged type should all be of 8113 the same type specified in the debugging info. No need to 8114 consult the object tag. */ 8115 result = 8116 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1); 8117 8118 elt_type0 = type0; 8119 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) 8120 { 8121 struct type *range_type = 8122 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval); 8123 8124 result = create_array_type (alloc_type_copy (elt_type0), 8125 result, range_type); 8126 elt_type0 = TYPE_TARGET_TYPE (elt_type0); 8127 } 8128 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit) 8129 error (_("array type with dynamic size is larger than varsize-limit")); 8130 } 8131 8132 /* We want to preserve the type name. This can be useful when 8133 trying to get the type name of a value that has already been 8134 printed (for instance, if the user did "print VAR; whatis $". */ 8135 TYPE_NAME (result) = TYPE_NAME (type0); 8136 8137 if (constrained_packed_array_p) 8138 { 8139 /* So far, the resulting type has been created as if the original 8140 type was a regular (non-packed) array type. As a result, the 8141 bitsize of the array elements needs to be set again, and the array 8142 length needs to be recomputed based on that bitsize. */ 8143 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result)); 8144 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0); 8145 8146 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0); 8147 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT; 8148 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize) 8149 TYPE_LENGTH (result)++; 8150 } 8151 8152 TYPE_FIXED_INSTANCE (result) = 1; 8153 return result; 8154 } 8155 8156 8157 /* A standard type (containing no dynamically sized components) 8158 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) 8159 DVAL describes a record containing any discriminants used in TYPE0, 8160 and may be NULL if there are none, or if the object of type TYPE at 8161 ADDRESS or in VALADDR contains these discriminants. 8162 8163 If CHECK_TAG is not null, in the case of tagged types, this function 8164 attempts to locate the object's tag and use it to compute the actual 8165 type. However, when ADDRESS is null, we cannot use it to determine the 8166 location of the tag, and therefore compute the tagged type's actual type. 8167 So we return the tagged type without consulting the tag. */ 8168 8169 static struct type * 8170 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr, 8171 CORE_ADDR address, struct value *dval, int check_tag) 8172 { 8173 type = ada_check_typedef (type); 8174 switch (TYPE_CODE (type)) 8175 { 8176 default: 8177 return type; 8178 case TYPE_CODE_STRUCT: 8179 { 8180 struct type *static_type = to_static_fixed_type (type); 8181 struct type *fixed_record_type = 8182 to_fixed_record_type (type, valaddr, address, NULL); 8183 8184 /* If STATIC_TYPE is a tagged type and we know the object's address, 8185 then we can determine its tag, and compute the object's actual 8186 type from there. Note that we have to use the fixed record 8187 type (the parent part of the record may have dynamic fields 8188 and the way the location of _tag is expressed may depend on 8189 them). */ 8190 8191 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0)) 8192 { 8193 struct value *tag = 8194 value_tag_from_contents_and_address 8195 (fixed_record_type, 8196 valaddr, 8197 address); 8198 struct type *real_type = type_from_tag (tag); 8199 struct value *obj = 8200 value_from_contents_and_address (fixed_record_type, 8201 valaddr, 8202 address); 8203 if (real_type != NULL) 8204 return to_fixed_record_type 8205 (real_type, NULL, 8206 value_address (ada_tag_value_at_base_address (obj)), NULL); 8207 } 8208 8209 /* Check to see if there is a parallel ___XVZ variable. 8210 If there is, then it provides the actual size of our type. */ 8211 else if (ada_type_name (fixed_record_type) != NULL) 8212 { 8213 const char *name = ada_type_name (fixed_record_type); 8214 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */); 8215 int xvz_found = 0; 8216 LONGEST size; 8217 8218 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name); 8219 size = get_int_var_value (xvz_name, &xvz_found); 8220 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size) 8221 { 8222 fixed_record_type = copy_type (fixed_record_type); 8223 TYPE_LENGTH (fixed_record_type) = size; 8224 8225 /* The FIXED_RECORD_TYPE may have be a stub. We have 8226 observed this when the debugging info is STABS, and 8227 apparently it is something that is hard to fix. 8228 8229 In practice, we don't need the actual type definition 8230 at all, because the presence of the XVZ variable allows us 8231 to assume that there must be a XVS type as well, which we 8232 should be able to use later, when we need the actual type 8233 definition. 8234 8235 In the meantime, pretend that the "fixed" type we are 8236 returning is NOT a stub, because this can cause trouble 8237 when using this type to create new types targeting it. 8238 Indeed, the associated creation routines often check 8239 whether the target type is a stub and will try to replace 8240 it, thus using a type with the wrong size. This, in turn, 8241 might cause the new type to have the wrong size too. 8242 Consider the case of an array, for instance, where the size 8243 of the array is computed from the number of elements in 8244 our array multiplied by the size of its element. */ 8245 TYPE_STUB (fixed_record_type) = 0; 8246 } 8247 } 8248 return fixed_record_type; 8249 } 8250 case TYPE_CODE_ARRAY: 8251 return to_fixed_array_type (type, dval, 1); 8252 case TYPE_CODE_UNION: 8253 if (dval == NULL) 8254 return type; 8255 else 8256 return to_fixed_variant_branch_type (type, valaddr, address, dval); 8257 } 8258 } 8259 8260 /* The same as ada_to_fixed_type_1, except that it preserves the type 8261 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed. 8262 8263 The typedef layer needs be preserved in order to differentiate between 8264 arrays and array pointers when both types are implemented using the same 8265 fat pointer. In the array pointer case, the pointer is encoded as 8266 a typedef of the pointer type. For instance, considering: 8267 8268 type String_Access is access String; 8269 S1 : String_Access := null; 8270 8271 To the debugger, S1 is defined as a typedef of type String. But 8272 to the user, it is a pointer. So if the user tries to print S1, 8273 we should not dereference the array, but print the array address 8274 instead. 8275 8276 If we didn't preserve the typedef layer, we would lose the fact that 8277 the type is to be presented as a pointer (needs de-reference before 8278 being printed). And we would also use the source-level type name. */ 8279 8280 struct type * 8281 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr, 8282 CORE_ADDR address, struct value *dval, int check_tag) 8283 8284 { 8285 struct type *fixed_type = 8286 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag); 8287 8288 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE, 8289 then preserve the typedef layer. 8290 8291 Implementation note: We can only check the main-type portion of 8292 the TYPE and FIXED_TYPE, because eliminating the typedef layer 8293 from TYPE now returns a type that has the same instance flags 8294 as TYPE. For instance, if TYPE is a "typedef const", and its 8295 target type is a "struct", then the typedef elimination will return 8296 a "const" version of the target type. See check_typedef for more 8297 details about how the typedef layer elimination is done. 8298 8299 brobecker/2010-11-19: It seems to me that the only case where it is 8300 useful to preserve the typedef layer is when dealing with fat pointers. 8301 Perhaps, we could add a check for that and preserve the typedef layer 8302 only in that situation. But this seems unecessary so far, probably 8303 because we call check_typedef/ada_check_typedef pretty much everywhere. 8304 */ 8305 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF 8306 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type)) 8307 == TYPE_MAIN_TYPE (fixed_type))) 8308 return type; 8309 8310 return fixed_type; 8311 } 8312 8313 /* A standard (static-sized) type corresponding as well as possible to 8314 TYPE0, but based on no runtime data. */ 8315 8316 static struct type * 8317 to_static_fixed_type (struct type *type0) 8318 { 8319 struct type *type; 8320 8321 if (type0 == NULL) 8322 return NULL; 8323 8324 if (TYPE_FIXED_INSTANCE (type0)) 8325 return type0; 8326 8327 type0 = ada_check_typedef (type0); 8328 8329 switch (TYPE_CODE (type0)) 8330 { 8331 default: 8332 return type0; 8333 case TYPE_CODE_STRUCT: 8334 type = dynamic_template_type (type0); 8335 if (type != NULL) 8336 return template_to_static_fixed_type (type); 8337 else 8338 return template_to_static_fixed_type (type0); 8339 case TYPE_CODE_UNION: 8340 type = ada_find_parallel_type (type0, "___XVU"); 8341 if (type != NULL) 8342 return template_to_static_fixed_type (type); 8343 else 8344 return template_to_static_fixed_type (type0); 8345 } 8346 } 8347 8348 /* A static approximation of TYPE with all type wrappers removed. */ 8349 8350 static struct type * 8351 static_unwrap_type (struct type *type) 8352 { 8353 if (ada_is_aligner_type (type)) 8354 { 8355 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0); 8356 if (ada_type_name (type1) == NULL) 8357 TYPE_NAME (type1) = ada_type_name (type); 8358 8359 return static_unwrap_type (type1); 8360 } 8361 else 8362 { 8363 struct type *raw_real_type = ada_get_base_type (type); 8364 8365 if (raw_real_type == type) 8366 return type; 8367 else 8368 return to_static_fixed_type (raw_real_type); 8369 } 8370 } 8371 8372 /* In some cases, incomplete and private types require 8373 cross-references that are not resolved as records (for example, 8374 type Foo; 8375 type FooP is access Foo; 8376 V: FooP; 8377 type Foo is array ...; 8378 ). In these cases, since there is no mechanism for producing 8379 cross-references to such types, we instead substitute for FooP a 8380 stub enumeration type that is nowhere resolved, and whose tag is 8381 the name of the actual type. Call these types "non-record stubs". */ 8382 8383 /* A type equivalent to TYPE that is not a non-record stub, if one 8384 exists, otherwise TYPE. */ 8385 8386 struct type * 8387 ada_check_typedef (struct type *type) 8388 { 8389 if (type == NULL) 8390 return NULL; 8391 8392 /* If our type is a typedef type of a fat pointer, then we're done. 8393 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is 8394 what allows us to distinguish between fat pointers that represent 8395 array types, and fat pointers that represent array access types 8396 (in both cases, the compiler implements them as fat pointers). */ 8397 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF 8398 && is_thick_pntr (ada_typedef_target_type (type))) 8399 return type; 8400 8401 CHECK_TYPEDEF (type); 8402 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM 8403 || !TYPE_STUB (type) 8404 || TYPE_TAG_NAME (type) == NULL) 8405 return type; 8406 else 8407 { 8408 const char *name = TYPE_TAG_NAME (type); 8409 struct type *type1 = ada_find_any_type (name); 8410 8411 if (type1 == NULL) 8412 return type; 8413 8414 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with 8415 stubs pointing to arrays, as we don't create symbols for array 8416 types, only for the typedef-to-array types). If that's the case, 8417 strip the typedef layer. */ 8418 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF) 8419 type1 = ada_check_typedef (type1); 8420 8421 return type1; 8422 } 8423 } 8424 8425 /* A value representing the data at VALADDR/ADDRESS as described by 8426 type TYPE0, but with a standard (static-sized) type that correctly 8427 describes it. If VAL0 is not NULL and TYPE0 already is a standard 8428 type, then return VAL0 [this feature is simply to avoid redundant 8429 creation of struct values]. */ 8430 8431 static struct value * 8432 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address, 8433 struct value *val0) 8434 { 8435 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1); 8436 8437 if (type == type0 && val0 != NULL) 8438 return val0; 8439 else 8440 return value_from_contents_and_address (type, 0, address); 8441 } 8442 8443 /* A value representing VAL, but with a standard (static-sized) type 8444 that correctly describes it. Does not necessarily create a new 8445 value. */ 8446 8447 struct value * 8448 ada_to_fixed_value (struct value *val) 8449 { 8450 val = unwrap_value (val); 8451 val = ada_to_fixed_value_create (value_type (val), 8452 value_address (val), 8453 val); 8454 return val; 8455 } 8456 8457 8458 /* Attributes */ 8459 8460 /* Table mapping attribute numbers to names. 8461 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */ 8462 8463 static const char *attribute_names[] = { 8464 "<?>", 8465 8466 "first", 8467 "last", 8468 "length", 8469 "image", 8470 "max", 8471 "min", 8472 "modulus", 8473 "pos", 8474 "size", 8475 "tag", 8476 "val", 8477 0 8478 }; 8479 8480 const char * 8481 ada_attribute_name (enum exp_opcode n) 8482 { 8483 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL) 8484 return attribute_names[n - OP_ATR_FIRST + 1]; 8485 else 8486 return attribute_names[0]; 8487 } 8488 8489 /* Evaluate the 'POS attribute applied to ARG. */ 8490 8491 static LONGEST 8492 pos_atr (struct value *arg) 8493 { 8494 struct value *val = coerce_ref (arg); 8495 struct type *type = value_type (val); 8496 8497 if (!discrete_type_p (type)) 8498 error (_("'POS only defined on discrete types")); 8499 8500 if (TYPE_CODE (type) == TYPE_CODE_ENUM) 8501 { 8502 int i; 8503 LONGEST v = value_as_long (val); 8504 8505 for (i = 0; i < TYPE_NFIELDS (type); i += 1) 8506 { 8507 if (v == TYPE_FIELD_ENUMVAL (type, i)) 8508 return i; 8509 } 8510 error (_("enumeration value is invalid: can't find 'POS")); 8511 } 8512 else 8513 return value_as_long (val); 8514 } 8515 8516 static struct value * 8517 value_pos_atr (struct type *type, struct value *arg) 8518 { 8519 return value_from_longest (type, pos_atr (arg)); 8520 } 8521 8522 /* Evaluate the TYPE'VAL attribute applied to ARG. */ 8523 8524 static struct value * 8525 value_val_atr (struct type *type, struct value *arg) 8526 { 8527 if (!discrete_type_p (type)) 8528 error (_("'VAL only defined on discrete types")); 8529 if (!integer_type_p (value_type (arg))) 8530 error (_("'VAL requires integral argument")); 8531 8532 if (TYPE_CODE (type) == TYPE_CODE_ENUM) 8533 { 8534 long pos = value_as_long (arg); 8535 8536 if (pos < 0 || pos >= TYPE_NFIELDS (type)) 8537 error (_("argument to 'VAL out of range")); 8538 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos)); 8539 } 8540 else 8541 return value_from_longest (type, value_as_long (arg)); 8542 } 8543 8544 8545 /* Evaluation */ 8546 8547 /* True if TYPE appears to be an Ada character type. 8548 [At the moment, this is true only for Character and Wide_Character; 8549 It is a heuristic test that could stand improvement]. */ 8550 8551 int 8552 ada_is_character_type (struct type *type) 8553 { 8554 const char *name; 8555 8556 /* If the type code says it's a character, then assume it really is, 8557 and don't check any further. */ 8558 if (TYPE_CODE (type) == TYPE_CODE_CHAR) 8559 return 1; 8560 8561 /* Otherwise, assume it's a character type iff it is a discrete type 8562 with a known character type name. */ 8563 name = ada_type_name (type); 8564 return (name != NULL 8565 && (TYPE_CODE (type) == TYPE_CODE_INT 8566 || TYPE_CODE (type) == TYPE_CODE_RANGE) 8567 && (strcmp (name, "character") == 0 8568 || strcmp (name, "wide_character") == 0 8569 || strcmp (name, "wide_wide_character") == 0 8570 || strcmp (name, "unsigned char") == 0)); 8571 } 8572 8573 /* True if TYPE appears to be an Ada string type. */ 8574 8575 int 8576 ada_is_string_type (struct type *type) 8577 { 8578 type = ada_check_typedef (type); 8579 if (type != NULL 8580 && TYPE_CODE (type) != TYPE_CODE_PTR 8581 && (ada_is_simple_array_type (type) 8582 || ada_is_array_descriptor_type (type)) 8583 && ada_array_arity (type) == 1) 8584 { 8585 struct type *elttype = ada_array_element_type (type, 1); 8586 8587 return ada_is_character_type (elttype); 8588 } 8589 else 8590 return 0; 8591 } 8592 8593 /* The compiler sometimes provides a parallel XVS type for a given 8594 PAD type. Normally, it is safe to follow the PAD type directly, 8595 but older versions of the compiler have a bug that causes the offset 8596 of its "F" field to be wrong. Following that field in that case 8597 would lead to incorrect results, but this can be worked around 8598 by ignoring the PAD type and using the associated XVS type instead. 8599 8600 Set to True if the debugger should trust the contents of PAD types. 8601 Otherwise, ignore the PAD type if there is a parallel XVS type. */ 8602 static int trust_pad_over_xvs = 1; 8603 8604 /* True if TYPE is a struct type introduced by the compiler to force the 8605 alignment of a value. Such types have a single field with a 8606 distinctive name. */ 8607 8608 int 8609 ada_is_aligner_type (struct type *type) 8610 { 8611 type = ada_check_typedef (type); 8612 8613 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL) 8614 return 0; 8615 8616 return (TYPE_CODE (type) == TYPE_CODE_STRUCT 8617 && TYPE_NFIELDS (type) == 1 8618 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0); 8619 } 8620 8621 /* If there is an ___XVS-convention type parallel to SUBTYPE, return 8622 the parallel type. */ 8623 8624 struct type * 8625 ada_get_base_type (struct type *raw_type) 8626 { 8627 struct type *real_type_namer; 8628 struct type *raw_real_type; 8629 8630 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) 8631 return raw_type; 8632 8633 if (ada_is_aligner_type (raw_type)) 8634 /* The encoding specifies that we should always use the aligner type. 8635 So, even if this aligner type has an associated XVS type, we should 8636 simply ignore it. 8637 8638 According to the compiler gurus, an XVS type parallel to an aligner 8639 type may exist because of a stabs limitation. In stabs, aligner 8640 types are empty because the field has a variable-sized type, and 8641 thus cannot actually be used as an aligner type. As a result, 8642 we need the associated parallel XVS type to decode the type. 8643 Since the policy in the compiler is to not change the internal 8644 representation based on the debugging info format, we sometimes 8645 end up having a redundant XVS type parallel to the aligner type. */ 8646 return raw_type; 8647 8648 real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); 8649 if (real_type_namer == NULL 8650 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT 8651 || TYPE_NFIELDS (real_type_namer) != 1) 8652 return raw_type; 8653 8654 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF) 8655 { 8656 /* This is an older encoding form where the base type needs to be 8657 looked up by name. We prefer the newer enconding because it is 8658 more efficient. */ 8659 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); 8660 if (raw_real_type == NULL) 8661 return raw_type; 8662 else 8663 return raw_real_type; 8664 } 8665 8666 /* The field in our XVS type is a reference to the base type. */ 8667 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0)); 8668 } 8669 8670 /* The type of value designated by TYPE, with all aligners removed. */ 8671 8672 struct type * 8673 ada_aligned_type (struct type *type) 8674 { 8675 if (ada_is_aligner_type (type)) 8676 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); 8677 else 8678 return ada_get_base_type (type); 8679 } 8680 8681 8682 /* The address of the aligned value in an object at address VALADDR 8683 having type TYPE. Assumes ada_is_aligner_type (TYPE). */ 8684 8685 const gdb_byte * 8686 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr) 8687 { 8688 if (ada_is_aligner_type (type)) 8689 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), 8690 valaddr + 8691 TYPE_FIELD_BITPOS (type, 8692 0) / TARGET_CHAR_BIT); 8693 else 8694 return valaddr; 8695 } 8696 8697 8698 8699 /* The printed representation of an enumeration literal with encoded 8700 name NAME. The value is good to the next call of ada_enum_name. */ 8701 const char * 8702 ada_enum_name (const char *name) 8703 { 8704 static char *result; 8705 static size_t result_len = 0; 8706 char *tmp; 8707 8708 /* First, unqualify the enumeration name: 8709 1. Search for the last '.' character. If we find one, then skip 8710 all the preceding characters, the unqualified name starts 8711 right after that dot. 8712 2. Otherwise, we may be debugging on a target where the compiler 8713 translates dots into "__". Search forward for double underscores, 8714 but stop searching when we hit an overloading suffix, which is 8715 of the form "__" followed by digits. */ 8716 8717 tmp = strrchr (name, '.'); 8718 if (tmp != NULL) 8719 name = tmp + 1; 8720 else 8721 { 8722 while ((tmp = strstr (name, "__")) != NULL) 8723 { 8724 if (isdigit (tmp[2])) 8725 break; 8726 else 8727 name = tmp + 2; 8728 } 8729 } 8730 8731 if (name[0] == 'Q') 8732 { 8733 int v; 8734 8735 if (name[1] == 'U' || name[1] == 'W') 8736 { 8737 if (sscanf (name + 2, "%x", &v) != 1) 8738 return name; 8739 } 8740 else 8741 return name; 8742 8743 GROW_VECT (result, result_len, 16); 8744 if (isascii (v) && isprint (v)) 8745 xsnprintf (result, result_len, "'%c'", v); 8746 else if (name[1] == 'U') 8747 xsnprintf (result, result_len, "[\"%02x\"]", v); 8748 else 8749 xsnprintf (result, result_len, "[\"%04x\"]", v); 8750 8751 return result; 8752 } 8753 else 8754 { 8755 tmp = strstr (name, "__"); 8756 if (tmp == NULL) 8757 tmp = strstr (name, "$"); 8758 if (tmp != NULL) 8759 { 8760 GROW_VECT (result, result_len, tmp - name + 1); 8761 strncpy (result, name, tmp - name); 8762 result[tmp - name] = '\0'; 8763 return result; 8764 } 8765 8766 return name; 8767 } 8768 } 8769 8770 /* Evaluate the subexpression of EXP starting at *POS as for 8771 evaluate_type, updating *POS to point just past the evaluated 8772 expression. */ 8773 8774 static struct value * 8775 evaluate_subexp_type (struct expression *exp, int *pos) 8776 { 8777 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); 8778 } 8779 8780 /* If VAL is wrapped in an aligner or subtype wrapper, return the 8781 value it wraps. */ 8782 8783 static struct value * 8784 unwrap_value (struct value *val) 8785 { 8786 struct type *type = ada_check_typedef (value_type (val)); 8787 8788 if (ada_is_aligner_type (type)) 8789 { 8790 struct value *v = ada_value_struct_elt (val, "F", 0); 8791 struct type *val_type = ada_check_typedef (value_type (v)); 8792 8793 if (ada_type_name (val_type) == NULL) 8794 TYPE_NAME (val_type) = ada_type_name (type); 8795 8796 return unwrap_value (v); 8797 } 8798 else 8799 { 8800 struct type *raw_real_type = 8801 ada_check_typedef (ada_get_base_type (type)); 8802 8803 /* If there is no parallel XVS or XVE type, then the value is 8804 already unwrapped. Return it without further modification. */ 8805 if ((type == raw_real_type) 8806 && ada_find_parallel_type (type, "___XVE") == NULL) 8807 return val; 8808 8809 return 8810 coerce_unspec_val_to_type 8811 (val, ada_to_fixed_type (raw_real_type, 0, 8812 value_address (val), 8813 NULL, 1)); 8814 } 8815 } 8816 8817 static struct value * 8818 cast_to_fixed (struct type *type, struct value *arg) 8819 { 8820 LONGEST val; 8821 8822 if (type == value_type (arg)) 8823 return arg; 8824 else if (ada_is_fixed_point_type (value_type (arg))) 8825 val = ada_float_to_fixed (type, 8826 ada_fixed_to_float (value_type (arg), 8827 value_as_long (arg))); 8828 else 8829 { 8830 DOUBLEST argd = value_as_double (arg); 8831 8832 val = ada_float_to_fixed (type, argd); 8833 } 8834 8835 return value_from_longest (type, val); 8836 } 8837 8838 static struct value * 8839 cast_from_fixed (struct type *type, struct value *arg) 8840 { 8841 DOUBLEST val = ada_fixed_to_float (value_type (arg), 8842 value_as_long (arg)); 8843 8844 return value_from_double (type, val); 8845 } 8846 8847 /* Given two array types T1 and T2, return nonzero iff both arrays 8848 contain the same number of elements. */ 8849 8850 static int 8851 ada_same_array_size_p (struct type *t1, struct type *t2) 8852 { 8853 LONGEST lo1, hi1, lo2, hi2; 8854 8855 /* Get the array bounds in order to verify that the size of 8856 the two arrays match. */ 8857 if (!get_array_bounds (t1, &lo1, &hi1) 8858 || !get_array_bounds (t2, &lo2, &hi2)) 8859 error (_("unable to determine array bounds")); 8860 8861 /* To make things easier for size comparison, normalize a bit 8862 the case of empty arrays by making sure that the difference 8863 between upper bound and lower bound is always -1. */ 8864 if (lo1 > hi1) 8865 hi1 = lo1 - 1; 8866 if (lo2 > hi2) 8867 hi2 = lo2 - 1; 8868 8869 return (hi1 - lo1 == hi2 - lo2); 8870 } 8871 8872 /* Assuming that VAL is an array of integrals, and TYPE represents 8873 an array with the same number of elements, but with wider integral 8874 elements, return an array "casted" to TYPE. In practice, this 8875 means that the returned array is built by casting each element 8876 of the original array into TYPE's (wider) element type. */ 8877 8878 static struct value * 8879 ada_promote_array_of_integrals (struct type *type, struct value *val) 8880 { 8881 struct type *elt_type = TYPE_TARGET_TYPE (type); 8882 LONGEST lo, hi; 8883 struct value *res; 8884 LONGEST i; 8885 8886 /* Verify that both val and type are arrays of scalars, and 8887 that the size of val's elements is smaller than the size 8888 of type's element. */ 8889 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY); 8890 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type))); 8891 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY); 8892 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val)))); 8893 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type)) 8894 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val)))); 8895 8896 if (!get_array_bounds (type, &lo, &hi)) 8897 error (_("unable to determine array bounds")); 8898 8899 res = allocate_value (type); 8900 8901 /* Promote each array element. */ 8902 for (i = 0; i < hi - lo + 1; i++) 8903 { 8904 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i)); 8905 8906 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)), 8907 value_contents_all (elt), TYPE_LENGTH (elt_type)); 8908 } 8909 8910 return res; 8911 } 8912 8913 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and 8914 return the converted value. */ 8915 8916 static struct value * 8917 coerce_for_assign (struct type *type, struct value *val) 8918 { 8919 struct type *type2 = value_type (val); 8920 8921 if (type == type2) 8922 return val; 8923 8924 type2 = ada_check_typedef (type2); 8925 type = ada_check_typedef (type); 8926 8927 if (TYPE_CODE (type2) == TYPE_CODE_PTR 8928 && TYPE_CODE (type) == TYPE_CODE_ARRAY) 8929 { 8930 val = ada_value_ind (val); 8931 type2 = value_type (val); 8932 } 8933 8934 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY 8935 && TYPE_CODE (type) == TYPE_CODE_ARRAY) 8936 { 8937 if (!ada_same_array_size_p (type, type2)) 8938 error (_("cannot assign arrays of different length")); 8939 8940 if (is_integral_type (TYPE_TARGET_TYPE (type)) 8941 && is_integral_type (TYPE_TARGET_TYPE (type2)) 8942 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) 8943 < TYPE_LENGTH (TYPE_TARGET_TYPE (type))) 8944 { 8945 /* Allow implicit promotion of the array elements to 8946 a wider type. */ 8947 return ada_promote_array_of_integrals (type, val); 8948 } 8949 8950 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) 8951 != TYPE_LENGTH (TYPE_TARGET_TYPE (type))) 8952 error (_("Incompatible types in assignment")); 8953 deprecated_set_value_type (val, type); 8954 } 8955 return val; 8956 } 8957 8958 static struct value * 8959 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) 8960 { 8961 struct value *val; 8962 struct type *type1, *type2; 8963 LONGEST v, v1, v2; 8964 8965 arg1 = coerce_ref (arg1); 8966 arg2 = coerce_ref (arg2); 8967 type1 = get_base_type (ada_check_typedef (value_type (arg1))); 8968 type2 = get_base_type (ada_check_typedef (value_type (arg2))); 8969 8970 if (TYPE_CODE (type1) != TYPE_CODE_INT 8971 || TYPE_CODE (type2) != TYPE_CODE_INT) 8972 return value_binop (arg1, arg2, op); 8973 8974 switch (op) 8975 { 8976 case BINOP_MOD: 8977 case BINOP_DIV: 8978 case BINOP_REM: 8979 break; 8980 default: 8981 return value_binop (arg1, arg2, op); 8982 } 8983 8984 v2 = value_as_long (arg2); 8985 if (v2 == 0) 8986 error (_("second operand of %s must not be zero."), op_string (op)); 8987 8988 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD) 8989 return value_binop (arg1, arg2, op); 8990 8991 v1 = value_as_long (arg1); 8992 switch (op) 8993 { 8994 case BINOP_DIV: 8995 v = v1 / v2; 8996 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0) 8997 v += v > 0 ? -1 : 1; 8998 break; 8999 case BINOP_REM: 9000 v = v1 % v2; 9001 if (v * v1 < 0) 9002 v -= v2; 9003 break; 9004 default: 9005 /* Should not reach this point. */ 9006 v = 0; 9007 } 9008 9009 val = allocate_value (type1); 9010 store_unsigned_integer (value_contents_raw (val), 9011 TYPE_LENGTH (value_type (val)), 9012 gdbarch_byte_order (get_type_arch (type1)), v); 9013 return val; 9014 } 9015 9016 static int 9017 ada_value_equal (struct value *arg1, struct value *arg2) 9018 { 9019 if (ada_is_direct_array_type (value_type (arg1)) 9020 || ada_is_direct_array_type (value_type (arg2))) 9021 { 9022 /* Automatically dereference any array reference before 9023 we attempt to perform the comparison. */ 9024 arg1 = ada_coerce_ref (arg1); 9025 arg2 = ada_coerce_ref (arg2); 9026 9027 arg1 = ada_coerce_to_simple_array (arg1); 9028 arg2 = ada_coerce_to_simple_array (arg2); 9029 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY 9030 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY) 9031 error (_("Attempt to compare array with non-array")); 9032 /* FIXME: The following works only for types whose 9033 representations use all bits (no padding or undefined bits) 9034 and do not have user-defined equality. */ 9035 return 9036 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2)) 9037 && memcmp (value_contents (arg1), value_contents (arg2), 9038 TYPE_LENGTH (value_type (arg1))) == 0; 9039 } 9040 return value_equal (arg1, arg2); 9041 } 9042 9043 /* Total number of component associations in the aggregate starting at 9044 index PC in EXP. Assumes that index PC is the start of an 9045 OP_AGGREGATE. */ 9046 9047 static int 9048 num_component_specs (struct expression *exp, int pc) 9049 { 9050 int n, m, i; 9051 9052 m = exp->elts[pc + 1].longconst; 9053 pc += 3; 9054 n = 0; 9055 for (i = 0; i < m; i += 1) 9056 { 9057 switch (exp->elts[pc].opcode) 9058 { 9059 default: 9060 n += 1; 9061 break; 9062 case OP_CHOICES: 9063 n += exp->elts[pc + 1].longconst; 9064 break; 9065 } 9066 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP); 9067 } 9068 return n; 9069 } 9070 9071 /* Assign the result of evaluating EXP starting at *POS to the INDEXth 9072 component of LHS (a simple array or a record), updating *POS past 9073 the expression, assuming that LHS is contained in CONTAINER. Does 9074 not modify the inferior's memory, nor does it modify LHS (unless 9075 LHS == CONTAINER). */ 9076 9077 static void 9078 assign_component (struct value *container, struct value *lhs, LONGEST index, 9079 struct expression *exp, int *pos) 9080 { 9081 struct value *mark = value_mark (); 9082 struct value *elt; 9083 9084 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY) 9085 { 9086 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int; 9087 struct value *index_val = value_from_longest (index_type, index); 9088 9089 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val)); 9090 } 9091 else 9092 { 9093 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs)); 9094 elt = ada_to_fixed_value (elt); 9095 } 9096 9097 if (exp->elts[*pos].opcode == OP_AGGREGATE) 9098 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL); 9099 else 9100 value_assign_to_component (container, elt, 9101 ada_evaluate_subexp (NULL, exp, pos, 9102 EVAL_NORMAL)); 9103 9104 value_free_to_mark (mark); 9105 } 9106 9107 /* Assuming that LHS represents an lvalue having a record or array 9108 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment 9109 of that aggregate's value to LHS, advancing *POS past the 9110 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an 9111 lvalue containing LHS (possibly LHS itself). Does not modify 9112 the inferior's memory, nor does it modify the contents of 9113 LHS (unless == CONTAINER). Returns the modified CONTAINER. */ 9114 9115 static struct value * 9116 assign_aggregate (struct value *container, 9117 struct value *lhs, struct expression *exp, 9118 int *pos, enum noside noside) 9119 { 9120 struct type *lhs_type; 9121 int n = exp->elts[*pos+1].longconst; 9122 LONGEST low_index, high_index; 9123 int num_specs; 9124 LONGEST *indices; 9125 int max_indices, num_indices; 9126 int i; 9127 9128 *pos += 3; 9129 if (noside != EVAL_NORMAL) 9130 { 9131 for (i = 0; i < n; i += 1) 9132 ada_evaluate_subexp (NULL, exp, pos, noside); 9133 return container; 9134 } 9135 9136 container = ada_coerce_ref (container); 9137 if (ada_is_direct_array_type (value_type (container))) 9138 container = ada_coerce_to_simple_array (container); 9139 lhs = ada_coerce_ref (lhs); 9140 if (!deprecated_value_modifiable (lhs)) 9141 error (_("Left operand of assignment is not a modifiable lvalue.")); 9142 9143 lhs_type = value_type (lhs); 9144 if (ada_is_direct_array_type (lhs_type)) 9145 { 9146 lhs = ada_coerce_to_simple_array (lhs); 9147 lhs_type = value_type (lhs); 9148 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type); 9149 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type); 9150 } 9151 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT) 9152 { 9153 low_index = 0; 9154 high_index = num_visible_fields (lhs_type) - 1; 9155 } 9156 else 9157 error (_("Left-hand side must be array or record.")); 9158 9159 num_specs = num_component_specs (exp, *pos - 3); 9160 max_indices = 4 * num_specs + 4; 9161 indices = alloca (max_indices * sizeof (indices[0])); 9162 indices[0] = indices[1] = low_index - 1; 9163 indices[2] = indices[3] = high_index + 1; 9164 num_indices = 4; 9165 9166 for (i = 0; i < n; i += 1) 9167 { 9168 switch (exp->elts[*pos].opcode) 9169 { 9170 case OP_CHOICES: 9171 aggregate_assign_from_choices (container, lhs, exp, pos, indices, 9172 &num_indices, max_indices, 9173 low_index, high_index); 9174 break; 9175 case OP_POSITIONAL: 9176 aggregate_assign_positional (container, lhs, exp, pos, indices, 9177 &num_indices, max_indices, 9178 low_index, high_index); 9179 break; 9180 case OP_OTHERS: 9181 if (i != n-1) 9182 error (_("Misplaced 'others' clause")); 9183 aggregate_assign_others (container, lhs, exp, pos, indices, 9184 num_indices, low_index, high_index); 9185 break; 9186 default: 9187 error (_("Internal error: bad aggregate clause")); 9188 } 9189 } 9190 9191 return container; 9192 } 9193 9194 /* Assign into the component of LHS indexed by the OP_POSITIONAL 9195 construct at *POS, updating *POS past the construct, given that 9196 the positions are relative to lower bound LOW, where HIGH is the 9197 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1] 9198 updating *NUM_INDICES as needed. CONTAINER is as for 9199 assign_aggregate. */ 9200 static void 9201 aggregate_assign_positional (struct value *container, 9202 struct value *lhs, struct expression *exp, 9203 int *pos, LONGEST *indices, int *num_indices, 9204 int max_indices, LONGEST low, LONGEST high) 9205 { 9206 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low; 9207 9208 if (ind - 1 == high) 9209 warning (_("Extra components in aggregate ignored.")); 9210 if (ind <= high) 9211 { 9212 add_component_interval (ind, ind, indices, num_indices, max_indices); 9213 *pos += 3; 9214 assign_component (container, lhs, ind, exp, pos); 9215 } 9216 else 9217 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); 9218 } 9219 9220 /* Assign into the components of LHS indexed by the OP_CHOICES 9221 construct at *POS, updating *POS past the construct, given that 9222 the allowable indices are LOW..HIGH. Record the indices assigned 9223 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as 9224 needed. CONTAINER is as for assign_aggregate. */ 9225 static void 9226 aggregate_assign_from_choices (struct value *container, 9227 struct value *lhs, struct expression *exp, 9228 int *pos, LONGEST *indices, int *num_indices, 9229 int max_indices, LONGEST low, LONGEST high) 9230 { 9231 int j; 9232 int n_choices = longest_to_int (exp->elts[*pos+1].longconst); 9233 int choice_pos, expr_pc; 9234 int is_array = ada_is_direct_array_type (value_type (lhs)); 9235 9236 choice_pos = *pos += 3; 9237 9238 for (j = 0; j < n_choices; j += 1) 9239 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); 9240 expr_pc = *pos; 9241 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); 9242 9243 for (j = 0; j < n_choices; j += 1) 9244 { 9245 LONGEST lower, upper; 9246 enum exp_opcode op = exp->elts[choice_pos].opcode; 9247 9248 if (op == OP_DISCRETE_RANGE) 9249 { 9250 choice_pos += 1; 9251 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos, 9252 EVAL_NORMAL)); 9253 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos, 9254 EVAL_NORMAL)); 9255 } 9256 else if (is_array) 9257 { 9258 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos, 9259 EVAL_NORMAL)); 9260 upper = lower; 9261 } 9262 else 9263 { 9264 int ind; 9265 const char *name; 9266 9267 switch (op) 9268 { 9269 case OP_NAME: 9270 name = &exp->elts[choice_pos + 2].string; 9271 break; 9272 case OP_VAR_VALUE: 9273 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol); 9274 break; 9275 default: 9276 error (_("Invalid record component association.")); 9277 } 9278 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP); 9279 ind = 0; 9280 if (! find_struct_field (name, value_type (lhs), 0, 9281 NULL, NULL, NULL, NULL, &ind)) 9282 error (_("Unknown component name: %s."), name); 9283 lower = upper = ind; 9284 } 9285 9286 if (lower <= upper && (lower < low || upper > high)) 9287 error (_("Index in component association out of bounds.")); 9288 9289 add_component_interval (lower, upper, indices, num_indices, 9290 max_indices); 9291 while (lower <= upper) 9292 { 9293 int pos1; 9294 9295 pos1 = expr_pc; 9296 assign_component (container, lhs, lower, exp, &pos1); 9297 lower += 1; 9298 } 9299 } 9300 } 9301 9302 /* Assign the value of the expression in the OP_OTHERS construct in 9303 EXP at *POS into the components of LHS indexed from LOW .. HIGH that 9304 have not been previously assigned. The index intervals already assigned 9305 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the 9306 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */ 9307 static void 9308 aggregate_assign_others (struct value *container, 9309 struct value *lhs, struct expression *exp, 9310 int *pos, LONGEST *indices, int num_indices, 9311 LONGEST low, LONGEST high) 9312 { 9313 int i; 9314 int expr_pc = *pos + 1; 9315 9316 for (i = 0; i < num_indices - 2; i += 2) 9317 { 9318 LONGEST ind; 9319 9320 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1) 9321 { 9322 int localpos; 9323 9324 localpos = expr_pc; 9325 assign_component (container, lhs, ind, exp, &localpos); 9326 } 9327 } 9328 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP); 9329 } 9330 9331 /* Add the interval [LOW .. HIGH] to the sorted set of intervals 9332 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ], 9333 modifying *SIZE as needed. It is an error if *SIZE exceeds 9334 MAX_SIZE. The resulting intervals do not overlap. */ 9335 static void 9336 add_component_interval (LONGEST low, LONGEST high, 9337 LONGEST* indices, int *size, int max_size) 9338 { 9339 int i, j; 9340 9341 for (i = 0; i < *size; i += 2) { 9342 if (high >= indices[i] && low <= indices[i + 1]) 9343 { 9344 int kh; 9345 9346 for (kh = i + 2; kh < *size; kh += 2) 9347 if (high < indices[kh]) 9348 break; 9349 if (low < indices[i]) 9350 indices[i] = low; 9351 indices[i + 1] = indices[kh - 1]; 9352 if (high > indices[i + 1]) 9353 indices[i + 1] = high; 9354 memcpy (indices + i + 2, indices + kh, *size - kh); 9355 *size -= kh - i - 2; 9356 return; 9357 } 9358 else if (high < indices[i]) 9359 break; 9360 } 9361 9362 if (*size == max_size) 9363 error (_("Internal error: miscounted aggregate components.")); 9364 *size += 2; 9365 for (j = *size-1; j >= i+2; j -= 1) 9366 indices[j] = indices[j - 2]; 9367 indices[i] = low; 9368 indices[i + 1] = high; 9369 } 9370 9371 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2 9372 is different. */ 9373 9374 static struct value * 9375 ada_value_cast (struct type *type, struct value *arg2, enum noside noside) 9376 { 9377 if (type == ada_check_typedef (value_type (arg2))) 9378 return arg2; 9379 9380 if (ada_is_fixed_point_type (type)) 9381 return (cast_to_fixed (type, arg2)); 9382 9383 if (ada_is_fixed_point_type (value_type (arg2))) 9384 return cast_from_fixed (type, arg2); 9385 9386 return value_cast (type, arg2); 9387 } 9388 9389 /* Evaluating Ada expressions, and printing their result. 9390 ------------------------------------------------------ 9391 9392 1. Introduction: 9393 ---------------- 9394 9395 We usually evaluate an Ada expression in order to print its value. 9396 We also evaluate an expression in order to print its type, which 9397 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation, 9398 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the 9399 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of 9400 the evaluation compared to the EVAL_NORMAL, but is otherwise very 9401 similar. 9402 9403 Evaluating expressions is a little more complicated for Ada entities 9404 than it is for entities in languages such as C. The main reason for 9405 this is that Ada provides types whose definition might be dynamic. 9406 One example of such types is variant records. Or another example 9407 would be an array whose bounds can only be known at run time. 9408 9409 The following description is a general guide as to what should be 9410 done (and what should NOT be done) in order to evaluate an expression 9411 involving such types, and when. This does not cover how the semantic 9412 information is encoded by GNAT as this is covered separatly. For the 9413 document used as the reference for the GNAT encoding, see exp_dbug.ads 9414 in the GNAT sources. 9415 9416 Ideally, we should embed each part of this description next to its 9417 associated code. Unfortunately, the amount of code is so vast right 9418 now that it's hard to see whether the code handling a particular 9419 situation might be duplicated or not. One day, when the code is 9420 cleaned up, this guide might become redundant with the comments 9421 inserted in the code, and we might want to remove it. 9422 9423 2. ``Fixing'' an Entity, the Simple Case: 9424 ----------------------------------------- 9425 9426 When evaluating Ada expressions, the tricky issue is that they may 9427 reference entities whose type contents and size are not statically 9428 known. Consider for instance a variant record: 9429 9430 type Rec (Empty : Boolean := True) is record 9431 case Empty is 9432 when True => null; 9433 when False => Value : Integer; 9434 end case; 9435 end record; 9436 Yes : Rec := (Empty => False, Value => 1); 9437 No : Rec := (empty => True); 9438 9439 The size and contents of that record depends on the value of the 9440 descriminant (Rec.Empty). At this point, neither the debugging 9441 information nor the associated type structure in GDB are able to 9442 express such dynamic types. So what the debugger does is to create 9443 "fixed" versions of the type that applies to the specific object. 9444 We also informally refer to this opperation as "fixing" an object, 9445 which means creating its associated fixed type. 9446 9447 Example: when printing the value of variable "Yes" above, its fixed 9448 type would look like this: 9449 9450 type Rec is record 9451 Empty : Boolean; 9452 Value : Integer; 9453 end record; 9454 9455 On the other hand, if we printed the value of "No", its fixed type 9456 would become: 9457 9458 type Rec is record 9459 Empty : Boolean; 9460 end record; 9461 9462 Things become a little more complicated when trying to fix an entity 9463 with a dynamic type that directly contains another dynamic type, 9464 such as an array of variant records, for instance. There are 9465 two possible cases: Arrays, and records. 9466 9467 3. ``Fixing'' Arrays: 9468 --------------------- 9469 9470 The type structure in GDB describes an array in terms of its bounds, 9471 and the type of its elements. By design, all elements in the array 9472 have the same type and we cannot represent an array of variant elements 9473 using the current type structure in GDB. When fixing an array, 9474 we cannot fix the array element, as we would potentially need one 9475 fixed type per element of the array. As a result, the best we can do 9476 when fixing an array is to produce an array whose bounds and size 9477 are correct (allowing us to read it from memory), but without having 9478 touched its element type. Fixing each element will be done later, 9479 when (if) necessary. 9480 9481 Arrays are a little simpler to handle than records, because the same 9482 amount of memory is allocated for each element of the array, even if 9483 the amount of space actually used by each element differs from element 9484 to element. Consider for instance the following array of type Rec: 9485 9486 type Rec_Array is array (1 .. 2) of Rec; 9487 9488 The actual amount of memory occupied by each element might be different 9489 from element to element, depending on the value of their discriminant. 9490 But the amount of space reserved for each element in the array remains 9491 fixed regardless. So we simply need to compute that size using 9492 the debugging information available, from which we can then determine 9493 the array size (we multiply the number of elements of the array by 9494 the size of each element). 9495 9496 The simplest case is when we have an array of a constrained element 9497 type. For instance, consider the following type declarations: 9498 9499 type Bounded_String (Max_Size : Integer) is 9500 Length : Integer; 9501 Buffer : String (1 .. Max_Size); 9502 end record; 9503 type Bounded_String_Array is array (1 ..2) of Bounded_String (80); 9504 9505 In this case, the compiler describes the array as an array of 9506 variable-size elements (identified by its XVS suffix) for which 9507 the size can be read in the parallel XVZ variable. 9508 9509 In the case of an array of an unconstrained element type, the compiler 9510 wraps the array element inside a private PAD type. This type should not 9511 be shown to the user, and must be "unwrap"'ed before printing. Note 9512 that we also use the adjective "aligner" in our code to designate 9513 these wrapper types. 9514 9515 In some cases, the size allocated for each element is statically 9516 known. In that case, the PAD type already has the correct size, 9517 and the array element should remain unfixed. 9518 9519 But there are cases when this size is not statically known. 9520 For instance, assuming that "Five" is an integer variable: 9521 9522 type Dynamic is array (1 .. Five) of Integer; 9523 type Wrapper (Has_Length : Boolean := False) is record 9524 Data : Dynamic; 9525 case Has_Length is 9526 when True => Length : Integer; 9527 when False => null; 9528 end case; 9529 end record; 9530 type Wrapper_Array is array (1 .. 2) of Wrapper; 9531 9532 Hello : Wrapper_Array := (others => (Has_Length => True, 9533 Data => (others => 17), 9534 Length => 1)); 9535 9536 9537 The debugging info would describe variable Hello as being an 9538 array of a PAD type. The size of that PAD type is not statically 9539 known, but can be determined using a parallel XVZ variable. 9540 In that case, a copy of the PAD type with the correct size should 9541 be used for the fixed array. 9542 9543 3. ``Fixing'' record type objects: 9544 ---------------------------------- 9545 9546 Things are slightly different from arrays in the case of dynamic 9547 record types. In this case, in order to compute the associated 9548 fixed type, we need to determine the size and offset of each of 9549 its components. This, in turn, requires us to compute the fixed 9550 type of each of these components. 9551 9552 Consider for instance the example: 9553 9554 type Bounded_String (Max_Size : Natural) is record 9555 Str : String (1 .. Max_Size); 9556 Length : Natural; 9557 end record; 9558 My_String : Bounded_String (Max_Size => 10); 9559 9560 In that case, the position of field "Length" depends on the size 9561 of field Str, which itself depends on the value of the Max_Size 9562 discriminant. In order to fix the type of variable My_String, 9563 we need to fix the type of field Str. Therefore, fixing a variant 9564 record requires us to fix each of its components. 9565 9566 However, if a component does not have a dynamic size, the component 9567 should not be fixed. In particular, fields that use a PAD type 9568 should not fixed. Here is an example where this might happen 9569 (assuming type Rec above): 9570 9571 type Container (Big : Boolean) is record 9572 First : Rec; 9573 After : Integer; 9574 case Big is 9575 when True => Another : Integer; 9576 when False => null; 9577 end case; 9578 end record; 9579 My_Container : Container := (Big => False, 9580 First => (Empty => True), 9581 After => 42); 9582 9583 In that example, the compiler creates a PAD type for component First, 9584 whose size is constant, and then positions the component After just 9585 right after it. The offset of component After is therefore constant 9586 in this case. 9587 9588 The debugger computes the position of each field based on an algorithm 9589 that uses, among other things, the actual position and size of the field 9590 preceding it. Let's now imagine that the user is trying to print 9591 the value of My_Container. If the type fixing was recursive, we would 9592 end up computing the offset of field After based on the size of the 9593 fixed version of field First. And since in our example First has 9594 only one actual field, the size of the fixed type is actually smaller 9595 than the amount of space allocated to that field, and thus we would 9596 compute the wrong offset of field After. 9597 9598 To make things more complicated, we need to watch out for dynamic 9599 components of variant records (identified by the ___XVL suffix in 9600 the component name). Even if the target type is a PAD type, the size 9601 of that type might not be statically known. So the PAD type needs 9602 to be unwrapped and the resulting type needs to be fixed. Otherwise, 9603 we might end up with the wrong size for our component. This can be 9604 observed with the following type declarations: 9605 9606 type Octal is new Integer range 0 .. 7; 9607 type Octal_Array is array (Positive range <>) of Octal; 9608 pragma Pack (Octal_Array); 9609 9610 type Octal_Buffer (Size : Positive) is record 9611 Buffer : Octal_Array (1 .. Size); 9612 Length : Integer; 9613 end record; 9614 9615 In that case, Buffer is a PAD type whose size is unset and needs 9616 to be computed by fixing the unwrapped type. 9617 9618 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity: 9619 ---------------------------------------------------------- 9620 9621 Lastly, when should the sub-elements of an entity that remained unfixed 9622 thus far, be actually fixed? 9623 9624 The answer is: Only when referencing that element. For instance 9625 when selecting one component of a record, this specific component 9626 should be fixed at that point in time. Or when printing the value 9627 of a record, each component should be fixed before its value gets 9628 printed. Similarly for arrays, the element of the array should be 9629 fixed when printing each element of the array, or when extracting 9630 one element out of that array. On the other hand, fixing should 9631 not be performed on the elements when taking a slice of an array! 9632 9633 Note that one of the side-effects of miscomputing the offset and 9634 size of each field is that we end up also miscomputing the size 9635 of the containing type. This can have adverse results when computing 9636 the value of an entity. GDB fetches the value of an entity based 9637 on the size of its type, and thus a wrong size causes GDB to fetch 9638 the wrong amount of memory. In the case where the computed size is 9639 too small, GDB fetches too little data to print the value of our 9640 entiry. Results in this case as unpredicatble, as we usually read 9641 past the buffer containing the data =:-o. */ 9642 9643 /* Implement the evaluate_exp routine in the exp_descriptor structure 9644 for the Ada language. */ 9645 9646 static struct value * 9647 ada_evaluate_subexp (struct type *expect_type, struct expression *exp, 9648 int *pos, enum noside noside) 9649 { 9650 enum exp_opcode op; 9651 int tem; 9652 int pc; 9653 struct value *arg1 = NULL, *arg2 = NULL, *arg3; 9654 struct type *type; 9655 int nargs, oplen; 9656 struct value **argvec; 9657 9658 pc = *pos; 9659 *pos += 1; 9660 op = exp->elts[pc].opcode; 9661 9662 switch (op) 9663 { 9664 default: 9665 *pos -= 1; 9666 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); 9667 9668 if (noside == EVAL_NORMAL) 9669 arg1 = unwrap_value (arg1); 9670 9671 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided, 9672 then we need to perform the conversion manually, because 9673 evaluate_subexp_standard doesn't do it. This conversion is 9674 necessary in Ada because the different kinds of float/fixed 9675 types in Ada have different representations. 9676 9677 Similarly, we need to perform the conversion from OP_LONG 9678 ourselves. */ 9679 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL) 9680 arg1 = ada_value_cast (expect_type, arg1, noside); 9681 9682 return arg1; 9683 9684 case OP_STRING: 9685 { 9686 struct value *result; 9687 9688 *pos -= 1; 9689 result = evaluate_subexp_standard (expect_type, exp, pos, noside); 9690 /* The result type will have code OP_STRING, bashed there from 9691 OP_ARRAY. Bash it back. */ 9692 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING) 9693 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY; 9694 return result; 9695 } 9696 9697 case UNOP_CAST: 9698 (*pos) += 2; 9699 type = exp->elts[pc + 1].type; 9700 arg1 = evaluate_subexp (type, exp, pos, noside); 9701 if (noside == EVAL_SKIP) 9702 goto nosideret; 9703 arg1 = ada_value_cast (type, arg1, noside); 9704 return arg1; 9705 9706 case UNOP_QUAL: 9707 (*pos) += 2; 9708 type = exp->elts[pc + 1].type; 9709 return ada_evaluate_subexp (type, exp, pos, noside); 9710 9711 case BINOP_ASSIGN: 9712 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9713 if (exp->elts[*pos].opcode == OP_AGGREGATE) 9714 { 9715 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside); 9716 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) 9717 return arg1; 9718 return ada_value_assign (arg1, arg1); 9719 } 9720 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1, 9721 except if the lhs of our assignment is a convenience variable. 9722 In the case of assigning to a convenience variable, the lhs 9723 should be exactly the result of the evaluation of the rhs. */ 9724 type = value_type (arg1); 9725 if (VALUE_LVAL (arg1) == lval_internalvar) 9726 type = NULL; 9727 arg2 = evaluate_subexp (type, exp, pos, noside); 9728 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) 9729 return arg1; 9730 if (ada_is_fixed_point_type (value_type (arg1))) 9731 arg2 = cast_to_fixed (value_type (arg1), arg2); 9732 else if (ada_is_fixed_point_type (value_type (arg2))) 9733 error 9734 (_("Fixed-point values must be assigned to fixed-point variables")); 9735 else 9736 arg2 = coerce_for_assign (value_type (arg1), arg2); 9737 return ada_value_assign (arg1, arg2); 9738 9739 case BINOP_ADD: 9740 arg1 = evaluate_subexp_with_coercion (exp, pos, noside); 9741 arg2 = evaluate_subexp_with_coercion (exp, pos, noside); 9742 if (noside == EVAL_SKIP) 9743 goto nosideret; 9744 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) 9745 return (value_from_longest 9746 (value_type (arg1), 9747 value_as_long (arg1) + value_as_long (arg2))); 9748 if ((ada_is_fixed_point_type (value_type (arg1)) 9749 || ada_is_fixed_point_type (value_type (arg2))) 9750 && value_type (arg1) != value_type (arg2)) 9751 error (_("Operands of fixed-point addition must have the same type")); 9752 /* Do the addition, and cast the result to the type of the first 9753 argument. We cannot cast the result to a reference type, so if 9754 ARG1 is a reference type, find its underlying type. */ 9755 type = value_type (arg1); 9756 while (TYPE_CODE (type) == TYPE_CODE_REF) 9757 type = TYPE_TARGET_TYPE (type); 9758 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 9759 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD)); 9760 9761 case BINOP_SUB: 9762 arg1 = evaluate_subexp_with_coercion (exp, pos, noside); 9763 arg2 = evaluate_subexp_with_coercion (exp, pos, noside); 9764 if (noside == EVAL_SKIP) 9765 goto nosideret; 9766 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR) 9767 return (value_from_longest 9768 (value_type (arg1), 9769 value_as_long (arg1) - value_as_long (arg2))); 9770 if ((ada_is_fixed_point_type (value_type (arg1)) 9771 || ada_is_fixed_point_type (value_type (arg2))) 9772 && value_type (arg1) != value_type (arg2)) 9773 error (_("Operands of fixed-point subtraction " 9774 "must have the same type")); 9775 /* Do the substraction, and cast the result to the type of the first 9776 argument. We cannot cast the result to a reference type, so if 9777 ARG1 is a reference type, find its underlying type. */ 9778 type = value_type (arg1); 9779 while (TYPE_CODE (type) == TYPE_CODE_REF) 9780 type = TYPE_TARGET_TYPE (type); 9781 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 9782 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB)); 9783 9784 case BINOP_MUL: 9785 case BINOP_DIV: 9786 case BINOP_REM: 9787 case BINOP_MOD: 9788 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9789 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9790 if (noside == EVAL_SKIP) 9791 goto nosideret; 9792 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 9793 { 9794 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 9795 return value_zero (value_type (arg1), not_lval); 9796 } 9797 else 9798 { 9799 type = builtin_type (exp->gdbarch)->builtin_double; 9800 if (ada_is_fixed_point_type (value_type (arg1))) 9801 arg1 = cast_from_fixed (type, arg1); 9802 if (ada_is_fixed_point_type (value_type (arg2))) 9803 arg2 = cast_from_fixed (type, arg2); 9804 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 9805 return ada_value_binop (arg1, arg2, op); 9806 } 9807 9808 case BINOP_EQUAL: 9809 case BINOP_NOTEQUAL: 9810 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9811 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside); 9812 if (noside == EVAL_SKIP) 9813 goto nosideret; 9814 if (noside == EVAL_AVOID_SIDE_EFFECTS) 9815 tem = 0; 9816 else 9817 { 9818 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 9819 tem = ada_value_equal (arg1, arg2); 9820 } 9821 if (op == BINOP_NOTEQUAL) 9822 tem = !tem; 9823 type = language_bool_type (exp->language_defn, exp->gdbarch); 9824 return value_from_longest (type, (LONGEST) tem); 9825 9826 case UNOP_NEG: 9827 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9828 if (noside == EVAL_SKIP) 9829 goto nosideret; 9830 else if (ada_is_fixed_point_type (value_type (arg1))) 9831 return value_cast (value_type (arg1), value_neg (arg1)); 9832 else 9833 { 9834 unop_promote (exp->language_defn, exp->gdbarch, &arg1); 9835 return value_neg (arg1); 9836 } 9837 9838 case BINOP_LOGICAL_AND: 9839 case BINOP_LOGICAL_OR: 9840 case UNOP_LOGICAL_NOT: 9841 { 9842 struct value *val; 9843 9844 *pos -= 1; 9845 val = evaluate_subexp_standard (expect_type, exp, pos, noside); 9846 type = language_bool_type (exp->language_defn, exp->gdbarch); 9847 return value_cast (type, val); 9848 } 9849 9850 case BINOP_BITWISE_AND: 9851 case BINOP_BITWISE_IOR: 9852 case BINOP_BITWISE_XOR: 9853 { 9854 struct value *val; 9855 9856 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); 9857 *pos = pc; 9858 val = evaluate_subexp_standard (expect_type, exp, pos, noside); 9859 9860 return value_cast (value_type (arg1), val); 9861 } 9862 9863 case OP_VAR_VALUE: 9864 *pos -= 1; 9865 9866 if (noside == EVAL_SKIP) 9867 { 9868 *pos += 4; 9869 goto nosideret; 9870 } 9871 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN) 9872 /* Only encountered when an unresolved symbol occurs in a 9873 context other than a function call, in which case, it is 9874 invalid. */ 9875 error (_("Unexpected unresolved symbol, %s, during evaluation"), 9876 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol)); 9877 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 9878 { 9879 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol)); 9880 /* Check to see if this is a tagged type. We also need to handle 9881 the case where the type is a reference to a tagged type, but 9882 we have to be careful to exclude pointers to tagged types. 9883 The latter should be shown as usual (as a pointer), whereas 9884 a reference should mostly be transparent to the user. */ 9885 if (ada_is_tagged_type (type, 0) 9886 || (TYPE_CODE(type) == TYPE_CODE_REF 9887 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))) 9888 { 9889 /* Tagged types are a little special in the fact that the real 9890 type is dynamic and can only be determined by inspecting the 9891 object's tag. This means that we need to get the object's 9892 value first (EVAL_NORMAL) and then extract the actual object 9893 type from its tag. 9894 9895 Note that we cannot skip the final step where we extract 9896 the object type from its tag, because the EVAL_NORMAL phase 9897 results in dynamic components being resolved into fixed ones. 9898 This can cause problems when trying to print the type 9899 description of tagged types whose parent has a dynamic size: 9900 We use the type name of the "_parent" component in order 9901 to print the name of the ancestor type in the type description. 9902 If that component had a dynamic size, the resolution into 9903 a fixed type would result in the loss of that type name, 9904 thus preventing us from printing the name of the ancestor 9905 type in the type description. */ 9906 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL); 9907 9908 if (TYPE_CODE (type) != TYPE_CODE_REF) 9909 { 9910 struct type *actual_type; 9911 9912 actual_type = type_from_tag (ada_value_tag (arg1)); 9913 if (actual_type == NULL) 9914 /* If, for some reason, we were unable to determine 9915 the actual type from the tag, then use the static 9916 approximation that we just computed as a fallback. 9917 This can happen if the debugging information is 9918 incomplete, for instance. */ 9919 actual_type = type; 9920 return value_zero (actual_type, not_lval); 9921 } 9922 else 9923 { 9924 /* In the case of a ref, ada_coerce_ref takes care 9925 of determining the actual type. But the evaluation 9926 should return a ref as it should be valid to ask 9927 for its address; so rebuild a ref after coerce. */ 9928 arg1 = ada_coerce_ref (arg1); 9929 return value_ref (arg1); 9930 } 9931 } 9932 9933 *pos += 4; 9934 return value_zero 9935 (to_static_fixed_type 9936 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))), 9937 not_lval); 9938 } 9939 else 9940 { 9941 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside); 9942 return ada_to_fixed_value (arg1); 9943 } 9944 9945 case OP_FUNCALL: 9946 (*pos) += 2; 9947 9948 /* Allocate arg vector, including space for the function to be 9949 called in argvec[0] and a terminating NULL. */ 9950 nargs = longest_to_int (exp->elts[pc + 1].longconst); 9951 argvec = 9952 (struct value **) alloca (sizeof (struct value *) * (nargs + 2)); 9953 9954 if (exp->elts[*pos].opcode == OP_VAR_VALUE 9955 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN) 9956 error (_("Unexpected unresolved symbol, %s, during evaluation"), 9957 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol)); 9958 else 9959 { 9960 for (tem = 0; tem <= nargs; tem += 1) 9961 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); 9962 argvec[tem] = 0; 9963 9964 if (noside == EVAL_SKIP) 9965 goto nosideret; 9966 } 9967 9968 if (ada_is_constrained_packed_array_type 9969 (desc_base_type (value_type (argvec[0])))) 9970 argvec[0] = ada_coerce_to_simple_array (argvec[0]); 9971 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY 9972 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0) 9973 /* This is a packed array that has already been fixed, and 9974 therefore already coerced to a simple array. Nothing further 9975 to do. */ 9976 ; 9977 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF 9978 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY 9979 && VALUE_LVAL (argvec[0]) == lval_memory)) 9980 argvec[0] = value_addr (argvec[0]); 9981 9982 type = ada_check_typedef (value_type (argvec[0])); 9983 9984 /* Ada allows us to implicitly dereference arrays when subscripting 9985 them. So, if this is an array typedef (encoding use for array 9986 access types encoded as fat pointers), strip it now. */ 9987 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) 9988 type = ada_typedef_target_type (type); 9989 9990 if (TYPE_CODE (type) == TYPE_CODE_PTR) 9991 { 9992 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))) 9993 { 9994 case TYPE_CODE_FUNC: 9995 type = ada_check_typedef (TYPE_TARGET_TYPE (type)); 9996 break; 9997 case TYPE_CODE_ARRAY: 9998 break; 9999 case TYPE_CODE_STRUCT: 10000 if (noside != EVAL_AVOID_SIDE_EFFECTS) 10001 argvec[0] = ada_value_ind (argvec[0]); 10002 type = ada_check_typedef (TYPE_TARGET_TYPE (type)); 10003 break; 10004 default: 10005 error (_("cannot subscript or call something of type `%s'"), 10006 ada_type_name (value_type (argvec[0]))); 10007 break; 10008 } 10009 } 10010 10011 switch (TYPE_CODE (type)) 10012 { 10013 case TYPE_CODE_FUNC: 10014 if (noside == EVAL_AVOID_SIDE_EFFECTS) 10015 { 10016 struct type *rtype = TYPE_TARGET_TYPE (type); 10017 10018 if (TYPE_GNU_IFUNC (type)) 10019 return allocate_value (TYPE_TARGET_TYPE (rtype)); 10020 return allocate_value (rtype); 10021 } 10022 return call_function_by_hand (argvec[0], nargs, argvec + 1); 10023 case TYPE_CODE_INTERNAL_FUNCTION: 10024 if (noside == EVAL_AVOID_SIDE_EFFECTS) 10025 /* We don't know anything about what the internal 10026 function might return, but we have to return 10027 something. */ 10028 return value_zero (builtin_type (exp->gdbarch)->builtin_int, 10029 not_lval); 10030 else 10031 return call_internal_function (exp->gdbarch, exp->language_defn, 10032 argvec[0], nargs, argvec + 1); 10033 10034 case TYPE_CODE_STRUCT: 10035 { 10036 int arity; 10037 10038 arity = ada_array_arity (type); 10039 type = ada_array_element_type (type, nargs); 10040 if (type == NULL) 10041 error (_("cannot subscript or call a record")); 10042 if (arity != nargs) 10043 error (_("wrong number of subscripts; expecting %d"), arity); 10044 if (noside == EVAL_AVOID_SIDE_EFFECTS) 10045 return value_zero (ada_aligned_type (type), lval_memory); 10046 return 10047 unwrap_value (ada_value_subscript 10048 (argvec[0], nargs, argvec + 1)); 10049 } 10050 case TYPE_CODE_ARRAY: 10051 if (noside == EVAL_AVOID_SIDE_EFFECTS) 10052 { 10053 type = ada_array_element_type (type, nargs); 10054 if (type == NULL) 10055 error (_("element type of array unknown")); 10056 else 10057 return value_zero (ada_aligned_type (type), lval_memory); 10058 } 10059 return 10060 unwrap_value (ada_value_subscript 10061 (ada_coerce_to_simple_array (argvec[0]), 10062 nargs, argvec + 1)); 10063 case TYPE_CODE_PTR: /* Pointer to array */ 10064 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); 10065 if (noside == EVAL_AVOID_SIDE_EFFECTS) 10066 { 10067 type = ada_array_element_type (type, nargs); 10068 if (type == NULL) 10069 error (_("element type of array unknown")); 10070 else 10071 return value_zero (ada_aligned_type (type), lval_memory); 10072 } 10073 return 10074 unwrap_value (ada_value_ptr_subscript (argvec[0], type, 10075 nargs, argvec + 1)); 10076 10077 default: 10078 error (_("Attempt to index or call something other than an " 10079 "array or function")); 10080 } 10081 10082 case TERNOP_SLICE: 10083 { 10084 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10085 struct value *low_bound_val = 10086 evaluate_subexp (NULL_TYPE, exp, pos, noside); 10087 struct value *high_bound_val = 10088 evaluate_subexp (NULL_TYPE, exp, pos, noside); 10089 LONGEST low_bound; 10090 LONGEST high_bound; 10091 10092 low_bound_val = coerce_ref (low_bound_val); 10093 high_bound_val = coerce_ref (high_bound_val); 10094 low_bound = pos_atr (low_bound_val); 10095 high_bound = pos_atr (high_bound_val); 10096 10097 if (noside == EVAL_SKIP) 10098 goto nosideret; 10099 10100 /* If this is a reference to an aligner type, then remove all 10101 the aligners. */ 10102 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF 10103 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array)))) 10104 TYPE_TARGET_TYPE (value_type (array)) = 10105 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array))); 10106 10107 if (ada_is_constrained_packed_array_type (value_type (array))) 10108 error (_("cannot slice a packed array")); 10109 10110 /* If this is a reference to an array or an array lvalue, 10111 convert to a pointer. */ 10112 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF 10113 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY 10114 && VALUE_LVAL (array) == lval_memory)) 10115 array = value_addr (array); 10116 10117 if (noside == EVAL_AVOID_SIDE_EFFECTS 10118 && ada_is_array_descriptor_type (ada_check_typedef 10119 (value_type (array)))) 10120 return empty_array (ada_type_of_array (array, 0), low_bound); 10121 10122 array = ada_coerce_to_simple_array_ptr (array); 10123 10124 /* If we have more than one level of pointer indirection, 10125 dereference the value until we get only one level. */ 10126 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR 10127 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array))) 10128 == TYPE_CODE_PTR)) 10129 array = value_ind (array); 10130 10131 /* Make sure we really do have an array type before going further, 10132 to avoid a SEGV when trying to get the index type or the target 10133 type later down the road if the debug info generated by 10134 the compiler is incorrect or incomplete. */ 10135 if (!ada_is_simple_array_type (value_type (array))) 10136 error (_("cannot take slice of non-array")); 10137 10138 if (TYPE_CODE (ada_check_typedef (value_type (array))) 10139 == TYPE_CODE_PTR) 10140 { 10141 struct type *type0 = ada_check_typedef (value_type (array)); 10142 10143 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS) 10144 return empty_array (TYPE_TARGET_TYPE (type0), low_bound); 10145 else 10146 { 10147 struct type *arr_type0 = 10148 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1); 10149 10150 return ada_value_slice_from_ptr (array, arr_type0, 10151 longest_to_int (low_bound), 10152 longest_to_int (high_bound)); 10153 } 10154 } 10155 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 10156 return array; 10157 else if (high_bound < low_bound) 10158 return empty_array (value_type (array), low_bound); 10159 else 10160 return ada_value_slice (array, longest_to_int (low_bound), 10161 longest_to_int (high_bound)); 10162 } 10163 10164 case UNOP_IN_RANGE: 10165 (*pos) += 2; 10166 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10167 type = check_typedef (exp->elts[pc + 1].type); 10168 10169 if (noside == EVAL_SKIP) 10170 goto nosideret; 10171 10172 switch (TYPE_CODE (type)) 10173 { 10174 default: 10175 lim_warning (_("Membership test incompletely implemented; " 10176 "always returns true")); 10177 type = language_bool_type (exp->language_defn, exp->gdbarch); 10178 return value_from_longest (type, (LONGEST) 1); 10179 10180 case TYPE_CODE_RANGE: 10181 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type)); 10182 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type)); 10183 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 10184 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); 10185 type = language_bool_type (exp->language_defn, exp->gdbarch); 10186 return 10187 value_from_longest (type, 10188 (value_less (arg1, arg3) 10189 || value_equal (arg1, arg3)) 10190 && (value_less (arg2, arg1) 10191 || value_equal (arg2, arg1))); 10192 } 10193 10194 case BINOP_IN_BOUNDS: 10195 (*pos) += 2; 10196 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10197 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10198 10199 if (noside == EVAL_SKIP) 10200 goto nosideret; 10201 10202 if (noside == EVAL_AVOID_SIDE_EFFECTS) 10203 { 10204 type = language_bool_type (exp->language_defn, exp->gdbarch); 10205 return value_zero (type, not_lval); 10206 } 10207 10208 tem = longest_to_int (exp->elts[pc + 1].longconst); 10209 10210 type = ada_index_type (value_type (arg2), tem, "range"); 10211 if (!type) 10212 type = value_type (arg1); 10213 10214 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1)); 10215 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0)); 10216 10217 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 10218 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); 10219 type = language_bool_type (exp->language_defn, exp->gdbarch); 10220 return 10221 value_from_longest (type, 10222 (value_less (arg1, arg3) 10223 || value_equal (arg1, arg3)) 10224 && (value_less (arg2, arg1) 10225 || value_equal (arg2, arg1))); 10226 10227 case TERNOP_IN_RANGE: 10228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10229 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10230 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10231 10232 if (noside == EVAL_SKIP) 10233 goto nosideret; 10234 10235 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 10236 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3); 10237 type = language_bool_type (exp->language_defn, exp->gdbarch); 10238 return 10239 value_from_longest (type, 10240 (value_less (arg1, arg3) 10241 || value_equal (arg1, arg3)) 10242 && (value_less (arg2, arg1) 10243 || value_equal (arg2, arg1))); 10244 10245 case OP_ATR_FIRST: 10246 case OP_ATR_LAST: 10247 case OP_ATR_LENGTH: 10248 { 10249 struct type *type_arg; 10250 10251 if (exp->elts[*pos].opcode == OP_TYPE) 10252 { 10253 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); 10254 arg1 = NULL; 10255 type_arg = check_typedef (exp->elts[pc + 2].type); 10256 } 10257 else 10258 { 10259 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10260 type_arg = NULL; 10261 } 10262 10263 if (exp->elts[*pos].opcode != OP_LONG) 10264 error (_("Invalid operand to '%s"), ada_attribute_name (op)); 10265 tem = longest_to_int (exp->elts[*pos + 2].longconst); 10266 *pos += 4; 10267 10268 if (noside == EVAL_SKIP) 10269 goto nosideret; 10270 10271 if (type_arg == NULL) 10272 { 10273 arg1 = ada_coerce_ref (arg1); 10274 10275 if (ada_is_constrained_packed_array_type (value_type (arg1))) 10276 arg1 = ada_coerce_to_simple_array (arg1); 10277 10278 type = ada_index_type (value_type (arg1), tem, 10279 ada_attribute_name (op)); 10280 if (type == NULL) 10281 type = builtin_type (exp->gdbarch)->builtin_int; 10282 10283 if (noside == EVAL_AVOID_SIDE_EFFECTS) 10284 return allocate_value (type); 10285 10286 switch (op) 10287 { 10288 default: /* Should never happen. */ 10289 error (_("unexpected attribute encountered")); 10290 case OP_ATR_FIRST: 10291 return value_from_longest 10292 (type, ada_array_bound (arg1, tem, 0)); 10293 case OP_ATR_LAST: 10294 return value_from_longest 10295 (type, ada_array_bound (arg1, tem, 1)); 10296 case OP_ATR_LENGTH: 10297 return value_from_longest 10298 (type, ada_array_length (arg1, tem)); 10299 } 10300 } 10301 else if (discrete_type_p (type_arg)) 10302 { 10303 struct type *range_type; 10304 const char *name = ada_type_name (type_arg); 10305 10306 range_type = NULL; 10307 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM) 10308 range_type = to_fixed_range_type (type_arg, NULL); 10309 if (range_type == NULL) 10310 range_type = type_arg; 10311 switch (op) 10312 { 10313 default: 10314 error (_("unexpected attribute encountered")); 10315 case OP_ATR_FIRST: 10316 return value_from_longest 10317 (range_type, ada_discrete_type_low_bound (range_type)); 10318 case OP_ATR_LAST: 10319 return value_from_longest 10320 (range_type, ada_discrete_type_high_bound (range_type)); 10321 case OP_ATR_LENGTH: 10322 error (_("the 'length attribute applies only to array types")); 10323 } 10324 } 10325 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) 10326 error (_("unimplemented type attribute")); 10327 else 10328 { 10329 LONGEST low, high; 10330 10331 if (ada_is_constrained_packed_array_type (type_arg)) 10332 type_arg = decode_constrained_packed_array_type (type_arg); 10333 10334 type = ada_index_type (type_arg, tem, ada_attribute_name (op)); 10335 if (type == NULL) 10336 type = builtin_type (exp->gdbarch)->builtin_int; 10337 10338 if (noside == EVAL_AVOID_SIDE_EFFECTS) 10339 return allocate_value (type); 10340 10341 switch (op) 10342 { 10343 default: 10344 error (_("unexpected attribute encountered")); 10345 case OP_ATR_FIRST: 10346 low = ada_array_bound_from_type (type_arg, tem, 0); 10347 return value_from_longest (type, low); 10348 case OP_ATR_LAST: 10349 high = ada_array_bound_from_type (type_arg, tem, 1); 10350 return value_from_longest (type, high); 10351 case OP_ATR_LENGTH: 10352 low = ada_array_bound_from_type (type_arg, tem, 0); 10353 high = ada_array_bound_from_type (type_arg, tem, 1); 10354 return value_from_longest (type, high - low + 1); 10355 } 10356 } 10357 } 10358 10359 case OP_ATR_TAG: 10360 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10361 if (noside == EVAL_SKIP) 10362 goto nosideret; 10363 10364 if (noside == EVAL_AVOID_SIDE_EFFECTS) 10365 return value_zero (ada_tag_type (arg1), not_lval); 10366 10367 return ada_value_tag (arg1); 10368 10369 case OP_ATR_MIN: 10370 case OP_ATR_MAX: 10371 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); 10372 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10373 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10374 if (noside == EVAL_SKIP) 10375 goto nosideret; 10376 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 10377 return value_zero (value_type (arg1), not_lval); 10378 else 10379 { 10380 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 10381 return value_binop (arg1, arg2, 10382 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX); 10383 } 10384 10385 case OP_ATR_MODULUS: 10386 { 10387 struct type *type_arg = check_typedef (exp->elts[pc + 2].type); 10388 10389 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); 10390 if (noside == EVAL_SKIP) 10391 goto nosideret; 10392 10393 if (!ada_is_modular_type (type_arg)) 10394 error (_("'modulus must be applied to modular type")); 10395 10396 return value_from_longest (TYPE_TARGET_TYPE (type_arg), 10397 ada_modulus (type_arg)); 10398 } 10399 10400 10401 case OP_ATR_POS: 10402 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); 10403 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10404 if (noside == EVAL_SKIP) 10405 goto nosideret; 10406 type = builtin_type (exp->gdbarch)->builtin_int; 10407 if (noside == EVAL_AVOID_SIDE_EFFECTS) 10408 return value_zero (type, not_lval); 10409 else 10410 return value_pos_atr (type, arg1); 10411 10412 case OP_ATR_SIZE: 10413 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10414 type = value_type (arg1); 10415 10416 /* If the argument is a reference, then dereference its type, since 10417 the user is really asking for the size of the actual object, 10418 not the size of the pointer. */ 10419 if (TYPE_CODE (type) == TYPE_CODE_REF) 10420 type = TYPE_TARGET_TYPE (type); 10421 10422 if (noside == EVAL_SKIP) 10423 goto nosideret; 10424 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 10425 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval); 10426 else 10427 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 10428 TARGET_CHAR_BIT * TYPE_LENGTH (type)); 10429 10430 case OP_ATR_VAL: 10431 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); 10432 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10433 type = exp->elts[pc + 2].type; 10434 if (noside == EVAL_SKIP) 10435 goto nosideret; 10436 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 10437 return value_zero (type, not_lval); 10438 else 10439 return value_val_atr (type, arg1); 10440 10441 case BINOP_EXP: 10442 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10443 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10444 if (noside == EVAL_SKIP) 10445 goto nosideret; 10446 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 10447 return value_zero (value_type (arg1), not_lval); 10448 else 10449 { 10450 /* For integer exponentiation operations, 10451 only promote the first argument. */ 10452 if (is_integral_type (value_type (arg2))) 10453 unop_promote (exp->language_defn, exp->gdbarch, &arg1); 10454 else 10455 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2); 10456 10457 return value_binop (arg1, arg2, op); 10458 } 10459 10460 case UNOP_PLUS: 10461 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10462 if (noside == EVAL_SKIP) 10463 goto nosideret; 10464 else 10465 return arg1; 10466 10467 case UNOP_ABS: 10468 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10469 if (noside == EVAL_SKIP) 10470 goto nosideret; 10471 unop_promote (exp->language_defn, exp->gdbarch, &arg1); 10472 if (value_less (arg1, value_zero (value_type (arg1), not_lval))) 10473 return value_neg (arg1); 10474 else 10475 return arg1; 10476 10477 case UNOP_IND: 10478 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10479 if (noside == EVAL_SKIP) 10480 goto nosideret; 10481 type = ada_check_typedef (value_type (arg1)); 10482 if (noside == EVAL_AVOID_SIDE_EFFECTS) 10483 { 10484 if (ada_is_array_descriptor_type (type)) 10485 /* GDB allows dereferencing GNAT array descriptors. */ 10486 { 10487 struct type *arrType = ada_type_of_array (arg1, 0); 10488 10489 if (arrType == NULL) 10490 error (_("Attempt to dereference null array pointer.")); 10491 return value_at_lazy (arrType, 0); 10492 } 10493 else if (TYPE_CODE (type) == TYPE_CODE_PTR 10494 || TYPE_CODE (type) == TYPE_CODE_REF 10495 /* In C you can dereference an array to get the 1st elt. */ 10496 || TYPE_CODE (type) == TYPE_CODE_ARRAY) 10497 { 10498 type = to_static_fixed_type 10499 (ada_aligned_type 10500 (ada_check_typedef (TYPE_TARGET_TYPE (type)))); 10501 check_size (type); 10502 return value_zero (type, lval_memory); 10503 } 10504 else if (TYPE_CODE (type) == TYPE_CODE_INT) 10505 { 10506 /* GDB allows dereferencing an int. */ 10507 if (expect_type == NULL) 10508 return value_zero (builtin_type (exp->gdbarch)->builtin_int, 10509 lval_memory); 10510 else 10511 { 10512 expect_type = 10513 to_static_fixed_type (ada_aligned_type (expect_type)); 10514 return value_zero (expect_type, lval_memory); 10515 } 10516 } 10517 else 10518 error (_("Attempt to take contents of a non-pointer value.")); 10519 } 10520 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */ 10521 type = ada_check_typedef (value_type (arg1)); 10522 10523 if (TYPE_CODE (type) == TYPE_CODE_INT) 10524 /* GDB allows dereferencing an int. If we were given 10525 the expect_type, then use that as the target type. 10526 Otherwise, assume that the target type is an int. */ 10527 { 10528 if (expect_type != NULL) 10529 return ada_value_ind (value_cast (lookup_pointer_type (expect_type), 10530 arg1)); 10531 else 10532 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int, 10533 (CORE_ADDR) value_as_address (arg1)); 10534 } 10535 10536 if (ada_is_array_descriptor_type (type)) 10537 /* GDB allows dereferencing GNAT array descriptors. */ 10538 return ada_coerce_to_simple_array (arg1); 10539 else 10540 return ada_value_ind (arg1); 10541 10542 case STRUCTOP_STRUCT: 10543 tem = longest_to_int (exp->elts[pc + 1].longconst); 10544 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); 10545 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); 10546 if (noside == EVAL_SKIP) 10547 goto nosideret; 10548 if (noside == EVAL_AVOID_SIDE_EFFECTS) 10549 { 10550 struct type *type1 = value_type (arg1); 10551 10552 if (ada_is_tagged_type (type1, 1)) 10553 { 10554 type = ada_lookup_struct_elt_type (type1, 10555 &exp->elts[pc + 2].string, 10556 1, 1, NULL); 10557 if (type == NULL) 10558 /* In this case, we assume that the field COULD exist 10559 in some extension of the type. Return an object of 10560 "type" void, which will match any formal 10561 (see ada_type_match). */ 10562 return value_zero (builtin_type (exp->gdbarch)->builtin_void, 10563 lval_memory); 10564 } 10565 else 10566 type = 10567 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1, 10568 0, NULL); 10569 10570 return value_zero (ada_aligned_type (type), lval_memory); 10571 } 10572 else 10573 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0); 10574 arg1 = unwrap_value (arg1); 10575 return ada_to_fixed_value (arg1); 10576 10577 case OP_TYPE: 10578 /* The value is not supposed to be used. This is here to make it 10579 easier to accommodate expressions that contain types. */ 10580 (*pos) += 2; 10581 if (noside == EVAL_SKIP) 10582 goto nosideret; 10583 else if (noside == EVAL_AVOID_SIDE_EFFECTS) 10584 return allocate_value (exp->elts[pc + 1].type); 10585 else 10586 error (_("Attempt to use a type name as an expression")); 10587 10588 case OP_AGGREGATE: 10589 case OP_CHOICES: 10590 case OP_OTHERS: 10591 case OP_DISCRETE_RANGE: 10592 case OP_POSITIONAL: 10593 case OP_NAME: 10594 if (noside == EVAL_NORMAL) 10595 switch (op) 10596 { 10597 case OP_NAME: 10598 error (_("Undefined name, ambiguous name, or renaming used in " 10599 "component association: %s."), &exp->elts[pc+2].string); 10600 case OP_AGGREGATE: 10601 error (_("Aggregates only allowed on the right of an assignment")); 10602 default: 10603 internal_error (__FILE__, __LINE__, 10604 _("aggregate apparently mangled")); 10605 } 10606 10607 ada_forward_operator_length (exp, pc, &oplen, &nargs); 10608 *pos += oplen - 1; 10609 for (tem = 0; tem < nargs; tem += 1) 10610 ada_evaluate_subexp (NULL, exp, pos, noside); 10611 goto nosideret; 10612 } 10613 10614 nosideret: 10615 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1); 10616 } 10617 10618 10619 /* Fixed point */ 10620 10621 /* If TYPE encodes an Ada fixed-point type, return the suffix of the 10622 type name that encodes the 'small and 'delta information. 10623 Otherwise, return NULL. */ 10624 10625 static const char * 10626 fixed_type_info (struct type *type) 10627 { 10628 const char *name = ada_type_name (type); 10629 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); 10630 10631 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL) 10632 { 10633 const char *tail = strstr (name, "___XF_"); 10634 10635 if (tail == NULL) 10636 return NULL; 10637 else 10638 return tail + 5; 10639 } 10640 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) 10641 return fixed_type_info (TYPE_TARGET_TYPE (type)); 10642 else 10643 return NULL; 10644 } 10645 10646 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */ 10647 10648 int 10649 ada_is_fixed_point_type (struct type *type) 10650 { 10651 return fixed_type_info (type) != NULL; 10652 } 10653 10654 /* Return non-zero iff TYPE represents a System.Address type. */ 10655 10656 int 10657 ada_is_system_address_type (struct type *type) 10658 { 10659 return (TYPE_NAME (type) 10660 && strcmp (TYPE_NAME (type), "system__address") == 0); 10661 } 10662 10663 /* Assuming that TYPE is the representation of an Ada fixed-point 10664 type, return its delta, or -1 if the type is malformed and the 10665 delta cannot be determined. */ 10666 10667 DOUBLEST 10668 ada_delta (struct type *type) 10669 { 10670 const char *encoding = fixed_type_info (type); 10671 DOUBLEST num, den; 10672 10673 /* Strictly speaking, num and den are encoded as integer. However, 10674 they may not fit into a long, and they will have to be converted 10675 to DOUBLEST anyway. So scan them as DOUBLEST. */ 10676 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, 10677 &num, &den) < 2) 10678 return -1.0; 10679 else 10680 return num / den; 10681 } 10682 10683 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling 10684 factor ('SMALL value) associated with the type. */ 10685 10686 static DOUBLEST 10687 scaling_factor (struct type *type) 10688 { 10689 const char *encoding = fixed_type_info (type); 10690 DOUBLEST num0, den0, num1, den1; 10691 int n; 10692 10693 /* Strictly speaking, num's and den's are encoded as integer. However, 10694 they may not fit into a long, and they will have to be converted 10695 to DOUBLEST anyway. So scan them as DOUBLEST. */ 10696 n = sscanf (encoding, 10697 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT 10698 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT, 10699 &num0, &den0, &num1, &den1); 10700 10701 if (n < 2) 10702 return 1.0; 10703 else if (n == 4) 10704 return num1 / den1; 10705 else 10706 return num0 / den0; 10707 } 10708 10709 10710 /* Assuming that X is the representation of a value of fixed-point 10711 type TYPE, return its floating-point equivalent. */ 10712 10713 DOUBLEST 10714 ada_fixed_to_float (struct type *type, LONGEST x) 10715 { 10716 return (DOUBLEST) x *scaling_factor (type); 10717 } 10718 10719 /* The representation of a fixed-point value of type TYPE 10720 corresponding to the value X. */ 10721 10722 LONGEST 10723 ada_float_to_fixed (struct type *type, DOUBLEST x) 10724 { 10725 return (LONGEST) (x / scaling_factor (type) + 0.5); 10726 } 10727 10728 10729 10730 /* Range types */ 10731 10732 /* Scan STR beginning at position K for a discriminant name, and 10733 return the value of that discriminant field of DVAL in *PX. If 10734 PNEW_K is not null, put the position of the character beyond the 10735 name scanned in *PNEW_K. Return 1 if successful; return 0 and do 10736 not alter *PX and *PNEW_K if unsuccessful. */ 10737 10738 static int 10739 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px, 10740 int *pnew_k) 10741 { 10742 static char *bound_buffer = NULL; 10743 static size_t bound_buffer_len = 0; 10744 char *bound; 10745 char *pend; 10746 struct value *bound_val; 10747 10748 if (dval == NULL || str == NULL || str[k] == '\0') 10749 return 0; 10750 10751 pend = strstr (str + k, "__"); 10752 if (pend == NULL) 10753 { 10754 bound = str + k; 10755 k += strlen (bound); 10756 } 10757 else 10758 { 10759 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1); 10760 bound = bound_buffer; 10761 strncpy (bound_buffer, str + k, pend - (str + k)); 10762 bound[pend - (str + k)] = '\0'; 10763 k = pend - str; 10764 } 10765 10766 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval)); 10767 if (bound_val == NULL) 10768 return 0; 10769 10770 *px = value_as_long (bound_val); 10771 if (pnew_k != NULL) 10772 *pnew_k = k; 10773 return 1; 10774 } 10775 10776 /* Value of variable named NAME in the current environment. If 10777 no such variable found, then if ERR_MSG is null, returns 0, and 10778 otherwise causes an error with message ERR_MSG. */ 10779 10780 static struct value * 10781 get_var_value (char *name, char *err_msg) 10782 { 10783 struct ada_symbol_info *syms; 10784 int nsyms; 10785 10786 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN, 10787 &syms); 10788 10789 if (nsyms != 1) 10790 { 10791 if (err_msg == NULL) 10792 return 0; 10793 else 10794 error (("%s"), err_msg); 10795 } 10796 10797 return value_of_variable (syms[0].sym, syms[0].block); 10798 } 10799 10800 /* Value of integer variable named NAME in the current environment. If 10801 no such variable found, returns 0, and sets *FLAG to 0. If 10802 successful, sets *FLAG to 1. */ 10803 10804 LONGEST 10805 get_int_var_value (char *name, int *flag) 10806 { 10807 struct value *var_val = get_var_value (name, 0); 10808 10809 if (var_val == 0) 10810 { 10811 if (flag != NULL) 10812 *flag = 0; 10813 return 0; 10814 } 10815 else 10816 { 10817 if (flag != NULL) 10818 *flag = 1; 10819 return value_as_long (var_val); 10820 } 10821 } 10822 10823 10824 /* Return a range type whose base type is that of the range type named 10825 NAME in the current environment, and whose bounds are calculated 10826 from NAME according to the GNAT range encoding conventions. 10827 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the 10828 corresponding range type from debug information; fall back to using it 10829 if symbol lookup fails. If a new type must be created, allocate it 10830 like ORIG_TYPE was. The bounds information, in general, is encoded 10831 in NAME, the base type given in the named range type. */ 10832 10833 static struct type * 10834 to_fixed_range_type (struct type *raw_type, struct value *dval) 10835 { 10836 const char *name; 10837 struct type *base_type; 10838 char *subtype_info; 10839 10840 gdb_assert (raw_type != NULL); 10841 gdb_assert (TYPE_NAME (raw_type) != NULL); 10842 10843 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) 10844 base_type = TYPE_TARGET_TYPE (raw_type); 10845 else 10846 base_type = raw_type; 10847 10848 name = TYPE_NAME (raw_type); 10849 subtype_info = strstr (name, "___XD"); 10850 if (subtype_info == NULL) 10851 { 10852 LONGEST L = ada_discrete_type_low_bound (raw_type); 10853 LONGEST U = ada_discrete_type_high_bound (raw_type); 10854 10855 if (L < INT_MIN || U > INT_MAX) 10856 return raw_type; 10857 else 10858 return create_range_type (alloc_type_copy (raw_type), raw_type, 10859 ada_discrete_type_low_bound (raw_type), 10860 ada_discrete_type_high_bound (raw_type)); 10861 } 10862 else 10863 { 10864 static char *name_buf = NULL; 10865 static size_t name_len = 0; 10866 int prefix_len = subtype_info - name; 10867 LONGEST L, U; 10868 struct type *type; 10869 char *bounds_str; 10870 int n; 10871 10872 GROW_VECT (name_buf, name_len, prefix_len + 5); 10873 strncpy (name_buf, name, prefix_len); 10874 name_buf[prefix_len] = '\0'; 10875 10876 subtype_info += 5; 10877 bounds_str = strchr (subtype_info, '_'); 10878 n = 1; 10879 10880 if (*subtype_info == 'L') 10881 { 10882 if (!ada_scan_number (bounds_str, n, &L, &n) 10883 && !scan_discrim_bound (bounds_str, n, dval, &L, &n)) 10884 return raw_type; 10885 if (bounds_str[n] == '_') 10886 n += 2; 10887 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ 10888 n += 1; 10889 subtype_info += 1; 10890 } 10891 else 10892 { 10893 int ok; 10894 10895 strcpy (name_buf + prefix_len, "___L"); 10896 L = get_int_var_value (name_buf, &ok); 10897 if (!ok) 10898 { 10899 lim_warning (_("Unknown lower bound, using 1.")); 10900 L = 1; 10901 } 10902 } 10903 10904 if (*subtype_info == 'U') 10905 { 10906 if (!ada_scan_number (bounds_str, n, &U, &n) 10907 && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) 10908 return raw_type; 10909 } 10910 else 10911 { 10912 int ok; 10913 10914 strcpy (name_buf + prefix_len, "___U"); 10915 U = get_int_var_value (name_buf, &ok); 10916 if (!ok) 10917 { 10918 lim_warning (_("Unknown upper bound, using %ld."), (long) L); 10919 U = L; 10920 } 10921 } 10922 10923 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U); 10924 TYPE_NAME (type) = name; 10925 return type; 10926 } 10927 } 10928 10929 /* True iff NAME is the name of a range type. */ 10930 10931 int 10932 ada_is_range_type_name (const char *name) 10933 { 10934 return (name != NULL && strstr (name, "___XD")); 10935 } 10936 10937 10938 /* Modular types */ 10939 10940 /* True iff TYPE is an Ada modular type. */ 10941 10942 int 10943 ada_is_modular_type (struct type *type) 10944 { 10945 struct type *subranged_type = get_base_type (type); 10946 10947 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE 10948 && TYPE_CODE (subranged_type) == TYPE_CODE_INT 10949 && TYPE_UNSIGNED (subranged_type)); 10950 } 10951 10952 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ 10953 10954 ULONGEST 10955 ada_modulus (struct type *type) 10956 { 10957 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1; 10958 } 10959 10960 10961 /* Ada exception catchpoint support: 10962 --------------------------------- 10963 10964 We support 3 kinds of exception catchpoints: 10965 . catchpoints on Ada exceptions 10966 . catchpoints on unhandled Ada exceptions 10967 . catchpoints on failed assertions 10968 10969 Exceptions raised during failed assertions, or unhandled exceptions 10970 could perfectly be caught with the general catchpoint on Ada exceptions. 10971 However, we can easily differentiate these two special cases, and having 10972 the option to distinguish these two cases from the rest can be useful 10973 to zero-in on certain situations. 10974 10975 Exception catchpoints are a specialized form of breakpoint, 10976 since they rely on inserting breakpoints inside known routines 10977 of the GNAT runtime. The implementation therefore uses a standard 10978 breakpoint structure of the BP_BREAKPOINT type, but with its own set 10979 of breakpoint_ops. 10980 10981 Support in the runtime for exception catchpoints have been changed 10982 a few times already, and these changes affect the implementation 10983 of these catchpoints. In order to be able to support several 10984 variants of the runtime, we use a sniffer that will determine 10985 the runtime variant used by the program being debugged. */ 10986 10987 /* Ada's standard exceptions. */ 10988 10989 static char *standard_exc[] = { 10990 "constraint_error", 10991 "program_error", 10992 "storage_error", 10993 "tasking_error" 10994 }; 10995 10996 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void); 10997 10998 /* A structure that describes how to support exception catchpoints 10999 for a given executable. */ 11000 11001 struct exception_support_info 11002 { 11003 /* The name of the symbol to break on in order to insert 11004 a catchpoint on exceptions. */ 11005 const char *catch_exception_sym; 11006 11007 /* The name of the symbol to break on in order to insert 11008 a catchpoint on unhandled exceptions. */ 11009 const char *catch_exception_unhandled_sym; 11010 11011 /* The name of the symbol to break on in order to insert 11012 a catchpoint on failed assertions. */ 11013 const char *catch_assert_sym; 11014 11015 /* Assuming that the inferior just triggered an unhandled exception 11016 catchpoint, this function is responsible for returning the address 11017 in inferior memory where the name of that exception is stored. 11018 Return zero if the address could not be computed. */ 11019 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr; 11020 }; 11021 11022 static CORE_ADDR ada_unhandled_exception_name_addr (void); 11023 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void); 11024 11025 /* The following exception support info structure describes how to 11026 implement exception catchpoints with the latest version of the 11027 Ada runtime (as of 2007-03-06). */ 11028 11029 static const struct exception_support_info default_exception_support_info = 11030 { 11031 "__gnat_debug_raise_exception", /* catch_exception_sym */ 11032 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ 11033 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */ 11034 ada_unhandled_exception_name_addr 11035 }; 11036 11037 /* The following exception support info structure describes how to 11038 implement exception catchpoints with a slightly older version 11039 of the Ada runtime. */ 11040 11041 static const struct exception_support_info exception_support_info_fallback = 11042 { 11043 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */ 11044 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */ 11045 "system__assertions__raise_assert_failure", /* catch_assert_sym */ 11046 ada_unhandled_exception_name_addr_from_raise 11047 }; 11048 11049 /* Return nonzero if we can detect the exception support routines 11050 described in EINFO. 11051 11052 This function errors out if an abnormal situation is detected 11053 (for instance, if we find the exception support routines, but 11054 that support is found to be incomplete). */ 11055 11056 static int 11057 ada_has_this_exception_support (const struct exception_support_info *einfo) 11058 { 11059 struct symbol *sym; 11060 11061 /* The symbol we're looking up is provided by a unit in the GNAT runtime 11062 that should be compiled with debugging information. As a result, we 11063 expect to find that symbol in the symtabs. */ 11064 11065 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN); 11066 if (sym == NULL) 11067 { 11068 /* Perhaps we did not find our symbol because the Ada runtime was 11069 compiled without debugging info, or simply stripped of it. 11070 It happens on some GNU/Linux distributions for instance, where 11071 users have to install a separate debug package in order to get 11072 the runtime's debugging info. In that situation, let the user 11073 know why we cannot insert an Ada exception catchpoint. 11074 11075 Note: Just for the purpose of inserting our Ada exception 11076 catchpoint, we could rely purely on the associated minimal symbol. 11077 But we would be operating in degraded mode anyway, since we are 11078 still lacking the debugging info needed later on to extract 11079 the name of the exception being raised (this name is printed in 11080 the catchpoint message, and is also used when trying to catch 11081 a specific exception). We do not handle this case for now. */ 11082 struct minimal_symbol *msym 11083 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL); 11084 11085 if (msym && MSYMBOL_TYPE (msym) != mst_solib_trampoline) 11086 error (_("Your Ada runtime appears to be missing some debugging " 11087 "information.\nCannot insert Ada exception catchpoint " 11088 "in this configuration.")); 11089 11090 return 0; 11091 } 11092 11093 /* Make sure that the symbol we found corresponds to a function. */ 11094 11095 if (SYMBOL_CLASS (sym) != LOC_BLOCK) 11096 error (_("Symbol \"%s\" is not a function (class = %d)"), 11097 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym)); 11098 11099 return 1; 11100 } 11101 11102 /* Inspect the Ada runtime and determine which exception info structure 11103 should be used to provide support for exception catchpoints. 11104 11105 This function will always set the per-inferior exception_info, 11106 or raise an error. */ 11107 11108 static void 11109 ada_exception_support_info_sniffer (void) 11110 { 11111 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); 11112 11113 /* If the exception info is already known, then no need to recompute it. */ 11114 if (data->exception_info != NULL) 11115 return; 11116 11117 /* Check the latest (default) exception support info. */ 11118 if (ada_has_this_exception_support (&default_exception_support_info)) 11119 { 11120 data->exception_info = &default_exception_support_info; 11121 return; 11122 } 11123 11124 /* Try our fallback exception suport info. */ 11125 if (ada_has_this_exception_support (&exception_support_info_fallback)) 11126 { 11127 data->exception_info = &exception_support_info_fallback; 11128 return; 11129 } 11130 11131 /* Sometimes, it is normal for us to not be able to find the routine 11132 we are looking for. This happens when the program is linked with 11133 the shared version of the GNAT runtime, and the program has not been 11134 started yet. Inform the user of these two possible causes if 11135 applicable. */ 11136 11137 if (ada_update_initial_language (language_unknown) != language_ada) 11138 error (_("Unable to insert catchpoint. Is this an Ada main program?")); 11139 11140 /* If the symbol does not exist, then check that the program is 11141 already started, to make sure that shared libraries have been 11142 loaded. If it is not started, this may mean that the symbol is 11143 in a shared library. */ 11144 11145 if (ptid_get_pid (inferior_ptid) == 0) 11146 error (_("Unable to insert catchpoint. Try to start the program first.")); 11147 11148 /* At this point, we know that we are debugging an Ada program and 11149 that the inferior has been started, but we still are not able to 11150 find the run-time symbols. That can mean that we are in 11151 configurable run time mode, or that a-except as been optimized 11152 out by the linker... In any case, at this point it is not worth 11153 supporting this feature. */ 11154 11155 error (_("Cannot insert Ada exception catchpoints in this configuration.")); 11156 } 11157 11158 /* True iff FRAME is very likely to be that of a function that is 11159 part of the runtime system. This is all very heuristic, but is 11160 intended to be used as advice as to what frames are uninteresting 11161 to most users. */ 11162 11163 static int 11164 is_known_support_routine (struct frame_info *frame) 11165 { 11166 struct symtab_and_line sal; 11167 char *func_name; 11168 enum language func_lang; 11169 int i; 11170 const char *fullname; 11171 11172 /* If this code does not have any debugging information (no symtab), 11173 This cannot be any user code. */ 11174 11175 find_frame_sal (frame, &sal); 11176 if (sal.symtab == NULL) 11177 return 1; 11178 11179 /* If there is a symtab, but the associated source file cannot be 11180 located, then assume this is not user code: Selecting a frame 11181 for which we cannot display the code would not be very helpful 11182 for the user. This should also take care of case such as VxWorks 11183 where the kernel has some debugging info provided for a few units. */ 11184 11185 fullname = symtab_to_fullname (sal.symtab); 11186 if (access (fullname, R_OK) != 0) 11187 return 1; 11188 11189 /* Check the unit filename againt the Ada runtime file naming. 11190 We also check the name of the objfile against the name of some 11191 known system libraries that sometimes come with debugging info 11192 too. */ 11193 11194 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1) 11195 { 11196 re_comp (known_runtime_file_name_patterns[i]); 11197 if (re_exec (lbasename (sal.symtab->filename))) 11198 return 1; 11199 if (sal.symtab->objfile != NULL 11200 && re_exec (objfile_name (sal.symtab->objfile))) 11201 return 1; 11202 } 11203 11204 /* Check whether the function is a GNAT-generated entity. */ 11205 11206 find_frame_funname (frame, &func_name, &func_lang, NULL); 11207 if (func_name == NULL) 11208 return 1; 11209 11210 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1) 11211 { 11212 re_comp (known_auxiliary_function_name_patterns[i]); 11213 if (re_exec (func_name)) 11214 { 11215 xfree (func_name); 11216 return 1; 11217 } 11218 } 11219 11220 xfree (func_name); 11221 return 0; 11222 } 11223 11224 /* Find the first frame that contains debugging information and that is not 11225 part of the Ada run-time, starting from FI and moving upward. */ 11226 11227 void 11228 ada_find_printable_frame (struct frame_info *fi) 11229 { 11230 for (; fi != NULL; fi = get_prev_frame (fi)) 11231 { 11232 if (!is_known_support_routine (fi)) 11233 { 11234 select_frame (fi); 11235 break; 11236 } 11237 } 11238 11239 } 11240 11241 /* Assuming that the inferior just triggered an unhandled exception 11242 catchpoint, return the address in inferior memory where the name 11243 of the exception is stored. 11244 11245 Return zero if the address could not be computed. */ 11246 11247 static CORE_ADDR 11248 ada_unhandled_exception_name_addr (void) 11249 { 11250 return parse_and_eval_address ("e.full_name"); 11251 } 11252 11253 /* Same as ada_unhandled_exception_name_addr, except that this function 11254 should be used when the inferior uses an older version of the runtime, 11255 where the exception name needs to be extracted from a specific frame 11256 several frames up in the callstack. */ 11257 11258 static CORE_ADDR 11259 ada_unhandled_exception_name_addr_from_raise (void) 11260 { 11261 int frame_level; 11262 struct frame_info *fi; 11263 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); 11264 struct cleanup *old_chain; 11265 11266 /* To determine the name of this exception, we need to select 11267 the frame corresponding to RAISE_SYM_NAME. This frame is 11268 at least 3 levels up, so we simply skip the first 3 frames 11269 without checking the name of their associated function. */ 11270 fi = get_current_frame (); 11271 for (frame_level = 0; frame_level < 3; frame_level += 1) 11272 if (fi != NULL) 11273 fi = get_prev_frame (fi); 11274 11275 old_chain = make_cleanup (null_cleanup, NULL); 11276 while (fi != NULL) 11277 { 11278 char *func_name; 11279 enum language func_lang; 11280 11281 find_frame_funname (fi, &func_name, &func_lang, NULL); 11282 if (func_name != NULL) 11283 { 11284 make_cleanup (xfree, func_name); 11285 11286 if (strcmp (func_name, 11287 data->exception_info->catch_exception_sym) == 0) 11288 break; /* We found the frame we were looking for... */ 11289 fi = get_prev_frame (fi); 11290 } 11291 } 11292 do_cleanups (old_chain); 11293 11294 if (fi == NULL) 11295 return 0; 11296 11297 select_frame (fi); 11298 return parse_and_eval_address ("id.full_name"); 11299 } 11300 11301 /* Assuming the inferior just triggered an Ada exception catchpoint 11302 (of any type), return the address in inferior memory where the name 11303 of the exception is stored, if applicable. 11304 11305 Return zero if the address could not be computed, or if not relevant. */ 11306 11307 static CORE_ADDR 11308 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex, 11309 struct breakpoint *b) 11310 { 11311 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); 11312 11313 switch (ex) 11314 { 11315 case ada_catch_exception: 11316 return (parse_and_eval_address ("e.full_name")); 11317 break; 11318 11319 case ada_catch_exception_unhandled: 11320 return data->exception_info->unhandled_exception_name_addr (); 11321 break; 11322 11323 case ada_catch_assert: 11324 return 0; /* Exception name is not relevant in this case. */ 11325 break; 11326 11327 default: 11328 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); 11329 break; 11330 } 11331 11332 return 0; /* Should never be reached. */ 11333 } 11334 11335 /* Same as ada_exception_name_addr_1, except that it intercepts and contains 11336 any error that ada_exception_name_addr_1 might cause to be thrown. 11337 When an error is intercepted, a warning with the error message is printed, 11338 and zero is returned. */ 11339 11340 static CORE_ADDR 11341 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex, 11342 struct breakpoint *b) 11343 { 11344 volatile struct gdb_exception e; 11345 CORE_ADDR result = 0; 11346 11347 TRY_CATCH (e, RETURN_MASK_ERROR) 11348 { 11349 result = ada_exception_name_addr_1 (ex, b); 11350 } 11351 11352 if (e.reason < 0) 11353 { 11354 warning (_("failed to get exception name: %s"), e.message); 11355 return 0; 11356 } 11357 11358 return result; 11359 } 11360 11361 static char *ada_exception_catchpoint_cond_string (const char *excep_string); 11362 11363 /* Ada catchpoints. 11364 11365 In the case of catchpoints on Ada exceptions, the catchpoint will 11366 stop the target on every exception the program throws. When a user 11367 specifies the name of a specific exception, we translate this 11368 request into a condition expression (in text form), and then parse 11369 it into an expression stored in each of the catchpoint's locations. 11370 We then use this condition to check whether the exception that was 11371 raised is the one the user is interested in. If not, then the 11372 target is resumed again. We store the name of the requested 11373 exception, in order to be able to re-set the condition expression 11374 when symbols change. */ 11375 11376 /* An instance of this type is used to represent an Ada catchpoint 11377 breakpoint location. It includes a "struct bp_location" as a kind 11378 of base class; users downcast to "struct bp_location *" when 11379 needed. */ 11380 11381 struct ada_catchpoint_location 11382 { 11383 /* The base class. */ 11384 struct bp_location base; 11385 11386 /* The condition that checks whether the exception that was raised 11387 is the specific exception the user specified on catchpoint 11388 creation. */ 11389 struct expression *excep_cond_expr; 11390 }; 11391 11392 /* Implement the DTOR method in the bp_location_ops structure for all 11393 Ada exception catchpoint kinds. */ 11394 11395 static void 11396 ada_catchpoint_location_dtor (struct bp_location *bl) 11397 { 11398 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl; 11399 11400 xfree (al->excep_cond_expr); 11401 } 11402 11403 /* The vtable to be used in Ada catchpoint locations. */ 11404 11405 static const struct bp_location_ops ada_catchpoint_location_ops = 11406 { 11407 ada_catchpoint_location_dtor 11408 }; 11409 11410 /* An instance of this type is used to represent an Ada catchpoint. 11411 It includes a "struct breakpoint" as a kind of base class; users 11412 downcast to "struct breakpoint *" when needed. */ 11413 11414 struct ada_catchpoint 11415 { 11416 /* The base class. */ 11417 struct breakpoint base; 11418 11419 /* The name of the specific exception the user specified. */ 11420 char *excep_string; 11421 }; 11422 11423 /* Parse the exception condition string in the context of each of the 11424 catchpoint's locations, and store them for later evaluation. */ 11425 11426 static void 11427 create_excep_cond_exprs (struct ada_catchpoint *c) 11428 { 11429 struct cleanup *old_chain; 11430 struct bp_location *bl; 11431 char *cond_string; 11432 11433 /* Nothing to do if there's no specific exception to catch. */ 11434 if (c->excep_string == NULL) 11435 return; 11436 11437 /* Same if there are no locations... */ 11438 if (c->base.loc == NULL) 11439 return; 11440 11441 /* Compute the condition expression in text form, from the specific 11442 expection we want to catch. */ 11443 cond_string = ada_exception_catchpoint_cond_string (c->excep_string); 11444 old_chain = make_cleanup (xfree, cond_string); 11445 11446 /* Iterate over all the catchpoint's locations, and parse an 11447 expression for each. */ 11448 for (bl = c->base.loc; bl != NULL; bl = bl->next) 11449 { 11450 struct ada_catchpoint_location *ada_loc 11451 = (struct ada_catchpoint_location *) bl; 11452 struct expression *exp = NULL; 11453 11454 if (!bl->shlib_disabled) 11455 { 11456 volatile struct gdb_exception e; 11457 const char *s; 11458 11459 s = cond_string; 11460 TRY_CATCH (e, RETURN_MASK_ERROR) 11461 { 11462 exp = parse_exp_1 (&s, bl->address, 11463 block_for_pc (bl->address), 0); 11464 } 11465 if (e.reason < 0) 11466 { 11467 warning (_("failed to reevaluate internal exception condition " 11468 "for catchpoint %d: %s"), 11469 c->base.number, e.message); 11470 /* There is a bug in GCC on sparc-solaris when building with 11471 optimization which causes EXP to change unexpectedly 11472 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982). 11473 The problem should be fixed starting with GCC 4.9. 11474 In the meantime, work around it by forcing EXP back 11475 to NULL. */ 11476 exp = NULL; 11477 } 11478 } 11479 11480 ada_loc->excep_cond_expr = exp; 11481 } 11482 11483 do_cleanups (old_chain); 11484 } 11485 11486 /* Implement the DTOR method in the breakpoint_ops structure for all 11487 exception catchpoint kinds. */ 11488 11489 static void 11490 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) 11491 { 11492 struct ada_catchpoint *c = (struct ada_catchpoint *) b; 11493 11494 xfree (c->excep_string); 11495 11496 bkpt_breakpoint_ops.dtor (b); 11497 } 11498 11499 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops 11500 structure for all exception catchpoint kinds. */ 11501 11502 static struct bp_location * 11503 allocate_location_exception (enum ada_exception_catchpoint_kind ex, 11504 struct breakpoint *self) 11505 { 11506 struct ada_catchpoint_location *loc; 11507 11508 loc = XNEW (struct ada_catchpoint_location); 11509 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self); 11510 loc->excep_cond_expr = NULL; 11511 return &loc->base; 11512 } 11513 11514 /* Implement the RE_SET method in the breakpoint_ops structure for all 11515 exception catchpoint kinds. */ 11516 11517 static void 11518 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b) 11519 { 11520 struct ada_catchpoint *c = (struct ada_catchpoint *) b; 11521 11522 /* Call the base class's method. This updates the catchpoint's 11523 locations. */ 11524 bkpt_breakpoint_ops.re_set (b); 11525 11526 /* Reparse the exception conditional expressions. One for each 11527 location. */ 11528 create_excep_cond_exprs (c); 11529 } 11530 11531 /* Returns true if we should stop for this breakpoint hit. If the 11532 user specified a specific exception, we only want to cause a stop 11533 if the program thrown that exception. */ 11534 11535 static int 11536 should_stop_exception (const struct bp_location *bl) 11537 { 11538 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner; 11539 const struct ada_catchpoint_location *ada_loc 11540 = (const struct ada_catchpoint_location *) bl; 11541 volatile struct gdb_exception ex; 11542 int stop; 11543 11544 /* With no specific exception, should always stop. */ 11545 if (c->excep_string == NULL) 11546 return 1; 11547 11548 if (ada_loc->excep_cond_expr == NULL) 11549 { 11550 /* We will have a NULL expression if back when we were creating 11551 the expressions, this location's had failed to parse. */ 11552 return 1; 11553 } 11554 11555 stop = 1; 11556 TRY_CATCH (ex, RETURN_MASK_ALL) 11557 { 11558 struct value *mark; 11559 11560 mark = value_mark (); 11561 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr)); 11562 value_free_to_mark (mark); 11563 } 11564 if (ex.reason < 0) 11565 exception_fprintf (gdb_stderr, ex, 11566 _("Error in testing exception condition:\n")); 11567 return stop; 11568 } 11569 11570 /* Implement the CHECK_STATUS method in the breakpoint_ops structure 11571 for all exception catchpoint kinds. */ 11572 11573 static void 11574 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) 11575 { 11576 bs->stop = should_stop_exception (bs->bp_location_at); 11577 } 11578 11579 /* Implement the PRINT_IT method in the breakpoint_ops structure 11580 for all exception catchpoint kinds. */ 11581 11582 static enum print_stop_action 11583 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs) 11584 { 11585 struct ui_out *uiout = current_uiout; 11586 struct breakpoint *b = bs->breakpoint_at; 11587 11588 annotate_catchpoint (b->number); 11589 11590 if (ui_out_is_mi_like_p (uiout)) 11591 { 11592 ui_out_field_string (uiout, "reason", 11593 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT)); 11594 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition)); 11595 } 11596 11597 ui_out_text (uiout, 11598 b->disposition == disp_del ? "\nTemporary catchpoint " 11599 : "\nCatchpoint "); 11600 ui_out_field_int (uiout, "bkptno", b->number); 11601 ui_out_text (uiout, ", "); 11602 11603 switch (ex) 11604 { 11605 case ada_catch_exception: 11606 case ada_catch_exception_unhandled: 11607 { 11608 const CORE_ADDR addr = ada_exception_name_addr (ex, b); 11609 char exception_name[256]; 11610 11611 if (addr != 0) 11612 { 11613 read_memory (addr, (gdb_byte *) exception_name, 11614 sizeof (exception_name) - 1); 11615 exception_name [sizeof (exception_name) - 1] = '\0'; 11616 } 11617 else 11618 { 11619 /* For some reason, we were unable to read the exception 11620 name. This could happen if the Runtime was compiled 11621 without debugging info, for instance. In that case, 11622 just replace the exception name by the generic string 11623 "exception" - it will read as "an exception" in the 11624 notification we are about to print. */ 11625 memcpy (exception_name, "exception", sizeof ("exception")); 11626 } 11627 /* In the case of unhandled exception breakpoints, we print 11628 the exception name as "unhandled EXCEPTION_NAME", to make 11629 it clearer to the user which kind of catchpoint just got 11630 hit. We used ui_out_text to make sure that this extra 11631 info does not pollute the exception name in the MI case. */ 11632 if (ex == ada_catch_exception_unhandled) 11633 ui_out_text (uiout, "unhandled "); 11634 ui_out_field_string (uiout, "exception-name", exception_name); 11635 } 11636 break; 11637 case ada_catch_assert: 11638 /* In this case, the name of the exception is not really 11639 important. Just print "failed assertion" to make it clearer 11640 that his program just hit an assertion-failure catchpoint. 11641 We used ui_out_text because this info does not belong in 11642 the MI output. */ 11643 ui_out_text (uiout, "failed assertion"); 11644 break; 11645 } 11646 ui_out_text (uiout, " at "); 11647 ada_find_printable_frame (get_current_frame ()); 11648 11649 return PRINT_SRC_AND_LOC; 11650 } 11651 11652 /* Implement the PRINT_ONE method in the breakpoint_ops structure 11653 for all exception catchpoint kinds. */ 11654 11655 static void 11656 print_one_exception (enum ada_exception_catchpoint_kind ex, 11657 struct breakpoint *b, struct bp_location **last_loc) 11658 { 11659 struct ui_out *uiout = current_uiout; 11660 struct ada_catchpoint *c = (struct ada_catchpoint *) b; 11661 struct value_print_options opts; 11662 11663 get_user_print_options (&opts); 11664 if (opts.addressprint) 11665 { 11666 annotate_field (4); 11667 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address); 11668 } 11669 11670 annotate_field (5); 11671 *last_loc = b->loc; 11672 switch (ex) 11673 { 11674 case ada_catch_exception: 11675 if (c->excep_string != NULL) 11676 { 11677 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string); 11678 11679 ui_out_field_string (uiout, "what", msg); 11680 xfree (msg); 11681 } 11682 else 11683 ui_out_field_string (uiout, "what", "all Ada exceptions"); 11684 11685 break; 11686 11687 case ada_catch_exception_unhandled: 11688 ui_out_field_string (uiout, "what", "unhandled Ada exceptions"); 11689 break; 11690 11691 case ada_catch_assert: 11692 ui_out_field_string (uiout, "what", "failed Ada assertions"); 11693 break; 11694 11695 default: 11696 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); 11697 break; 11698 } 11699 } 11700 11701 /* Implement the PRINT_MENTION method in the breakpoint_ops structure 11702 for all exception catchpoint kinds. */ 11703 11704 static void 11705 print_mention_exception (enum ada_exception_catchpoint_kind ex, 11706 struct breakpoint *b) 11707 { 11708 struct ada_catchpoint *c = (struct ada_catchpoint *) b; 11709 struct ui_out *uiout = current_uiout; 11710 11711 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ") 11712 : _("Catchpoint ")); 11713 ui_out_field_int (uiout, "bkptno", b->number); 11714 ui_out_text (uiout, ": "); 11715 11716 switch (ex) 11717 { 11718 case ada_catch_exception: 11719 if (c->excep_string != NULL) 11720 { 11721 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string); 11722 struct cleanup *old_chain = make_cleanup (xfree, info); 11723 11724 ui_out_text (uiout, info); 11725 do_cleanups (old_chain); 11726 } 11727 else 11728 ui_out_text (uiout, _("all Ada exceptions")); 11729 break; 11730 11731 case ada_catch_exception_unhandled: 11732 ui_out_text (uiout, _("unhandled Ada exceptions")); 11733 break; 11734 11735 case ada_catch_assert: 11736 ui_out_text (uiout, _("failed Ada assertions")); 11737 break; 11738 11739 default: 11740 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); 11741 break; 11742 } 11743 } 11744 11745 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure 11746 for all exception catchpoint kinds. */ 11747 11748 static void 11749 print_recreate_exception (enum ada_exception_catchpoint_kind ex, 11750 struct breakpoint *b, struct ui_file *fp) 11751 { 11752 struct ada_catchpoint *c = (struct ada_catchpoint *) b; 11753 11754 switch (ex) 11755 { 11756 case ada_catch_exception: 11757 fprintf_filtered (fp, "catch exception"); 11758 if (c->excep_string != NULL) 11759 fprintf_filtered (fp, " %s", c->excep_string); 11760 break; 11761 11762 case ada_catch_exception_unhandled: 11763 fprintf_filtered (fp, "catch exception unhandled"); 11764 break; 11765 11766 case ada_catch_assert: 11767 fprintf_filtered (fp, "catch assert"); 11768 break; 11769 11770 default: 11771 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type")); 11772 } 11773 print_recreate_thread (b, fp); 11774 } 11775 11776 /* Virtual table for "catch exception" breakpoints. */ 11777 11778 static void 11779 dtor_catch_exception (struct breakpoint *b) 11780 { 11781 dtor_exception (ada_catch_exception, b); 11782 } 11783 11784 static struct bp_location * 11785 allocate_location_catch_exception (struct breakpoint *self) 11786 { 11787 return allocate_location_exception (ada_catch_exception, self); 11788 } 11789 11790 static void 11791 re_set_catch_exception (struct breakpoint *b) 11792 { 11793 re_set_exception (ada_catch_exception, b); 11794 } 11795 11796 static void 11797 check_status_catch_exception (bpstat bs) 11798 { 11799 check_status_exception (ada_catch_exception, bs); 11800 } 11801 11802 static enum print_stop_action 11803 print_it_catch_exception (bpstat bs) 11804 { 11805 return print_it_exception (ada_catch_exception, bs); 11806 } 11807 11808 static void 11809 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc) 11810 { 11811 print_one_exception (ada_catch_exception, b, last_loc); 11812 } 11813 11814 static void 11815 print_mention_catch_exception (struct breakpoint *b) 11816 { 11817 print_mention_exception (ada_catch_exception, b); 11818 } 11819 11820 static void 11821 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp) 11822 { 11823 print_recreate_exception (ada_catch_exception, b, fp); 11824 } 11825 11826 static struct breakpoint_ops catch_exception_breakpoint_ops; 11827 11828 /* Virtual table for "catch exception unhandled" breakpoints. */ 11829 11830 static void 11831 dtor_catch_exception_unhandled (struct breakpoint *b) 11832 { 11833 dtor_exception (ada_catch_exception_unhandled, b); 11834 } 11835 11836 static struct bp_location * 11837 allocate_location_catch_exception_unhandled (struct breakpoint *self) 11838 { 11839 return allocate_location_exception (ada_catch_exception_unhandled, self); 11840 } 11841 11842 static void 11843 re_set_catch_exception_unhandled (struct breakpoint *b) 11844 { 11845 re_set_exception (ada_catch_exception_unhandled, b); 11846 } 11847 11848 static void 11849 check_status_catch_exception_unhandled (bpstat bs) 11850 { 11851 check_status_exception (ada_catch_exception_unhandled, bs); 11852 } 11853 11854 static enum print_stop_action 11855 print_it_catch_exception_unhandled (bpstat bs) 11856 { 11857 return print_it_exception (ada_catch_exception_unhandled, bs); 11858 } 11859 11860 static void 11861 print_one_catch_exception_unhandled (struct breakpoint *b, 11862 struct bp_location **last_loc) 11863 { 11864 print_one_exception (ada_catch_exception_unhandled, b, last_loc); 11865 } 11866 11867 static void 11868 print_mention_catch_exception_unhandled (struct breakpoint *b) 11869 { 11870 print_mention_exception (ada_catch_exception_unhandled, b); 11871 } 11872 11873 static void 11874 print_recreate_catch_exception_unhandled (struct breakpoint *b, 11875 struct ui_file *fp) 11876 { 11877 print_recreate_exception (ada_catch_exception_unhandled, b, fp); 11878 } 11879 11880 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops; 11881 11882 /* Virtual table for "catch assert" breakpoints. */ 11883 11884 static void 11885 dtor_catch_assert (struct breakpoint *b) 11886 { 11887 dtor_exception (ada_catch_assert, b); 11888 } 11889 11890 static struct bp_location * 11891 allocate_location_catch_assert (struct breakpoint *self) 11892 { 11893 return allocate_location_exception (ada_catch_assert, self); 11894 } 11895 11896 static void 11897 re_set_catch_assert (struct breakpoint *b) 11898 { 11899 re_set_exception (ada_catch_assert, b); 11900 } 11901 11902 static void 11903 check_status_catch_assert (bpstat bs) 11904 { 11905 check_status_exception (ada_catch_assert, bs); 11906 } 11907 11908 static enum print_stop_action 11909 print_it_catch_assert (bpstat bs) 11910 { 11911 return print_it_exception (ada_catch_assert, bs); 11912 } 11913 11914 static void 11915 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc) 11916 { 11917 print_one_exception (ada_catch_assert, b, last_loc); 11918 } 11919 11920 static void 11921 print_mention_catch_assert (struct breakpoint *b) 11922 { 11923 print_mention_exception (ada_catch_assert, b); 11924 } 11925 11926 static void 11927 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp) 11928 { 11929 print_recreate_exception (ada_catch_assert, b, fp); 11930 } 11931 11932 static struct breakpoint_ops catch_assert_breakpoint_ops; 11933 11934 /* Return a newly allocated copy of the first space-separated token 11935 in ARGSP, and then adjust ARGSP to point immediately after that 11936 token. 11937 11938 Return NULL if ARGPS does not contain any more tokens. */ 11939 11940 static char * 11941 ada_get_next_arg (char **argsp) 11942 { 11943 char *args = *argsp; 11944 char *end; 11945 char *result; 11946 11947 args = skip_spaces (args); 11948 if (args[0] == '\0') 11949 return NULL; /* No more arguments. */ 11950 11951 /* Find the end of the current argument. */ 11952 11953 end = skip_to_space (args); 11954 11955 /* Adjust ARGSP to point to the start of the next argument. */ 11956 11957 *argsp = end; 11958 11959 /* Make a copy of the current argument and return it. */ 11960 11961 result = xmalloc (end - args + 1); 11962 strncpy (result, args, end - args); 11963 result[end - args] = '\0'; 11964 11965 return result; 11966 } 11967 11968 /* Split the arguments specified in a "catch exception" command. 11969 Set EX to the appropriate catchpoint type. 11970 Set EXCEP_STRING to the name of the specific exception if 11971 specified by the user. 11972 If a condition is found at the end of the arguments, the condition 11973 expression is stored in COND_STRING (memory must be deallocated 11974 after use). Otherwise COND_STRING is set to NULL. */ 11975 11976 static void 11977 catch_ada_exception_command_split (char *args, 11978 enum ada_exception_catchpoint_kind *ex, 11979 char **excep_string, 11980 char **cond_string) 11981 { 11982 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); 11983 char *exception_name; 11984 char *cond = NULL; 11985 11986 exception_name = ada_get_next_arg (&args); 11987 if (exception_name != NULL && strcmp (exception_name, "if") == 0) 11988 { 11989 /* This is not an exception name; this is the start of a condition 11990 expression for a catchpoint on all exceptions. So, "un-get" 11991 this token, and set exception_name to NULL. */ 11992 xfree (exception_name); 11993 exception_name = NULL; 11994 args -= 2; 11995 } 11996 make_cleanup (xfree, exception_name); 11997 11998 /* Check to see if we have a condition. */ 11999 12000 args = skip_spaces (args); 12001 if (strncmp (args, "if", 2) == 0 12002 && (isspace (args[2]) || args[2] == '\0')) 12003 { 12004 args += 2; 12005 args = skip_spaces (args); 12006 12007 if (args[0] == '\0') 12008 error (_("Condition missing after `if' keyword")); 12009 cond = xstrdup (args); 12010 make_cleanup (xfree, cond); 12011 12012 args += strlen (args); 12013 } 12014 12015 /* Check that we do not have any more arguments. Anything else 12016 is unexpected. */ 12017 12018 if (args[0] != '\0') 12019 error (_("Junk at end of expression")); 12020 12021 discard_cleanups (old_chain); 12022 12023 if (exception_name == NULL) 12024 { 12025 /* Catch all exceptions. */ 12026 *ex = ada_catch_exception; 12027 *excep_string = NULL; 12028 } 12029 else if (strcmp (exception_name, "unhandled") == 0) 12030 { 12031 /* Catch unhandled exceptions. */ 12032 *ex = ada_catch_exception_unhandled; 12033 *excep_string = NULL; 12034 } 12035 else 12036 { 12037 /* Catch a specific exception. */ 12038 *ex = ada_catch_exception; 12039 *excep_string = exception_name; 12040 } 12041 *cond_string = cond; 12042 } 12043 12044 /* Return the name of the symbol on which we should break in order to 12045 implement a catchpoint of the EX kind. */ 12046 12047 static const char * 12048 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex) 12049 { 12050 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ()); 12051 12052 gdb_assert (data->exception_info != NULL); 12053 12054 switch (ex) 12055 { 12056 case ada_catch_exception: 12057 return (data->exception_info->catch_exception_sym); 12058 break; 12059 case ada_catch_exception_unhandled: 12060 return (data->exception_info->catch_exception_unhandled_sym); 12061 break; 12062 case ada_catch_assert: 12063 return (data->exception_info->catch_assert_sym); 12064 break; 12065 default: 12066 internal_error (__FILE__, __LINE__, 12067 _("unexpected catchpoint kind (%d)"), ex); 12068 } 12069 } 12070 12071 /* Return the breakpoint ops "virtual table" used for catchpoints 12072 of the EX kind. */ 12073 12074 static const struct breakpoint_ops * 12075 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex) 12076 { 12077 switch (ex) 12078 { 12079 case ada_catch_exception: 12080 return (&catch_exception_breakpoint_ops); 12081 break; 12082 case ada_catch_exception_unhandled: 12083 return (&catch_exception_unhandled_breakpoint_ops); 12084 break; 12085 case ada_catch_assert: 12086 return (&catch_assert_breakpoint_ops); 12087 break; 12088 default: 12089 internal_error (__FILE__, __LINE__, 12090 _("unexpected catchpoint kind (%d)"), ex); 12091 } 12092 } 12093 12094 /* Return the condition that will be used to match the current exception 12095 being raised with the exception that the user wants to catch. This 12096 assumes that this condition is used when the inferior just triggered 12097 an exception catchpoint. 12098 12099 The string returned is a newly allocated string that needs to be 12100 deallocated later. */ 12101 12102 static char * 12103 ada_exception_catchpoint_cond_string (const char *excep_string) 12104 { 12105 int i; 12106 12107 /* The standard exceptions are a special case. They are defined in 12108 runtime units that have been compiled without debugging info; if 12109 EXCEP_STRING is the not-fully-qualified name of a standard 12110 exception (e.g. "constraint_error") then, during the evaluation 12111 of the condition expression, the symbol lookup on this name would 12112 *not* return this standard exception. The catchpoint condition 12113 may then be set only on user-defined exceptions which have the 12114 same not-fully-qualified name (e.g. my_package.constraint_error). 12115 12116 To avoid this unexcepted behavior, these standard exceptions are 12117 systematically prefixed by "standard". This means that "catch 12118 exception constraint_error" is rewritten into "catch exception 12119 standard.constraint_error". 12120 12121 If an exception named contraint_error is defined in another package of 12122 the inferior program, then the only way to specify this exception as a 12123 breakpoint condition is to use its fully-qualified named: 12124 e.g. my_package.constraint_error. */ 12125 12126 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++) 12127 { 12128 if (strcmp (standard_exc [i], excep_string) == 0) 12129 { 12130 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)", 12131 excep_string); 12132 } 12133 } 12134 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string); 12135 } 12136 12137 /* Return the symtab_and_line that should be used to insert an exception 12138 catchpoint of the TYPE kind. 12139 12140 EXCEP_STRING should contain the name of a specific exception that 12141 the catchpoint should catch, or NULL otherwise. 12142 12143 ADDR_STRING returns the name of the function where the real 12144 breakpoint that implements the catchpoints is set, depending on the 12145 type of catchpoint we need to create. */ 12146 12147 static struct symtab_and_line 12148 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string, 12149 char **addr_string, const struct breakpoint_ops **ops) 12150 { 12151 const char *sym_name; 12152 struct symbol *sym; 12153 12154 /* First, find out which exception support info to use. */ 12155 ada_exception_support_info_sniffer (); 12156 12157 /* Then lookup the function on which we will break in order to catch 12158 the Ada exceptions requested by the user. */ 12159 sym_name = ada_exception_sym_name (ex); 12160 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN); 12161 12162 /* We can assume that SYM is not NULL at this stage. If the symbol 12163 did not exist, ada_exception_support_info_sniffer would have 12164 raised an exception. 12165 12166 Also, ada_exception_support_info_sniffer should have already 12167 verified that SYM is a function symbol. */ 12168 gdb_assert (sym != NULL); 12169 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK); 12170 12171 /* Set ADDR_STRING. */ 12172 *addr_string = xstrdup (sym_name); 12173 12174 /* Set OPS. */ 12175 *ops = ada_exception_breakpoint_ops (ex); 12176 12177 return find_function_start_sal (sym, 1); 12178 } 12179 12180 /* Create an Ada exception catchpoint. 12181 12182 EX_KIND is the kind of exception catchpoint to be created. 12183 12184 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger 12185 for all exceptions. Otherwise, EXCEPT_STRING indicates the name 12186 of the exception to which this catchpoint applies. When not NULL, 12187 the string must be allocated on the heap, and its deallocation 12188 is no longer the responsibility of the caller. 12189 12190 COND_STRING, if not NULL, is the catchpoint condition. This string 12191 must be allocated on the heap, and its deallocation is no longer 12192 the responsibility of the caller. 12193 12194 TEMPFLAG, if nonzero, means that the underlying breakpoint 12195 should be temporary. 12196 12197 FROM_TTY is the usual argument passed to all commands implementations. */ 12198 12199 void 12200 create_ada_exception_catchpoint (struct gdbarch *gdbarch, 12201 enum ada_exception_catchpoint_kind ex_kind, 12202 char *excep_string, 12203 char *cond_string, 12204 int tempflag, 12205 int disabled, 12206 int from_tty) 12207 { 12208 struct ada_catchpoint *c; 12209 char *addr_string = NULL; 12210 const struct breakpoint_ops *ops = NULL; 12211 struct symtab_and_line sal 12212 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops); 12213 12214 c = XNEW (struct ada_catchpoint); 12215 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string, 12216 ops, tempflag, disabled, from_tty); 12217 c->excep_string = excep_string; 12218 create_excep_cond_exprs (c); 12219 if (cond_string != NULL) 12220 set_breakpoint_condition (&c->base, cond_string, from_tty); 12221 install_breakpoint (0, &c->base, 1); 12222 } 12223 12224 /* Implement the "catch exception" command. */ 12225 12226 static void 12227 catch_ada_exception_command (char *arg, int from_tty, 12228 struct cmd_list_element *command) 12229 { 12230 struct gdbarch *gdbarch = get_current_arch (); 12231 int tempflag; 12232 enum ada_exception_catchpoint_kind ex_kind; 12233 char *excep_string = NULL; 12234 char *cond_string = NULL; 12235 12236 tempflag = get_cmd_context (command) == CATCH_TEMPORARY; 12237 12238 if (!arg) 12239 arg = ""; 12240 catch_ada_exception_command_split (arg, &ex_kind, &excep_string, 12241 &cond_string); 12242 create_ada_exception_catchpoint (gdbarch, ex_kind, 12243 excep_string, cond_string, 12244 tempflag, 1 /* enabled */, 12245 from_tty); 12246 } 12247 12248 /* Split the arguments specified in a "catch assert" command. 12249 12250 ARGS contains the command's arguments (or the empty string if 12251 no arguments were passed). 12252 12253 If ARGS contains a condition, set COND_STRING to that condition 12254 (the memory needs to be deallocated after use). */ 12255 12256 static void 12257 catch_ada_assert_command_split (char *args, char **cond_string) 12258 { 12259 args = skip_spaces (args); 12260 12261 /* Check whether a condition was provided. */ 12262 if (strncmp (args, "if", 2) == 0 12263 && (isspace (args[2]) || args[2] == '\0')) 12264 { 12265 args += 2; 12266 args = skip_spaces (args); 12267 if (args[0] == '\0') 12268 error (_("condition missing after `if' keyword")); 12269 *cond_string = xstrdup (args); 12270 } 12271 12272 /* Otherwise, there should be no other argument at the end of 12273 the command. */ 12274 else if (args[0] != '\0') 12275 error (_("Junk at end of arguments.")); 12276 } 12277 12278 /* Implement the "catch assert" command. */ 12279 12280 static void 12281 catch_assert_command (char *arg, int from_tty, 12282 struct cmd_list_element *command) 12283 { 12284 struct gdbarch *gdbarch = get_current_arch (); 12285 int tempflag; 12286 char *cond_string = NULL; 12287 12288 tempflag = get_cmd_context (command) == CATCH_TEMPORARY; 12289 12290 if (!arg) 12291 arg = ""; 12292 catch_ada_assert_command_split (arg, &cond_string); 12293 create_ada_exception_catchpoint (gdbarch, ada_catch_assert, 12294 NULL, cond_string, 12295 tempflag, 1 /* enabled */, 12296 from_tty); 12297 } 12298 12299 /* Return non-zero if the symbol SYM is an Ada exception object. */ 12300 12301 static int 12302 ada_is_exception_sym (struct symbol *sym) 12303 { 12304 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym)); 12305 12306 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF 12307 && SYMBOL_CLASS (sym) != LOC_BLOCK 12308 && SYMBOL_CLASS (sym) != LOC_CONST 12309 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED 12310 && type_name != NULL && strcmp (type_name, "exception") == 0); 12311 } 12312 12313 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard 12314 Ada exception object. This matches all exceptions except the ones 12315 defined by the Ada language. */ 12316 12317 static int 12318 ada_is_non_standard_exception_sym (struct symbol *sym) 12319 { 12320 int i; 12321 12322 if (!ada_is_exception_sym (sym)) 12323 return 0; 12324 12325 for (i = 0; i < ARRAY_SIZE (standard_exc); i++) 12326 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0) 12327 return 0; /* A standard exception. */ 12328 12329 /* Numeric_Error is also a standard exception, so exclude it. 12330 See the STANDARD_EXC description for more details as to why 12331 this exception is not listed in that array. */ 12332 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0) 12333 return 0; 12334 12335 return 1; 12336 } 12337 12338 /* A helper function for qsort, comparing two struct ada_exc_info 12339 objects. 12340 12341 The comparison is determined first by exception name, and then 12342 by exception address. */ 12343 12344 static int 12345 compare_ada_exception_info (const void *a, const void *b) 12346 { 12347 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a; 12348 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b; 12349 int result; 12350 12351 result = strcmp (exc_a->name, exc_b->name); 12352 if (result != 0) 12353 return result; 12354 12355 if (exc_a->addr < exc_b->addr) 12356 return -1; 12357 if (exc_a->addr > exc_b->addr) 12358 return 1; 12359 12360 return 0; 12361 } 12362 12363 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison 12364 routine, but keeping the first SKIP elements untouched. 12365 12366 All duplicates are also removed. */ 12367 12368 static void 12369 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions, 12370 int skip) 12371 { 12372 struct ada_exc_info *to_sort 12373 = VEC_address (ada_exc_info, *exceptions) + skip; 12374 int to_sort_len 12375 = VEC_length (ada_exc_info, *exceptions) - skip; 12376 int i, j; 12377 12378 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info), 12379 compare_ada_exception_info); 12380 12381 for (i = 1, j = 1; i < to_sort_len; i++) 12382 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0) 12383 to_sort[j++] = to_sort[i]; 12384 to_sort_len = j; 12385 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len); 12386 } 12387 12388 /* A function intended as the "name_matcher" callback in the struct 12389 quick_symbol_functions' expand_symtabs_matching method. 12390 12391 SEARCH_NAME is the symbol's search name. 12392 12393 If USER_DATA is not NULL, it is a pointer to a regext_t object 12394 used to match the symbol (by natural name). Otherwise, when USER_DATA 12395 is null, no filtering is performed, and all symbols are a positive 12396 match. */ 12397 12398 static int 12399 ada_exc_search_name_matches (const char *search_name, void *user_data) 12400 { 12401 regex_t *preg = user_data; 12402 12403 if (preg == NULL) 12404 return 1; 12405 12406 /* In Ada, the symbol "search name" is a linkage name, whereas 12407 the regular expression used to do the matching refers to 12408 the natural name. So match against the decoded name. */ 12409 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0); 12410 } 12411 12412 /* Add all exceptions defined by the Ada standard whose name match 12413 a regular expression. 12414 12415 If PREG is not NULL, then this regexp_t object is used to 12416 perform the symbol name matching. Otherwise, no name-based 12417 filtering is performed. 12418 12419 EXCEPTIONS is a vector of exceptions to which matching exceptions 12420 gets pushed. */ 12421 12422 static void 12423 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions) 12424 { 12425 int i; 12426 12427 for (i = 0; i < ARRAY_SIZE (standard_exc); i++) 12428 { 12429 if (preg == NULL 12430 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0) 12431 { 12432 struct bound_minimal_symbol msymbol 12433 = ada_lookup_simple_minsym (standard_exc[i]); 12434 12435 if (msymbol.minsym != NULL) 12436 { 12437 struct ada_exc_info info 12438 = {standard_exc[i], SYMBOL_VALUE_ADDRESS (msymbol.minsym)}; 12439 12440 VEC_safe_push (ada_exc_info, *exceptions, &info); 12441 } 12442 } 12443 } 12444 } 12445 12446 /* Add all Ada exceptions defined locally and accessible from the given 12447 FRAME. 12448 12449 If PREG is not NULL, then this regexp_t object is used to 12450 perform the symbol name matching. Otherwise, no name-based 12451 filtering is performed. 12452 12453 EXCEPTIONS is a vector of exceptions to which matching exceptions 12454 gets pushed. */ 12455 12456 static void 12457 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame, 12458 VEC(ada_exc_info) **exceptions) 12459 { 12460 struct block *block = get_frame_block (frame, 0); 12461 12462 while (block != 0) 12463 { 12464 struct block_iterator iter; 12465 struct symbol *sym; 12466 12467 ALL_BLOCK_SYMBOLS (block, iter, sym) 12468 { 12469 switch (SYMBOL_CLASS (sym)) 12470 { 12471 case LOC_TYPEDEF: 12472 case LOC_BLOCK: 12473 case LOC_CONST: 12474 break; 12475 default: 12476 if (ada_is_exception_sym (sym)) 12477 { 12478 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym), 12479 SYMBOL_VALUE_ADDRESS (sym)}; 12480 12481 VEC_safe_push (ada_exc_info, *exceptions, &info); 12482 } 12483 } 12484 } 12485 if (BLOCK_FUNCTION (block) != NULL) 12486 break; 12487 block = BLOCK_SUPERBLOCK (block); 12488 } 12489 } 12490 12491 /* Add all exceptions defined globally whose name name match 12492 a regular expression, excluding standard exceptions. 12493 12494 The reason we exclude standard exceptions is that they need 12495 to be handled separately: Standard exceptions are defined inside 12496 a runtime unit which is normally not compiled with debugging info, 12497 and thus usually do not show up in our symbol search. However, 12498 if the unit was in fact built with debugging info, we need to 12499 exclude them because they would duplicate the entry we found 12500 during the special loop that specifically searches for those 12501 standard exceptions. 12502 12503 If PREG is not NULL, then this regexp_t object is used to 12504 perform the symbol name matching. Otherwise, no name-based 12505 filtering is performed. 12506 12507 EXCEPTIONS is a vector of exceptions to which matching exceptions 12508 gets pushed. */ 12509 12510 static void 12511 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions) 12512 { 12513 struct objfile *objfile; 12514 struct symtab *s; 12515 12516 ALL_OBJFILES (objfile) 12517 if (objfile->sf) 12518 objfile->sf->qf->expand_symtabs_matching 12519 (objfile, NULL, ada_exc_search_name_matches, 12520 VARIABLES_DOMAIN, preg); 12521 12522 ALL_PRIMARY_SYMTABS (objfile, s) 12523 { 12524 struct blockvector *bv = BLOCKVECTOR (s); 12525 int i; 12526 12527 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++) 12528 { 12529 struct block *b = BLOCKVECTOR_BLOCK (bv, i); 12530 struct block_iterator iter; 12531 struct symbol *sym; 12532 12533 ALL_BLOCK_SYMBOLS (b, iter, sym) 12534 if (ada_is_non_standard_exception_sym (sym) 12535 && (preg == NULL 12536 || regexec (preg, SYMBOL_NATURAL_NAME (sym), 12537 0, NULL, 0) == 0)) 12538 { 12539 struct ada_exc_info info 12540 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)}; 12541 12542 VEC_safe_push (ada_exc_info, *exceptions, &info); 12543 } 12544 } 12545 } 12546 } 12547 12548 /* Implements ada_exceptions_list with the regular expression passed 12549 as a regex_t, rather than a string. 12550 12551 If not NULL, PREG is used to filter out exceptions whose names 12552 do not match. Otherwise, all exceptions are listed. */ 12553 12554 static VEC(ada_exc_info) * 12555 ada_exceptions_list_1 (regex_t *preg) 12556 { 12557 VEC(ada_exc_info) *result = NULL; 12558 struct cleanup *old_chain 12559 = make_cleanup (VEC_cleanup (ada_exc_info), &result); 12560 int prev_len; 12561 12562 /* First, list the known standard exceptions. These exceptions 12563 need to be handled separately, as they are usually defined in 12564 runtime units that have been compiled without debugging info. */ 12565 12566 ada_add_standard_exceptions (preg, &result); 12567 12568 /* Next, find all exceptions whose scope is local and accessible 12569 from the currently selected frame. */ 12570 12571 if (has_stack_frames ()) 12572 { 12573 prev_len = VEC_length (ada_exc_info, result); 12574 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL), 12575 &result); 12576 if (VEC_length (ada_exc_info, result) > prev_len) 12577 sort_remove_dups_ada_exceptions_list (&result, prev_len); 12578 } 12579 12580 /* Add all exceptions whose scope is global. */ 12581 12582 prev_len = VEC_length (ada_exc_info, result); 12583 ada_add_global_exceptions (preg, &result); 12584 if (VEC_length (ada_exc_info, result) > prev_len) 12585 sort_remove_dups_ada_exceptions_list (&result, prev_len); 12586 12587 discard_cleanups (old_chain); 12588 return result; 12589 } 12590 12591 /* Return a vector of ada_exc_info. 12592 12593 If REGEXP is NULL, all exceptions are included in the result. 12594 Otherwise, it should contain a valid regular expression, 12595 and only the exceptions whose names match that regular expression 12596 are included in the result. 12597 12598 The exceptions are sorted in the following order: 12599 - Standard exceptions (defined by the Ada language), in 12600 alphabetical order; 12601 - Exceptions only visible from the current frame, in 12602 alphabetical order; 12603 - Exceptions whose scope is global, in alphabetical order. */ 12604 12605 VEC(ada_exc_info) * 12606 ada_exceptions_list (const char *regexp) 12607 { 12608 VEC(ada_exc_info) *result = NULL; 12609 struct cleanup *old_chain = NULL; 12610 regex_t reg; 12611 12612 if (regexp != NULL) 12613 old_chain = compile_rx_or_error (®, regexp, 12614 _("invalid regular expression")); 12615 12616 result = ada_exceptions_list_1 (regexp != NULL ? ® : NULL); 12617 12618 if (old_chain != NULL) 12619 do_cleanups (old_chain); 12620 return result; 12621 } 12622 12623 /* Implement the "info exceptions" command. */ 12624 12625 static void 12626 info_exceptions_command (char *regexp, int from_tty) 12627 { 12628 VEC(ada_exc_info) *exceptions; 12629 struct cleanup *cleanup; 12630 struct gdbarch *gdbarch = get_current_arch (); 12631 int ix; 12632 struct ada_exc_info *info; 12633 12634 exceptions = ada_exceptions_list (regexp); 12635 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions); 12636 12637 if (regexp != NULL) 12638 printf_filtered 12639 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp); 12640 else 12641 printf_filtered (_("All defined Ada exceptions:\n")); 12642 12643 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++) 12644 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr)); 12645 12646 do_cleanups (cleanup); 12647 } 12648 12649 /* Operators */ 12650 /* Information about operators given special treatment in functions 12651 below. */ 12652 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */ 12653 12654 #define ADA_OPERATORS \ 12655 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \ 12656 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \ 12657 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \ 12658 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \ 12659 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \ 12660 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \ 12661 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \ 12662 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \ 12663 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \ 12664 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \ 12665 OP_DEFN (OP_ATR_POS, 1, 2, 0) \ 12666 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \ 12667 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \ 12668 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \ 12669 OP_DEFN (UNOP_QUAL, 3, 1, 0) \ 12670 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \ 12671 OP_DEFN (OP_OTHERS, 1, 1, 0) \ 12672 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \ 12673 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0) 12674 12675 static void 12676 ada_operator_length (const struct expression *exp, int pc, int *oplenp, 12677 int *argsp) 12678 { 12679 switch (exp->elts[pc - 1].opcode) 12680 { 12681 default: 12682 operator_length_standard (exp, pc, oplenp, argsp); 12683 break; 12684 12685 #define OP_DEFN(op, len, args, binop) \ 12686 case op: *oplenp = len; *argsp = args; break; 12687 ADA_OPERATORS; 12688 #undef OP_DEFN 12689 12690 case OP_AGGREGATE: 12691 *oplenp = 3; 12692 *argsp = longest_to_int (exp->elts[pc - 2].longconst); 12693 break; 12694 12695 case OP_CHOICES: 12696 *oplenp = 3; 12697 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1; 12698 break; 12699 } 12700 } 12701 12702 /* Implementation of the exp_descriptor method operator_check. */ 12703 12704 static int 12705 ada_operator_check (struct expression *exp, int pos, 12706 int (*objfile_func) (struct objfile *objfile, void *data), 12707 void *data) 12708 { 12709 const union exp_element *const elts = exp->elts; 12710 struct type *type = NULL; 12711 12712 switch (elts[pos].opcode) 12713 { 12714 case UNOP_IN_RANGE: 12715 case UNOP_QUAL: 12716 type = elts[pos + 1].type; 12717 break; 12718 12719 default: 12720 return operator_check_standard (exp, pos, objfile_func, data); 12721 } 12722 12723 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */ 12724 12725 if (type && TYPE_OBJFILE (type) 12726 && (*objfile_func) (TYPE_OBJFILE (type), data)) 12727 return 1; 12728 12729 return 0; 12730 } 12731 12732 static char * 12733 ada_op_name (enum exp_opcode opcode) 12734 { 12735 switch (opcode) 12736 { 12737 default: 12738 return op_name_standard (opcode); 12739 12740 #define OP_DEFN(op, len, args, binop) case op: return #op; 12741 ADA_OPERATORS; 12742 #undef OP_DEFN 12743 12744 case OP_AGGREGATE: 12745 return "OP_AGGREGATE"; 12746 case OP_CHOICES: 12747 return "OP_CHOICES"; 12748 case OP_NAME: 12749 return "OP_NAME"; 12750 } 12751 } 12752 12753 /* As for operator_length, but assumes PC is pointing at the first 12754 element of the operator, and gives meaningful results only for the 12755 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */ 12756 12757 static void 12758 ada_forward_operator_length (struct expression *exp, int pc, 12759 int *oplenp, int *argsp) 12760 { 12761 switch (exp->elts[pc].opcode) 12762 { 12763 default: 12764 *oplenp = *argsp = 0; 12765 break; 12766 12767 #define OP_DEFN(op, len, args, binop) \ 12768 case op: *oplenp = len; *argsp = args; break; 12769 ADA_OPERATORS; 12770 #undef OP_DEFN 12771 12772 case OP_AGGREGATE: 12773 *oplenp = 3; 12774 *argsp = longest_to_int (exp->elts[pc + 1].longconst); 12775 break; 12776 12777 case OP_CHOICES: 12778 *oplenp = 3; 12779 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1; 12780 break; 12781 12782 case OP_STRING: 12783 case OP_NAME: 12784 { 12785 int len = longest_to_int (exp->elts[pc + 1].longconst); 12786 12787 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1); 12788 *argsp = 0; 12789 break; 12790 } 12791 } 12792 } 12793 12794 static int 12795 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt) 12796 { 12797 enum exp_opcode op = exp->elts[elt].opcode; 12798 int oplen, nargs; 12799 int pc = elt; 12800 int i; 12801 12802 ada_forward_operator_length (exp, elt, &oplen, &nargs); 12803 12804 switch (op) 12805 { 12806 /* Ada attributes ('Foo). */ 12807 case OP_ATR_FIRST: 12808 case OP_ATR_LAST: 12809 case OP_ATR_LENGTH: 12810 case OP_ATR_IMAGE: 12811 case OP_ATR_MAX: 12812 case OP_ATR_MIN: 12813 case OP_ATR_MODULUS: 12814 case OP_ATR_POS: 12815 case OP_ATR_SIZE: 12816 case OP_ATR_TAG: 12817 case OP_ATR_VAL: 12818 break; 12819 12820 case UNOP_IN_RANGE: 12821 case UNOP_QUAL: 12822 /* XXX: gdb_sprint_host_address, type_sprint */ 12823 fprintf_filtered (stream, _("Type @")); 12824 gdb_print_host_address (exp->elts[pc + 1].type, stream); 12825 fprintf_filtered (stream, " ("); 12826 type_print (exp->elts[pc + 1].type, NULL, stream, 0); 12827 fprintf_filtered (stream, ")"); 12828 break; 12829 case BINOP_IN_BOUNDS: 12830 fprintf_filtered (stream, " (%d)", 12831 longest_to_int (exp->elts[pc + 2].longconst)); 12832 break; 12833 case TERNOP_IN_RANGE: 12834 break; 12835 12836 case OP_AGGREGATE: 12837 case OP_OTHERS: 12838 case OP_DISCRETE_RANGE: 12839 case OP_POSITIONAL: 12840 case OP_CHOICES: 12841 break; 12842 12843 case OP_NAME: 12844 case OP_STRING: 12845 { 12846 char *name = &exp->elts[elt + 2].string; 12847 int len = longest_to_int (exp->elts[elt + 1].longconst); 12848 12849 fprintf_filtered (stream, "Text: `%.*s'", len, name); 12850 break; 12851 } 12852 12853 default: 12854 return dump_subexp_body_standard (exp, stream, elt); 12855 } 12856 12857 elt += oplen; 12858 for (i = 0; i < nargs; i += 1) 12859 elt = dump_subexp (exp, stream, elt); 12860 12861 return elt; 12862 } 12863 12864 /* The Ada extension of print_subexp (q.v.). */ 12865 12866 static void 12867 ada_print_subexp (struct expression *exp, int *pos, 12868 struct ui_file *stream, enum precedence prec) 12869 { 12870 int oplen, nargs, i; 12871 int pc = *pos; 12872 enum exp_opcode op = exp->elts[pc].opcode; 12873 12874 ada_forward_operator_length (exp, pc, &oplen, &nargs); 12875 12876 *pos += oplen; 12877 switch (op) 12878 { 12879 default: 12880 *pos -= oplen; 12881 print_subexp_standard (exp, pos, stream, prec); 12882 return; 12883 12884 case OP_VAR_VALUE: 12885 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream); 12886 return; 12887 12888 case BINOP_IN_BOUNDS: 12889 /* XXX: sprint_subexp */ 12890 print_subexp (exp, pos, stream, PREC_SUFFIX); 12891 fputs_filtered (" in ", stream); 12892 print_subexp (exp, pos, stream, PREC_SUFFIX); 12893 fputs_filtered ("'range", stream); 12894 if (exp->elts[pc + 1].longconst > 1) 12895 fprintf_filtered (stream, "(%ld)", 12896 (long) exp->elts[pc + 1].longconst); 12897 return; 12898 12899 case TERNOP_IN_RANGE: 12900 if (prec >= PREC_EQUAL) 12901 fputs_filtered ("(", stream); 12902 /* XXX: sprint_subexp */ 12903 print_subexp (exp, pos, stream, PREC_SUFFIX); 12904 fputs_filtered (" in ", stream); 12905 print_subexp (exp, pos, stream, PREC_EQUAL); 12906 fputs_filtered (" .. ", stream); 12907 print_subexp (exp, pos, stream, PREC_EQUAL); 12908 if (prec >= PREC_EQUAL) 12909 fputs_filtered (")", stream); 12910 return; 12911 12912 case OP_ATR_FIRST: 12913 case OP_ATR_LAST: 12914 case OP_ATR_LENGTH: 12915 case OP_ATR_IMAGE: 12916 case OP_ATR_MAX: 12917 case OP_ATR_MIN: 12918 case OP_ATR_MODULUS: 12919 case OP_ATR_POS: 12920 case OP_ATR_SIZE: 12921 case OP_ATR_TAG: 12922 case OP_ATR_VAL: 12923 if (exp->elts[*pos].opcode == OP_TYPE) 12924 { 12925 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID) 12926 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0, 12927 &type_print_raw_options); 12928 *pos += 3; 12929 } 12930 else 12931 print_subexp (exp, pos, stream, PREC_SUFFIX); 12932 fprintf_filtered (stream, "'%s", ada_attribute_name (op)); 12933 if (nargs > 1) 12934 { 12935 int tem; 12936 12937 for (tem = 1; tem < nargs; tem += 1) 12938 { 12939 fputs_filtered ((tem == 1) ? " (" : ", ", stream); 12940 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA); 12941 } 12942 fputs_filtered (")", stream); 12943 } 12944 return; 12945 12946 case UNOP_QUAL: 12947 type_print (exp->elts[pc + 1].type, "", stream, 0); 12948 fputs_filtered ("'(", stream); 12949 print_subexp (exp, pos, stream, PREC_PREFIX); 12950 fputs_filtered (")", stream); 12951 return; 12952 12953 case UNOP_IN_RANGE: 12954 /* XXX: sprint_subexp */ 12955 print_subexp (exp, pos, stream, PREC_SUFFIX); 12956 fputs_filtered (" in ", stream); 12957 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0, 12958 &type_print_raw_options); 12959 return; 12960 12961 case OP_DISCRETE_RANGE: 12962 print_subexp (exp, pos, stream, PREC_SUFFIX); 12963 fputs_filtered ("..", stream); 12964 print_subexp (exp, pos, stream, PREC_SUFFIX); 12965 return; 12966 12967 case OP_OTHERS: 12968 fputs_filtered ("others => ", stream); 12969 print_subexp (exp, pos, stream, PREC_SUFFIX); 12970 return; 12971 12972 case OP_CHOICES: 12973 for (i = 0; i < nargs-1; i += 1) 12974 { 12975 if (i > 0) 12976 fputs_filtered ("|", stream); 12977 print_subexp (exp, pos, stream, PREC_SUFFIX); 12978 } 12979 fputs_filtered (" => ", stream); 12980 print_subexp (exp, pos, stream, PREC_SUFFIX); 12981 return; 12982 12983 case OP_POSITIONAL: 12984 print_subexp (exp, pos, stream, PREC_SUFFIX); 12985 return; 12986 12987 case OP_AGGREGATE: 12988 fputs_filtered ("(", stream); 12989 for (i = 0; i < nargs; i += 1) 12990 { 12991 if (i > 0) 12992 fputs_filtered (", ", stream); 12993 print_subexp (exp, pos, stream, PREC_SUFFIX); 12994 } 12995 fputs_filtered (")", stream); 12996 return; 12997 } 12998 } 12999 13000 /* Table mapping opcodes into strings for printing operators 13001 and precedences of the operators. */ 13002 13003 static const struct op_print ada_op_print_tab[] = { 13004 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, 13005 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, 13006 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, 13007 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, 13008 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, 13009 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, 13010 {"=", BINOP_EQUAL, PREC_EQUAL, 0}, 13011 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, 13012 {"<=", BINOP_LEQ, PREC_ORDER, 0}, 13013 {">=", BINOP_GEQ, PREC_ORDER, 0}, 13014 {">", BINOP_GTR, PREC_ORDER, 0}, 13015 {"<", BINOP_LESS, PREC_ORDER, 0}, 13016 {">>", BINOP_RSH, PREC_SHIFT, 0}, 13017 {"<<", BINOP_LSH, PREC_SHIFT, 0}, 13018 {"+", BINOP_ADD, PREC_ADD, 0}, 13019 {"-", BINOP_SUB, PREC_ADD, 0}, 13020 {"&", BINOP_CONCAT, PREC_ADD, 0}, 13021 {"*", BINOP_MUL, PREC_MUL, 0}, 13022 {"/", BINOP_DIV, PREC_MUL, 0}, 13023 {"rem", BINOP_REM, PREC_MUL, 0}, 13024 {"mod", BINOP_MOD, PREC_MUL, 0}, 13025 {"**", BINOP_EXP, PREC_REPEAT, 0}, 13026 {"@", BINOP_REPEAT, PREC_REPEAT, 0}, 13027 {"-", UNOP_NEG, PREC_PREFIX, 0}, 13028 {"+", UNOP_PLUS, PREC_PREFIX, 0}, 13029 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, 13030 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, 13031 {"abs ", UNOP_ABS, PREC_PREFIX, 0}, 13032 {".all", UNOP_IND, PREC_SUFFIX, 1}, 13033 {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, 13034 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1}, 13035 {NULL, 0, 0, 0} 13036 }; 13037 13038 enum ada_primitive_types { 13039 ada_primitive_type_int, 13040 ada_primitive_type_long, 13041 ada_primitive_type_short, 13042 ada_primitive_type_char, 13043 ada_primitive_type_float, 13044 ada_primitive_type_double, 13045 ada_primitive_type_void, 13046 ada_primitive_type_long_long, 13047 ada_primitive_type_long_double, 13048 ada_primitive_type_natural, 13049 ada_primitive_type_positive, 13050 ada_primitive_type_system_address, 13051 nr_ada_primitive_types 13052 }; 13053 13054 static void 13055 ada_language_arch_info (struct gdbarch *gdbarch, 13056 struct language_arch_info *lai) 13057 { 13058 const struct builtin_type *builtin = builtin_type (gdbarch); 13059 13060 lai->primitive_type_vector 13061 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1, 13062 struct type *); 13063 13064 lai->primitive_type_vector [ada_primitive_type_int] 13065 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 13066 0, "integer"); 13067 lai->primitive_type_vector [ada_primitive_type_long] 13068 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 13069 0, "long_integer"); 13070 lai->primitive_type_vector [ada_primitive_type_short] 13071 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch), 13072 0, "short_integer"); 13073 lai->string_char_type 13074 = lai->primitive_type_vector [ada_primitive_type_char] 13075 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character"); 13076 lai->primitive_type_vector [ada_primitive_type_float] 13077 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch), 13078 "float", NULL); 13079 lai->primitive_type_vector [ada_primitive_type_double] 13080 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), 13081 "long_float", NULL); 13082 lai->primitive_type_vector [ada_primitive_type_long_long] 13083 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch), 13084 0, "long_long_integer"); 13085 lai->primitive_type_vector [ada_primitive_type_long_double] 13086 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch), 13087 "long_long_float", NULL); 13088 lai->primitive_type_vector [ada_primitive_type_natural] 13089 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 13090 0, "natural"); 13091 lai->primitive_type_vector [ada_primitive_type_positive] 13092 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), 13093 0, "positive"); 13094 lai->primitive_type_vector [ada_primitive_type_void] 13095 = builtin->builtin_void; 13096 13097 lai->primitive_type_vector [ada_primitive_type_system_address] 13098 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void")); 13099 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address]) 13100 = "system__address"; 13101 13102 lai->bool_type_symbol = NULL; 13103 lai->bool_type_default = builtin->builtin_bool; 13104 } 13105 13106 /* Language vector */ 13107 13108 /* Not really used, but needed in the ada_language_defn. */ 13109 13110 static void 13111 emit_char (int c, struct type *type, struct ui_file *stream, int quoter) 13112 { 13113 ada_emit_char (c, type, stream, quoter, 1); 13114 } 13115 13116 static int 13117 parse (void) 13118 { 13119 warnings_issued = 0; 13120 return ada_parse (); 13121 } 13122 13123 static const struct exp_descriptor ada_exp_descriptor = { 13124 ada_print_subexp, 13125 ada_operator_length, 13126 ada_operator_check, 13127 ada_op_name, 13128 ada_dump_subexp_body, 13129 ada_evaluate_subexp 13130 }; 13131 13132 /* Implement the "la_get_symbol_name_cmp" language_defn method 13133 for Ada. */ 13134 13135 static symbol_name_cmp_ftype 13136 ada_get_symbol_name_cmp (const char *lookup_name) 13137 { 13138 if (should_use_wild_match (lookup_name)) 13139 return wild_match; 13140 else 13141 return compare_names; 13142 } 13143 13144 /* Implement the "la_read_var_value" language_defn method for Ada. */ 13145 13146 static struct value * 13147 ada_read_var_value (struct symbol *var, struct frame_info *frame) 13148 { 13149 struct block *frame_block = NULL; 13150 struct symbol *renaming_sym = NULL; 13151 13152 /* The only case where default_read_var_value is not sufficient 13153 is when VAR is a renaming... */ 13154 if (frame) 13155 frame_block = get_frame_block (frame, NULL); 13156 if (frame_block) 13157 renaming_sym = ada_find_renaming_symbol (var, frame_block); 13158 if (renaming_sym != NULL) 13159 return ada_read_renaming_var_value (renaming_sym, frame_block); 13160 13161 /* This is a typical case where we expect the default_read_var_value 13162 function to work. */ 13163 return default_read_var_value (var, frame); 13164 } 13165 13166 const struct language_defn ada_language_defn = { 13167 "ada", /* Language name */ 13168 "Ada", 13169 language_ada, 13170 range_check_off, 13171 case_sensitive_on, /* Yes, Ada is case-insensitive, but 13172 that's not quite what this means. */ 13173 array_row_major, 13174 macro_expansion_no, 13175 &ada_exp_descriptor, 13176 parse, 13177 ada_error, 13178 resolve, 13179 ada_printchar, /* Print a character constant */ 13180 ada_printstr, /* Function to print string constant */ 13181 emit_char, /* Function to print single char (not used) */ 13182 ada_print_type, /* Print a type using appropriate syntax */ 13183 ada_print_typedef, /* Print a typedef using appropriate syntax */ 13184 ada_val_print, /* Print a value using appropriate syntax */ 13185 ada_value_print, /* Print a top-level value */ 13186 ada_read_var_value, /* la_read_var_value */ 13187 NULL, /* Language specific skip_trampoline */ 13188 NULL, /* name_of_this */ 13189 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */ 13190 basic_lookup_transparent_type, /* lookup_transparent_type */ 13191 ada_la_decode, /* Language specific symbol demangler */ 13192 NULL, /* Language specific 13193 class_name_from_physname */ 13194 ada_op_print_tab, /* expression operators for printing */ 13195 0, /* c-style arrays */ 13196 1, /* String lower bound */ 13197 ada_get_gdb_completer_word_break_characters, 13198 ada_make_symbol_completion_list, 13199 ada_language_arch_info, 13200 ada_print_array_index, 13201 default_pass_by_reference, 13202 c_get_string, 13203 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */ 13204 ada_iterate_over_symbols, 13205 &ada_varobj_ops, 13206 LANG_MAGIC 13207 }; 13208 13209 /* Provide a prototype to silence -Wmissing-prototypes. */ 13210 extern initialize_file_ftype _initialize_ada_language; 13211 13212 /* Command-list for the "set/show ada" prefix command. */ 13213 static struct cmd_list_element *set_ada_list; 13214 static struct cmd_list_element *show_ada_list; 13215 13216 /* Implement the "set ada" prefix command. */ 13217 13218 static void 13219 set_ada_command (char *arg, int from_tty) 13220 { 13221 printf_unfiltered (_(\ 13222 "\"set ada\" must be followed by the name of a setting.\n")); 13223 help_list (set_ada_list, "set ada ", -1, gdb_stdout); 13224 } 13225 13226 /* Implement the "show ada" prefix command. */ 13227 13228 static void 13229 show_ada_command (char *args, int from_tty) 13230 { 13231 cmd_show_list (show_ada_list, from_tty, ""); 13232 } 13233 13234 static void 13235 initialize_ada_catchpoint_ops (void) 13236 { 13237 struct breakpoint_ops *ops; 13238 13239 initialize_breakpoint_ops (); 13240 13241 ops = &catch_exception_breakpoint_ops; 13242 *ops = bkpt_breakpoint_ops; 13243 ops->dtor = dtor_catch_exception; 13244 ops->allocate_location = allocate_location_catch_exception; 13245 ops->re_set = re_set_catch_exception; 13246 ops->check_status = check_status_catch_exception; 13247 ops->print_it = print_it_catch_exception; 13248 ops->print_one = print_one_catch_exception; 13249 ops->print_mention = print_mention_catch_exception; 13250 ops->print_recreate = print_recreate_catch_exception; 13251 13252 ops = &catch_exception_unhandled_breakpoint_ops; 13253 *ops = bkpt_breakpoint_ops; 13254 ops->dtor = dtor_catch_exception_unhandled; 13255 ops->allocate_location = allocate_location_catch_exception_unhandled; 13256 ops->re_set = re_set_catch_exception_unhandled; 13257 ops->check_status = check_status_catch_exception_unhandled; 13258 ops->print_it = print_it_catch_exception_unhandled; 13259 ops->print_one = print_one_catch_exception_unhandled; 13260 ops->print_mention = print_mention_catch_exception_unhandled; 13261 ops->print_recreate = print_recreate_catch_exception_unhandled; 13262 13263 ops = &catch_assert_breakpoint_ops; 13264 *ops = bkpt_breakpoint_ops; 13265 ops->dtor = dtor_catch_assert; 13266 ops->allocate_location = allocate_location_catch_assert; 13267 ops->re_set = re_set_catch_assert; 13268 ops->check_status = check_status_catch_assert; 13269 ops->print_it = print_it_catch_assert; 13270 ops->print_one = print_one_catch_assert; 13271 ops->print_mention = print_mention_catch_assert; 13272 ops->print_recreate = print_recreate_catch_assert; 13273 } 13274 13275 void 13276 _initialize_ada_language (void) 13277 { 13278 add_language (&ada_language_defn); 13279 13280 initialize_ada_catchpoint_ops (); 13281 13282 add_prefix_cmd ("ada", no_class, set_ada_command, 13283 _("Prefix command for changing Ada-specfic settings"), 13284 &set_ada_list, "set ada ", 0, &setlist); 13285 13286 add_prefix_cmd ("ada", no_class, show_ada_command, 13287 _("Generic command for showing Ada-specific settings."), 13288 &show_ada_list, "show ada ", 0, &showlist); 13289 13290 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure, 13291 &trust_pad_over_xvs, _("\ 13292 Enable or disable an optimization trusting PAD types over XVS types"), _("\ 13293 Show whether an optimization trusting PAD types over XVS types is activated"), 13294 _("\ 13295 This is related to the encoding used by the GNAT compiler. The debugger\n\ 13296 should normally trust the contents of PAD types, but certain older versions\n\ 13297 of GNAT have a bug that sometimes causes the information in the PAD type\n\ 13298 to be incorrect. Turning this setting \"off\" allows the debugger to\n\ 13299 work around this bug. It is always safe to turn this option \"off\", but\n\ 13300 this incurs a slight performance penalty, so it is recommended to NOT change\n\ 13301 this option to \"off\" unless necessary."), 13302 NULL, NULL, &set_ada_list, &show_ada_list); 13303 13304 add_catch_command ("exception", _("\ 13305 Catch Ada exceptions, when raised.\n\ 13306 With an argument, catch only exceptions with the given name."), 13307 catch_ada_exception_command, 13308 NULL, 13309 CATCH_PERMANENT, 13310 CATCH_TEMPORARY); 13311 add_catch_command ("assert", _("\ 13312 Catch failed Ada assertions, when raised.\n\ 13313 With an argument, catch only exceptions with the given name."), 13314 catch_assert_command, 13315 NULL, 13316 CATCH_PERMANENT, 13317 CATCH_TEMPORARY); 13318 13319 varsize_limit = 65536; 13320 13321 add_info ("exceptions", info_exceptions_command, 13322 _("\ 13323 List all Ada exception names.\n\ 13324 If a regular expression is passed as an argument, only those matching\n\ 13325 the regular expression are listed.")); 13326 13327 obstack_init (&symbol_list_obstack); 13328 13329 decoded_names_store = htab_create_alloc 13330 (256, htab_hash_string, (int (*)(const void *, const void *)) streq, 13331 NULL, xcalloc, xfree); 13332 13333 /* Setup per-inferior data. */ 13334 observer_attach_inferior_exit (ada_inferior_exit); 13335 ada_inferior_data 13336 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup); 13337 } 13338