1 /* RISC-V-specific support for NN-bit ELF. 2 Copyright (C) 2011-2019 Free Software Foundation, Inc. 3 4 Contributed by Andrew Waterman (andrew@sifive.com). 5 Based on TILE-Gx and MIPS targets. 6 7 This file is part of BFD, the Binary File Descriptor library. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; see the file COPYING3. If not, 21 see <http://www.gnu.org/licenses/>. */ 22 23 /* This file handles RISC-V ELF targets. */ 24 25 #include "sysdep.h" 26 #include "bfd.h" 27 #include "libbfd.h" 28 #include "bfdlink.h" 29 #include "genlink.h" 30 #include "elf-bfd.h" 31 #include "elfxx-riscv.h" 32 #include "elf/riscv.h" 33 #include "opcode/riscv.h" 34 35 /* Internal relocations used exclusively by the relaxation pass. */ 36 #define R_RISCV_DELETE (R_RISCV_max + 1) 37 38 #define ARCH_SIZE NN 39 40 #define MINUS_ONE ((bfd_vma)0 - 1) 41 42 #define RISCV_ELF_LOG_WORD_BYTES (ARCH_SIZE == 32 ? 2 : 3) 43 44 #define RISCV_ELF_WORD_BYTES (1 << RISCV_ELF_LOG_WORD_BYTES) 45 46 /* The name of the dynamic interpreter. This is put in the .interp 47 section. */ 48 49 #define ELF64_DYNAMIC_INTERPRETER "/lib/ld.so.1" 50 #define ELF32_DYNAMIC_INTERPRETER "/lib32/ld.so.1" 51 52 #define ELF_ARCH bfd_arch_riscv 53 #define ELF_TARGET_ID RISCV_ELF_DATA 54 #define ELF_MACHINE_CODE EM_RISCV 55 #define ELF_MAXPAGESIZE 0x1000 56 #define ELF_COMMONPAGESIZE 0x1000 57 58 /* RISC-V ELF linker hash entry. */ 59 60 struct riscv_elf_link_hash_entry 61 { 62 struct elf_link_hash_entry elf; 63 64 /* Track dynamic relocs copied for this symbol. */ 65 struct elf_dyn_relocs *dyn_relocs; 66 67 #define GOT_UNKNOWN 0 68 #define GOT_NORMAL 1 69 #define GOT_TLS_GD 2 70 #define GOT_TLS_IE 4 71 #define GOT_TLS_LE 8 72 char tls_type; 73 }; 74 75 #define riscv_elf_hash_entry(ent) \ 76 ((struct riscv_elf_link_hash_entry *)(ent)) 77 78 struct _bfd_riscv_elf_obj_tdata 79 { 80 struct elf_obj_tdata root; 81 82 /* tls_type for each local got entry. */ 83 char *local_got_tls_type; 84 }; 85 86 #define _bfd_riscv_elf_tdata(abfd) \ 87 ((struct _bfd_riscv_elf_obj_tdata *) (abfd)->tdata.any) 88 89 #define _bfd_riscv_elf_local_got_tls_type(abfd) \ 90 (_bfd_riscv_elf_tdata (abfd)->local_got_tls_type) 91 92 #define _bfd_riscv_elf_tls_type(abfd, h, symndx) \ 93 (*((h) != NULL ? &riscv_elf_hash_entry (h)->tls_type \ 94 : &_bfd_riscv_elf_local_got_tls_type (abfd) [symndx])) 95 96 #define is_riscv_elf(bfd) \ 97 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ 98 && elf_tdata (bfd) != NULL \ 99 && elf_object_id (bfd) == RISCV_ELF_DATA) 100 101 #include "elf/common.h" 102 #include "elf/internal.h" 103 104 struct riscv_elf_link_hash_table 105 { 106 struct elf_link_hash_table elf; 107 108 /* Short-cuts to get to dynamic linker sections. */ 109 asection *sdyntdata; 110 111 /* Small local sym to section mapping cache. */ 112 struct sym_cache sym_cache; 113 114 /* The max alignment of output sections. */ 115 bfd_vma max_alignment; 116 }; 117 118 119 /* Get the RISC-V ELF linker hash table from a link_info structure. */ 120 #define riscv_elf_hash_table(p) \ 121 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ 122 == RISCV_ELF_DATA ? ((struct riscv_elf_link_hash_table *) ((p)->hash)) : NULL) 123 124 static bfd_boolean 125 riscv_info_to_howto_rela (bfd *abfd, 126 arelent *cache_ptr, 127 Elf_Internal_Rela *dst) 128 { 129 cache_ptr->howto = riscv_elf_rtype_to_howto (abfd, ELFNN_R_TYPE (dst->r_info)); 130 return cache_ptr->howto != NULL; 131 } 132 133 static void 134 riscv_elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) 135 { 136 const struct elf_backend_data *bed; 137 bfd_byte *loc; 138 139 bed = get_elf_backend_data (abfd); 140 loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); 141 bed->s->swap_reloca_out (abfd, rel, loc); 142 } 143 144 /* PLT/GOT stuff. */ 145 146 #define PLT_HEADER_INSNS 8 147 #define PLT_ENTRY_INSNS 4 148 #define PLT_HEADER_SIZE (PLT_HEADER_INSNS * 4) 149 #define PLT_ENTRY_SIZE (PLT_ENTRY_INSNS * 4) 150 151 #define GOT_ENTRY_SIZE RISCV_ELF_WORD_BYTES 152 153 #define GOTPLT_HEADER_SIZE (2 * GOT_ENTRY_SIZE) 154 155 #define sec_addr(sec) ((sec)->output_section->vma + (sec)->output_offset) 156 157 static bfd_vma 158 riscv_elf_got_plt_val (bfd_vma plt_index, struct bfd_link_info *info) 159 { 160 return sec_addr (riscv_elf_hash_table (info)->elf.sgotplt) 161 + GOTPLT_HEADER_SIZE + (plt_index * GOT_ENTRY_SIZE); 162 } 163 164 #if ARCH_SIZE == 32 165 # define MATCH_LREG MATCH_LW 166 #else 167 # define MATCH_LREG MATCH_LD 168 #endif 169 170 /* Generate a PLT header. */ 171 172 static bfd_boolean 173 riscv_make_plt_header (bfd *output_bfd, bfd_vma gotplt_addr, bfd_vma addr, 174 uint32_t *entry) 175 { 176 bfd_vma gotplt_offset_high = RISCV_PCREL_HIGH_PART (gotplt_addr, addr); 177 bfd_vma gotplt_offset_low = RISCV_PCREL_LOW_PART (gotplt_addr, addr); 178 179 /* RVE has no t3 register, so this won't work, and is not supported. */ 180 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE) 181 { 182 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"), 183 output_bfd); 184 return FALSE; 185 } 186 187 /* auipc t2, %hi(.got.plt) 188 sub t1, t1, t3 # shifted .got.plt offset + hdr size + 12 189 l[w|d] t3, %lo(.got.plt)(t2) # _dl_runtime_resolve 190 addi t1, t1, -(hdr size + 12) # shifted .got.plt offset 191 addi t0, t2, %lo(.got.plt) # &.got.plt 192 srli t1, t1, log2(16/PTRSIZE) # .got.plt offset 193 l[w|d] t0, PTRSIZE(t0) # link map 194 jr t3 */ 195 196 entry[0] = RISCV_UTYPE (AUIPC, X_T2, gotplt_offset_high); 197 entry[1] = RISCV_RTYPE (SUB, X_T1, X_T1, X_T3); 198 entry[2] = RISCV_ITYPE (LREG, X_T3, X_T2, gotplt_offset_low); 199 entry[3] = RISCV_ITYPE (ADDI, X_T1, X_T1, -(PLT_HEADER_SIZE + 12)); 200 entry[4] = RISCV_ITYPE (ADDI, X_T0, X_T2, gotplt_offset_low); 201 entry[5] = RISCV_ITYPE (SRLI, X_T1, X_T1, 4 - RISCV_ELF_LOG_WORD_BYTES); 202 entry[6] = RISCV_ITYPE (LREG, X_T0, X_T0, RISCV_ELF_WORD_BYTES); 203 entry[7] = RISCV_ITYPE (JALR, 0, X_T3, 0); 204 205 return TRUE; 206 } 207 208 /* Generate a PLT entry. */ 209 210 static bfd_boolean 211 riscv_make_plt_entry (bfd *output_bfd, bfd_vma got, bfd_vma addr, 212 uint32_t *entry) 213 { 214 /* RVE has no t3 register, so this won't work, and is not supported. */ 215 if (elf_elfheader (output_bfd)->e_flags & EF_RISCV_RVE) 216 { 217 _bfd_error_handler (_("%pB: warning: RVE PLT generation not supported"), 218 output_bfd); 219 return FALSE; 220 } 221 222 /* auipc t3, %hi(.got.plt entry) 223 l[w|d] t3, %lo(.got.plt entry)(t3) 224 jalr t1, t3 225 nop */ 226 227 entry[0] = RISCV_UTYPE (AUIPC, X_T3, RISCV_PCREL_HIGH_PART (got, addr)); 228 entry[1] = RISCV_ITYPE (LREG, X_T3, X_T3, RISCV_PCREL_LOW_PART (got, addr)); 229 entry[2] = RISCV_ITYPE (JALR, X_T1, X_T3, 0); 230 entry[3] = RISCV_NOP; 231 232 return TRUE; 233 } 234 235 /* Create an entry in an RISC-V ELF linker hash table. */ 236 237 static struct bfd_hash_entry * 238 link_hash_newfunc (struct bfd_hash_entry *entry, 239 struct bfd_hash_table *table, const char *string) 240 { 241 /* Allocate the structure if it has not already been allocated by a 242 subclass. */ 243 if (entry == NULL) 244 { 245 entry = 246 bfd_hash_allocate (table, 247 sizeof (struct riscv_elf_link_hash_entry)); 248 if (entry == NULL) 249 return entry; 250 } 251 252 /* Call the allocation method of the superclass. */ 253 entry = _bfd_elf_link_hash_newfunc (entry, table, string); 254 if (entry != NULL) 255 { 256 struct riscv_elf_link_hash_entry *eh; 257 258 eh = (struct riscv_elf_link_hash_entry *) entry; 259 eh->dyn_relocs = NULL; 260 eh->tls_type = GOT_UNKNOWN; 261 } 262 263 return entry; 264 } 265 266 /* Create a RISC-V ELF linker hash table. */ 267 268 static struct bfd_link_hash_table * 269 riscv_elf_link_hash_table_create (bfd *abfd) 270 { 271 struct riscv_elf_link_hash_table *ret; 272 bfd_size_type amt = sizeof (struct riscv_elf_link_hash_table); 273 274 ret = (struct riscv_elf_link_hash_table *) bfd_zmalloc (amt); 275 if (ret == NULL) 276 return NULL; 277 278 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc, 279 sizeof (struct riscv_elf_link_hash_entry), 280 RISCV_ELF_DATA)) 281 { 282 free (ret); 283 return NULL; 284 } 285 286 ret->max_alignment = (bfd_vma) -1; 287 return &ret->elf.root; 288 } 289 290 /* Create the .got section. */ 291 292 static bfd_boolean 293 riscv_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) 294 { 295 flagword flags; 296 asection *s, *s_got; 297 struct elf_link_hash_entry *h; 298 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 299 struct elf_link_hash_table *htab = elf_hash_table (info); 300 301 /* This function may be called more than once. */ 302 if (htab->sgot != NULL) 303 return TRUE; 304 305 flags = bed->dynamic_sec_flags; 306 307 s = bfd_make_section_anyway_with_flags (abfd, 308 (bed->rela_plts_and_copies_p 309 ? ".rela.got" : ".rel.got"), 310 (bed->dynamic_sec_flags 311 | SEC_READONLY)); 312 if (s == NULL 313 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 314 return FALSE; 315 htab->srelgot = s; 316 317 s = s_got = bfd_make_section_anyway_with_flags (abfd, ".got", flags); 318 if (s == NULL 319 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 320 return FALSE; 321 htab->sgot = s; 322 323 /* The first bit of the global offset table is the header. */ 324 s->size += bed->got_header_size; 325 326 if (bed->want_got_plt) 327 { 328 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); 329 if (s == NULL 330 || !bfd_set_section_alignment (abfd, s, 331 bed->s->log_file_align)) 332 return FALSE; 333 htab->sgotplt = s; 334 335 /* Reserve room for the header. */ 336 s->size += GOTPLT_HEADER_SIZE; 337 } 338 339 if (bed->want_got_sym) 340 { 341 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got 342 section. We don't do this in the linker script because we don't want 343 to define the symbol if we are not creating a global offset 344 table. */ 345 h = _bfd_elf_define_linkage_sym (abfd, info, s_got, 346 "_GLOBAL_OFFSET_TABLE_"); 347 elf_hash_table (info)->hgot = h; 348 if (h == NULL) 349 return FALSE; 350 } 351 352 return TRUE; 353 } 354 355 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and 356 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our 357 hash table. */ 358 359 static bfd_boolean 360 riscv_elf_create_dynamic_sections (bfd *dynobj, 361 struct bfd_link_info *info) 362 { 363 struct riscv_elf_link_hash_table *htab; 364 365 htab = riscv_elf_hash_table (info); 366 BFD_ASSERT (htab != NULL); 367 368 if (!riscv_elf_create_got_section (dynobj, info)) 369 return FALSE; 370 371 if (!_bfd_elf_create_dynamic_sections (dynobj, info)) 372 return FALSE; 373 374 if (!bfd_link_pic (info)) 375 { 376 htab->sdyntdata = 377 bfd_make_section_anyway_with_flags (dynobj, ".tdata.dyn", 378 (SEC_ALLOC | SEC_THREAD_LOCAL 379 | SEC_LINKER_CREATED)); 380 } 381 382 if (!htab->elf.splt || !htab->elf.srelplt || !htab->elf.sdynbss 383 || (!bfd_link_pic (info) && (!htab->elf.srelbss || !htab->sdyntdata))) 384 abort (); 385 386 return TRUE; 387 } 388 389 /* Copy the extra info we tack onto an elf_link_hash_entry. */ 390 391 static void 392 riscv_elf_copy_indirect_symbol (struct bfd_link_info *info, 393 struct elf_link_hash_entry *dir, 394 struct elf_link_hash_entry *ind) 395 { 396 struct riscv_elf_link_hash_entry *edir, *eind; 397 398 edir = (struct riscv_elf_link_hash_entry *) dir; 399 eind = (struct riscv_elf_link_hash_entry *) ind; 400 401 if (eind->dyn_relocs != NULL) 402 { 403 if (edir->dyn_relocs != NULL) 404 { 405 struct elf_dyn_relocs **pp; 406 struct elf_dyn_relocs *p; 407 408 /* Add reloc counts against the indirect sym to the direct sym 409 list. Merge any entries against the same section. */ 410 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; ) 411 { 412 struct elf_dyn_relocs *q; 413 414 for (q = edir->dyn_relocs; q != NULL; q = q->next) 415 if (q->sec == p->sec) 416 { 417 q->pc_count += p->pc_count; 418 q->count += p->count; 419 *pp = p->next; 420 break; 421 } 422 if (q == NULL) 423 pp = &p->next; 424 } 425 *pp = edir->dyn_relocs; 426 } 427 428 edir->dyn_relocs = eind->dyn_relocs; 429 eind->dyn_relocs = NULL; 430 } 431 432 if (ind->root.type == bfd_link_hash_indirect 433 && dir->got.refcount <= 0) 434 { 435 edir->tls_type = eind->tls_type; 436 eind->tls_type = GOT_UNKNOWN; 437 } 438 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 439 } 440 441 static bfd_boolean 442 riscv_elf_record_tls_type (bfd *abfd, struct elf_link_hash_entry *h, 443 unsigned long symndx, char tls_type) 444 { 445 char *new_tls_type = &_bfd_riscv_elf_tls_type (abfd, h, symndx); 446 447 *new_tls_type |= tls_type; 448 if ((*new_tls_type & GOT_NORMAL) && (*new_tls_type & ~GOT_NORMAL)) 449 { 450 (*_bfd_error_handler) 451 (_("%pB: `%s' accessed both as normal and thread local symbol"), 452 abfd, h ? h->root.root.string : "<local>"); 453 return FALSE; 454 } 455 return TRUE; 456 } 457 458 static bfd_boolean 459 riscv_elf_record_got_reference (bfd *abfd, struct bfd_link_info *info, 460 struct elf_link_hash_entry *h, long symndx) 461 { 462 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); 463 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 464 465 if (htab->elf.sgot == NULL) 466 { 467 if (!riscv_elf_create_got_section (htab->elf.dynobj, info)) 468 return FALSE; 469 } 470 471 if (h != NULL) 472 { 473 h->got.refcount += 1; 474 return TRUE; 475 } 476 477 /* This is a global offset table entry for a local symbol. */ 478 if (elf_local_got_refcounts (abfd) == NULL) 479 { 480 bfd_size_type size = symtab_hdr->sh_info * (sizeof (bfd_vma) + 1); 481 if (!(elf_local_got_refcounts (abfd) = bfd_zalloc (abfd, size))) 482 return FALSE; 483 _bfd_riscv_elf_local_got_tls_type (abfd) 484 = (char *) (elf_local_got_refcounts (abfd) + symtab_hdr->sh_info); 485 } 486 elf_local_got_refcounts (abfd) [symndx] += 1; 487 488 return TRUE; 489 } 490 491 static bfd_boolean 492 bad_static_reloc (bfd *abfd, unsigned r_type, struct elf_link_hash_entry *h) 493 { 494 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type); 495 496 (*_bfd_error_handler) 497 (_("%pB: relocation %s against `%s' can not be used when making a shared " 498 "object; recompile with -fPIC"), 499 abfd, r ? r->name : _("<unknown>"), 500 h != NULL ? h->root.root.string : "a local symbol"); 501 bfd_set_error (bfd_error_bad_value); 502 return FALSE; 503 } 504 /* Look through the relocs for a section during the first phase, and 505 allocate space in the global offset table or procedure linkage 506 table. */ 507 508 static bfd_boolean 509 riscv_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, 510 asection *sec, const Elf_Internal_Rela *relocs) 511 { 512 struct riscv_elf_link_hash_table *htab; 513 Elf_Internal_Shdr *symtab_hdr; 514 struct elf_link_hash_entry **sym_hashes; 515 const Elf_Internal_Rela *rel; 516 asection *sreloc = NULL; 517 518 if (bfd_link_relocatable (info)) 519 return TRUE; 520 521 htab = riscv_elf_hash_table (info); 522 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 523 sym_hashes = elf_sym_hashes (abfd); 524 525 if (htab->elf.dynobj == NULL) 526 htab->elf.dynobj = abfd; 527 528 for (rel = relocs; rel < relocs + sec->reloc_count; rel++) 529 { 530 unsigned int r_type; 531 unsigned int r_symndx; 532 struct elf_link_hash_entry *h; 533 534 r_symndx = ELFNN_R_SYM (rel->r_info); 535 r_type = ELFNN_R_TYPE (rel->r_info); 536 537 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) 538 { 539 (*_bfd_error_handler) (_("%pB: bad symbol index: %d"), 540 abfd, r_symndx); 541 return FALSE; 542 } 543 544 if (r_symndx < symtab_hdr->sh_info) 545 h = NULL; 546 else 547 { 548 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 549 while (h->root.type == bfd_link_hash_indirect 550 || h->root.type == bfd_link_hash_warning) 551 h = (struct elf_link_hash_entry *) h->root.u.i.link; 552 } 553 554 switch (r_type) 555 { 556 case R_RISCV_TLS_GD_HI20: 557 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) 558 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_GD)) 559 return FALSE; 560 break; 561 562 case R_RISCV_TLS_GOT_HI20: 563 if (bfd_link_pic (info)) 564 info->flags |= DF_STATIC_TLS; 565 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) 566 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_IE)) 567 return FALSE; 568 break; 569 570 case R_RISCV_GOT_HI20: 571 if (!riscv_elf_record_got_reference (abfd, info, h, r_symndx) 572 || !riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_NORMAL)) 573 return FALSE; 574 break; 575 576 case R_RISCV_CALL_PLT: 577 /* This symbol requires a procedure linkage table entry. We 578 actually build the entry in adjust_dynamic_symbol, 579 because this might be a case of linking PIC code without 580 linking in any dynamic objects, in which case we don't 581 need to generate a procedure linkage table after all. */ 582 583 if (h != NULL) 584 { 585 h->needs_plt = 1; 586 h->plt.refcount += 1; 587 } 588 break; 589 590 case R_RISCV_CALL: 591 case R_RISCV_JAL: 592 case R_RISCV_BRANCH: 593 case R_RISCV_RVC_BRANCH: 594 case R_RISCV_RVC_JUMP: 595 case R_RISCV_PCREL_HI20: 596 /* In shared libraries, these relocs are known to bind locally. */ 597 if (bfd_link_pic (info)) 598 break; 599 goto static_reloc; 600 601 case R_RISCV_TPREL_HI20: 602 if (!bfd_link_executable (info)) 603 return bad_static_reloc (abfd, r_type, h); 604 if (h != NULL) 605 riscv_elf_record_tls_type (abfd, h, r_symndx, GOT_TLS_LE); 606 goto static_reloc; 607 608 case R_RISCV_HI20: 609 if (bfd_link_pic (info)) 610 return bad_static_reloc (abfd, r_type, h); 611 /* Fall through. */ 612 613 case R_RISCV_COPY: 614 case R_RISCV_JUMP_SLOT: 615 case R_RISCV_RELATIVE: 616 case R_RISCV_64: 617 case R_RISCV_32: 618 /* Fall through. */ 619 620 static_reloc: 621 /* This reloc might not bind locally. */ 622 if (h != NULL) 623 h->non_got_ref = 1; 624 625 if (h != NULL && !bfd_link_pic (info)) 626 { 627 /* We may need a .plt entry if the function this reloc 628 refers to is in a shared lib. */ 629 h->plt.refcount += 1; 630 } 631 632 /* If we are creating a shared library, and this is a reloc 633 against a global symbol, or a non PC relative reloc 634 against a local symbol, then we need to copy the reloc 635 into the shared library. However, if we are linking with 636 -Bsymbolic, we do not need to copy a reloc against a 637 global symbol which is defined in an object we are 638 including in the link (i.e., DEF_REGULAR is set). At 639 this point we have not seen all the input files, so it is 640 possible that DEF_REGULAR is not set now but will be set 641 later (it is never cleared). In case of a weak definition, 642 DEF_REGULAR may be cleared later by a strong definition in 643 a shared library. We account for that possibility below by 644 storing information in the relocs_copied field of the hash 645 table entry. A similar situation occurs when creating 646 shared libraries and symbol visibility changes render the 647 symbol local. 648 649 If on the other hand, we are creating an executable, we 650 may need to keep relocations for symbols satisfied by a 651 dynamic library if we manage to avoid copy relocs for the 652 symbol. */ 653 reloc_howto_type * r = riscv_elf_rtype_to_howto (abfd, r_type); 654 655 if ((bfd_link_pic (info) 656 && (sec->flags & SEC_ALLOC) != 0 657 && ((r != NULL && ! r->pc_relative) 658 || (h != NULL 659 && (! info->symbolic 660 || h->root.type == bfd_link_hash_defweak 661 || !h->def_regular)))) 662 || (!bfd_link_pic (info) 663 && (sec->flags & SEC_ALLOC) != 0 664 && h != NULL 665 && (h->root.type == bfd_link_hash_defweak 666 || !h->def_regular))) 667 { 668 struct elf_dyn_relocs *p; 669 struct elf_dyn_relocs **head; 670 671 /* When creating a shared object, we must copy these 672 relocs into the output file. We create a reloc 673 section in dynobj and make room for the reloc. */ 674 if (sreloc == NULL) 675 { 676 sreloc = _bfd_elf_make_dynamic_reloc_section 677 (sec, htab->elf.dynobj, RISCV_ELF_LOG_WORD_BYTES, 678 abfd, /*rela?*/ TRUE); 679 680 if (sreloc == NULL) 681 return FALSE; 682 } 683 684 /* If this is a global symbol, we count the number of 685 relocations we need for this symbol. */ 686 if (h != NULL) 687 head = &((struct riscv_elf_link_hash_entry *) h)->dyn_relocs; 688 else 689 { 690 /* Track dynamic relocs needed for local syms too. 691 We really need local syms available to do this 692 easily. Oh well. */ 693 694 asection *s; 695 void *vpp; 696 Elf_Internal_Sym *isym; 697 698 isym = bfd_sym_from_r_symndx (&htab->sym_cache, 699 abfd, r_symndx); 700 if (isym == NULL) 701 return FALSE; 702 703 s = bfd_section_from_elf_index (abfd, isym->st_shndx); 704 if (s == NULL) 705 s = sec; 706 707 vpp = &elf_section_data (s)->local_dynrel; 708 head = (struct elf_dyn_relocs **) vpp; 709 } 710 711 p = *head; 712 if (p == NULL || p->sec != sec) 713 { 714 bfd_size_type amt = sizeof *p; 715 p = ((struct elf_dyn_relocs *) 716 bfd_alloc (htab->elf.dynobj, amt)); 717 if (p == NULL) 718 return FALSE; 719 p->next = *head; 720 *head = p; 721 p->sec = sec; 722 p->count = 0; 723 p->pc_count = 0; 724 } 725 726 p->count += 1; 727 p->pc_count += r == NULL ? 0 : r->pc_relative; 728 } 729 730 break; 731 732 case R_RISCV_GNU_VTINHERIT: 733 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 734 return FALSE; 735 break; 736 737 case R_RISCV_GNU_VTENTRY: 738 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 739 return FALSE; 740 break; 741 742 default: 743 break; 744 } 745 } 746 747 return TRUE; 748 } 749 750 static asection * 751 riscv_elf_gc_mark_hook (asection *sec, 752 struct bfd_link_info *info, 753 Elf_Internal_Rela *rel, 754 struct elf_link_hash_entry *h, 755 Elf_Internal_Sym *sym) 756 { 757 if (h != NULL) 758 switch (ELFNN_R_TYPE (rel->r_info)) 759 { 760 case R_RISCV_GNU_VTINHERIT: 761 case R_RISCV_GNU_VTENTRY: 762 return NULL; 763 } 764 765 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 766 } 767 768 /* Find dynamic relocs for H that apply to read-only sections. */ 769 770 static asection * 771 readonly_dynrelocs (struct elf_link_hash_entry *h) 772 { 773 struct elf_dyn_relocs *p; 774 775 for (p = riscv_elf_hash_entry (h)->dyn_relocs; p != NULL; p = p->next) 776 { 777 asection *s = p->sec->output_section; 778 779 if (s != NULL && (s->flags & SEC_READONLY) != 0) 780 return p->sec; 781 } 782 return NULL; 783 } 784 785 /* Adjust a symbol defined by a dynamic object and referenced by a 786 regular object. The current definition is in some section of the 787 dynamic object, but we're not including those sections. We have to 788 change the definition to something the rest of the link can 789 understand. */ 790 791 static bfd_boolean 792 riscv_elf_adjust_dynamic_symbol (struct bfd_link_info *info, 793 struct elf_link_hash_entry *h) 794 { 795 struct riscv_elf_link_hash_table *htab; 796 struct riscv_elf_link_hash_entry * eh; 797 bfd *dynobj; 798 asection *s, *srel; 799 800 htab = riscv_elf_hash_table (info); 801 BFD_ASSERT (htab != NULL); 802 803 dynobj = htab->elf.dynobj; 804 805 /* Make sure we know what is going on here. */ 806 BFD_ASSERT (dynobj != NULL 807 && (h->needs_plt 808 || h->type == STT_GNU_IFUNC 809 || h->is_weakalias 810 || (h->def_dynamic 811 && h->ref_regular 812 && !h->def_regular))); 813 814 /* If this is a function, put it in the procedure linkage table. We 815 will fill in the contents of the procedure linkage table later 816 (although we could actually do it here). */ 817 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt) 818 { 819 if (h->plt.refcount <= 0 820 || SYMBOL_CALLS_LOCAL (info, h) 821 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 822 && h->root.type == bfd_link_hash_undefweak)) 823 { 824 /* This case can occur if we saw a R_RISCV_CALL_PLT reloc in an 825 input file, but the symbol was never referred to by a dynamic 826 object, or if all references were garbage collected. In such 827 a case, we don't actually need to build a PLT entry. */ 828 h->plt.offset = (bfd_vma) -1; 829 h->needs_plt = 0; 830 } 831 832 return TRUE; 833 } 834 else 835 h->plt.offset = (bfd_vma) -1; 836 837 /* If this is a weak symbol, and there is a real definition, the 838 processor independent code will have arranged for us to see the 839 real definition first, and we can just use the same value. */ 840 if (h->is_weakalias) 841 { 842 struct elf_link_hash_entry *def = weakdef (h); 843 BFD_ASSERT (def->root.type == bfd_link_hash_defined); 844 h->root.u.def.section = def->root.u.def.section; 845 h->root.u.def.value = def->root.u.def.value; 846 return TRUE; 847 } 848 849 /* This is a reference to a symbol defined by a dynamic object which 850 is not a function. */ 851 852 /* If we are creating a shared library, we must presume that the 853 only references to the symbol are via the global offset table. 854 For such cases we need not do anything here; the relocations will 855 be handled correctly by relocate_section. */ 856 if (bfd_link_pic (info)) 857 return TRUE; 858 859 /* If there are no references to this symbol that do not use the 860 GOT, we don't need to generate a copy reloc. */ 861 if (!h->non_got_ref) 862 return TRUE; 863 864 /* If -z nocopyreloc was given, we won't generate them either. */ 865 if (info->nocopyreloc) 866 { 867 h->non_got_ref = 0; 868 return TRUE; 869 } 870 871 /* If we don't find any dynamic relocs in read-only sections, then 872 we'll be keeping the dynamic relocs and avoiding the copy reloc. */ 873 if (!readonly_dynrelocs (h)) 874 { 875 h->non_got_ref = 0; 876 return TRUE; 877 } 878 879 /* We must allocate the symbol in our .dynbss section, which will 880 become part of the .bss section of the executable. There will be 881 an entry for this symbol in the .dynsym section. The dynamic 882 object will contain position independent code, so all references 883 from the dynamic object to this symbol will go through the global 884 offset table. The dynamic linker will use the .dynsym entry to 885 determine the address it must put in the global offset table, so 886 both the dynamic object and the regular object will refer to the 887 same memory location for the variable. */ 888 889 /* We must generate a R_RISCV_COPY reloc to tell the dynamic linker 890 to copy the initial value out of the dynamic object and into the 891 runtime process image. We need to remember the offset into the 892 .rel.bss section we are going to use. */ 893 eh = (struct riscv_elf_link_hash_entry *) h; 894 if (eh->tls_type & ~GOT_NORMAL) 895 { 896 s = htab->sdyntdata; 897 srel = htab->elf.srelbss; 898 } 899 else if ((h->root.u.def.section->flags & SEC_READONLY) != 0) 900 { 901 s = htab->elf.sdynrelro; 902 srel = htab->elf.sreldynrelro; 903 } 904 else 905 { 906 s = htab->elf.sdynbss; 907 srel = htab->elf.srelbss; 908 } 909 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) 910 { 911 srel->size += sizeof (ElfNN_External_Rela); 912 h->needs_copy = 1; 913 } 914 915 return _bfd_elf_adjust_dynamic_copy (info, h, s); 916 } 917 918 /* Allocate space in .plt, .got and associated reloc sections for 919 dynamic relocs. */ 920 921 static bfd_boolean 922 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) 923 { 924 struct bfd_link_info *info; 925 struct riscv_elf_link_hash_table *htab; 926 struct riscv_elf_link_hash_entry *eh; 927 struct elf_dyn_relocs *p; 928 929 if (h->root.type == bfd_link_hash_indirect) 930 return TRUE; 931 932 info = (struct bfd_link_info *) inf; 933 htab = riscv_elf_hash_table (info); 934 BFD_ASSERT (htab != NULL); 935 936 if (htab->elf.dynamic_sections_created 937 && h->plt.refcount > 0) 938 { 939 /* Make sure this symbol is output as a dynamic symbol. 940 Undefined weak syms won't yet be marked as dynamic. */ 941 if (h->dynindx == -1 942 && !h->forced_local) 943 { 944 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 945 return FALSE; 946 } 947 948 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), h)) 949 { 950 asection *s = htab->elf.splt; 951 952 if (s->size == 0) 953 s->size = PLT_HEADER_SIZE; 954 955 h->plt.offset = s->size; 956 957 /* Make room for this entry. */ 958 s->size += PLT_ENTRY_SIZE; 959 960 /* We also need to make an entry in the .got.plt section. */ 961 htab->elf.sgotplt->size += GOT_ENTRY_SIZE; 962 963 /* We also need to make an entry in the .rela.plt section. */ 964 htab->elf.srelplt->size += sizeof (ElfNN_External_Rela); 965 966 /* If this symbol is not defined in a regular file, and we are 967 not generating a shared library, then set the symbol to this 968 location in the .plt. This is required to make function 969 pointers compare as equal between the normal executable and 970 the shared library. */ 971 if (! bfd_link_pic (info) 972 && !h->def_regular) 973 { 974 h->root.u.def.section = s; 975 h->root.u.def.value = h->plt.offset; 976 } 977 } 978 else 979 { 980 h->plt.offset = (bfd_vma) -1; 981 h->needs_plt = 0; 982 } 983 } 984 else 985 { 986 h->plt.offset = (bfd_vma) -1; 987 h->needs_plt = 0; 988 } 989 990 if (h->got.refcount > 0) 991 { 992 asection *s; 993 bfd_boolean dyn; 994 int tls_type = riscv_elf_hash_entry (h)->tls_type; 995 996 /* Make sure this symbol is output as a dynamic symbol. 997 Undefined weak syms won't yet be marked as dynamic. */ 998 if (h->dynindx == -1 999 && !h->forced_local) 1000 { 1001 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 1002 return FALSE; 1003 } 1004 1005 s = htab->elf.sgot; 1006 h->got.offset = s->size; 1007 dyn = htab->elf.dynamic_sections_created; 1008 if (tls_type & (GOT_TLS_GD | GOT_TLS_IE)) 1009 { 1010 /* TLS_GD needs two dynamic relocs and two GOT slots. */ 1011 if (tls_type & GOT_TLS_GD) 1012 { 1013 s->size += 2 * RISCV_ELF_WORD_BYTES; 1014 htab->elf.srelgot->size += 2 * sizeof (ElfNN_External_Rela); 1015 } 1016 1017 /* TLS_IE needs one dynamic reloc and one GOT slot. */ 1018 if (tls_type & GOT_TLS_IE) 1019 { 1020 s->size += RISCV_ELF_WORD_BYTES; 1021 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela); 1022 } 1023 } 1024 else 1025 { 1026 s->size += RISCV_ELF_WORD_BYTES; 1027 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h) 1028 && ! UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) 1029 htab->elf.srelgot->size += sizeof (ElfNN_External_Rela); 1030 } 1031 } 1032 else 1033 h->got.offset = (bfd_vma) -1; 1034 1035 eh = (struct riscv_elf_link_hash_entry *) h; 1036 if (eh->dyn_relocs == NULL) 1037 return TRUE; 1038 1039 /* In the shared -Bsymbolic case, discard space allocated for 1040 dynamic pc-relative relocs against symbols which turn out to be 1041 defined in regular objects. For the normal shared case, discard 1042 space for pc-relative relocs that have become local due to symbol 1043 visibility changes. */ 1044 1045 if (bfd_link_pic (info)) 1046 { 1047 if (SYMBOL_CALLS_LOCAL (info, h)) 1048 { 1049 struct elf_dyn_relocs **pp; 1050 1051 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; ) 1052 { 1053 p->count -= p->pc_count; 1054 p->pc_count = 0; 1055 if (p->count == 0) 1056 *pp = p->next; 1057 else 1058 pp = &p->next; 1059 } 1060 } 1061 1062 /* Also discard relocs on undefined weak syms with non-default 1063 visibility. */ 1064 if (eh->dyn_relocs != NULL 1065 && h->root.type == bfd_link_hash_undefweak) 1066 { 1067 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 1068 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) 1069 eh->dyn_relocs = NULL; 1070 1071 /* Make sure undefined weak symbols are output as a dynamic 1072 symbol in PIEs. */ 1073 else if (h->dynindx == -1 1074 && !h->forced_local) 1075 { 1076 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 1077 return FALSE; 1078 } 1079 } 1080 } 1081 else 1082 { 1083 /* For the non-shared case, discard space for relocs against 1084 symbols which turn out to need copy relocs or are not 1085 dynamic. */ 1086 1087 if (!h->non_got_ref 1088 && ((h->def_dynamic 1089 && !h->def_regular) 1090 || (htab->elf.dynamic_sections_created 1091 && (h->root.type == bfd_link_hash_undefweak 1092 || h->root.type == bfd_link_hash_undefined)))) 1093 { 1094 /* Make sure this symbol is output as a dynamic symbol. 1095 Undefined weak syms won't yet be marked as dynamic. */ 1096 if (h->dynindx == -1 1097 && !h->forced_local) 1098 { 1099 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 1100 return FALSE; 1101 } 1102 1103 /* If that succeeded, we know we'll be keeping all the 1104 relocs. */ 1105 if (h->dynindx != -1) 1106 goto keep; 1107 } 1108 1109 eh->dyn_relocs = NULL; 1110 1111 keep: ; 1112 } 1113 1114 /* Finally, allocate space. */ 1115 for (p = eh->dyn_relocs; p != NULL; p = p->next) 1116 { 1117 asection *sreloc = elf_section_data (p->sec)->sreloc; 1118 sreloc->size += p->count * sizeof (ElfNN_External_Rela); 1119 } 1120 1121 return TRUE; 1122 } 1123 1124 /* Set DF_TEXTREL if we find any dynamic relocs that apply to 1125 read-only sections. */ 1126 1127 static bfd_boolean 1128 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p) 1129 { 1130 asection *sec; 1131 1132 if (h->root.type == bfd_link_hash_indirect) 1133 return TRUE; 1134 1135 sec = readonly_dynrelocs (h); 1136 if (sec != NULL) 1137 { 1138 struct bfd_link_info *info = (struct bfd_link_info *) info_p; 1139 1140 info->flags |= DF_TEXTREL; 1141 info->callbacks->minfo 1142 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"), 1143 sec->owner, h->root.root.string, sec); 1144 1145 /* Not an error, just cut short the traversal. */ 1146 return FALSE; 1147 } 1148 return TRUE; 1149 } 1150 1151 static bfd_boolean 1152 riscv_elf_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) 1153 { 1154 struct riscv_elf_link_hash_table *htab; 1155 bfd *dynobj; 1156 asection *s; 1157 bfd *ibfd; 1158 1159 htab = riscv_elf_hash_table (info); 1160 BFD_ASSERT (htab != NULL); 1161 dynobj = htab->elf.dynobj; 1162 BFD_ASSERT (dynobj != NULL); 1163 1164 if (elf_hash_table (info)->dynamic_sections_created) 1165 { 1166 /* Set the contents of the .interp section to the interpreter. */ 1167 if (bfd_link_executable (info) && !info->nointerp) 1168 { 1169 s = bfd_get_linker_section (dynobj, ".interp"); 1170 BFD_ASSERT (s != NULL); 1171 s->size = strlen (ELFNN_DYNAMIC_INTERPRETER) + 1; 1172 s->contents = (unsigned char *) ELFNN_DYNAMIC_INTERPRETER; 1173 } 1174 } 1175 1176 /* Set up .got offsets for local syms, and space for local dynamic 1177 relocs. */ 1178 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 1179 { 1180 bfd_signed_vma *local_got; 1181 bfd_signed_vma *end_local_got; 1182 char *local_tls_type; 1183 bfd_size_type locsymcount; 1184 Elf_Internal_Shdr *symtab_hdr; 1185 asection *srel; 1186 1187 if (! is_riscv_elf (ibfd)) 1188 continue; 1189 1190 for (s = ibfd->sections; s != NULL; s = s->next) 1191 { 1192 struct elf_dyn_relocs *p; 1193 1194 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next) 1195 { 1196 if (!bfd_is_abs_section (p->sec) 1197 && bfd_is_abs_section (p->sec->output_section)) 1198 { 1199 /* Input section has been discarded, either because 1200 it is a copy of a linkonce section or due to 1201 linker script /DISCARD/, so we'll be discarding 1202 the relocs too. */ 1203 } 1204 else if (p->count != 0) 1205 { 1206 srel = elf_section_data (p->sec)->sreloc; 1207 srel->size += p->count * sizeof (ElfNN_External_Rela); 1208 if ((p->sec->output_section->flags & SEC_READONLY) != 0) 1209 info->flags |= DF_TEXTREL; 1210 } 1211 } 1212 } 1213 1214 local_got = elf_local_got_refcounts (ibfd); 1215 if (!local_got) 1216 continue; 1217 1218 symtab_hdr = &elf_symtab_hdr (ibfd); 1219 locsymcount = symtab_hdr->sh_info; 1220 end_local_got = local_got + locsymcount; 1221 local_tls_type = _bfd_riscv_elf_local_got_tls_type (ibfd); 1222 s = htab->elf.sgot; 1223 srel = htab->elf.srelgot; 1224 for (; local_got < end_local_got; ++local_got, ++local_tls_type) 1225 { 1226 if (*local_got > 0) 1227 { 1228 *local_got = s->size; 1229 s->size += RISCV_ELF_WORD_BYTES; 1230 if (*local_tls_type & GOT_TLS_GD) 1231 s->size += RISCV_ELF_WORD_BYTES; 1232 if (bfd_link_pic (info) 1233 || (*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE))) 1234 srel->size += sizeof (ElfNN_External_Rela); 1235 } 1236 else 1237 *local_got = (bfd_vma) -1; 1238 } 1239 } 1240 1241 /* Allocate global sym .plt and .got entries, and space for global 1242 sym dynamic relocs. */ 1243 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info); 1244 1245 if (htab->elf.sgotplt) 1246 { 1247 struct elf_link_hash_entry *got; 1248 got = elf_link_hash_lookup (elf_hash_table (info), 1249 "_GLOBAL_OFFSET_TABLE_", 1250 FALSE, FALSE, FALSE); 1251 1252 /* Don't allocate .got.plt section if there are no GOT nor PLT 1253 entries and there is no refeence to _GLOBAL_OFFSET_TABLE_. */ 1254 if ((got == NULL 1255 || !got->ref_regular_nonweak) 1256 && (htab->elf.sgotplt->size == GOTPLT_HEADER_SIZE) 1257 && (htab->elf.splt == NULL 1258 || htab->elf.splt->size == 0) 1259 && (htab->elf.sgot == NULL 1260 || (htab->elf.sgot->size 1261 == get_elf_backend_data (output_bfd)->got_header_size))) 1262 htab->elf.sgotplt->size = 0; 1263 } 1264 1265 /* The check_relocs and adjust_dynamic_symbol entry points have 1266 determined the sizes of the various dynamic sections. Allocate 1267 memory for them. */ 1268 for (s = dynobj->sections; s != NULL; s = s->next) 1269 { 1270 if ((s->flags & SEC_LINKER_CREATED) == 0) 1271 continue; 1272 1273 if (s == htab->elf.splt 1274 || s == htab->elf.sgot 1275 || s == htab->elf.sgotplt 1276 || s == htab->elf.sdynbss 1277 || s == htab->elf.sdynrelro 1278 || s == htab->sdyntdata) 1279 { 1280 /* Strip this section if we don't need it; see the 1281 comment below. */ 1282 } 1283 else if (strncmp (s->name, ".rela", 5) == 0) 1284 { 1285 if (s->size != 0) 1286 { 1287 /* We use the reloc_count field as a counter if we need 1288 to copy relocs into the output file. */ 1289 s->reloc_count = 0; 1290 } 1291 } 1292 else 1293 { 1294 /* It's not one of our sections. */ 1295 continue; 1296 } 1297 1298 if (s->size == 0) 1299 { 1300 /* If we don't need this section, strip it from the 1301 output file. This is mostly to handle .rela.bss and 1302 .rela.plt. We must create both sections in 1303 create_dynamic_sections, because they must be created 1304 before the linker maps input sections to output 1305 sections. The linker does that before 1306 adjust_dynamic_symbol is called, and it is that 1307 function which decides whether anything needs to go 1308 into these sections. */ 1309 s->flags |= SEC_EXCLUDE; 1310 continue; 1311 } 1312 1313 if ((s->flags & SEC_HAS_CONTENTS) == 0) 1314 continue; 1315 1316 /* Allocate memory for the section contents. Zero the memory 1317 for the benefit of .rela.plt, which has 4 unused entries 1318 at the beginning, and we don't want garbage. */ 1319 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); 1320 if (s->contents == NULL) 1321 return FALSE; 1322 } 1323 1324 if (elf_hash_table (info)->dynamic_sections_created) 1325 { 1326 /* Add some entries to the .dynamic section. We fill in the 1327 values later, in riscv_elf_finish_dynamic_sections, but we 1328 must add the entries now so that we get the correct size for 1329 the .dynamic section. The DT_DEBUG entry is filled in by the 1330 dynamic linker and used by the debugger. */ 1331 #define add_dynamic_entry(TAG, VAL) \ 1332 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 1333 1334 if (bfd_link_executable (info)) 1335 { 1336 if (!add_dynamic_entry (DT_DEBUG, 0)) 1337 return FALSE; 1338 } 1339 1340 if (htab->elf.srelplt->size != 0) 1341 { 1342 if (!add_dynamic_entry (DT_PLTGOT, 0) 1343 || !add_dynamic_entry (DT_PLTRELSZ, 0) 1344 || !add_dynamic_entry (DT_PLTREL, DT_RELA) 1345 || !add_dynamic_entry (DT_JMPREL, 0)) 1346 return FALSE; 1347 } 1348 1349 if (!add_dynamic_entry (DT_RELA, 0) 1350 || !add_dynamic_entry (DT_RELASZ, 0) 1351 || !add_dynamic_entry (DT_RELAENT, sizeof (ElfNN_External_Rela))) 1352 return FALSE; 1353 1354 /* If any dynamic relocs apply to a read-only section, 1355 then we need a DT_TEXTREL entry. */ 1356 if ((info->flags & DF_TEXTREL) == 0) 1357 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info); 1358 1359 if (info->flags & DF_TEXTREL) 1360 { 1361 if (!add_dynamic_entry (DT_TEXTREL, 0)) 1362 return FALSE; 1363 } 1364 } 1365 #undef add_dynamic_entry 1366 1367 return TRUE; 1368 } 1369 1370 #define TP_OFFSET 0 1371 #define DTP_OFFSET 0x800 1372 1373 /* Return the relocation value for a TLS dtp-relative reloc. */ 1374 1375 static bfd_vma 1376 dtpoff (struct bfd_link_info *info, bfd_vma address) 1377 { 1378 /* If tls_sec is NULL, we should have signalled an error already. */ 1379 if (elf_hash_table (info)->tls_sec == NULL) 1380 return 0; 1381 return address - elf_hash_table (info)->tls_sec->vma - DTP_OFFSET; 1382 } 1383 1384 /* Return the relocation value for a static TLS tp-relative relocation. */ 1385 1386 static bfd_vma 1387 tpoff (struct bfd_link_info *info, bfd_vma address) 1388 { 1389 /* If tls_sec is NULL, we should have signalled an error already. */ 1390 if (elf_hash_table (info)->tls_sec == NULL) 1391 return 0; 1392 return address - elf_hash_table (info)->tls_sec->vma - TP_OFFSET; 1393 } 1394 1395 /* Return the global pointer's value, or 0 if it is not in use. */ 1396 1397 static bfd_vma 1398 riscv_global_pointer_value (struct bfd_link_info *info) 1399 { 1400 struct bfd_link_hash_entry *h; 1401 1402 h = bfd_link_hash_lookup (info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE); 1403 if (h == NULL || h->type != bfd_link_hash_defined) 1404 return 0; 1405 1406 return h->u.def.value + sec_addr (h->u.def.section); 1407 } 1408 1409 /* Emplace a static relocation. */ 1410 1411 static bfd_reloc_status_type 1412 perform_relocation (const reloc_howto_type *howto, 1413 const Elf_Internal_Rela *rel, 1414 bfd_vma value, 1415 asection *input_section, 1416 bfd *input_bfd, 1417 bfd_byte *contents) 1418 { 1419 if (howto->pc_relative) 1420 value -= sec_addr (input_section) + rel->r_offset; 1421 value += rel->r_addend; 1422 1423 switch (ELFNN_R_TYPE (rel->r_info)) 1424 { 1425 case R_RISCV_HI20: 1426 case R_RISCV_TPREL_HI20: 1427 case R_RISCV_PCREL_HI20: 1428 case R_RISCV_GOT_HI20: 1429 case R_RISCV_TLS_GOT_HI20: 1430 case R_RISCV_TLS_GD_HI20: 1431 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))) 1432 return bfd_reloc_overflow; 1433 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)); 1434 break; 1435 1436 case R_RISCV_LO12_I: 1437 case R_RISCV_GPREL_I: 1438 case R_RISCV_TPREL_LO12_I: 1439 case R_RISCV_TPREL_I: 1440 case R_RISCV_PCREL_LO12_I: 1441 value = ENCODE_ITYPE_IMM (value); 1442 break; 1443 1444 case R_RISCV_LO12_S: 1445 case R_RISCV_GPREL_S: 1446 case R_RISCV_TPREL_LO12_S: 1447 case R_RISCV_TPREL_S: 1448 case R_RISCV_PCREL_LO12_S: 1449 value = ENCODE_STYPE_IMM (value); 1450 break; 1451 1452 case R_RISCV_CALL: 1453 case R_RISCV_CALL_PLT: 1454 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (value))) 1455 return bfd_reloc_overflow; 1456 value = ENCODE_UTYPE_IMM (RISCV_CONST_HIGH_PART (value)) 1457 | (ENCODE_ITYPE_IMM (value) << 32); 1458 break; 1459 1460 case R_RISCV_JAL: 1461 if (!VALID_UJTYPE_IMM (value)) 1462 return bfd_reloc_overflow; 1463 value = ENCODE_UJTYPE_IMM (value); 1464 break; 1465 1466 case R_RISCV_BRANCH: 1467 if (!VALID_SBTYPE_IMM (value)) 1468 return bfd_reloc_overflow; 1469 value = ENCODE_SBTYPE_IMM (value); 1470 break; 1471 1472 case R_RISCV_RVC_BRANCH: 1473 if (!VALID_RVC_B_IMM (value)) 1474 return bfd_reloc_overflow; 1475 value = ENCODE_RVC_B_IMM (value); 1476 break; 1477 1478 case R_RISCV_RVC_JUMP: 1479 if (!VALID_RVC_J_IMM (value)) 1480 return bfd_reloc_overflow; 1481 value = ENCODE_RVC_J_IMM (value); 1482 break; 1483 1484 case R_RISCV_RVC_LUI: 1485 if (!VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value))) 1486 return bfd_reloc_overflow; 1487 value = ENCODE_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (value)); 1488 break; 1489 1490 case R_RISCV_32: 1491 case R_RISCV_64: 1492 case R_RISCV_ADD8: 1493 case R_RISCV_ADD16: 1494 case R_RISCV_ADD32: 1495 case R_RISCV_ADD64: 1496 case R_RISCV_SUB6: 1497 case R_RISCV_SUB8: 1498 case R_RISCV_SUB16: 1499 case R_RISCV_SUB32: 1500 case R_RISCV_SUB64: 1501 case R_RISCV_SET6: 1502 case R_RISCV_SET8: 1503 case R_RISCV_SET16: 1504 case R_RISCV_SET32: 1505 case R_RISCV_32_PCREL: 1506 case R_RISCV_TLS_DTPREL32: 1507 case R_RISCV_TLS_DTPREL64: 1508 break; 1509 1510 case R_RISCV_DELETE: 1511 return bfd_reloc_ok; 1512 1513 default: 1514 return bfd_reloc_notsupported; 1515 } 1516 1517 bfd_vma word = bfd_get (howto->bitsize, input_bfd, contents + rel->r_offset); 1518 word = (word & ~howto->dst_mask) | (value & howto->dst_mask); 1519 bfd_put (howto->bitsize, input_bfd, word, contents + rel->r_offset); 1520 1521 return bfd_reloc_ok; 1522 } 1523 1524 /* Remember all PC-relative high-part relocs we've encountered to help us 1525 later resolve the corresponding low-part relocs. */ 1526 1527 typedef struct 1528 { 1529 bfd_vma address; 1530 bfd_vma value; 1531 } riscv_pcrel_hi_reloc; 1532 1533 typedef struct riscv_pcrel_lo_reloc 1534 { 1535 asection * input_section; 1536 struct bfd_link_info * info; 1537 reloc_howto_type * howto; 1538 const Elf_Internal_Rela * reloc; 1539 bfd_vma addr; 1540 const char * name; 1541 bfd_byte * contents; 1542 struct riscv_pcrel_lo_reloc * next; 1543 } riscv_pcrel_lo_reloc; 1544 1545 typedef struct 1546 { 1547 htab_t hi_relocs; 1548 riscv_pcrel_lo_reloc *lo_relocs; 1549 } riscv_pcrel_relocs; 1550 1551 static hashval_t 1552 riscv_pcrel_reloc_hash (const void *entry) 1553 { 1554 const riscv_pcrel_hi_reloc *e = entry; 1555 return (hashval_t)(e->address >> 2); 1556 } 1557 1558 static bfd_boolean 1559 riscv_pcrel_reloc_eq (const void *entry1, const void *entry2) 1560 { 1561 const riscv_pcrel_hi_reloc *e1 = entry1, *e2 = entry2; 1562 return e1->address == e2->address; 1563 } 1564 1565 static bfd_boolean 1566 riscv_init_pcrel_relocs (riscv_pcrel_relocs *p) 1567 { 1568 1569 p->lo_relocs = NULL; 1570 p->hi_relocs = htab_create (1024, riscv_pcrel_reloc_hash, 1571 riscv_pcrel_reloc_eq, free); 1572 return p->hi_relocs != NULL; 1573 } 1574 1575 static void 1576 riscv_free_pcrel_relocs (riscv_pcrel_relocs *p) 1577 { 1578 riscv_pcrel_lo_reloc *cur = p->lo_relocs; 1579 1580 while (cur != NULL) 1581 { 1582 riscv_pcrel_lo_reloc *next = cur->next; 1583 free (cur); 1584 cur = next; 1585 } 1586 1587 htab_delete (p->hi_relocs); 1588 } 1589 1590 static bfd_boolean 1591 riscv_zero_pcrel_hi_reloc (Elf_Internal_Rela *rel, 1592 struct bfd_link_info *info, 1593 bfd_vma pc, 1594 bfd_vma addr, 1595 bfd_byte *contents, 1596 const reloc_howto_type *howto, 1597 bfd *input_bfd) 1598 { 1599 /* We may need to reference low addreses in PC-relative modes even when the 1600 * PC is far away from these addresses. For example, undefweak references 1601 * need to produce the address 0 when linked. As 0 is far from the arbitrary 1602 * addresses that we can link PC-relative programs at, the linker can't 1603 * actually relocate references to those symbols. In order to allow these 1604 * programs to work we simply convert the PC-relative auipc sequences to 1605 * 0-relative lui sequences. */ 1606 if (bfd_link_pic (info)) 1607 return FALSE; 1608 1609 /* If it's possible to reference the symbol using auipc we do so, as that's 1610 * more in the spirit of the PC-relative relocations we're processing. */ 1611 bfd_vma offset = addr - pc; 1612 if (ARCH_SIZE == 32 || VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (offset))) 1613 return FALSE; 1614 1615 /* If it's impossible to reference this with a LUI-based offset then don't 1616 * bother to convert it at all so users still see the PC-relative relocation 1617 * in the truncation message. */ 1618 if (ARCH_SIZE > 32 && !VALID_UTYPE_IMM (RISCV_CONST_HIGH_PART (addr))) 1619 return FALSE; 1620 1621 rel->r_info = ELFNN_R_INFO(addr, R_RISCV_HI20); 1622 1623 bfd_vma insn = bfd_get(howto->bitsize, input_bfd, contents + rel->r_offset); 1624 insn = (insn & ~MASK_AUIPC) | MATCH_LUI; 1625 bfd_put(howto->bitsize, input_bfd, insn, contents + rel->r_offset); 1626 return TRUE; 1627 } 1628 1629 static bfd_boolean 1630 riscv_record_pcrel_hi_reloc (riscv_pcrel_relocs *p, bfd_vma addr, 1631 bfd_vma value, bfd_boolean absolute) 1632 { 1633 bfd_vma offset = absolute ? value : value - addr; 1634 riscv_pcrel_hi_reloc entry = {addr, offset}; 1635 riscv_pcrel_hi_reloc **slot = 1636 (riscv_pcrel_hi_reloc **) htab_find_slot (p->hi_relocs, &entry, INSERT); 1637 1638 BFD_ASSERT (*slot == NULL); 1639 *slot = (riscv_pcrel_hi_reloc *) bfd_malloc (sizeof (riscv_pcrel_hi_reloc)); 1640 if (*slot == NULL) 1641 return FALSE; 1642 **slot = entry; 1643 return TRUE; 1644 } 1645 1646 static bfd_boolean 1647 riscv_record_pcrel_lo_reloc (riscv_pcrel_relocs *p, 1648 asection *input_section, 1649 struct bfd_link_info *info, 1650 reloc_howto_type *howto, 1651 const Elf_Internal_Rela *reloc, 1652 bfd_vma addr, 1653 const char *name, 1654 bfd_byte *contents) 1655 { 1656 riscv_pcrel_lo_reloc *entry; 1657 entry = (riscv_pcrel_lo_reloc *) bfd_malloc (sizeof (riscv_pcrel_lo_reloc)); 1658 if (entry == NULL) 1659 return FALSE; 1660 *entry = (riscv_pcrel_lo_reloc) {input_section, info, howto, reloc, addr, 1661 name, contents, p->lo_relocs}; 1662 p->lo_relocs = entry; 1663 return TRUE; 1664 } 1665 1666 static bfd_boolean 1667 riscv_resolve_pcrel_lo_relocs (riscv_pcrel_relocs *p) 1668 { 1669 riscv_pcrel_lo_reloc *r; 1670 1671 for (r = p->lo_relocs; r != NULL; r = r->next) 1672 { 1673 bfd *input_bfd = r->input_section->owner; 1674 1675 riscv_pcrel_hi_reloc search = {r->addr, 0}; 1676 riscv_pcrel_hi_reloc *entry = htab_find (p->hi_relocs, &search); 1677 if (entry == NULL 1678 /* Check for overflow into bit 11 when adding reloc addend. */ 1679 || (! (entry->value & 0x800) 1680 && ((entry->value + r->reloc->r_addend) & 0x800))) 1681 { 1682 char *string = (entry == NULL 1683 ? "%pcrel_lo missing matching %pcrel_hi" 1684 : "%pcrel_lo overflow with an addend"); 1685 (*r->info->callbacks->reloc_dangerous) 1686 (r->info, string, input_bfd, r->input_section, r->reloc->r_offset); 1687 return TRUE; 1688 } 1689 1690 perform_relocation (r->howto, r->reloc, entry->value, r->input_section, 1691 input_bfd, r->contents); 1692 } 1693 1694 return TRUE; 1695 } 1696 1697 /* Relocate a RISC-V ELF section. 1698 1699 The RELOCATE_SECTION function is called by the new ELF backend linker 1700 to handle the relocations for a section. 1701 1702 The relocs are always passed as Rela structures. 1703 1704 This function is responsible for adjusting the section contents as 1705 necessary, and (if generating a relocatable output file) adjusting 1706 the reloc addend as necessary. 1707 1708 This function does not have to worry about setting the reloc 1709 address or the reloc symbol index. 1710 1711 LOCAL_SYMS is a pointer to the swapped in local symbols. 1712 1713 LOCAL_SECTIONS is an array giving the section in the input file 1714 corresponding to the st_shndx field of each local symbol. 1715 1716 The global hash table entry for the global symbols can be found 1717 via elf_sym_hashes (input_bfd). 1718 1719 When generating relocatable output, this function must handle 1720 STB_LOCAL/STT_SECTION symbols specially. The output symbol is 1721 going to be the section symbol corresponding to the output 1722 section, which means that the addend must be adjusted 1723 accordingly. */ 1724 1725 static bfd_boolean 1726 riscv_elf_relocate_section (bfd *output_bfd, 1727 struct bfd_link_info *info, 1728 bfd *input_bfd, 1729 asection *input_section, 1730 bfd_byte *contents, 1731 Elf_Internal_Rela *relocs, 1732 Elf_Internal_Sym *local_syms, 1733 asection **local_sections) 1734 { 1735 Elf_Internal_Rela *rel; 1736 Elf_Internal_Rela *relend; 1737 riscv_pcrel_relocs pcrel_relocs; 1738 bfd_boolean ret = FALSE; 1739 asection *sreloc = elf_section_data (input_section)->sreloc; 1740 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); 1741 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_bfd); 1742 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); 1743 bfd_vma *local_got_offsets = elf_local_got_offsets (input_bfd); 1744 bfd_boolean absolute; 1745 1746 if (!riscv_init_pcrel_relocs (&pcrel_relocs)) 1747 return FALSE; 1748 1749 relend = relocs + input_section->reloc_count; 1750 for (rel = relocs; rel < relend; rel++) 1751 { 1752 unsigned long r_symndx; 1753 struct elf_link_hash_entry *h; 1754 Elf_Internal_Sym *sym; 1755 asection *sec; 1756 bfd_vma relocation; 1757 bfd_reloc_status_type r = bfd_reloc_ok; 1758 const char *name; 1759 bfd_vma off, ie_off; 1760 bfd_boolean unresolved_reloc, is_ie = FALSE; 1761 bfd_vma pc = sec_addr (input_section) + rel->r_offset; 1762 int r_type = ELFNN_R_TYPE (rel->r_info), tls_type; 1763 reloc_howto_type *howto = riscv_elf_rtype_to_howto (input_bfd, r_type); 1764 const char *msg = NULL; 1765 bfd_boolean resolved_to_zero; 1766 1767 if (howto == NULL 1768 || r_type == R_RISCV_GNU_VTINHERIT || r_type == R_RISCV_GNU_VTENTRY) 1769 continue; 1770 1771 /* This is a final link. */ 1772 r_symndx = ELFNN_R_SYM (rel->r_info); 1773 h = NULL; 1774 sym = NULL; 1775 sec = NULL; 1776 unresolved_reloc = FALSE; 1777 if (r_symndx < symtab_hdr->sh_info) 1778 { 1779 sym = local_syms + r_symndx; 1780 sec = local_sections[r_symndx]; 1781 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 1782 } 1783 else 1784 { 1785 bfd_boolean warned, ignored; 1786 1787 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 1788 r_symndx, symtab_hdr, sym_hashes, 1789 h, sec, relocation, 1790 unresolved_reloc, warned, ignored); 1791 if (warned) 1792 { 1793 /* To avoid generating warning messages about truncated 1794 relocations, set the relocation's address to be the same as 1795 the start of this section. */ 1796 if (input_section->output_section != NULL) 1797 relocation = input_section->output_section->vma; 1798 else 1799 relocation = 0; 1800 } 1801 } 1802 1803 if (sec != NULL && discarded_section (sec)) 1804 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 1805 rel, 1, relend, howto, 0, contents); 1806 1807 if (bfd_link_relocatable (info)) 1808 continue; 1809 1810 if (h != NULL) 1811 name = h->root.root.string; 1812 else 1813 { 1814 name = (bfd_elf_string_from_elf_section 1815 (input_bfd, symtab_hdr->sh_link, sym->st_name)); 1816 if (name == NULL || *name == '\0') 1817 name = bfd_section_name (input_bfd, sec); 1818 } 1819 1820 resolved_to_zero = (h != NULL 1821 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)); 1822 1823 switch (r_type) 1824 { 1825 case R_RISCV_NONE: 1826 case R_RISCV_RELAX: 1827 case R_RISCV_TPREL_ADD: 1828 case R_RISCV_COPY: 1829 case R_RISCV_JUMP_SLOT: 1830 case R_RISCV_RELATIVE: 1831 /* These require nothing of us at all. */ 1832 continue; 1833 1834 case R_RISCV_HI20: 1835 case R_RISCV_BRANCH: 1836 case R_RISCV_RVC_BRANCH: 1837 case R_RISCV_RVC_LUI: 1838 case R_RISCV_LO12_I: 1839 case R_RISCV_LO12_S: 1840 case R_RISCV_SET6: 1841 case R_RISCV_SET8: 1842 case R_RISCV_SET16: 1843 case R_RISCV_SET32: 1844 case R_RISCV_32_PCREL: 1845 case R_RISCV_DELETE: 1846 /* These require no special handling beyond perform_relocation. */ 1847 break; 1848 1849 case R_RISCV_GOT_HI20: 1850 if (h != NULL) 1851 { 1852 bfd_boolean dyn, pic; 1853 1854 off = h->got.offset; 1855 BFD_ASSERT (off != (bfd_vma) -1); 1856 dyn = elf_hash_table (info)->dynamic_sections_created; 1857 pic = bfd_link_pic (info); 1858 1859 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h) 1860 || (pic && SYMBOL_REFERENCES_LOCAL (info, h))) 1861 { 1862 /* This is actually a static link, or it is a 1863 -Bsymbolic link and the symbol is defined 1864 locally, or the symbol was forced to be local 1865 because of a version file. We must initialize 1866 this entry in the global offset table. Since the 1867 offset must always be a multiple of the word size, 1868 we use the least significant bit to record whether 1869 we have initialized it already. 1870 1871 When doing a dynamic link, we create a .rela.got 1872 relocation entry to initialize the value. This 1873 is done in the finish_dynamic_symbol routine. */ 1874 if ((off & 1) != 0) 1875 off &= ~1; 1876 else 1877 { 1878 bfd_put_NN (output_bfd, relocation, 1879 htab->elf.sgot->contents + off); 1880 h->got.offset |= 1; 1881 } 1882 } 1883 else 1884 unresolved_reloc = FALSE; 1885 } 1886 else 1887 { 1888 BFD_ASSERT (local_got_offsets != NULL 1889 && local_got_offsets[r_symndx] != (bfd_vma) -1); 1890 1891 off = local_got_offsets[r_symndx]; 1892 1893 /* The offset must always be a multiple of the word size. 1894 So, we can use the least significant bit to record 1895 whether we have already processed this entry. */ 1896 if ((off & 1) != 0) 1897 off &= ~1; 1898 else 1899 { 1900 if (bfd_link_pic (info)) 1901 { 1902 asection *s; 1903 Elf_Internal_Rela outrel; 1904 1905 /* We need to generate a R_RISCV_RELATIVE reloc 1906 for the dynamic linker. */ 1907 s = htab->elf.srelgot; 1908 BFD_ASSERT (s != NULL); 1909 1910 outrel.r_offset = sec_addr (htab->elf.sgot) + off; 1911 outrel.r_info = 1912 ELFNN_R_INFO (0, R_RISCV_RELATIVE); 1913 outrel.r_addend = relocation; 1914 relocation = 0; 1915 riscv_elf_append_rela (output_bfd, s, &outrel); 1916 } 1917 1918 bfd_put_NN (output_bfd, relocation, 1919 htab->elf.sgot->contents + off); 1920 local_got_offsets[r_symndx] |= 1; 1921 } 1922 } 1923 relocation = sec_addr (htab->elf.sgot) + off; 1924 absolute = riscv_zero_pcrel_hi_reloc (rel, 1925 info, 1926 pc, 1927 relocation, 1928 contents, 1929 howto, 1930 input_bfd); 1931 r_type = ELFNN_R_TYPE (rel->r_info); 1932 howto = riscv_elf_rtype_to_howto (input_bfd, r_type); 1933 if (howto == NULL) 1934 r = bfd_reloc_notsupported; 1935 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, 1936 relocation, absolute)) 1937 r = bfd_reloc_overflow; 1938 break; 1939 1940 case R_RISCV_ADD8: 1941 case R_RISCV_ADD16: 1942 case R_RISCV_ADD32: 1943 case R_RISCV_ADD64: 1944 { 1945 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd, 1946 contents + rel->r_offset); 1947 relocation = old_value + relocation; 1948 } 1949 break; 1950 1951 case R_RISCV_SUB6: 1952 case R_RISCV_SUB8: 1953 case R_RISCV_SUB16: 1954 case R_RISCV_SUB32: 1955 case R_RISCV_SUB64: 1956 { 1957 bfd_vma old_value = bfd_get (howto->bitsize, input_bfd, 1958 contents + rel->r_offset); 1959 relocation = old_value - relocation; 1960 } 1961 break; 1962 1963 case R_RISCV_CALL: 1964 /* Handle a call to an undefined weak function. This won't be 1965 relaxed, so we have to handle it here. */ 1966 if (h != NULL && h->root.type == bfd_link_hash_undefweak 1967 && h->plt.offset == MINUS_ONE) 1968 { 1969 /* We can use x0 as the base register. */ 1970 bfd_vma insn = bfd_get_32 (input_bfd, 1971 contents + rel->r_offset + 4); 1972 insn &= ~(OP_MASK_RS1 << OP_SH_RS1); 1973 bfd_put_32 (input_bfd, insn, contents + rel->r_offset + 4); 1974 /* Set the relocation value so that we get 0 after the pc 1975 relative adjustment. */ 1976 relocation = sec_addr (input_section) + rel->r_offset; 1977 } 1978 /* Fall through. */ 1979 1980 case R_RISCV_CALL_PLT: 1981 case R_RISCV_JAL: 1982 case R_RISCV_RVC_JUMP: 1983 if (bfd_link_pic (info) && h != NULL && h->plt.offset != MINUS_ONE) 1984 { 1985 /* Refer to the PLT entry. */ 1986 relocation = sec_addr (htab->elf.splt) + h->plt.offset; 1987 unresolved_reloc = FALSE; 1988 } 1989 break; 1990 1991 case R_RISCV_TPREL_HI20: 1992 relocation = tpoff (info, relocation); 1993 break; 1994 1995 case R_RISCV_TPREL_LO12_I: 1996 case R_RISCV_TPREL_LO12_S: 1997 relocation = tpoff (info, relocation); 1998 break; 1999 2000 case R_RISCV_TPREL_I: 2001 case R_RISCV_TPREL_S: 2002 relocation = tpoff (info, relocation); 2003 if (VALID_ITYPE_IMM (relocation + rel->r_addend)) 2004 { 2005 /* We can use tp as the base register. */ 2006 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset); 2007 insn &= ~(OP_MASK_RS1 << OP_SH_RS1); 2008 insn |= X_TP << OP_SH_RS1; 2009 bfd_put_32 (input_bfd, insn, contents + rel->r_offset); 2010 } 2011 else 2012 r = bfd_reloc_overflow; 2013 break; 2014 2015 case R_RISCV_GPREL_I: 2016 case R_RISCV_GPREL_S: 2017 { 2018 bfd_vma gp = riscv_global_pointer_value (info); 2019 bfd_boolean x0_base = VALID_ITYPE_IMM (relocation + rel->r_addend); 2020 if (x0_base || VALID_ITYPE_IMM (relocation + rel->r_addend - gp)) 2021 { 2022 /* We can use x0 or gp as the base register. */ 2023 bfd_vma insn = bfd_get_32 (input_bfd, contents + rel->r_offset); 2024 insn &= ~(OP_MASK_RS1 << OP_SH_RS1); 2025 if (!x0_base) 2026 { 2027 rel->r_addend -= gp; 2028 insn |= X_GP << OP_SH_RS1; 2029 } 2030 bfd_put_32 (input_bfd, insn, contents + rel->r_offset); 2031 } 2032 else 2033 r = bfd_reloc_overflow; 2034 break; 2035 } 2036 2037 case R_RISCV_PCREL_HI20: 2038 absolute = riscv_zero_pcrel_hi_reloc (rel, 2039 info, 2040 pc, 2041 relocation, 2042 contents, 2043 howto, 2044 input_bfd); 2045 r_type = ELFNN_R_TYPE (rel->r_info); 2046 howto = riscv_elf_rtype_to_howto (input_bfd, r_type); 2047 if (howto == NULL) 2048 r = bfd_reloc_notsupported; 2049 else if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, 2050 relocation + rel->r_addend, 2051 absolute)) 2052 r = bfd_reloc_overflow; 2053 break; 2054 2055 case R_RISCV_PCREL_LO12_I: 2056 case R_RISCV_PCREL_LO12_S: 2057 /* We don't allow section symbols plus addends as the auipc address, 2058 because then riscv_relax_delete_bytes would have to search through 2059 all relocs to update these addends. This is also ambiguous, as 2060 we do allow offsets to be added to the target address, which are 2061 not to be used to find the auipc address. */ 2062 if ((ELF_ST_TYPE (sym->st_info) == STT_SECTION) && rel->r_addend) 2063 { 2064 r = bfd_reloc_dangerous; 2065 break; 2066 } 2067 2068 if (riscv_record_pcrel_lo_reloc (&pcrel_relocs, input_section, info, 2069 howto, rel, relocation, name, 2070 contents)) 2071 continue; 2072 r = bfd_reloc_overflow; 2073 break; 2074 2075 case R_RISCV_TLS_DTPREL32: 2076 case R_RISCV_TLS_DTPREL64: 2077 relocation = dtpoff (info, relocation); 2078 break; 2079 2080 case R_RISCV_32: 2081 case R_RISCV_64: 2082 if ((input_section->flags & SEC_ALLOC) == 0) 2083 break; 2084 2085 if ((bfd_link_pic (info) 2086 && (h == NULL 2087 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 2088 && !resolved_to_zero) 2089 || h->root.type != bfd_link_hash_undefweak) 2090 && (! howto->pc_relative 2091 || !SYMBOL_CALLS_LOCAL (info, h))) 2092 || (!bfd_link_pic (info) 2093 && h != NULL 2094 && h->dynindx != -1 2095 && !h->non_got_ref 2096 && ((h->def_dynamic 2097 && !h->def_regular) 2098 || h->root.type == bfd_link_hash_undefweak 2099 || h->root.type == bfd_link_hash_undefined))) 2100 { 2101 Elf_Internal_Rela outrel; 2102 bfd_boolean skip_static_relocation, skip_dynamic_relocation; 2103 2104 /* When generating a shared object, these relocations 2105 are copied into the output file to be resolved at run 2106 time. */ 2107 2108 outrel.r_offset = 2109 _bfd_elf_section_offset (output_bfd, info, input_section, 2110 rel->r_offset); 2111 skip_static_relocation = outrel.r_offset != (bfd_vma) -2; 2112 skip_dynamic_relocation = outrel.r_offset >= (bfd_vma) -2; 2113 outrel.r_offset += sec_addr (input_section); 2114 2115 if (skip_dynamic_relocation) 2116 memset (&outrel, 0, sizeof outrel); 2117 else if (h != NULL && h->dynindx != -1 2118 && !(bfd_link_pic (info) 2119 && SYMBOLIC_BIND (info, h) 2120 && h->def_regular)) 2121 { 2122 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type); 2123 outrel.r_addend = rel->r_addend; 2124 } 2125 else 2126 { 2127 outrel.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE); 2128 outrel.r_addend = relocation + rel->r_addend; 2129 } 2130 2131 riscv_elf_append_rela (output_bfd, sreloc, &outrel); 2132 if (skip_static_relocation) 2133 continue; 2134 } 2135 break; 2136 2137 case R_RISCV_TLS_GOT_HI20: 2138 is_ie = TRUE; 2139 /* Fall through. */ 2140 2141 case R_RISCV_TLS_GD_HI20: 2142 if (h != NULL) 2143 { 2144 off = h->got.offset; 2145 h->got.offset |= 1; 2146 } 2147 else 2148 { 2149 off = local_got_offsets[r_symndx]; 2150 local_got_offsets[r_symndx] |= 1; 2151 } 2152 2153 tls_type = _bfd_riscv_elf_tls_type (input_bfd, h, r_symndx); 2154 BFD_ASSERT (tls_type & (GOT_TLS_IE | GOT_TLS_GD)); 2155 /* If this symbol is referenced by both GD and IE TLS, the IE 2156 reference's GOT slot follows the GD reference's slots. */ 2157 ie_off = 0; 2158 if ((tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_IE)) 2159 ie_off = 2 * GOT_ENTRY_SIZE; 2160 2161 if ((off & 1) != 0) 2162 off &= ~1; 2163 else 2164 { 2165 Elf_Internal_Rela outrel; 2166 int indx = 0; 2167 bfd_boolean need_relocs = FALSE; 2168 2169 if (htab->elf.srelgot == NULL) 2170 abort (); 2171 2172 if (h != NULL) 2173 { 2174 bfd_boolean dyn, pic; 2175 dyn = htab->elf.dynamic_sections_created; 2176 pic = bfd_link_pic (info); 2177 2178 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, pic, h) 2179 && (!pic || !SYMBOL_REFERENCES_LOCAL (info, h))) 2180 indx = h->dynindx; 2181 } 2182 2183 /* The GOT entries have not been initialized yet. Do it 2184 now, and emit any relocations. */ 2185 if ((bfd_link_pic (info) || indx != 0) 2186 && (h == NULL 2187 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 2188 || h->root.type != bfd_link_hash_undefweak)) 2189 need_relocs = TRUE; 2190 2191 if (tls_type & GOT_TLS_GD) 2192 { 2193 if (need_relocs) 2194 { 2195 outrel.r_offset = sec_addr (htab->elf.sgot) + off; 2196 outrel.r_addend = 0; 2197 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPMODNN); 2198 bfd_put_NN (output_bfd, 0, 2199 htab->elf.sgot->contents + off); 2200 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); 2201 if (indx == 0) 2202 { 2203 BFD_ASSERT (! unresolved_reloc); 2204 bfd_put_NN (output_bfd, 2205 dtpoff (info, relocation), 2206 (htab->elf.sgot->contents + off + 2207 RISCV_ELF_WORD_BYTES)); 2208 } 2209 else 2210 { 2211 bfd_put_NN (output_bfd, 0, 2212 (htab->elf.sgot->contents + off + 2213 RISCV_ELF_WORD_BYTES)); 2214 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_DTPRELNN); 2215 outrel.r_offset += RISCV_ELF_WORD_BYTES; 2216 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); 2217 } 2218 } 2219 else 2220 { 2221 /* If we are not emitting relocations for a 2222 general dynamic reference, then we must be in a 2223 static link or an executable link with the 2224 symbol binding locally. Mark it as belonging 2225 to module 1, the executable. */ 2226 bfd_put_NN (output_bfd, 1, 2227 htab->elf.sgot->contents + off); 2228 bfd_put_NN (output_bfd, 2229 dtpoff (info, relocation), 2230 (htab->elf.sgot->contents + off + 2231 RISCV_ELF_WORD_BYTES)); 2232 } 2233 } 2234 2235 if (tls_type & GOT_TLS_IE) 2236 { 2237 if (need_relocs) 2238 { 2239 bfd_put_NN (output_bfd, 0, 2240 htab->elf.sgot->contents + off + ie_off); 2241 outrel.r_offset = sec_addr (htab->elf.sgot) 2242 + off + ie_off; 2243 outrel.r_addend = 0; 2244 if (indx == 0) 2245 outrel.r_addend = tpoff (info, relocation); 2246 outrel.r_info = ELFNN_R_INFO (indx, R_RISCV_TLS_TPRELNN); 2247 riscv_elf_append_rela (output_bfd, htab->elf.srelgot, &outrel); 2248 } 2249 else 2250 { 2251 bfd_put_NN (output_bfd, tpoff (info, relocation), 2252 htab->elf.sgot->contents + off + ie_off); 2253 } 2254 } 2255 } 2256 2257 BFD_ASSERT (off < (bfd_vma) -2); 2258 relocation = sec_addr (htab->elf.sgot) + off + (is_ie ? ie_off : 0); 2259 if (!riscv_record_pcrel_hi_reloc (&pcrel_relocs, pc, 2260 relocation, FALSE)) 2261 r = bfd_reloc_overflow; 2262 unresolved_reloc = FALSE; 2263 break; 2264 2265 default: 2266 r = bfd_reloc_notsupported; 2267 } 2268 2269 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections 2270 because such sections are not SEC_ALLOC and thus ld.so will 2271 not process them. */ 2272 if (unresolved_reloc 2273 && !((input_section->flags & SEC_DEBUGGING) != 0 2274 && h->def_dynamic) 2275 && _bfd_elf_section_offset (output_bfd, info, input_section, 2276 rel->r_offset) != (bfd_vma) -1) 2277 { 2278 (*_bfd_error_handler) 2279 (_("%pB(%pA+%#" PRIx64 "): " 2280 "unresolvable %s relocation against symbol `%s'"), 2281 input_bfd, 2282 input_section, 2283 (uint64_t) rel->r_offset, 2284 howto->name, 2285 h->root.root.string); 2286 continue; 2287 } 2288 2289 if (r == bfd_reloc_ok) 2290 r = perform_relocation (howto, rel, relocation, input_section, 2291 input_bfd, contents); 2292 2293 switch (r) 2294 { 2295 case bfd_reloc_ok: 2296 continue; 2297 2298 case bfd_reloc_overflow: 2299 info->callbacks->reloc_overflow 2300 (info, (h ? &h->root : NULL), name, howto->name, 2301 (bfd_vma) 0, input_bfd, input_section, rel->r_offset); 2302 break; 2303 2304 case bfd_reloc_undefined: 2305 info->callbacks->undefined_symbol 2306 (info, name, input_bfd, input_section, rel->r_offset, 2307 TRUE); 2308 break; 2309 2310 case bfd_reloc_outofrange: 2311 msg = _("%X%P: internal error: out of range error\n"); 2312 break; 2313 2314 case bfd_reloc_notsupported: 2315 msg = _("%X%P: internal error: unsupported relocation error\n"); 2316 break; 2317 2318 case bfd_reloc_dangerous: 2319 info->callbacks->reloc_dangerous 2320 (info, "%pcrel_lo section symbol with an addend", input_bfd, 2321 input_section, rel->r_offset); 2322 break; 2323 2324 default: 2325 msg = _("%X%P: internal error: unknown error\n"); 2326 break; 2327 } 2328 2329 if (msg) 2330 info->callbacks->einfo (msg); 2331 2332 /* We already reported the error via a callback, so don't try to report 2333 it again by returning false. That leads to spurious errors. */ 2334 ret = TRUE; 2335 goto out; 2336 } 2337 2338 ret = riscv_resolve_pcrel_lo_relocs (&pcrel_relocs); 2339 out: 2340 riscv_free_pcrel_relocs (&pcrel_relocs); 2341 return ret; 2342 } 2343 2344 /* Finish up dynamic symbol handling. We set the contents of various 2345 dynamic sections here. */ 2346 2347 static bfd_boolean 2348 riscv_elf_finish_dynamic_symbol (bfd *output_bfd, 2349 struct bfd_link_info *info, 2350 struct elf_link_hash_entry *h, 2351 Elf_Internal_Sym *sym) 2352 { 2353 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); 2354 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 2355 2356 if (h->plt.offset != (bfd_vma) -1) 2357 { 2358 /* We've decided to create a PLT entry for this symbol. */ 2359 bfd_byte *loc; 2360 bfd_vma i, header_address, plt_idx, got_address; 2361 uint32_t plt_entry[PLT_ENTRY_INSNS]; 2362 Elf_Internal_Rela rela; 2363 2364 BFD_ASSERT (h->dynindx != -1); 2365 2366 /* Calculate the address of the PLT header. */ 2367 header_address = sec_addr (htab->elf.splt); 2368 2369 /* Calculate the index of the entry. */ 2370 plt_idx = (h->plt.offset - PLT_HEADER_SIZE) / PLT_ENTRY_SIZE; 2371 2372 /* Calculate the address of the .got.plt entry. */ 2373 got_address = riscv_elf_got_plt_val (plt_idx, info); 2374 2375 /* Find out where the .plt entry should go. */ 2376 loc = htab->elf.splt->contents + h->plt.offset; 2377 2378 /* Fill in the PLT entry itself. */ 2379 if (! riscv_make_plt_entry (output_bfd, got_address, 2380 header_address + h->plt.offset, 2381 plt_entry)) 2382 return FALSE; 2383 2384 for (i = 0; i < PLT_ENTRY_INSNS; i++) 2385 bfd_put_32 (output_bfd, plt_entry[i], loc + 4*i); 2386 2387 /* Fill in the initial value of the .got.plt entry. */ 2388 loc = htab->elf.sgotplt->contents 2389 + (got_address - sec_addr (htab->elf.sgotplt)); 2390 bfd_put_NN (output_bfd, sec_addr (htab->elf.splt), loc); 2391 2392 /* Fill in the entry in the .rela.plt section. */ 2393 rela.r_offset = got_address; 2394 rela.r_addend = 0; 2395 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_JUMP_SLOT); 2396 2397 loc = htab->elf.srelplt->contents + plt_idx * sizeof (ElfNN_External_Rela); 2398 bed->s->swap_reloca_out (output_bfd, &rela, loc); 2399 2400 if (!h->def_regular) 2401 { 2402 /* Mark the symbol as undefined, rather than as defined in 2403 the .plt section. Leave the value alone. */ 2404 sym->st_shndx = SHN_UNDEF; 2405 /* If the symbol is weak, we do need to clear the value. 2406 Otherwise, the PLT entry would provide a definition for 2407 the symbol even if the symbol wasn't defined anywhere, 2408 and so the symbol would never be NULL. */ 2409 if (!h->ref_regular_nonweak) 2410 sym->st_value = 0; 2411 } 2412 } 2413 2414 if (h->got.offset != (bfd_vma) -1 2415 && !(riscv_elf_hash_entry (h)->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) 2416 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) 2417 { 2418 asection *sgot; 2419 asection *srela; 2420 Elf_Internal_Rela rela; 2421 2422 /* This symbol has an entry in the GOT. Set it up. */ 2423 2424 sgot = htab->elf.sgot; 2425 srela = htab->elf.srelgot; 2426 BFD_ASSERT (sgot != NULL && srela != NULL); 2427 2428 rela.r_offset = sec_addr (sgot) + (h->got.offset &~ (bfd_vma) 1); 2429 2430 /* If this is a local symbol reference, we just want to emit a RELATIVE 2431 reloc. This can happen if it is a -Bsymbolic link, or a pie link, or 2432 the symbol was forced to be local because of a version file. 2433 The entry in the global offset table will already have been 2434 initialized in the relocate_section function. */ 2435 if (bfd_link_pic (info) 2436 && SYMBOL_REFERENCES_LOCAL (info, h)) 2437 { 2438 BFD_ASSERT((h->got.offset & 1) != 0); 2439 asection *sec = h->root.u.def.section; 2440 rela.r_info = ELFNN_R_INFO (0, R_RISCV_RELATIVE); 2441 rela.r_addend = (h->root.u.def.value 2442 + sec->output_section->vma 2443 + sec->output_offset); 2444 } 2445 else 2446 { 2447 BFD_ASSERT((h->got.offset & 1) == 0); 2448 BFD_ASSERT (h->dynindx != -1); 2449 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_NN); 2450 rela.r_addend = 0; 2451 } 2452 2453 bfd_put_NN (output_bfd, 0, 2454 sgot->contents + (h->got.offset & ~(bfd_vma) 1)); 2455 riscv_elf_append_rela (output_bfd, srela, &rela); 2456 } 2457 2458 if (h->needs_copy) 2459 { 2460 Elf_Internal_Rela rela; 2461 asection *s; 2462 2463 /* This symbols needs a copy reloc. Set it up. */ 2464 BFD_ASSERT (h->dynindx != -1); 2465 2466 rela.r_offset = sec_addr (h->root.u.def.section) + h->root.u.def.value; 2467 rela.r_info = ELFNN_R_INFO (h->dynindx, R_RISCV_COPY); 2468 rela.r_addend = 0; 2469 if (h->root.u.def.section == htab->elf.sdynrelro) 2470 s = htab->elf.sreldynrelro; 2471 else 2472 s = htab->elf.srelbss; 2473 riscv_elf_append_rela (output_bfd, s, &rela); 2474 } 2475 2476 /* Mark some specially defined symbols as absolute. */ 2477 if (h == htab->elf.hdynamic 2478 || (h == htab->elf.hgot || h == htab->elf.hplt)) 2479 sym->st_shndx = SHN_ABS; 2480 2481 return TRUE; 2482 } 2483 2484 /* Finish up the dynamic sections. */ 2485 2486 static bfd_boolean 2487 riscv_finish_dyn (bfd *output_bfd, struct bfd_link_info *info, 2488 bfd *dynobj, asection *sdyn) 2489 { 2490 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); 2491 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 2492 size_t dynsize = bed->s->sizeof_dyn; 2493 bfd_byte *dyncon, *dynconend; 2494 2495 dynconend = sdyn->contents + sdyn->size; 2496 for (dyncon = sdyn->contents; dyncon < dynconend; dyncon += dynsize) 2497 { 2498 Elf_Internal_Dyn dyn; 2499 asection *s; 2500 2501 bed->s->swap_dyn_in (dynobj, dyncon, &dyn); 2502 2503 switch (dyn.d_tag) 2504 { 2505 case DT_PLTGOT: 2506 s = htab->elf.sgotplt; 2507 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 2508 break; 2509 case DT_JMPREL: 2510 s = htab->elf.srelplt; 2511 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 2512 break; 2513 case DT_PLTRELSZ: 2514 s = htab->elf.srelplt; 2515 dyn.d_un.d_val = s->size; 2516 break; 2517 default: 2518 continue; 2519 } 2520 2521 bed->s->swap_dyn_out (output_bfd, &dyn, dyncon); 2522 } 2523 return TRUE; 2524 } 2525 2526 static bfd_boolean 2527 riscv_elf_finish_dynamic_sections (bfd *output_bfd, 2528 struct bfd_link_info *info) 2529 { 2530 bfd *dynobj; 2531 asection *sdyn; 2532 struct riscv_elf_link_hash_table *htab; 2533 2534 htab = riscv_elf_hash_table (info); 2535 BFD_ASSERT (htab != NULL); 2536 dynobj = htab->elf.dynobj; 2537 2538 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 2539 2540 if (elf_hash_table (info)->dynamic_sections_created) 2541 { 2542 asection *splt; 2543 bfd_boolean ret; 2544 2545 splt = htab->elf.splt; 2546 BFD_ASSERT (splt != NULL && sdyn != NULL); 2547 2548 ret = riscv_finish_dyn (output_bfd, info, dynobj, sdyn); 2549 2550 if (!ret) 2551 return ret; 2552 2553 /* Fill in the head and tail entries in the procedure linkage table. */ 2554 if (splt->size > 0) 2555 { 2556 int i; 2557 uint32_t plt_header[PLT_HEADER_INSNS]; 2558 ret = riscv_make_plt_header (output_bfd, 2559 sec_addr (htab->elf.sgotplt), 2560 sec_addr (splt), plt_header); 2561 if (!ret) 2562 return ret; 2563 2564 for (i = 0; i < PLT_HEADER_INSNS; i++) 2565 bfd_put_32 (output_bfd, plt_header[i], splt->contents + 4*i); 2566 2567 elf_section_data (splt->output_section)->this_hdr.sh_entsize 2568 = PLT_ENTRY_SIZE; 2569 } 2570 } 2571 2572 if (htab->elf.sgotplt) 2573 { 2574 asection *output_section = htab->elf.sgotplt->output_section; 2575 2576 if (bfd_is_abs_section (output_section)) 2577 { 2578 (*_bfd_error_handler) 2579 (_("discarded output section: `%pA'"), htab->elf.sgotplt); 2580 return FALSE; 2581 } 2582 2583 if (htab->elf.sgotplt->size > 0) 2584 { 2585 /* Write the first two entries in .got.plt, needed for the dynamic 2586 linker. */ 2587 bfd_put_NN (output_bfd, (bfd_vma) -1, htab->elf.sgotplt->contents); 2588 bfd_put_NN (output_bfd, (bfd_vma) 0, 2589 htab->elf.sgotplt->contents + GOT_ENTRY_SIZE); 2590 } 2591 2592 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE; 2593 } 2594 2595 if (htab->elf.sgot) 2596 { 2597 asection *output_section = htab->elf.sgot->output_section; 2598 2599 if (htab->elf.sgot->size > 0) 2600 { 2601 /* Set the first entry in the global offset table to the address of 2602 the dynamic section. */ 2603 bfd_vma val = sdyn ? sec_addr (sdyn) : 0; 2604 bfd_put_NN (output_bfd, val, htab->elf.sgot->contents); 2605 } 2606 2607 elf_section_data (output_section)->this_hdr.sh_entsize = GOT_ENTRY_SIZE; 2608 } 2609 2610 return TRUE; 2611 } 2612 2613 /* Return address for Ith PLT stub in section PLT, for relocation REL 2614 or (bfd_vma) -1 if it should not be included. */ 2615 2616 static bfd_vma 2617 riscv_elf_plt_sym_val (bfd_vma i, const asection *plt, 2618 const arelent *rel ATTRIBUTE_UNUSED) 2619 { 2620 return plt->vma + PLT_HEADER_SIZE + i * PLT_ENTRY_SIZE; 2621 } 2622 2623 static enum elf_reloc_type_class 2624 riscv_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 2625 const asection *rel_sec ATTRIBUTE_UNUSED, 2626 const Elf_Internal_Rela *rela) 2627 { 2628 switch (ELFNN_R_TYPE (rela->r_info)) 2629 { 2630 case R_RISCV_RELATIVE: 2631 return reloc_class_relative; 2632 case R_RISCV_JUMP_SLOT: 2633 return reloc_class_plt; 2634 case R_RISCV_COPY: 2635 return reloc_class_copy; 2636 default: 2637 return reloc_class_normal; 2638 } 2639 } 2640 2641 /* Given the ELF header flags in FLAGS, it returns a string that describes the 2642 float ABI. */ 2643 2644 static const char * 2645 riscv_float_abi_string (flagword flags) 2646 { 2647 switch (flags & EF_RISCV_FLOAT_ABI) 2648 { 2649 case EF_RISCV_FLOAT_ABI_SOFT: 2650 return "soft-float"; 2651 break; 2652 case EF_RISCV_FLOAT_ABI_SINGLE: 2653 return "single-float"; 2654 break; 2655 case EF_RISCV_FLOAT_ABI_DOUBLE: 2656 return "double-float"; 2657 break; 2658 case EF_RISCV_FLOAT_ABI_QUAD: 2659 return "quad-float"; 2660 break; 2661 default: 2662 abort (); 2663 } 2664 } 2665 2666 /* The information of architecture attribute. */ 2667 static riscv_subset_list_t in_subsets; 2668 static riscv_subset_list_t out_subsets; 2669 static riscv_subset_list_t merged_subsets; 2670 2671 /* Predicator for standard extension. */ 2672 2673 static bfd_boolean 2674 riscv_std_ext_p (const char *name) 2675 { 2676 return (strlen (name) == 1) && (name[0] != 'x') && (name[0] != 's'); 2677 } 2678 2679 /* Predicator for non-standard extension. */ 2680 2681 static bfd_boolean 2682 riscv_non_std_ext_p (const char *name) 2683 { 2684 return (strlen (name) >= 2) && (name[0] == 'x'); 2685 } 2686 2687 /* Predicator for standard supervisor extension. */ 2688 2689 static bfd_boolean 2690 riscv_std_sv_ext_p (const char *name) 2691 { 2692 return (strlen (name) >= 2) && (name[0] == 's') && (name[1] != 'x'); 2693 } 2694 2695 /* Predicator for non-standard supervisor extension. */ 2696 2697 static bfd_boolean 2698 riscv_non_std_sv_ext_p (const char *name) 2699 { 2700 return (strlen (name) >= 3) && (name[0] == 's') && (name[1] == 'x'); 2701 } 2702 2703 /* Error handler when version mis-match. */ 2704 2705 static void 2706 riscv_version_mismatch (bfd *ibfd, 2707 struct riscv_subset_t *in, 2708 struct riscv_subset_t *out) 2709 { 2710 _bfd_error_handler 2711 (_("error: %pB: Mis-matched ISA version for '%s' extension. " 2712 "%d.%d vs %d.%d"), 2713 ibfd, in->name, 2714 in->major_version, in->minor_version, 2715 out->major_version, out->minor_version); 2716 } 2717 2718 /* Return true if subset is 'i' or 'e'. */ 2719 2720 static bfd_boolean 2721 riscv_i_or_e_p (bfd *ibfd, 2722 const char *arch, 2723 struct riscv_subset_t *subset) 2724 { 2725 if ((strcasecmp (subset->name, "e") != 0) 2726 && (strcasecmp (subset->name, "i") != 0)) 2727 { 2728 _bfd_error_handler 2729 (_("error: %pB: corrupted ISA string '%s'. " 2730 "First letter should be 'i' or 'e' but got '%s'."), 2731 ibfd, arch, subset->name); 2732 return FALSE; 2733 } 2734 return TRUE; 2735 } 2736 2737 /* Merge standard extensions. 2738 2739 Return Value: 2740 Return FALSE if failed to merge. 2741 2742 Arguments: 2743 `bfd`: bfd handler. 2744 `in_arch`: Raw arch string for input object. 2745 `out_arch`: Raw arch string for output object. 2746 `pin`: subset list for input object, and it'll skip all merged subset after 2747 merge. 2748 `pout`: Like `pin`, but for output object. */ 2749 2750 static bfd_boolean 2751 riscv_merge_std_ext (bfd *ibfd, 2752 const char *in_arch, 2753 const char *out_arch, 2754 struct riscv_subset_t **pin, 2755 struct riscv_subset_t **pout) 2756 { 2757 const char *standard_exts = riscv_supported_std_ext (); 2758 const char *p; 2759 struct riscv_subset_t *in = *pin; 2760 struct riscv_subset_t *out = *pout; 2761 2762 /* First letter should be 'i' or 'e'. */ 2763 if (!riscv_i_or_e_p (ibfd, in_arch, in)) 2764 return FALSE; 2765 2766 if (!riscv_i_or_e_p (ibfd, out_arch, out)) 2767 return FALSE; 2768 2769 if (in->name[0] != out->name[0]) 2770 { 2771 /* TODO: We might allow merge 'i' with 'e'. */ 2772 _bfd_error_handler 2773 (_("error: %pB: Mis-matched ISA string to merge '%s' and '%s'."), 2774 ibfd, in->name, out->name); 2775 return FALSE; 2776 } 2777 else if ((in->major_version != out->major_version) || 2778 (in->minor_version != out->minor_version)) 2779 { 2780 /* TODO: Allow different merge policy. */ 2781 riscv_version_mismatch (ibfd, in, out); 2782 return FALSE; 2783 } 2784 else 2785 riscv_add_subset (&merged_subsets, 2786 in->name, in->major_version, in->minor_version); 2787 2788 in = in->next; 2789 out = out->next; 2790 2791 /* Handle standard extension first. */ 2792 for (p = standard_exts; *p; ++p) 2793 { 2794 char find_ext[2] = {*p, '\0'}; 2795 struct riscv_subset_t *find_in = 2796 riscv_lookup_subset (&in_subsets, find_ext); 2797 struct riscv_subset_t *find_out = 2798 riscv_lookup_subset (&out_subsets, find_ext); 2799 2800 if (find_in == NULL && find_out == NULL) 2801 continue; 2802 2803 /* Check version is same or not. */ 2804 /* TODO: Allow different merge policy. */ 2805 if ((find_in != NULL && find_out != NULL) 2806 && ((find_in->major_version != find_out->major_version) 2807 || (find_in->minor_version != find_out->minor_version))) 2808 { 2809 riscv_version_mismatch (ibfd, in, out); 2810 return FALSE; 2811 } 2812 2813 struct riscv_subset_t *merged = find_in ? find_in : find_out; 2814 riscv_add_subset (&merged_subsets, merged->name, 2815 merged->major_version, merged->minor_version); 2816 } 2817 2818 /* Skip all standard extensions. */ 2819 while ((in != NULL) && riscv_std_ext_p (in->name)) in = in->next; 2820 while ((out != NULL) && riscv_std_ext_p (out->name)) out = out->next; 2821 2822 *pin = in; 2823 *pout = out; 2824 2825 return TRUE; 2826 } 2827 2828 /* Merge non-standard and supervisor extensions. 2829 Return Value: 2830 Return FALSE if failed to merge. 2831 2832 Arguments: 2833 `bfd`: bfd handler. 2834 `in_arch`: Raw arch string for input object. 2835 `out_arch`: Raw arch string for output object. 2836 `pin`: subset list for input object, and it'll skip all merged subset after 2837 merge. 2838 `pout`: Like `pin`, but for output object. */ 2839 2840 static bfd_boolean 2841 riscv_merge_non_std_and_sv_ext (bfd *ibfd, 2842 riscv_subset_t **pin, 2843 riscv_subset_t **pout, 2844 bfd_boolean (*predicate_func) (const char *)) 2845 { 2846 riscv_subset_t *in = *pin; 2847 riscv_subset_t *out = *pout; 2848 2849 for (in = *pin; in != NULL && predicate_func (in->name); in = in->next) 2850 riscv_add_subset (&merged_subsets, in->name, in->major_version, 2851 in->minor_version); 2852 2853 for (out = *pout; out != NULL && predicate_func (out->name); out = out->next) 2854 { 2855 riscv_subset_t *find_ext = 2856 riscv_lookup_subset (&merged_subsets, out->name); 2857 if (find_ext != NULL) 2858 { 2859 /* Check version is same or not. */ 2860 /* TODO: Allow different merge policy. */ 2861 if ((find_ext->major_version != out->major_version) 2862 || (find_ext->minor_version != out->minor_version)) 2863 { 2864 riscv_version_mismatch (ibfd, find_ext, out); 2865 return FALSE; 2866 } 2867 } 2868 else 2869 riscv_add_subset (&merged_subsets, out->name, 2870 out->major_version, out->minor_version); 2871 } 2872 2873 *pin = in; 2874 *pout = out; 2875 return TRUE; 2876 } 2877 2878 /* Merge Tag_RISCV_arch attribute. */ 2879 2880 static char * 2881 riscv_merge_arch_attr_info (bfd *ibfd, char *in_arch, char *out_arch) 2882 { 2883 riscv_subset_t *in, *out; 2884 char *merged_arch_str; 2885 2886 unsigned xlen_in, xlen_out; 2887 merged_subsets.head = NULL; 2888 merged_subsets.tail = NULL; 2889 2890 riscv_parse_subset_t rpe_in; 2891 riscv_parse_subset_t rpe_out; 2892 2893 rpe_in.subset_list = &in_subsets; 2894 rpe_in.error_handler = _bfd_error_handler; 2895 rpe_in.xlen = &xlen_in; 2896 2897 rpe_out.subset_list = &out_subsets; 2898 rpe_out.error_handler = _bfd_error_handler; 2899 rpe_out.xlen = &xlen_out; 2900 2901 if (in_arch == NULL && out_arch == NULL) 2902 return NULL; 2903 2904 if (in_arch == NULL && out_arch != NULL) 2905 return out_arch; 2906 2907 if (in_arch != NULL && out_arch == NULL) 2908 return in_arch; 2909 2910 /* Parse subset from arch string. */ 2911 if (!riscv_parse_subset (&rpe_in, in_arch)) 2912 return NULL; 2913 2914 if (!riscv_parse_subset (&rpe_out, out_arch)) 2915 return NULL; 2916 2917 /* Checking XLEN. */ 2918 if (xlen_out != xlen_in) 2919 { 2920 _bfd_error_handler 2921 (_("error: %pB: ISA string of input (%s) doesn't match " 2922 "output (%s)."), ibfd, in_arch, out_arch); 2923 return NULL; 2924 } 2925 2926 /* Merge subset list. */ 2927 in = in_subsets.head; 2928 out = out_subsets.head; 2929 2930 /* Merge standard extension. */ 2931 if (!riscv_merge_std_ext (ibfd, in_arch, out_arch, &in, &out)) 2932 return NULL; 2933 /* Merge non-standard extension. */ 2934 if (!riscv_merge_non_std_and_sv_ext (ibfd, &in, &out, riscv_non_std_ext_p)) 2935 return NULL; 2936 /* Merge standard supervisor extension. */ 2937 if (!riscv_merge_non_std_and_sv_ext (ibfd, &in, &out, riscv_std_sv_ext_p)) 2938 return NULL; 2939 /* Merge non-standard supervisor extension. */ 2940 if (!riscv_merge_non_std_and_sv_ext (ibfd, &in, &out, riscv_non_std_sv_ext_p)) 2941 return NULL; 2942 2943 if (xlen_in != xlen_out) 2944 { 2945 _bfd_error_handler 2946 (_("error: %pB: XLEN of input (%u) doesn't match " 2947 "output (%u)."), ibfd, xlen_in, xlen_out); 2948 return NULL; 2949 } 2950 2951 if (xlen_in != ARCH_SIZE) 2952 { 2953 _bfd_error_handler 2954 (_("error: %pB: Unsupported XLEN (%u), you might be " 2955 "using wrong emulation."), ibfd, xlen_in); 2956 return NULL; 2957 } 2958 2959 merged_arch_str = riscv_arch_str (ARCH_SIZE, &merged_subsets); 2960 2961 /* Release the subset lists. */ 2962 riscv_release_subset_list (&in_subsets); 2963 riscv_release_subset_list (&out_subsets); 2964 riscv_release_subset_list (&merged_subsets); 2965 2966 return merged_arch_str; 2967 } 2968 2969 /* Merge object attributes from IBFD into output_bfd of INFO. 2970 Raise an error if there are conflicting attributes. */ 2971 2972 static bfd_boolean 2973 riscv_merge_attributes (bfd *ibfd, struct bfd_link_info *info) 2974 { 2975 bfd *obfd = info->output_bfd; 2976 obj_attribute *in_attr; 2977 obj_attribute *out_attr; 2978 bfd_boolean result = TRUE; 2979 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section; 2980 unsigned int i; 2981 2982 /* Skip linker created files. */ 2983 if (ibfd->flags & BFD_LINKER_CREATED) 2984 return TRUE; 2985 2986 /* Skip any input that doesn't have an attribute section. 2987 This enables to link object files without attribute section with 2988 any others. */ 2989 if (bfd_get_section_by_name (ibfd, sec_name) == NULL) 2990 return TRUE; 2991 2992 if (!elf_known_obj_attributes_proc (obfd)[0].i) 2993 { 2994 /* This is the first object. Copy the attributes. */ 2995 _bfd_elf_copy_obj_attributes (ibfd, obfd); 2996 2997 out_attr = elf_known_obj_attributes_proc (obfd); 2998 2999 /* Use the Tag_null value to indicate the attributes have been 3000 initialized. */ 3001 out_attr[0].i = 1; 3002 3003 return TRUE; 3004 } 3005 3006 in_attr = elf_known_obj_attributes_proc (ibfd); 3007 out_attr = elf_known_obj_attributes_proc (obfd); 3008 3009 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++) 3010 { 3011 switch (i) 3012 { 3013 case Tag_RISCV_arch: 3014 if (!out_attr[Tag_RISCV_arch].s) 3015 out_attr[Tag_RISCV_arch].s = in_attr[Tag_RISCV_arch].s; 3016 else if (in_attr[Tag_RISCV_arch].s 3017 && out_attr[Tag_RISCV_arch].s) 3018 { 3019 /* Check arch compatible. */ 3020 char *merged_arch = 3021 riscv_merge_arch_attr_info (ibfd, 3022 in_attr[Tag_RISCV_arch].s, 3023 out_attr[Tag_RISCV_arch].s); 3024 if (merged_arch == NULL) 3025 { 3026 result = FALSE; 3027 out_attr[Tag_RISCV_arch].s = ""; 3028 } 3029 else 3030 out_attr[Tag_RISCV_arch].s = merged_arch; 3031 } 3032 break; 3033 case Tag_RISCV_priv_spec: 3034 case Tag_RISCV_priv_spec_minor: 3035 case Tag_RISCV_priv_spec_revision: 3036 if (out_attr[i].i != in_attr[i].i) 3037 { 3038 _bfd_error_handler 3039 (_("error: %pB: conflicting priv spec version " 3040 "(major/minor/revision)."), ibfd); 3041 result = FALSE; 3042 } 3043 break; 3044 case Tag_RISCV_unaligned_access: 3045 out_attr[i].i |= in_attr[i].i; 3046 break; 3047 case Tag_RISCV_stack_align: 3048 if (out_attr[i].i == 0) 3049 out_attr[i].i = in_attr[i].i; 3050 else if (in_attr[i].i != 0 3051 && out_attr[i].i != 0 3052 && out_attr[i].i != in_attr[i].i) 3053 { 3054 _bfd_error_handler 3055 (_("error: %pB use %u-byte stack aligned but the output " 3056 "use %u-byte stack aligned."), 3057 ibfd, in_attr[i].i, out_attr[i].i); 3058 result = FALSE; 3059 } 3060 break; 3061 default: 3062 result &= _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i); 3063 } 3064 3065 /* If out_attr was copied from in_attr then it won't have a type yet. */ 3066 if (in_attr[i].type && !out_attr[i].type) 3067 out_attr[i].type = in_attr[i].type; 3068 } 3069 3070 /* Merge Tag_compatibility attributes and any common GNU ones. */ 3071 if (!_bfd_elf_merge_object_attributes (ibfd, info)) 3072 return FALSE; 3073 3074 /* Check for any attributes not known on RISC-V. */ 3075 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd); 3076 3077 return result; 3078 } 3079 3080 /* Merge backend specific data from an object file to the output 3081 object file when linking. */ 3082 3083 static bfd_boolean 3084 _bfd_riscv_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) 3085 { 3086 bfd *obfd = info->output_bfd; 3087 flagword new_flags = elf_elfheader (ibfd)->e_flags; 3088 flagword old_flags = elf_elfheader (obfd)->e_flags; 3089 3090 if (!is_riscv_elf (ibfd) || !is_riscv_elf (obfd)) 3091 return TRUE; 3092 3093 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) 3094 { 3095 (*_bfd_error_handler) 3096 (_("%pB: ABI is incompatible with that of the selected emulation:\n" 3097 " target emulation `%s' does not match `%s'"), 3098 ibfd, bfd_get_target (ibfd), bfd_get_target (obfd)); 3099 return FALSE; 3100 } 3101 3102 if (!_bfd_elf_merge_object_attributes (ibfd, info)) 3103 return FALSE; 3104 3105 if (!riscv_merge_attributes (ibfd, info)) 3106 return FALSE; 3107 3108 if (! elf_flags_init (obfd)) 3109 { 3110 elf_flags_init (obfd) = TRUE; 3111 elf_elfheader (obfd)->e_flags = new_flags; 3112 return TRUE; 3113 } 3114 3115 /* Disallow linking different float ABIs. */ 3116 if ((old_flags ^ new_flags) & EF_RISCV_FLOAT_ABI) 3117 { 3118 (*_bfd_error_handler) 3119 (_("%pB: can't link %s modules with %s modules"), ibfd, 3120 riscv_float_abi_string (new_flags), 3121 riscv_float_abi_string (old_flags)); 3122 goto fail; 3123 } 3124 3125 /* Disallow linking RVE and non-RVE. */ 3126 if ((old_flags ^ new_flags) & EF_RISCV_RVE) 3127 { 3128 (*_bfd_error_handler) 3129 (_("%pB: can't link RVE with other target"), ibfd); 3130 goto fail; 3131 } 3132 3133 /* Allow linking RVC and non-RVC, and keep the RVC flag. */ 3134 elf_elfheader (obfd)->e_flags |= new_flags & EF_RISCV_RVC; 3135 3136 return TRUE; 3137 3138 fail: 3139 bfd_set_error (bfd_error_bad_value); 3140 return FALSE; 3141 } 3142 3143 /* Delete some bytes from a section while relaxing. */ 3144 3145 static bfd_boolean 3146 riscv_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, size_t count, 3147 struct bfd_link_info *link_info) 3148 { 3149 unsigned int i, symcount; 3150 bfd_vma toaddr = sec->size; 3151 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (abfd); 3152 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 3153 unsigned int sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); 3154 struct bfd_elf_section_data *data = elf_section_data (sec); 3155 bfd_byte *contents = data->this_hdr.contents; 3156 3157 /* Actually delete the bytes. */ 3158 sec->size -= count; 3159 memmove (contents + addr, contents + addr + count, toaddr - addr - count); 3160 3161 /* Adjust the location of all of the relocs. Note that we need not 3162 adjust the addends, since all PC-relative references must be against 3163 symbols, which we will adjust below. */ 3164 for (i = 0; i < sec->reloc_count; i++) 3165 if (data->relocs[i].r_offset > addr && data->relocs[i].r_offset < toaddr) 3166 data->relocs[i].r_offset -= count; 3167 3168 /* Adjust the local symbols defined in this section. */ 3169 for (i = 0; i < symtab_hdr->sh_info; i++) 3170 { 3171 Elf_Internal_Sym *sym = (Elf_Internal_Sym *) symtab_hdr->contents + i; 3172 if (sym->st_shndx == sec_shndx) 3173 { 3174 /* If the symbol is in the range of memory we just moved, we 3175 have to adjust its value. */ 3176 if (sym->st_value > addr && sym->st_value <= toaddr) 3177 sym->st_value -= count; 3178 3179 /* If the symbol *spans* the bytes we just deleted (i.e. its 3180 *end* is in the moved bytes but its *start* isn't), then we 3181 must adjust its size. 3182 3183 This test needs to use the original value of st_value, otherwise 3184 we might accidentally decrease size when deleting bytes right 3185 before the symbol. But since deleted relocs can't span across 3186 symbols, we can't have both a st_value and a st_size decrease, 3187 so it is simpler to just use an else. */ 3188 else if (sym->st_value <= addr 3189 && sym->st_value + sym->st_size > addr 3190 && sym->st_value + sym->st_size <= toaddr) 3191 sym->st_size -= count; 3192 } 3193 } 3194 3195 /* Now adjust the global symbols defined in this section. */ 3196 symcount = ((symtab_hdr->sh_size / sizeof (ElfNN_External_Sym)) 3197 - symtab_hdr->sh_info); 3198 3199 for (i = 0; i < symcount; i++) 3200 { 3201 struct elf_link_hash_entry *sym_hash = sym_hashes[i]; 3202 3203 /* The '--wrap SYMBOL' option is causing a pain when the object file, 3204 containing the definition of __wrap_SYMBOL, includes a direct 3205 call to SYMBOL as well. Since both __wrap_SYMBOL and SYMBOL reference 3206 the same symbol (which is __wrap_SYMBOL), but still exist as two 3207 different symbols in 'sym_hashes', we don't want to adjust 3208 the global symbol __wrap_SYMBOL twice. */ 3209 /* The same problem occurs with symbols that are versioned_hidden, as 3210 foo becomes an alias for foo@BAR, and hence they need the same 3211 treatment. */ 3212 if (link_info->wrap_hash != NULL 3213 || sym_hash->versioned == versioned_hidden) 3214 { 3215 struct elf_link_hash_entry **cur_sym_hashes; 3216 3217 /* Loop only over the symbols which have already been checked. */ 3218 for (cur_sym_hashes = sym_hashes; cur_sym_hashes < &sym_hashes[i]; 3219 cur_sym_hashes++) 3220 { 3221 /* If the current symbol is identical to 'sym_hash', that means 3222 the symbol was already adjusted (or at least checked). */ 3223 if (*cur_sym_hashes == sym_hash) 3224 break; 3225 } 3226 /* Don't adjust the symbol again. */ 3227 if (cur_sym_hashes < &sym_hashes[i]) 3228 continue; 3229 } 3230 3231 if ((sym_hash->root.type == bfd_link_hash_defined 3232 || sym_hash->root.type == bfd_link_hash_defweak) 3233 && sym_hash->root.u.def.section == sec) 3234 { 3235 /* As above, adjust the value if needed. */ 3236 if (sym_hash->root.u.def.value > addr 3237 && sym_hash->root.u.def.value <= toaddr) 3238 sym_hash->root.u.def.value -= count; 3239 3240 /* As above, adjust the size if needed. */ 3241 else if (sym_hash->root.u.def.value <= addr 3242 && sym_hash->root.u.def.value + sym_hash->size > addr 3243 && sym_hash->root.u.def.value + sym_hash->size <= toaddr) 3244 sym_hash->size -= count; 3245 } 3246 } 3247 3248 return TRUE; 3249 } 3250 3251 /* A second format for recording PC-relative hi relocations. This stores the 3252 information required to relax them to GP-relative addresses. */ 3253 3254 typedef struct riscv_pcgp_hi_reloc riscv_pcgp_hi_reloc; 3255 struct riscv_pcgp_hi_reloc 3256 { 3257 bfd_vma hi_sec_off; 3258 bfd_vma hi_addend; 3259 bfd_vma hi_addr; 3260 unsigned hi_sym; 3261 asection *sym_sec; 3262 riscv_pcgp_hi_reloc *next; 3263 }; 3264 3265 typedef struct riscv_pcgp_lo_reloc riscv_pcgp_lo_reloc; 3266 struct riscv_pcgp_lo_reloc 3267 { 3268 bfd_vma hi_sec_off; 3269 riscv_pcgp_lo_reloc *next; 3270 }; 3271 3272 typedef struct 3273 { 3274 riscv_pcgp_hi_reloc *hi; 3275 riscv_pcgp_lo_reloc *lo; 3276 } riscv_pcgp_relocs; 3277 3278 /* Initialize the pcgp reloc info in P. */ 3279 3280 static bfd_boolean 3281 riscv_init_pcgp_relocs (riscv_pcgp_relocs *p) 3282 { 3283 p->hi = NULL; 3284 p->lo = NULL; 3285 return TRUE; 3286 } 3287 3288 /* Free the pcgp reloc info in P. */ 3289 3290 static void 3291 riscv_free_pcgp_relocs (riscv_pcgp_relocs *p, 3292 bfd *abfd ATTRIBUTE_UNUSED, 3293 asection *sec ATTRIBUTE_UNUSED) 3294 { 3295 riscv_pcgp_hi_reloc *c; 3296 riscv_pcgp_lo_reloc *l; 3297 3298 for (c = p->hi; c != NULL;) 3299 { 3300 riscv_pcgp_hi_reloc *next = c->next; 3301 free (c); 3302 c = next; 3303 } 3304 3305 for (l = p->lo; l != NULL;) 3306 { 3307 riscv_pcgp_lo_reloc *next = l->next; 3308 free (l); 3309 l = next; 3310 } 3311 } 3312 3313 /* Record pcgp hi part reloc info in P, using HI_SEC_OFF as the lookup index. 3314 The HI_ADDEND, HI_ADDR, HI_SYM, and SYM_SEC args contain info required to 3315 relax the corresponding lo part reloc. */ 3316 3317 static bfd_boolean 3318 riscv_record_pcgp_hi_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off, 3319 bfd_vma hi_addend, bfd_vma hi_addr, 3320 unsigned hi_sym, asection *sym_sec) 3321 { 3322 riscv_pcgp_hi_reloc *new = bfd_malloc (sizeof(*new)); 3323 if (!new) 3324 return FALSE; 3325 new->hi_sec_off = hi_sec_off; 3326 new->hi_addend = hi_addend; 3327 new->hi_addr = hi_addr; 3328 new->hi_sym = hi_sym; 3329 new->sym_sec = sym_sec; 3330 new->next = p->hi; 3331 p->hi = new; 3332 return TRUE; 3333 } 3334 3335 /* Look up hi part pcgp reloc info in P, using HI_SEC_OFF as the lookup index. 3336 This is used by a lo part reloc to find the corresponding hi part reloc. */ 3337 3338 static riscv_pcgp_hi_reloc * 3339 riscv_find_pcgp_hi_reloc(riscv_pcgp_relocs *p, bfd_vma hi_sec_off) 3340 { 3341 riscv_pcgp_hi_reloc *c; 3342 3343 for (c = p->hi; c != NULL; c = c->next) 3344 if (c->hi_sec_off == hi_sec_off) 3345 return c; 3346 return NULL; 3347 } 3348 3349 /* Record pcgp lo part reloc info in P, using HI_SEC_OFF as the lookup info. 3350 This is used to record relocs that can't be relaxed. */ 3351 3352 static bfd_boolean 3353 riscv_record_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off) 3354 { 3355 riscv_pcgp_lo_reloc *new = bfd_malloc (sizeof(*new)); 3356 if (!new) 3357 return FALSE; 3358 new->hi_sec_off = hi_sec_off; 3359 new->next = p->lo; 3360 p->lo = new; 3361 return TRUE; 3362 } 3363 3364 /* Look up lo part pcgp reloc info in P, using HI_SEC_OFF as the lookup index. 3365 This is used by a hi part reloc to find the corresponding lo part reloc. */ 3366 3367 static bfd_boolean 3368 riscv_find_pcgp_lo_reloc (riscv_pcgp_relocs *p, bfd_vma hi_sec_off) 3369 { 3370 riscv_pcgp_lo_reloc *c; 3371 3372 for (c = p->lo; c != NULL; c = c->next) 3373 if (c->hi_sec_off == hi_sec_off) 3374 return TRUE; 3375 return FALSE; 3376 } 3377 3378 typedef bfd_boolean (*relax_func_t) (bfd *, asection *, asection *, 3379 struct bfd_link_info *, 3380 Elf_Internal_Rela *, 3381 bfd_vma, bfd_vma, bfd_vma, bfd_boolean *, 3382 riscv_pcgp_relocs *); 3383 3384 /* Relax AUIPC + JALR into JAL. */ 3385 3386 static bfd_boolean 3387 _bfd_riscv_relax_call (bfd *abfd, asection *sec, asection *sym_sec, 3388 struct bfd_link_info *link_info, 3389 Elf_Internal_Rela *rel, 3390 bfd_vma symval, 3391 bfd_vma max_alignment, 3392 bfd_vma reserve_size ATTRIBUTE_UNUSED, 3393 bfd_boolean *again, 3394 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED) 3395 { 3396 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; 3397 bfd_signed_vma foff = symval - (sec_addr (sec) + rel->r_offset); 3398 bfd_boolean near_zero = (symval + RISCV_IMM_REACH/2) < RISCV_IMM_REACH; 3399 bfd_vma auipc, jalr; 3400 int rd, r_type, len = 4, rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC; 3401 3402 /* If the call crosses section boundaries, an alignment directive could 3403 cause the PC-relative offset to later increase. */ 3404 if (VALID_UJTYPE_IMM (foff) && sym_sec->output_section != sec->output_section) 3405 foff += (foff < 0 ? -max_alignment : max_alignment); 3406 3407 /* See if this function call can be shortened. */ 3408 if (!VALID_UJTYPE_IMM (foff) && !(!bfd_link_pic (link_info) && near_zero)) 3409 return TRUE; 3410 3411 /* Shorten the function call. */ 3412 BFD_ASSERT (rel->r_offset + 8 <= sec->size); 3413 3414 auipc = bfd_get_32 (abfd, contents + rel->r_offset); 3415 jalr = bfd_get_32 (abfd, contents + rel->r_offset + 4); 3416 rd = (jalr >> OP_SH_RD) & OP_MASK_RD; 3417 rvc = rvc && VALID_RVC_J_IMM (foff) && ARCH_SIZE == 32; 3418 3419 if (rvc && (rd == 0 || rd == X_RA)) 3420 { 3421 /* Relax to C.J[AL] rd, addr. */ 3422 r_type = R_RISCV_RVC_JUMP; 3423 auipc = rd == 0 ? MATCH_C_J : MATCH_C_JAL; 3424 len = 2; 3425 } 3426 else if (VALID_UJTYPE_IMM (foff)) 3427 { 3428 /* Relax to JAL rd, addr. */ 3429 r_type = R_RISCV_JAL; 3430 auipc = MATCH_JAL | (rd << OP_SH_RD); 3431 } 3432 else /* near_zero */ 3433 { 3434 /* Relax to JALR rd, x0, addr. */ 3435 r_type = R_RISCV_LO12_I; 3436 auipc = MATCH_JALR | (rd << OP_SH_RD); 3437 } 3438 3439 /* Replace the R_RISCV_CALL reloc. */ 3440 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), r_type); 3441 /* Replace the AUIPC. */ 3442 bfd_put (8 * len, abfd, auipc, contents + rel->r_offset); 3443 3444 /* Delete unnecessary JALR. */ 3445 *again = TRUE; 3446 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + len, 8 - len, 3447 link_info); 3448 } 3449 3450 /* Traverse all output sections and return the max alignment. */ 3451 3452 static bfd_vma 3453 _bfd_riscv_get_max_alignment (asection *sec) 3454 { 3455 unsigned int max_alignment_power = 0; 3456 asection *o; 3457 3458 for (o = sec->output_section->owner->sections; o != NULL; o = o->next) 3459 { 3460 if (o->alignment_power > max_alignment_power) 3461 max_alignment_power = o->alignment_power; 3462 } 3463 3464 return (bfd_vma) 1 << max_alignment_power; 3465 } 3466 3467 /* Relax non-PIC global variable references. */ 3468 3469 static bfd_boolean 3470 _bfd_riscv_relax_lui (bfd *abfd, 3471 asection *sec, 3472 asection *sym_sec, 3473 struct bfd_link_info *link_info, 3474 Elf_Internal_Rela *rel, 3475 bfd_vma symval, 3476 bfd_vma max_alignment, 3477 bfd_vma reserve_size, 3478 bfd_boolean *again, 3479 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED) 3480 { 3481 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; 3482 bfd_vma gp = riscv_global_pointer_value (link_info); 3483 int use_rvc = elf_elfheader (abfd)->e_flags & EF_RISCV_RVC; 3484 3485 /* Mergeable symbols and code might later move out of range. */ 3486 if (sym_sec->flags & (SEC_MERGE | SEC_CODE)) 3487 return TRUE; 3488 3489 BFD_ASSERT (rel->r_offset + 4 <= sec->size); 3490 3491 if (gp) 3492 { 3493 /* If gp and the symbol are in the same output section, then 3494 consider only that section's alignment. */ 3495 struct bfd_link_hash_entry *h = 3496 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, 3497 TRUE); 3498 if (h->u.def.section->output_section == sym_sec->output_section) 3499 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power; 3500 } 3501 3502 /* Is the reference in range of x0 or gp? 3503 Valid gp range conservatively because of alignment issue. */ 3504 if (VALID_ITYPE_IMM (symval) 3505 || (symval >= gp 3506 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size)) 3507 || (symval < gp 3508 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size))) 3509 { 3510 unsigned sym = ELFNN_R_SYM (rel->r_info); 3511 switch (ELFNN_R_TYPE (rel->r_info)) 3512 { 3513 case R_RISCV_LO12_I: 3514 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I); 3515 return TRUE; 3516 3517 case R_RISCV_LO12_S: 3518 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S); 3519 return TRUE; 3520 3521 case R_RISCV_HI20: 3522 /* We can delete the unnecessary LUI and reloc. */ 3523 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE); 3524 *again = TRUE; 3525 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, 3526 link_info); 3527 3528 default: 3529 abort (); 3530 } 3531 } 3532 3533 /* Can we relax LUI to C.LUI? Alignment might move the section forward; 3534 account for this assuming page alignment at worst. */ 3535 if (use_rvc 3536 && ELFNN_R_TYPE (rel->r_info) == R_RISCV_HI20 3537 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval)) 3538 && VALID_RVC_LUI_IMM (RISCV_CONST_HIGH_PART (symval + ELF_MAXPAGESIZE))) 3539 { 3540 /* Replace LUI with C.LUI if legal (i.e., rd != x0 and rd != x2/sp). */ 3541 bfd_vma lui = bfd_get_32 (abfd, contents + rel->r_offset); 3542 unsigned rd = ((unsigned)lui >> OP_SH_RD) & OP_MASK_RD; 3543 if (rd == 0 || rd == X_SP) 3544 return TRUE; 3545 3546 lui = (lui & (OP_MASK_RD << OP_SH_RD)) | MATCH_C_LUI; 3547 bfd_put_32 (abfd, lui, contents + rel->r_offset); 3548 3549 /* Replace the R_RISCV_HI20 reloc. */ 3550 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_RVC_LUI); 3551 3552 *again = TRUE; 3553 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + 2, 2, 3554 link_info); 3555 } 3556 3557 return TRUE; 3558 } 3559 3560 /* Relax non-PIC TLS references. */ 3561 3562 static bfd_boolean 3563 _bfd_riscv_relax_tls_le (bfd *abfd, 3564 asection *sec, 3565 asection *sym_sec ATTRIBUTE_UNUSED, 3566 struct bfd_link_info *link_info, 3567 Elf_Internal_Rela *rel, 3568 bfd_vma symval, 3569 bfd_vma max_alignment ATTRIBUTE_UNUSED, 3570 bfd_vma reserve_size ATTRIBUTE_UNUSED, 3571 bfd_boolean *again, 3572 riscv_pcgp_relocs *prcel_relocs ATTRIBUTE_UNUSED) 3573 { 3574 /* See if this symbol is in range of tp. */ 3575 if (RISCV_CONST_HIGH_PART (tpoff (link_info, symval)) != 0) 3576 return TRUE; 3577 3578 BFD_ASSERT (rel->r_offset + 4 <= sec->size); 3579 switch (ELFNN_R_TYPE (rel->r_info)) 3580 { 3581 case R_RISCV_TPREL_LO12_I: 3582 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_I); 3583 return TRUE; 3584 3585 case R_RISCV_TPREL_LO12_S: 3586 rel->r_info = ELFNN_R_INFO (ELFNN_R_SYM (rel->r_info), R_RISCV_TPREL_S); 3587 return TRUE; 3588 3589 case R_RISCV_TPREL_HI20: 3590 case R_RISCV_TPREL_ADD: 3591 /* We can delete the unnecessary instruction and reloc. */ 3592 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE); 3593 *again = TRUE; 3594 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset, 4, link_info); 3595 3596 default: 3597 abort (); 3598 } 3599 } 3600 3601 /* Implement R_RISCV_ALIGN by deleting excess alignment NOPs. */ 3602 3603 static bfd_boolean 3604 _bfd_riscv_relax_align (bfd *abfd, asection *sec, 3605 asection *sym_sec, 3606 struct bfd_link_info *link_info, 3607 Elf_Internal_Rela *rel, 3608 bfd_vma symval, 3609 bfd_vma max_alignment ATTRIBUTE_UNUSED, 3610 bfd_vma reserve_size ATTRIBUTE_UNUSED, 3611 bfd_boolean *again ATTRIBUTE_UNUSED, 3612 riscv_pcgp_relocs *pcrel_relocs ATTRIBUTE_UNUSED) 3613 { 3614 bfd_byte *contents = elf_section_data (sec)->this_hdr.contents; 3615 bfd_vma alignment = 1, pos; 3616 while (alignment <= rel->r_addend) 3617 alignment *= 2; 3618 3619 symval -= rel->r_addend; 3620 bfd_vma aligned_addr = ((symval - 1) & ~(alignment - 1)) + alignment; 3621 bfd_vma nop_bytes = aligned_addr - symval; 3622 3623 /* Once we've handled an R_RISCV_ALIGN, we can't relax anything else. */ 3624 sec->sec_flg0 = TRUE; 3625 3626 /* Make sure there are enough NOPs to actually achieve the alignment. */ 3627 if (rel->r_addend < nop_bytes) 3628 { 3629 _bfd_error_handler 3630 (_("%pB(%pA+%#" PRIx64 "): %" PRId64 " bytes required for alignment " 3631 "to %" PRId64 "-byte boundary, but only %" PRId64 " present"), 3632 abfd, sym_sec, (uint64_t) rel->r_offset, 3633 (int64_t) nop_bytes, (int64_t) alignment, (int64_t) rel->r_addend); 3634 bfd_set_error (bfd_error_bad_value); 3635 return FALSE; 3636 } 3637 3638 /* Delete the reloc. */ 3639 rel->r_info = ELFNN_R_INFO (0, R_RISCV_NONE); 3640 3641 /* If the number of NOPs is already correct, there's nothing to do. */ 3642 if (nop_bytes == rel->r_addend) 3643 return TRUE; 3644 3645 /* Write as many RISC-V NOPs as we need. */ 3646 for (pos = 0; pos < (nop_bytes & -4); pos += 4) 3647 bfd_put_32 (abfd, RISCV_NOP, contents + rel->r_offset + pos); 3648 3649 /* Write a final RVC NOP if need be. */ 3650 if (nop_bytes % 4 != 0) 3651 bfd_put_16 (abfd, RVC_NOP, contents + rel->r_offset + pos); 3652 3653 /* Delete the excess bytes. */ 3654 return riscv_relax_delete_bytes (abfd, sec, rel->r_offset + nop_bytes, 3655 rel->r_addend - nop_bytes, link_info); 3656 } 3657 3658 /* Relax PC-relative references to GP-relative references. */ 3659 3660 static bfd_boolean 3661 _bfd_riscv_relax_pc (bfd *abfd ATTRIBUTE_UNUSED, 3662 asection *sec, 3663 asection *sym_sec, 3664 struct bfd_link_info *link_info, 3665 Elf_Internal_Rela *rel, 3666 bfd_vma symval, 3667 bfd_vma max_alignment, 3668 bfd_vma reserve_size, 3669 bfd_boolean *again ATTRIBUTE_UNUSED, 3670 riscv_pcgp_relocs *pcgp_relocs) 3671 { 3672 bfd_vma gp = riscv_global_pointer_value (link_info); 3673 3674 BFD_ASSERT (rel->r_offset + 4 <= sec->size); 3675 3676 /* Chain the _LO relocs to their cooresponding _HI reloc to compute the 3677 * actual target address. */ 3678 riscv_pcgp_hi_reloc hi_reloc; 3679 memset (&hi_reloc, 0, sizeof (hi_reloc)); 3680 switch (ELFNN_R_TYPE (rel->r_info)) 3681 { 3682 case R_RISCV_PCREL_LO12_I: 3683 case R_RISCV_PCREL_LO12_S: 3684 { 3685 /* If the %lo has an addend, it isn't for the label pointing at the 3686 hi part instruction, but rather for the symbol pointed at by the 3687 hi part instruction. So we must subtract it here for the lookup. 3688 It is still used below in the final symbol address. */ 3689 bfd_vma hi_sec_off = symval - sec_addr (sym_sec) - rel->r_addend; 3690 riscv_pcgp_hi_reloc *hi = riscv_find_pcgp_hi_reloc (pcgp_relocs, 3691 hi_sec_off); 3692 if (hi == NULL) 3693 { 3694 riscv_record_pcgp_lo_reloc (pcgp_relocs, hi_sec_off); 3695 return TRUE; 3696 } 3697 3698 hi_reloc = *hi; 3699 symval = hi_reloc.hi_addr; 3700 sym_sec = hi_reloc.sym_sec; 3701 } 3702 break; 3703 3704 case R_RISCV_PCREL_HI20: 3705 /* Mergeable symbols and code might later move out of range. */ 3706 if (sym_sec->flags & (SEC_MERGE | SEC_CODE)) 3707 return TRUE; 3708 3709 /* If the cooresponding lo relocation has already been seen then it's not 3710 * safe to relax this relocation. */ 3711 if (riscv_find_pcgp_lo_reloc (pcgp_relocs, rel->r_offset)) 3712 return TRUE; 3713 3714 break; 3715 3716 default: 3717 abort (); 3718 } 3719 3720 if (gp) 3721 { 3722 /* If gp and the symbol are in the same output section, then 3723 consider only that section's alignment. */ 3724 struct bfd_link_hash_entry *h = 3725 bfd_link_hash_lookup (link_info->hash, RISCV_GP_SYMBOL, FALSE, FALSE, TRUE); 3726 if (h->u.def.section->output_section == sym_sec->output_section) 3727 max_alignment = (bfd_vma) 1 << sym_sec->output_section->alignment_power; 3728 } 3729 3730 /* Is the reference in range of x0 or gp? 3731 Valid gp range conservatively because of alignment issue. */ 3732 if (VALID_ITYPE_IMM (symval) 3733 || (symval >= gp 3734 && VALID_ITYPE_IMM (symval - gp + max_alignment + reserve_size)) 3735 || (symval < gp 3736 && VALID_ITYPE_IMM (symval - gp - max_alignment - reserve_size))) 3737 { 3738 unsigned sym = hi_reloc.hi_sym; 3739 switch (ELFNN_R_TYPE (rel->r_info)) 3740 { 3741 case R_RISCV_PCREL_LO12_I: 3742 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_I); 3743 rel->r_addend += hi_reloc.hi_addend; 3744 return TRUE; 3745 3746 case R_RISCV_PCREL_LO12_S: 3747 rel->r_info = ELFNN_R_INFO (sym, R_RISCV_GPREL_S); 3748 rel->r_addend += hi_reloc.hi_addend; 3749 return TRUE; 3750 3751 case R_RISCV_PCREL_HI20: 3752 riscv_record_pcgp_hi_reloc (pcgp_relocs, 3753 rel->r_offset, 3754 rel->r_addend, 3755 symval, 3756 ELFNN_R_SYM(rel->r_info), 3757 sym_sec); 3758 /* We can delete the unnecessary AUIPC and reloc. */ 3759 rel->r_info = ELFNN_R_INFO (0, R_RISCV_DELETE); 3760 rel->r_addend = 4; 3761 return TRUE; 3762 3763 default: 3764 abort (); 3765 } 3766 } 3767 3768 return TRUE; 3769 } 3770 3771 /* Relax PC-relative references to GP-relative references. */ 3772 3773 static bfd_boolean 3774 _bfd_riscv_relax_delete (bfd *abfd, 3775 asection *sec, 3776 asection *sym_sec ATTRIBUTE_UNUSED, 3777 struct bfd_link_info *link_info, 3778 Elf_Internal_Rela *rel, 3779 bfd_vma symval ATTRIBUTE_UNUSED, 3780 bfd_vma max_alignment ATTRIBUTE_UNUSED, 3781 bfd_vma reserve_size ATTRIBUTE_UNUSED, 3782 bfd_boolean *again ATTRIBUTE_UNUSED, 3783 riscv_pcgp_relocs *pcgp_relocs ATTRIBUTE_UNUSED) 3784 { 3785 if (!riscv_relax_delete_bytes(abfd, sec, rel->r_offset, rel->r_addend, 3786 link_info)) 3787 return FALSE; 3788 rel->r_info = ELFNN_R_INFO(0, R_RISCV_NONE); 3789 return TRUE; 3790 } 3791 3792 /* Relax a section. Pass 0 shortens code sequences unless disabled. Pass 1 3793 deletes the bytes that pass 0 made obselete. Pass 2, which cannot be 3794 disabled, handles code alignment directives. */ 3795 3796 static bfd_boolean 3797 _bfd_riscv_relax_section (bfd *abfd, asection *sec, 3798 struct bfd_link_info *info, 3799 bfd_boolean *again) 3800 { 3801 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (abfd); 3802 struct riscv_elf_link_hash_table *htab = riscv_elf_hash_table (info); 3803 struct bfd_elf_section_data *data = elf_section_data (sec); 3804 Elf_Internal_Rela *relocs; 3805 bfd_boolean ret = FALSE; 3806 unsigned int i; 3807 bfd_vma max_alignment, reserve_size = 0; 3808 riscv_pcgp_relocs pcgp_relocs; 3809 3810 *again = FALSE; 3811 3812 if (bfd_link_relocatable (info) 3813 || sec->sec_flg0 3814 || (sec->flags & SEC_RELOC) == 0 3815 || sec->reloc_count == 0 3816 || (info->disable_target_specific_optimizations 3817 && info->relax_pass == 0)) 3818 return TRUE; 3819 3820 riscv_init_pcgp_relocs (&pcgp_relocs); 3821 3822 /* Read this BFD's relocs if we haven't done so already. */ 3823 if (data->relocs) 3824 relocs = data->relocs; 3825 else if (!(relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, 3826 info->keep_memory))) 3827 goto fail; 3828 3829 if (htab) 3830 { 3831 max_alignment = htab->max_alignment; 3832 if (max_alignment == (bfd_vma) -1) 3833 { 3834 max_alignment = _bfd_riscv_get_max_alignment (sec); 3835 htab->max_alignment = max_alignment; 3836 } 3837 } 3838 else 3839 max_alignment = _bfd_riscv_get_max_alignment (sec); 3840 3841 /* Examine and consider relaxing each reloc. */ 3842 for (i = 0; i < sec->reloc_count; i++) 3843 { 3844 asection *sym_sec; 3845 Elf_Internal_Rela *rel = relocs + i; 3846 relax_func_t relax_func; 3847 int type = ELFNN_R_TYPE (rel->r_info); 3848 bfd_vma symval; 3849 3850 relax_func = NULL; 3851 if (info->relax_pass == 0) 3852 { 3853 if (type == R_RISCV_CALL || type == R_RISCV_CALL_PLT) 3854 relax_func = _bfd_riscv_relax_call; 3855 else if (type == R_RISCV_HI20 3856 || type == R_RISCV_LO12_I 3857 || type == R_RISCV_LO12_S) 3858 relax_func = _bfd_riscv_relax_lui; 3859 else if (!bfd_link_pic(info) 3860 && (type == R_RISCV_PCREL_HI20 3861 || type == R_RISCV_PCREL_LO12_I 3862 || type == R_RISCV_PCREL_LO12_S)) 3863 relax_func = _bfd_riscv_relax_pc; 3864 else if (type == R_RISCV_TPREL_HI20 3865 || type == R_RISCV_TPREL_ADD 3866 || type == R_RISCV_TPREL_LO12_I 3867 || type == R_RISCV_TPREL_LO12_S) 3868 relax_func = _bfd_riscv_relax_tls_le; 3869 else 3870 continue; 3871 3872 /* Only relax this reloc if it is paired with R_RISCV_RELAX. */ 3873 if (i == sec->reloc_count - 1 3874 || ELFNN_R_TYPE ((rel + 1)->r_info) != R_RISCV_RELAX 3875 || rel->r_offset != (rel + 1)->r_offset) 3876 continue; 3877 3878 /* Skip over the R_RISCV_RELAX. */ 3879 i++; 3880 } 3881 else if (info->relax_pass == 1 && type == R_RISCV_DELETE) 3882 relax_func = _bfd_riscv_relax_delete; 3883 else if (info->relax_pass == 2 && type == R_RISCV_ALIGN) 3884 relax_func = _bfd_riscv_relax_align; 3885 else 3886 continue; 3887 3888 data->relocs = relocs; 3889 3890 /* Read this BFD's contents if we haven't done so already. */ 3891 if (!data->this_hdr.contents 3892 && !bfd_malloc_and_get_section (abfd, sec, &data->this_hdr.contents)) 3893 goto fail; 3894 3895 /* Read this BFD's symbols if we haven't done so already. */ 3896 if (symtab_hdr->sh_info != 0 3897 && !symtab_hdr->contents 3898 && !(symtab_hdr->contents = 3899 (unsigned char *) bfd_elf_get_elf_syms (abfd, symtab_hdr, 3900 symtab_hdr->sh_info, 3901 0, NULL, NULL, NULL))) 3902 goto fail; 3903 3904 /* Get the value of the symbol referred to by the reloc. */ 3905 if (ELFNN_R_SYM (rel->r_info) < symtab_hdr->sh_info) 3906 { 3907 /* A local symbol. */ 3908 Elf_Internal_Sym *isym = ((Elf_Internal_Sym *) symtab_hdr->contents 3909 + ELFNN_R_SYM (rel->r_info)); 3910 reserve_size = (isym->st_size - rel->r_addend) > isym->st_size 3911 ? 0 : isym->st_size - rel->r_addend; 3912 3913 if (isym->st_shndx == SHN_UNDEF) 3914 sym_sec = sec, symval = sec_addr (sec) + rel->r_offset; 3915 else 3916 { 3917 BFD_ASSERT (isym->st_shndx < elf_numsections (abfd)); 3918 sym_sec = elf_elfsections (abfd)[isym->st_shndx]->bfd_section; 3919 #if 0 3920 /* The purpose of this code is unknown. It breaks linker scripts 3921 for embedded development that place sections at address zero. 3922 This code is believed to be unnecessary. Disabling it but not 3923 yet removing it, in case something breaks. */ 3924 if (sec_addr (sym_sec) == 0) 3925 continue; 3926 #endif 3927 symval = sec_addr (sym_sec) + isym->st_value; 3928 } 3929 } 3930 else 3931 { 3932 unsigned long indx; 3933 struct elf_link_hash_entry *h; 3934 3935 indx = ELFNN_R_SYM (rel->r_info) - symtab_hdr->sh_info; 3936 h = elf_sym_hashes (abfd)[indx]; 3937 3938 while (h->root.type == bfd_link_hash_indirect 3939 || h->root.type == bfd_link_hash_warning) 3940 h = (struct elf_link_hash_entry *) h->root.u.i.link; 3941 3942 if (h->plt.offset != MINUS_ONE) 3943 symval = sec_addr (htab->elf.splt) + h->plt.offset; 3944 else if (h->root.u.def.section->output_section == NULL 3945 || (h->root.type != bfd_link_hash_defined 3946 && h->root.type != bfd_link_hash_defweak)) 3947 continue; 3948 else 3949 symval = sec_addr (h->root.u.def.section) + h->root.u.def.value; 3950 3951 if (h->type != STT_FUNC) 3952 reserve_size = 3953 (h->size - rel->r_addend) > h->size ? 0 : h->size - rel->r_addend; 3954 sym_sec = h->root.u.def.section; 3955 } 3956 3957 symval += rel->r_addend; 3958 3959 if (!relax_func (abfd, sec, sym_sec, info, rel, symval, 3960 max_alignment, reserve_size, again, 3961 &pcgp_relocs)) 3962 goto fail; 3963 } 3964 3965 ret = TRUE; 3966 3967 fail: 3968 if (relocs != data->relocs) 3969 free (relocs); 3970 riscv_free_pcgp_relocs(&pcgp_relocs, abfd, sec); 3971 3972 return ret; 3973 } 3974 3975 #if ARCH_SIZE == 32 3976 # define PRSTATUS_SIZE 0 /* FIXME */ 3977 # define PRSTATUS_OFFSET_PR_CURSIG 12 3978 # define PRSTATUS_OFFSET_PR_PID 24 3979 # define PRSTATUS_OFFSET_PR_REG 72 3980 # define ELF_GREGSET_T_SIZE 128 3981 # define PRPSINFO_SIZE 128 3982 # define PRPSINFO_OFFSET_PR_PID 16 3983 # define PRPSINFO_OFFSET_PR_FNAME 32 3984 # define PRPSINFO_OFFSET_PR_PSARGS 48 3985 #else 3986 # define PRSTATUS_SIZE 376 3987 # define PRSTATUS_OFFSET_PR_CURSIG 12 3988 # define PRSTATUS_OFFSET_PR_PID 32 3989 # define PRSTATUS_OFFSET_PR_REG 112 3990 # define ELF_GREGSET_T_SIZE 256 3991 # define PRPSINFO_SIZE 136 3992 # define PRPSINFO_OFFSET_PR_PID 24 3993 # define PRPSINFO_OFFSET_PR_FNAME 40 3994 # define PRPSINFO_OFFSET_PR_PSARGS 56 3995 #endif 3996 3997 /* Support for core dump NOTE sections. */ 3998 3999 static bfd_boolean 4000 riscv_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 4001 { 4002 switch (note->descsz) 4003 { 4004 default: 4005 return FALSE; 4006 4007 case PRSTATUS_SIZE: /* sizeof(struct elf_prstatus) on Linux/RISC-V. */ 4008 /* pr_cursig */ 4009 elf_tdata (abfd)->core->signal 4010 = bfd_get_16 (abfd, note->descdata + PRSTATUS_OFFSET_PR_CURSIG); 4011 4012 /* pr_pid */ 4013 elf_tdata (abfd)->core->lwpid 4014 = bfd_get_32 (abfd, note->descdata + PRSTATUS_OFFSET_PR_PID); 4015 break; 4016 } 4017 4018 /* Make a ".reg/999" section. */ 4019 return _bfd_elfcore_make_pseudosection (abfd, ".reg", ELF_GREGSET_T_SIZE, 4020 note->descpos + PRSTATUS_OFFSET_PR_REG); 4021 } 4022 4023 static bfd_boolean 4024 riscv_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 4025 { 4026 switch (note->descsz) 4027 { 4028 default: 4029 return FALSE; 4030 4031 case PRPSINFO_SIZE: /* sizeof(struct elf_prpsinfo) on Linux/RISC-V. */ 4032 /* pr_pid */ 4033 elf_tdata (abfd)->core->pid 4034 = bfd_get_32 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PID); 4035 4036 /* pr_fname */ 4037 elf_tdata (abfd)->core->program = _bfd_elfcore_strndup 4038 (abfd, note->descdata + PRPSINFO_OFFSET_PR_FNAME, 16); 4039 4040 /* pr_psargs */ 4041 elf_tdata (abfd)->core->command = _bfd_elfcore_strndup 4042 (abfd, note->descdata + PRPSINFO_OFFSET_PR_PSARGS, 80); 4043 break; 4044 } 4045 4046 /* Note that for some reason, a spurious space is tacked 4047 onto the end of the args in some (at least one anyway) 4048 implementations, so strip it off if it exists. */ 4049 4050 { 4051 char *command = elf_tdata (abfd)->core->command; 4052 int n = strlen (command); 4053 4054 if (0 < n && command[n - 1] == ' ') 4055 command[n - 1] = '\0'; 4056 } 4057 4058 return TRUE; 4059 } 4060 4061 /* Set the right mach type. */ 4062 static bfd_boolean 4063 riscv_elf_object_p (bfd *abfd) 4064 { 4065 /* There are only two mach types in RISCV currently. */ 4066 if (strcmp (abfd->xvec->name, "elf32-littleriscv") == 0) 4067 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv32); 4068 else 4069 bfd_default_set_arch_mach (abfd, bfd_arch_riscv, bfd_mach_riscv64); 4070 4071 return TRUE; 4072 } 4073 4074 /* Determine whether an object attribute tag takes an integer, a 4075 string or both. */ 4076 4077 static int 4078 riscv_elf_obj_attrs_arg_type (int tag) 4079 { 4080 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL; 4081 } 4082 4083 #define TARGET_LITTLE_SYM riscv_elfNN_vec 4084 #define TARGET_LITTLE_NAME "elfNN-littleriscv" 4085 4086 #define elf_backend_reloc_type_class riscv_reloc_type_class 4087 4088 #define bfd_elfNN_bfd_reloc_name_lookup riscv_reloc_name_lookup 4089 #define bfd_elfNN_bfd_link_hash_table_create riscv_elf_link_hash_table_create 4090 #define bfd_elfNN_bfd_reloc_type_lookup riscv_reloc_type_lookup 4091 #define bfd_elfNN_bfd_merge_private_bfd_data \ 4092 _bfd_riscv_elf_merge_private_bfd_data 4093 4094 #define elf_backend_copy_indirect_symbol riscv_elf_copy_indirect_symbol 4095 #define elf_backend_create_dynamic_sections riscv_elf_create_dynamic_sections 4096 #define elf_backend_check_relocs riscv_elf_check_relocs 4097 #define elf_backend_adjust_dynamic_symbol riscv_elf_adjust_dynamic_symbol 4098 #define elf_backend_size_dynamic_sections riscv_elf_size_dynamic_sections 4099 #define elf_backend_relocate_section riscv_elf_relocate_section 4100 #define elf_backend_finish_dynamic_symbol riscv_elf_finish_dynamic_symbol 4101 #define elf_backend_finish_dynamic_sections riscv_elf_finish_dynamic_sections 4102 #define elf_backend_gc_mark_hook riscv_elf_gc_mark_hook 4103 #define elf_backend_plt_sym_val riscv_elf_plt_sym_val 4104 #define elf_backend_grok_prstatus riscv_elf_grok_prstatus 4105 #define elf_backend_grok_psinfo riscv_elf_grok_psinfo 4106 #define elf_backend_object_p riscv_elf_object_p 4107 #define elf_info_to_howto_rel NULL 4108 #define elf_info_to_howto riscv_info_to_howto_rela 4109 #define bfd_elfNN_bfd_relax_section _bfd_riscv_relax_section 4110 4111 #define elf_backend_init_index_section _bfd_elf_init_1_index_section 4112 4113 #define elf_backend_can_gc_sections 1 4114 #define elf_backend_can_refcount 1 4115 #define elf_backend_want_got_plt 1 4116 #define elf_backend_plt_readonly 1 4117 #define elf_backend_plt_alignment 4 4118 #define elf_backend_want_plt_sym 1 4119 #define elf_backend_got_header_size (ARCH_SIZE / 8) 4120 #define elf_backend_want_dynrelro 1 4121 #define elf_backend_rela_normal 1 4122 #define elf_backend_default_execstack 0 4123 4124 #undef elf_backend_obj_attrs_vendor 4125 #define elf_backend_obj_attrs_vendor "riscv" 4126 #undef elf_backend_obj_attrs_arg_type 4127 #define elf_backend_obj_attrs_arg_type riscv_elf_obj_attrs_arg_type 4128 #undef elf_backend_obj_attrs_section_type 4129 #define elf_backend_obj_attrs_section_type SHT_RISCV_ATTRIBUTES 4130 #undef elf_backend_obj_attrs_section 4131 #define elf_backend_obj_attrs_section ".riscv.attributes" 4132 4133 #include "elfNN-target.h" 4134