1 /* ELF linking support for BFD. 2 Copyright (C) 1995-2022 Free Software Foundation, Inc. 3 4 This file is part of BFD, the Binary File Descriptor library. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 19 MA 02110-1301, USA. */ 20 21 #include "sysdep.h" 22 #include "bfd.h" 23 #include "bfdlink.h" 24 #include "libbfd.h" 25 #define ARCH_SIZE 0 26 #include "elf-bfd.h" 27 #include "safe-ctype.h" 28 #include "libiberty.h" 29 #include "objalloc.h" 30 #if BFD_SUPPORTS_PLUGINS 31 #include "plugin-api.h" 32 #include "plugin.h" 33 #endif 34 35 #include <limits.h> 36 #ifndef CHAR_BIT 37 #define CHAR_BIT 8 38 #endif 39 40 /* This struct is used to pass information to routines called via 41 elf_link_hash_traverse which must return failure. */ 42 43 struct elf_info_failed 44 { 45 struct bfd_link_info *info; 46 bool failed; 47 }; 48 49 /* This structure is used to pass information to 50 _bfd_elf_link_find_version_dependencies. */ 51 52 struct elf_find_verdep_info 53 { 54 /* General link information. */ 55 struct bfd_link_info *info; 56 /* The number of dependencies. */ 57 unsigned int vers; 58 /* Whether we had a failure. */ 59 bool failed; 60 }; 61 62 static bool _bfd_elf_fix_symbol_flags 63 (struct elf_link_hash_entry *, struct elf_info_failed *); 64 65 asection * 66 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie, 67 unsigned long r_symndx, 68 bool discard) 69 { 70 if (r_symndx >= cookie->locsymcount 71 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL) 72 { 73 struct elf_link_hash_entry *h; 74 75 h = cookie->sym_hashes[r_symndx - cookie->extsymoff]; 76 77 while (h->root.type == bfd_link_hash_indirect 78 || h->root.type == bfd_link_hash_warning) 79 h = (struct elf_link_hash_entry *) h->root.u.i.link; 80 81 if ((h->root.type == bfd_link_hash_defined 82 || h->root.type == bfd_link_hash_defweak) 83 && discarded_section (h->root.u.def.section)) 84 return h->root.u.def.section; 85 else 86 return NULL; 87 } 88 else 89 { 90 /* It's not a relocation against a global symbol, 91 but it could be a relocation against a local 92 symbol for a discarded section. */ 93 asection *isec; 94 Elf_Internal_Sym *isym; 95 96 /* Need to: get the symbol; get the section. */ 97 isym = &cookie->locsyms[r_symndx]; 98 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx); 99 if (isec != NULL 100 && discard ? discarded_section (isec) : 1) 101 return isec; 102 } 103 return NULL; 104 } 105 106 /* Define a symbol in a dynamic linkage section. */ 107 108 struct elf_link_hash_entry * 109 _bfd_elf_define_linkage_sym (bfd *abfd, 110 struct bfd_link_info *info, 111 asection *sec, 112 const char *name) 113 { 114 struct elf_link_hash_entry *h; 115 struct bfd_link_hash_entry *bh; 116 const struct elf_backend_data *bed; 117 118 h = elf_link_hash_lookup (elf_hash_table (info), name, false, false, false); 119 if (h != NULL) 120 { 121 /* Zap symbol defined in an as-needed lib that wasn't linked. 122 This is a symptom of a larger problem: Absolute symbols 123 defined in shared libraries can't be overridden, because we 124 lose the link to the bfd which is via the symbol section. */ 125 h->root.type = bfd_link_hash_new; 126 bh = &h->root; 127 } 128 else 129 bh = NULL; 130 131 bed = get_elf_backend_data (abfd); 132 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL, 133 sec, 0, NULL, false, bed->collect, 134 &bh)) 135 return NULL; 136 h = (struct elf_link_hash_entry *) bh; 137 BFD_ASSERT (h != NULL); 138 h->def_regular = 1; 139 h->non_elf = 0; 140 h->root.linker_def = 1; 141 h->type = STT_OBJECT; 142 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL) 143 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; 144 145 (*bed->elf_backend_hide_symbol) (info, h, true); 146 return h; 147 } 148 149 bool 150 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) 151 { 152 flagword flags; 153 asection *s; 154 struct elf_link_hash_entry *h; 155 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 156 struct elf_link_hash_table *htab = elf_hash_table (info); 157 158 /* This function may be called more than once. */ 159 if (htab->sgot != NULL) 160 return true; 161 162 flags = bed->dynamic_sec_flags; 163 164 s = bfd_make_section_anyway_with_flags (abfd, 165 (bed->rela_plts_and_copies_p 166 ? ".rela.got" : ".rel.got"), 167 (bed->dynamic_sec_flags 168 | SEC_READONLY)); 169 if (s == NULL 170 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 171 return false; 172 htab->srelgot = s; 173 174 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); 175 if (s == NULL 176 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 177 return false; 178 htab->sgot = s; 179 180 if (bed->want_got_plt) 181 { 182 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); 183 if (s == NULL 184 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 185 return false; 186 htab->sgotplt = s; 187 } 188 189 /* The first bit of the global offset table is the header. */ 190 s->size += bed->got_header_size; 191 192 if (bed->want_got_sym) 193 { 194 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got 195 (or .got.plt) section. We don't do this in the linker script 196 because we don't want to define the symbol if we are not creating 197 a global offset table. */ 198 h = _bfd_elf_define_linkage_sym (abfd, info, s, 199 "_GLOBAL_OFFSET_TABLE_"); 200 elf_hash_table (info)->hgot = h; 201 if (h == NULL) 202 return false; 203 } 204 205 return true; 206 } 207 208 /* Create a strtab to hold the dynamic symbol names. */ 209 static bool 210 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info) 211 { 212 struct elf_link_hash_table *hash_table; 213 214 hash_table = elf_hash_table (info); 215 if (hash_table->dynobj == NULL) 216 { 217 /* We may not set dynobj, an input file holding linker created 218 dynamic sections to abfd, which may be a dynamic object with 219 its own dynamic sections. We need to find a normal input file 220 to hold linker created sections if possible. */ 221 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0) 222 { 223 bfd *ibfd; 224 asection *s; 225 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 226 if ((ibfd->flags 227 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0 228 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour 229 && elf_object_id (ibfd) == elf_hash_table_id (hash_table) 230 && !((s = ibfd->sections) != NULL 231 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)) 232 { 233 abfd = ibfd; 234 break; 235 } 236 } 237 hash_table->dynobj = abfd; 238 } 239 240 if (hash_table->dynstr == NULL) 241 { 242 hash_table->dynstr = _bfd_elf_strtab_init (); 243 if (hash_table->dynstr == NULL) 244 return false; 245 } 246 return true; 247 } 248 249 /* Create some sections which will be filled in with dynamic linking 250 information. ABFD is an input file which requires dynamic sections 251 to be created. The dynamic sections take up virtual memory space 252 when the final executable is run, so we need to create them before 253 addresses are assigned to the output sections. We work out the 254 actual contents and size of these sections later. */ 255 256 bool 257 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 258 { 259 flagword flags; 260 asection *s; 261 const struct elf_backend_data *bed; 262 struct elf_link_hash_entry *h; 263 264 if (! is_elf_hash_table (info->hash)) 265 return false; 266 267 if (elf_hash_table (info)->dynamic_sections_created) 268 return true; 269 270 if (!_bfd_elf_link_create_dynstrtab (abfd, info)) 271 return false; 272 273 abfd = elf_hash_table (info)->dynobj; 274 bed = get_elf_backend_data (abfd); 275 276 flags = bed->dynamic_sec_flags; 277 278 /* A dynamically linked executable has a .interp section, but a 279 shared library does not. */ 280 if (bfd_link_executable (info) && !info->nointerp) 281 { 282 s = bfd_make_section_anyway_with_flags (abfd, ".interp", 283 flags | SEC_READONLY); 284 if (s == NULL) 285 return false; 286 } 287 288 /* Create sections to hold version informations. These are removed 289 if they are not needed. */ 290 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d", 291 flags | SEC_READONLY); 292 if (s == NULL 293 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 294 return false; 295 296 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version", 297 flags | SEC_READONLY); 298 if (s == NULL 299 || !bfd_set_section_alignment (s, 1)) 300 return false; 301 302 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r", 303 flags | SEC_READONLY); 304 if (s == NULL 305 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 306 return false; 307 308 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym", 309 flags | SEC_READONLY); 310 if (s == NULL 311 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 312 return false; 313 elf_hash_table (info)->dynsym = s; 314 315 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr", 316 flags | SEC_READONLY); 317 if (s == NULL) 318 return false; 319 320 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags); 321 if (s == NULL 322 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 323 return false; 324 325 /* The special symbol _DYNAMIC is always set to the start of the 326 .dynamic section. We could set _DYNAMIC in a linker script, but we 327 only want to define it if we are, in fact, creating a .dynamic 328 section. We don't want to define it if there is no .dynamic 329 section, since on some ELF platforms the start up code examines it 330 to decide how to initialize the process. */ 331 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"); 332 elf_hash_table (info)->hdynamic = h; 333 if (h == NULL) 334 return false; 335 336 if (info->emit_hash) 337 { 338 s = bfd_make_section_anyway_with_flags (abfd, ".hash", 339 flags | SEC_READONLY); 340 if (s == NULL 341 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 342 return false; 343 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; 344 } 345 346 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL) 347 { 348 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash", 349 flags | SEC_READONLY); 350 if (s == NULL 351 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 352 return false; 353 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section: 354 4 32-bit words followed by variable count of 64-bit words, then 355 variable count of 32-bit words. */ 356 if (bed->s->arch_size == 64) 357 elf_section_data (s)->this_hdr.sh_entsize = 0; 358 else 359 elf_section_data (s)->this_hdr.sh_entsize = 4; 360 } 361 362 if (info->enable_dt_relr) 363 { 364 s = bfd_make_section_anyway_with_flags (abfd, ".relr.dyn", 365 (bed->dynamic_sec_flags 366 | SEC_READONLY)); 367 if (s == NULL 368 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 369 return false; 370 elf_hash_table (info)->srelrdyn = s; 371 } 372 373 /* Let the backend create the rest of the sections. This lets the 374 backend set the right flags. The backend will normally create 375 the .got and .plt sections. */ 376 if (bed->elf_backend_create_dynamic_sections == NULL 377 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) 378 return false; 379 380 elf_hash_table (info)->dynamic_sections_created = true; 381 382 return true; 383 } 384 385 /* Create dynamic sections when linking against a dynamic object. */ 386 387 bool 388 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 389 { 390 flagword flags, pltflags; 391 struct elf_link_hash_entry *h; 392 asection *s; 393 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 394 struct elf_link_hash_table *htab = elf_hash_table (info); 395 396 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and 397 .rel[a].bss sections. */ 398 flags = bed->dynamic_sec_flags; 399 400 pltflags = flags; 401 if (bed->plt_not_loaded) 402 /* We do not clear SEC_ALLOC here because we still want the OS to 403 allocate space for the section; it's just that there's nothing 404 to read in from the object file. */ 405 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS); 406 else 407 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD; 408 if (bed->plt_readonly) 409 pltflags |= SEC_READONLY; 410 411 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags); 412 if (s == NULL 413 || !bfd_set_section_alignment (s, bed->plt_alignment)) 414 return false; 415 htab->splt = s; 416 417 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the 418 .plt section. */ 419 if (bed->want_plt_sym) 420 { 421 h = _bfd_elf_define_linkage_sym (abfd, info, s, 422 "_PROCEDURE_LINKAGE_TABLE_"); 423 elf_hash_table (info)->hplt = h; 424 if (h == NULL) 425 return false; 426 } 427 428 s = bfd_make_section_anyway_with_flags (abfd, 429 (bed->rela_plts_and_copies_p 430 ? ".rela.plt" : ".rel.plt"), 431 flags | SEC_READONLY); 432 if (s == NULL 433 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 434 return false; 435 htab->srelplt = s; 436 437 if (! _bfd_elf_create_got_section (abfd, info)) 438 return false; 439 440 if (bed->want_dynbss) 441 { 442 /* The .dynbss section is a place to put symbols which are defined 443 by dynamic objects, are referenced by regular objects, and are 444 not functions. We must allocate space for them in the process 445 image and use a R_*_COPY reloc to tell the dynamic linker to 446 initialize them at run time. The linker script puts the .dynbss 447 section into the .bss section of the final image. */ 448 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss", 449 SEC_ALLOC | SEC_LINKER_CREATED); 450 if (s == NULL) 451 return false; 452 htab->sdynbss = s; 453 454 if (bed->want_dynrelro) 455 { 456 /* Similarly, but for symbols that were originally in read-only 457 sections. This section doesn't really need to have contents, 458 but make it like other .data.rel.ro sections. */ 459 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro", 460 flags); 461 if (s == NULL) 462 return false; 463 htab->sdynrelro = s; 464 } 465 466 /* The .rel[a].bss section holds copy relocs. This section is not 467 normally needed. We need to create it here, though, so that the 468 linker will map it to an output section. We can't just create it 469 only if we need it, because we will not know whether we need it 470 until we have seen all the input files, and the first time the 471 main linker code calls BFD after examining all the input files 472 (size_dynamic_sections) the input sections have already been 473 mapped to the output sections. If the section turns out not to 474 be needed, we can discard it later. We will never need this 475 section when generating a shared object, since they do not use 476 copy relocs. */ 477 if (bfd_link_executable (info)) 478 { 479 s = bfd_make_section_anyway_with_flags (abfd, 480 (bed->rela_plts_and_copies_p 481 ? ".rela.bss" : ".rel.bss"), 482 flags | SEC_READONLY); 483 if (s == NULL 484 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 485 return false; 486 htab->srelbss = s; 487 488 if (bed->want_dynrelro) 489 { 490 s = (bfd_make_section_anyway_with_flags 491 (abfd, (bed->rela_plts_and_copies_p 492 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"), 493 flags | SEC_READONLY)); 494 if (s == NULL 495 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 496 return false; 497 htab->sreldynrelro = s; 498 } 499 } 500 } 501 502 return true; 503 } 504 505 /* Record a new dynamic symbol. We record the dynamic symbols as we 506 read the input files, since we need to have a list of all of them 507 before we can determine the final sizes of the output sections. 508 Note that we may actually call this function even though we are not 509 going to output any dynamic symbols; in some cases we know that a 510 symbol should be in the dynamic symbol table, but only if there is 511 one. */ 512 513 bool 514 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info, 515 struct elf_link_hash_entry *h) 516 { 517 if (h->dynindx == -1) 518 { 519 struct elf_strtab_hash *dynstr; 520 char *p; 521 const char *name; 522 size_t indx; 523 524 if (h->root.type == bfd_link_hash_defined 525 || h->root.type == bfd_link_hash_defweak) 526 { 527 /* An IR symbol should not be made dynamic. */ 528 if (h->root.u.def.section != NULL 529 && h->root.u.def.section->owner != NULL 530 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0) 531 return true; 532 } 533 534 /* XXX: The ABI draft says the linker must turn hidden and 535 internal symbols into STB_LOCAL symbols when producing the 536 DSO. However, if ld.so honors st_other in the dynamic table, 537 this would not be necessary. */ 538 switch (ELF_ST_VISIBILITY (h->other)) 539 { 540 case STV_INTERNAL: 541 case STV_HIDDEN: 542 if (h->root.type != bfd_link_hash_undefined 543 && h->root.type != bfd_link_hash_undefweak) 544 { 545 h->forced_local = 1; 546 if (!elf_hash_table (info)->is_relocatable_executable 547 || ((h->root.type == bfd_link_hash_defined 548 || h->root.type == bfd_link_hash_defweak) 549 && h->root.u.def.section->owner != NULL 550 && h->root.u.def.section->owner->no_export) 551 || (h->root.type == bfd_link_hash_common 552 && h->root.u.c.p->section->owner != NULL 553 && h->root.u.c.p->section->owner->no_export)) 554 return true; 555 } 556 557 default: 558 break; 559 } 560 561 h->dynindx = elf_hash_table (info)->dynsymcount; 562 ++elf_hash_table (info)->dynsymcount; 563 564 dynstr = elf_hash_table (info)->dynstr; 565 if (dynstr == NULL) 566 { 567 /* Create a strtab to hold the dynamic symbol names. */ 568 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); 569 if (dynstr == NULL) 570 return false; 571 } 572 573 /* We don't put any version information in the dynamic string 574 table. */ 575 name = h->root.root.string; 576 p = strchr (name, ELF_VER_CHR); 577 if (p != NULL) 578 /* We know that the p points into writable memory. In fact, 579 there are only a few symbols that have read-only names, being 580 those like _GLOBAL_OFFSET_TABLE_ that are created specially 581 by the backends. Most symbols will have names pointing into 582 an ELF string table read from a file, or to objalloc memory. */ 583 *p = 0; 584 585 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL); 586 587 if (p != NULL) 588 *p = ELF_VER_CHR; 589 590 if (indx == (size_t) -1) 591 return false; 592 h->dynstr_index = indx; 593 } 594 595 return true; 596 } 597 598 /* Mark a symbol dynamic. */ 599 600 static void 601 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info, 602 struct elf_link_hash_entry *h, 603 Elf_Internal_Sym *sym) 604 { 605 struct bfd_elf_dynamic_list *d = info->dynamic_list; 606 607 /* It may be called more than once on the same H. */ 608 if(h->dynamic || bfd_link_relocatable (info)) 609 return; 610 611 if ((info->dynamic_data 612 && (h->type == STT_OBJECT 613 || h->type == STT_COMMON 614 || (sym != NULL 615 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT 616 || ELF_ST_TYPE (sym->st_info) == STT_COMMON)))) 617 || (d != NULL 618 && h->non_elf 619 && (*d->match) (&d->head, NULL, h->root.root.string))) 620 { 621 h->dynamic = 1; 622 /* NB: If a symbol is made dynamic by --dynamic-list, it has 623 non-IR reference. */ 624 h->root.non_ir_ref_dynamic = 1; 625 } 626 } 627 628 /* Record an assignment to a symbol made by a linker script. We need 629 this in case some dynamic object refers to this symbol. */ 630 631 bool 632 bfd_elf_record_link_assignment (bfd *output_bfd, 633 struct bfd_link_info *info, 634 const char *name, 635 bool provide, 636 bool hidden) 637 { 638 struct elf_link_hash_entry *h, *hv; 639 struct elf_link_hash_table *htab; 640 const struct elf_backend_data *bed; 641 642 if (!is_elf_hash_table (info->hash)) 643 return true; 644 645 htab = elf_hash_table (info); 646 h = elf_link_hash_lookup (htab, name, !provide, true, false); 647 if (h == NULL) 648 return provide; 649 650 if (h->root.type == bfd_link_hash_warning) 651 h = (struct elf_link_hash_entry *) h->root.u.i.link; 652 653 if (h->versioned == unknown) 654 { 655 /* Set versioned if symbol version is unknown. */ 656 char *version = strrchr (name, ELF_VER_CHR); 657 if (version) 658 { 659 if (version > name && version[-1] != ELF_VER_CHR) 660 h->versioned = versioned_hidden; 661 else 662 h->versioned = versioned; 663 } 664 } 665 666 /* Symbols defined in a linker script but not referenced anywhere 667 else will have non_elf set. */ 668 if (h->non_elf) 669 { 670 bfd_elf_link_mark_dynamic_symbol (info, h, NULL); 671 h->non_elf = 0; 672 } 673 674 switch (h->root.type) 675 { 676 case bfd_link_hash_defined: 677 case bfd_link_hash_defweak: 678 case bfd_link_hash_common: 679 break; 680 case bfd_link_hash_undefweak: 681 case bfd_link_hash_undefined: 682 /* Since we're defining the symbol, don't let it seem to have not 683 been defined. record_dynamic_symbol and size_dynamic_sections 684 may depend on this. */ 685 h->root.type = bfd_link_hash_new; 686 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root) 687 bfd_link_repair_undef_list (&htab->root); 688 break; 689 case bfd_link_hash_new: 690 break; 691 case bfd_link_hash_indirect: 692 /* We had a versioned symbol in a dynamic library. We make the 693 the versioned symbol point to this one. */ 694 bed = get_elf_backend_data (output_bfd); 695 hv = h; 696 while (hv->root.type == bfd_link_hash_indirect 697 || hv->root.type == bfd_link_hash_warning) 698 hv = (struct elf_link_hash_entry *) hv->root.u.i.link; 699 /* We don't need to update h->root.u since linker will set them 700 later. */ 701 h->root.type = bfd_link_hash_undefined; 702 hv->root.type = bfd_link_hash_indirect; 703 hv->root.u.i.link = (struct bfd_link_hash_entry *) h; 704 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv); 705 break; 706 default: 707 BFD_FAIL (); 708 return false; 709 } 710 711 /* If this symbol is being provided by the linker script, and it is 712 currently defined by a dynamic object, but not by a regular 713 object, then mark it as undefined so that the generic linker will 714 force the correct value. */ 715 if (provide 716 && h->def_dynamic 717 && !h->def_regular) 718 h->root.type = bfd_link_hash_undefined; 719 720 /* If this symbol is currently defined by a dynamic object, but not 721 by a regular object, then clear out any version information because 722 the symbol will not be associated with the dynamic object any 723 more. */ 724 if (h->def_dynamic && !h->def_regular) 725 h->verinfo.verdef = NULL; 726 727 /* Make sure this symbol is not garbage collected. */ 728 h->mark = 1; 729 730 h->def_regular = 1; 731 732 if (hidden) 733 { 734 bed = get_elf_backend_data (output_bfd); 735 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL) 736 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; 737 (*bed->elf_backend_hide_symbol) (info, h, true); 738 } 739 740 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects 741 and executables. */ 742 if (!bfd_link_relocatable (info) 743 && h->dynindx != -1 744 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN 745 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)) 746 h->forced_local = 1; 747 748 if ((h->def_dynamic 749 || h->ref_dynamic 750 || bfd_link_dll (info) 751 || elf_hash_table (info)->is_relocatable_executable) 752 && !h->forced_local 753 && h->dynindx == -1) 754 { 755 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 756 return false; 757 758 /* If this is a weak defined symbol, and we know a corresponding 759 real symbol from the same dynamic object, make sure the real 760 symbol is also made into a dynamic symbol. */ 761 if (h->is_weakalias) 762 { 763 struct elf_link_hash_entry *def = weakdef (h); 764 765 if (def->dynindx == -1 766 && !bfd_elf_link_record_dynamic_symbol (info, def)) 767 return false; 768 } 769 } 770 771 return true; 772 } 773 774 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on 775 success, and 2 on a failure caused by attempting to record a symbol 776 in a discarded section, eg. a discarded link-once section symbol. */ 777 778 int 779 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info, 780 bfd *input_bfd, 781 long input_indx) 782 { 783 size_t amt; 784 struct elf_link_local_dynamic_entry *entry; 785 struct elf_link_hash_table *eht; 786 struct elf_strtab_hash *dynstr; 787 size_t dynstr_index; 788 char *name; 789 Elf_External_Sym_Shndx eshndx; 790 char esym[sizeof (Elf64_External_Sym)]; 791 792 if (! is_elf_hash_table (info->hash)) 793 return 0; 794 795 /* See if the entry exists already. */ 796 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) 797 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) 798 return 1; 799 800 amt = sizeof (*entry); 801 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt); 802 if (entry == NULL) 803 return 0; 804 805 /* Go find the symbol, so that we can find it's name. */ 806 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr, 807 1, input_indx, &entry->isym, esym, &eshndx)) 808 { 809 bfd_release (input_bfd, entry); 810 return 0; 811 } 812 813 if (entry->isym.st_shndx != SHN_UNDEF 814 && entry->isym.st_shndx < SHN_LORESERVE) 815 { 816 asection *s; 817 818 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx); 819 if (s == NULL || bfd_is_abs_section (s->output_section)) 820 { 821 /* We can still bfd_release here as nothing has done another 822 bfd_alloc. We can't do this later in this function. */ 823 bfd_release (input_bfd, entry); 824 return 2; 825 } 826 } 827 828 name = (bfd_elf_string_from_elf_section 829 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link, 830 entry->isym.st_name)); 831 832 dynstr = elf_hash_table (info)->dynstr; 833 if (dynstr == NULL) 834 { 835 /* Create a strtab to hold the dynamic symbol names. */ 836 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); 837 if (dynstr == NULL) 838 return 0; 839 } 840 841 dynstr_index = _bfd_elf_strtab_add (dynstr, name, false); 842 if (dynstr_index == (size_t) -1) 843 return 0; 844 entry->isym.st_name = dynstr_index; 845 846 eht = elf_hash_table (info); 847 848 entry->next = eht->dynlocal; 849 eht->dynlocal = entry; 850 entry->input_bfd = input_bfd; 851 entry->input_indx = input_indx; 852 eht->dynsymcount++; 853 854 /* Whatever binding the symbol had before, it's now local. */ 855 entry->isym.st_info 856 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info)); 857 858 /* The dynindx will be set at the end of size_dynamic_sections. */ 859 860 return 1; 861 } 862 863 /* Return the dynindex of a local dynamic symbol. */ 864 865 long 866 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info, 867 bfd *input_bfd, 868 long input_indx) 869 { 870 struct elf_link_local_dynamic_entry *e; 871 872 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) 873 if (e->input_bfd == input_bfd && e->input_indx == input_indx) 874 return e->dynindx; 875 return -1; 876 } 877 878 /* This function is used to renumber the dynamic symbols, if some of 879 them are removed because they are marked as local. This is called 880 via elf_link_hash_traverse. */ 881 882 static bool 883 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h, 884 void *data) 885 { 886 size_t *count = (size_t *) data; 887 888 if (h->forced_local) 889 return true; 890 891 if (h->dynindx != -1) 892 h->dynindx = ++(*count); 893 894 return true; 895 } 896 897 898 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with 899 STB_LOCAL binding. */ 900 901 static bool 902 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h, 903 void *data) 904 { 905 size_t *count = (size_t *) data; 906 907 if (!h->forced_local) 908 return true; 909 910 if (h->dynindx != -1) 911 h->dynindx = ++(*count); 912 913 return true; 914 } 915 916 /* Return true if the dynamic symbol for a given section should be 917 omitted when creating a shared library. */ 918 bool 919 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED, 920 struct bfd_link_info *info, 921 asection *p) 922 { 923 struct elf_link_hash_table *htab; 924 asection *ip; 925 926 switch (elf_section_data (p)->this_hdr.sh_type) 927 { 928 case SHT_PROGBITS: 929 case SHT_NOBITS: 930 /* If sh_type is yet undecided, assume it could be 931 SHT_PROGBITS/SHT_NOBITS. */ 932 case SHT_NULL: 933 htab = elf_hash_table (info); 934 if (htab->text_index_section != NULL) 935 return p != htab->text_index_section && p != htab->data_index_section; 936 937 return (htab->dynobj != NULL 938 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL 939 && ip->output_section == p); 940 941 /* There shouldn't be section relative relocations 942 against any other section. */ 943 default: 944 return true; 945 } 946 } 947 948 bool 949 _bfd_elf_omit_section_dynsym_all 950 (bfd *output_bfd ATTRIBUTE_UNUSED, 951 struct bfd_link_info *info ATTRIBUTE_UNUSED, 952 asection *p ATTRIBUTE_UNUSED) 953 { 954 return true; 955 } 956 957 /* Assign dynsym indices. In a shared library we generate a section 958 symbol for each output section, which come first. Next come symbols 959 which have been forced to local binding. Then all of the back-end 960 allocated local dynamic syms, followed by the rest of the global 961 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set. 962 (This prevents the early call before elf_backend_init_index_section 963 and strip_excluded_output_sections setting dynindx for sections 964 that are stripped.) */ 965 966 static unsigned long 967 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, 968 struct bfd_link_info *info, 969 unsigned long *section_sym_count) 970 { 971 unsigned long dynsymcount = 0; 972 bool do_sec = section_sym_count != NULL; 973 974 if (bfd_link_pic (info) 975 || elf_hash_table (info)->is_relocatable_executable) 976 { 977 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 978 asection *p; 979 for (p = output_bfd->sections; p ; p = p->next) 980 if ((p->flags & SEC_EXCLUDE) == 0 981 && (p->flags & SEC_ALLOC) != 0 982 && elf_hash_table (info)->dynamic_relocs 983 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) 984 { 985 ++dynsymcount; 986 if (do_sec) 987 elf_section_data (p)->dynindx = dynsymcount; 988 } 989 else if (do_sec) 990 elf_section_data (p)->dynindx = 0; 991 } 992 if (do_sec) 993 *section_sym_count = dynsymcount; 994 995 elf_link_hash_traverse (elf_hash_table (info), 996 elf_link_renumber_local_hash_table_dynsyms, 997 &dynsymcount); 998 999 if (elf_hash_table (info)->dynlocal) 1000 { 1001 struct elf_link_local_dynamic_entry *p; 1002 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next) 1003 p->dynindx = ++dynsymcount; 1004 } 1005 elf_hash_table (info)->local_dynsymcount = dynsymcount; 1006 1007 elf_link_hash_traverse (elf_hash_table (info), 1008 elf_link_renumber_hash_table_dynsyms, 1009 &dynsymcount); 1010 1011 /* There is an unused NULL entry at the head of the table which we 1012 must account for in our count even if the table is empty since it 1013 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in 1014 .dynamic section. */ 1015 dynsymcount++; 1016 1017 elf_hash_table (info)->dynsymcount = dynsymcount; 1018 return dynsymcount; 1019 } 1020 1021 /* Merge st_other field. */ 1022 1023 static void 1024 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h, 1025 unsigned int st_other, asection *sec, 1026 bool definition, bool dynamic) 1027 { 1028 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 1029 1030 /* If st_other has a processor-specific meaning, specific 1031 code might be needed here. */ 1032 if (bed->elf_backend_merge_symbol_attribute) 1033 (*bed->elf_backend_merge_symbol_attribute) (h, st_other, definition, 1034 dynamic); 1035 1036 if (!dynamic) 1037 { 1038 unsigned symvis = ELF_ST_VISIBILITY (st_other); 1039 unsigned hvis = ELF_ST_VISIBILITY (h->other); 1040 1041 /* Keep the most constraining visibility. Leave the remainder 1042 of the st_other field to elf_backend_merge_symbol_attribute. */ 1043 if (symvis - 1 < hvis - 1) 1044 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1)); 1045 } 1046 else if (definition 1047 && ELF_ST_VISIBILITY (st_other) != STV_DEFAULT 1048 && (sec->flags & SEC_READONLY) == 0) 1049 h->protected_def = 1; 1050 } 1051 1052 /* This function is called when we want to merge a new symbol with an 1053 existing symbol. It handles the various cases which arise when we 1054 find a definition in a dynamic object, or when there is already a 1055 definition in a dynamic object. The new symbol is described by 1056 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table 1057 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK 1058 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment 1059 of an old common symbol. We set OVERRIDE if the old symbol is 1060 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for 1061 the type to change. We set SIZE_CHANGE_OK if it is OK for the size 1062 to change. By OK to change, we mean that we shouldn't warn if the 1063 type or size does change. */ 1064 1065 static bool 1066 _bfd_elf_merge_symbol (bfd *abfd, 1067 struct bfd_link_info *info, 1068 const char *name, 1069 Elf_Internal_Sym *sym, 1070 asection **psec, 1071 bfd_vma *pvalue, 1072 struct elf_link_hash_entry **sym_hash, 1073 bfd **poldbfd, 1074 bool *pold_weak, 1075 unsigned int *pold_alignment, 1076 bool *skip, 1077 bfd **override, 1078 bool *type_change_ok, 1079 bool *size_change_ok, 1080 bool *matched) 1081 { 1082 asection *sec, *oldsec; 1083 struct elf_link_hash_entry *h; 1084 struct elf_link_hash_entry *hi; 1085 struct elf_link_hash_entry *flip; 1086 int bind; 1087 bfd *oldbfd; 1088 bool newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; 1089 bool newweak, oldweak, newfunc, oldfunc; 1090 const struct elf_backend_data *bed; 1091 char *new_version; 1092 bool default_sym = *matched; 1093 struct elf_link_hash_table *htab; 1094 1095 *skip = false; 1096 *override = NULL; 1097 1098 sec = *psec; 1099 bind = ELF_ST_BIND (sym->st_info); 1100 1101 if (! bfd_is_und_section (sec)) 1102 h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false); 1103 else 1104 h = ((struct elf_link_hash_entry *) 1105 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false)); 1106 if (h == NULL) 1107 return false; 1108 *sym_hash = h; 1109 1110 bed = get_elf_backend_data (abfd); 1111 1112 /* NEW_VERSION is the symbol version of the new symbol. */ 1113 if (h->versioned != unversioned) 1114 { 1115 /* Symbol version is unknown or versioned. */ 1116 new_version = strrchr (name, ELF_VER_CHR); 1117 if (new_version) 1118 { 1119 if (h->versioned == unknown) 1120 { 1121 if (new_version > name && new_version[-1] != ELF_VER_CHR) 1122 h->versioned = versioned_hidden; 1123 else 1124 h->versioned = versioned; 1125 } 1126 new_version += 1; 1127 if (new_version[0] == '\0') 1128 new_version = NULL; 1129 } 1130 else 1131 h->versioned = unversioned; 1132 } 1133 else 1134 new_version = NULL; 1135 1136 /* For merging, we only care about real symbols. But we need to make 1137 sure that indirect symbol dynamic flags are updated. */ 1138 hi = h; 1139 while (h->root.type == bfd_link_hash_indirect 1140 || h->root.type == bfd_link_hash_warning) 1141 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1142 1143 if (!*matched) 1144 { 1145 if (hi == h || h->root.type == bfd_link_hash_new) 1146 *matched = true; 1147 else 1148 { 1149 /* OLD_HIDDEN is true if the existing symbol is only visible 1150 to the symbol with the same symbol version. NEW_HIDDEN is 1151 true if the new symbol is only visible to the symbol with 1152 the same symbol version. */ 1153 bool old_hidden = h->versioned == versioned_hidden; 1154 bool new_hidden = hi->versioned == versioned_hidden; 1155 if (!old_hidden && !new_hidden) 1156 /* The new symbol matches the existing symbol if both 1157 aren't hidden. */ 1158 *matched = true; 1159 else 1160 { 1161 /* OLD_VERSION is the symbol version of the existing 1162 symbol. */ 1163 char *old_version; 1164 1165 if (h->versioned >= versioned) 1166 old_version = strrchr (h->root.root.string, 1167 ELF_VER_CHR) + 1; 1168 else 1169 old_version = NULL; 1170 1171 /* The new symbol matches the existing symbol if they 1172 have the same symbol version. */ 1173 *matched = (old_version == new_version 1174 || (old_version != NULL 1175 && new_version != NULL 1176 && strcmp (old_version, new_version) == 0)); 1177 } 1178 } 1179 } 1180 1181 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the 1182 existing symbol. */ 1183 1184 oldbfd = NULL; 1185 oldsec = NULL; 1186 switch (h->root.type) 1187 { 1188 default: 1189 break; 1190 1191 case bfd_link_hash_undefined: 1192 case bfd_link_hash_undefweak: 1193 oldbfd = h->root.u.undef.abfd; 1194 break; 1195 1196 case bfd_link_hash_defined: 1197 case bfd_link_hash_defweak: 1198 oldbfd = h->root.u.def.section->owner; 1199 oldsec = h->root.u.def.section; 1200 break; 1201 1202 case bfd_link_hash_common: 1203 oldbfd = h->root.u.c.p->section->owner; 1204 oldsec = h->root.u.c.p->section; 1205 if (pold_alignment) 1206 *pold_alignment = h->root.u.c.p->alignment_power; 1207 break; 1208 } 1209 if (poldbfd && *poldbfd == NULL) 1210 *poldbfd = oldbfd; 1211 1212 /* Differentiate strong and weak symbols. */ 1213 newweak = bind == STB_WEAK; 1214 oldweak = (h->root.type == bfd_link_hash_defweak 1215 || h->root.type == bfd_link_hash_undefweak); 1216 if (pold_weak) 1217 *pold_weak = oldweak; 1218 1219 /* We have to check it for every instance since the first few may be 1220 references and not all compilers emit symbol type for undefined 1221 symbols. */ 1222 bfd_elf_link_mark_dynamic_symbol (info, h, sym); 1223 1224 htab = elf_hash_table (info); 1225 1226 /* NEWDYN and OLDDYN indicate whether the new or old symbol, 1227 respectively, is from a dynamic object. */ 1228 1229 newdyn = (abfd->flags & DYNAMIC) != 0; 1230 1231 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined 1232 syms and defined syms in dynamic libraries respectively. 1233 ref_dynamic on the other hand can be set for a symbol defined in 1234 a dynamic library, and def_dynamic may not be set; When the 1235 definition in a dynamic lib is overridden by a definition in the 1236 executable use of the symbol in the dynamic lib becomes a 1237 reference to the executable symbol. */ 1238 if (newdyn) 1239 { 1240 if (bfd_is_und_section (sec)) 1241 { 1242 if (bind != STB_WEAK) 1243 { 1244 h->ref_dynamic_nonweak = 1; 1245 hi->ref_dynamic_nonweak = 1; 1246 } 1247 } 1248 else 1249 { 1250 /* Update the existing symbol only if they match. */ 1251 if (*matched) 1252 h->dynamic_def = 1; 1253 hi->dynamic_def = 1; 1254 } 1255 } 1256 1257 /* If we just created the symbol, mark it as being an ELF symbol. 1258 Other than that, there is nothing to do--there is no merge issue 1259 with a newly defined symbol--so we just return. */ 1260 1261 if (h->root.type == bfd_link_hash_new) 1262 { 1263 h->non_elf = 0; 1264 return true; 1265 } 1266 1267 /* In cases involving weak versioned symbols, we may wind up trying 1268 to merge a symbol with itself. Catch that here, to avoid the 1269 confusion that results if we try to override a symbol with 1270 itself. The additional tests catch cases like 1271 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a 1272 dynamic object, which we do want to handle here. */ 1273 if (abfd == oldbfd 1274 && (newweak || oldweak) 1275 && ((abfd->flags & DYNAMIC) == 0 1276 || !h->def_regular)) 1277 return true; 1278 1279 olddyn = false; 1280 if (oldbfd != NULL) 1281 olddyn = (oldbfd->flags & DYNAMIC) != 0; 1282 else if (oldsec != NULL) 1283 { 1284 /* This handles the special SHN_MIPS_{TEXT,DATA} section 1285 indices used by MIPS ELF. */ 1286 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0; 1287 } 1288 1289 /* Set non_ir_ref_dynamic only when not handling DT_NEEDED entries. */ 1290 if (!htab->handling_dt_needed 1291 && oldbfd != NULL 1292 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)) 1293 { 1294 if (newdyn != olddyn) 1295 { 1296 /* Handle a case where plugin_notice won't be called and thus 1297 won't set the non_ir_ref flags on the first pass over 1298 symbols. */ 1299 h->root.non_ir_ref_dynamic = true; 1300 hi->root.non_ir_ref_dynamic = true; 1301 } 1302 else if ((oldbfd->flags & BFD_PLUGIN) != 0 1303 && hi->root.type == bfd_link_hash_indirect) 1304 { 1305 /* Change indirect symbol from IR to undefined. */ 1306 hi->root.type = bfd_link_hash_undefined; 1307 hi->root.u.undef.abfd = oldbfd; 1308 } 1309 } 1310 1311 /* NEWDEF and OLDDEF indicate whether the new or old symbol, 1312 respectively, appear to be a definition rather than reference. */ 1313 1314 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec); 1315 1316 olddef = (h->root.type != bfd_link_hash_undefined 1317 && h->root.type != bfd_link_hash_undefweak 1318 && h->root.type != bfd_link_hash_common); 1319 1320 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol, 1321 respectively, appear to be a function. */ 1322 1323 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE 1324 && bed->is_function_type (ELF_ST_TYPE (sym->st_info))); 1325 1326 oldfunc = (h->type != STT_NOTYPE 1327 && bed->is_function_type (h->type)); 1328 1329 if (!(newfunc && oldfunc) 1330 && ELF_ST_TYPE (sym->st_info) != h->type 1331 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE 1332 && h->type != STT_NOTYPE 1333 && (newdef || bfd_is_com_section (sec)) 1334 && (olddef || h->root.type == bfd_link_hash_common)) 1335 { 1336 /* If creating a default indirect symbol ("foo" or "foo@") from 1337 a dynamic versioned definition ("foo@@") skip doing so if 1338 there is an existing regular definition with a different 1339 type. We don't want, for example, a "time" variable in the 1340 executable overriding a "time" function in a shared library. */ 1341 if (newdyn 1342 && !olddyn) 1343 { 1344 *skip = true; 1345 return true; 1346 } 1347 1348 /* When adding a symbol from a regular object file after we have 1349 created indirect symbols, undo the indirection and any 1350 dynamic state. */ 1351 if (hi != h 1352 && !newdyn 1353 && olddyn) 1354 { 1355 h = hi; 1356 (*bed->elf_backend_hide_symbol) (info, h, true); 1357 h->forced_local = 0; 1358 h->ref_dynamic = 0; 1359 h->def_dynamic = 0; 1360 h->dynamic_def = 0; 1361 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root) 1362 { 1363 h->root.type = bfd_link_hash_undefined; 1364 h->root.u.undef.abfd = abfd; 1365 } 1366 else 1367 { 1368 h->root.type = bfd_link_hash_new; 1369 h->root.u.undef.abfd = NULL; 1370 } 1371 return true; 1372 } 1373 } 1374 1375 /* Check TLS symbols. We don't check undefined symbols introduced 1376 by "ld -u" which have no type (and oldbfd NULL), and we don't 1377 check symbols from plugins because they also have no type. */ 1378 if (oldbfd != NULL 1379 && (oldbfd->flags & BFD_PLUGIN) == 0 1380 && (abfd->flags & BFD_PLUGIN) == 0 1381 && ELF_ST_TYPE (sym->st_info) != h->type 1382 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)) 1383 { 1384 bfd *ntbfd, *tbfd; 1385 bool ntdef, tdef; 1386 asection *ntsec, *tsec; 1387 1388 if (h->type == STT_TLS) 1389 { 1390 ntbfd = abfd; 1391 ntsec = sec; 1392 ntdef = newdef; 1393 tbfd = oldbfd; 1394 tsec = oldsec; 1395 tdef = olddef; 1396 } 1397 else 1398 { 1399 ntbfd = oldbfd; 1400 ntsec = oldsec; 1401 ntdef = olddef; 1402 tbfd = abfd; 1403 tsec = sec; 1404 tdef = newdef; 1405 } 1406 1407 if (tdef && ntdef) 1408 _bfd_error_handler 1409 /* xgettext:c-format */ 1410 (_("%s: TLS definition in %pB section %pA " 1411 "mismatches non-TLS definition in %pB section %pA"), 1412 h->root.root.string, tbfd, tsec, ntbfd, ntsec); 1413 else if (!tdef && !ntdef) 1414 _bfd_error_handler 1415 /* xgettext:c-format */ 1416 (_("%s: TLS reference in %pB " 1417 "mismatches non-TLS reference in %pB"), 1418 h->root.root.string, tbfd, ntbfd); 1419 else if (tdef) 1420 _bfd_error_handler 1421 /* xgettext:c-format */ 1422 (_("%s: TLS definition in %pB section %pA " 1423 "mismatches non-TLS reference in %pB"), 1424 h->root.root.string, tbfd, tsec, ntbfd); 1425 else 1426 _bfd_error_handler 1427 /* xgettext:c-format */ 1428 (_("%s: TLS reference in %pB " 1429 "mismatches non-TLS definition in %pB section %pA"), 1430 h->root.root.string, tbfd, ntbfd, ntsec); 1431 1432 bfd_set_error (bfd_error_bad_value); 1433 return false; 1434 } 1435 1436 /* If the old symbol has non-default visibility, we ignore the new 1437 definition from a dynamic object. */ 1438 if (newdyn 1439 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 1440 && !bfd_is_und_section (sec)) 1441 { 1442 *skip = true; 1443 /* Make sure this symbol is dynamic. */ 1444 h->ref_dynamic = 1; 1445 hi->ref_dynamic = 1; 1446 /* A protected symbol has external availability. Make sure it is 1447 recorded as dynamic. 1448 1449 FIXME: Should we check type and size for protected symbol? */ 1450 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) 1451 return bfd_elf_link_record_dynamic_symbol (info, h); 1452 else 1453 return true; 1454 } 1455 else if (!newdyn 1456 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT 1457 && h->def_dynamic) 1458 { 1459 /* If the new symbol with non-default visibility comes from a 1460 relocatable file and the old definition comes from a dynamic 1461 object, we remove the old definition. */ 1462 if (hi->root.type == bfd_link_hash_indirect) 1463 { 1464 /* Handle the case where the old dynamic definition is 1465 default versioned. We need to copy the symbol info from 1466 the symbol with default version to the normal one if it 1467 was referenced before. */ 1468 if (h->ref_regular) 1469 { 1470 hi->root.type = h->root.type; 1471 h->root.type = bfd_link_hash_indirect; 1472 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h); 1473 1474 h->root.u.i.link = (struct bfd_link_hash_entry *) hi; 1475 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED) 1476 { 1477 /* If the new symbol is hidden or internal, completely undo 1478 any dynamic link state. */ 1479 (*bed->elf_backend_hide_symbol) (info, h, true); 1480 h->forced_local = 0; 1481 h->ref_dynamic = 0; 1482 } 1483 else 1484 h->ref_dynamic = 1; 1485 1486 h->def_dynamic = 0; 1487 /* FIXME: Should we check type and size for protected symbol? */ 1488 h->size = 0; 1489 h->type = 0; 1490 1491 h = hi; 1492 } 1493 else 1494 h = hi; 1495 } 1496 1497 /* If the old symbol was undefined before, then it will still be 1498 on the undefs list. If the new symbol is undefined or 1499 common, we can't make it bfd_link_hash_new here, because new 1500 undefined or common symbols will be added to the undefs list 1501 by _bfd_generic_link_add_one_symbol. Symbols may not be 1502 added twice to the undefs list. Also, if the new symbol is 1503 undefweak then we don't want to lose the strong undef. */ 1504 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root) 1505 { 1506 h->root.type = bfd_link_hash_undefined; 1507 h->root.u.undef.abfd = abfd; 1508 } 1509 else 1510 { 1511 h->root.type = bfd_link_hash_new; 1512 h->root.u.undef.abfd = NULL; 1513 } 1514 1515 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED) 1516 { 1517 /* If the new symbol is hidden or internal, completely undo 1518 any dynamic link state. */ 1519 (*bed->elf_backend_hide_symbol) (info, h, true); 1520 h->forced_local = 0; 1521 h->ref_dynamic = 0; 1522 } 1523 else 1524 h->ref_dynamic = 1; 1525 h->def_dynamic = 0; 1526 /* FIXME: Should we check type and size for protected symbol? */ 1527 h->size = 0; 1528 h->type = 0; 1529 return true; 1530 } 1531 1532 /* If a new weak symbol definition comes from a regular file and the 1533 old symbol comes from a dynamic library, we treat the new one as 1534 strong. Similarly, an old weak symbol definition from a regular 1535 file is treated as strong when the new symbol comes from a dynamic 1536 library. Further, an old weak symbol from a dynamic library is 1537 treated as strong if the new symbol is from a dynamic library. 1538 This reflects the way glibc's ld.so works. 1539 1540 Also allow a weak symbol to override a linker script symbol 1541 defined by an early pass over the script. This is done so the 1542 linker knows the symbol is defined in an object file, for the 1543 DEFINED script function. 1544 1545 Do this before setting *type_change_ok or *size_change_ok so that 1546 we warn properly when dynamic library symbols are overridden. */ 1547 1548 if (newdef && !newdyn && (olddyn || h->root.ldscript_def)) 1549 newweak = false; 1550 if (olddef && newdyn) 1551 oldweak = false; 1552 1553 /* Allow changes between different types of function symbol. */ 1554 if (newfunc && oldfunc) 1555 *type_change_ok = true; 1556 1557 /* It's OK to change the type if either the existing symbol or the 1558 new symbol is weak. A type change is also OK if the old symbol 1559 is undefined and the new symbol is defined. */ 1560 1561 if (oldweak 1562 || newweak 1563 || (newdef 1564 && h->root.type == bfd_link_hash_undefined)) 1565 *type_change_ok = true; 1566 1567 /* It's OK to change the size if either the existing symbol or the 1568 new symbol is weak, or if the old symbol is undefined. */ 1569 1570 if (*type_change_ok 1571 || h->root.type == bfd_link_hash_undefined) 1572 *size_change_ok = true; 1573 1574 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old 1575 symbol, respectively, appears to be a common symbol in a dynamic 1576 object. If a symbol appears in an uninitialized section, and is 1577 not weak, and is not a function, then it may be a common symbol 1578 which was resolved when the dynamic object was created. We want 1579 to treat such symbols specially, because they raise special 1580 considerations when setting the symbol size: if the symbol 1581 appears as a common symbol in a regular object, and the size in 1582 the regular object is larger, we must make sure that we use the 1583 larger size. This problematic case can always be avoided in C, 1584 but it must be handled correctly when using Fortran shared 1585 libraries. 1586 1587 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and 1588 likewise for OLDDYNCOMMON and OLDDEF. 1589 1590 Note that this test is just a heuristic, and that it is quite 1591 possible to have an uninitialized symbol in a shared object which 1592 is really a definition, rather than a common symbol. This could 1593 lead to some minor confusion when the symbol really is a common 1594 symbol in some regular object. However, I think it will be 1595 harmless. */ 1596 1597 if (newdyn 1598 && newdef 1599 && !newweak 1600 && (sec->flags & SEC_ALLOC) != 0 1601 && (sec->flags & SEC_LOAD) == 0 1602 && sym->st_size > 0 1603 && !newfunc) 1604 newdyncommon = true; 1605 else 1606 newdyncommon = false; 1607 1608 if (olddyn 1609 && olddef 1610 && h->root.type == bfd_link_hash_defined 1611 && h->def_dynamic 1612 && (h->root.u.def.section->flags & SEC_ALLOC) != 0 1613 && (h->root.u.def.section->flags & SEC_LOAD) == 0 1614 && h->size > 0 1615 && !oldfunc) 1616 olddyncommon = true; 1617 else 1618 olddyncommon = false; 1619 1620 /* We now know everything about the old and new symbols. We ask the 1621 backend to check if we can merge them. */ 1622 if (bed->merge_symbol != NULL) 1623 { 1624 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec)) 1625 return false; 1626 sec = *psec; 1627 } 1628 1629 /* There are multiple definitions of a normal symbol. Skip the 1630 default symbol as well as definition from an IR object. */ 1631 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak 1632 && !default_sym && h->def_regular 1633 && !(oldbfd != NULL 1634 && (oldbfd->flags & BFD_PLUGIN) != 0 1635 && (abfd->flags & BFD_PLUGIN) == 0)) 1636 { 1637 /* Handle a multiple definition. */ 1638 (*info->callbacks->multiple_definition) (info, &h->root, 1639 abfd, sec, *pvalue); 1640 *skip = true; 1641 return true; 1642 } 1643 1644 /* If both the old and the new symbols look like common symbols in a 1645 dynamic object, set the size of the symbol to the larger of the 1646 two. */ 1647 1648 if (olddyncommon 1649 && newdyncommon 1650 && sym->st_size != h->size) 1651 { 1652 /* Since we think we have two common symbols, issue a multiple 1653 common warning if desired. Note that we only warn if the 1654 size is different. If the size is the same, we simply let 1655 the old symbol override the new one as normally happens with 1656 symbols defined in dynamic objects. */ 1657 1658 (*info->callbacks->multiple_common) (info, &h->root, abfd, 1659 bfd_link_hash_common, sym->st_size); 1660 if (sym->st_size > h->size) 1661 h->size = sym->st_size; 1662 1663 *size_change_ok = true; 1664 } 1665 1666 /* If we are looking at a dynamic object, and we have found a 1667 definition, we need to see if the symbol was already defined by 1668 some other object. If so, we want to use the existing 1669 definition, and we do not want to report a multiple symbol 1670 definition error; we do this by clobbering *PSEC to be 1671 bfd_und_section_ptr. 1672 1673 We treat a common symbol as a definition if the symbol in the 1674 shared library is a function, since common symbols always 1675 represent variables; this can cause confusion in principle, but 1676 any such confusion would seem to indicate an erroneous program or 1677 shared library. We also permit a common symbol in a regular 1678 object to override a weak symbol in a shared object. */ 1679 1680 if (newdyn 1681 && newdef 1682 && (olddef 1683 || (h->root.type == bfd_link_hash_common 1684 && (newweak || newfunc)))) 1685 { 1686 *override = abfd; 1687 newdef = false; 1688 newdyncommon = false; 1689 1690 *psec = sec = bfd_und_section_ptr; 1691 *size_change_ok = true; 1692 1693 /* If we get here when the old symbol is a common symbol, then 1694 we are explicitly letting it override a weak symbol or 1695 function in a dynamic object, and we don't want to warn about 1696 a type change. If the old symbol is a defined symbol, a type 1697 change warning may still be appropriate. */ 1698 1699 if (h->root.type == bfd_link_hash_common) 1700 *type_change_ok = true; 1701 } 1702 1703 /* Handle the special case of an old common symbol merging with a 1704 new symbol which looks like a common symbol in a shared object. 1705 We change *PSEC and *PVALUE to make the new symbol look like a 1706 common symbol, and let _bfd_generic_link_add_one_symbol do the 1707 right thing. */ 1708 1709 if (newdyncommon 1710 && h->root.type == bfd_link_hash_common) 1711 { 1712 *override = oldbfd; 1713 newdef = false; 1714 newdyncommon = false; 1715 *pvalue = sym->st_size; 1716 *psec = sec = bed->common_section (oldsec); 1717 *size_change_ok = true; 1718 } 1719 1720 /* Skip weak definitions of symbols that are already defined. */ 1721 if (newdef && olddef && newweak) 1722 { 1723 /* Don't skip new non-IR weak syms. */ 1724 if (!(oldbfd != NULL 1725 && (oldbfd->flags & BFD_PLUGIN) != 0 1726 && (abfd->flags & BFD_PLUGIN) == 0)) 1727 { 1728 newdef = false; 1729 *skip = true; 1730 } 1731 1732 /* Merge st_other. If the symbol already has a dynamic index, 1733 but visibility says it should not be visible, turn it into a 1734 local symbol. */ 1735 elf_merge_st_other (abfd, h, sym->st_other, sec, newdef, newdyn); 1736 if (h->dynindx != -1) 1737 switch (ELF_ST_VISIBILITY (h->other)) 1738 { 1739 case STV_INTERNAL: 1740 case STV_HIDDEN: 1741 (*bed->elf_backend_hide_symbol) (info, h, true); 1742 break; 1743 } 1744 } 1745 1746 /* If the old symbol is from a dynamic object, and the new symbol is 1747 a definition which is not from a dynamic object, then the new 1748 symbol overrides the old symbol. Symbols from regular files 1749 always take precedence over symbols from dynamic objects, even if 1750 they are defined after the dynamic object in the link. 1751 1752 As above, we again permit a common symbol in a regular object to 1753 override a definition in a shared object if the shared object 1754 symbol is a function or is weak. */ 1755 1756 flip = NULL; 1757 if (!newdyn 1758 && (newdef 1759 || (bfd_is_com_section (sec) 1760 && (oldweak || oldfunc))) 1761 && olddyn 1762 && olddef 1763 && h->def_dynamic) 1764 { 1765 /* Change the hash table entry to undefined, and let 1766 _bfd_generic_link_add_one_symbol do the right thing with the 1767 new definition. */ 1768 1769 h->root.type = bfd_link_hash_undefined; 1770 h->root.u.undef.abfd = h->root.u.def.section->owner; 1771 *size_change_ok = true; 1772 1773 olddef = false; 1774 olddyncommon = false; 1775 1776 /* We again permit a type change when a common symbol may be 1777 overriding a function. */ 1778 1779 if (bfd_is_com_section (sec)) 1780 { 1781 if (oldfunc) 1782 { 1783 /* If a common symbol overrides a function, make sure 1784 that it isn't defined dynamically nor has type 1785 function. */ 1786 h->def_dynamic = 0; 1787 h->type = STT_NOTYPE; 1788 } 1789 *type_change_ok = true; 1790 } 1791 1792 if (hi->root.type == bfd_link_hash_indirect) 1793 flip = hi; 1794 else 1795 /* This union may have been set to be non-NULL when this symbol 1796 was seen in a dynamic object. We must force the union to be 1797 NULL, so that it is correct for a regular symbol. */ 1798 h->verinfo.vertree = NULL; 1799 } 1800 1801 /* Handle the special case of a new common symbol merging with an 1802 old symbol that looks like it might be a common symbol defined in 1803 a shared object. Note that we have already handled the case in 1804 which a new common symbol should simply override the definition 1805 in the shared library. */ 1806 1807 if (! newdyn 1808 && bfd_is_com_section (sec) 1809 && olddyncommon) 1810 { 1811 /* It would be best if we could set the hash table entry to a 1812 common symbol, but we don't know what to use for the section 1813 or the alignment. */ 1814 (*info->callbacks->multiple_common) (info, &h->root, abfd, 1815 bfd_link_hash_common, sym->st_size); 1816 1817 /* If the presumed common symbol in the dynamic object is 1818 larger, pretend that the new symbol has its size. */ 1819 1820 if (h->size > *pvalue) 1821 *pvalue = h->size; 1822 1823 /* We need to remember the alignment required by the symbol 1824 in the dynamic object. */ 1825 BFD_ASSERT (pold_alignment); 1826 *pold_alignment = h->root.u.def.section->alignment_power; 1827 1828 olddef = false; 1829 olddyncommon = false; 1830 1831 h->root.type = bfd_link_hash_undefined; 1832 h->root.u.undef.abfd = h->root.u.def.section->owner; 1833 1834 *size_change_ok = true; 1835 *type_change_ok = true; 1836 1837 if (hi->root.type == bfd_link_hash_indirect) 1838 flip = hi; 1839 else 1840 h->verinfo.vertree = NULL; 1841 } 1842 1843 if (flip != NULL) 1844 { 1845 /* Handle the case where we had a versioned symbol in a dynamic 1846 library and now find a definition in a normal object. In this 1847 case, we make the versioned symbol point to the normal one. */ 1848 flip->root.type = h->root.type; 1849 flip->root.u.undef.abfd = h->root.u.undef.abfd; 1850 h->root.type = bfd_link_hash_indirect; 1851 h->root.u.i.link = (struct bfd_link_hash_entry *) flip; 1852 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h); 1853 if (h->def_dynamic) 1854 { 1855 h->def_dynamic = 0; 1856 flip->ref_dynamic = 1; 1857 } 1858 } 1859 1860 return true; 1861 } 1862 1863 /* This function is called to create an indirect symbol from the 1864 default for the symbol with the default version if needed. The 1865 symbol is described by H, NAME, SYM, SEC, and VALUE. We 1866 set DYNSYM if the new indirect symbol is dynamic. */ 1867 1868 static bool 1869 _bfd_elf_add_default_symbol (bfd *abfd, 1870 struct bfd_link_info *info, 1871 struct elf_link_hash_entry *h, 1872 const char *name, 1873 Elf_Internal_Sym *sym, 1874 asection *sec, 1875 bfd_vma value, 1876 bfd **poldbfd, 1877 bool *dynsym) 1878 { 1879 bool type_change_ok; 1880 bool size_change_ok; 1881 bool skip; 1882 char *shortname; 1883 struct elf_link_hash_entry *hi; 1884 struct bfd_link_hash_entry *bh; 1885 const struct elf_backend_data *bed; 1886 bool collect; 1887 bool dynamic; 1888 bfd *override; 1889 char *p; 1890 size_t len, shortlen; 1891 asection *tmp_sec; 1892 bool matched; 1893 1894 if (h->versioned == unversioned || h->versioned == versioned_hidden) 1895 return true; 1896 1897 /* If this symbol has a version, and it is the default version, we 1898 create an indirect symbol from the default name to the fully 1899 decorated name. This will cause external references which do not 1900 specify a version to be bound to this version of the symbol. */ 1901 p = strchr (name, ELF_VER_CHR); 1902 if (h->versioned == unknown) 1903 { 1904 if (p == NULL) 1905 { 1906 h->versioned = unversioned; 1907 return true; 1908 } 1909 else 1910 { 1911 if (p[1] != ELF_VER_CHR) 1912 { 1913 h->versioned = versioned_hidden; 1914 return true; 1915 } 1916 else 1917 h->versioned = versioned; 1918 } 1919 } 1920 else 1921 { 1922 /* PR ld/19073: We may see an unversioned definition after the 1923 default version. */ 1924 if (p == NULL) 1925 return true; 1926 } 1927 1928 bed = get_elf_backend_data (abfd); 1929 collect = bed->collect; 1930 dynamic = (abfd->flags & DYNAMIC) != 0; 1931 1932 shortlen = p - name; 1933 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1); 1934 if (shortname == NULL) 1935 return false; 1936 memcpy (shortname, name, shortlen); 1937 shortname[shortlen] = '\0'; 1938 1939 /* We are going to create a new symbol. Merge it with any existing 1940 symbol with this name. For the purposes of the merge, act as 1941 though we were defining the symbol we just defined, although we 1942 actually going to define an indirect symbol. */ 1943 type_change_ok = false; 1944 size_change_ok = false; 1945 matched = true; 1946 tmp_sec = sec; 1947 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value, 1948 &hi, poldbfd, NULL, NULL, &skip, &override, 1949 &type_change_ok, &size_change_ok, &matched)) 1950 return false; 1951 1952 if (skip) 1953 goto nondefault; 1954 1955 if (hi->def_regular || ELF_COMMON_DEF_P (hi)) 1956 { 1957 /* If the undecorated symbol will have a version added by a 1958 script different to H, then don't indirect to/from the 1959 undecorated symbol. This isn't ideal because we may not yet 1960 have seen symbol versions, if given by a script on the 1961 command line rather than via --version-script. */ 1962 if (hi->verinfo.vertree == NULL && info->version_info != NULL) 1963 { 1964 bool hide; 1965 1966 hi->verinfo.vertree 1967 = bfd_find_version_for_sym (info->version_info, 1968 hi->root.root.string, &hide); 1969 if (hi->verinfo.vertree != NULL && hide) 1970 { 1971 (*bed->elf_backend_hide_symbol) (info, hi, true); 1972 goto nondefault; 1973 } 1974 } 1975 if (hi->verinfo.vertree != NULL 1976 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0) 1977 goto nondefault; 1978 } 1979 1980 if (! override) 1981 { 1982 /* Add the default symbol if not performing a relocatable link. */ 1983 if (! bfd_link_relocatable (info)) 1984 { 1985 bh = &hi->root; 1986 if (bh->type == bfd_link_hash_defined 1987 && bh->u.def.section->owner != NULL 1988 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0) 1989 { 1990 /* Mark the previous definition from IR object as 1991 undefined so that the generic linker will override 1992 it. */ 1993 bh->type = bfd_link_hash_undefined; 1994 bh->u.undef.abfd = bh->u.def.section->owner; 1995 } 1996 if (! (_bfd_generic_link_add_one_symbol 1997 (info, abfd, shortname, BSF_INDIRECT, 1998 bfd_ind_section_ptr, 1999 0, name, false, collect, &bh))) 2000 return false; 2001 hi = (struct elf_link_hash_entry *) bh; 2002 } 2003 } 2004 else 2005 { 2006 /* In this case the symbol named SHORTNAME is overriding the 2007 indirect symbol we want to add. We were planning on making 2008 SHORTNAME an indirect symbol referring to NAME. SHORTNAME 2009 is the name without a version. NAME is the fully versioned 2010 name, and it is the default version. 2011 2012 Overriding means that we already saw a definition for the 2013 symbol SHORTNAME in a regular object, and it is overriding 2014 the symbol defined in the dynamic object. 2015 2016 When this happens, we actually want to change NAME, the 2017 symbol we just added, to refer to SHORTNAME. This will cause 2018 references to NAME in the shared object to become references 2019 to SHORTNAME in the regular object. This is what we expect 2020 when we override a function in a shared object: that the 2021 references in the shared object will be mapped to the 2022 definition in the regular object. */ 2023 2024 while (hi->root.type == bfd_link_hash_indirect 2025 || hi->root.type == bfd_link_hash_warning) 2026 hi = (struct elf_link_hash_entry *) hi->root.u.i.link; 2027 2028 h->root.type = bfd_link_hash_indirect; 2029 h->root.u.i.link = (struct bfd_link_hash_entry *) hi; 2030 if (h->def_dynamic) 2031 { 2032 h->def_dynamic = 0; 2033 hi->ref_dynamic = 1; 2034 if (hi->ref_regular 2035 || hi->def_regular) 2036 { 2037 if (! bfd_elf_link_record_dynamic_symbol (info, hi)) 2038 return false; 2039 } 2040 } 2041 2042 /* Now set HI to H, so that the following code will set the 2043 other fields correctly. */ 2044 hi = h; 2045 } 2046 2047 /* Check if HI is a warning symbol. */ 2048 if (hi->root.type == bfd_link_hash_warning) 2049 hi = (struct elf_link_hash_entry *) hi->root.u.i.link; 2050 2051 /* If there is a duplicate definition somewhere, then HI may not 2052 point to an indirect symbol. We will have reported an error to 2053 the user in that case. */ 2054 2055 if (hi->root.type == bfd_link_hash_indirect) 2056 { 2057 struct elf_link_hash_entry *ht; 2058 2059 ht = (struct elf_link_hash_entry *) hi->root.u.i.link; 2060 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi); 2061 2062 /* If we first saw a reference to SHORTNAME with non-default 2063 visibility, merge that visibility to the @@VER symbol. */ 2064 elf_merge_st_other (abfd, ht, hi->other, sec, true, dynamic); 2065 2066 /* A reference to the SHORTNAME symbol from a dynamic library 2067 will be satisfied by the versioned symbol at runtime. In 2068 effect, we have a reference to the versioned symbol. */ 2069 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak; 2070 hi->dynamic_def |= ht->dynamic_def; 2071 2072 /* See if the new flags lead us to realize that the symbol must 2073 be dynamic. */ 2074 if (! *dynsym) 2075 { 2076 if (! dynamic) 2077 { 2078 if (! bfd_link_executable (info) 2079 || hi->def_dynamic 2080 || hi->ref_dynamic) 2081 *dynsym = true; 2082 } 2083 else 2084 { 2085 if (hi->ref_regular) 2086 *dynsym = true; 2087 } 2088 } 2089 } 2090 2091 /* We also need to define an indirection from the nondefault version 2092 of the symbol. */ 2093 2094 nondefault: 2095 len = strlen (name); 2096 shortname = (char *) bfd_hash_allocate (&info->hash->table, len); 2097 if (shortname == NULL) 2098 return false; 2099 memcpy (shortname, name, shortlen); 2100 memcpy (shortname + shortlen, p + 1, len - shortlen); 2101 2102 /* Once again, merge with any existing symbol. */ 2103 type_change_ok = false; 2104 size_change_ok = false; 2105 tmp_sec = sec; 2106 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value, 2107 &hi, poldbfd, NULL, NULL, &skip, &override, 2108 &type_change_ok, &size_change_ok, &matched)) 2109 return false; 2110 2111 if (skip) 2112 { 2113 if (!dynamic 2114 && h->root.type == bfd_link_hash_defweak 2115 && hi->root.type == bfd_link_hash_defined) 2116 { 2117 /* We are handling a weak sym@@ver and attempting to define 2118 a weak sym@ver, but _bfd_elf_merge_symbol said to skip the 2119 new weak sym@ver because there is already a strong sym@ver. 2120 However, sym@ver and sym@@ver are really the same symbol. 2121 The existing strong sym@ver ought to override sym@@ver. */ 2122 h->root.type = bfd_link_hash_defined; 2123 h->root.u.def.section = hi->root.u.def.section; 2124 h->root.u.def.value = hi->root.u.def.value; 2125 hi->root.type = bfd_link_hash_indirect; 2126 hi->root.u.i.link = &h->root; 2127 } 2128 else 2129 return true; 2130 } 2131 else if (override) 2132 { 2133 /* Here SHORTNAME is a versioned name, so we don't expect to see 2134 the type of override we do in the case above unless it is 2135 overridden by a versioned definition. */ 2136 if (hi->root.type != bfd_link_hash_defined 2137 && hi->root.type != bfd_link_hash_defweak) 2138 _bfd_error_handler 2139 /* xgettext:c-format */ 2140 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"), 2141 abfd, shortname); 2142 return true; 2143 } 2144 else 2145 { 2146 bh = &hi->root; 2147 if (! (_bfd_generic_link_add_one_symbol 2148 (info, abfd, shortname, BSF_INDIRECT, 2149 bfd_ind_section_ptr, 0, name, false, collect, &bh))) 2150 return false; 2151 hi = (struct elf_link_hash_entry *) bh; 2152 } 2153 2154 /* If there is a duplicate definition somewhere, then HI may not 2155 point to an indirect symbol. We will have reported an error 2156 to the user in that case. */ 2157 if (hi->root.type == bfd_link_hash_indirect) 2158 { 2159 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); 2160 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak; 2161 hi->dynamic_def |= h->dynamic_def; 2162 2163 /* If we first saw a reference to @VER symbol with 2164 non-default visibility, merge that visibility to the 2165 @@VER symbol. */ 2166 elf_merge_st_other (abfd, h, hi->other, sec, true, dynamic); 2167 2168 /* See if the new flags lead us to realize that the symbol 2169 must be dynamic. */ 2170 if (! *dynsym) 2171 { 2172 if (! dynamic) 2173 { 2174 if (! bfd_link_executable (info) 2175 || hi->ref_dynamic) 2176 *dynsym = true; 2177 } 2178 else 2179 { 2180 if (hi->ref_regular) 2181 *dynsym = true; 2182 } 2183 } 2184 } 2185 2186 return true; 2187 } 2188 2189 /* This routine is used to export all defined symbols into the dynamic 2190 symbol table. It is called via elf_link_hash_traverse. */ 2191 2192 static bool 2193 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data) 2194 { 2195 struct elf_info_failed *eif = (struct elf_info_failed *) data; 2196 2197 /* Ignore indirect symbols. These are added by the versioning code. */ 2198 if (h->root.type == bfd_link_hash_indirect) 2199 return true; 2200 2201 /* Ignore this if we won't export it. */ 2202 if (!eif->info->export_dynamic && !h->dynamic) 2203 return true; 2204 2205 if (h->dynindx == -1 2206 && (h->def_regular || h->ref_regular) 2207 && ! bfd_hide_sym_by_version (eif->info->version_info, 2208 h->root.root.string)) 2209 { 2210 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) 2211 { 2212 eif->failed = true; 2213 return false; 2214 } 2215 } 2216 2217 return true; 2218 } 2219 2220 /* Return true if GLIBC_ABI_DT_RELR is added to the list of version 2221 dependencies successfully. GLIBC_ABI_DT_RELR will be put into the 2222 .gnu.version_r section. */ 2223 2224 static bool 2225 elf_link_add_dt_relr_dependency (struct elf_find_verdep_info *rinfo) 2226 { 2227 bfd *glibc_bfd = NULL; 2228 Elf_Internal_Verneed *t; 2229 Elf_Internal_Vernaux *a; 2230 size_t amt; 2231 const char *relr = "GLIBC_ABI_DT_RELR"; 2232 2233 /* See if we already know about GLIBC_PRIVATE_DT_RELR. */ 2234 for (t = elf_tdata (rinfo->info->output_bfd)->verref; 2235 t != NULL; 2236 t = t->vn_nextref) 2237 { 2238 const char *soname = bfd_elf_get_dt_soname (t->vn_bfd); 2239 /* Skip the shared library if it isn't libc.so. */ 2240 if (!soname || !startswith (soname, "libc.so.")) 2241 continue; 2242 2243 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 2244 { 2245 /* Return if GLIBC_PRIVATE_DT_RELR dependency has been 2246 added. */ 2247 if (a->vna_nodename == relr 2248 || strcmp (a->vna_nodename, relr) == 0) 2249 return true; 2250 2251 /* Check if libc.so provides GLIBC_2.XX version. */ 2252 if (!glibc_bfd && startswith (a->vna_nodename, "GLIBC_2.")) 2253 glibc_bfd = t->vn_bfd; 2254 } 2255 2256 break; 2257 } 2258 2259 /* Skip if it isn't linked against glibc. */ 2260 if (glibc_bfd == NULL) 2261 return true; 2262 2263 /* This is a new version. Add it to tree we are building. */ 2264 if (t == NULL) 2265 { 2266 amt = sizeof *t; 2267 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, 2268 amt); 2269 if (t == NULL) 2270 { 2271 rinfo->failed = true; 2272 return false; 2273 } 2274 2275 t->vn_bfd = glibc_bfd; 2276 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref; 2277 elf_tdata (rinfo->info->output_bfd)->verref = t; 2278 } 2279 2280 amt = sizeof *a; 2281 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt); 2282 if (a == NULL) 2283 { 2284 rinfo->failed = true; 2285 return false; 2286 } 2287 2288 a->vna_nodename = relr; 2289 a->vna_flags = 0; 2290 a->vna_nextptr = t->vn_auxptr; 2291 a->vna_other = rinfo->vers + 1; 2292 ++rinfo->vers; 2293 2294 t->vn_auxptr = a; 2295 2296 return true; 2297 } 2298 2299 /* Look through the symbols which are defined in other shared 2300 libraries and referenced here. Update the list of version 2301 dependencies. This will be put into the .gnu.version_r section. 2302 This function is called via elf_link_hash_traverse. */ 2303 2304 static bool 2305 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h, 2306 void *data) 2307 { 2308 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data; 2309 Elf_Internal_Verneed *t; 2310 Elf_Internal_Vernaux *a; 2311 size_t amt; 2312 2313 /* We only care about symbols defined in shared objects with version 2314 information. */ 2315 if (!h->def_dynamic 2316 || h->def_regular 2317 || h->dynindx == -1 2318 || h->verinfo.verdef == NULL 2319 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd) 2320 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED))) 2321 return true; 2322 2323 /* See if we already know about this version. */ 2324 for (t = elf_tdata (rinfo->info->output_bfd)->verref; 2325 t != NULL; 2326 t = t->vn_nextref) 2327 { 2328 if (t->vn_bfd != h->verinfo.verdef->vd_bfd) 2329 continue; 2330 2331 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 2332 if (a->vna_nodename == h->verinfo.verdef->vd_nodename) 2333 return true; 2334 2335 break; 2336 } 2337 2338 /* This is a new version. Add it to tree we are building. */ 2339 2340 if (t == NULL) 2341 { 2342 amt = sizeof *t; 2343 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt); 2344 if (t == NULL) 2345 { 2346 rinfo->failed = true; 2347 return false; 2348 } 2349 2350 t->vn_bfd = h->verinfo.verdef->vd_bfd; 2351 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref; 2352 elf_tdata (rinfo->info->output_bfd)->verref = t; 2353 } 2354 2355 amt = sizeof *a; 2356 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt); 2357 if (a == NULL) 2358 { 2359 rinfo->failed = true; 2360 return false; 2361 } 2362 2363 /* Note that we are copying a string pointer here, and testing it 2364 above. If bfd_elf_string_from_elf_section is ever changed to 2365 discard the string data when low in memory, this will have to be 2366 fixed. */ 2367 a->vna_nodename = h->verinfo.verdef->vd_nodename; 2368 2369 a->vna_flags = h->verinfo.verdef->vd_flags; 2370 a->vna_nextptr = t->vn_auxptr; 2371 2372 h->verinfo.verdef->vd_exp_refno = rinfo->vers; 2373 ++rinfo->vers; 2374 2375 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; 2376 2377 t->vn_auxptr = a; 2378 2379 return true; 2380 } 2381 2382 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is 2383 hidden. Set *T_P to NULL if there is no match. */ 2384 2385 static bool 2386 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info, 2387 struct elf_link_hash_entry *h, 2388 const char *version_p, 2389 struct bfd_elf_version_tree **t_p, 2390 bool *hide) 2391 { 2392 struct bfd_elf_version_tree *t; 2393 2394 /* Look for the version. If we find it, it is no longer weak. */ 2395 for (t = info->version_info; t != NULL; t = t->next) 2396 { 2397 if (strcmp (t->name, version_p) == 0) 2398 { 2399 size_t len; 2400 char *alc; 2401 struct bfd_elf_version_expr *d; 2402 2403 len = version_p - h->root.root.string; 2404 alc = (char *) bfd_malloc (len); 2405 if (alc == NULL) 2406 return false; 2407 memcpy (alc, h->root.root.string, len - 1); 2408 alc[len - 1] = '\0'; 2409 if (alc[len - 2] == ELF_VER_CHR) 2410 alc[len - 2] = '\0'; 2411 2412 h->verinfo.vertree = t; 2413 t->used = true; 2414 d = NULL; 2415 2416 if (t->globals.list != NULL) 2417 d = (*t->match) (&t->globals, NULL, alc); 2418 2419 /* See if there is anything to force this symbol to 2420 local scope. */ 2421 if (d == NULL && t->locals.list != NULL) 2422 { 2423 d = (*t->match) (&t->locals, NULL, alc); 2424 if (d != NULL 2425 && h->dynindx != -1 2426 && ! info->export_dynamic) 2427 *hide = true; 2428 } 2429 2430 free (alc); 2431 break; 2432 } 2433 } 2434 2435 *t_p = t; 2436 2437 return true; 2438 } 2439 2440 /* Return TRUE if the symbol H is hidden by version script. */ 2441 2442 bool 2443 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info, 2444 struct elf_link_hash_entry *h) 2445 { 2446 const char *p; 2447 bool hide = false; 2448 const struct elf_backend_data *bed 2449 = get_elf_backend_data (info->output_bfd); 2450 2451 /* Version script only hides symbols defined in regular objects. */ 2452 if (!h->def_regular && !ELF_COMMON_DEF_P (h)) 2453 return true; 2454 2455 p = strchr (h->root.root.string, ELF_VER_CHR); 2456 if (p != NULL && h->verinfo.vertree == NULL) 2457 { 2458 struct bfd_elf_version_tree *t; 2459 2460 ++p; 2461 if (*p == ELF_VER_CHR) 2462 ++p; 2463 2464 if (*p != '\0' 2465 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide) 2466 && hide) 2467 { 2468 if (hide) 2469 (*bed->elf_backend_hide_symbol) (info, h, true); 2470 return true; 2471 } 2472 } 2473 2474 /* If we don't have a version for this symbol, see if we can find 2475 something. */ 2476 if (h->verinfo.vertree == NULL && info->version_info != NULL) 2477 { 2478 h->verinfo.vertree 2479 = bfd_find_version_for_sym (info->version_info, 2480 h->root.root.string, &hide); 2481 if (h->verinfo.vertree != NULL && hide) 2482 { 2483 (*bed->elf_backend_hide_symbol) (info, h, true); 2484 return true; 2485 } 2486 } 2487 2488 return false; 2489 } 2490 2491 /* Figure out appropriate versions for all the symbols. We may not 2492 have the version number script until we have read all of the input 2493 files, so until that point we don't know which symbols should be 2494 local. This function is called via elf_link_hash_traverse. */ 2495 2496 static bool 2497 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data) 2498 { 2499 struct elf_info_failed *sinfo; 2500 struct bfd_link_info *info; 2501 const struct elf_backend_data *bed; 2502 struct elf_info_failed eif; 2503 char *p; 2504 bool hide; 2505 2506 sinfo = (struct elf_info_failed *) data; 2507 info = sinfo->info; 2508 2509 /* Fix the symbol flags. */ 2510 eif.failed = false; 2511 eif.info = info; 2512 if (! _bfd_elf_fix_symbol_flags (h, &eif)) 2513 { 2514 if (eif.failed) 2515 sinfo->failed = true; 2516 return false; 2517 } 2518 2519 bed = get_elf_backend_data (info->output_bfd); 2520 2521 /* We only need version numbers for symbols defined in regular 2522 objects. */ 2523 if (!h->def_regular && !ELF_COMMON_DEF_P (h)) 2524 { 2525 /* Hide symbols defined in discarded input sections. */ 2526 if ((h->root.type == bfd_link_hash_defined 2527 || h->root.type == bfd_link_hash_defweak) 2528 && discarded_section (h->root.u.def.section)) 2529 (*bed->elf_backend_hide_symbol) (info, h, true); 2530 return true; 2531 } 2532 2533 hide = false; 2534 p = strchr (h->root.root.string, ELF_VER_CHR); 2535 if (p != NULL && h->verinfo.vertree == NULL) 2536 { 2537 struct bfd_elf_version_tree *t; 2538 2539 ++p; 2540 if (*p == ELF_VER_CHR) 2541 ++p; 2542 2543 /* If there is no version string, we can just return out. */ 2544 if (*p == '\0') 2545 return true; 2546 2547 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)) 2548 { 2549 sinfo->failed = true; 2550 return false; 2551 } 2552 2553 if (hide) 2554 (*bed->elf_backend_hide_symbol) (info, h, true); 2555 2556 /* If we are building an application, we need to create a 2557 version node for this version. */ 2558 if (t == NULL && bfd_link_executable (info)) 2559 { 2560 struct bfd_elf_version_tree **pp; 2561 int version_index; 2562 2563 /* If we aren't going to export this symbol, we don't need 2564 to worry about it. */ 2565 if (h->dynindx == -1) 2566 return true; 2567 2568 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, 2569 sizeof *t); 2570 if (t == NULL) 2571 { 2572 sinfo->failed = true; 2573 return false; 2574 } 2575 2576 t->name = p; 2577 t->name_indx = (unsigned int) -1; 2578 t->used = true; 2579 2580 version_index = 1; 2581 /* Don't count anonymous version tag. */ 2582 if (sinfo->info->version_info != NULL 2583 && sinfo->info->version_info->vernum == 0) 2584 version_index = 0; 2585 for (pp = &sinfo->info->version_info; 2586 *pp != NULL; 2587 pp = &(*pp)->next) 2588 ++version_index; 2589 t->vernum = version_index; 2590 2591 *pp = t; 2592 2593 h->verinfo.vertree = t; 2594 } 2595 else if (t == NULL) 2596 { 2597 /* We could not find the version for a symbol when 2598 generating a shared archive. Return an error. */ 2599 _bfd_error_handler 2600 /* xgettext:c-format */ 2601 (_("%pB: version node not found for symbol %s"), 2602 info->output_bfd, h->root.root.string); 2603 bfd_set_error (bfd_error_bad_value); 2604 sinfo->failed = true; 2605 return false; 2606 } 2607 } 2608 2609 /* If we don't have a version for this symbol, see if we can find 2610 something. */ 2611 if (!hide 2612 && h->verinfo.vertree == NULL 2613 && sinfo->info->version_info != NULL) 2614 { 2615 h->verinfo.vertree 2616 = bfd_find_version_for_sym (sinfo->info->version_info, 2617 h->root.root.string, &hide); 2618 if (h->verinfo.vertree != NULL && hide) 2619 (*bed->elf_backend_hide_symbol) (info, h, true); 2620 } 2621 2622 return true; 2623 } 2624 2625 /* Read and swap the relocs from the section indicated by SHDR. This 2626 may be either a REL or a RELA section. The relocations are 2627 translated into RELA relocations and stored in INTERNAL_RELOCS, 2628 which should have already been allocated to contain enough space. 2629 The EXTERNAL_RELOCS are a buffer where the external form of the 2630 relocations should be stored. 2631 2632 Returns FALSE if something goes wrong. */ 2633 2634 static bool 2635 elf_link_read_relocs_from_section (bfd *abfd, 2636 asection *sec, 2637 Elf_Internal_Shdr *shdr, 2638 void *external_relocs, 2639 Elf_Internal_Rela *internal_relocs) 2640 { 2641 const struct elf_backend_data *bed; 2642 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); 2643 const bfd_byte *erela; 2644 const bfd_byte *erelaend; 2645 Elf_Internal_Rela *irela; 2646 Elf_Internal_Shdr *symtab_hdr; 2647 size_t nsyms; 2648 2649 /* Position ourselves at the start of the section. */ 2650 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0) 2651 return false; 2652 2653 /* Read the relocations. */ 2654 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size) 2655 return false; 2656 2657 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2658 nsyms = NUM_SHDR_ENTRIES (symtab_hdr); 2659 2660 bed = get_elf_backend_data (abfd); 2661 2662 /* Convert the external relocations to the internal format. */ 2663 if (shdr->sh_entsize == bed->s->sizeof_rel) 2664 swap_in = bed->s->swap_reloc_in; 2665 else if (shdr->sh_entsize == bed->s->sizeof_rela) 2666 swap_in = bed->s->swap_reloca_in; 2667 else 2668 { 2669 bfd_set_error (bfd_error_wrong_format); 2670 return false; 2671 } 2672 2673 erela = (const bfd_byte *) external_relocs; 2674 /* Setting erelaend like this and comparing with <= handles case of 2675 a fuzzed object with sh_size not a multiple of sh_entsize. */ 2676 erelaend = erela + shdr->sh_size - shdr->sh_entsize; 2677 irela = internal_relocs; 2678 while (erela <= erelaend) 2679 { 2680 bfd_vma r_symndx; 2681 2682 (*swap_in) (abfd, erela, irela); 2683 r_symndx = ELF32_R_SYM (irela->r_info); 2684 if (bed->s->arch_size == 64) 2685 r_symndx >>= 24; 2686 if (nsyms > 0) 2687 { 2688 if ((size_t) r_symndx >= nsyms) 2689 { 2690 _bfd_error_handler 2691 /* xgettext:c-format */ 2692 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)" 2693 " for offset %#" PRIx64 " in section `%pA'"), 2694 abfd, (uint64_t) r_symndx, (unsigned long) nsyms, 2695 (uint64_t) irela->r_offset, sec); 2696 bfd_set_error (bfd_error_bad_value); 2697 return false; 2698 } 2699 } 2700 else if (r_symndx != STN_UNDEF) 2701 { 2702 _bfd_error_handler 2703 /* xgettext:c-format */ 2704 (_("%pB: non-zero symbol index (%#" PRIx64 ")" 2705 " for offset %#" PRIx64 " in section `%pA'" 2706 " when the object file has no symbol table"), 2707 abfd, (uint64_t) r_symndx, 2708 (uint64_t) irela->r_offset, sec); 2709 bfd_set_error (bfd_error_bad_value); 2710 return false; 2711 } 2712 irela += bed->s->int_rels_per_ext_rel; 2713 erela += shdr->sh_entsize; 2714 } 2715 2716 return true; 2717 } 2718 2719 /* Read and swap the relocs for a section O. They may have been 2720 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are 2721 not NULL, they are used as buffers to read into. They are known to 2722 be large enough. If the INTERNAL_RELOCS relocs argument is NULL, 2723 the return value is allocated using either malloc or bfd_alloc, 2724 according to the KEEP_MEMORY argument. If O has two relocation 2725 sections (both REL and RELA relocations), then the REL_HDR 2726 relocations will appear first in INTERNAL_RELOCS, followed by the 2727 RELA_HDR relocations. If INFO isn't NULL and KEEP_MEMORY is true, 2728 update cache_size. */ 2729 2730 Elf_Internal_Rela * 2731 _bfd_elf_link_info_read_relocs (bfd *abfd, 2732 struct bfd_link_info *info, 2733 asection *o, 2734 void *external_relocs, 2735 Elf_Internal_Rela *internal_relocs, 2736 bool keep_memory) 2737 { 2738 void *alloc1 = NULL; 2739 Elf_Internal_Rela *alloc2 = NULL; 2740 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 2741 struct bfd_elf_section_data *esdo = elf_section_data (o); 2742 Elf_Internal_Rela *internal_rela_relocs; 2743 2744 if (esdo->relocs != NULL) 2745 return esdo->relocs; 2746 2747 if (o->reloc_count == 0) 2748 return NULL; 2749 2750 if (internal_relocs == NULL) 2751 { 2752 bfd_size_type size; 2753 2754 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela); 2755 if (keep_memory) 2756 { 2757 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size); 2758 if (info) 2759 info->cache_size += size; 2760 } 2761 else 2762 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); 2763 if (internal_relocs == NULL) 2764 goto error_return; 2765 } 2766 2767 if (external_relocs == NULL) 2768 { 2769 bfd_size_type size = 0; 2770 2771 if (esdo->rel.hdr) 2772 size += esdo->rel.hdr->sh_size; 2773 if (esdo->rela.hdr) 2774 size += esdo->rela.hdr->sh_size; 2775 2776 alloc1 = bfd_malloc (size); 2777 if (alloc1 == NULL) 2778 goto error_return; 2779 external_relocs = alloc1; 2780 } 2781 2782 internal_rela_relocs = internal_relocs; 2783 if (esdo->rel.hdr) 2784 { 2785 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr, 2786 external_relocs, 2787 internal_relocs)) 2788 goto error_return; 2789 external_relocs = (((bfd_byte *) external_relocs) 2790 + esdo->rel.hdr->sh_size); 2791 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr) 2792 * bed->s->int_rels_per_ext_rel); 2793 } 2794 2795 if (esdo->rela.hdr 2796 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr, 2797 external_relocs, 2798 internal_rela_relocs))) 2799 goto error_return; 2800 2801 /* Cache the results for next time, if we can. */ 2802 if (keep_memory) 2803 esdo->relocs = internal_relocs; 2804 2805 free (alloc1); 2806 2807 /* Don't free alloc2, since if it was allocated we are passing it 2808 back (under the name of internal_relocs). */ 2809 2810 return internal_relocs; 2811 2812 error_return: 2813 free (alloc1); 2814 if (alloc2 != NULL) 2815 { 2816 if (keep_memory) 2817 bfd_release (abfd, alloc2); 2818 else 2819 free (alloc2); 2820 } 2821 return NULL; 2822 } 2823 2824 /* This is similar to _bfd_elf_link_info_read_relocs, except for that 2825 NULL is passed to _bfd_elf_link_info_read_relocs for pointer to 2826 struct bfd_link_info. */ 2827 2828 Elf_Internal_Rela * 2829 _bfd_elf_link_read_relocs (bfd *abfd, 2830 asection *o, 2831 void *external_relocs, 2832 Elf_Internal_Rela *internal_relocs, 2833 bool keep_memory) 2834 { 2835 return _bfd_elf_link_info_read_relocs (abfd, NULL, o, external_relocs, 2836 internal_relocs, keep_memory); 2837 2838 } 2839 2840 /* Compute the size of, and allocate space for, REL_HDR which is the 2841 section header for a section containing relocations for O. */ 2842 2843 static bool 2844 _bfd_elf_link_size_reloc_section (bfd *abfd, 2845 struct bfd_elf_section_reloc_data *reldata) 2846 { 2847 Elf_Internal_Shdr *rel_hdr = reldata->hdr; 2848 2849 /* That allows us to calculate the size of the section. */ 2850 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count; 2851 2852 /* The contents field must last into write_object_contents, so we 2853 allocate it with bfd_alloc rather than malloc. Also since we 2854 cannot be sure that the contents will actually be filled in, 2855 we zero the allocated space. */ 2856 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size); 2857 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) 2858 return false; 2859 2860 if (reldata->hashes == NULL && reldata->count) 2861 { 2862 struct elf_link_hash_entry **p; 2863 2864 p = ((struct elf_link_hash_entry **) 2865 bfd_zmalloc (reldata->count * sizeof (*p))); 2866 if (p == NULL) 2867 return false; 2868 2869 reldata->hashes = p; 2870 } 2871 2872 return true; 2873 } 2874 2875 /* Copy the relocations indicated by the INTERNAL_RELOCS (which 2876 originated from the section given by INPUT_REL_HDR) to the 2877 OUTPUT_BFD. */ 2878 2879 bool 2880 _bfd_elf_link_output_relocs (bfd *output_bfd, 2881 asection *input_section, 2882 Elf_Internal_Shdr *input_rel_hdr, 2883 Elf_Internal_Rela *internal_relocs, 2884 struct elf_link_hash_entry **rel_hash 2885 ATTRIBUTE_UNUSED) 2886 { 2887 Elf_Internal_Rela *irela; 2888 Elf_Internal_Rela *irelaend; 2889 bfd_byte *erel; 2890 struct bfd_elf_section_reloc_data *output_reldata; 2891 asection *output_section; 2892 const struct elf_backend_data *bed; 2893 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); 2894 struct bfd_elf_section_data *esdo; 2895 2896 output_section = input_section->output_section; 2897 2898 bed = get_elf_backend_data (output_bfd); 2899 esdo = elf_section_data (output_section); 2900 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize) 2901 { 2902 output_reldata = &esdo->rel; 2903 swap_out = bed->s->swap_reloc_out; 2904 } 2905 else if (esdo->rela.hdr 2906 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize) 2907 { 2908 output_reldata = &esdo->rela; 2909 swap_out = bed->s->swap_reloca_out; 2910 } 2911 else 2912 { 2913 _bfd_error_handler 2914 /* xgettext:c-format */ 2915 (_("%pB: relocation size mismatch in %pB section %pA"), 2916 output_bfd, input_section->owner, input_section); 2917 bfd_set_error (bfd_error_wrong_format); 2918 return false; 2919 } 2920 2921 erel = output_reldata->hdr->contents; 2922 erel += output_reldata->count * input_rel_hdr->sh_entsize; 2923 irela = internal_relocs; 2924 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr) 2925 * bed->s->int_rels_per_ext_rel); 2926 while (irela < irelaend) 2927 { 2928 (*swap_out) (output_bfd, irela, erel); 2929 irela += bed->s->int_rels_per_ext_rel; 2930 erel += input_rel_hdr->sh_entsize; 2931 } 2932 2933 /* Bump the counter, so that we know where to add the next set of 2934 relocations. */ 2935 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr); 2936 2937 return true; 2938 } 2939 2940 /* Make weak undefined symbols in PIE dynamic. */ 2941 2942 bool 2943 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info, 2944 struct elf_link_hash_entry *h) 2945 { 2946 if (bfd_link_pie (info) 2947 && h->dynindx == -1 2948 && h->root.type == bfd_link_hash_undefweak) 2949 return bfd_elf_link_record_dynamic_symbol (info, h); 2950 2951 return true; 2952 } 2953 2954 /* Fix up the flags for a symbol. This handles various cases which 2955 can only be fixed after all the input files are seen. This is 2956 currently called by both adjust_dynamic_symbol and 2957 assign_sym_version, which is unnecessary but perhaps more robust in 2958 the face of future changes. */ 2959 2960 static bool 2961 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h, 2962 struct elf_info_failed *eif) 2963 { 2964 const struct elf_backend_data *bed; 2965 2966 /* If this symbol was mentioned in a non-ELF file, try to set 2967 DEF_REGULAR and REF_REGULAR correctly. This is the only way to 2968 permit a non-ELF file to correctly refer to a symbol defined in 2969 an ELF dynamic object. */ 2970 if (h->non_elf) 2971 { 2972 while (h->root.type == bfd_link_hash_indirect) 2973 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2974 2975 if (h->root.type != bfd_link_hash_defined 2976 && h->root.type != bfd_link_hash_defweak) 2977 { 2978 h->ref_regular = 1; 2979 h->ref_regular_nonweak = 1; 2980 } 2981 else 2982 { 2983 if (h->root.u.def.section->owner != NULL 2984 && (bfd_get_flavour (h->root.u.def.section->owner) 2985 == bfd_target_elf_flavour)) 2986 { 2987 h->ref_regular = 1; 2988 h->ref_regular_nonweak = 1; 2989 } 2990 else 2991 h->def_regular = 1; 2992 } 2993 2994 if (h->dynindx == -1 2995 && (h->def_dynamic 2996 || h->ref_dynamic)) 2997 { 2998 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) 2999 { 3000 eif->failed = true; 3001 return false; 3002 } 3003 } 3004 } 3005 else 3006 { 3007 /* Unfortunately, NON_ELF is only correct if the symbol 3008 was first seen in a non-ELF file. Fortunately, if the symbol 3009 was first seen in an ELF file, we're probably OK unless the 3010 symbol was defined in a non-ELF file. Catch that case here. 3011 FIXME: We're still in trouble if the symbol was first seen in 3012 a dynamic object, and then later in a non-ELF regular object. */ 3013 if ((h->root.type == bfd_link_hash_defined 3014 || h->root.type == bfd_link_hash_defweak) 3015 && !h->def_regular 3016 && (h->root.u.def.section->owner != NULL 3017 ? (bfd_get_flavour (h->root.u.def.section->owner) 3018 != bfd_target_elf_flavour) 3019 : (bfd_is_abs_section (h->root.u.def.section) 3020 && !h->def_dynamic))) 3021 h->def_regular = 1; 3022 } 3023 3024 /* Backend specific symbol fixup. */ 3025 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); 3026 if (bed->elf_backend_fixup_symbol 3027 && !(*bed->elf_backend_fixup_symbol) (eif->info, h)) 3028 return false; 3029 3030 /* If this is a final link, and the symbol was defined as a common 3031 symbol in a regular object file, and there was no definition in 3032 any dynamic object, then the linker will have allocated space for 3033 the symbol in a common section but the DEF_REGULAR 3034 flag will not have been set. */ 3035 if (h->root.type == bfd_link_hash_defined 3036 && !h->def_regular 3037 && h->ref_regular 3038 && !h->def_dynamic 3039 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0) 3040 h->def_regular = 1; 3041 3042 /* Symbols defined in discarded sections shouldn't be dynamic. */ 3043 if (h->root.type == bfd_link_hash_undefined && h->indx == -3) 3044 (*bed->elf_backend_hide_symbol) (eif->info, h, true); 3045 3046 /* If a weak undefined symbol has non-default visibility, we also 3047 hide it from the dynamic linker. */ 3048 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 3049 && h->root.type == bfd_link_hash_undefweak) 3050 (*bed->elf_backend_hide_symbol) (eif->info, h, true); 3051 3052 /* A hidden versioned symbol in executable should be forced local if 3053 it is is locally defined, not referenced by shared library and not 3054 exported. */ 3055 else if (bfd_link_executable (eif->info) 3056 && h->versioned == versioned_hidden 3057 && !eif->info->export_dynamic 3058 && !h->dynamic 3059 && !h->ref_dynamic 3060 && h->def_regular) 3061 (*bed->elf_backend_hide_symbol) (eif->info, h, true); 3062 3063 /* If -Bsymbolic was used (which means to bind references to global 3064 symbols to the definition within the shared object), and this 3065 symbol was defined in a regular object, then it actually doesn't 3066 need a PLT entry. Likewise, if the symbol has non-default 3067 visibility. If the symbol has hidden or internal visibility, we 3068 will force it local. */ 3069 else if (h->needs_plt 3070 && bfd_link_pic (eif->info) 3071 && is_elf_hash_table (eif->info->hash) 3072 && (SYMBOLIC_BIND (eif->info, h) 3073 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 3074 && h->def_regular) 3075 { 3076 bool force_local; 3077 3078 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL 3079 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN); 3080 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local); 3081 } 3082 3083 /* If this is a weak defined symbol in a dynamic object, and we know 3084 the real definition in the dynamic object, copy interesting flags 3085 over to the real definition. */ 3086 if (h->is_weakalias) 3087 { 3088 struct elf_link_hash_entry *def = weakdef (h); 3089 3090 /* If the real definition is defined by a regular object file, 3091 don't do anything special. See the longer description in 3092 _bfd_elf_adjust_dynamic_symbol, below. If the def is not 3093 bfd_link_hash_defined as it was when put on the alias list 3094 then it must have originally been a versioned symbol (for 3095 which a non-versioned indirect symbol is created) and later 3096 a definition for the non-versioned symbol is found. In that 3097 case the indirection is flipped with the versioned symbol 3098 becoming an indirect pointing at the non-versioned symbol. 3099 Thus, not an alias any more. */ 3100 if (def->def_regular 3101 || def->root.type != bfd_link_hash_defined) 3102 { 3103 h = def; 3104 while ((h = h->u.alias) != def) 3105 h->is_weakalias = 0; 3106 } 3107 else 3108 { 3109 while (h->root.type == bfd_link_hash_indirect) 3110 h = (struct elf_link_hash_entry *) h->root.u.i.link; 3111 BFD_ASSERT (h->root.type == bfd_link_hash_defined 3112 || h->root.type == bfd_link_hash_defweak); 3113 BFD_ASSERT (def->def_dynamic); 3114 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h); 3115 } 3116 } 3117 3118 return true; 3119 } 3120 3121 /* Make the backend pick a good value for a dynamic symbol. This is 3122 called via elf_link_hash_traverse, and also calls itself 3123 recursively. */ 3124 3125 static bool 3126 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data) 3127 { 3128 struct elf_info_failed *eif = (struct elf_info_failed *) data; 3129 struct elf_link_hash_table *htab; 3130 const struct elf_backend_data *bed; 3131 3132 if (! is_elf_hash_table (eif->info->hash)) 3133 return false; 3134 3135 /* Ignore indirect symbols. These are added by the versioning code. */ 3136 if (h->root.type == bfd_link_hash_indirect) 3137 return true; 3138 3139 /* Fix the symbol flags. */ 3140 if (! _bfd_elf_fix_symbol_flags (h, eif)) 3141 return false; 3142 3143 htab = elf_hash_table (eif->info); 3144 bed = get_elf_backend_data (htab->dynobj); 3145 3146 if (h->root.type == bfd_link_hash_undefweak) 3147 { 3148 if (eif->info->dynamic_undefined_weak == 0) 3149 (*bed->elf_backend_hide_symbol) (eif->info, h, true); 3150 else if (eif->info->dynamic_undefined_weak > 0 3151 && h->ref_regular 3152 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 3153 && !bfd_hide_sym_by_version (eif->info->version_info, 3154 h->root.root.string)) 3155 { 3156 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h)) 3157 { 3158 eif->failed = true; 3159 return false; 3160 } 3161 } 3162 } 3163 3164 /* If this symbol does not require a PLT entry, and it is not 3165 defined by a dynamic object, or is not referenced by a regular 3166 object, ignore it. We do have to handle a weak defined symbol, 3167 even if no regular object refers to it, if we decided to add it 3168 to the dynamic symbol table. FIXME: Do we normally need to worry 3169 about symbols which are defined by one dynamic object and 3170 referenced by another one? */ 3171 if (!h->needs_plt 3172 && h->type != STT_GNU_IFUNC 3173 && (h->def_regular 3174 || !h->def_dynamic 3175 || (!h->ref_regular 3176 && (!h->is_weakalias || weakdef (h)->dynindx == -1)))) 3177 { 3178 h->plt = elf_hash_table (eif->info)->init_plt_offset; 3179 return true; 3180 } 3181 3182 /* If we've already adjusted this symbol, don't do it again. This 3183 can happen via a recursive call. */ 3184 if (h->dynamic_adjusted) 3185 return true; 3186 3187 /* Don't look at this symbol again. Note that we must set this 3188 after checking the above conditions, because we may look at a 3189 symbol once, decide not to do anything, and then get called 3190 recursively later after REF_REGULAR is set below. */ 3191 h->dynamic_adjusted = 1; 3192 3193 /* If this is a weak definition, and we know a real definition, and 3194 the real symbol is not itself defined by a regular object file, 3195 then get a good value for the real definition. We handle the 3196 real symbol first, for the convenience of the backend routine. 3197 3198 Note that there is a confusing case here. If the real definition 3199 is defined by a regular object file, we don't get the real symbol 3200 from the dynamic object, but we do get the weak symbol. If the 3201 processor backend uses a COPY reloc, then if some routine in the 3202 dynamic object changes the real symbol, we will not see that 3203 change in the corresponding weak symbol. This is the way other 3204 ELF linkers work as well, and seems to be a result of the shared 3205 library model. 3206 3207 I will clarify this issue. Most SVR4 shared libraries define the 3208 variable _timezone and define timezone as a weak synonym. The 3209 tzset call changes _timezone. If you write 3210 extern int timezone; 3211 int _timezone = 5; 3212 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } 3213 you might expect that, since timezone is a synonym for _timezone, 3214 the same number will print both times. However, if the processor 3215 backend uses a COPY reloc, then actually timezone will be copied 3216 into your process image, and, since you define _timezone 3217 yourself, _timezone will not. Thus timezone and _timezone will 3218 wind up at different memory locations. The tzset call will set 3219 _timezone, leaving timezone unchanged. */ 3220 3221 if (h->is_weakalias) 3222 { 3223 struct elf_link_hash_entry *def = weakdef (h); 3224 3225 /* If we get to this point, there is an implicit reference to 3226 the alias by a regular object file via the weak symbol H. */ 3227 def->ref_regular = 1; 3228 3229 /* Ensure that the backend adjust_dynamic_symbol function sees 3230 the strong alias before H by recursively calling ourselves. */ 3231 if (!_bfd_elf_adjust_dynamic_symbol (def, eif)) 3232 return false; 3233 } 3234 3235 /* If a symbol has no type and no size and does not require a PLT 3236 entry, then we are probably about to do the wrong thing here: we 3237 are probably going to create a COPY reloc for an empty object. 3238 This case can arise when a shared object is built with assembly 3239 code, and the assembly code fails to set the symbol type. */ 3240 if (h->size == 0 3241 && h->type == STT_NOTYPE 3242 && !h->needs_plt) 3243 _bfd_error_handler 3244 (_("warning: type and size of dynamic symbol `%s' are not defined"), 3245 h->root.root.string); 3246 3247 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) 3248 { 3249 eif->failed = true; 3250 return false; 3251 } 3252 3253 return true; 3254 } 3255 3256 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section, 3257 DYNBSS. */ 3258 3259 bool 3260 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info, 3261 struct elf_link_hash_entry *h, 3262 asection *dynbss) 3263 { 3264 unsigned int power_of_two; 3265 bfd_vma mask; 3266 asection *sec = h->root.u.def.section; 3267 3268 /* The section alignment of the definition is the maximum alignment 3269 requirement of symbols defined in the section. Since we don't 3270 know the symbol alignment requirement, we start with the 3271 maximum alignment and check low bits of the symbol address 3272 for the minimum alignment. */ 3273 power_of_two = bfd_section_alignment (sec); 3274 mask = ((bfd_vma) 1 << power_of_two) - 1; 3275 while ((h->root.u.def.value & mask) != 0) 3276 { 3277 mask >>= 1; 3278 --power_of_two; 3279 } 3280 3281 if (power_of_two > bfd_section_alignment (dynbss)) 3282 { 3283 /* Adjust the section alignment if needed. */ 3284 if (!bfd_set_section_alignment (dynbss, power_of_two)) 3285 return false; 3286 } 3287 3288 /* We make sure that the symbol will be aligned properly. */ 3289 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1); 3290 3291 /* Define the symbol as being at this point in DYNBSS. */ 3292 h->root.u.def.section = dynbss; 3293 h->root.u.def.value = dynbss->size; 3294 3295 /* Increment the size of DYNBSS to make room for the symbol. */ 3296 dynbss->size += h->size; 3297 3298 /* No error if extern_protected_data is true. */ 3299 if (h->protected_def 3300 && (!info->extern_protected_data 3301 || (info->extern_protected_data < 0 3302 && !get_elf_backend_data (dynbss->owner)->extern_protected_data))) 3303 info->callbacks->einfo 3304 (_("%P: copy reloc against protected `%pT' is dangerous\n"), 3305 h->root.root.string); 3306 3307 return true; 3308 } 3309 3310 /* Adjust all external symbols pointing into SEC_MERGE sections 3311 to reflect the object merging within the sections. */ 3312 3313 static bool 3314 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data) 3315 { 3316 asection *sec; 3317 3318 if ((h->root.type == bfd_link_hash_defined 3319 || h->root.type == bfd_link_hash_defweak) 3320 && ((sec = h->root.u.def.section)->flags & SEC_MERGE) 3321 && sec->sec_info_type == SEC_INFO_TYPE_MERGE) 3322 { 3323 bfd *output_bfd = (bfd *) data; 3324 3325 h->root.u.def.value = 3326 _bfd_merged_section_offset (output_bfd, 3327 &h->root.u.def.section, 3328 elf_section_data (sec)->sec_info, 3329 h->root.u.def.value); 3330 } 3331 3332 return true; 3333 } 3334 3335 /* Returns false if the symbol referred to by H should be considered 3336 to resolve local to the current module, and true if it should be 3337 considered to bind dynamically. */ 3338 3339 bool 3340 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h, 3341 struct bfd_link_info *info, 3342 bool not_local_protected) 3343 { 3344 bool binding_stays_local_p; 3345 const struct elf_backend_data *bed; 3346 struct elf_link_hash_table *hash_table; 3347 3348 if (h == NULL) 3349 return false; 3350 3351 while (h->root.type == bfd_link_hash_indirect 3352 || h->root.type == bfd_link_hash_warning) 3353 h = (struct elf_link_hash_entry *) h->root.u.i.link; 3354 3355 /* If it was forced local, then clearly it's not dynamic. */ 3356 if (h->dynindx == -1) 3357 return false; 3358 if (h->forced_local) 3359 return false; 3360 3361 /* Identify the cases where name binding rules say that a 3362 visible symbol resolves locally. */ 3363 binding_stays_local_p = (bfd_link_executable (info) 3364 || SYMBOLIC_BIND (info, h)); 3365 3366 switch (ELF_ST_VISIBILITY (h->other)) 3367 { 3368 case STV_INTERNAL: 3369 case STV_HIDDEN: 3370 return false; 3371 3372 case STV_PROTECTED: 3373 hash_table = elf_hash_table (info); 3374 if (!is_elf_hash_table (&hash_table->root)) 3375 return false; 3376 3377 bed = get_elf_backend_data (hash_table->dynobj); 3378 3379 /* Proper resolution for function pointer equality may require 3380 that these symbols perhaps be resolved dynamically, even though 3381 we should be resolving them to the current module. */ 3382 if (!not_local_protected || !bed->is_function_type (h->type)) 3383 binding_stays_local_p = true; 3384 break; 3385 3386 default: 3387 break; 3388 } 3389 3390 /* If it isn't defined locally, then clearly it's dynamic. */ 3391 if (!h->def_regular && !ELF_COMMON_DEF_P (h)) 3392 return true; 3393 3394 /* Otherwise, the symbol is dynamic if binding rules don't tell 3395 us that it remains local. */ 3396 return !binding_stays_local_p; 3397 } 3398 3399 /* Return true if the symbol referred to by H should be considered 3400 to resolve local to the current module, and false otherwise. Differs 3401 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of 3402 undefined symbols. The two functions are virtually identical except 3403 for the place where dynindx == -1 is tested. If that test is true, 3404 _bfd_elf_dynamic_symbol_p will say the symbol is local, while 3405 _bfd_elf_symbol_refs_local_p will say the symbol is local only for 3406 defined symbols. 3407 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as 3408 !_bfd_elf_symbol_refs_local_p, except that targets differ in their 3409 treatment of undefined weak symbols. For those that do not make 3410 undefined weak symbols dynamic, both functions may return false. */ 3411 3412 bool 3413 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h, 3414 struct bfd_link_info *info, 3415 bool local_protected) 3416 { 3417 const struct elf_backend_data *bed; 3418 struct elf_link_hash_table *hash_table; 3419 3420 /* If it's a local sym, of course we resolve locally. */ 3421 if (h == NULL) 3422 return true; 3423 3424 /* STV_HIDDEN or STV_INTERNAL ones must be local. */ 3425 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN 3426 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) 3427 return true; 3428 3429 /* Forced local symbols resolve locally. */ 3430 if (h->forced_local) 3431 return true; 3432 3433 /* Common symbols that become definitions don't get the DEF_REGULAR 3434 flag set, so test it first, and don't bail out. */ 3435 if (ELF_COMMON_DEF_P (h)) 3436 /* Do nothing. */; 3437 /* If we don't have a definition in a regular file, then we can't 3438 resolve locally. The sym is either undefined or dynamic. */ 3439 else if (!h->def_regular) 3440 return false; 3441 3442 /* Non-dynamic symbols resolve locally. */ 3443 if (h->dynindx == -1) 3444 return true; 3445 3446 /* At this point, we know the symbol is defined and dynamic. In an 3447 executable it must resolve locally, likewise when building symbolic 3448 shared libraries. */ 3449 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h)) 3450 return true; 3451 3452 /* Now deal with defined dynamic symbols in shared libraries. Ones 3453 with default visibility might not resolve locally. */ 3454 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) 3455 return false; 3456 3457 hash_table = elf_hash_table (info); 3458 if (!is_elf_hash_table (&hash_table->root)) 3459 return true; 3460 3461 /* STV_PROTECTED symbols with indirect external access are local. */ 3462 if (info->indirect_extern_access > 0) 3463 return true; 3464 3465 bed = get_elf_backend_data (hash_table->dynobj); 3466 3467 /* If extern_protected_data is false, STV_PROTECTED non-function 3468 symbols are local. */ 3469 if ((!info->extern_protected_data 3470 || (info->extern_protected_data < 0 3471 && !bed->extern_protected_data)) 3472 && !bed->is_function_type (h->type)) 3473 return true; 3474 3475 /* Function pointer equality tests may require that STV_PROTECTED 3476 symbols be treated as dynamic symbols. If the address of a 3477 function not defined in an executable is set to that function's 3478 plt entry in the executable, then the address of the function in 3479 a shared library must also be the plt entry in the executable. */ 3480 return local_protected; 3481 } 3482 3483 /* Caches some TLS segment info, and ensures that the TLS segment vma is 3484 aligned. Returns the first TLS output section. */ 3485 3486 struct bfd_section * 3487 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info) 3488 { 3489 struct bfd_section *sec, *tls; 3490 unsigned int align = 0; 3491 3492 for (sec = obfd->sections; sec != NULL; sec = sec->next) 3493 if ((sec->flags & SEC_THREAD_LOCAL) != 0) 3494 break; 3495 tls = sec; 3496 3497 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next) 3498 if (sec->alignment_power > align) 3499 align = sec->alignment_power; 3500 3501 elf_hash_table (info)->tls_sec = tls; 3502 3503 /* Ensure the alignment of the first section (usually .tdata) is the largest 3504 alignment, so that the tls segment starts aligned. */ 3505 if (tls != NULL) 3506 tls->alignment_power = align; 3507 3508 return tls; 3509 } 3510 3511 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */ 3512 static bool 3513 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED, 3514 Elf_Internal_Sym *sym) 3515 { 3516 const struct elf_backend_data *bed; 3517 3518 /* Local symbols do not count, but target specific ones might. */ 3519 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL 3520 && ELF_ST_BIND (sym->st_info) < STB_LOOS) 3521 return false; 3522 3523 bed = get_elf_backend_data (abfd); 3524 /* Function symbols do not count. */ 3525 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))) 3526 return false; 3527 3528 /* If the section is undefined, then so is the symbol. */ 3529 if (sym->st_shndx == SHN_UNDEF) 3530 return false; 3531 3532 /* If the symbol is defined in the common section, then 3533 it is a common definition and so does not count. */ 3534 if (bed->common_definition (sym)) 3535 return false; 3536 3537 /* If the symbol is in a target specific section then we 3538 must rely upon the backend to tell us what it is. */ 3539 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS) 3540 /* FIXME - this function is not coded yet: 3541 3542 return _bfd_is_global_symbol_definition (abfd, sym); 3543 3544 Instead for now assume that the definition is not global, 3545 Even if this is wrong, at least the linker will behave 3546 in the same way that it used to do. */ 3547 return false; 3548 3549 return true; 3550 } 3551 3552 /* Search the symbol table of the archive element of the archive ABFD 3553 whose archive map contains a mention of SYMDEF, and determine if 3554 the symbol is defined in this element. */ 3555 static bool 3556 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef) 3557 { 3558 Elf_Internal_Shdr * hdr; 3559 size_t symcount; 3560 size_t extsymcount; 3561 size_t extsymoff; 3562 Elf_Internal_Sym *isymbuf; 3563 Elf_Internal_Sym *isym; 3564 Elf_Internal_Sym *isymend; 3565 bool result; 3566 3567 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset, NULL); 3568 if (abfd == NULL) 3569 return false; 3570 3571 if (! bfd_check_format (abfd, bfd_object)) 3572 return false; 3573 3574 /* Select the appropriate symbol table. If we don't know if the 3575 object file is an IR object, give linker LTO plugin a chance to 3576 get the correct symbol table. */ 3577 if (abfd->plugin_format == bfd_plugin_yes 3578 #if BFD_SUPPORTS_PLUGINS 3579 || (abfd->plugin_format == bfd_plugin_unknown 3580 && bfd_link_plugin_object_p (abfd)) 3581 #endif 3582 ) 3583 { 3584 /* Use the IR symbol table if the object has been claimed by 3585 plugin. */ 3586 abfd = abfd->plugin_dummy_bfd; 3587 hdr = &elf_tdata (abfd)->symtab_hdr; 3588 } 3589 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0) 3590 hdr = &elf_tdata (abfd)->symtab_hdr; 3591 else 3592 hdr = &elf_tdata (abfd)->dynsymtab_hdr; 3593 3594 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; 3595 3596 /* The sh_info field of the symtab header tells us where the 3597 external symbols start. We don't care about the local symbols. */ 3598 if (elf_bad_symtab (abfd)) 3599 { 3600 extsymcount = symcount; 3601 extsymoff = 0; 3602 } 3603 else 3604 { 3605 extsymcount = symcount - hdr->sh_info; 3606 extsymoff = hdr->sh_info; 3607 } 3608 3609 if (extsymcount == 0) 3610 return false; 3611 3612 /* Read in the symbol table. */ 3613 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, 3614 NULL, NULL, NULL); 3615 if (isymbuf == NULL) 3616 return false; 3617 3618 /* Scan the symbol table looking for SYMDEF. */ 3619 result = false; 3620 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++) 3621 { 3622 const char *name; 3623 3624 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 3625 isym->st_name); 3626 if (name == NULL) 3627 break; 3628 3629 if (strcmp (name, symdef->name) == 0) 3630 { 3631 result = is_global_data_symbol_definition (abfd, isym); 3632 break; 3633 } 3634 } 3635 3636 free (isymbuf); 3637 3638 return result; 3639 } 3640 3641 /* Add an entry to the .dynamic table. */ 3642 3643 bool 3644 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info, 3645 bfd_vma tag, 3646 bfd_vma val) 3647 { 3648 struct elf_link_hash_table *hash_table; 3649 const struct elf_backend_data *bed; 3650 asection *s; 3651 bfd_size_type newsize; 3652 bfd_byte *newcontents; 3653 Elf_Internal_Dyn dyn; 3654 3655 hash_table = elf_hash_table (info); 3656 if (! is_elf_hash_table (&hash_table->root)) 3657 return false; 3658 3659 if (tag == DT_RELA || tag == DT_REL) 3660 hash_table->dynamic_relocs = true; 3661 3662 bed = get_elf_backend_data (hash_table->dynobj); 3663 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic"); 3664 BFD_ASSERT (s != NULL); 3665 3666 newsize = s->size + bed->s->sizeof_dyn; 3667 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); 3668 if (newcontents == NULL) 3669 return false; 3670 3671 dyn.d_tag = tag; 3672 dyn.d_un.d_val = val; 3673 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size); 3674 3675 s->size = newsize; 3676 s->contents = newcontents; 3677 3678 return true; 3679 } 3680 3681 /* Strip zero-sized dynamic sections. */ 3682 3683 bool 3684 _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info *info) 3685 { 3686 struct elf_link_hash_table *hash_table; 3687 const struct elf_backend_data *bed; 3688 asection *s, *sdynamic, **pp; 3689 asection *rela_dyn, *rel_dyn; 3690 Elf_Internal_Dyn dyn; 3691 bfd_byte *extdyn, *next; 3692 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); 3693 bool strip_zero_sized; 3694 bool strip_zero_sized_plt; 3695 3696 if (bfd_link_relocatable (info)) 3697 return true; 3698 3699 hash_table = elf_hash_table (info); 3700 if (!is_elf_hash_table (&hash_table->root)) 3701 return false; 3702 3703 if (!hash_table->dynobj) 3704 return true; 3705 3706 sdynamic= bfd_get_linker_section (hash_table->dynobj, ".dynamic"); 3707 if (!sdynamic) 3708 return true; 3709 3710 bed = get_elf_backend_data (hash_table->dynobj); 3711 swap_dyn_in = bed->s->swap_dyn_in; 3712 3713 strip_zero_sized = false; 3714 strip_zero_sized_plt = false; 3715 3716 /* Strip zero-sized dynamic sections. */ 3717 rela_dyn = bfd_get_section_by_name (info->output_bfd, ".rela.dyn"); 3718 rel_dyn = bfd_get_section_by_name (info->output_bfd, ".rel.dyn"); 3719 for (pp = &info->output_bfd->sections; (s = *pp) != NULL;) 3720 if (s->size == 0 3721 && (s == rela_dyn 3722 || s == rel_dyn 3723 || s == hash_table->srelplt->output_section 3724 || s == hash_table->splt->output_section)) 3725 { 3726 *pp = s->next; 3727 info->output_bfd->section_count--; 3728 strip_zero_sized = true; 3729 if (s == rela_dyn) 3730 s = rela_dyn; 3731 if (s == rel_dyn) 3732 s = rel_dyn; 3733 else if (s == hash_table->splt->output_section) 3734 { 3735 s = hash_table->splt; 3736 strip_zero_sized_plt = true; 3737 } 3738 else 3739 s = hash_table->srelplt; 3740 s->flags |= SEC_EXCLUDE; 3741 s->output_section = bfd_abs_section_ptr; 3742 } 3743 else 3744 pp = &s->next; 3745 3746 if (strip_zero_sized_plt && sdynamic->size != 0) 3747 for (extdyn = sdynamic->contents; 3748 extdyn < sdynamic->contents + sdynamic->size; 3749 extdyn = next) 3750 { 3751 next = extdyn + bed->s->sizeof_dyn; 3752 swap_dyn_in (hash_table->dynobj, extdyn, &dyn); 3753 switch (dyn.d_tag) 3754 { 3755 default: 3756 break; 3757 case DT_JMPREL: 3758 case DT_PLTRELSZ: 3759 case DT_PLTREL: 3760 /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if 3761 the procedure linkage table (the .plt section) has been 3762 removed. */ 3763 memmove (extdyn, next, 3764 sdynamic->size - (next - sdynamic->contents)); 3765 next = extdyn; 3766 } 3767 } 3768 3769 if (strip_zero_sized) 3770 { 3771 /* Regenerate program headers. */ 3772 elf_seg_map (info->output_bfd) = NULL; 3773 return _bfd_elf_map_sections_to_segments (info->output_bfd, info, 3774 NULL); 3775 } 3776 3777 return true; 3778 } 3779 3780 /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error, 3781 1 if a DT_NEEDED tag already exists, and 0 on success. */ 3782 3783 int 3784 bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info) 3785 { 3786 struct elf_link_hash_table *hash_table; 3787 size_t strindex; 3788 const char *soname; 3789 3790 if (!_bfd_elf_link_create_dynstrtab (abfd, info)) 3791 return -1; 3792 3793 hash_table = elf_hash_table (info); 3794 soname = elf_dt_name (abfd); 3795 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, false); 3796 if (strindex == (size_t) -1) 3797 return -1; 3798 3799 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1) 3800 { 3801 asection *sdyn; 3802 const struct elf_backend_data *bed; 3803 bfd_byte *extdyn; 3804 3805 bed = get_elf_backend_data (hash_table->dynobj); 3806 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic"); 3807 if (sdyn != NULL && sdyn->size != 0) 3808 for (extdyn = sdyn->contents; 3809 extdyn < sdyn->contents + sdyn->size; 3810 extdyn += bed->s->sizeof_dyn) 3811 { 3812 Elf_Internal_Dyn dyn; 3813 3814 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn); 3815 if (dyn.d_tag == DT_NEEDED 3816 && dyn.d_un.d_val == strindex) 3817 { 3818 _bfd_elf_strtab_delref (hash_table->dynstr, strindex); 3819 return 1; 3820 } 3821 } 3822 } 3823 3824 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info)) 3825 return -1; 3826 3827 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex)) 3828 return -1; 3829 3830 return 0; 3831 } 3832 3833 /* Return true if SONAME is on the needed list between NEEDED and STOP 3834 (or the end of list if STOP is NULL), and needed by a library that 3835 will be loaded. */ 3836 3837 static bool 3838 on_needed_list (const char *soname, 3839 struct bfd_link_needed_list *needed, 3840 struct bfd_link_needed_list *stop) 3841 { 3842 struct bfd_link_needed_list *look; 3843 for (look = needed; look != stop; look = look->next) 3844 if (strcmp (soname, look->name) == 0 3845 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0 3846 /* If needed by a library that itself is not directly 3847 needed, recursively check whether that library is 3848 indirectly needed. Since we add DT_NEEDED entries to 3849 the end of the list, library dependencies appear after 3850 the library. Therefore search prior to the current 3851 LOOK, preventing possible infinite recursion. */ 3852 || on_needed_list (elf_dt_name (look->by), needed, look))) 3853 return true; 3854 3855 return false; 3856 } 3857 3858 /* Sort symbol by value, section, size, and type. */ 3859 static int 3860 elf_sort_symbol (const void *arg1, const void *arg2) 3861 { 3862 const struct elf_link_hash_entry *h1; 3863 const struct elf_link_hash_entry *h2; 3864 bfd_signed_vma vdiff; 3865 int sdiff; 3866 const char *n1; 3867 const char *n2; 3868 3869 h1 = *(const struct elf_link_hash_entry **) arg1; 3870 h2 = *(const struct elf_link_hash_entry **) arg2; 3871 vdiff = h1->root.u.def.value - h2->root.u.def.value; 3872 if (vdiff != 0) 3873 return vdiff > 0 ? 1 : -1; 3874 3875 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id; 3876 if (sdiff != 0) 3877 return sdiff; 3878 3879 /* Sort so that sized symbols are selected over zero size symbols. */ 3880 vdiff = h1->size - h2->size; 3881 if (vdiff != 0) 3882 return vdiff > 0 ? 1 : -1; 3883 3884 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */ 3885 if (h1->type != h2->type) 3886 return h1->type - h2->type; 3887 3888 /* If symbols are properly sized and typed, and multiple strong 3889 aliases are not defined in a shared library by the user we 3890 shouldn't get here. Unfortunately linker script symbols like 3891 __bss_start sometimes match a user symbol defined at the start of 3892 .bss without proper size and type. We'd like to preference the 3893 user symbol over reserved system symbols. Sort on leading 3894 underscores. */ 3895 n1 = h1->root.root.string; 3896 n2 = h2->root.root.string; 3897 while (*n1 == *n2) 3898 { 3899 if (*n1 == 0) 3900 break; 3901 ++n1; 3902 ++n2; 3903 } 3904 if (*n1 == '_') 3905 return -1; 3906 if (*n2 == '_') 3907 return 1; 3908 3909 /* Final sort on name selects user symbols like '_u' over reserved 3910 system symbols like '_Z' and also will avoid qsort instability. */ 3911 return *n1 - *n2; 3912 } 3913 3914 /* This function is used to adjust offsets into .dynstr for 3915 dynamic symbols. This is called via elf_link_hash_traverse. */ 3916 3917 static bool 3918 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data) 3919 { 3920 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data; 3921 3922 if (h->dynindx != -1) 3923 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index); 3924 return true; 3925 } 3926 3927 /* Assign string offsets in .dynstr, update all structures referencing 3928 them. */ 3929 3930 static bool 3931 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info) 3932 { 3933 struct elf_link_hash_table *hash_table = elf_hash_table (info); 3934 struct elf_link_local_dynamic_entry *entry; 3935 struct elf_strtab_hash *dynstr = hash_table->dynstr; 3936 bfd *dynobj = hash_table->dynobj; 3937 asection *sdyn; 3938 bfd_size_type size; 3939 const struct elf_backend_data *bed; 3940 bfd_byte *extdyn; 3941 3942 _bfd_elf_strtab_finalize (dynstr); 3943 size = _bfd_elf_strtab_size (dynstr); 3944 3945 /* Allow the linker to examine the dynsymtab now it's fully populated. */ 3946 3947 if (info->callbacks->examine_strtab) 3948 info->callbacks->examine_strtab (dynstr); 3949 3950 bed = get_elf_backend_data (dynobj); 3951 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 3952 BFD_ASSERT (sdyn != NULL); 3953 3954 /* Update all .dynamic entries referencing .dynstr strings. */ 3955 for (extdyn = sdyn->contents; 3956 extdyn < PTR_ADD (sdyn->contents, sdyn->size); 3957 extdyn += bed->s->sizeof_dyn) 3958 { 3959 Elf_Internal_Dyn dyn; 3960 3961 bed->s->swap_dyn_in (dynobj, extdyn, &dyn); 3962 switch (dyn.d_tag) 3963 { 3964 case DT_STRSZ: 3965 dyn.d_un.d_val = size; 3966 break; 3967 case DT_NEEDED: 3968 case DT_SONAME: 3969 case DT_RPATH: 3970 case DT_RUNPATH: 3971 case DT_FILTER: 3972 case DT_AUXILIARY: 3973 case DT_AUDIT: 3974 case DT_DEPAUDIT: 3975 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val); 3976 break; 3977 default: 3978 continue; 3979 } 3980 bed->s->swap_dyn_out (dynobj, &dyn, extdyn); 3981 } 3982 3983 /* Now update local dynamic symbols. */ 3984 for (entry = hash_table->dynlocal; entry ; entry = entry->next) 3985 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr, 3986 entry->isym.st_name); 3987 3988 /* And the rest of dynamic symbols. */ 3989 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr); 3990 3991 /* Adjust version definitions. */ 3992 if (elf_tdata (output_bfd)->cverdefs) 3993 { 3994 asection *s; 3995 bfd_byte *p; 3996 size_t i; 3997 Elf_Internal_Verdef def; 3998 Elf_Internal_Verdaux defaux; 3999 4000 s = bfd_get_linker_section (dynobj, ".gnu.version_d"); 4001 p = s->contents; 4002 do 4003 { 4004 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p, 4005 &def); 4006 p += sizeof (Elf_External_Verdef); 4007 if (def.vd_aux != sizeof (Elf_External_Verdef)) 4008 continue; 4009 for (i = 0; i < def.vd_cnt; ++i) 4010 { 4011 _bfd_elf_swap_verdaux_in (output_bfd, 4012 (Elf_External_Verdaux *) p, &defaux); 4013 defaux.vda_name = _bfd_elf_strtab_offset (dynstr, 4014 defaux.vda_name); 4015 _bfd_elf_swap_verdaux_out (output_bfd, 4016 &defaux, (Elf_External_Verdaux *) p); 4017 p += sizeof (Elf_External_Verdaux); 4018 } 4019 } 4020 while (def.vd_next); 4021 } 4022 4023 /* Adjust version references. */ 4024 if (elf_tdata (output_bfd)->verref) 4025 { 4026 asection *s; 4027 bfd_byte *p; 4028 size_t i; 4029 Elf_Internal_Verneed need; 4030 Elf_Internal_Vernaux needaux; 4031 4032 s = bfd_get_linker_section (dynobj, ".gnu.version_r"); 4033 p = s->contents; 4034 do 4035 { 4036 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p, 4037 &need); 4038 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file); 4039 _bfd_elf_swap_verneed_out (output_bfd, &need, 4040 (Elf_External_Verneed *) p); 4041 p += sizeof (Elf_External_Verneed); 4042 for (i = 0; i < need.vn_cnt; ++i) 4043 { 4044 _bfd_elf_swap_vernaux_in (output_bfd, 4045 (Elf_External_Vernaux *) p, &needaux); 4046 needaux.vna_name = _bfd_elf_strtab_offset (dynstr, 4047 needaux.vna_name); 4048 _bfd_elf_swap_vernaux_out (output_bfd, 4049 &needaux, 4050 (Elf_External_Vernaux *) p); 4051 p += sizeof (Elf_External_Vernaux); 4052 } 4053 } 4054 while (need.vn_next); 4055 } 4056 4057 return true; 4058 } 4059 4060 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. 4061 The default is to only match when the INPUT and OUTPUT are exactly 4062 the same target. */ 4063 4064 bool 4065 _bfd_elf_default_relocs_compatible (const bfd_target *input, 4066 const bfd_target *output) 4067 { 4068 return input == output; 4069 } 4070 4071 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. 4072 This version is used when different targets for the same architecture 4073 are virtually identical. */ 4074 4075 bool 4076 _bfd_elf_relocs_compatible (const bfd_target *input, 4077 const bfd_target *output) 4078 { 4079 const struct elf_backend_data *obed, *ibed; 4080 4081 if (input == output) 4082 return true; 4083 4084 ibed = xvec_get_elf_backend_data (input); 4085 obed = xvec_get_elf_backend_data (output); 4086 4087 if (ibed->arch != obed->arch) 4088 return false; 4089 4090 /* If both backends are using this function, deem them compatible. */ 4091 return ibed->relocs_compatible == obed->relocs_compatible; 4092 } 4093 4094 /* Make a special call to the linker "notice" function to tell it that 4095 we are about to handle an as-needed lib, or have finished 4096 processing the lib. */ 4097 4098 bool 4099 _bfd_elf_notice_as_needed (bfd *ibfd, 4100 struct bfd_link_info *info, 4101 enum notice_asneeded_action act) 4102 { 4103 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0); 4104 } 4105 4106 /* Call ACTION on each relocation in an ELF object file. */ 4107 4108 bool 4109 _bfd_elf_link_iterate_on_relocs 4110 (bfd *abfd, struct bfd_link_info *info, 4111 bool (*action) (bfd *, struct bfd_link_info *, asection *, 4112 const Elf_Internal_Rela *)) 4113 { 4114 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 4115 struct elf_link_hash_table *htab = elf_hash_table (info); 4116 4117 /* If this object is the same format as the output object, and it is 4118 not a shared library, then let the backend look through the 4119 relocs. 4120 4121 This is required to build global offset table entries and to 4122 arrange for dynamic relocs. It is not required for the 4123 particular common case of linking non PIC code, even when linking 4124 against shared libraries, but unfortunately there is no way of 4125 knowing whether an object file has been compiled PIC or not. 4126 Looking through the relocs is not particularly time consuming. 4127 The problem is that we must either (1) keep the relocs in memory, 4128 which causes the linker to require additional runtime memory or 4129 (2) read the relocs twice from the input file, which wastes time. 4130 This would be a good case for using mmap. 4131 4132 I have no idea how to handle linking PIC code into a file of a 4133 different format. It probably can't be done. */ 4134 if ((abfd->flags & DYNAMIC) == 0 4135 && is_elf_hash_table (&htab->root) 4136 && elf_object_id (abfd) == elf_hash_table_id (htab) 4137 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec)) 4138 { 4139 asection *o; 4140 4141 for (o = abfd->sections; o != NULL; o = o->next) 4142 { 4143 Elf_Internal_Rela *internal_relocs; 4144 bool ok; 4145 4146 /* Don't check relocations in excluded sections. Don't do 4147 anything special with non-loaded, non-alloced sections. 4148 In particular, any relocs in such sections should not 4149 affect GOT and PLT reference counting (ie. we don't 4150 allow them to create GOT or PLT entries), there's no 4151 possibility or desire to optimize TLS relocs, and 4152 there's not much point in propagating relocs to shared 4153 libs that the dynamic linker won't relocate. */ 4154 if ((o->flags & SEC_ALLOC) == 0 4155 || (o->flags & SEC_RELOC) == 0 4156 || (o->flags & SEC_EXCLUDE) != 0 4157 || o->reloc_count == 0 4158 || ((info->strip == strip_all || info->strip == strip_debugger) 4159 && (o->flags & SEC_DEBUGGING) != 0) 4160 || bfd_is_abs_section (o->output_section)) 4161 continue; 4162 4163 internal_relocs = _bfd_elf_link_info_read_relocs (abfd, info, 4164 o, NULL, 4165 NULL, 4166 _bfd_link_keep_memory (info)); 4167 if (internal_relocs == NULL) 4168 return false; 4169 4170 ok = action (abfd, info, o, internal_relocs); 4171 4172 if (elf_section_data (o)->relocs != internal_relocs) 4173 free (internal_relocs); 4174 4175 if (! ok) 4176 return false; 4177 } 4178 } 4179 4180 return true; 4181 } 4182 4183 /* Check relocations in an ELF object file. This is called after 4184 all input files have been opened. */ 4185 4186 bool 4187 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info) 4188 { 4189 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 4190 if (bed->check_relocs != NULL) 4191 return _bfd_elf_link_iterate_on_relocs (abfd, info, 4192 bed->check_relocs); 4193 return true; 4194 } 4195 4196 /* Add symbols from an ELF object file to the linker hash table. */ 4197 4198 static bool 4199 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info) 4200 { 4201 Elf_Internal_Ehdr *ehdr; 4202 Elf_Internal_Shdr *hdr; 4203 size_t symcount; 4204 size_t extsymcount; 4205 size_t extsymoff; 4206 struct elf_link_hash_entry **sym_hash; 4207 bool dynamic; 4208 Elf_External_Versym *extversym = NULL; 4209 Elf_External_Versym *extversym_end = NULL; 4210 Elf_External_Versym *ever; 4211 struct elf_link_hash_entry *weaks; 4212 struct elf_link_hash_entry **nondeflt_vers = NULL; 4213 size_t nondeflt_vers_cnt = 0; 4214 Elf_Internal_Sym *isymbuf = NULL; 4215 Elf_Internal_Sym *isym; 4216 Elf_Internal_Sym *isymend; 4217 const struct elf_backend_data *bed; 4218 bool add_needed; 4219 struct elf_link_hash_table *htab; 4220 void *alloc_mark = NULL; 4221 struct bfd_hash_entry **old_table = NULL; 4222 unsigned int old_size = 0; 4223 unsigned int old_count = 0; 4224 void *old_tab = NULL; 4225 void *old_ent; 4226 struct bfd_link_hash_entry *old_undefs = NULL; 4227 struct bfd_link_hash_entry *old_undefs_tail = NULL; 4228 void *old_strtab = NULL; 4229 size_t tabsize = 0; 4230 asection *s; 4231 bool just_syms; 4232 4233 htab = elf_hash_table (info); 4234 bed = get_elf_backend_data (abfd); 4235 4236 if ((abfd->flags & DYNAMIC) == 0) 4237 dynamic = false; 4238 else 4239 { 4240 dynamic = true; 4241 4242 /* You can't use -r against a dynamic object. Also, there's no 4243 hope of using a dynamic object which does not exactly match 4244 the format of the output file. */ 4245 if (bfd_link_relocatable (info) 4246 || !is_elf_hash_table (&htab->root) 4247 || info->output_bfd->xvec != abfd->xvec) 4248 { 4249 if (bfd_link_relocatable (info)) 4250 bfd_set_error (bfd_error_invalid_operation); 4251 else 4252 bfd_set_error (bfd_error_wrong_format); 4253 goto error_return; 4254 } 4255 } 4256 4257 ehdr = elf_elfheader (abfd); 4258 if (info->warn_alternate_em 4259 && bed->elf_machine_code != ehdr->e_machine 4260 && ((bed->elf_machine_alt1 != 0 4261 && ehdr->e_machine == bed->elf_machine_alt1) 4262 || (bed->elf_machine_alt2 != 0 4263 && ehdr->e_machine == bed->elf_machine_alt2))) 4264 _bfd_error_handler 4265 /* xgettext:c-format */ 4266 (_("alternate ELF machine code found (%d) in %pB, expecting %d"), 4267 ehdr->e_machine, abfd, bed->elf_machine_code); 4268 4269 /* As a GNU extension, any input sections which are named 4270 .gnu.warning.SYMBOL are treated as warning symbols for the given 4271 symbol. This differs from .gnu.warning sections, which generate 4272 warnings when they are included in an output file. */ 4273 /* PR 12761: Also generate this warning when building shared libraries. */ 4274 for (s = abfd->sections; s != NULL; s = s->next) 4275 { 4276 const char *name; 4277 4278 name = bfd_section_name (s); 4279 if (startswith (name, ".gnu.warning.")) 4280 { 4281 char *msg; 4282 bfd_size_type sz; 4283 4284 name += sizeof ".gnu.warning." - 1; 4285 4286 /* If this is a shared object, then look up the symbol 4287 in the hash table. If it is there, and it is already 4288 been defined, then we will not be using the entry 4289 from this shared object, so we don't need to warn. 4290 FIXME: If we see the definition in a regular object 4291 later on, we will warn, but we shouldn't. The only 4292 fix is to keep track of what warnings we are supposed 4293 to emit, and then handle them all at the end of the 4294 link. */ 4295 if (dynamic) 4296 { 4297 struct elf_link_hash_entry *h; 4298 4299 h = elf_link_hash_lookup (htab, name, false, false, true); 4300 4301 /* FIXME: What about bfd_link_hash_common? */ 4302 if (h != NULL 4303 && (h->root.type == bfd_link_hash_defined 4304 || h->root.type == bfd_link_hash_defweak)) 4305 continue; 4306 } 4307 4308 sz = s->size; 4309 msg = (char *) bfd_alloc (abfd, sz + 1); 4310 if (msg == NULL) 4311 goto error_return; 4312 4313 if (! bfd_get_section_contents (abfd, s, msg, 0, sz)) 4314 goto error_return; 4315 4316 msg[sz] = '\0'; 4317 4318 if (! (_bfd_generic_link_add_one_symbol 4319 (info, abfd, name, BSF_WARNING, s, 0, msg, 4320 false, bed->collect, NULL))) 4321 goto error_return; 4322 4323 if (bfd_link_executable (info)) 4324 { 4325 /* Clobber the section size so that the warning does 4326 not get copied into the output file. */ 4327 s->size = 0; 4328 4329 /* Also set SEC_EXCLUDE, so that symbols defined in 4330 the warning section don't get copied to the output. */ 4331 s->flags |= SEC_EXCLUDE; 4332 } 4333 } 4334 } 4335 4336 just_syms = ((s = abfd->sections) != NULL 4337 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS); 4338 4339 add_needed = true; 4340 if (! dynamic) 4341 { 4342 /* If we are creating a shared library, create all the dynamic 4343 sections immediately. We need to attach them to something, 4344 so we attach them to this BFD, provided it is the right 4345 format and is not from ld --just-symbols. Always create the 4346 dynamic sections for -E/--dynamic-list. FIXME: If there 4347 are no input BFD's of the same format as the output, we can't 4348 make a shared library. */ 4349 if (!just_syms 4350 && (bfd_link_pic (info) 4351 || (!bfd_link_relocatable (info) 4352 && info->nointerp 4353 && (info->export_dynamic || info->dynamic))) 4354 && is_elf_hash_table (&htab->root) 4355 && info->output_bfd->xvec == abfd->xvec 4356 && !htab->dynamic_sections_created) 4357 { 4358 if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) 4359 goto error_return; 4360 } 4361 } 4362 else if (!is_elf_hash_table (&htab->root)) 4363 goto error_return; 4364 else 4365 { 4366 const char *soname = NULL; 4367 char *audit = NULL; 4368 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL; 4369 const Elf_Internal_Phdr *phdr; 4370 struct elf_link_loaded_list *loaded_lib; 4371 4372 /* ld --just-symbols and dynamic objects don't mix very well. 4373 ld shouldn't allow it. */ 4374 if (just_syms) 4375 abort (); 4376 4377 /* If this dynamic lib was specified on the command line with 4378 --as-needed in effect, then we don't want to add a DT_NEEDED 4379 tag unless the lib is actually used. Similary for libs brought 4380 in by another lib's DT_NEEDED. When --no-add-needed is used 4381 on a dynamic lib, we don't want to add a DT_NEEDED entry for 4382 any dynamic library in DT_NEEDED tags in the dynamic lib at 4383 all. */ 4384 add_needed = (elf_dyn_lib_class (abfd) 4385 & (DYN_AS_NEEDED | DYN_DT_NEEDED 4386 | DYN_NO_NEEDED)) == 0; 4387 4388 s = bfd_get_section_by_name (abfd, ".dynamic"); 4389 if (s != NULL && s->size != 0) 4390 { 4391 bfd_byte *dynbuf; 4392 bfd_byte *extdyn; 4393 unsigned int elfsec; 4394 unsigned long shlink; 4395 4396 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) 4397 { 4398 error_free_dyn: 4399 free (dynbuf); 4400 goto error_return; 4401 } 4402 4403 elfsec = _bfd_elf_section_from_bfd_section (abfd, s); 4404 if (elfsec == SHN_BAD) 4405 goto error_free_dyn; 4406 shlink = elf_elfsections (abfd)[elfsec]->sh_link; 4407 4408 for (extdyn = dynbuf; 4409 (size_t) (dynbuf + s->size - extdyn) >= bed->s->sizeof_dyn; 4410 extdyn += bed->s->sizeof_dyn) 4411 { 4412 Elf_Internal_Dyn dyn; 4413 4414 bed->s->swap_dyn_in (abfd, extdyn, &dyn); 4415 if (dyn.d_tag == DT_SONAME) 4416 { 4417 unsigned int tagv = dyn.d_un.d_val; 4418 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 4419 if (soname == NULL) 4420 goto error_free_dyn; 4421 } 4422 if (dyn.d_tag == DT_NEEDED) 4423 { 4424 struct bfd_link_needed_list *n, **pn; 4425 char *fnm, *anm; 4426 unsigned int tagv = dyn.d_un.d_val; 4427 size_t amt = sizeof (struct bfd_link_needed_list); 4428 4429 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); 4430 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 4431 if (n == NULL || fnm == NULL) 4432 goto error_free_dyn; 4433 amt = strlen (fnm) + 1; 4434 anm = (char *) bfd_alloc (abfd, amt); 4435 if (anm == NULL) 4436 goto error_free_dyn; 4437 memcpy (anm, fnm, amt); 4438 n->name = anm; 4439 n->by = abfd; 4440 n->next = NULL; 4441 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next) 4442 ; 4443 *pn = n; 4444 } 4445 if (dyn.d_tag == DT_RUNPATH) 4446 { 4447 struct bfd_link_needed_list *n, **pn; 4448 char *fnm, *anm; 4449 unsigned int tagv = dyn.d_un.d_val; 4450 size_t amt = sizeof (struct bfd_link_needed_list); 4451 4452 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); 4453 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 4454 if (n == NULL || fnm == NULL) 4455 goto error_free_dyn; 4456 amt = strlen (fnm) + 1; 4457 anm = (char *) bfd_alloc (abfd, amt); 4458 if (anm == NULL) 4459 goto error_free_dyn; 4460 memcpy (anm, fnm, amt); 4461 n->name = anm; 4462 n->by = abfd; 4463 n->next = NULL; 4464 for (pn = & runpath; 4465 *pn != NULL; 4466 pn = &(*pn)->next) 4467 ; 4468 *pn = n; 4469 } 4470 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */ 4471 if (!runpath && dyn.d_tag == DT_RPATH) 4472 { 4473 struct bfd_link_needed_list *n, **pn; 4474 char *fnm, *anm; 4475 unsigned int tagv = dyn.d_un.d_val; 4476 size_t amt = sizeof (struct bfd_link_needed_list); 4477 4478 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); 4479 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 4480 if (n == NULL || fnm == NULL) 4481 goto error_free_dyn; 4482 amt = strlen (fnm) + 1; 4483 anm = (char *) bfd_alloc (abfd, amt); 4484 if (anm == NULL) 4485 goto error_free_dyn; 4486 memcpy (anm, fnm, amt); 4487 n->name = anm; 4488 n->by = abfd; 4489 n->next = NULL; 4490 for (pn = & rpath; 4491 *pn != NULL; 4492 pn = &(*pn)->next) 4493 ; 4494 *pn = n; 4495 } 4496 if (dyn.d_tag == DT_AUDIT) 4497 { 4498 unsigned int tagv = dyn.d_un.d_val; 4499 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 4500 } 4501 if (dyn.d_tag == DT_FLAGS_1) 4502 elf_tdata (abfd)->is_pie = (dyn.d_un.d_val & DF_1_PIE) != 0; 4503 } 4504 4505 free (dynbuf); 4506 } 4507 4508 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that 4509 frees all more recently bfd_alloc'd blocks as well. */ 4510 if (runpath) 4511 rpath = runpath; 4512 4513 if (rpath) 4514 { 4515 struct bfd_link_needed_list **pn; 4516 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next) 4517 ; 4518 *pn = rpath; 4519 } 4520 4521 /* If we have a PT_GNU_RELRO program header, mark as read-only 4522 all sections contained fully therein. This makes relro 4523 shared library sections appear as they will at run-time. */ 4524 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum; 4525 while (phdr-- > elf_tdata (abfd)->phdr) 4526 if (phdr->p_type == PT_GNU_RELRO) 4527 { 4528 for (s = abfd->sections; s != NULL; s = s->next) 4529 { 4530 unsigned int opb = bfd_octets_per_byte (abfd, s); 4531 4532 if ((s->flags & SEC_ALLOC) != 0 4533 && s->vma * opb >= phdr->p_vaddr 4534 && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz) 4535 s->flags |= SEC_READONLY; 4536 } 4537 break; 4538 } 4539 4540 /* We do not want to include any of the sections in a dynamic 4541 object in the output file. We hack by simply clobbering the 4542 list of sections in the BFD. This could be handled more 4543 cleanly by, say, a new section flag; the existing 4544 SEC_NEVER_LOAD flag is not the one we want, because that one 4545 still implies that the section takes up space in the output 4546 file. */ 4547 bfd_section_list_clear (abfd); 4548 4549 /* Find the name to use in a DT_NEEDED entry that refers to this 4550 object. If the object has a DT_SONAME entry, we use it. 4551 Otherwise, if the generic linker stuck something in 4552 elf_dt_name, we use that. Otherwise, we just use the file 4553 name. */ 4554 if (soname == NULL || *soname == '\0') 4555 { 4556 soname = elf_dt_name (abfd); 4557 if (soname == NULL || *soname == '\0') 4558 soname = bfd_get_filename (abfd); 4559 } 4560 4561 /* Save the SONAME because sometimes the linker emulation code 4562 will need to know it. */ 4563 elf_dt_name (abfd) = soname; 4564 4565 /* If we have already included this dynamic object in the 4566 link, just ignore it. There is no reason to include a 4567 particular dynamic object more than once. */ 4568 for (loaded_lib = htab->dyn_loaded; 4569 loaded_lib != NULL; 4570 loaded_lib = loaded_lib->next) 4571 { 4572 if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0) 4573 return true; 4574 } 4575 4576 /* Create dynamic sections for backends that require that be done 4577 before setup_gnu_properties. */ 4578 if (add_needed 4579 && !_bfd_elf_link_create_dynamic_sections (abfd, info)) 4580 return false; 4581 4582 /* Save the DT_AUDIT entry for the linker emulation code. */ 4583 elf_dt_audit (abfd) = audit; 4584 } 4585 4586 /* If this is a dynamic object, we always link against the .dynsym 4587 symbol table, not the .symtab symbol table. The dynamic linker 4588 will only see the .dynsym symbol table, so there is no reason to 4589 look at .symtab for a dynamic object. */ 4590 4591 if (! dynamic || elf_dynsymtab (abfd) == 0) 4592 hdr = &elf_tdata (abfd)->symtab_hdr; 4593 else 4594 hdr = &elf_tdata (abfd)->dynsymtab_hdr; 4595 4596 symcount = hdr->sh_size / bed->s->sizeof_sym; 4597 4598 /* The sh_info field of the symtab header tells us where the 4599 external symbols start. We don't care about the local symbols at 4600 this point. */ 4601 if (elf_bad_symtab (abfd)) 4602 { 4603 extsymcount = symcount; 4604 extsymoff = 0; 4605 } 4606 else 4607 { 4608 extsymcount = symcount - hdr->sh_info; 4609 extsymoff = hdr->sh_info; 4610 } 4611 4612 sym_hash = elf_sym_hashes (abfd); 4613 if (extsymcount != 0) 4614 { 4615 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, 4616 NULL, NULL, NULL); 4617 if (isymbuf == NULL) 4618 goto error_return; 4619 4620 if (sym_hash == NULL) 4621 { 4622 /* We store a pointer to the hash table entry for each 4623 external symbol. */ 4624 size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *); 4625 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt); 4626 if (sym_hash == NULL) 4627 goto error_free_sym; 4628 elf_sym_hashes (abfd) = sym_hash; 4629 } 4630 } 4631 4632 if (dynamic) 4633 { 4634 /* Read in any version definitions. */ 4635 if (!_bfd_elf_slurp_version_tables (abfd, 4636 info->default_imported_symver)) 4637 goto error_free_sym; 4638 4639 /* Read in the symbol versions, but don't bother to convert them 4640 to internal format. */ 4641 if (elf_dynversym (abfd) != 0) 4642 { 4643 Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr; 4644 bfd_size_type amt = versymhdr->sh_size; 4645 4646 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0) 4647 goto error_free_sym; 4648 extversym = (Elf_External_Versym *) 4649 _bfd_malloc_and_read (abfd, amt, amt); 4650 if (extversym == NULL) 4651 goto error_free_sym; 4652 extversym_end = extversym + amt / sizeof (*extversym); 4653 } 4654 } 4655 4656 /* If we are loading an as-needed shared lib, save the symbol table 4657 state before we start adding symbols. If the lib turns out 4658 to be unneeded, restore the state. */ 4659 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) 4660 { 4661 unsigned int i; 4662 size_t entsize; 4663 4664 for (entsize = 0, i = 0; i < htab->root.table.size; i++) 4665 { 4666 struct bfd_hash_entry *p; 4667 struct elf_link_hash_entry *h; 4668 4669 for (p = htab->root.table.table[i]; p != NULL; p = p->next) 4670 { 4671 h = (struct elf_link_hash_entry *) p; 4672 entsize += htab->root.table.entsize; 4673 if (h->root.type == bfd_link_hash_warning) 4674 { 4675 entsize += htab->root.table.entsize; 4676 h = (struct elf_link_hash_entry *) h->root.u.i.link; 4677 } 4678 if (h->root.type == bfd_link_hash_common) 4679 entsize += sizeof (*h->root.u.c.p); 4680 } 4681 } 4682 4683 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *); 4684 old_tab = bfd_malloc (tabsize + entsize); 4685 if (old_tab == NULL) 4686 goto error_free_vers; 4687 4688 /* Remember the current objalloc pointer, so that all mem for 4689 symbols added can later be reclaimed. */ 4690 alloc_mark = bfd_hash_allocate (&htab->root.table, 1); 4691 if (alloc_mark == NULL) 4692 goto error_free_vers; 4693 4694 /* Make a special call to the linker "notice" function to 4695 tell it that we are about to handle an as-needed lib. */ 4696 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed)) 4697 goto error_free_vers; 4698 4699 /* Clone the symbol table. Remember some pointers into the 4700 symbol table, and dynamic symbol count. */ 4701 old_ent = (char *) old_tab + tabsize; 4702 memcpy (old_tab, htab->root.table.table, tabsize); 4703 old_undefs = htab->root.undefs; 4704 old_undefs_tail = htab->root.undefs_tail; 4705 old_table = htab->root.table.table; 4706 old_size = htab->root.table.size; 4707 old_count = htab->root.table.count; 4708 old_strtab = NULL; 4709 if (htab->dynstr != NULL) 4710 { 4711 old_strtab = _bfd_elf_strtab_save (htab->dynstr); 4712 if (old_strtab == NULL) 4713 goto error_free_vers; 4714 } 4715 4716 for (i = 0; i < htab->root.table.size; i++) 4717 { 4718 struct bfd_hash_entry *p; 4719 struct elf_link_hash_entry *h; 4720 4721 for (p = htab->root.table.table[i]; p != NULL; p = p->next) 4722 { 4723 h = (struct elf_link_hash_entry *) p; 4724 memcpy (old_ent, h, htab->root.table.entsize); 4725 old_ent = (char *) old_ent + htab->root.table.entsize; 4726 if (h->root.type == bfd_link_hash_warning) 4727 { 4728 h = (struct elf_link_hash_entry *) h->root.u.i.link; 4729 memcpy (old_ent, h, htab->root.table.entsize); 4730 old_ent = (char *) old_ent + htab->root.table.entsize; 4731 } 4732 if (h->root.type == bfd_link_hash_common) 4733 { 4734 memcpy (old_ent, h->root.u.c.p, sizeof (*h->root.u.c.p)); 4735 old_ent = (char *) old_ent + sizeof (*h->root.u.c.p); 4736 } 4737 } 4738 } 4739 } 4740 4741 weaks = NULL; 4742 if (extversym == NULL) 4743 ever = NULL; 4744 else if (extversym + extsymoff < extversym_end) 4745 ever = extversym + extsymoff; 4746 else 4747 { 4748 /* xgettext:c-format */ 4749 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"), 4750 abfd, (long) extsymoff, 4751 (long) (extversym_end - extversym) / sizeof (* extversym)); 4752 bfd_set_error (bfd_error_bad_value); 4753 goto error_free_vers; 4754 } 4755 4756 if (!bfd_link_relocatable (info) 4757 && abfd->lto_slim_object) 4758 { 4759 _bfd_error_handler 4760 (_("%pB: plugin needed to handle lto object"), abfd); 4761 } 4762 4763 for (isym = isymbuf, isymend = PTR_ADD (isymbuf, extsymcount); 4764 isym < isymend; 4765 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL)) 4766 { 4767 int bind; 4768 bfd_vma value; 4769 asection *sec, *new_sec; 4770 flagword flags; 4771 const char *name; 4772 struct elf_link_hash_entry *h; 4773 struct elf_link_hash_entry *hi; 4774 bool definition; 4775 bool size_change_ok; 4776 bool type_change_ok; 4777 bool new_weak; 4778 bool old_weak; 4779 bfd *override; 4780 bool common; 4781 bool discarded; 4782 unsigned int old_alignment; 4783 unsigned int shindex; 4784 bfd *old_bfd; 4785 bool matched; 4786 4787 override = NULL; 4788 4789 flags = BSF_NO_FLAGS; 4790 sec = NULL; 4791 value = isym->st_value; 4792 common = bed->common_definition (isym); 4793 if (common && info->inhibit_common_definition) 4794 { 4795 /* Treat common symbol as undefined for --no-define-common. */ 4796 isym->st_shndx = SHN_UNDEF; 4797 common = false; 4798 } 4799 discarded = false; 4800 4801 bind = ELF_ST_BIND (isym->st_info); 4802 switch (bind) 4803 { 4804 case STB_LOCAL: 4805 /* This should be impossible, since ELF requires that all 4806 global symbols follow all local symbols, and that sh_info 4807 point to the first global symbol. Unfortunately, Irix 5 4808 screws this up. */ 4809 if (elf_bad_symtab (abfd)) 4810 continue; 4811 4812 /* If we aren't prepared to handle locals within the globals 4813 then we'll likely segfault on a NULL symbol hash if the 4814 symbol is ever referenced in relocations. */ 4815 shindex = elf_elfheader (abfd)->e_shstrndx; 4816 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name); 4817 _bfd_error_handler (_("%pB: %s local symbol at index %lu" 4818 " (>= sh_info of %lu)"), 4819 abfd, name, (long) (isym - isymbuf + extsymoff), 4820 (long) extsymoff); 4821 4822 /* Dynamic object relocations are not processed by ld, so 4823 ld won't run into the problem mentioned above. */ 4824 if (dynamic) 4825 continue; 4826 bfd_set_error (bfd_error_bad_value); 4827 goto error_free_vers; 4828 4829 case STB_GLOBAL: 4830 if (isym->st_shndx != SHN_UNDEF && !common) 4831 flags = BSF_GLOBAL; 4832 break; 4833 4834 case STB_WEAK: 4835 flags = BSF_WEAK; 4836 break; 4837 4838 case STB_GNU_UNIQUE: 4839 flags = BSF_GNU_UNIQUE; 4840 break; 4841 4842 default: 4843 /* Leave it up to the processor backend. */ 4844 break; 4845 } 4846 4847 if (isym->st_shndx == SHN_UNDEF) 4848 sec = bfd_und_section_ptr; 4849 else if (isym->st_shndx == SHN_ABS) 4850 sec = bfd_abs_section_ptr; 4851 else if (isym->st_shndx == SHN_COMMON) 4852 { 4853 sec = bfd_com_section_ptr; 4854 /* What ELF calls the size we call the value. What ELF 4855 calls the value we call the alignment. */ 4856 value = isym->st_size; 4857 } 4858 else 4859 { 4860 sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 4861 if (sec == NULL) 4862 sec = bfd_abs_section_ptr; 4863 else if (discarded_section (sec)) 4864 { 4865 /* Symbols from discarded section are undefined. We keep 4866 its visibility. */ 4867 sec = bfd_und_section_ptr; 4868 discarded = true; 4869 isym->st_shndx = SHN_UNDEF; 4870 } 4871 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) 4872 value -= sec->vma; 4873 } 4874 4875 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 4876 isym->st_name); 4877 if (name == NULL) 4878 goto error_free_vers; 4879 4880 if (isym->st_shndx == SHN_COMMON 4881 && (abfd->flags & BFD_PLUGIN) != 0) 4882 { 4883 asection *xc = bfd_get_section_by_name (abfd, "COMMON"); 4884 4885 if (xc == NULL) 4886 { 4887 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP 4888 | SEC_EXCLUDE); 4889 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags); 4890 if (xc == NULL) 4891 goto error_free_vers; 4892 } 4893 sec = xc; 4894 } 4895 else if (isym->st_shndx == SHN_COMMON 4896 && ELF_ST_TYPE (isym->st_info) == STT_TLS 4897 && !bfd_link_relocatable (info)) 4898 { 4899 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon"); 4900 4901 if (tcomm == NULL) 4902 { 4903 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON 4904 | SEC_LINKER_CREATED); 4905 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags); 4906 if (tcomm == NULL) 4907 goto error_free_vers; 4908 } 4909 sec = tcomm; 4910 } 4911 else if (bed->elf_add_symbol_hook) 4912 { 4913 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags, 4914 &sec, &value)) 4915 goto error_free_vers; 4916 4917 /* The hook function sets the name to NULL if this symbol 4918 should be skipped for some reason. */ 4919 if (name == NULL) 4920 continue; 4921 } 4922 4923 /* Sanity check that all possibilities were handled. */ 4924 if (sec == NULL) 4925 abort (); 4926 4927 /* Silently discard TLS symbols from --just-syms. There's 4928 no way to combine a static TLS block with a new TLS block 4929 for this executable. */ 4930 if (ELF_ST_TYPE (isym->st_info) == STT_TLS 4931 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 4932 continue; 4933 4934 if (bfd_is_und_section (sec) 4935 || bfd_is_com_section (sec)) 4936 definition = false; 4937 else 4938 definition = true; 4939 4940 size_change_ok = false; 4941 type_change_ok = bed->type_change_ok; 4942 old_weak = false; 4943 matched = false; 4944 old_alignment = 0; 4945 old_bfd = NULL; 4946 new_sec = sec; 4947 4948 if (is_elf_hash_table (&htab->root)) 4949 { 4950 Elf_Internal_Versym iver; 4951 unsigned int vernum = 0; 4952 bool skip; 4953 4954 if (ever == NULL) 4955 { 4956 if (info->default_imported_symver) 4957 /* Use the default symbol version created earlier. */ 4958 iver.vs_vers = elf_tdata (abfd)->cverdefs; 4959 else 4960 iver.vs_vers = 0; 4961 } 4962 else if (ever >= extversym_end) 4963 { 4964 /* xgettext:c-format */ 4965 _bfd_error_handler (_("%pB: not enough version information"), 4966 abfd); 4967 bfd_set_error (bfd_error_bad_value); 4968 goto error_free_vers; 4969 } 4970 else 4971 _bfd_elf_swap_versym_in (abfd, ever, &iver); 4972 4973 vernum = iver.vs_vers & VERSYM_VERSION; 4974 4975 /* If this is a hidden symbol, or if it is not version 4976 1, we append the version name to the symbol name. 4977 However, we do not modify a non-hidden absolute symbol 4978 if it is not a function, because it might be the version 4979 symbol itself. FIXME: What if it isn't? */ 4980 if ((iver.vs_vers & VERSYM_HIDDEN) != 0 4981 || (vernum > 1 4982 && (!bfd_is_abs_section (sec) 4983 || bed->is_function_type (ELF_ST_TYPE (isym->st_info))))) 4984 { 4985 const char *verstr; 4986 size_t namelen, verlen, newlen; 4987 char *newname, *p; 4988 4989 if (isym->st_shndx != SHN_UNDEF) 4990 { 4991 if (vernum > elf_tdata (abfd)->cverdefs) 4992 verstr = NULL; 4993 else if (vernum > 1) 4994 verstr = 4995 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; 4996 else 4997 verstr = ""; 4998 4999 if (verstr == NULL) 5000 { 5001 _bfd_error_handler 5002 /* xgettext:c-format */ 5003 (_("%pB: %s: invalid version %u (max %d)"), 5004 abfd, name, vernum, 5005 elf_tdata (abfd)->cverdefs); 5006 bfd_set_error (bfd_error_bad_value); 5007 goto error_free_vers; 5008 } 5009 } 5010 else 5011 { 5012 /* We cannot simply test for the number of 5013 entries in the VERNEED section since the 5014 numbers for the needed versions do not start 5015 at 0. */ 5016 Elf_Internal_Verneed *t; 5017 5018 verstr = NULL; 5019 for (t = elf_tdata (abfd)->verref; 5020 t != NULL; 5021 t = t->vn_nextref) 5022 { 5023 Elf_Internal_Vernaux *a; 5024 5025 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 5026 { 5027 if (a->vna_other == vernum) 5028 { 5029 verstr = a->vna_nodename; 5030 break; 5031 } 5032 } 5033 if (a != NULL) 5034 break; 5035 } 5036 if (verstr == NULL) 5037 { 5038 _bfd_error_handler 5039 /* xgettext:c-format */ 5040 (_("%pB: %s: invalid needed version %d"), 5041 abfd, name, vernum); 5042 bfd_set_error (bfd_error_bad_value); 5043 goto error_free_vers; 5044 } 5045 } 5046 5047 namelen = strlen (name); 5048 verlen = strlen (verstr); 5049 newlen = namelen + verlen + 2; 5050 if ((iver.vs_vers & VERSYM_HIDDEN) == 0 5051 && isym->st_shndx != SHN_UNDEF) 5052 ++newlen; 5053 5054 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen); 5055 if (newname == NULL) 5056 goto error_free_vers; 5057 memcpy (newname, name, namelen); 5058 p = newname + namelen; 5059 *p++ = ELF_VER_CHR; 5060 /* If this is a defined non-hidden version symbol, 5061 we add another @ to the name. This indicates the 5062 default version of the symbol. */ 5063 if ((iver.vs_vers & VERSYM_HIDDEN) == 0 5064 && isym->st_shndx != SHN_UNDEF) 5065 *p++ = ELF_VER_CHR; 5066 memcpy (p, verstr, verlen + 1); 5067 5068 name = newname; 5069 } 5070 5071 /* If this symbol has default visibility and the user has 5072 requested we not re-export it, then mark it as hidden. */ 5073 if (!bfd_is_und_section (sec) 5074 && !dynamic 5075 && abfd->no_export 5076 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL) 5077 isym->st_other = (STV_HIDDEN 5078 | (isym->st_other & ~ELF_ST_VISIBILITY (-1))); 5079 5080 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value, 5081 sym_hash, &old_bfd, &old_weak, 5082 &old_alignment, &skip, &override, 5083 &type_change_ok, &size_change_ok, 5084 &matched)) 5085 goto error_free_vers; 5086 5087 if (skip) 5088 continue; 5089 5090 /* Override a definition only if the new symbol matches the 5091 existing one. */ 5092 if (override && matched) 5093 definition = false; 5094 5095 h = *sym_hash; 5096 while (h->root.type == bfd_link_hash_indirect 5097 || h->root.type == bfd_link_hash_warning) 5098 h = (struct elf_link_hash_entry *) h->root.u.i.link; 5099 5100 if (h->versioned != unversioned 5101 && elf_tdata (abfd)->verdef != NULL 5102 && vernum > 1 5103 && definition) 5104 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1]; 5105 } 5106 5107 if (! (_bfd_generic_link_add_one_symbol 5108 (info, override ? override : abfd, name, flags, sec, value, 5109 NULL, false, bed->collect, 5110 (struct bfd_link_hash_entry **) sym_hash))) 5111 goto error_free_vers; 5112 5113 h = *sym_hash; 5114 /* We need to make sure that indirect symbol dynamic flags are 5115 updated. */ 5116 hi = h; 5117 while (h->root.type == bfd_link_hash_indirect 5118 || h->root.type == bfd_link_hash_warning) 5119 h = (struct elf_link_hash_entry *) h->root.u.i.link; 5120 5121 *sym_hash = h; 5122 5123 /* Setting the index to -3 tells elf_link_output_extsym that 5124 this symbol is defined in a discarded section. */ 5125 if (discarded && is_elf_hash_table (&htab->root)) 5126 h->indx = -3; 5127 5128 new_weak = (flags & BSF_WEAK) != 0; 5129 if (dynamic 5130 && definition 5131 && new_weak 5132 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info)) 5133 && is_elf_hash_table (&htab->root) 5134 && h->u.alias == NULL) 5135 { 5136 /* Keep a list of all weak defined non function symbols from 5137 a dynamic object, using the alias field. Later in this 5138 function we will set the alias field to the correct 5139 value. We only put non-function symbols from dynamic 5140 objects on this list, because that happens to be the only 5141 time we need to know the normal symbol corresponding to a 5142 weak symbol, and the information is time consuming to 5143 figure out. If the alias field is not already NULL, 5144 then this symbol was already defined by some previous 5145 dynamic object, and we will be using that previous 5146 definition anyhow. */ 5147 5148 h->u.alias = weaks; 5149 weaks = h; 5150 } 5151 5152 /* Set the alignment of a common symbol. */ 5153 if ((common || bfd_is_com_section (sec)) 5154 && h->root.type == bfd_link_hash_common) 5155 { 5156 unsigned int align; 5157 5158 if (common) 5159 align = bfd_log2 (isym->st_value); 5160 else 5161 { 5162 /* The new symbol is a common symbol in a shared object. 5163 We need to get the alignment from the section. */ 5164 align = new_sec->alignment_power; 5165 } 5166 if (align > old_alignment) 5167 h->root.u.c.p->alignment_power = align; 5168 else 5169 h->root.u.c.p->alignment_power = old_alignment; 5170 } 5171 5172 if (is_elf_hash_table (&htab->root)) 5173 { 5174 /* Set a flag in the hash table entry indicating the type of 5175 reference or definition we just found. A dynamic symbol 5176 is one which is referenced or defined by both a regular 5177 object and a shared object. */ 5178 bool dynsym = false; 5179 5180 /* Plugin symbols aren't normal. Don't set def/ref flags. */ 5181 if ((abfd->flags & BFD_PLUGIN) != 0) 5182 { 5183 /* Except for this flag to track nonweak references. */ 5184 if (!definition 5185 && bind != STB_WEAK) 5186 h->ref_ir_nonweak = 1; 5187 } 5188 else if (!dynamic) 5189 { 5190 if (! definition) 5191 { 5192 h->ref_regular = 1; 5193 if (bind != STB_WEAK) 5194 h->ref_regular_nonweak = 1; 5195 } 5196 else 5197 { 5198 h->def_regular = 1; 5199 if (h->def_dynamic) 5200 { 5201 h->def_dynamic = 0; 5202 h->ref_dynamic = 1; 5203 } 5204 } 5205 } 5206 else 5207 { 5208 if (! definition) 5209 { 5210 h->ref_dynamic = 1; 5211 hi->ref_dynamic = 1; 5212 } 5213 else 5214 { 5215 h->def_dynamic = 1; 5216 hi->def_dynamic = 1; 5217 } 5218 } 5219 5220 /* If an indirect symbol has been forced local, don't 5221 make the real symbol dynamic. */ 5222 if (h != hi && hi->forced_local) 5223 ; 5224 else if (!dynamic) 5225 { 5226 if (bfd_link_dll (info) 5227 || h->def_dynamic 5228 || h->ref_dynamic) 5229 dynsym = true; 5230 } 5231 else 5232 { 5233 if (h->def_regular 5234 || h->ref_regular 5235 || (h->is_weakalias 5236 && weakdef (h)->dynindx != -1)) 5237 dynsym = true; 5238 } 5239 5240 /* Check to see if we need to add an indirect symbol for 5241 the default name. */ 5242 if ((definition 5243 || (!override && h->root.type == bfd_link_hash_common)) 5244 && !(hi != h 5245 && hi->versioned == versioned_hidden)) 5246 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym, 5247 sec, value, &old_bfd, &dynsym)) 5248 goto error_free_vers; 5249 5250 /* Check the alignment when a common symbol is involved. This 5251 can change when a common symbol is overridden by a normal 5252 definition or a common symbol is ignored due to the old 5253 normal definition. We need to make sure the maximum 5254 alignment is maintained. */ 5255 if ((old_alignment || common) 5256 && h->root.type != bfd_link_hash_common) 5257 { 5258 unsigned int common_align; 5259 unsigned int normal_align; 5260 unsigned int symbol_align; 5261 bfd *normal_bfd; 5262 bfd *common_bfd; 5263 5264 BFD_ASSERT (h->root.type == bfd_link_hash_defined 5265 || h->root.type == bfd_link_hash_defweak); 5266 5267 symbol_align = ffs (h->root.u.def.value) - 1; 5268 if (h->root.u.def.section->owner != NULL 5269 && (h->root.u.def.section->owner->flags 5270 & (DYNAMIC | BFD_PLUGIN)) == 0) 5271 { 5272 normal_align = h->root.u.def.section->alignment_power; 5273 if (normal_align > symbol_align) 5274 normal_align = symbol_align; 5275 } 5276 else 5277 normal_align = symbol_align; 5278 5279 if (old_alignment) 5280 { 5281 common_align = old_alignment; 5282 common_bfd = old_bfd; 5283 normal_bfd = abfd; 5284 } 5285 else 5286 { 5287 common_align = bfd_log2 (isym->st_value); 5288 common_bfd = abfd; 5289 normal_bfd = old_bfd; 5290 } 5291 5292 if (normal_align < common_align) 5293 { 5294 /* PR binutils/2735 */ 5295 if (normal_bfd == NULL) 5296 _bfd_error_handler 5297 /* xgettext:c-format */ 5298 (_("warning: alignment %u of common symbol `%s' in %pB is" 5299 " greater than the alignment (%u) of its section %pA"), 5300 1 << common_align, name, common_bfd, 5301 1 << normal_align, h->root.u.def.section); 5302 else 5303 _bfd_error_handler 5304 /* xgettext:c-format */ 5305 (_("warning: alignment %u of symbol `%s' in %pB" 5306 " is smaller than %u in %pB"), 5307 1 << normal_align, name, normal_bfd, 5308 1 << common_align, common_bfd); 5309 } 5310 } 5311 5312 /* Remember the symbol size if it isn't undefined. */ 5313 if (isym->st_size != 0 5314 && isym->st_shndx != SHN_UNDEF 5315 && (definition || h->size == 0)) 5316 { 5317 if (h->size != 0 5318 && h->size != isym->st_size 5319 && ! size_change_ok) 5320 _bfd_error_handler 5321 /* xgettext:c-format */ 5322 (_("warning: size of symbol `%s' changed" 5323 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"), 5324 name, (uint64_t) h->size, old_bfd, 5325 (uint64_t) isym->st_size, abfd); 5326 5327 h->size = isym->st_size; 5328 } 5329 5330 /* If this is a common symbol, then we always want H->SIZE 5331 to be the size of the common symbol. The code just above 5332 won't fix the size if a common symbol becomes larger. We 5333 don't warn about a size change here, because that is 5334 covered by --warn-common. Allow changes between different 5335 function types. */ 5336 if (h->root.type == bfd_link_hash_common) 5337 h->size = h->root.u.c.size; 5338 5339 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE 5340 && ((definition && !new_weak) 5341 || (old_weak && h->root.type == bfd_link_hash_common) 5342 || h->type == STT_NOTYPE)) 5343 { 5344 unsigned int type = ELF_ST_TYPE (isym->st_info); 5345 5346 /* Turn an IFUNC symbol from a DSO into a normal FUNC 5347 symbol. */ 5348 if (type == STT_GNU_IFUNC 5349 && (abfd->flags & DYNAMIC) != 0) 5350 type = STT_FUNC; 5351 5352 if (h->type != type) 5353 { 5354 if (h->type != STT_NOTYPE && ! type_change_ok) 5355 /* xgettext:c-format */ 5356 _bfd_error_handler 5357 (_("warning: type of symbol `%s' changed" 5358 " from %d to %d in %pB"), 5359 name, h->type, type, abfd); 5360 5361 h->type = type; 5362 } 5363 } 5364 5365 /* Merge st_other field. */ 5366 elf_merge_st_other (abfd, h, isym->st_other, sec, 5367 definition, dynamic); 5368 5369 /* We don't want to make debug symbol dynamic. */ 5370 if (definition 5371 && (sec->flags & SEC_DEBUGGING) 5372 && !bfd_link_relocatable (info)) 5373 dynsym = false; 5374 5375 /* Nor should we make plugin symbols dynamic. */ 5376 if ((abfd->flags & BFD_PLUGIN) != 0) 5377 dynsym = false; 5378 5379 if (definition) 5380 { 5381 h->target_internal = isym->st_target_internal; 5382 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0; 5383 } 5384 5385 if (definition && !dynamic) 5386 { 5387 char *p = strchr (name, ELF_VER_CHR); 5388 if (p != NULL && p[1] != ELF_VER_CHR) 5389 { 5390 /* Queue non-default versions so that .symver x, x@FOO 5391 aliases can be checked. */ 5392 if (!nondeflt_vers) 5393 { 5394 size_t amt = ((isymend - isym + 1) 5395 * sizeof (struct elf_link_hash_entry *)); 5396 nondeflt_vers 5397 = (struct elf_link_hash_entry **) bfd_malloc (amt); 5398 if (!nondeflt_vers) 5399 goto error_free_vers; 5400 } 5401 nondeflt_vers[nondeflt_vers_cnt++] = h; 5402 } 5403 } 5404 5405 if (dynsym && h->dynindx == -1) 5406 { 5407 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 5408 goto error_free_vers; 5409 if (h->is_weakalias 5410 && weakdef (h)->dynindx == -1) 5411 { 5412 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h))) 5413 goto error_free_vers; 5414 } 5415 } 5416 else if (h->dynindx != -1) 5417 /* If the symbol already has a dynamic index, but 5418 visibility says it should not be visible, turn it into 5419 a local symbol. */ 5420 switch (ELF_ST_VISIBILITY (h->other)) 5421 { 5422 case STV_INTERNAL: 5423 case STV_HIDDEN: 5424 (*bed->elf_backend_hide_symbol) (info, h, true); 5425 dynsym = false; 5426 break; 5427 } 5428 5429 if (!add_needed 5430 && matched 5431 && definition 5432 && h->root.type != bfd_link_hash_indirect 5433 && ((dynsym 5434 && h->ref_regular_nonweak) 5435 || (old_bfd != NULL 5436 && (old_bfd->flags & BFD_PLUGIN) != 0 5437 && h->ref_ir_nonweak 5438 && !info->lto_all_symbols_read) 5439 || (h->ref_dynamic_nonweak 5440 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0 5441 && !on_needed_list (elf_dt_name (abfd), 5442 htab->needed, NULL)))) 5443 { 5444 const char *soname = elf_dt_name (abfd); 5445 5446 info->callbacks->minfo ("%!", soname, old_bfd, 5447 h->root.root.string); 5448 5449 /* A symbol from a library loaded via DT_NEEDED of some 5450 other library is referenced by a regular object. 5451 Add a DT_NEEDED entry for it. Issue an error if 5452 --no-add-needed is used and the reference was not 5453 a weak one. */ 5454 if (old_bfd != NULL 5455 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0) 5456 { 5457 _bfd_error_handler 5458 /* xgettext:c-format */ 5459 (_("%pB: undefined reference to symbol '%s'"), 5460 old_bfd, name); 5461 bfd_set_error (bfd_error_missing_dso); 5462 goto error_free_vers; 5463 } 5464 5465 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class) 5466 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED); 5467 5468 /* Create dynamic sections for backends that require 5469 that be done before setup_gnu_properties. */ 5470 if (!_bfd_elf_link_create_dynamic_sections (abfd, info)) 5471 return false; 5472 add_needed = true; 5473 } 5474 } 5475 } 5476 5477 if (info->lto_plugin_active 5478 && !bfd_link_relocatable (info) 5479 && (abfd->flags & BFD_PLUGIN) == 0 5480 && !just_syms 5481 && extsymcount) 5482 { 5483 int r_sym_shift; 5484 5485 if (bed->s->arch_size == 32) 5486 r_sym_shift = 8; 5487 else 5488 r_sym_shift = 32; 5489 5490 /* If linker plugin is enabled, set non_ir_ref_regular on symbols 5491 referenced in regular objects so that linker plugin will get 5492 the correct symbol resolution. */ 5493 5494 sym_hash = elf_sym_hashes (abfd); 5495 for (s = abfd->sections; s != NULL; s = s->next) 5496 { 5497 Elf_Internal_Rela *internal_relocs; 5498 Elf_Internal_Rela *rel, *relend; 5499 5500 /* Don't check relocations in excluded sections. */ 5501 if ((s->flags & SEC_RELOC) == 0 5502 || s->reloc_count == 0 5503 || (s->flags & SEC_EXCLUDE) != 0 5504 || ((info->strip == strip_all 5505 || info->strip == strip_debugger) 5506 && (s->flags & SEC_DEBUGGING) != 0)) 5507 continue; 5508 5509 internal_relocs = _bfd_elf_link_info_read_relocs (abfd, info, 5510 s, NULL, 5511 NULL, 5512 _bfd_link_keep_memory (info)); 5513 if (internal_relocs == NULL) 5514 goto error_free_vers; 5515 5516 rel = internal_relocs; 5517 relend = rel + s->reloc_count; 5518 for ( ; rel < relend; rel++) 5519 { 5520 unsigned long r_symndx = rel->r_info >> r_sym_shift; 5521 struct elf_link_hash_entry *h; 5522 5523 /* Skip local symbols. */ 5524 if (r_symndx < extsymoff) 5525 continue; 5526 5527 h = sym_hash[r_symndx - extsymoff]; 5528 if (h != NULL) 5529 h->root.non_ir_ref_regular = 1; 5530 } 5531 5532 if (elf_section_data (s)->relocs != internal_relocs) 5533 free (internal_relocs); 5534 } 5535 } 5536 5537 free (extversym); 5538 extversym = NULL; 5539 free (isymbuf); 5540 isymbuf = NULL; 5541 5542 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) 5543 { 5544 unsigned int i; 5545 5546 /* Restore the symbol table. */ 5547 old_ent = (char *) old_tab + tabsize; 5548 memset (elf_sym_hashes (abfd), 0, 5549 extsymcount * sizeof (struct elf_link_hash_entry *)); 5550 htab->root.table.table = old_table; 5551 htab->root.table.size = old_size; 5552 htab->root.table.count = old_count; 5553 memcpy (htab->root.table.table, old_tab, tabsize); 5554 htab->root.undefs = old_undefs; 5555 htab->root.undefs_tail = old_undefs_tail; 5556 if (htab->dynstr != NULL) 5557 _bfd_elf_strtab_restore (htab->dynstr, old_strtab); 5558 free (old_strtab); 5559 old_strtab = NULL; 5560 for (i = 0; i < htab->root.table.size; i++) 5561 { 5562 struct bfd_hash_entry *p; 5563 struct elf_link_hash_entry *h; 5564 unsigned int non_ir_ref_dynamic; 5565 5566 for (p = htab->root.table.table[i]; p != NULL; p = p->next) 5567 { 5568 /* Preserve non_ir_ref_dynamic so that this symbol 5569 will be exported when the dynamic lib becomes needed 5570 in the second pass. */ 5571 h = (struct elf_link_hash_entry *) p; 5572 if (h->root.type == bfd_link_hash_warning) 5573 h = (struct elf_link_hash_entry *) h->root.u.i.link; 5574 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic; 5575 5576 h = (struct elf_link_hash_entry *) p; 5577 memcpy (h, old_ent, htab->root.table.entsize); 5578 old_ent = (char *) old_ent + htab->root.table.entsize; 5579 if (h->root.type == bfd_link_hash_warning) 5580 { 5581 h = (struct elf_link_hash_entry *) h->root.u.i.link; 5582 memcpy (h, old_ent, htab->root.table.entsize); 5583 old_ent = (char *) old_ent + htab->root.table.entsize; 5584 } 5585 if (h->root.type == bfd_link_hash_common) 5586 { 5587 memcpy (h->root.u.c.p, old_ent, sizeof (*h->root.u.c.p)); 5588 old_ent = (char *) old_ent + sizeof (*h->root.u.c.p); 5589 } 5590 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic; 5591 } 5592 } 5593 5594 /* Make a special call to the linker "notice" function to 5595 tell it that symbols added for crefs may need to be removed. */ 5596 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed)) 5597 goto error_free_vers; 5598 5599 free (old_tab); 5600 objalloc_free_block ((struct objalloc *) htab->root.table.memory, 5601 alloc_mark); 5602 free (nondeflt_vers); 5603 return true; 5604 } 5605 5606 if (old_tab != NULL) 5607 { 5608 if (!(*bed->notice_as_needed) (abfd, info, notice_needed)) 5609 goto error_free_vers; 5610 free (old_tab); 5611 old_tab = NULL; 5612 } 5613 5614 /* Now that all the symbols from this input file are created, if 5615 not performing a relocatable link, handle .symver foo, foo@BAR 5616 such that any relocs against foo become foo@BAR. */ 5617 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL) 5618 { 5619 size_t cnt, symidx; 5620 5621 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt) 5622 { 5623 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi; 5624 char *shortname, *p; 5625 size_t amt; 5626 5627 p = strchr (h->root.root.string, ELF_VER_CHR); 5628 if (p == NULL 5629 || (h->root.type != bfd_link_hash_defined 5630 && h->root.type != bfd_link_hash_defweak)) 5631 continue; 5632 5633 amt = p - h->root.root.string; 5634 shortname = (char *) bfd_malloc (amt + 1); 5635 if (!shortname) 5636 goto error_free_vers; 5637 memcpy (shortname, h->root.root.string, amt); 5638 shortname[amt] = '\0'; 5639 5640 hi = (struct elf_link_hash_entry *) 5641 bfd_link_hash_lookup (&htab->root, shortname, 5642 false, false, false); 5643 if (hi != NULL 5644 && hi->root.type == h->root.type 5645 && hi->root.u.def.value == h->root.u.def.value 5646 && hi->root.u.def.section == h->root.u.def.section) 5647 { 5648 (*bed->elf_backend_hide_symbol) (info, hi, true); 5649 hi->root.type = bfd_link_hash_indirect; 5650 hi->root.u.i.link = (struct bfd_link_hash_entry *) h; 5651 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); 5652 sym_hash = elf_sym_hashes (abfd); 5653 if (sym_hash) 5654 for (symidx = 0; symidx < extsymcount; ++symidx) 5655 if (sym_hash[symidx] == hi) 5656 { 5657 sym_hash[symidx] = h; 5658 break; 5659 } 5660 } 5661 free (shortname); 5662 } 5663 free (nondeflt_vers); 5664 nondeflt_vers = NULL; 5665 } 5666 5667 /* Now set the alias field correctly for all the weak defined 5668 symbols we found. The only way to do this is to search all the 5669 symbols. Since we only need the information for non functions in 5670 dynamic objects, that's the only time we actually put anything on 5671 the list WEAKS. We need this information so that if a regular 5672 object refers to a symbol defined weakly in a dynamic object, the 5673 real symbol in the dynamic object is also put in the dynamic 5674 symbols; we also must arrange for both symbols to point to the 5675 same memory location. We could handle the general case of symbol 5676 aliasing, but a general symbol alias can only be generated in 5677 assembler code, handling it correctly would be very time 5678 consuming, and other ELF linkers don't handle general aliasing 5679 either. */ 5680 if (weaks != NULL) 5681 { 5682 struct elf_link_hash_entry **hpp; 5683 struct elf_link_hash_entry **hppend; 5684 struct elf_link_hash_entry **sorted_sym_hash; 5685 struct elf_link_hash_entry *h; 5686 size_t sym_count, amt; 5687 5688 /* Since we have to search the whole symbol list for each weak 5689 defined symbol, search time for N weak defined symbols will be 5690 O(N^2). Binary search will cut it down to O(NlogN). */ 5691 amt = extsymcount * sizeof (*sorted_sym_hash); 5692 sorted_sym_hash = bfd_malloc (amt); 5693 if (sorted_sym_hash == NULL) 5694 goto error_return; 5695 sym_hash = sorted_sym_hash; 5696 hpp = elf_sym_hashes (abfd); 5697 hppend = hpp + extsymcount; 5698 sym_count = 0; 5699 for (; hpp < hppend; hpp++) 5700 { 5701 h = *hpp; 5702 if (h != NULL 5703 && h->root.type == bfd_link_hash_defined 5704 && !bed->is_function_type (h->type)) 5705 { 5706 *sym_hash = h; 5707 sym_hash++; 5708 sym_count++; 5709 } 5710 } 5711 5712 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash), 5713 elf_sort_symbol); 5714 5715 while (weaks != NULL) 5716 { 5717 struct elf_link_hash_entry *hlook; 5718 asection *slook; 5719 bfd_vma vlook; 5720 size_t i, j, idx = 0; 5721 5722 hlook = weaks; 5723 weaks = hlook->u.alias; 5724 hlook->u.alias = NULL; 5725 5726 if (hlook->root.type != bfd_link_hash_defined 5727 && hlook->root.type != bfd_link_hash_defweak) 5728 continue; 5729 5730 slook = hlook->root.u.def.section; 5731 vlook = hlook->root.u.def.value; 5732 5733 i = 0; 5734 j = sym_count; 5735 while (i != j) 5736 { 5737 bfd_signed_vma vdiff; 5738 idx = (i + j) / 2; 5739 h = sorted_sym_hash[idx]; 5740 vdiff = vlook - h->root.u.def.value; 5741 if (vdiff < 0) 5742 j = idx; 5743 else if (vdiff > 0) 5744 i = idx + 1; 5745 else 5746 { 5747 int sdiff = slook->id - h->root.u.def.section->id; 5748 if (sdiff < 0) 5749 j = idx; 5750 else if (sdiff > 0) 5751 i = idx + 1; 5752 else 5753 break; 5754 } 5755 } 5756 5757 /* We didn't find a value/section match. */ 5758 if (i == j) 5759 continue; 5760 5761 /* With multiple aliases, or when the weak symbol is already 5762 strongly defined, we have multiple matching symbols and 5763 the binary search above may land on any of them. Step 5764 one past the matching symbol(s). */ 5765 while (++idx != j) 5766 { 5767 h = sorted_sym_hash[idx]; 5768 if (h->root.u.def.section != slook 5769 || h->root.u.def.value != vlook) 5770 break; 5771 } 5772 5773 /* Now look back over the aliases. Since we sorted by size 5774 as well as value and section, we'll choose the one with 5775 the largest size. */ 5776 while (idx-- != i) 5777 { 5778 h = sorted_sym_hash[idx]; 5779 5780 /* Stop if value or section doesn't match. */ 5781 if (h->root.u.def.section != slook 5782 || h->root.u.def.value != vlook) 5783 break; 5784 else if (h != hlook) 5785 { 5786 struct elf_link_hash_entry *t; 5787 5788 hlook->u.alias = h; 5789 hlook->is_weakalias = 1; 5790 t = h; 5791 if (t->u.alias != NULL) 5792 while (t->u.alias != h) 5793 t = t->u.alias; 5794 t->u.alias = hlook; 5795 5796 /* If the weak definition is in the list of dynamic 5797 symbols, make sure the real definition is put 5798 there as well. */ 5799 if (hlook->dynindx != -1 && h->dynindx == -1) 5800 { 5801 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 5802 { 5803 err_free_sym_hash: 5804 free (sorted_sym_hash); 5805 goto error_return; 5806 } 5807 } 5808 5809 /* If the real definition is in the list of dynamic 5810 symbols, make sure the weak definition is put 5811 there as well. If we don't do this, then the 5812 dynamic loader might not merge the entries for the 5813 real definition and the weak definition. */ 5814 if (h->dynindx != -1 && hlook->dynindx == -1) 5815 { 5816 if (! bfd_elf_link_record_dynamic_symbol (info, hlook)) 5817 goto err_free_sym_hash; 5818 } 5819 break; 5820 } 5821 } 5822 } 5823 5824 free (sorted_sym_hash); 5825 } 5826 5827 if (bed->check_directives 5828 && !(*bed->check_directives) (abfd, info)) 5829 return false; 5830 5831 /* If this is a non-traditional link, try to optimize the handling 5832 of the .stab/.stabstr sections. */ 5833 if (! dynamic 5834 && ! info->traditional_format 5835 && is_elf_hash_table (&htab->root) 5836 && (info->strip != strip_all && info->strip != strip_debugger)) 5837 { 5838 asection *stabstr; 5839 5840 stabstr = bfd_get_section_by_name (abfd, ".stabstr"); 5841 if (stabstr != NULL) 5842 { 5843 bfd_size_type string_offset = 0; 5844 asection *stab; 5845 5846 for (stab = abfd->sections; stab; stab = stab->next) 5847 if (startswith (stab->name, ".stab") 5848 && (!stab->name[5] || 5849 (stab->name[5] == '.' && ISDIGIT (stab->name[6]))) 5850 && (stab->flags & SEC_MERGE) == 0 5851 && !bfd_is_abs_section (stab->output_section)) 5852 { 5853 struct bfd_elf_section_data *secdata; 5854 5855 secdata = elf_section_data (stab); 5856 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab, 5857 stabstr, &secdata->sec_info, 5858 &string_offset)) 5859 goto error_return; 5860 if (secdata->sec_info) 5861 stab->sec_info_type = SEC_INFO_TYPE_STABS; 5862 } 5863 } 5864 } 5865 5866 if (dynamic && add_needed) 5867 { 5868 /* Add this bfd to the loaded list. */ 5869 struct elf_link_loaded_list *n; 5870 5871 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n)); 5872 if (n == NULL) 5873 goto error_return; 5874 n->abfd = abfd; 5875 n->next = htab->dyn_loaded; 5876 htab->dyn_loaded = n; 5877 } 5878 if (dynamic && !add_needed 5879 && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0) 5880 elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED; 5881 5882 return true; 5883 5884 error_free_vers: 5885 free (old_tab); 5886 free (old_strtab); 5887 free (nondeflt_vers); 5888 free (extversym); 5889 error_free_sym: 5890 free (isymbuf); 5891 error_return: 5892 return false; 5893 } 5894 5895 /* Return the linker hash table entry of a symbol that might be 5896 satisfied by an archive symbol. Return -1 on error. */ 5897 5898 struct bfd_link_hash_entry * 5899 _bfd_elf_archive_symbol_lookup (bfd *abfd, 5900 struct bfd_link_info *info, 5901 const char *name) 5902 { 5903 struct bfd_link_hash_entry *h; 5904 char *p, *copy; 5905 size_t len, first; 5906 5907 h = bfd_link_hash_lookup (info->hash, name, false, false, true); 5908 if (h != NULL) 5909 return h; 5910 5911 /* If this is a default version (the name contains @@), look up the 5912 symbol again with only one `@' as well as without the version. 5913 The effect is that references to the symbol with and without the 5914 version will be matched by the default symbol in the archive. */ 5915 5916 p = strchr (name, ELF_VER_CHR); 5917 if (p == NULL || p[1] != ELF_VER_CHR) 5918 return h; 5919 5920 /* First check with only one `@'. */ 5921 len = strlen (name); 5922 copy = (char *) bfd_alloc (abfd, len); 5923 if (copy == NULL) 5924 return (struct bfd_link_hash_entry *) -1; 5925 5926 first = p - name + 1; 5927 memcpy (copy, name, first); 5928 memcpy (copy + first, name + first + 1, len - first); 5929 5930 h = bfd_link_hash_lookup (info->hash, copy, false, false, true); 5931 if (h == NULL) 5932 { 5933 /* We also need to check references to the symbol without the 5934 version. */ 5935 copy[first - 1] = '\0'; 5936 h = bfd_link_hash_lookup (info->hash, copy, false, false, true); 5937 } 5938 5939 bfd_release (abfd, copy); 5940 return h; 5941 } 5942 5943 /* Add symbols from an ELF archive file to the linker hash table. We 5944 don't use _bfd_generic_link_add_archive_symbols because we need to 5945 handle versioned symbols. 5946 5947 Fortunately, ELF archive handling is simpler than that done by 5948 _bfd_generic_link_add_archive_symbols, which has to allow for a.out 5949 oddities. In ELF, if we find a symbol in the archive map, and the 5950 symbol is currently undefined, we know that we must pull in that 5951 object file. 5952 5953 Unfortunately, we do have to make multiple passes over the symbol 5954 table until nothing further is resolved. */ 5955 5956 static bool 5957 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info) 5958 { 5959 symindex c; 5960 unsigned char *included = NULL; 5961 carsym *symdefs; 5962 bool loop; 5963 size_t amt; 5964 const struct elf_backend_data *bed; 5965 struct bfd_link_hash_entry * (*archive_symbol_lookup) 5966 (bfd *, struct bfd_link_info *, const char *); 5967 5968 if (! bfd_has_map (abfd)) 5969 { 5970 /* An empty archive is a special case. */ 5971 if (bfd_openr_next_archived_file (abfd, NULL) == NULL) 5972 return true; 5973 bfd_set_error (bfd_error_no_armap); 5974 return false; 5975 } 5976 5977 /* Keep track of all symbols we know to be already defined, and all 5978 files we know to be already included. This is to speed up the 5979 second and subsequent passes. */ 5980 c = bfd_ardata (abfd)->symdef_count; 5981 if (c == 0) 5982 return true; 5983 amt = c * sizeof (*included); 5984 included = (unsigned char *) bfd_zmalloc (amt); 5985 if (included == NULL) 5986 return false; 5987 5988 symdefs = bfd_ardata (abfd)->symdefs; 5989 bed = get_elf_backend_data (abfd); 5990 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup; 5991 5992 do 5993 { 5994 file_ptr last; 5995 symindex i; 5996 carsym *symdef; 5997 carsym *symdefend; 5998 5999 loop = false; 6000 last = -1; 6001 6002 symdef = symdefs; 6003 symdefend = symdef + c; 6004 for (i = 0; symdef < symdefend; symdef++, i++) 6005 { 6006 struct bfd_link_hash_entry *h; 6007 bfd *element; 6008 struct bfd_link_hash_entry *undefs_tail; 6009 symindex mark; 6010 6011 if (included[i]) 6012 continue; 6013 if (symdef->file_offset == last) 6014 { 6015 included[i] = true; 6016 continue; 6017 } 6018 6019 h = archive_symbol_lookup (abfd, info, symdef->name); 6020 if (h == (struct bfd_link_hash_entry *) -1) 6021 goto error_return; 6022 6023 if (h == NULL) 6024 continue; 6025 6026 if (h->type == bfd_link_hash_undefined) 6027 { 6028 /* If the archive element has already been loaded then one 6029 of the symbols defined by that element might have been 6030 made undefined due to being in a discarded section. */ 6031 if (is_elf_hash_table (info->hash) 6032 && ((struct elf_link_hash_entry *) h)->indx == -3) 6033 continue; 6034 } 6035 else if (h->type == bfd_link_hash_common) 6036 { 6037 /* We currently have a common symbol. The archive map contains 6038 a reference to this symbol, so we may want to include it. We 6039 only want to include it however, if this archive element 6040 contains a definition of the symbol, not just another common 6041 declaration of it. 6042 6043 Unfortunately some archivers (including GNU ar) will put 6044 declarations of common symbols into their archive maps, as 6045 well as real definitions, so we cannot just go by the archive 6046 map alone. Instead we must read in the element's symbol 6047 table and check that to see what kind of symbol definition 6048 this is. */ 6049 if (! elf_link_is_defined_archive_symbol (abfd, symdef)) 6050 continue; 6051 } 6052 else 6053 { 6054 if (h->type != bfd_link_hash_undefweak) 6055 /* Symbol must be defined. Don't check it again. */ 6056 included[i] = true; 6057 continue; 6058 } 6059 6060 /* We need to include this archive member. */ 6061 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset, 6062 info); 6063 if (element == NULL) 6064 goto error_return; 6065 6066 if (! bfd_check_format (element, bfd_object)) 6067 goto error_return; 6068 6069 undefs_tail = info->hash->undefs_tail; 6070 6071 if (!(*info->callbacks 6072 ->add_archive_element) (info, element, symdef->name, &element)) 6073 continue; 6074 if (!bfd_link_add_symbols (element, info)) 6075 goto error_return; 6076 6077 /* If there are any new undefined symbols, we need to make 6078 another pass through the archive in order to see whether 6079 they can be defined. FIXME: This isn't perfect, because 6080 common symbols wind up on undefs_tail and because an 6081 undefined symbol which is defined later on in this pass 6082 does not require another pass. This isn't a bug, but it 6083 does make the code less efficient than it could be. */ 6084 if (undefs_tail != info->hash->undefs_tail) 6085 loop = true; 6086 6087 /* Look backward to mark all symbols from this object file 6088 which we have already seen in this pass. */ 6089 mark = i; 6090 do 6091 { 6092 included[mark] = true; 6093 if (mark == 0) 6094 break; 6095 --mark; 6096 } 6097 while (symdefs[mark].file_offset == symdef->file_offset); 6098 6099 /* We mark subsequent symbols from this object file as we go 6100 on through the loop. */ 6101 last = symdef->file_offset; 6102 } 6103 } 6104 while (loop); 6105 6106 free (included); 6107 return true; 6108 6109 error_return: 6110 free (included); 6111 return false; 6112 } 6113 6114 /* Given an ELF BFD, add symbols to the global hash table as 6115 appropriate. */ 6116 6117 bool 6118 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info) 6119 { 6120 switch (bfd_get_format (abfd)) 6121 { 6122 case bfd_object: 6123 return elf_link_add_object_symbols (abfd, info); 6124 case bfd_archive: 6125 return elf_link_add_archive_symbols (abfd, info); 6126 default: 6127 bfd_set_error (bfd_error_wrong_format); 6128 return false; 6129 } 6130 } 6131 6132 struct hash_codes_info 6133 { 6134 unsigned long *hashcodes; 6135 bool error; 6136 }; 6137 6138 /* This function will be called though elf_link_hash_traverse to store 6139 all hash value of the exported symbols in an array. */ 6140 6141 static bool 6142 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data) 6143 { 6144 struct hash_codes_info *inf = (struct hash_codes_info *) data; 6145 const char *name; 6146 unsigned long ha; 6147 char *alc = NULL; 6148 6149 /* Ignore indirect symbols. These are added by the versioning code. */ 6150 if (h->dynindx == -1) 6151 return true; 6152 6153 name = h->root.root.string; 6154 if (h->versioned >= versioned) 6155 { 6156 char *p = strchr (name, ELF_VER_CHR); 6157 if (p != NULL) 6158 { 6159 alc = (char *) bfd_malloc (p - name + 1); 6160 if (alc == NULL) 6161 { 6162 inf->error = true; 6163 return false; 6164 } 6165 memcpy (alc, name, p - name); 6166 alc[p - name] = '\0'; 6167 name = alc; 6168 } 6169 } 6170 6171 /* Compute the hash value. */ 6172 ha = bfd_elf_hash (name); 6173 6174 /* Store the found hash value in the array given as the argument. */ 6175 *(inf->hashcodes)++ = ha; 6176 6177 /* And store it in the struct so that we can put it in the hash table 6178 later. */ 6179 h->u.elf_hash_value = ha; 6180 6181 free (alc); 6182 return true; 6183 } 6184 6185 struct collect_gnu_hash_codes 6186 { 6187 bfd *output_bfd; 6188 const struct elf_backend_data *bed; 6189 unsigned long int nsyms; 6190 unsigned long int maskbits; 6191 unsigned long int *hashcodes; 6192 unsigned long int *hashval; 6193 unsigned long int *indx; 6194 unsigned long int *counts; 6195 bfd_vma *bitmask; 6196 bfd_byte *contents; 6197 bfd_size_type xlat; 6198 long int min_dynindx; 6199 unsigned long int bucketcount; 6200 unsigned long int symindx; 6201 long int local_indx; 6202 long int shift1, shift2; 6203 unsigned long int mask; 6204 bool error; 6205 }; 6206 6207 /* This function will be called though elf_link_hash_traverse to store 6208 all hash value of the exported symbols in an array. */ 6209 6210 static bool 6211 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data) 6212 { 6213 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; 6214 const char *name; 6215 unsigned long ha; 6216 char *alc = NULL; 6217 6218 /* Ignore indirect symbols. These are added by the versioning code. */ 6219 if (h->dynindx == -1) 6220 return true; 6221 6222 /* Ignore also local symbols and undefined symbols. */ 6223 if (! (*s->bed->elf_hash_symbol) (h)) 6224 return true; 6225 6226 name = h->root.root.string; 6227 if (h->versioned >= versioned) 6228 { 6229 char *p = strchr (name, ELF_VER_CHR); 6230 if (p != NULL) 6231 { 6232 alc = (char *) bfd_malloc (p - name + 1); 6233 if (alc == NULL) 6234 { 6235 s->error = true; 6236 return false; 6237 } 6238 memcpy (alc, name, p - name); 6239 alc[p - name] = '\0'; 6240 name = alc; 6241 } 6242 } 6243 6244 /* Compute the hash value. */ 6245 ha = bfd_elf_gnu_hash (name); 6246 6247 /* Store the found hash value in the array for compute_bucket_count, 6248 and also for .dynsym reordering purposes. */ 6249 s->hashcodes[s->nsyms] = ha; 6250 s->hashval[h->dynindx] = ha; 6251 ++s->nsyms; 6252 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx) 6253 s->min_dynindx = h->dynindx; 6254 6255 free (alc); 6256 return true; 6257 } 6258 6259 /* This function will be called though elf_link_hash_traverse to do 6260 final dynamic symbol renumbering in case of .gnu.hash. 6261 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index 6262 to the translation table. */ 6263 6264 static bool 6265 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data) 6266 { 6267 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; 6268 unsigned long int bucket; 6269 unsigned long int val; 6270 6271 /* Ignore indirect symbols. */ 6272 if (h->dynindx == -1) 6273 return true; 6274 6275 /* Ignore also local symbols and undefined symbols. */ 6276 if (! (*s->bed->elf_hash_symbol) (h)) 6277 { 6278 if (h->dynindx >= s->min_dynindx) 6279 { 6280 if (s->bed->record_xhash_symbol != NULL) 6281 { 6282 (*s->bed->record_xhash_symbol) (h, 0); 6283 s->local_indx++; 6284 } 6285 else 6286 h->dynindx = s->local_indx++; 6287 } 6288 return true; 6289 } 6290 6291 bucket = s->hashval[h->dynindx] % s->bucketcount; 6292 val = (s->hashval[h->dynindx] >> s->shift1) 6293 & ((s->maskbits >> s->shift1) - 1); 6294 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask); 6295 s->bitmask[val] 6296 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask); 6297 val = s->hashval[h->dynindx] & ~(unsigned long int) 1; 6298 if (s->counts[bucket] == 1) 6299 /* Last element terminates the chain. */ 6300 val |= 1; 6301 bfd_put_32 (s->output_bfd, val, 6302 s->contents + (s->indx[bucket] - s->symindx) * 4); 6303 --s->counts[bucket]; 6304 if (s->bed->record_xhash_symbol != NULL) 6305 { 6306 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4; 6307 6308 (*s->bed->record_xhash_symbol) (h, xlat_loc); 6309 } 6310 else 6311 h->dynindx = s->indx[bucket]++; 6312 return true; 6313 } 6314 6315 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */ 6316 6317 bool 6318 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h) 6319 { 6320 return !(h->forced_local 6321 || h->root.type == bfd_link_hash_undefined 6322 || h->root.type == bfd_link_hash_undefweak 6323 || ((h->root.type == bfd_link_hash_defined 6324 || h->root.type == bfd_link_hash_defweak) 6325 && h->root.u.def.section->output_section == NULL)); 6326 } 6327 6328 /* Array used to determine the number of hash table buckets to use 6329 based on the number of symbols there are. If there are fewer than 6330 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, 6331 fewer than 37 we use 17 buckets, and so forth. We never use more 6332 than 32771 buckets. */ 6333 6334 static const size_t elf_buckets[] = 6335 { 6336 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, 6337 16411, 32771, 0 6338 }; 6339 6340 /* Compute bucket count for hashing table. We do not use a static set 6341 of possible tables sizes anymore. Instead we determine for all 6342 possible reasonable sizes of the table the outcome (i.e., the 6343 number of collisions etc) and choose the best solution. The 6344 weighting functions are not too simple to allow the table to grow 6345 without bounds. Instead one of the weighting factors is the size. 6346 Therefore the result is always a good payoff between few collisions 6347 (= short chain lengths) and table size. */ 6348 static size_t 6349 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED, 6350 unsigned long int *hashcodes ATTRIBUTE_UNUSED, 6351 unsigned long int nsyms, 6352 int gnu_hash) 6353 { 6354 size_t best_size = 0; 6355 unsigned long int i; 6356 6357 if (info->optimize) 6358 { 6359 size_t minsize; 6360 size_t maxsize; 6361 uint64_t best_chlen = ~((uint64_t) 0); 6362 bfd *dynobj = elf_hash_table (info)->dynobj; 6363 size_t dynsymcount = elf_hash_table (info)->dynsymcount; 6364 const struct elf_backend_data *bed = get_elf_backend_data (dynobj); 6365 unsigned long int *counts; 6366 bfd_size_type amt; 6367 unsigned int no_improvement_count = 0; 6368 6369 /* Possible optimization parameters: if we have NSYMS symbols we say 6370 that the hashing table must at least have NSYMS/4 and at most 6371 2*NSYMS buckets. */ 6372 minsize = nsyms / 4; 6373 if (minsize == 0) 6374 minsize = 1; 6375 best_size = maxsize = nsyms * 2; 6376 if (gnu_hash) 6377 { 6378 if (minsize < 2) 6379 minsize = 2; 6380 if ((best_size & 31) == 0) 6381 ++best_size; 6382 } 6383 6384 /* Create array where we count the collisions in. We must use bfd_malloc 6385 since the size could be large. */ 6386 amt = maxsize; 6387 amt *= sizeof (unsigned long int); 6388 counts = (unsigned long int *) bfd_malloc (amt); 6389 if (counts == NULL) 6390 return 0; 6391 6392 /* Compute the "optimal" size for the hash table. The criteria is a 6393 minimal chain length. The minor criteria is (of course) the size 6394 of the table. */ 6395 for (i = minsize; i < maxsize; ++i) 6396 { 6397 /* Walk through the array of hashcodes and count the collisions. */ 6398 uint64_t max; 6399 unsigned long int j; 6400 unsigned long int fact; 6401 6402 if (gnu_hash && (i & 31) == 0) 6403 continue; 6404 6405 memset (counts, '\0', i * sizeof (unsigned long int)); 6406 6407 /* Determine how often each hash bucket is used. */ 6408 for (j = 0; j < nsyms; ++j) 6409 ++counts[hashcodes[j] % i]; 6410 6411 /* For the weight function we need some information about the 6412 pagesize on the target. This is information need not be 100% 6413 accurate. Since this information is not available (so far) we 6414 define it here to a reasonable default value. If it is crucial 6415 to have a better value some day simply define this value. */ 6416 # ifndef BFD_TARGET_PAGESIZE 6417 # define BFD_TARGET_PAGESIZE (4096) 6418 # endif 6419 6420 /* We in any case need 2 + DYNSYMCOUNT entries for the size values 6421 and the chains. */ 6422 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry; 6423 6424 # if 1 6425 /* Variant 1: optimize for short chains. We add the squares 6426 of all the chain lengths (which favors many small chain 6427 over a few long chains). */ 6428 for (j = 0; j < i; ++j) 6429 max += counts[j] * counts[j]; 6430 6431 /* This adds penalties for the overall size of the table. */ 6432 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; 6433 max *= fact * fact; 6434 # else 6435 /* Variant 2: Optimize a lot more for small table. Here we 6436 also add squares of the size but we also add penalties for 6437 empty slots (the +1 term). */ 6438 for (j = 0; j < i; ++j) 6439 max += (1 + counts[j]) * (1 + counts[j]); 6440 6441 /* The overall size of the table is considered, but not as 6442 strong as in variant 1, where it is squared. */ 6443 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; 6444 max *= fact; 6445 # endif 6446 6447 /* Compare with current best results. */ 6448 if (max < best_chlen) 6449 { 6450 best_chlen = max; 6451 best_size = i; 6452 no_improvement_count = 0; 6453 } 6454 /* PR 11843: Avoid futile long searches for the best bucket size 6455 when there are a large number of symbols. */ 6456 else if (++no_improvement_count == 100) 6457 break; 6458 } 6459 6460 free (counts); 6461 } 6462 else 6463 { 6464 for (i = 0; elf_buckets[i] != 0; i++) 6465 { 6466 best_size = elf_buckets[i]; 6467 if (nsyms < elf_buckets[i + 1]) 6468 break; 6469 } 6470 if (gnu_hash && best_size < 2) 6471 best_size = 2; 6472 } 6473 6474 return best_size; 6475 } 6476 6477 /* Size any SHT_GROUP section for ld -r. */ 6478 6479 bool 6480 _bfd_elf_size_group_sections (struct bfd_link_info *info) 6481 { 6482 bfd *ibfd; 6483 asection *s; 6484 6485 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 6486 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour 6487 && (s = ibfd->sections) != NULL 6488 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS 6489 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr)) 6490 return false; 6491 return true; 6492 } 6493 6494 /* Set a default stack segment size. The value in INFO wins. If it 6495 is unset, LEGACY_SYMBOL's value is used, and if that symbol is 6496 undefined it is initialized. */ 6497 6498 bool 6499 bfd_elf_stack_segment_size (bfd *output_bfd, 6500 struct bfd_link_info *info, 6501 const char *legacy_symbol, 6502 bfd_vma default_size) 6503 { 6504 struct elf_link_hash_entry *h = NULL; 6505 6506 /* Look for legacy symbol. */ 6507 if (legacy_symbol) 6508 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol, 6509 false, false, false); 6510 if (h && (h->root.type == bfd_link_hash_defined 6511 || h->root.type == bfd_link_hash_defweak) 6512 && h->def_regular 6513 && (h->type == STT_NOTYPE || h->type == STT_OBJECT)) 6514 { 6515 /* The symbol has no type if specified on the command line. */ 6516 h->type = STT_OBJECT; 6517 if (info->stacksize) 6518 /* xgettext:c-format */ 6519 _bfd_error_handler (_("%pB: stack size specified and %s set"), 6520 output_bfd, legacy_symbol); 6521 else if (h->root.u.def.section != bfd_abs_section_ptr) 6522 /* xgettext:c-format */ 6523 _bfd_error_handler (_("%pB: %s not absolute"), 6524 output_bfd, legacy_symbol); 6525 else 6526 info->stacksize = h->root.u.def.value; 6527 } 6528 6529 if (!info->stacksize) 6530 /* If the user didn't set a size, or explicitly inhibit the 6531 size, set it now. */ 6532 info->stacksize = default_size; 6533 6534 /* Provide the legacy symbol, if it is referenced. */ 6535 if (h && (h->root.type == bfd_link_hash_undefined 6536 || h->root.type == bfd_link_hash_undefweak)) 6537 { 6538 struct bfd_link_hash_entry *bh = NULL; 6539 6540 if (!(_bfd_generic_link_add_one_symbol 6541 (info, output_bfd, legacy_symbol, 6542 BSF_GLOBAL, bfd_abs_section_ptr, 6543 info->stacksize >= 0 ? info->stacksize : 0, 6544 NULL, false, get_elf_backend_data (output_bfd)->collect, &bh))) 6545 return false; 6546 6547 h = (struct elf_link_hash_entry *) bh; 6548 h->def_regular = 1; 6549 h->type = STT_OBJECT; 6550 } 6551 6552 return true; 6553 } 6554 6555 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */ 6556 6557 struct elf_gc_sweep_symbol_info 6558 { 6559 struct bfd_link_info *info; 6560 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *, 6561 bool); 6562 }; 6563 6564 static bool 6565 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data) 6566 { 6567 if (!h->mark 6568 && (((h->root.type == bfd_link_hash_defined 6569 || h->root.type == bfd_link_hash_defweak) 6570 && !((h->def_regular || ELF_COMMON_DEF_P (h)) 6571 && h->root.u.def.section->gc_mark)) 6572 || h->root.type == bfd_link_hash_undefined 6573 || h->root.type == bfd_link_hash_undefweak)) 6574 { 6575 struct elf_gc_sweep_symbol_info *inf; 6576 6577 inf = (struct elf_gc_sweep_symbol_info *) data; 6578 (*inf->hide_symbol) (inf->info, h, true); 6579 h->def_regular = 0; 6580 h->ref_regular = 0; 6581 h->ref_regular_nonweak = 0; 6582 } 6583 6584 return true; 6585 } 6586 6587 /* Set up the sizes and contents of the ELF dynamic sections. This is 6588 called by the ELF linker emulation before_allocation routine. We 6589 must set the sizes of the sections before the linker sets the 6590 addresses of the various sections. */ 6591 6592 bool 6593 bfd_elf_size_dynamic_sections (bfd *output_bfd, 6594 const char *soname, 6595 const char *rpath, 6596 const char *filter_shlib, 6597 const char *audit, 6598 const char *depaudit, 6599 const char * const *auxiliary_filters, 6600 struct bfd_link_info *info, 6601 asection **sinterpptr) 6602 { 6603 bfd *dynobj; 6604 const struct elf_backend_data *bed; 6605 6606 *sinterpptr = NULL; 6607 6608 if (!is_elf_hash_table (info->hash)) 6609 return true; 6610 6611 /* Any syms created from now on start with -1 in 6612 got.refcount/offset and plt.refcount/offset. */ 6613 elf_hash_table (info)->init_got_refcount 6614 = elf_hash_table (info)->init_got_offset; 6615 elf_hash_table (info)->init_plt_refcount 6616 = elf_hash_table (info)->init_plt_offset; 6617 6618 bed = get_elf_backend_data (output_bfd); 6619 6620 /* The backend may have to create some sections regardless of whether 6621 we're dynamic or not. */ 6622 if (bed->elf_backend_always_size_sections 6623 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info)) 6624 return false; 6625 6626 dynobj = elf_hash_table (info)->dynobj; 6627 6628 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) 6629 { 6630 struct bfd_elf_version_tree *verdefs; 6631 struct elf_info_failed asvinfo; 6632 struct bfd_elf_version_tree *t; 6633 struct bfd_elf_version_expr *d; 6634 asection *s; 6635 size_t soname_indx; 6636 6637 /* If we are supposed to export all symbols into the dynamic symbol 6638 table (this is not the normal case), then do so. */ 6639 if (info->export_dynamic 6640 || (bfd_link_executable (info) && info->dynamic)) 6641 { 6642 struct elf_info_failed eif; 6643 6644 eif.info = info; 6645 eif.failed = false; 6646 elf_link_hash_traverse (elf_hash_table (info), 6647 _bfd_elf_export_symbol, 6648 &eif); 6649 if (eif.failed) 6650 return false; 6651 } 6652 6653 if (soname != NULL) 6654 { 6655 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6656 soname, true); 6657 if (soname_indx == (size_t) -1 6658 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx)) 6659 return false; 6660 } 6661 else 6662 soname_indx = (size_t) -1; 6663 6664 /* Make all global versions with definition. */ 6665 for (t = info->version_info; t != NULL; t = t->next) 6666 for (d = t->globals.list; d != NULL; d = d->next) 6667 if (!d->symver && d->literal) 6668 { 6669 const char *verstr, *name; 6670 size_t namelen, verlen, newlen; 6671 char *newname, *p, leading_char; 6672 struct elf_link_hash_entry *newh; 6673 6674 leading_char = bfd_get_symbol_leading_char (output_bfd); 6675 name = d->pattern; 6676 namelen = strlen (name) + (leading_char != '\0'); 6677 verstr = t->name; 6678 verlen = strlen (verstr); 6679 newlen = namelen + verlen + 3; 6680 6681 newname = (char *) bfd_malloc (newlen); 6682 if (newname == NULL) 6683 return false; 6684 newname[0] = leading_char; 6685 memcpy (newname + (leading_char != '\0'), name, namelen); 6686 6687 /* Check the hidden versioned definition. */ 6688 p = newname + namelen; 6689 *p++ = ELF_VER_CHR; 6690 memcpy (p, verstr, verlen + 1); 6691 newh = elf_link_hash_lookup (elf_hash_table (info), 6692 newname, false, false, 6693 false); 6694 if (newh == NULL 6695 || (newh->root.type != bfd_link_hash_defined 6696 && newh->root.type != bfd_link_hash_defweak)) 6697 { 6698 /* Check the default versioned definition. */ 6699 *p++ = ELF_VER_CHR; 6700 memcpy (p, verstr, verlen + 1); 6701 newh = elf_link_hash_lookup (elf_hash_table (info), 6702 newname, false, false, 6703 false); 6704 } 6705 free (newname); 6706 6707 /* Mark this version if there is a definition and it is 6708 not defined in a shared object. */ 6709 if (newh != NULL 6710 && !newh->def_dynamic 6711 && (newh->root.type == bfd_link_hash_defined 6712 || newh->root.type == bfd_link_hash_defweak)) 6713 d->symver = 1; 6714 } 6715 6716 /* Attach all the symbols to their version information. */ 6717 asvinfo.info = info; 6718 asvinfo.failed = false; 6719 6720 elf_link_hash_traverse (elf_hash_table (info), 6721 _bfd_elf_link_assign_sym_version, 6722 &asvinfo); 6723 if (asvinfo.failed) 6724 return false; 6725 6726 if (!info->allow_undefined_version) 6727 { 6728 /* Check if all global versions have a definition. */ 6729 bool all_defined = true; 6730 for (t = info->version_info; t != NULL; t = t->next) 6731 for (d = t->globals.list; d != NULL; d = d->next) 6732 if (d->literal && !d->symver && !d->script) 6733 { 6734 _bfd_error_handler 6735 (_("%s: undefined version: %s"), 6736 d->pattern, t->name); 6737 all_defined = false; 6738 } 6739 6740 if (!all_defined) 6741 { 6742 bfd_set_error (bfd_error_bad_value); 6743 return false; 6744 } 6745 } 6746 6747 /* Set up the version definition section. */ 6748 s = bfd_get_linker_section (dynobj, ".gnu.version_d"); 6749 BFD_ASSERT (s != NULL); 6750 6751 /* We may have created additional version definitions if we are 6752 just linking a regular application. */ 6753 verdefs = info->version_info; 6754 6755 /* Skip anonymous version tag. */ 6756 if (verdefs != NULL && verdefs->vernum == 0) 6757 verdefs = verdefs->next; 6758 6759 if (verdefs == NULL && !info->create_default_symver) 6760 s->flags |= SEC_EXCLUDE; 6761 else 6762 { 6763 unsigned int cdefs; 6764 bfd_size_type size; 6765 bfd_byte *p; 6766 Elf_Internal_Verdef def; 6767 Elf_Internal_Verdaux defaux; 6768 struct bfd_link_hash_entry *bh; 6769 struct elf_link_hash_entry *h; 6770 const char *name; 6771 6772 cdefs = 0; 6773 size = 0; 6774 6775 /* Make space for the base version. */ 6776 size += sizeof (Elf_External_Verdef); 6777 size += sizeof (Elf_External_Verdaux); 6778 ++cdefs; 6779 6780 /* Make space for the default version. */ 6781 if (info->create_default_symver) 6782 { 6783 size += sizeof (Elf_External_Verdef); 6784 ++cdefs; 6785 } 6786 6787 for (t = verdefs; t != NULL; t = t->next) 6788 { 6789 struct bfd_elf_version_deps *n; 6790 6791 /* Don't emit base version twice. */ 6792 if (t->vernum == 0) 6793 continue; 6794 6795 size += sizeof (Elf_External_Verdef); 6796 size += sizeof (Elf_External_Verdaux); 6797 ++cdefs; 6798 6799 for (n = t->deps; n != NULL; n = n->next) 6800 size += sizeof (Elf_External_Verdaux); 6801 } 6802 6803 s->size = size; 6804 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); 6805 if (s->contents == NULL && s->size != 0) 6806 return false; 6807 6808 /* Fill in the version definition section. */ 6809 6810 p = s->contents; 6811 6812 def.vd_version = VER_DEF_CURRENT; 6813 def.vd_flags = VER_FLG_BASE; 6814 def.vd_ndx = 1; 6815 def.vd_cnt = 1; 6816 if (info->create_default_symver) 6817 { 6818 def.vd_aux = 2 * sizeof (Elf_External_Verdef); 6819 def.vd_next = sizeof (Elf_External_Verdef); 6820 } 6821 else 6822 { 6823 def.vd_aux = sizeof (Elf_External_Verdef); 6824 def.vd_next = (sizeof (Elf_External_Verdef) 6825 + sizeof (Elf_External_Verdaux)); 6826 } 6827 6828 if (soname_indx != (size_t) -1) 6829 { 6830 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, 6831 soname_indx); 6832 def.vd_hash = bfd_elf_hash (soname); 6833 defaux.vda_name = soname_indx; 6834 name = soname; 6835 } 6836 else 6837 { 6838 size_t indx; 6839 6840 name = lbasename (bfd_get_filename (output_bfd)); 6841 def.vd_hash = bfd_elf_hash (name); 6842 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6843 name, false); 6844 if (indx == (size_t) -1) 6845 return false; 6846 defaux.vda_name = indx; 6847 } 6848 defaux.vda_next = 0; 6849 6850 _bfd_elf_swap_verdef_out (output_bfd, &def, 6851 (Elf_External_Verdef *) p); 6852 p += sizeof (Elf_External_Verdef); 6853 if (info->create_default_symver) 6854 { 6855 /* Add a symbol representing this version. */ 6856 bh = NULL; 6857 if (! (_bfd_generic_link_add_one_symbol 6858 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr, 6859 0, NULL, false, 6860 get_elf_backend_data (dynobj)->collect, &bh))) 6861 return false; 6862 h = (struct elf_link_hash_entry *) bh; 6863 h->non_elf = 0; 6864 h->def_regular = 1; 6865 h->type = STT_OBJECT; 6866 h->verinfo.vertree = NULL; 6867 6868 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 6869 return false; 6870 6871 /* Create a duplicate of the base version with the same 6872 aux block, but different flags. */ 6873 def.vd_flags = 0; 6874 def.vd_ndx = 2; 6875 def.vd_aux = sizeof (Elf_External_Verdef); 6876 if (verdefs) 6877 def.vd_next = (sizeof (Elf_External_Verdef) 6878 + sizeof (Elf_External_Verdaux)); 6879 else 6880 def.vd_next = 0; 6881 _bfd_elf_swap_verdef_out (output_bfd, &def, 6882 (Elf_External_Verdef *) p); 6883 p += sizeof (Elf_External_Verdef); 6884 } 6885 _bfd_elf_swap_verdaux_out (output_bfd, &defaux, 6886 (Elf_External_Verdaux *) p); 6887 p += sizeof (Elf_External_Verdaux); 6888 6889 for (t = verdefs; t != NULL; t = t->next) 6890 { 6891 unsigned int cdeps; 6892 struct bfd_elf_version_deps *n; 6893 6894 /* Don't emit the base version twice. */ 6895 if (t->vernum == 0) 6896 continue; 6897 6898 cdeps = 0; 6899 for (n = t->deps; n != NULL; n = n->next) 6900 ++cdeps; 6901 6902 /* Add a symbol representing this version. */ 6903 bh = NULL; 6904 if (! (_bfd_generic_link_add_one_symbol 6905 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr, 6906 0, NULL, false, 6907 get_elf_backend_data (dynobj)->collect, &bh))) 6908 return false; 6909 h = (struct elf_link_hash_entry *) bh; 6910 h->non_elf = 0; 6911 h->def_regular = 1; 6912 h->type = STT_OBJECT; 6913 h->verinfo.vertree = t; 6914 6915 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 6916 return false; 6917 6918 def.vd_version = VER_DEF_CURRENT; 6919 def.vd_flags = 0; 6920 if (t->globals.list == NULL 6921 && t->locals.list == NULL 6922 && ! t->used) 6923 def.vd_flags |= VER_FLG_WEAK; 6924 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1); 6925 def.vd_cnt = cdeps + 1; 6926 def.vd_hash = bfd_elf_hash (t->name); 6927 def.vd_aux = sizeof (Elf_External_Verdef); 6928 def.vd_next = 0; 6929 6930 /* If a basever node is next, it *must* be the last node in 6931 the chain, otherwise Verdef construction breaks. */ 6932 if (t->next != NULL && t->next->vernum == 0) 6933 BFD_ASSERT (t->next->next == NULL); 6934 6935 if (t->next != NULL && t->next->vernum != 0) 6936 def.vd_next = (sizeof (Elf_External_Verdef) 6937 + (cdeps + 1) * sizeof (Elf_External_Verdaux)); 6938 6939 _bfd_elf_swap_verdef_out (output_bfd, &def, 6940 (Elf_External_Verdef *) p); 6941 p += sizeof (Elf_External_Verdef); 6942 6943 defaux.vda_name = h->dynstr_index; 6944 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, 6945 h->dynstr_index); 6946 defaux.vda_next = 0; 6947 if (t->deps != NULL) 6948 defaux.vda_next = sizeof (Elf_External_Verdaux); 6949 t->name_indx = defaux.vda_name; 6950 6951 _bfd_elf_swap_verdaux_out (output_bfd, &defaux, 6952 (Elf_External_Verdaux *) p); 6953 p += sizeof (Elf_External_Verdaux); 6954 6955 for (n = t->deps; n != NULL; n = n->next) 6956 { 6957 if (n->version_needed == NULL) 6958 { 6959 /* This can happen if there was an error in the 6960 version script. */ 6961 defaux.vda_name = 0; 6962 } 6963 else 6964 { 6965 defaux.vda_name = n->version_needed->name_indx; 6966 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, 6967 defaux.vda_name); 6968 } 6969 if (n->next == NULL) 6970 defaux.vda_next = 0; 6971 else 6972 defaux.vda_next = sizeof (Elf_External_Verdaux); 6973 6974 _bfd_elf_swap_verdaux_out (output_bfd, &defaux, 6975 (Elf_External_Verdaux *) p); 6976 p += sizeof (Elf_External_Verdaux); 6977 } 6978 } 6979 6980 elf_tdata (output_bfd)->cverdefs = cdefs; 6981 } 6982 } 6983 6984 if (info->gc_sections && bed->can_gc_sections) 6985 { 6986 struct elf_gc_sweep_symbol_info sweep_info; 6987 6988 /* Remove the symbols that were in the swept sections from the 6989 dynamic symbol table. */ 6990 sweep_info.info = info; 6991 sweep_info.hide_symbol = bed->elf_backend_hide_symbol; 6992 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, 6993 &sweep_info); 6994 } 6995 6996 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) 6997 { 6998 asection *s; 6999 struct elf_find_verdep_info sinfo; 7000 7001 /* Work out the size of the version reference section. */ 7002 7003 s = bfd_get_linker_section (dynobj, ".gnu.version_r"); 7004 BFD_ASSERT (s != NULL); 7005 7006 sinfo.info = info; 7007 sinfo.vers = elf_tdata (output_bfd)->cverdefs; 7008 if (sinfo.vers == 0) 7009 sinfo.vers = 1; 7010 sinfo.failed = false; 7011 7012 elf_link_hash_traverse (elf_hash_table (info), 7013 _bfd_elf_link_find_version_dependencies, 7014 &sinfo); 7015 if (sinfo.failed) 7016 return false; 7017 7018 if (info->enable_dt_relr) 7019 { 7020 elf_link_add_dt_relr_dependency (&sinfo); 7021 if (sinfo.failed) 7022 return false; 7023 } 7024 7025 if (elf_tdata (output_bfd)->verref == NULL) 7026 s->flags |= SEC_EXCLUDE; 7027 else 7028 { 7029 Elf_Internal_Verneed *vn; 7030 unsigned int size; 7031 unsigned int crefs; 7032 bfd_byte *p; 7033 7034 /* Build the version dependency section. */ 7035 size = 0; 7036 crefs = 0; 7037 for (vn = elf_tdata (output_bfd)->verref; 7038 vn != NULL; 7039 vn = vn->vn_nextref) 7040 { 7041 Elf_Internal_Vernaux *a; 7042 7043 size += sizeof (Elf_External_Verneed); 7044 ++crefs; 7045 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) 7046 size += sizeof (Elf_External_Vernaux); 7047 } 7048 7049 s->size = size; 7050 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); 7051 if (s->contents == NULL) 7052 return false; 7053 7054 p = s->contents; 7055 for (vn = elf_tdata (output_bfd)->verref; 7056 vn != NULL; 7057 vn = vn->vn_nextref) 7058 { 7059 unsigned int caux; 7060 Elf_Internal_Vernaux *a; 7061 size_t indx; 7062 7063 caux = 0; 7064 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) 7065 ++caux; 7066 7067 vn->vn_version = VER_NEED_CURRENT; 7068 vn->vn_cnt = caux; 7069 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 7070 elf_dt_name (vn->vn_bfd) != NULL 7071 ? elf_dt_name (vn->vn_bfd) 7072 : lbasename (bfd_get_filename 7073 (vn->vn_bfd)), 7074 false); 7075 if (indx == (size_t) -1) 7076 return false; 7077 vn->vn_file = indx; 7078 vn->vn_aux = sizeof (Elf_External_Verneed); 7079 if (vn->vn_nextref == NULL) 7080 vn->vn_next = 0; 7081 else 7082 vn->vn_next = (sizeof (Elf_External_Verneed) 7083 + caux * sizeof (Elf_External_Vernaux)); 7084 7085 _bfd_elf_swap_verneed_out (output_bfd, vn, 7086 (Elf_External_Verneed *) p); 7087 p += sizeof (Elf_External_Verneed); 7088 7089 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) 7090 { 7091 a->vna_hash = bfd_elf_hash (a->vna_nodename); 7092 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 7093 a->vna_nodename, false); 7094 if (indx == (size_t) -1) 7095 return false; 7096 a->vna_name = indx; 7097 if (a->vna_nextptr == NULL) 7098 a->vna_next = 0; 7099 else 7100 a->vna_next = sizeof (Elf_External_Vernaux); 7101 7102 _bfd_elf_swap_vernaux_out (output_bfd, a, 7103 (Elf_External_Vernaux *) p); 7104 p += sizeof (Elf_External_Vernaux); 7105 } 7106 } 7107 7108 elf_tdata (output_bfd)->cverrefs = crefs; 7109 } 7110 } 7111 7112 if (bfd_link_relocatable (info) 7113 && !_bfd_elf_size_group_sections (info)) 7114 return false; 7115 7116 /* Determine any GNU_STACK segment requirements, after the backend 7117 has had a chance to set a default segment size. */ 7118 if (info->execstack) 7119 { 7120 /* If the user has explicitly requested warnings, then generate one even 7121 though the choice is the result of another command line option. */ 7122 if (info->warn_execstack == 1) 7123 _bfd_error_handler 7124 (_("\ 7125 warning: enabling an executable stack because of -z execstack command line option")); 7126 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X; 7127 } 7128 else if (info->noexecstack) 7129 elf_stack_flags (output_bfd) = PF_R | PF_W; 7130 else 7131 { 7132 bfd *inputobj; 7133 asection *notesec = NULL; 7134 bfd *noteobj = NULL; 7135 bfd *emptyobj = NULL; 7136 int exec = 0; 7137 7138 for (inputobj = info->input_bfds; 7139 inputobj; 7140 inputobj = inputobj->link.next) 7141 { 7142 asection *s; 7143 7144 if (inputobj->flags 7145 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED)) 7146 continue; 7147 s = inputobj->sections; 7148 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 7149 continue; 7150 7151 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack"); 7152 if (s) 7153 { 7154 notesec = s; 7155 if (s->flags & SEC_CODE) 7156 { 7157 noteobj = inputobj; 7158 exec = PF_X; 7159 /* There is no point in scanning the remaining bfds. */ 7160 break; 7161 } 7162 } 7163 else if (bed->default_execstack && info->default_execstack) 7164 { 7165 exec = PF_X; 7166 emptyobj = inputobj; 7167 } 7168 } 7169 7170 if (notesec || info->stacksize > 0) 7171 { 7172 if (exec) 7173 { 7174 if (info->warn_execstack != 0) 7175 { 7176 /* PR 29072: Because an executable stack is a serious 7177 security risk, make sure that the user knows that it is 7178 being enabled despite the fact that it was not requested 7179 on the command line. */ 7180 if (noteobj) 7181 _bfd_error_handler (_("\ 7182 warning: %s: requires executable stack (because the .note.GNU-stack section is executable)"), 7183 bfd_get_filename (noteobj)); 7184 else if (emptyobj) 7185 { 7186 _bfd_error_handler (_("\ 7187 warning: %s: missing .note.GNU-stack section implies executable stack"), 7188 bfd_get_filename (emptyobj)); 7189 _bfd_error_handler (_("\ 7190 NOTE: This behaviour is deprecated and will be removed in a future version of the linker")); 7191 } 7192 } 7193 } 7194 elf_stack_flags (output_bfd) = PF_R | PF_W | exec; 7195 } 7196 7197 if (notesec && exec && bfd_link_relocatable (info) 7198 && notesec->output_section != bfd_abs_section_ptr) 7199 notesec->output_section->flags |= SEC_CODE; 7200 } 7201 7202 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) 7203 { 7204 struct elf_info_failed eif; 7205 struct elf_link_hash_entry *h; 7206 asection *dynstr; 7207 asection *s; 7208 7209 *sinterpptr = bfd_get_linker_section (dynobj, ".interp"); 7210 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp); 7211 7212 if (info->symbolic) 7213 { 7214 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) 7215 return false; 7216 info->flags |= DF_SYMBOLIC; 7217 } 7218 7219 if (rpath != NULL) 7220 { 7221 size_t indx; 7222 bfd_vma tag; 7223 7224 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath, 7225 true); 7226 if (indx == (size_t) -1) 7227 return false; 7228 7229 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH; 7230 if (!_bfd_elf_add_dynamic_entry (info, tag, indx)) 7231 return false; 7232 } 7233 7234 if (filter_shlib != NULL) 7235 { 7236 size_t indx; 7237 7238 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 7239 filter_shlib, true); 7240 if (indx == (size_t) -1 7241 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx)) 7242 return false; 7243 } 7244 7245 if (auxiliary_filters != NULL) 7246 { 7247 const char * const *p; 7248 7249 for (p = auxiliary_filters; *p != NULL; p++) 7250 { 7251 size_t indx; 7252 7253 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 7254 *p, true); 7255 if (indx == (size_t) -1 7256 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx)) 7257 return false; 7258 } 7259 } 7260 7261 if (audit != NULL) 7262 { 7263 size_t indx; 7264 7265 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit, 7266 true); 7267 if (indx == (size_t) -1 7268 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx)) 7269 return false; 7270 } 7271 7272 if (depaudit != NULL) 7273 { 7274 size_t indx; 7275 7276 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit, 7277 true); 7278 if (indx == (size_t) -1 7279 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx)) 7280 return false; 7281 } 7282 7283 eif.info = info; 7284 eif.failed = false; 7285 7286 /* Find all symbols which were defined in a dynamic object and make 7287 the backend pick a reasonable value for them. */ 7288 elf_link_hash_traverse (elf_hash_table (info), 7289 _bfd_elf_adjust_dynamic_symbol, 7290 &eif); 7291 if (eif.failed) 7292 return false; 7293 7294 /* Add some entries to the .dynamic section. We fill in some of the 7295 values later, in bfd_elf_final_link, but we must add the entries 7296 now so that we know the final size of the .dynamic section. */ 7297 7298 /* If there are initialization and/or finalization functions to 7299 call then add the corresponding DT_INIT/DT_FINI entries. */ 7300 h = (info->init_function 7301 ? elf_link_hash_lookup (elf_hash_table (info), 7302 info->init_function, false, 7303 false, false) 7304 : NULL); 7305 if (h != NULL 7306 && (h->ref_regular 7307 || h->def_regular)) 7308 { 7309 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0)) 7310 return false; 7311 } 7312 h = (info->fini_function 7313 ? elf_link_hash_lookup (elf_hash_table (info), 7314 info->fini_function, false, 7315 false, false) 7316 : NULL); 7317 if (h != NULL 7318 && (h->ref_regular 7319 || h->def_regular)) 7320 { 7321 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0)) 7322 return false; 7323 } 7324 7325 s = bfd_get_section_by_name (output_bfd, ".preinit_array"); 7326 if (s != NULL && s->linker_has_input) 7327 { 7328 /* DT_PREINIT_ARRAY is not allowed in shared library. */ 7329 if (! bfd_link_executable (info)) 7330 { 7331 bfd *sub; 7332 asection *o; 7333 7334 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 7335 if (bfd_get_flavour (sub) == bfd_target_elf_flavour 7336 && (o = sub->sections) != NULL 7337 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS) 7338 for (o = sub->sections; o != NULL; o = o->next) 7339 if (elf_section_data (o)->this_hdr.sh_type 7340 == SHT_PREINIT_ARRAY) 7341 { 7342 _bfd_error_handler 7343 (_("%pB: .preinit_array section is not allowed in DSO"), 7344 sub); 7345 break; 7346 } 7347 7348 bfd_set_error (bfd_error_nonrepresentable_section); 7349 return false; 7350 } 7351 7352 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0) 7353 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0)) 7354 return false; 7355 } 7356 s = bfd_get_section_by_name (output_bfd, ".init_array"); 7357 if (s != NULL && s->linker_has_input) 7358 { 7359 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0) 7360 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0)) 7361 return false; 7362 } 7363 s = bfd_get_section_by_name (output_bfd, ".fini_array"); 7364 if (s != NULL && s->linker_has_input) 7365 { 7366 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0) 7367 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0)) 7368 return false; 7369 } 7370 7371 dynstr = bfd_get_linker_section (dynobj, ".dynstr"); 7372 /* If .dynstr is excluded from the link, we don't want any of 7373 these tags. Strictly, we should be checking each section 7374 individually; This quick check covers for the case where 7375 someone does a /DISCARD/ : { *(*) }. */ 7376 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr) 7377 { 7378 bfd_size_type strsize; 7379 7380 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); 7381 if ((info->emit_hash 7382 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)) 7383 || (info->emit_gnu_hash 7384 && (bed->record_xhash_symbol == NULL 7385 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))) 7386 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0) 7387 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0) 7388 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize) 7389 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT, 7390 bed->s->sizeof_sym) 7391 || (info->gnu_flags_1 7392 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_FLAGS_1, 7393 info->gnu_flags_1))) 7394 return false; 7395 } 7396 } 7397 7398 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info)) 7399 return false; 7400 7401 /* The backend must work out the sizes of all the other dynamic 7402 sections. */ 7403 if (dynobj != NULL 7404 && bed->elf_backend_size_dynamic_sections != NULL 7405 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) 7406 return false; 7407 7408 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) 7409 { 7410 if (elf_tdata (output_bfd)->cverdefs) 7411 { 7412 unsigned int crefs = elf_tdata (output_bfd)->cverdefs; 7413 7414 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0) 7415 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs)) 7416 return false; 7417 } 7418 7419 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS)) 7420 { 7421 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags)) 7422 return false; 7423 } 7424 else if (info->flags & DF_BIND_NOW) 7425 { 7426 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0)) 7427 return false; 7428 } 7429 7430 if (info->flags_1) 7431 { 7432 if (bfd_link_executable (info)) 7433 info->flags_1 &= ~ (DF_1_INITFIRST 7434 | DF_1_NODELETE 7435 | DF_1_NOOPEN); 7436 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1)) 7437 return false; 7438 } 7439 7440 if (elf_tdata (output_bfd)->cverrefs) 7441 { 7442 unsigned int crefs = elf_tdata (output_bfd)->cverrefs; 7443 7444 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0) 7445 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs)) 7446 return false; 7447 } 7448 7449 if ((elf_tdata (output_bfd)->cverrefs == 0 7450 && elf_tdata (output_bfd)->cverdefs == 0) 7451 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1) 7452 { 7453 asection *s; 7454 7455 s = bfd_get_linker_section (dynobj, ".gnu.version"); 7456 s->flags |= SEC_EXCLUDE; 7457 } 7458 } 7459 return true; 7460 } 7461 7462 /* Find the first non-excluded output section. We'll use its 7463 section symbol for some emitted relocs. */ 7464 void 7465 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info) 7466 { 7467 asection *s; 7468 asection *found = NULL; 7469 7470 for (s = output_bfd->sections; s != NULL; s = s->next) 7471 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC 7472 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) 7473 { 7474 found = s; 7475 if ((s->flags & SEC_THREAD_LOCAL) == 0) 7476 break; 7477 } 7478 elf_hash_table (info)->text_index_section = found; 7479 } 7480 7481 /* Find two non-excluded output sections, one for code, one for data. 7482 We'll use their section symbols for some emitted relocs. */ 7483 void 7484 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info) 7485 { 7486 asection *s; 7487 asection *found = NULL; 7488 7489 /* Data first, since setting text_index_section changes 7490 _bfd_elf_omit_section_dynsym_default. */ 7491 for (s = output_bfd->sections; s != NULL; s = s->next) 7492 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC 7493 && !(s->flags & SEC_READONLY) 7494 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) 7495 { 7496 found = s; 7497 if ((s->flags & SEC_THREAD_LOCAL) == 0) 7498 break; 7499 } 7500 elf_hash_table (info)->data_index_section = found; 7501 7502 for (s = output_bfd->sections; s != NULL; s = s->next) 7503 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC 7504 && (s->flags & SEC_READONLY) 7505 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) 7506 { 7507 found = s; 7508 break; 7509 } 7510 elf_hash_table (info)->text_index_section = found; 7511 } 7512 7513 #define GNU_HASH_SECTION_NAME(bed) \ 7514 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash" 7515 7516 bool 7517 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info) 7518 { 7519 const struct elf_backend_data *bed; 7520 unsigned long section_sym_count; 7521 bfd_size_type dynsymcount = 0; 7522 7523 if (!is_elf_hash_table (info->hash)) 7524 return true; 7525 7526 bed = get_elf_backend_data (output_bfd); 7527 (*bed->elf_backend_init_index_section) (output_bfd, info); 7528 7529 /* Assign dynsym indices. In a shared library we generate a section 7530 symbol for each output section, which come first. Next come all 7531 of the back-end allocated local dynamic syms, followed by the rest 7532 of the global symbols. 7533 7534 This is usually not needed for static binaries, however backends 7535 can request to always do it, e.g. the MIPS backend uses dynamic 7536 symbol counts to lay out GOT, which will be produced in the 7537 presence of GOT relocations even in static binaries (holding fixed 7538 data in that case, to satisfy those relocations). */ 7539 7540 if (elf_hash_table (info)->dynamic_sections_created 7541 || bed->always_renumber_dynsyms) 7542 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info, 7543 §ion_sym_count); 7544 7545 if (elf_hash_table (info)->dynamic_sections_created) 7546 { 7547 bfd *dynobj; 7548 asection *s; 7549 unsigned int dtagcount; 7550 7551 dynobj = elf_hash_table (info)->dynobj; 7552 7553 /* Work out the size of the symbol version section. */ 7554 s = bfd_get_linker_section (dynobj, ".gnu.version"); 7555 BFD_ASSERT (s != NULL); 7556 if ((s->flags & SEC_EXCLUDE) == 0) 7557 { 7558 s->size = dynsymcount * sizeof (Elf_External_Versym); 7559 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); 7560 if (s->contents == NULL) 7561 return false; 7562 7563 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0)) 7564 return false; 7565 } 7566 7567 /* Set the size of the .dynsym and .hash sections. We counted 7568 the number of dynamic symbols in elf_link_add_object_symbols. 7569 We will build the contents of .dynsym and .hash when we build 7570 the final symbol table, because until then we do not know the 7571 correct value to give the symbols. We built the .dynstr 7572 section as we went along in elf_link_add_object_symbols. */ 7573 s = elf_hash_table (info)->dynsym; 7574 BFD_ASSERT (s != NULL); 7575 s->size = dynsymcount * bed->s->sizeof_sym; 7576 7577 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); 7578 if (s->contents == NULL) 7579 return false; 7580 7581 /* The first entry in .dynsym is a dummy symbol. Clear all the 7582 section syms, in case we don't output them all. */ 7583 ++section_sym_count; 7584 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym); 7585 7586 elf_hash_table (info)->bucketcount = 0; 7587 7588 /* Compute the size of the hashing table. As a side effect this 7589 computes the hash values for all the names we export. */ 7590 if (info->emit_hash) 7591 { 7592 unsigned long int *hashcodes; 7593 struct hash_codes_info hashinf; 7594 bfd_size_type amt; 7595 unsigned long int nsyms; 7596 size_t bucketcount; 7597 size_t hash_entry_size; 7598 7599 /* Compute the hash values for all exported symbols. At the same 7600 time store the values in an array so that we could use them for 7601 optimizations. */ 7602 amt = dynsymcount * sizeof (unsigned long int); 7603 hashcodes = (unsigned long int *) bfd_malloc (amt); 7604 if (hashcodes == NULL) 7605 return false; 7606 hashinf.hashcodes = hashcodes; 7607 hashinf.error = false; 7608 7609 /* Put all hash values in HASHCODES. */ 7610 elf_link_hash_traverse (elf_hash_table (info), 7611 elf_collect_hash_codes, &hashinf); 7612 if (hashinf.error) 7613 { 7614 free (hashcodes); 7615 return false; 7616 } 7617 7618 nsyms = hashinf.hashcodes - hashcodes; 7619 bucketcount 7620 = compute_bucket_count (info, hashcodes, nsyms, 0); 7621 free (hashcodes); 7622 7623 if (bucketcount == 0 && nsyms > 0) 7624 return false; 7625 7626 elf_hash_table (info)->bucketcount = bucketcount; 7627 7628 s = bfd_get_linker_section (dynobj, ".hash"); 7629 BFD_ASSERT (s != NULL); 7630 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize; 7631 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size); 7632 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); 7633 if (s->contents == NULL) 7634 return false; 7635 7636 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents); 7637 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount, 7638 s->contents + hash_entry_size); 7639 } 7640 7641 if (info->emit_gnu_hash) 7642 { 7643 size_t i, cnt; 7644 unsigned char *contents; 7645 struct collect_gnu_hash_codes cinfo; 7646 bfd_size_type amt; 7647 size_t bucketcount; 7648 7649 memset (&cinfo, 0, sizeof (cinfo)); 7650 7651 /* Compute the hash values for all exported symbols. At the same 7652 time store the values in an array so that we could use them for 7653 optimizations. */ 7654 amt = dynsymcount * 2 * sizeof (unsigned long int); 7655 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt); 7656 if (cinfo.hashcodes == NULL) 7657 return false; 7658 7659 cinfo.hashval = cinfo.hashcodes + dynsymcount; 7660 cinfo.min_dynindx = -1; 7661 cinfo.output_bfd = output_bfd; 7662 cinfo.bed = bed; 7663 7664 /* Put all hash values in HASHCODES. */ 7665 elf_link_hash_traverse (elf_hash_table (info), 7666 elf_collect_gnu_hash_codes, &cinfo); 7667 if (cinfo.error) 7668 { 7669 free (cinfo.hashcodes); 7670 return false; 7671 } 7672 7673 bucketcount 7674 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1); 7675 7676 if (bucketcount == 0) 7677 { 7678 free (cinfo.hashcodes); 7679 return false; 7680 } 7681 7682 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed)); 7683 BFD_ASSERT (s != NULL); 7684 7685 if (cinfo.nsyms == 0) 7686 { 7687 /* Empty .gnu.hash or .MIPS.xhash section is special. */ 7688 BFD_ASSERT (cinfo.min_dynindx == -1); 7689 free (cinfo.hashcodes); 7690 s->size = 5 * 4 + bed->s->arch_size / 8; 7691 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); 7692 if (contents == NULL) 7693 return false; 7694 s->contents = contents; 7695 /* 1 empty bucket. */ 7696 bfd_put_32 (output_bfd, 1, contents); 7697 /* SYMIDX above the special symbol 0. */ 7698 bfd_put_32 (output_bfd, 1, contents + 4); 7699 /* Just one word for bitmask. */ 7700 bfd_put_32 (output_bfd, 1, contents + 8); 7701 /* Only hash fn bloom filter. */ 7702 bfd_put_32 (output_bfd, 0, contents + 12); 7703 /* No hashes are valid - empty bitmask. */ 7704 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16); 7705 /* No hashes in the only bucket. */ 7706 bfd_put_32 (output_bfd, 0, 7707 contents + 16 + bed->s->arch_size / 8); 7708 } 7709 else 7710 { 7711 unsigned long int maskwords, maskbitslog2, x; 7712 BFD_ASSERT (cinfo.min_dynindx != -1); 7713 7714 x = cinfo.nsyms; 7715 maskbitslog2 = 1; 7716 while ((x >>= 1) != 0) 7717 ++maskbitslog2; 7718 if (maskbitslog2 < 3) 7719 maskbitslog2 = 5; 7720 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms) 7721 maskbitslog2 = maskbitslog2 + 3; 7722 else 7723 maskbitslog2 = maskbitslog2 + 2; 7724 if (bed->s->arch_size == 64) 7725 { 7726 if (maskbitslog2 == 5) 7727 maskbitslog2 = 6; 7728 cinfo.shift1 = 6; 7729 } 7730 else 7731 cinfo.shift1 = 5; 7732 cinfo.mask = (1 << cinfo.shift1) - 1; 7733 cinfo.shift2 = maskbitslog2; 7734 cinfo.maskbits = 1 << maskbitslog2; 7735 maskwords = 1 << (maskbitslog2 - cinfo.shift1); 7736 amt = bucketcount * sizeof (unsigned long int) * 2; 7737 amt += maskwords * sizeof (bfd_vma); 7738 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt); 7739 if (cinfo.bitmask == NULL) 7740 { 7741 free (cinfo.hashcodes); 7742 return false; 7743 } 7744 7745 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords); 7746 cinfo.indx = cinfo.counts + bucketcount; 7747 cinfo.symindx = dynsymcount - cinfo.nsyms; 7748 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma)); 7749 7750 /* Determine how often each hash bucket is used. */ 7751 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0])); 7752 for (i = 0; i < cinfo.nsyms; ++i) 7753 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount]; 7754 7755 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i) 7756 if (cinfo.counts[i] != 0) 7757 { 7758 cinfo.indx[i] = cnt; 7759 cnt += cinfo.counts[i]; 7760 } 7761 BFD_ASSERT (cnt == dynsymcount); 7762 cinfo.bucketcount = bucketcount; 7763 cinfo.local_indx = cinfo.min_dynindx; 7764 7765 s->size = (4 + bucketcount + cinfo.nsyms) * 4; 7766 s->size += cinfo.maskbits / 8; 7767 if (bed->record_xhash_symbol != NULL) 7768 s->size += cinfo.nsyms * 4; 7769 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); 7770 if (contents == NULL) 7771 { 7772 free (cinfo.bitmask); 7773 free (cinfo.hashcodes); 7774 return false; 7775 } 7776 7777 s->contents = contents; 7778 bfd_put_32 (output_bfd, bucketcount, contents); 7779 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4); 7780 bfd_put_32 (output_bfd, maskwords, contents + 8); 7781 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12); 7782 contents += 16 + cinfo.maskbits / 8; 7783 7784 for (i = 0; i < bucketcount; ++i) 7785 { 7786 if (cinfo.counts[i] == 0) 7787 bfd_put_32 (output_bfd, 0, contents); 7788 else 7789 bfd_put_32 (output_bfd, cinfo.indx[i], contents); 7790 contents += 4; 7791 } 7792 7793 cinfo.contents = contents; 7794 7795 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents; 7796 /* Renumber dynamic symbols, if populating .gnu.hash section. 7797 If using .MIPS.xhash, populate the translation table. */ 7798 elf_link_hash_traverse (elf_hash_table (info), 7799 elf_gnu_hash_process_symidx, &cinfo); 7800 7801 contents = s->contents + 16; 7802 for (i = 0; i < maskwords; ++i) 7803 { 7804 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i], 7805 contents); 7806 contents += bed->s->arch_size / 8; 7807 } 7808 7809 free (cinfo.bitmask); 7810 free (cinfo.hashcodes); 7811 } 7812 } 7813 7814 s = bfd_get_linker_section (dynobj, ".dynstr"); 7815 BFD_ASSERT (s != NULL); 7816 7817 elf_finalize_dynstr (output_bfd, info); 7818 7819 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); 7820 7821 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount) 7822 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0)) 7823 return false; 7824 } 7825 7826 return true; 7827 } 7828 7829 /* Make sure sec_info_type is cleared if sec_info is cleared too. */ 7830 7831 static void 7832 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED, 7833 asection *sec) 7834 { 7835 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE); 7836 sec->sec_info_type = SEC_INFO_TYPE_NONE; 7837 } 7838 7839 /* Finish SHF_MERGE section merging. */ 7840 7841 bool 7842 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info) 7843 { 7844 bfd *ibfd; 7845 asection *sec; 7846 7847 if (!is_elf_hash_table (info->hash)) 7848 return false; 7849 7850 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 7851 if ((ibfd->flags & DYNAMIC) == 0 7852 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour 7853 && (elf_elfheader (ibfd)->e_ident[EI_CLASS] 7854 == get_elf_backend_data (obfd)->s->elfclass)) 7855 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 7856 if ((sec->flags & SEC_MERGE) != 0 7857 && !bfd_is_abs_section (sec->output_section)) 7858 { 7859 struct bfd_elf_section_data *secdata; 7860 7861 secdata = elf_section_data (sec); 7862 if (! _bfd_add_merge_section (obfd, 7863 &elf_hash_table (info)->merge_info, 7864 sec, &secdata->sec_info)) 7865 return false; 7866 else if (secdata->sec_info) 7867 sec->sec_info_type = SEC_INFO_TYPE_MERGE; 7868 } 7869 7870 if (elf_hash_table (info)->merge_info != NULL) 7871 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info, 7872 merge_sections_remove_hook); 7873 return true; 7874 } 7875 7876 /* Create an entry in an ELF linker hash table. */ 7877 7878 struct bfd_hash_entry * 7879 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry, 7880 struct bfd_hash_table *table, 7881 const char *string) 7882 { 7883 /* Allocate the structure if it has not already been allocated by a 7884 subclass. */ 7885 if (entry == NULL) 7886 { 7887 entry = (struct bfd_hash_entry *) 7888 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry)); 7889 if (entry == NULL) 7890 return entry; 7891 } 7892 7893 /* Call the allocation method of the superclass. */ 7894 entry = _bfd_link_hash_newfunc (entry, table, string); 7895 if (entry != NULL) 7896 { 7897 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry; 7898 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table; 7899 7900 /* Set local fields. */ 7901 ret->indx = -1; 7902 ret->dynindx = -1; 7903 ret->got = htab->init_got_refcount; 7904 ret->plt = htab->init_plt_refcount; 7905 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry) 7906 - offsetof (struct elf_link_hash_entry, size))); 7907 /* Assume that we have been called by a non-ELF symbol reader. 7908 This flag is then reset by the code which reads an ELF input 7909 file. This ensures that a symbol created by a non-ELF symbol 7910 reader will have the flag set correctly. */ 7911 ret->non_elf = 1; 7912 } 7913 7914 return entry; 7915 } 7916 7917 /* Copy data from an indirect symbol to its direct symbol, hiding the 7918 old indirect symbol. Also used for copying flags to a weakdef. */ 7919 7920 void 7921 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info, 7922 struct elf_link_hash_entry *dir, 7923 struct elf_link_hash_entry *ind) 7924 { 7925 struct elf_link_hash_table *htab; 7926 7927 if (ind->dyn_relocs != NULL) 7928 { 7929 if (dir->dyn_relocs != NULL) 7930 { 7931 struct elf_dyn_relocs **pp; 7932 struct elf_dyn_relocs *p; 7933 7934 /* Add reloc counts against the indirect sym to the direct sym 7935 list. Merge any entries against the same section. */ 7936 for (pp = &ind->dyn_relocs; (p = *pp) != NULL; ) 7937 { 7938 struct elf_dyn_relocs *q; 7939 7940 for (q = dir->dyn_relocs; q != NULL; q = q->next) 7941 if (q->sec == p->sec) 7942 { 7943 q->pc_count += p->pc_count; 7944 q->count += p->count; 7945 *pp = p->next; 7946 break; 7947 } 7948 if (q == NULL) 7949 pp = &p->next; 7950 } 7951 *pp = dir->dyn_relocs; 7952 } 7953 7954 dir->dyn_relocs = ind->dyn_relocs; 7955 ind->dyn_relocs = NULL; 7956 } 7957 7958 /* Copy down any references that we may have already seen to the 7959 symbol which just became indirect. */ 7960 7961 if (dir->versioned != versioned_hidden) 7962 dir->ref_dynamic |= ind->ref_dynamic; 7963 dir->ref_regular |= ind->ref_regular; 7964 dir->ref_regular_nonweak |= ind->ref_regular_nonweak; 7965 dir->non_got_ref |= ind->non_got_ref; 7966 dir->needs_plt |= ind->needs_plt; 7967 dir->pointer_equality_needed |= ind->pointer_equality_needed; 7968 7969 if (ind->root.type != bfd_link_hash_indirect) 7970 return; 7971 7972 /* Copy over the global and procedure linkage table refcount entries. 7973 These may have been already set up by a check_relocs routine. */ 7974 htab = elf_hash_table (info); 7975 if (ind->got.refcount > htab->init_got_refcount.refcount) 7976 { 7977 if (dir->got.refcount < 0) 7978 dir->got.refcount = 0; 7979 dir->got.refcount += ind->got.refcount; 7980 ind->got.refcount = htab->init_got_refcount.refcount; 7981 } 7982 7983 if (ind->plt.refcount > htab->init_plt_refcount.refcount) 7984 { 7985 if (dir->plt.refcount < 0) 7986 dir->plt.refcount = 0; 7987 dir->plt.refcount += ind->plt.refcount; 7988 ind->plt.refcount = htab->init_plt_refcount.refcount; 7989 } 7990 7991 if (ind->dynindx != -1) 7992 { 7993 if (dir->dynindx != -1) 7994 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index); 7995 dir->dynindx = ind->dynindx; 7996 dir->dynstr_index = ind->dynstr_index; 7997 ind->dynindx = -1; 7998 ind->dynstr_index = 0; 7999 } 8000 } 8001 8002 void 8003 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info, 8004 struct elf_link_hash_entry *h, 8005 bool force_local) 8006 { 8007 /* STT_GNU_IFUNC symbol must go through PLT. */ 8008 if (h->type != STT_GNU_IFUNC) 8009 { 8010 h->plt = elf_hash_table (info)->init_plt_offset; 8011 h->needs_plt = 0; 8012 } 8013 if (force_local) 8014 { 8015 h->forced_local = 1; 8016 if (h->dynindx != -1) 8017 { 8018 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, 8019 h->dynstr_index); 8020 h->dynindx = -1; 8021 h->dynstr_index = 0; 8022 } 8023 } 8024 } 8025 8026 /* Hide a symbol. */ 8027 8028 void 8029 _bfd_elf_link_hide_symbol (bfd *output_bfd, 8030 struct bfd_link_info *info, 8031 struct bfd_link_hash_entry *h) 8032 { 8033 if (is_elf_hash_table (info->hash)) 8034 { 8035 const struct elf_backend_data *bed 8036 = get_elf_backend_data (output_bfd); 8037 struct elf_link_hash_entry *eh 8038 = (struct elf_link_hash_entry *) h; 8039 bed->elf_backend_hide_symbol (info, eh, true); 8040 eh->def_dynamic = 0; 8041 eh->ref_dynamic = 0; 8042 eh->dynamic_def = 0; 8043 } 8044 } 8045 8046 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our 8047 caller. */ 8048 8049 bool 8050 _bfd_elf_link_hash_table_init 8051 (struct elf_link_hash_table *table, 8052 bfd *abfd, 8053 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, 8054 struct bfd_hash_table *, 8055 const char *), 8056 unsigned int entsize, 8057 enum elf_target_id target_id) 8058 { 8059 bool ret; 8060 int can_refcount = get_elf_backend_data (abfd)->can_refcount; 8061 8062 table->init_got_refcount.refcount = can_refcount - 1; 8063 table->init_plt_refcount.refcount = can_refcount - 1; 8064 table->init_got_offset.offset = -(bfd_vma) 1; 8065 table->init_plt_offset.offset = -(bfd_vma) 1; 8066 /* The first dynamic symbol is a dummy. */ 8067 table->dynsymcount = 1; 8068 8069 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize); 8070 8071 table->root.type = bfd_link_elf_hash_table; 8072 table->hash_table_id = target_id; 8073 table->target_os = get_elf_backend_data (abfd)->target_os; 8074 8075 return ret; 8076 } 8077 8078 /* Create an ELF linker hash table. */ 8079 8080 struct bfd_link_hash_table * 8081 _bfd_elf_link_hash_table_create (bfd *abfd) 8082 { 8083 struct elf_link_hash_table *ret; 8084 size_t amt = sizeof (struct elf_link_hash_table); 8085 8086 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt); 8087 if (ret == NULL) 8088 return NULL; 8089 8090 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc, 8091 sizeof (struct elf_link_hash_entry), 8092 GENERIC_ELF_DATA)) 8093 { 8094 free (ret); 8095 return NULL; 8096 } 8097 ret->root.hash_table_free = _bfd_elf_link_hash_table_free; 8098 8099 return &ret->root; 8100 } 8101 8102 /* Destroy an ELF linker hash table. */ 8103 8104 void 8105 _bfd_elf_link_hash_table_free (bfd *obfd) 8106 { 8107 struct elf_link_hash_table *htab; 8108 8109 htab = (struct elf_link_hash_table *) obfd->link.hash; 8110 if (htab->dynstr != NULL) 8111 _bfd_elf_strtab_free (htab->dynstr); 8112 _bfd_merge_sections_free (htab->merge_info); 8113 _bfd_generic_link_hash_table_free (obfd); 8114 } 8115 8116 /* This is a hook for the ELF emulation code in the generic linker to 8117 tell the backend linker what file name to use for the DT_NEEDED 8118 entry for a dynamic object. */ 8119 8120 void 8121 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name) 8122 { 8123 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour 8124 && bfd_get_format (abfd) == bfd_object) 8125 elf_dt_name (abfd) = name; 8126 } 8127 8128 int 8129 bfd_elf_get_dyn_lib_class (bfd *abfd) 8130 { 8131 int lib_class; 8132 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour 8133 && bfd_get_format (abfd) == bfd_object) 8134 lib_class = elf_dyn_lib_class (abfd); 8135 else 8136 lib_class = 0; 8137 return lib_class; 8138 } 8139 8140 void 8141 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class) 8142 { 8143 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour 8144 && bfd_get_format (abfd) == bfd_object) 8145 elf_dyn_lib_class (abfd) = lib_class; 8146 } 8147 8148 /* Get the list of DT_NEEDED entries for a link. This is a hook for 8149 the linker ELF emulation code. */ 8150 8151 struct bfd_link_needed_list * 8152 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED, 8153 struct bfd_link_info *info) 8154 { 8155 if (! is_elf_hash_table (info->hash)) 8156 return NULL; 8157 return elf_hash_table (info)->needed; 8158 } 8159 8160 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a 8161 hook for the linker ELF emulation code. */ 8162 8163 struct bfd_link_needed_list * 8164 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED, 8165 struct bfd_link_info *info) 8166 { 8167 if (! is_elf_hash_table (info->hash)) 8168 return NULL; 8169 return elf_hash_table (info)->runpath; 8170 } 8171 8172 /* Get the name actually used for a dynamic object for a link. This 8173 is the SONAME entry if there is one. Otherwise, it is the string 8174 passed to bfd_elf_set_dt_needed_name, or it is the filename. */ 8175 8176 const char * 8177 bfd_elf_get_dt_soname (bfd *abfd) 8178 { 8179 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour 8180 && bfd_get_format (abfd) == bfd_object) 8181 return elf_dt_name (abfd); 8182 return NULL; 8183 } 8184 8185 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for 8186 the ELF linker emulation code. */ 8187 8188 bool 8189 bfd_elf_get_bfd_needed_list (bfd *abfd, 8190 struct bfd_link_needed_list **pneeded) 8191 { 8192 asection *s; 8193 bfd_byte *dynbuf = NULL; 8194 unsigned int elfsec; 8195 unsigned long shlink; 8196 bfd_byte *extdyn, *extdynend; 8197 size_t extdynsize; 8198 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); 8199 8200 *pneeded = NULL; 8201 8202 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour 8203 || bfd_get_format (abfd) != bfd_object) 8204 return true; 8205 8206 s = bfd_get_section_by_name (abfd, ".dynamic"); 8207 if (s == NULL || s->size == 0) 8208 return true; 8209 8210 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) 8211 goto error_return; 8212 8213 elfsec = _bfd_elf_section_from_bfd_section (abfd, s); 8214 if (elfsec == SHN_BAD) 8215 goto error_return; 8216 8217 shlink = elf_elfsections (abfd)[elfsec]->sh_link; 8218 8219 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; 8220 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; 8221 8222 for (extdyn = dynbuf, extdynend = dynbuf + s->size; 8223 (size_t) (extdynend - extdyn) >= extdynsize; 8224 extdyn += extdynsize) 8225 { 8226 Elf_Internal_Dyn dyn; 8227 8228 (*swap_dyn_in) (abfd, extdyn, &dyn); 8229 8230 if (dyn.d_tag == DT_NULL) 8231 break; 8232 8233 if (dyn.d_tag == DT_NEEDED) 8234 { 8235 const char *string; 8236 struct bfd_link_needed_list *l; 8237 unsigned int tagv = dyn.d_un.d_val; 8238 size_t amt; 8239 8240 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 8241 if (string == NULL) 8242 goto error_return; 8243 8244 amt = sizeof *l; 8245 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); 8246 if (l == NULL) 8247 goto error_return; 8248 8249 l->by = abfd; 8250 l->name = string; 8251 l->next = *pneeded; 8252 *pneeded = l; 8253 } 8254 } 8255 8256 free (dynbuf); 8257 8258 return true; 8259 8260 error_return: 8261 free (dynbuf); 8262 return false; 8263 } 8264 8265 struct elf_symbuf_symbol 8266 { 8267 unsigned long st_name; /* Symbol name, index in string tbl */ 8268 unsigned char st_info; /* Type and binding attributes */ 8269 unsigned char st_other; /* Visibilty, and target specific */ 8270 }; 8271 8272 struct elf_symbuf_head 8273 { 8274 struct elf_symbuf_symbol *ssym; 8275 size_t count; 8276 unsigned int st_shndx; 8277 }; 8278 8279 struct elf_symbol 8280 { 8281 union 8282 { 8283 Elf_Internal_Sym *isym; 8284 struct elf_symbuf_symbol *ssym; 8285 void *p; 8286 } u; 8287 const char *name; 8288 }; 8289 8290 /* Sort references to symbols by ascending section number. */ 8291 8292 static int 8293 elf_sort_elf_symbol (const void *arg1, const void *arg2) 8294 { 8295 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1; 8296 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2; 8297 8298 if (s1->st_shndx != s2->st_shndx) 8299 return s1->st_shndx > s2->st_shndx ? 1 : -1; 8300 /* Final sort by the address of the sym in the symbuf ensures 8301 a stable sort. */ 8302 if (s1 != s2) 8303 return s1 > s2 ? 1 : -1; 8304 return 0; 8305 } 8306 8307 static int 8308 elf_sym_name_compare (const void *arg1, const void *arg2) 8309 { 8310 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1; 8311 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2; 8312 int ret = strcmp (s1->name, s2->name); 8313 if (ret != 0) 8314 return ret; 8315 if (s1->u.p != s2->u.p) 8316 return s1->u.p > s2->u.p ? 1 : -1; 8317 return 0; 8318 } 8319 8320 static struct elf_symbuf_head * 8321 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf) 8322 { 8323 Elf_Internal_Sym **ind, **indbufend, **indbuf; 8324 struct elf_symbuf_symbol *ssym; 8325 struct elf_symbuf_head *ssymbuf, *ssymhead; 8326 size_t i, shndx_count, total_size, amt; 8327 8328 amt = symcount * sizeof (*indbuf); 8329 indbuf = (Elf_Internal_Sym **) bfd_malloc (amt); 8330 if (indbuf == NULL) 8331 return NULL; 8332 8333 for (ind = indbuf, i = 0; i < symcount; i++) 8334 if (isymbuf[i].st_shndx != SHN_UNDEF) 8335 *ind++ = &isymbuf[i]; 8336 indbufend = ind; 8337 8338 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *), 8339 elf_sort_elf_symbol); 8340 8341 shndx_count = 0; 8342 if (indbufend > indbuf) 8343 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++) 8344 if (ind[0]->st_shndx != ind[1]->st_shndx) 8345 shndx_count++; 8346 8347 total_size = ((shndx_count + 1) * sizeof (*ssymbuf) 8348 + (indbufend - indbuf) * sizeof (*ssym)); 8349 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size); 8350 if (ssymbuf == NULL) 8351 { 8352 free (indbuf); 8353 return NULL; 8354 } 8355 8356 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1); 8357 ssymbuf->ssym = NULL; 8358 ssymbuf->count = shndx_count; 8359 ssymbuf->st_shndx = 0; 8360 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++) 8361 { 8362 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx) 8363 { 8364 ssymhead++; 8365 ssymhead->ssym = ssym; 8366 ssymhead->count = 0; 8367 ssymhead->st_shndx = (*ind)->st_shndx; 8368 } 8369 ssym->st_name = (*ind)->st_name; 8370 ssym->st_info = (*ind)->st_info; 8371 ssym->st_other = (*ind)->st_other; 8372 ssymhead->count++; 8373 } 8374 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count 8375 && (uintptr_t) ssym - (uintptr_t) ssymbuf == total_size); 8376 8377 free (indbuf); 8378 return ssymbuf; 8379 } 8380 8381 /* Check if 2 sections define the same set of local and global 8382 symbols. */ 8383 8384 static bool 8385 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2, 8386 struct bfd_link_info *info) 8387 { 8388 bfd *bfd1, *bfd2; 8389 const struct elf_backend_data *bed1, *bed2; 8390 Elf_Internal_Shdr *hdr1, *hdr2; 8391 size_t symcount1, symcount2; 8392 Elf_Internal_Sym *isymbuf1, *isymbuf2; 8393 struct elf_symbuf_head *ssymbuf1, *ssymbuf2; 8394 Elf_Internal_Sym *isym, *isymend; 8395 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL; 8396 size_t count1, count2, sec_count1, sec_count2, i; 8397 unsigned int shndx1, shndx2; 8398 bool result; 8399 bool ignore_section_symbol_p; 8400 8401 bfd1 = sec1->owner; 8402 bfd2 = sec2->owner; 8403 8404 /* Both sections have to be in ELF. */ 8405 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour 8406 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour) 8407 return false; 8408 8409 if (elf_section_type (sec1) != elf_section_type (sec2)) 8410 return false; 8411 8412 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1); 8413 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2); 8414 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD) 8415 return false; 8416 8417 bed1 = get_elf_backend_data (bfd1); 8418 bed2 = get_elf_backend_data (bfd2); 8419 hdr1 = &elf_tdata (bfd1)->symtab_hdr; 8420 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym; 8421 hdr2 = &elf_tdata (bfd2)->symtab_hdr; 8422 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym; 8423 8424 if (symcount1 == 0 || symcount2 == 0) 8425 return false; 8426 8427 result = false; 8428 isymbuf1 = NULL; 8429 isymbuf2 = NULL; 8430 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf; 8431 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf; 8432 8433 /* Ignore section symbols only when matching non-debugging sections 8434 or linkonce section with comdat section. */ 8435 ignore_section_symbol_p 8436 = ((sec1->flags & SEC_DEBUGGING) == 0 8437 || ((elf_section_flags (sec1) & SHF_GROUP) 8438 != (elf_section_flags (sec2) & SHF_GROUP))); 8439 8440 if (ssymbuf1 == NULL) 8441 { 8442 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0, 8443 NULL, NULL, NULL); 8444 if (isymbuf1 == NULL) 8445 goto done; 8446 8447 if (info != NULL && !info->reduce_memory_overheads) 8448 { 8449 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1); 8450 elf_tdata (bfd1)->symbuf = ssymbuf1; 8451 } 8452 } 8453 8454 if (ssymbuf1 == NULL || ssymbuf2 == NULL) 8455 { 8456 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0, 8457 NULL, NULL, NULL); 8458 if (isymbuf2 == NULL) 8459 goto done; 8460 8461 if (ssymbuf1 != NULL && info != NULL && !info->reduce_memory_overheads) 8462 { 8463 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2); 8464 elf_tdata (bfd2)->symbuf = ssymbuf2; 8465 } 8466 } 8467 8468 if (ssymbuf1 != NULL && ssymbuf2 != NULL) 8469 { 8470 /* Optimized faster version. */ 8471 size_t lo, hi, mid; 8472 struct elf_symbol *symp; 8473 struct elf_symbuf_symbol *ssym, *ssymend; 8474 8475 lo = 0; 8476 hi = ssymbuf1->count; 8477 ssymbuf1++; 8478 count1 = 0; 8479 sec_count1 = 0; 8480 while (lo < hi) 8481 { 8482 mid = (lo + hi) / 2; 8483 if (shndx1 < ssymbuf1[mid].st_shndx) 8484 hi = mid; 8485 else if (shndx1 > ssymbuf1[mid].st_shndx) 8486 lo = mid + 1; 8487 else 8488 { 8489 count1 = ssymbuf1[mid].count; 8490 ssymbuf1 += mid; 8491 break; 8492 } 8493 } 8494 if (ignore_section_symbol_p) 8495 { 8496 for (i = 0; i < count1; i++) 8497 if (ELF_ST_TYPE (ssymbuf1->ssym[i].st_info) == STT_SECTION) 8498 sec_count1++; 8499 count1 -= sec_count1; 8500 } 8501 8502 lo = 0; 8503 hi = ssymbuf2->count; 8504 ssymbuf2++; 8505 count2 = 0; 8506 sec_count2 = 0; 8507 while (lo < hi) 8508 { 8509 mid = (lo + hi) / 2; 8510 if (shndx2 < ssymbuf2[mid].st_shndx) 8511 hi = mid; 8512 else if (shndx2 > ssymbuf2[mid].st_shndx) 8513 lo = mid + 1; 8514 else 8515 { 8516 count2 = ssymbuf2[mid].count; 8517 ssymbuf2 += mid; 8518 break; 8519 } 8520 } 8521 if (ignore_section_symbol_p) 8522 { 8523 for (i = 0; i < count2; i++) 8524 if (ELF_ST_TYPE (ssymbuf2->ssym[i].st_info) == STT_SECTION) 8525 sec_count2++; 8526 count2 -= sec_count2; 8527 } 8528 8529 if (count1 == 0 || count2 == 0 || count1 != count2) 8530 goto done; 8531 8532 symtable1 8533 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1)); 8534 symtable2 8535 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2)); 8536 if (symtable1 == NULL || symtable2 == NULL) 8537 goto done; 8538 8539 symp = symtable1; 8540 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1 + sec_count1; 8541 ssym < ssymend; ssym++) 8542 if (sec_count1 == 0 8543 || ELF_ST_TYPE (ssym->st_info) != STT_SECTION) 8544 { 8545 symp->u.ssym = ssym; 8546 symp->name = bfd_elf_string_from_elf_section (bfd1, 8547 hdr1->sh_link, 8548 ssym->st_name); 8549 symp++; 8550 } 8551 8552 symp = symtable2; 8553 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2 + sec_count2; 8554 ssym < ssymend; ssym++) 8555 if (sec_count2 == 0 8556 || ELF_ST_TYPE (ssym->st_info) != STT_SECTION) 8557 { 8558 symp->u.ssym = ssym; 8559 symp->name = bfd_elf_string_from_elf_section (bfd2, 8560 hdr2->sh_link, 8561 ssym->st_name); 8562 symp++; 8563 } 8564 8565 /* Sort symbol by name. */ 8566 qsort (symtable1, count1, sizeof (struct elf_symbol), 8567 elf_sym_name_compare); 8568 qsort (symtable2, count1, sizeof (struct elf_symbol), 8569 elf_sym_name_compare); 8570 8571 for (i = 0; i < count1; i++) 8572 /* Two symbols must have the same binding, type and name. */ 8573 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info 8574 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other 8575 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) 8576 goto done; 8577 8578 result = true; 8579 goto done; 8580 } 8581 8582 symtable1 = (struct elf_symbol *) 8583 bfd_malloc (symcount1 * sizeof (struct elf_symbol)); 8584 symtable2 = (struct elf_symbol *) 8585 bfd_malloc (symcount2 * sizeof (struct elf_symbol)); 8586 if (symtable1 == NULL || symtable2 == NULL) 8587 goto done; 8588 8589 /* Count definitions in the section. */ 8590 count1 = 0; 8591 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++) 8592 if (isym->st_shndx == shndx1 8593 && (!ignore_section_symbol_p 8594 || ELF_ST_TYPE (isym->st_info) != STT_SECTION)) 8595 symtable1[count1++].u.isym = isym; 8596 8597 count2 = 0; 8598 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++) 8599 if (isym->st_shndx == shndx2 8600 && (!ignore_section_symbol_p 8601 || ELF_ST_TYPE (isym->st_info) != STT_SECTION)) 8602 symtable2[count2++].u.isym = isym; 8603 8604 if (count1 == 0 || count2 == 0 || count1 != count2) 8605 goto done; 8606 8607 for (i = 0; i < count1; i++) 8608 symtable1[i].name 8609 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link, 8610 symtable1[i].u.isym->st_name); 8611 8612 for (i = 0; i < count2; i++) 8613 symtable2[i].name 8614 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link, 8615 symtable2[i].u.isym->st_name); 8616 8617 /* Sort symbol by name. */ 8618 qsort (symtable1, count1, sizeof (struct elf_symbol), 8619 elf_sym_name_compare); 8620 qsort (symtable2, count1, sizeof (struct elf_symbol), 8621 elf_sym_name_compare); 8622 8623 for (i = 0; i < count1; i++) 8624 /* Two symbols must have the same binding, type and name. */ 8625 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info 8626 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other 8627 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) 8628 goto done; 8629 8630 result = true; 8631 8632 done: 8633 free (symtable1); 8634 free (symtable2); 8635 free (isymbuf1); 8636 free (isymbuf2); 8637 8638 return result; 8639 } 8640 8641 /* Return TRUE if 2 section types are compatible. */ 8642 8643 bool 8644 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec, 8645 bfd *bbfd, const asection *bsec) 8646 { 8647 if (asec == NULL 8648 || bsec == NULL 8649 || abfd->xvec->flavour != bfd_target_elf_flavour 8650 || bbfd->xvec->flavour != bfd_target_elf_flavour) 8651 return true; 8652 8653 return elf_section_type (asec) == elf_section_type (bsec); 8654 } 8655 8656 /* Final phase of ELF linker. */ 8657 8658 /* A structure we use to avoid passing large numbers of arguments. */ 8659 8660 struct elf_final_link_info 8661 { 8662 /* General link information. */ 8663 struct bfd_link_info *info; 8664 /* Output BFD. */ 8665 bfd *output_bfd; 8666 /* Symbol string table. */ 8667 struct elf_strtab_hash *symstrtab; 8668 /* .hash section. */ 8669 asection *hash_sec; 8670 /* symbol version section (.gnu.version). */ 8671 asection *symver_sec; 8672 /* Buffer large enough to hold contents of any section. */ 8673 bfd_byte *contents; 8674 /* Buffer large enough to hold external relocs of any section. */ 8675 void *external_relocs; 8676 /* Buffer large enough to hold internal relocs of any section. */ 8677 Elf_Internal_Rela *internal_relocs; 8678 /* Buffer large enough to hold external local symbols of any input 8679 BFD. */ 8680 bfd_byte *external_syms; 8681 /* And a buffer for symbol section indices. */ 8682 Elf_External_Sym_Shndx *locsym_shndx; 8683 /* Buffer large enough to hold internal local symbols of any input 8684 BFD. */ 8685 Elf_Internal_Sym *internal_syms; 8686 /* Array large enough to hold a symbol index for each local symbol 8687 of any input BFD. */ 8688 long *indices; 8689 /* Array large enough to hold a section pointer for each local 8690 symbol of any input BFD. */ 8691 asection **sections; 8692 /* Buffer for SHT_SYMTAB_SHNDX section. */ 8693 Elf_External_Sym_Shndx *symshndxbuf; 8694 /* Number of STT_FILE syms seen. */ 8695 size_t filesym_count; 8696 /* Local symbol hash table. */ 8697 struct bfd_hash_table local_hash_table; 8698 }; 8699 8700 struct local_hash_entry 8701 { 8702 /* Base hash table entry structure. */ 8703 struct bfd_hash_entry root; 8704 /* Size of the local symbol name. */ 8705 size_t size; 8706 /* Number of the duplicated local symbol names. */ 8707 long count; 8708 }; 8709 8710 /* Create an entry in the local symbol hash table. */ 8711 8712 static struct bfd_hash_entry * 8713 local_hash_newfunc (struct bfd_hash_entry *entry, 8714 struct bfd_hash_table *table, 8715 const char *string) 8716 { 8717 8718 /* Allocate the structure if it has not already been allocated by a 8719 subclass. */ 8720 if (entry == NULL) 8721 { 8722 entry = bfd_hash_allocate (table, 8723 sizeof (struct local_hash_entry)); 8724 if (entry == NULL) 8725 return entry; 8726 } 8727 8728 /* Call the allocation method of the superclass. */ 8729 entry = bfd_hash_newfunc (entry, table, string); 8730 if (entry != NULL) 8731 { 8732 ((struct local_hash_entry *) entry)->count = 0; 8733 ((struct local_hash_entry *) entry)->size = 0; 8734 } 8735 8736 return entry; 8737 } 8738 8739 /* This struct is used to pass information to elf_link_output_extsym. */ 8740 8741 struct elf_outext_info 8742 { 8743 bool failed; 8744 bool localsyms; 8745 bool file_sym_done; 8746 struct elf_final_link_info *flinfo; 8747 }; 8748 8749 8750 /* Support for evaluating a complex relocation. 8751 8752 Complex relocations are generalized, self-describing relocations. The 8753 implementation of them consists of two parts: complex symbols, and the 8754 relocations themselves. 8755 8756 The relocations use a reserved elf-wide relocation type code (R_RELC 8757 external / BFD_RELOC_RELC internal) and an encoding of relocation field 8758 information (start bit, end bit, word width, etc) into the addend. This 8759 information is extracted from CGEN-generated operand tables within gas. 8760 8761 Complex symbols are mangled symbols (STT_RELC external / BSF_RELC 8762 internal) representing prefix-notation expressions, including but not 8763 limited to those sorts of expressions normally encoded as addends in the 8764 addend field. The symbol mangling format is: 8765 8766 <node> := <literal> 8767 | <unary-operator> ':' <node> 8768 | <binary-operator> ':' <node> ':' <node> 8769 ; 8770 8771 <literal> := 's' <digits=N> ':' <N character symbol name> 8772 | 'S' <digits=N> ':' <N character section name> 8773 | '#' <hexdigits> 8774 ; 8775 8776 <binary-operator> := as in C 8777 <unary-operator> := as in C, plus "0-" for unambiguous negation. */ 8778 8779 static void 8780 set_symbol_value (bfd *bfd_with_globals, 8781 Elf_Internal_Sym *isymbuf, 8782 size_t locsymcount, 8783 size_t symidx, 8784 bfd_vma val) 8785 { 8786 struct elf_link_hash_entry **sym_hashes; 8787 struct elf_link_hash_entry *h; 8788 size_t extsymoff = locsymcount; 8789 8790 if (symidx < locsymcount) 8791 { 8792 Elf_Internal_Sym *sym; 8793 8794 sym = isymbuf + symidx; 8795 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL) 8796 { 8797 /* It is a local symbol: move it to the 8798 "absolute" section and give it a value. */ 8799 sym->st_shndx = SHN_ABS; 8800 sym->st_value = val; 8801 return; 8802 } 8803 BFD_ASSERT (elf_bad_symtab (bfd_with_globals)); 8804 extsymoff = 0; 8805 } 8806 8807 /* It is a global symbol: set its link type 8808 to "defined" and give it a value. */ 8809 8810 sym_hashes = elf_sym_hashes (bfd_with_globals); 8811 h = sym_hashes [symidx - extsymoff]; 8812 while (h->root.type == bfd_link_hash_indirect 8813 || h->root.type == bfd_link_hash_warning) 8814 h = (struct elf_link_hash_entry *) h->root.u.i.link; 8815 h->root.type = bfd_link_hash_defined; 8816 h->root.u.def.value = val; 8817 h->root.u.def.section = bfd_abs_section_ptr; 8818 } 8819 8820 static bool 8821 resolve_symbol (const char *name, 8822 bfd *input_bfd, 8823 struct elf_final_link_info *flinfo, 8824 bfd_vma *result, 8825 Elf_Internal_Sym *isymbuf, 8826 size_t locsymcount) 8827 { 8828 Elf_Internal_Sym *sym; 8829 struct bfd_link_hash_entry *global_entry; 8830 const char *candidate = NULL; 8831 Elf_Internal_Shdr *symtab_hdr; 8832 size_t i; 8833 8834 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; 8835 8836 for (i = 0; i < locsymcount; ++ i) 8837 { 8838 sym = isymbuf + i; 8839 8840 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL) 8841 continue; 8842 8843 candidate = bfd_elf_string_from_elf_section (input_bfd, 8844 symtab_hdr->sh_link, 8845 sym->st_name); 8846 #ifdef DEBUG 8847 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n", 8848 name, candidate, (unsigned long) sym->st_value); 8849 #endif 8850 if (candidate && strcmp (candidate, name) == 0) 8851 { 8852 asection *sec = flinfo->sections [i]; 8853 8854 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0); 8855 *result += sec->output_offset + sec->output_section->vma; 8856 #ifdef DEBUG 8857 printf ("Found symbol with value %8.8lx\n", 8858 (unsigned long) *result); 8859 #endif 8860 return true; 8861 } 8862 } 8863 8864 /* Hmm, haven't found it yet. perhaps it is a global. */ 8865 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name, 8866 false, false, true); 8867 if (!global_entry) 8868 return false; 8869 8870 if (global_entry->type == bfd_link_hash_defined 8871 || global_entry->type == bfd_link_hash_defweak) 8872 { 8873 *result = (global_entry->u.def.value 8874 + global_entry->u.def.section->output_section->vma 8875 + global_entry->u.def.section->output_offset); 8876 #ifdef DEBUG 8877 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n", 8878 global_entry->root.string, (unsigned long) *result); 8879 #endif 8880 return true; 8881 } 8882 8883 return false; 8884 } 8885 8886 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in 8887 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section 8888 names like "foo.end" which is the end address of section "foo". */ 8889 8890 static bool 8891 resolve_section (const char *name, 8892 asection *sections, 8893 bfd_vma *result, 8894 bfd * abfd) 8895 { 8896 asection *curr; 8897 unsigned int len; 8898 8899 for (curr = sections; curr; curr = curr->next) 8900 if (strcmp (curr->name, name) == 0) 8901 { 8902 *result = curr->vma; 8903 return true; 8904 } 8905 8906 /* Hmm. still haven't found it. try pseudo-section names. */ 8907 /* FIXME: This could be coded more efficiently... */ 8908 for (curr = sections; curr; curr = curr->next) 8909 { 8910 len = strlen (curr->name); 8911 if (len > strlen (name)) 8912 continue; 8913 8914 if (strncmp (curr->name, name, len) == 0) 8915 { 8916 if (startswith (name + len, ".end")) 8917 { 8918 *result = (curr->vma 8919 + curr->size / bfd_octets_per_byte (abfd, curr)); 8920 return true; 8921 } 8922 8923 /* Insert more pseudo-section names here, if you like. */ 8924 } 8925 } 8926 8927 return false; 8928 } 8929 8930 static void 8931 undefined_reference (const char *reftype, const char *name) 8932 { 8933 /* xgettext:c-format */ 8934 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"), 8935 reftype, name); 8936 bfd_set_error (bfd_error_bad_value); 8937 } 8938 8939 static bool 8940 eval_symbol (bfd_vma *result, 8941 const char **symp, 8942 bfd *input_bfd, 8943 struct elf_final_link_info *flinfo, 8944 bfd_vma dot, 8945 Elf_Internal_Sym *isymbuf, 8946 size_t locsymcount, 8947 int signed_p) 8948 { 8949 size_t len; 8950 size_t symlen; 8951 bfd_vma a; 8952 bfd_vma b; 8953 char symbuf[4096]; 8954 const char *sym = *symp; 8955 const char *symend; 8956 bool symbol_is_section = false; 8957 8958 len = strlen (sym); 8959 symend = sym + len; 8960 8961 if (len < 1 || len > sizeof (symbuf)) 8962 { 8963 bfd_set_error (bfd_error_invalid_operation); 8964 return false; 8965 } 8966 8967 switch (* sym) 8968 { 8969 case '.': 8970 *result = dot; 8971 *symp = sym + 1; 8972 return true; 8973 8974 case '#': 8975 ++sym; 8976 *result = strtoul (sym, (char **) symp, 16); 8977 return true; 8978 8979 case 'S': 8980 symbol_is_section = true; 8981 /* Fall through. */ 8982 case 's': 8983 ++sym; 8984 symlen = strtol (sym, (char **) symp, 10); 8985 sym = *symp + 1; /* Skip the trailing ':'. */ 8986 8987 if (symend < sym || symlen + 1 > sizeof (symbuf)) 8988 { 8989 bfd_set_error (bfd_error_invalid_operation); 8990 return false; 8991 } 8992 8993 memcpy (symbuf, sym, symlen); 8994 symbuf[symlen] = '\0'; 8995 *symp = sym + symlen; 8996 8997 /* Is it always possible, with complex symbols, that gas "mis-guessed" 8998 the symbol as a section, or vice-versa. so we're pretty liberal in our 8999 interpretation here; section means "try section first", not "must be a 9000 section", and likewise with symbol. */ 9001 9002 if (symbol_is_section) 9003 { 9004 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd) 9005 && !resolve_symbol (symbuf, input_bfd, flinfo, result, 9006 isymbuf, locsymcount)) 9007 { 9008 undefined_reference ("section", symbuf); 9009 return false; 9010 } 9011 } 9012 else 9013 { 9014 if (!resolve_symbol (symbuf, input_bfd, flinfo, result, 9015 isymbuf, locsymcount) 9016 && !resolve_section (symbuf, flinfo->output_bfd->sections, 9017 result, input_bfd)) 9018 { 9019 undefined_reference ("symbol", symbuf); 9020 return false; 9021 } 9022 } 9023 9024 return true; 9025 9026 /* All that remains are operators. */ 9027 9028 #define UNARY_OP(op) \ 9029 if (startswith (sym, #op)) \ 9030 { \ 9031 sym += strlen (#op); \ 9032 if (*sym == ':') \ 9033 ++sym; \ 9034 *symp = sym; \ 9035 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \ 9036 isymbuf, locsymcount, signed_p)) \ 9037 return false; \ 9038 if (signed_p) \ 9039 *result = op ((bfd_signed_vma) a); \ 9040 else \ 9041 *result = op a; \ 9042 return true; \ 9043 } 9044 9045 #define BINARY_OP_HEAD(op) \ 9046 if (startswith (sym, #op)) \ 9047 { \ 9048 sym += strlen (#op); \ 9049 if (*sym == ':') \ 9050 ++sym; \ 9051 *symp = sym; \ 9052 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \ 9053 isymbuf, locsymcount, signed_p)) \ 9054 return false; \ 9055 ++*symp; \ 9056 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \ 9057 isymbuf, locsymcount, signed_p)) \ 9058 return false; 9059 #define BINARY_OP_TAIL(op) \ 9060 if (signed_p) \ 9061 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \ 9062 else \ 9063 *result = a op b; \ 9064 return true; \ 9065 } 9066 #define BINARY_OP(op) BINARY_OP_HEAD(op) BINARY_OP_TAIL(op) 9067 9068 default: 9069 UNARY_OP (0-); 9070 BINARY_OP_HEAD (<<); 9071 if (b >= sizeof (a) * CHAR_BIT) 9072 { 9073 *result = 0; 9074 return true; 9075 } 9076 signed_p = 0; 9077 BINARY_OP_TAIL (<<); 9078 BINARY_OP_HEAD (>>); 9079 if (b >= sizeof (a) * CHAR_BIT) 9080 { 9081 *result = signed_p && (bfd_signed_vma) a < 0 ? -1 : 0; 9082 return true; 9083 } 9084 BINARY_OP_TAIL (>>); 9085 BINARY_OP (==); 9086 BINARY_OP (!=); 9087 BINARY_OP (<=); 9088 BINARY_OP (>=); 9089 BINARY_OP (&&); 9090 BINARY_OP (||); 9091 UNARY_OP (~); 9092 UNARY_OP (!); 9093 BINARY_OP (*); 9094 BINARY_OP_HEAD (/); 9095 if (b == 0) 9096 { 9097 _bfd_error_handler (_("division by zero")); 9098 bfd_set_error (bfd_error_bad_value); 9099 return false; 9100 } 9101 BINARY_OP_TAIL (/); 9102 BINARY_OP_HEAD (%); 9103 if (b == 0) 9104 { 9105 _bfd_error_handler (_("division by zero")); 9106 bfd_set_error (bfd_error_bad_value); 9107 return false; 9108 } 9109 BINARY_OP_TAIL (%); 9110 BINARY_OP (^); 9111 BINARY_OP (|); 9112 BINARY_OP (&); 9113 BINARY_OP (+); 9114 BINARY_OP (-); 9115 BINARY_OP (<); 9116 BINARY_OP (>); 9117 #undef UNARY_OP 9118 #undef BINARY_OP 9119 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym); 9120 bfd_set_error (bfd_error_invalid_operation); 9121 return false; 9122 } 9123 } 9124 9125 static void 9126 put_value (bfd_vma size, 9127 unsigned long chunksz, 9128 bfd *input_bfd, 9129 bfd_vma x, 9130 bfd_byte *location) 9131 { 9132 location += (size - chunksz); 9133 9134 for (; size; size -= chunksz, location -= chunksz) 9135 { 9136 switch (chunksz) 9137 { 9138 case 1: 9139 bfd_put_8 (input_bfd, x, location); 9140 x >>= 8; 9141 break; 9142 case 2: 9143 bfd_put_16 (input_bfd, x, location); 9144 x >>= 16; 9145 break; 9146 case 4: 9147 bfd_put_32 (input_bfd, x, location); 9148 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */ 9149 x >>= 16; 9150 x >>= 16; 9151 break; 9152 #ifdef BFD64 9153 case 8: 9154 bfd_put_64 (input_bfd, x, location); 9155 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */ 9156 x >>= 32; 9157 x >>= 32; 9158 break; 9159 #endif 9160 default: 9161 abort (); 9162 break; 9163 } 9164 } 9165 } 9166 9167 static bfd_vma 9168 get_value (bfd_vma size, 9169 unsigned long chunksz, 9170 bfd *input_bfd, 9171 bfd_byte *location) 9172 { 9173 int shift; 9174 bfd_vma x = 0; 9175 9176 /* Sanity checks. */ 9177 BFD_ASSERT (chunksz <= sizeof (x) 9178 && size >= chunksz 9179 && chunksz != 0 9180 && (size % chunksz) == 0 9181 && input_bfd != NULL 9182 && location != NULL); 9183 9184 if (chunksz == sizeof (x)) 9185 { 9186 BFD_ASSERT (size == chunksz); 9187 9188 /* Make sure that we do not perform an undefined shift operation. 9189 We know that size == chunksz so there will only be one iteration 9190 of the loop below. */ 9191 shift = 0; 9192 } 9193 else 9194 shift = 8 * chunksz; 9195 9196 for (; size; size -= chunksz, location += chunksz) 9197 { 9198 switch (chunksz) 9199 { 9200 case 1: 9201 x = (x << shift) | bfd_get_8 (input_bfd, location); 9202 break; 9203 case 2: 9204 x = (x << shift) | bfd_get_16 (input_bfd, location); 9205 break; 9206 case 4: 9207 x = (x << shift) | bfd_get_32 (input_bfd, location); 9208 break; 9209 #ifdef BFD64 9210 case 8: 9211 x = (x << shift) | bfd_get_64 (input_bfd, location); 9212 break; 9213 #endif 9214 default: 9215 abort (); 9216 } 9217 } 9218 return x; 9219 } 9220 9221 static void 9222 decode_complex_addend (unsigned long *start, /* in bits */ 9223 unsigned long *oplen, /* in bits */ 9224 unsigned long *len, /* in bits */ 9225 unsigned long *wordsz, /* in bytes */ 9226 unsigned long *chunksz, /* in bytes */ 9227 unsigned long *lsb0_p, 9228 unsigned long *signed_p, 9229 unsigned long *trunc_p, 9230 unsigned long encoded) 9231 { 9232 * start = encoded & 0x3F; 9233 * len = (encoded >> 6) & 0x3F; 9234 * oplen = (encoded >> 12) & 0x3F; 9235 * wordsz = (encoded >> 18) & 0xF; 9236 * chunksz = (encoded >> 22) & 0xF; 9237 * lsb0_p = (encoded >> 27) & 1; 9238 * signed_p = (encoded >> 28) & 1; 9239 * trunc_p = (encoded >> 29) & 1; 9240 } 9241 9242 bfd_reloc_status_type 9243 bfd_elf_perform_complex_relocation (bfd *input_bfd, 9244 asection *input_section, 9245 bfd_byte *contents, 9246 Elf_Internal_Rela *rel, 9247 bfd_vma relocation) 9248 { 9249 bfd_vma shift, x, mask; 9250 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p; 9251 bfd_reloc_status_type r; 9252 bfd_size_type octets; 9253 9254 /* Perform this reloc, since it is complex. 9255 (this is not to say that it necessarily refers to a complex 9256 symbol; merely that it is a self-describing CGEN based reloc. 9257 i.e. the addend has the complete reloc information (bit start, end, 9258 word size, etc) encoded within it.). */ 9259 9260 decode_complex_addend (&start, &oplen, &len, &wordsz, 9261 &chunksz, &lsb0_p, &signed_p, 9262 &trunc_p, rel->r_addend); 9263 9264 mask = (((1L << (len - 1)) - 1) << 1) | 1; 9265 9266 if (lsb0_p) 9267 shift = (start + 1) - len; 9268 else 9269 shift = (8 * wordsz) - (start + len); 9270 9271 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section); 9272 x = get_value (wordsz, chunksz, input_bfd, contents + octets); 9273 9274 #ifdef DEBUG 9275 printf ("Doing complex reloc: " 9276 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, " 9277 "chunksz %ld, start %ld, len %ld, oplen %ld\n" 9278 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n", 9279 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len, 9280 oplen, (unsigned long) x, (unsigned long) mask, 9281 (unsigned long) relocation); 9282 #endif 9283 9284 r = bfd_reloc_ok; 9285 if (! trunc_p) 9286 /* Now do an overflow check. */ 9287 r = bfd_check_overflow ((signed_p 9288 ? complain_overflow_signed 9289 : complain_overflow_unsigned), 9290 len, 0, (8 * wordsz), 9291 relocation); 9292 9293 /* Do the deed. */ 9294 x = (x & ~(mask << shift)) | ((relocation & mask) << shift); 9295 9296 #ifdef DEBUG 9297 printf (" relocation: %8.8lx\n" 9298 " shifted mask: %8.8lx\n" 9299 " shifted/masked reloc: %8.8lx\n" 9300 " result: %8.8lx\n", 9301 (unsigned long) relocation, (unsigned long) (mask << shift), 9302 (unsigned long) ((relocation & mask) << shift), (unsigned long) x); 9303 #endif 9304 put_value (wordsz, chunksz, input_bfd, x, contents + octets); 9305 return r; 9306 } 9307 9308 /* Functions to read r_offset from external (target order) reloc 9309 entry. Faster than bfd_getl32 et al, because we let the compiler 9310 know the value is aligned. */ 9311 9312 static bfd_vma 9313 ext32l_r_offset (const void *p) 9314 { 9315 union aligned32 9316 { 9317 uint32_t v; 9318 unsigned char c[4]; 9319 }; 9320 const union aligned32 *a 9321 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset; 9322 9323 uint32_t aval = ( (uint32_t) a->c[0] 9324 | (uint32_t) a->c[1] << 8 9325 | (uint32_t) a->c[2] << 16 9326 | (uint32_t) a->c[3] << 24); 9327 return aval; 9328 } 9329 9330 static bfd_vma 9331 ext32b_r_offset (const void *p) 9332 { 9333 union aligned32 9334 { 9335 uint32_t v; 9336 unsigned char c[4]; 9337 }; 9338 const union aligned32 *a 9339 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset; 9340 9341 uint32_t aval = ( (uint32_t) a->c[0] << 24 9342 | (uint32_t) a->c[1] << 16 9343 | (uint32_t) a->c[2] << 8 9344 | (uint32_t) a->c[3]); 9345 return aval; 9346 } 9347 9348 static bfd_vma 9349 ext64l_r_offset (const void *p) 9350 { 9351 union aligned64 9352 { 9353 uint64_t v; 9354 unsigned char c[8]; 9355 }; 9356 const union aligned64 *a 9357 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset; 9358 9359 uint64_t aval = ( (uint64_t) a->c[0] 9360 | (uint64_t) a->c[1] << 8 9361 | (uint64_t) a->c[2] << 16 9362 | (uint64_t) a->c[3] << 24 9363 | (uint64_t) a->c[4] << 32 9364 | (uint64_t) a->c[5] << 40 9365 | (uint64_t) a->c[6] << 48 9366 | (uint64_t) a->c[7] << 56); 9367 return aval; 9368 } 9369 9370 static bfd_vma 9371 ext64b_r_offset (const void *p) 9372 { 9373 union aligned64 9374 { 9375 uint64_t v; 9376 unsigned char c[8]; 9377 }; 9378 const union aligned64 *a 9379 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset; 9380 9381 uint64_t aval = ( (uint64_t) a->c[0] << 56 9382 | (uint64_t) a->c[1] << 48 9383 | (uint64_t) a->c[2] << 40 9384 | (uint64_t) a->c[3] << 32 9385 | (uint64_t) a->c[4] << 24 9386 | (uint64_t) a->c[5] << 16 9387 | (uint64_t) a->c[6] << 8 9388 | (uint64_t) a->c[7]); 9389 return aval; 9390 } 9391 9392 /* When performing a relocatable link, the input relocations are 9393 preserved. But, if they reference global symbols, the indices 9394 referenced must be updated. Update all the relocations found in 9395 RELDATA. */ 9396 9397 static bool 9398 elf_link_adjust_relocs (bfd *abfd, 9399 asection *sec, 9400 struct bfd_elf_section_reloc_data *reldata, 9401 bool sort, 9402 struct bfd_link_info *info) 9403 { 9404 unsigned int i; 9405 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 9406 bfd_byte *erela; 9407 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); 9408 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); 9409 bfd_vma r_type_mask; 9410 int r_sym_shift; 9411 unsigned int count = reldata->count; 9412 struct elf_link_hash_entry **rel_hash = reldata->hashes; 9413 9414 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel) 9415 { 9416 swap_in = bed->s->swap_reloc_in; 9417 swap_out = bed->s->swap_reloc_out; 9418 } 9419 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela) 9420 { 9421 swap_in = bed->s->swap_reloca_in; 9422 swap_out = bed->s->swap_reloca_out; 9423 } 9424 else 9425 abort (); 9426 9427 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL) 9428 abort (); 9429 9430 if (bed->s->arch_size == 32) 9431 { 9432 r_type_mask = 0xff; 9433 r_sym_shift = 8; 9434 } 9435 else 9436 { 9437 r_type_mask = 0xffffffff; 9438 r_sym_shift = 32; 9439 } 9440 9441 erela = reldata->hdr->contents; 9442 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize) 9443 { 9444 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL]; 9445 unsigned int j; 9446 9447 if (*rel_hash == NULL) 9448 continue; 9449 9450 if ((*rel_hash)->indx == -2 9451 && info->gc_sections 9452 && ! info->gc_keep_exported) 9453 { 9454 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */ 9455 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"), 9456 abfd, sec, 9457 (*rel_hash)->root.root.string); 9458 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"), 9459 abfd, sec); 9460 bfd_set_error (bfd_error_invalid_operation); 9461 return false; 9462 } 9463 BFD_ASSERT ((*rel_hash)->indx >= 0); 9464 9465 (*swap_in) (abfd, erela, irela); 9466 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++) 9467 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift 9468 | (irela[j].r_info & r_type_mask)); 9469 (*swap_out) (abfd, irela, erela); 9470 } 9471 9472 if (bed->elf_backend_update_relocs) 9473 (*bed->elf_backend_update_relocs) (sec, reldata); 9474 9475 if (sort && count != 0) 9476 { 9477 bfd_vma (*ext_r_off) (const void *); 9478 bfd_vma r_off; 9479 size_t elt_size; 9480 bfd_byte *base, *end, *p, *loc; 9481 bfd_byte *buf = NULL; 9482 9483 if (bed->s->arch_size == 32) 9484 { 9485 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE) 9486 ext_r_off = ext32l_r_offset; 9487 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG) 9488 ext_r_off = ext32b_r_offset; 9489 else 9490 abort (); 9491 } 9492 else 9493 { 9494 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE) 9495 ext_r_off = ext64l_r_offset; 9496 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG) 9497 ext_r_off = ext64b_r_offset; 9498 else 9499 abort (); 9500 } 9501 9502 /* Must use a stable sort here. A modified insertion sort, 9503 since the relocs are mostly sorted already. */ 9504 elt_size = reldata->hdr->sh_entsize; 9505 base = reldata->hdr->contents; 9506 end = base + count * elt_size; 9507 if (elt_size > sizeof (Elf64_External_Rela)) 9508 abort (); 9509 9510 /* Ensure the first element is lowest. This acts as a sentinel, 9511 speeding the main loop below. */ 9512 r_off = (*ext_r_off) (base); 9513 for (p = loc = base; (p += elt_size) < end; ) 9514 { 9515 bfd_vma r_off2 = (*ext_r_off) (p); 9516 if (r_off > r_off2) 9517 { 9518 r_off = r_off2; 9519 loc = p; 9520 } 9521 } 9522 if (loc != base) 9523 { 9524 /* Don't just swap *base and *loc as that changes the order 9525 of the original base[0] and base[1] if they happen to 9526 have the same r_offset. */ 9527 bfd_byte onebuf[sizeof (Elf64_External_Rela)]; 9528 memcpy (onebuf, loc, elt_size); 9529 memmove (base + elt_size, base, loc - base); 9530 memcpy (base, onebuf, elt_size); 9531 } 9532 9533 for (p = base + elt_size; (p += elt_size) < end; ) 9534 { 9535 /* base to p is sorted, *p is next to insert. */ 9536 r_off = (*ext_r_off) (p); 9537 /* Search the sorted region for location to insert. */ 9538 loc = p - elt_size; 9539 while (r_off < (*ext_r_off) (loc)) 9540 loc -= elt_size; 9541 loc += elt_size; 9542 if (loc != p) 9543 { 9544 /* Chances are there is a run of relocs to insert here, 9545 from one of more input files. Files are not always 9546 linked in order due to the way elf_link_input_bfd is 9547 called. See pr17666. */ 9548 size_t sortlen = p - loc; 9549 bfd_vma r_off2 = (*ext_r_off) (loc); 9550 size_t runlen = elt_size; 9551 bfd_vma r_off_runend = r_off; 9552 bfd_vma r_off_runend_next; 9553 size_t buf_size = 96 * 1024; 9554 while (p + runlen < end 9555 && (sortlen <= buf_size 9556 || runlen + elt_size <= buf_size) 9557 /* run must not break the ordering of base..loc+1 */ 9558 && r_off2 > (r_off_runend_next = (*ext_r_off) (p + runlen)) 9559 /* run must be already sorted */ 9560 && r_off_runend_next >= r_off_runend) 9561 { 9562 runlen += elt_size; 9563 r_off_runend = r_off_runend_next; 9564 } 9565 if (buf == NULL) 9566 { 9567 buf = bfd_malloc (buf_size); 9568 if (buf == NULL) 9569 return false; 9570 } 9571 if (runlen < sortlen) 9572 { 9573 memcpy (buf, p, runlen); 9574 memmove (loc + runlen, loc, sortlen); 9575 memcpy (loc, buf, runlen); 9576 } 9577 else 9578 { 9579 memcpy (buf, loc, sortlen); 9580 memmove (loc, p, runlen); 9581 memcpy (loc + runlen, buf, sortlen); 9582 } 9583 p += runlen - elt_size; 9584 } 9585 } 9586 /* Hashes are no longer valid. */ 9587 free (reldata->hashes); 9588 reldata->hashes = NULL; 9589 free (buf); 9590 } 9591 return true; 9592 } 9593 9594 struct elf_link_sort_rela 9595 { 9596 union { 9597 bfd_vma offset; 9598 bfd_vma sym_mask; 9599 } u; 9600 enum elf_reloc_type_class type; 9601 /* We use this as an array of size int_rels_per_ext_rel. */ 9602 Elf_Internal_Rela rela[1]; 9603 }; 9604 9605 /* qsort stability here and for cmp2 is only an issue if multiple 9606 dynamic relocations are emitted at the same address. But targets 9607 that apply a series of dynamic relocations each operating on the 9608 result of the prior relocation can't use -z combreloc as 9609 implemented anyway. Such schemes tend to be broken by sorting on 9610 symbol index. That leaves dynamic NONE relocs as the only other 9611 case where ld might emit multiple relocs at the same address, and 9612 those are only emitted due to target bugs. */ 9613 9614 static int 9615 elf_link_sort_cmp1 (const void *A, const void *B) 9616 { 9617 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; 9618 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; 9619 int relativea, relativeb; 9620 9621 relativea = a->type == reloc_class_relative; 9622 relativeb = b->type == reloc_class_relative; 9623 9624 if (relativea < relativeb) 9625 return 1; 9626 if (relativea > relativeb) 9627 return -1; 9628 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask)) 9629 return -1; 9630 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask)) 9631 return 1; 9632 if (a->rela->r_offset < b->rela->r_offset) 9633 return -1; 9634 if (a->rela->r_offset > b->rela->r_offset) 9635 return 1; 9636 return 0; 9637 } 9638 9639 static int 9640 elf_link_sort_cmp2 (const void *A, const void *B) 9641 { 9642 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; 9643 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; 9644 9645 if (a->type < b->type) 9646 return -1; 9647 if (a->type > b->type) 9648 return 1; 9649 if (a->u.offset < b->u.offset) 9650 return -1; 9651 if (a->u.offset > b->u.offset) 9652 return 1; 9653 if (a->rela->r_offset < b->rela->r_offset) 9654 return -1; 9655 if (a->rela->r_offset > b->rela->r_offset) 9656 return 1; 9657 return 0; 9658 } 9659 9660 static size_t 9661 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec) 9662 { 9663 asection *dynamic_relocs; 9664 asection *rela_dyn; 9665 asection *rel_dyn; 9666 bfd_size_type count, size; 9667 size_t i, ret, sort_elt, ext_size; 9668 bfd_byte *sort, *s_non_relative, *p; 9669 struct elf_link_sort_rela *sq; 9670 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 9671 int i2e = bed->s->int_rels_per_ext_rel; 9672 unsigned int opb = bfd_octets_per_byte (abfd, NULL); 9673 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); 9674 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); 9675 struct bfd_link_order *lo; 9676 bfd_vma r_sym_mask; 9677 bool use_rela; 9678 9679 /* Find a dynamic reloc section. */ 9680 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn"); 9681 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn"); 9682 if (rela_dyn != NULL && rela_dyn->size > 0 9683 && rel_dyn != NULL && rel_dyn->size > 0) 9684 { 9685 bool use_rela_initialised = false; 9686 9687 /* This is just here to stop gcc from complaining. 9688 Its initialization checking code is not perfect. */ 9689 use_rela = true; 9690 9691 /* Both sections are present. Examine the sizes 9692 of the indirect sections to help us choose. */ 9693 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next) 9694 if (lo->type == bfd_indirect_link_order) 9695 { 9696 asection *o = lo->u.indirect.section; 9697 9698 if ((o->size % bed->s->sizeof_rela) == 0) 9699 { 9700 if ((o->size % bed->s->sizeof_rel) == 0) 9701 /* Section size is divisible by both rel and rela sizes. 9702 It is of no help to us. */ 9703 ; 9704 else 9705 { 9706 /* Section size is only divisible by rela. */ 9707 if (use_rela_initialised && !use_rela) 9708 { 9709 _bfd_error_handler (_("%pB: unable to sort relocs - " 9710 "they are in more than one size"), 9711 abfd); 9712 bfd_set_error (bfd_error_invalid_operation); 9713 return 0; 9714 } 9715 else 9716 { 9717 use_rela = true; 9718 use_rela_initialised = true; 9719 } 9720 } 9721 } 9722 else if ((o->size % bed->s->sizeof_rel) == 0) 9723 { 9724 /* Section size is only divisible by rel. */ 9725 if (use_rela_initialised && use_rela) 9726 { 9727 _bfd_error_handler (_("%pB: unable to sort relocs - " 9728 "they are in more than one size"), 9729 abfd); 9730 bfd_set_error (bfd_error_invalid_operation); 9731 return 0; 9732 } 9733 else 9734 { 9735 use_rela = false; 9736 use_rela_initialised = true; 9737 } 9738 } 9739 else 9740 { 9741 /* The section size is not divisible by either - 9742 something is wrong. */ 9743 _bfd_error_handler (_("%pB: unable to sort relocs - " 9744 "they are of an unknown size"), abfd); 9745 bfd_set_error (bfd_error_invalid_operation); 9746 return 0; 9747 } 9748 } 9749 9750 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next) 9751 if (lo->type == bfd_indirect_link_order) 9752 { 9753 asection *o = lo->u.indirect.section; 9754 9755 if ((o->size % bed->s->sizeof_rela) == 0) 9756 { 9757 if ((o->size % bed->s->sizeof_rel) == 0) 9758 /* Section size is divisible by both rel and rela sizes. 9759 It is of no help to us. */ 9760 ; 9761 else 9762 { 9763 /* Section size is only divisible by rela. */ 9764 if (use_rela_initialised && !use_rela) 9765 { 9766 _bfd_error_handler (_("%pB: unable to sort relocs - " 9767 "they are in more than one size"), 9768 abfd); 9769 bfd_set_error (bfd_error_invalid_operation); 9770 return 0; 9771 } 9772 else 9773 { 9774 use_rela = true; 9775 use_rela_initialised = true; 9776 } 9777 } 9778 } 9779 else if ((o->size % bed->s->sizeof_rel) == 0) 9780 { 9781 /* Section size is only divisible by rel. */ 9782 if (use_rela_initialised && use_rela) 9783 { 9784 _bfd_error_handler (_("%pB: unable to sort relocs - " 9785 "they are in more than one size"), 9786 abfd); 9787 bfd_set_error (bfd_error_invalid_operation); 9788 return 0; 9789 } 9790 else 9791 { 9792 use_rela = false; 9793 use_rela_initialised = true; 9794 } 9795 } 9796 else 9797 { 9798 /* The section size is not divisible by either - 9799 something is wrong. */ 9800 _bfd_error_handler (_("%pB: unable to sort relocs - " 9801 "they are of an unknown size"), abfd); 9802 bfd_set_error (bfd_error_invalid_operation); 9803 return 0; 9804 } 9805 } 9806 9807 if (! use_rela_initialised) 9808 /* Make a guess. */ 9809 use_rela = true; 9810 } 9811 else if (rela_dyn != NULL && rela_dyn->size > 0) 9812 use_rela = true; 9813 else if (rel_dyn != NULL && rel_dyn->size > 0) 9814 use_rela = false; 9815 else 9816 return 0; 9817 9818 if (use_rela) 9819 { 9820 dynamic_relocs = rela_dyn; 9821 ext_size = bed->s->sizeof_rela; 9822 swap_in = bed->s->swap_reloca_in; 9823 swap_out = bed->s->swap_reloca_out; 9824 } 9825 else 9826 { 9827 dynamic_relocs = rel_dyn; 9828 ext_size = bed->s->sizeof_rel; 9829 swap_in = bed->s->swap_reloc_in; 9830 swap_out = bed->s->swap_reloc_out; 9831 } 9832 9833 size = 0; 9834 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) 9835 if (lo->type == bfd_indirect_link_order) 9836 size += lo->u.indirect.section->size; 9837 9838 if (size != dynamic_relocs->size) 9839 return 0; 9840 9841 sort_elt = (sizeof (struct elf_link_sort_rela) 9842 + (i2e - 1) * sizeof (Elf_Internal_Rela)); 9843 9844 count = dynamic_relocs->size / ext_size; 9845 if (count == 0) 9846 return 0; 9847 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count); 9848 9849 if (sort == NULL) 9850 { 9851 (*info->callbacks->warning) 9852 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0); 9853 return 0; 9854 } 9855 9856 if (bed->s->arch_size == 32) 9857 r_sym_mask = ~(bfd_vma) 0xff; 9858 else 9859 r_sym_mask = ~(bfd_vma) 0xffffffff; 9860 9861 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) 9862 if (lo->type == bfd_indirect_link_order) 9863 { 9864 bfd_byte *erel, *erelend; 9865 asection *o = lo->u.indirect.section; 9866 9867 if (o->contents == NULL && o->size != 0) 9868 { 9869 /* This is a reloc section that is being handled as a normal 9870 section. See bfd_section_from_shdr. We can't combine 9871 relocs in this case. */ 9872 free (sort); 9873 return 0; 9874 } 9875 erel = o->contents; 9876 erelend = o->contents + o->size; 9877 p = sort + o->output_offset * opb / ext_size * sort_elt; 9878 9879 while (erel < erelend) 9880 { 9881 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; 9882 9883 (*swap_in) (abfd, erel, s->rela); 9884 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela); 9885 s->u.sym_mask = r_sym_mask; 9886 p += sort_elt; 9887 erel += ext_size; 9888 } 9889 } 9890 9891 qsort (sort, count, sort_elt, elf_link_sort_cmp1); 9892 9893 for (i = 0, p = sort; i < count; i++, p += sort_elt) 9894 { 9895 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; 9896 if (s->type != reloc_class_relative) 9897 break; 9898 } 9899 ret = i; 9900 s_non_relative = p; 9901 9902 sq = (struct elf_link_sort_rela *) s_non_relative; 9903 for (; i < count; i++, p += sort_elt) 9904 { 9905 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p; 9906 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0) 9907 sq = sp; 9908 sp->u.offset = sq->rela->r_offset; 9909 } 9910 9911 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2); 9912 9913 struct elf_link_hash_table *htab = elf_hash_table (info); 9914 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs) 9915 { 9916 /* We have plt relocs in .rela.dyn. */ 9917 sq = (struct elf_link_sort_rela *) sort; 9918 for (i = 0; i < count; i++) 9919 if (sq[count - i - 1].type != reloc_class_plt) 9920 break; 9921 if (i != 0 && htab->srelplt->size == i * ext_size) 9922 { 9923 struct bfd_link_order **plo; 9924 /* Put srelplt link_order last. This is so the output_offset 9925 set in the next loop is correct for DT_JMPREL. */ 9926 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; ) 9927 if ((*plo)->type == bfd_indirect_link_order 9928 && (*plo)->u.indirect.section == htab->srelplt) 9929 { 9930 lo = *plo; 9931 *plo = lo->next; 9932 } 9933 else 9934 plo = &(*plo)->next; 9935 *plo = lo; 9936 lo->next = NULL; 9937 dynamic_relocs->map_tail.link_order = lo; 9938 } 9939 } 9940 9941 p = sort; 9942 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) 9943 if (lo->type == bfd_indirect_link_order) 9944 { 9945 bfd_byte *erel, *erelend; 9946 asection *o = lo->u.indirect.section; 9947 9948 erel = o->contents; 9949 erelend = o->contents + o->size; 9950 o->output_offset = (p - sort) / sort_elt * ext_size / opb; 9951 while (erel < erelend) 9952 { 9953 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; 9954 (*swap_out) (abfd, s->rela, erel); 9955 p += sort_elt; 9956 erel += ext_size; 9957 } 9958 } 9959 9960 free (sort); 9961 *psec = dynamic_relocs; 9962 return ret; 9963 } 9964 9965 /* Add a symbol to the output symbol string table. */ 9966 9967 static int 9968 elf_link_output_symstrtab (void *finf, 9969 const char *name, 9970 Elf_Internal_Sym *elfsym, 9971 asection *input_sec, 9972 struct elf_link_hash_entry *h) 9973 { 9974 struct elf_final_link_info *flinfo = finf; 9975 int (*output_symbol_hook) 9976 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *, 9977 struct elf_link_hash_entry *); 9978 struct elf_link_hash_table *hash_table; 9979 const struct elf_backend_data *bed; 9980 bfd_size_type strtabsize; 9981 9982 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd)); 9983 9984 bed = get_elf_backend_data (flinfo->output_bfd); 9985 output_symbol_hook = bed->elf_backend_link_output_symbol_hook; 9986 if (output_symbol_hook != NULL) 9987 { 9988 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h); 9989 if (ret != 1) 9990 return ret; 9991 } 9992 9993 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC) 9994 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc; 9995 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE) 9996 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique; 9997 9998 if (name == NULL || *name == '\0') 9999 elfsym->st_name = (unsigned long) -1; 10000 else 10001 { 10002 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize 10003 to get the final offset for st_name. */ 10004 char *versioned_name = (char *) name; 10005 if (h != NULL) 10006 { 10007 if (h->versioned == versioned && h->def_dynamic) 10008 { 10009 /* Keep only one '@' for versioned symbols defined in 10010 shared objects. */ 10011 char *version = strrchr (name, ELF_VER_CHR); 10012 char *base_end = strchr (name, ELF_VER_CHR); 10013 if (version != base_end) 10014 { 10015 size_t base_len; 10016 size_t len = strlen (name); 10017 versioned_name = bfd_alloc (flinfo->output_bfd, len); 10018 if (versioned_name == NULL) 10019 return 0; 10020 base_len = base_end - name; 10021 memcpy (versioned_name, name, base_len); 10022 memcpy (versioned_name + base_len, version, 10023 len - base_len); 10024 } 10025 } 10026 } 10027 else if (flinfo->info->unique_symbol 10028 && ELF_ST_BIND (elfsym->st_info) == STB_LOCAL) 10029 { 10030 struct local_hash_entry *lh; 10031 size_t count_len; 10032 size_t base_len; 10033 char buf[30]; 10034 switch (ELF_ST_TYPE (elfsym->st_info)) 10035 { 10036 case STT_FILE: 10037 case STT_SECTION: 10038 break; 10039 default: 10040 lh = (struct local_hash_entry *) bfd_hash_lookup 10041 (&flinfo->local_hash_table, name, true, false); 10042 if (lh == NULL) 10043 return 0; 10044 /* Always append ".COUNT" to local symbols to avoid 10045 potential conflicts with local symbol "XXX.COUNT". */ 10046 sprintf (buf, "%lx", lh->count); 10047 base_len = lh->size; 10048 if (!base_len) 10049 { 10050 base_len = strlen (name); 10051 lh->size = base_len; 10052 } 10053 count_len = strlen (buf); 10054 versioned_name = bfd_alloc (flinfo->output_bfd, 10055 base_len + count_len + 2); 10056 if (versioned_name == NULL) 10057 return 0; 10058 memcpy (versioned_name, name, base_len); 10059 versioned_name[base_len] = '.'; 10060 memcpy (versioned_name + base_len + 1, buf, 10061 count_len + 1); 10062 lh->count++; 10063 break; 10064 } 10065 } 10066 elfsym->st_name 10067 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab, 10068 versioned_name, false); 10069 if (elfsym->st_name == (unsigned long) -1) 10070 return 0; 10071 } 10072 10073 hash_table = elf_hash_table (flinfo->info); 10074 strtabsize = hash_table->strtabsize; 10075 if (strtabsize <= flinfo->output_bfd->symcount) 10076 { 10077 strtabsize += strtabsize; 10078 hash_table->strtabsize = strtabsize; 10079 strtabsize *= sizeof (*hash_table->strtab); 10080 hash_table->strtab 10081 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab, 10082 strtabsize); 10083 if (hash_table->strtab == NULL) 10084 return 0; 10085 } 10086 hash_table->strtab[flinfo->output_bfd->symcount].sym = *elfsym; 10087 hash_table->strtab[flinfo->output_bfd->symcount].dest_index 10088 = flinfo->output_bfd->symcount; 10089 flinfo->output_bfd->symcount += 1; 10090 10091 return 1; 10092 } 10093 10094 /* Swap symbols out to the symbol table and flush the output symbols to 10095 the file. */ 10096 10097 static bool 10098 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo) 10099 { 10100 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info); 10101 size_t amt; 10102 size_t i; 10103 const struct elf_backend_data *bed; 10104 bfd_byte *symbuf; 10105 Elf_Internal_Shdr *hdr; 10106 file_ptr pos; 10107 bool ret; 10108 10109 if (flinfo->output_bfd->symcount == 0) 10110 return true; 10111 10112 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd)); 10113 10114 bed = get_elf_backend_data (flinfo->output_bfd); 10115 10116 amt = bed->s->sizeof_sym * flinfo->output_bfd->symcount; 10117 symbuf = (bfd_byte *) bfd_malloc (amt); 10118 if (symbuf == NULL) 10119 return false; 10120 10121 if (flinfo->symshndxbuf) 10122 { 10123 amt = sizeof (Elf_External_Sym_Shndx); 10124 amt *= bfd_get_symcount (flinfo->output_bfd); 10125 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt); 10126 if (flinfo->symshndxbuf == NULL) 10127 { 10128 free (symbuf); 10129 return false; 10130 } 10131 } 10132 10133 /* Now swap out the symbols. */ 10134 for (i = 0; i < flinfo->output_bfd->symcount; i++) 10135 { 10136 struct elf_sym_strtab *elfsym = &hash_table->strtab[i]; 10137 if (elfsym->sym.st_name == (unsigned long) -1) 10138 elfsym->sym.st_name = 0; 10139 else 10140 elfsym->sym.st_name 10141 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab, 10142 elfsym->sym.st_name); 10143 10144 /* Inform the linker of the addition of this symbol. */ 10145 10146 if (flinfo->info->callbacks->ctf_new_symbol) 10147 flinfo->info->callbacks->ctf_new_symbol (elfsym->dest_index, 10148 &elfsym->sym); 10149 10150 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym, 10151 ((bfd_byte *) symbuf 10152 + (elfsym->dest_index 10153 * bed->s->sizeof_sym)), 10154 NPTR_ADD (flinfo->symshndxbuf, 10155 elfsym->dest_index)); 10156 } 10157 10158 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr; 10159 pos = hdr->sh_offset + hdr->sh_size; 10160 amt = bed->s->sizeof_sym * flinfo->output_bfd->symcount; 10161 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0 10162 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt) 10163 { 10164 hdr->sh_size += amt; 10165 ret = true; 10166 } 10167 else 10168 ret = false; 10169 10170 free (symbuf); 10171 10172 free (hash_table->strtab); 10173 hash_table->strtab = NULL; 10174 10175 return ret; 10176 } 10177 10178 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */ 10179 10180 static bool 10181 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym) 10182 { 10183 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff) 10184 && sym->st_shndx < SHN_LORESERVE) 10185 { 10186 /* The gABI doesn't support dynamic symbols in output sections 10187 beyond 64k. */ 10188 _bfd_error_handler 10189 /* xgettext:c-format */ 10190 (_("%pB: too many sections: %d (>= %d)"), 10191 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff); 10192 bfd_set_error (bfd_error_nonrepresentable_section); 10193 return false; 10194 } 10195 return true; 10196 } 10197 10198 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in 10199 allowing an unsatisfied unversioned symbol in the DSO to match a 10200 versioned symbol that would normally require an explicit version. 10201 We also handle the case that a DSO references a hidden symbol 10202 which may be satisfied by a versioned symbol in another DSO. */ 10203 10204 static bool 10205 elf_link_check_versioned_symbol (struct bfd_link_info *info, 10206 const struct elf_backend_data *bed, 10207 struct elf_link_hash_entry *h) 10208 { 10209 bfd *abfd; 10210 struct elf_link_loaded_list *loaded; 10211 10212 if (!is_elf_hash_table (info->hash)) 10213 return false; 10214 10215 /* Check indirect symbol. */ 10216 while (h->root.type == bfd_link_hash_indirect) 10217 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10218 10219 switch (h->root.type) 10220 { 10221 default: 10222 abfd = NULL; 10223 break; 10224 10225 case bfd_link_hash_undefined: 10226 case bfd_link_hash_undefweak: 10227 abfd = h->root.u.undef.abfd; 10228 if (abfd == NULL 10229 || (abfd->flags & DYNAMIC) == 0 10230 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0) 10231 return false; 10232 break; 10233 10234 case bfd_link_hash_defined: 10235 case bfd_link_hash_defweak: 10236 abfd = h->root.u.def.section->owner; 10237 break; 10238 10239 case bfd_link_hash_common: 10240 abfd = h->root.u.c.p->section->owner; 10241 break; 10242 } 10243 BFD_ASSERT (abfd != NULL); 10244 10245 for (loaded = elf_hash_table (info)->dyn_loaded; 10246 loaded != NULL; 10247 loaded = loaded->next) 10248 { 10249 bfd *input; 10250 Elf_Internal_Shdr *hdr; 10251 size_t symcount; 10252 size_t extsymcount; 10253 size_t extsymoff; 10254 Elf_Internal_Shdr *versymhdr; 10255 Elf_Internal_Sym *isym; 10256 Elf_Internal_Sym *isymend; 10257 Elf_Internal_Sym *isymbuf; 10258 Elf_External_Versym *ever; 10259 Elf_External_Versym *extversym; 10260 10261 input = loaded->abfd; 10262 10263 /* We check each DSO for a possible hidden versioned definition. */ 10264 if (input == abfd 10265 || elf_dynversym (input) == 0) 10266 continue; 10267 10268 hdr = &elf_tdata (input)->dynsymtab_hdr; 10269 10270 symcount = hdr->sh_size / bed->s->sizeof_sym; 10271 if (elf_bad_symtab (input)) 10272 { 10273 extsymcount = symcount; 10274 extsymoff = 0; 10275 } 10276 else 10277 { 10278 extsymcount = symcount - hdr->sh_info; 10279 extsymoff = hdr->sh_info; 10280 } 10281 10282 if (extsymcount == 0) 10283 continue; 10284 10285 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff, 10286 NULL, NULL, NULL); 10287 if (isymbuf == NULL) 10288 return false; 10289 10290 /* Read in any version definitions. */ 10291 versymhdr = &elf_tdata (input)->dynversym_hdr; 10292 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0 10293 || (extversym = (Elf_External_Versym *) 10294 _bfd_malloc_and_read (input, versymhdr->sh_size, 10295 versymhdr->sh_size)) == NULL) 10296 { 10297 free (isymbuf); 10298 return false; 10299 } 10300 10301 ever = extversym + extsymoff; 10302 isymend = isymbuf + extsymcount; 10303 for (isym = isymbuf; isym < isymend; isym++, ever++) 10304 { 10305 const char *name; 10306 Elf_Internal_Versym iver; 10307 unsigned short version_index; 10308 10309 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL 10310 || isym->st_shndx == SHN_UNDEF) 10311 continue; 10312 10313 name = bfd_elf_string_from_elf_section (input, 10314 hdr->sh_link, 10315 isym->st_name); 10316 if (strcmp (name, h->root.root.string) != 0) 10317 continue; 10318 10319 _bfd_elf_swap_versym_in (input, ever, &iver); 10320 10321 if ((iver.vs_vers & VERSYM_HIDDEN) == 0 10322 && !(h->def_regular 10323 && h->forced_local)) 10324 { 10325 /* If we have a non-hidden versioned sym, then it should 10326 have provided a definition for the undefined sym unless 10327 it is defined in a non-shared object and forced local. 10328 */ 10329 abort (); 10330 } 10331 10332 version_index = iver.vs_vers & VERSYM_VERSION; 10333 if (version_index == 1 || version_index == 2) 10334 { 10335 /* This is the base or first version. We can use it. */ 10336 free (extversym); 10337 free (isymbuf); 10338 return true; 10339 } 10340 } 10341 10342 free (extversym); 10343 free (isymbuf); 10344 } 10345 10346 return false; 10347 } 10348 10349 /* Convert ELF common symbol TYPE. */ 10350 10351 static int 10352 elf_link_convert_common_type (struct bfd_link_info *info, int type) 10353 { 10354 /* Commom symbol can only appear in relocatable link. */ 10355 if (!bfd_link_relocatable (info)) 10356 abort (); 10357 switch (info->elf_stt_common) 10358 { 10359 case unchanged: 10360 break; 10361 case elf_stt_common: 10362 type = STT_COMMON; 10363 break; 10364 case no_elf_stt_common: 10365 type = STT_OBJECT; 10366 break; 10367 } 10368 return type; 10369 } 10370 10371 /* Add an external symbol to the symbol table. This is called from 10372 the hash table traversal routine. When generating a shared object, 10373 we go through the symbol table twice. The first time we output 10374 anything that might have been forced to local scope in a version 10375 script. The second time we output the symbols that are still 10376 global symbols. */ 10377 10378 static bool 10379 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data) 10380 { 10381 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh; 10382 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data; 10383 struct elf_final_link_info *flinfo = eoinfo->flinfo; 10384 bool strip; 10385 Elf_Internal_Sym sym; 10386 asection *input_sec; 10387 const struct elf_backend_data *bed; 10388 long indx; 10389 int ret; 10390 unsigned int type; 10391 10392 if (h->root.type == bfd_link_hash_warning) 10393 { 10394 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10395 if (h->root.type == bfd_link_hash_new) 10396 return true; 10397 } 10398 10399 /* Decide whether to output this symbol in this pass. */ 10400 if (eoinfo->localsyms) 10401 { 10402 if (!h->forced_local) 10403 return true; 10404 } 10405 else 10406 { 10407 if (h->forced_local) 10408 return true; 10409 } 10410 10411 bed = get_elf_backend_data (flinfo->output_bfd); 10412 10413 if (h->root.type == bfd_link_hash_undefined) 10414 { 10415 /* If we have an undefined symbol reference here then it must have 10416 come from a shared library that is being linked in. (Undefined 10417 references in regular files have already been handled unless 10418 they are in unreferenced sections which are removed by garbage 10419 collection). */ 10420 bool ignore_undef = false; 10421 10422 /* Some symbols may be special in that the fact that they're 10423 undefined can be safely ignored - let backend determine that. */ 10424 if (bed->elf_backend_ignore_undef_symbol) 10425 ignore_undef = bed->elf_backend_ignore_undef_symbol (h); 10426 10427 /* If we are reporting errors for this situation then do so now. */ 10428 if (!ignore_undef 10429 && h->ref_dynamic_nonweak 10430 && (!h->ref_regular || flinfo->info->gc_sections) 10431 && !elf_link_check_versioned_symbol (flinfo->info, bed, h) 10432 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE) 10433 { 10434 flinfo->info->callbacks->undefined_symbol 10435 (flinfo->info, h->root.root.string, 10436 h->ref_regular ? NULL : h->root.u.undef.abfd, NULL, 0, 10437 flinfo->info->unresolved_syms_in_shared_libs == RM_DIAGNOSE 10438 && !flinfo->info->warn_unresolved_syms); 10439 } 10440 10441 /* Strip a global symbol defined in a discarded section. */ 10442 if (h->indx == -3) 10443 return true; 10444 } 10445 10446 /* We should also warn if a forced local symbol is referenced from 10447 shared libraries. */ 10448 if (bfd_link_executable (flinfo->info) 10449 && h->forced_local 10450 && h->ref_dynamic 10451 && h->def_regular 10452 && !h->dynamic_def 10453 && h->ref_dynamic_nonweak 10454 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)) 10455 { 10456 bfd *def_bfd; 10457 const char *msg; 10458 struct elf_link_hash_entry *hi = h; 10459 10460 /* Check indirect symbol. */ 10461 while (hi->root.type == bfd_link_hash_indirect) 10462 hi = (struct elf_link_hash_entry *) hi->root.u.i.link; 10463 10464 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) 10465 /* xgettext:c-format */ 10466 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO"); 10467 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) 10468 /* xgettext:c-format */ 10469 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO"); 10470 else 10471 /* xgettext:c-format */ 10472 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO"); 10473 def_bfd = flinfo->output_bfd; 10474 if (hi->root.u.def.section != bfd_abs_section_ptr) 10475 def_bfd = hi->root.u.def.section->owner; 10476 _bfd_error_handler (msg, flinfo->output_bfd, 10477 h->root.root.string, def_bfd); 10478 bfd_set_error (bfd_error_bad_value); 10479 eoinfo->failed = true; 10480 return false; 10481 } 10482 10483 /* We don't want to output symbols that have never been mentioned by 10484 a regular file, or that we have been told to strip. However, if 10485 h->indx is set to -2, the symbol is used by a reloc and we must 10486 output it. */ 10487 strip = false; 10488 if (h->indx == -2) 10489 ; 10490 else if ((h->def_dynamic 10491 || h->ref_dynamic 10492 || h->root.type == bfd_link_hash_new) 10493 && !h->def_regular 10494 && !h->ref_regular) 10495 strip = true; 10496 else if (flinfo->info->strip == strip_all) 10497 strip = true; 10498 else if (flinfo->info->strip == strip_some 10499 && bfd_hash_lookup (flinfo->info->keep_hash, 10500 h->root.root.string, false, false) == NULL) 10501 strip = true; 10502 else if ((h->root.type == bfd_link_hash_defined 10503 || h->root.type == bfd_link_hash_defweak) 10504 && ((flinfo->info->strip_discarded 10505 && discarded_section (h->root.u.def.section)) 10506 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0 10507 && h->root.u.def.section->owner != NULL 10508 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0))) 10509 strip = true; 10510 else if ((h->root.type == bfd_link_hash_undefined 10511 || h->root.type == bfd_link_hash_undefweak) 10512 && h->root.u.undef.abfd != NULL 10513 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0) 10514 strip = true; 10515 10516 type = h->type; 10517 10518 /* If we're stripping it, and it's not a dynamic symbol, there's 10519 nothing else to do. However, if it is a forced local symbol or 10520 an ifunc symbol we need to give the backend finish_dynamic_symbol 10521 function a chance to make it dynamic. */ 10522 if (strip 10523 && h->dynindx == -1 10524 && type != STT_GNU_IFUNC 10525 && !h->forced_local) 10526 return true; 10527 10528 sym.st_value = 0; 10529 sym.st_size = h->size; 10530 sym.st_other = h->other; 10531 switch (h->root.type) 10532 { 10533 default: 10534 case bfd_link_hash_new: 10535 case bfd_link_hash_warning: 10536 abort (); 10537 return false; 10538 10539 case bfd_link_hash_undefined: 10540 case bfd_link_hash_undefweak: 10541 input_sec = bfd_und_section_ptr; 10542 sym.st_shndx = SHN_UNDEF; 10543 break; 10544 10545 case bfd_link_hash_defined: 10546 case bfd_link_hash_defweak: 10547 { 10548 input_sec = h->root.u.def.section; 10549 if (input_sec->output_section != NULL) 10550 { 10551 sym.st_shndx = 10552 _bfd_elf_section_from_bfd_section (flinfo->output_bfd, 10553 input_sec->output_section); 10554 if (sym.st_shndx == SHN_BAD) 10555 { 10556 _bfd_error_handler 10557 /* xgettext:c-format */ 10558 (_("%pB: could not find output section %pA for input section %pA"), 10559 flinfo->output_bfd, input_sec->output_section, input_sec); 10560 bfd_set_error (bfd_error_nonrepresentable_section); 10561 eoinfo->failed = true; 10562 return false; 10563 } 10564 10565 /* ELF symbols in relocatable files are section relative, 10566 but in nonrelocatable files they are virtual 10567 addresses. */ 10568 sym.st_value = h->root.u.def.value + input_sec->output_offset; 10569 if (!bfd_link_relocatable (flinfo->info)) 10570 { 10571 sym.st_value += input_sec->output_section->vma; 10572 if (h->type == STT_TLS) 10573 { 10574 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec; 10575 if (tls_sec != NULL) 10576 sym.st_value -= tls_sec->vma; 10577 } 10578 } 10579 } 10580 else 10581 { 10582 BFD_ASSERT (input_sec->owner == NULL 10583 || (input_sec->owner->flags & DYNAMIC) != 0); 10584 sym.st_shndx = SHN_UNDEF; 10585 input_sec = bfd_und_section_ptr; 10586 } 10587 } 10588 break; 10589 10590 case bfd_link_hash_common: 10591 input_sec = h->root.u.c.p->section; 10592 sym.st_shndx = bed->common_section_index (input_sec); 10593 sym.st_value = 1 << h->root.u.c.p->alignment_power; 10594 break; 10595 10596 case bfd_link_hash_indirect: 10597 /* These symbols are created by symbol versioning. They point 10598 to the decorated version of the name. For example, if the 10599 symbol foo@@GNU_1.2 is the default, which should be used when 10600 foo is used with no version, then we add an indirect symbol 10601 foo which points to foo@@GNU_1.2. We ignore these symbols, 10602 since the indirected symbol is already in the hash table. */ 10603 return true; 10604 } 10605 10606 if (type == STT_COMMON || type == STT_OBJECT) 10607 switch (h->root.type) 10608 { 10609 case bfd_link_hash_common: 10610 type = elf_link_convert_common_type (flinfo->info, type); 10611 break; 10612 case bfd_link_hash_defined: 10613 case bfd_link_hash_defweak: 10614 if (bed->common_definition (&sym)) 10615 type = elf_link_convert_common_type (flinfo->info, type); 10616 else 10617 type = STT_OBJECT; 10618 break; 10619 case bfd_link_hash_undefined: 10620 case bfd_link_hash_undefweak: 10621 break; 10622 default: 10623 abort (); 10624 } 10625 10626 if (h->forced_local) 10627 { 10628 sym.st_info = ELF_ST_INFO (STB_LOCAL, type); 10629 /* Turn off visibility on local symbol. */ 10630 sym.st_other &= ~ELF_ST_VISIBILITY (-1); 10631 } 10632 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */ 10633 else if (h->unique_global && h->def_regular) 10634 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type); 10635 else if (h->root.type == bfd_link_hash_undefweak 10636 || h->root.type == bfd_link_hash_defweak) 10637 sym.st_info = ELF_ST_INFO (STB_WEAK, type); 10638 else 10639 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); 10640 sym.st_target_internal = h->target_internal; 10641 10642 /* Give the processor backend a chance to tweak the symbol value, 10643 and also to finish up anything that needs to be done for this 10644 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for 10645 forced local syms when non-shared is due to a historical quirk. 10646 STT_GNU_IFUNC symbol must go through PLT. */ 10647 if ((h->type == STT_GNU_IFUNC 10648 && h->def_regular 10649 && !bfd_link_relocatable (flinfo->info)) 10650 || ((h->dynindx != -1 10651 || h->forced_local) 10652 && ((bfd_link_pic (flinfo->info) 10653 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 10654 || h->root.type != bfd_link_hash_undefweak)) 10655 || !h->forced_local) 10656 && elf_hash_table (flinfo->info)->dynamic_sections_created)) 10657 { 10658 if (! ((*bed->elf_backend_finish_dynamic_symbol) 10659 (flinfo->output_bfd, flinfo->info, h, &sym))) 10660 { 10661 eoinfo->failed = true; 10662 return false; 10663 } 10664 } 10665 10666 /* If we are marking the symbol as undefined, and there are no 10667 non-weak references to this symbol from a regular object, then 10668 mark the symbol as weak undefined; if there are non-weak 10669 references, mark the symbol as strong. We can't do this earlier, 10670 because it might not be marked as undefined until the 10671 finish_dynamic_symbol routine gets through with it. */ 10672 if (sym.st_shndx == SHN_UNDEF 10673 && h->ref_regular 10674 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL 10675 || ELF_ST_BIND (sym.st_info) == STB_WEAK)) 10676 { 10677 int bindtype; 10678 type = ELF_ST_TYPE (sym.st_info); 10679 10680 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */ 10681 if (type == STT_GNU_IFUNC) 10682 type = STT_FUNC; 10683 10684 if (h->ref_regular_nonweak) 10685 bindtype = STB_GLOBAL; 10686 else 10687 bindtype = STB_WEAK; 10688 sym.st_info = ELF_ST_INFO (bindtype, type); 10689 } 10690 10691 /* If this is a symbol defined in a dynamic library, don't use the 10692 symbol size from the dynamic library. Relinking an executable 10693 against a new library may introduce gratuitous changes in the 10694 executable's symbols if we keep the size. */ 10695 if (sym.st_shndx == SHN_UNDEF 10696 && !h->def_regular 10697 && h->def_dynamic) 10698 sym.st_size = 0; 10699 10700 /* If a non-weak symbol with non-default visibility is not defined 10701 locally, it is a fatal error. */ 10702 if (!bfd_link_relocatable (flinfo->info) 10703 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT 10704 && ELF_ST_BIND (sym.st_info) != STB_WEAK 10705 && h->root.type == bfd_link_hash_undefined 10706 && !h->def_regular) 10707 { 10708 const char *msg; 10709 10710 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED) 10711 /* xgettext:c-format */ 10712 msg = _("%pB: protected symbol `%s' isn't defined"); 10713 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL) 10714 /* xgettext:c-format */ 10715 msg = _("%pB: internal symbol `%s' isn't defined"); 10716 else 10717 /* xgettext:c-format */ 10718 msg = _("%pB: hidden symbol `%s' isn't defined"); 10719 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string); 10720 bfd_set_error (bfd_error_bad_value); 10721 eoinfo->failed = true; 10722 return false; 10723 } 10724 10725 /* If this symbol should be put in the .dynsym section, then put it 10726 there now. We already know the symbol index. We also fill in 10727 the entry in the .hash section. */ 10728 if (h->dynindx != -1 10729 && elf_hash_table (flinfo->info)->dynamic_sections_created 10730 && elf_hash_table (flinfo->info)->dynsym != NULL 10731 && !discarded_section (elf_hash_table (flinfo->info)->dynsym)) 10732 { 10733 bfd_byte *esym; 10734 10735 /* Since there is no version information in the dynamic string, 10736 if there is no version info in symbol version section, we will 10737 have a run-time problem if not linking executable, referenced 10738 by shared library, or not bound locally. */ 10739 if (h->verinfo.verdef == NULL 10740 && (!bfd_link_executable (flinfo->info) 10741 || h->ref_dynamic 10742 || !h->def_regular)) 10743 { 10744 char *p = strrchr (h->root.root.string, ELF_VER_CHR); 10745 10746 if (p && p [1] != '\0') 10747 { 10748 _bfd_error_handler 10749 /* xgettext:c-format */ 10750 (_("%pB: no symbol version section for versioned symbol `%s'"), 10751 flinfo->output_bfd, h->root.root.string); 10752 eoinfo->failed = true; 10753 return false; 10754 } 10755 } 10756 10757 sym.st_name = h->dynstr_index; 10758 esym = (elf_hash_table (flinfo->info)->dynsym->contents 10759 + h->dynindx * bed->s->sizeof_sym); 10760 if (!check_dynsym (flinfo->output_bfd, &sym)) 10761 { 10762 eoinfo->failed = true; 10763 return false; 10764 } 10765 10766 /* Inform the linker of the addition of this symbol. */ 10767 10768 if (flinfo->info->callbacks->ctf_new_dynsym) 10769 flinfo->info->callbacks->ctf_new_dynsym (h->dynindx, &sym); 10770 10771 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0); 10772 10773 if (flinfo->hash_sec != NULL) 10774 { 10775 size_t hash_entry_size; 10776 bfd_byte *bucketpos; 10777 bfd_vma chain; 10778 size_t bucketcount; 10779 size_t bucket; 10780 10781 bucketcount = elf_hash_table (flinfo->info)->bucketcount; 10782 bucket = h->u.elf_hash_value % bucketcount; 10783 10784 hash_entry_size 10785 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize; 10786 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents 10787 + (bucket + 2) * hash_entry_size); 10788 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos); 10789 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx, 10790 bucketpos); 10791 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain, 10792 ((bfd_byte *) flinfo->hash_sec->contents 10793 + (bucketcount + 2 + h->dynindx) * hash_entry_size)); 10794 } 10795 10796 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL) 10797 { 10798 Elf_Internal_Versym iversym; 10799 Elf_External_Versym *eversym; 10800 10801 if (!h->def_regular && !ELF_COMMON_DEF_P (h)) 10802 { 10803 if (h->verinfo.verdef == NULL 10804 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd) 10805 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED))) 10806 iversym.vs_vers = 1; 10807 else 10808 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1; 10809 } 10810 else 10811 { 10812 if (h->verinfo.vertree == NULL) 10813 iversym.vs_vers = 1; 10814 else 10815 iversym.vs_vers = h->verinfo.vertree->vernum + 1; 10816 if (flinfo->info->create_default_symver) 10817 iversym.vs_vers++; 10818 } 10819 10820 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is 10821 defined locally. */ 10822 if (h->versioned == versioned_hidden && h->def_regular) 10823 iversym.vs_vers |= VERSYM_HIDDEN; 10824 10825 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents; 10826 eversym += h->dynindx; 10827 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym); 10828 } 10829 } 10830 10831 /* If the symbol is undefined, and we didn't output it to .dynsym, 10832 strip it from .symtab too. Obviously we can't do this for 10833 relocatable output or when needed for --emit-relocs. */ 10834 else if (input_sec == bfd_und_section_ptr 10835 && h->indx != -2 10836 /* PR 22319 Do not strip global undefined symbols marked as being needed. */ 10837 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL) 10838 && !bfd_link_relocatable (flinfo->info)) 10839 return true; 10840 10841 /* Also strip others that we couldn't earlier due to dynamic symbol 10842 processing. */ 10843 if (strip) 10844 return true; 10845 if ((input_sec->flags & SEC_EXCLUDE) != 0) 10846 return true; 10847 10848 /* Output a FILE symbol so that following locals are not associated 10849 with the wrong input file. We need one for forced local symbols 10850 if we've seen more than one FILE symbol or when we have exactly 10851 one FILE symbol but global symbols are present in a file other 10852 than the one with the FILE symbol. We also need one if linker 10853 defined symbols are present. In practice these conditions are 10854 always met, so just emit the FILE symbol unconditionally. */ 10855 if (eoinfo->localsyms 10856 && !eoinfo->file_sym_done 10857 && eoinfo->flinfo->filesym_count != 0) 10858 { 10859 Elf_Internal_Sym fsym; 10860 10861 memset (&fsym, 0, sizeof (fsym)); 10862 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); 10863 fsym.st_shndx = SHN_ABS; 10864 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym, 10865 bfd_und_section_ptr, NULL)) 10866 return false; 10867 10868 eoinfo->file_sym_done = true; 10869 } 10870 10871 indx = bfd_get_symcount (flinfo->output_bfd); 10872 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym, 10873 input_sec, h); 10874 if (ret == 0) 10875 { 10876 eoinfo->failed = true; 10877 return false; 10878 } 10879 else if (ret == 1) 10880 h->indx = indx; 10881 else if (h->indx == -2) 10882 abort(); 10883 10884 return true; 10885 } 10886 10887 /* Return TRUE if special handling is done for relocs in SEC against 10888 symbols defined in discarded sections. */ 10889 10890 static bool 10891 elf_section_ignore_discarded_relocs (asection *sec) 10892 { 10893 const struct elf_backend_data *bed; 10894 10895 switch (sec->sec_info_type) 10896 { 10897 case SEC_INFO_TYPE_STABS: 10898 case SEC_INFO_TYPE_EH_FRAME: 10899 case SEC_INFO_TYPE_EH_FRAME_ENTRY: 10900 case SEC_INFO_TYPE_SFRAME: 10901 return true; 10902 default: 10903 break; 10904 } 10905 10906 bed = get_elf_backend_data (sec->owner); 10907 if (bed->elf_backend_ignore_discarded_relocs != NULL 10908 && (*bed->elf_backend_ignore_discarded_relocs) (sec)) 10909 return true; 10910 10911 return false; 10912 } 10913 10914 /* Return a mask saying how ld should treat relocations in SEC against 10915 symbols defined in discarded sections. If this function returns 10916 COMPLAIN set, ld will issue a warning message. If this function 10917 returns PRETEND set, and the discarded section was link-once and the 10918 same size as the kept link-once section, ld will pretend that the 10919 symbol was actually defined in the kept section. Otherwise ld will 10920 zero the reloc (at least that is the intent, but some cooperation by 10921 the target dependent code is needed, particularly for REL targets). */ 10922 10923 unsigned int 10924 _bfd_elf_default_action_discarded (asection *sec) 10925 { 10926 const struct elf_backend_data *bed; 10927 bed = get_elf_backend_data (sec->owner); 10928 10929 if (sec->flags & SEC_DEBUGGING) 10930 return PRETEND; 10931 10932 if (strcmp (".eh_frame", sec->name) == 0) 10933 return 0; 10934 10935 if (bed->elf_backend_can_make_multiple_eh_frame 10936 && strncmp (sec->name, ".eh_frame.", 10) == 0) 10937 return 0; 10938 10939 if (strcmp (".sframe", sec->name) == 0) 10940 return 0; 10941 10942 if (strcmp (".gcc_except_table", sec->name) == 0) 10943 return 0; 10944 10945 return COMPLAIN | PRETEND; 10946 } 10947 10948 /* Find a match between a section and a member of a section group. */ 10949 10950 static asection * 10951 match_group_member (asection *sec, asection *group, 10952 struct bfd_link_info *info) 10953 { 10954 asection *first = elf_next_in_group (group); 10955 asection *s = first; 10956 10957 while (s != NULL) 10958 { 10959 if (bfd_elf_match_symbols_in_sections (s, sec, info)) 10960 return s; 10961 10962 s = elf_next_in_group (s); 10963 if (s == first) 10964 break; 10965 } 10966 10967 return NULL; 10968 } 10969 10970 /* Check if the kept section of a discarded section SEC can be used 10971 to replace it. Return the replacement if it is OK. Otherwise return 10972 NULL. */ 10973 10974 asection * 10975 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info) 10976 { 10977 asection *kept; 10978 10979 kept = sec->kept_section; 10980 if (kept != NULL) 10981 { 10982 if ((kept->flags & SEC_GROUP) != 0) 10983 kept = match_group_member (sec, kept, info); 10984 if (kept != NULL) 10985 { 10986 if ((sec->rawsize != 0 ? sec->rawsize : sec->size) 10987 != (kept->rawsize != 0 ? kept->rawsize : kept->size)) 10988 kept = NULL; 10989 else 10990 { 10991 /* Get the real kept section. */ 10992 asection *next; 10993 for (next = kept->kept_section; 10994 next != NULL; 10995 next = next->kept_section) 10996 kept = next; 10997 } 10998 } 10999 sec->kept_section = kept; 11000 } 11001 return kept; 11002 } 11003 11004 /* Link an input file into the linker output file. This function 11005 handles all the sections and relocations of the input file at once. 11006 This is so that we only have to read the local symbols once, and 11007 don't have to keep them in memory. */ 11008 11009 static bool 11010 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd) 11011 { 11012 int (*relocate_section) 11013 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, 11014 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **); 11015 bfd *output_bfd; 11016 Elf_Internal_Shdr *symtab_hdr; 11017 size_t locsymcount; 11018 size_t extsymoff; 11019 Elf_Internal_Sym *isymbuf; 11020 Elf_Internal_Sym *isym; 11021 Elf_Internal_Sym *isymend; 11022 long *pindex; 11023 asection **ppsection; 11024 asection *o; 11025 const struct elf_backend_data *bed; 11026 struct elf_link_hash_entry **sym_hashes; 11027 bfd_size_type address_size; 11028 bfd_vma r_type_mask; 11029 int r_sym_shift; 11030 bool have_file_sym = false; 11031 11032 output_bfd = flinfo->output_bfd; 11033 bed = get_elf_backend_data (output_bfd); 11034 relocate_section = bed->elf_backend_relocate_section; 11035 11036 /* If this is a dynamic object, we don't want to do anything here: 11037 we don't want the local symbols, and we don't want the section 11038 contents. */ 11039 if ((input_bfd->flags & DYNAMIC) != 0) 11040 return true; 11041 11042 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 11043 if (elf_bad_symtab (input_bfd)) 11044 { 11045 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; 11046 extsymoff = 0; 11047 } 11048 else 11049 { 11050 locsymcount = symtab_hdr->sh_info; 11051 extsymoff = symtab_hdr->sh_info; 11052 } 11053 11054 /* Enable GNU OSABI features in the output BFD that are used in the input 11055 BFD. */ 11056 if (bed->elf_osabi == ELFOSABI_NONE 11057 || bed->elf_osabi == ELFOSABI_GNU 11058 || bed->elf_osabi == ELFOSABI_FREEBSD) 11059 elf_tdata (output_bfd)->has_gnu_osabi 11060 |= (elf_tdata (input_bfd)->has_gnu_osabi 11061 & (bfd_link_relocatable (flinfo->info) 11062 ? -1 : ~elf_gnu_osabi_retain)); 11063 11064 /* Read the local symbols. */ 11065 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 11066 if (isymbuf == NULL && locsymcount != 0) 11067 { 11068 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, 11069 flinfo->internal_syms, 11070 flinfo->external_syms, 11071 flinfo->locsym_shndx); 11072 if (isymbuf == NULL) 11073 return false; 11074 } 11075 11076 /* Find local symbol sections and adjust values of symbols in 11077 SEC_MERGE sections. Write out those local symbols we know are 11078 going into the output file. */ 11079 isymend = PTR_ADD (isymbuf, locsymcount); 11080 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections; 11081 isym < isymend; 11082 isym++, pindex++, ppsection++) 11083 { 11084 asection *isec; 11085 const char *name; 11086 Elf_Internal_Sym osym; 11087 long indx; 11088 int ret; 11089 11090 *pindex = -1; 11091 11092 if (elf_bad_symtab (input_bfd)) 11093 { 11094 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) 11095 { 11096 *ppsection = NULL; 11097 continue; 11098 } 11099 } 11100 11101 if (isym->st_shndx == SHN_UNDEF) 11102 isec = bfd_und_section_ptr; 11103 else if (isym->st_shndx == SHN_ABS) 11104 isec = bfd_abs_section_ptr; 11105 else if (isym->st_shndx == SHN_COMMON) 11106 isec = bfd_com_section_ptr; 11107 else 11108 { 11109 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); 11110 if (isec == NULL) 11111 { 11112 /* Don't attempt to output symbols with st_shnx in the 11113 reserved range other than SHN_ABS and SHN_COMMON. */ 11114 isec = bfd_und_section_ptr; 11115 } 11116 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE 11117 && ELF_ST_TYPE (isym->st_info) != STT_SECTION) 11118 isym->st_value = 11119 _bfd_merged_section_offset (output_bfd, &isec, 11120 elf_section_data (isec)->sec_info, 11121 isym->st_value); 11122 } 11123 11124 *ppsection = isec; 11125 11126 /* Don't output the first, undefined, symbol. In fact, don't 11127 output any undefined local symbol. */ 11128 if (isec == bfd_und_section_ptr) 11129 continue; 11130 11131 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) 11132 { 11133 /* We never output section symbols. Instead, we use the 11134 section symbol of the corresponding section in the output 11135 file. */ 11136 continue; 11137 } 11138 11139 /* If we are stripping all symbols, we don't want to output this 11140 one. */ 11141 if (flinfo->info->strip == strip_all) 11142 continue; 11143 11144 /* If we are discarding all local symbols, we don't want to 11145 output this one. If we are generating a relocatable output 11146 file, then some of the local symbols may be required by 11147 relocs; we output them below as we discover that they are 11148 needed. */ 11149 if (flinfo->info->discard == discard_all) 11150 continue; 11151 11152 /* If this symbol is defined in a section which we are 11153 discarding, we don't need to keep it. */ 11154 if (isym->st_shndx != SHN_UNDEF 11155 && isym->st_shndx < SHN_LORESERVE 11156 && isec->output_section == NULL 11157 && flinfo->info->non_contiguous_regions 11158 && flinfo->info->non_contiguous_regions_warnings) 11159 { 11160 _bfd_error_handler (_("warning: --enable-non-contiguous-regions " 11161 "discards section `%s' from '%s'\n"), 11162 isec->name, bfd_get_filename (isec->owner)); 11163 continue; 11164 } 11165 11166 if (isym->st_shndx != SHN_UNDEF 11167 && isym->st_shndx < SHN_LORESERVE 11168 && bfd_section_removed_from_list (output_bfd, 11169 isec->output_section)) 11170 continue; 11171 11172 /* Get the name of the symbol. */ 11173 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, 11174 isym->st_name); 11175 if (name == NULL) 11176 return false; 11177 11178 /* See if we are discarding symbols with this name. */ 11179 if ((flinfo->info->strip == strip_some 11180 && (bfd_hash_lookup (flinfo->info->keep_hash, name, false, false) 11181 == NULL)) 11182 || (((flinfo->info->discard == discard_sec_merge 11183 && (isec->flags & SEC_MERGE) 11184 && !bfd_link_relocatable (flinfo->info)) 11185 || flinfo->info->discard == discard_l) 11186 && bfd_is_local_label_name (input_bfd, name))) 11187 continue; 11188 11189 if (ELF_ST_TYPE (isym->st_info) == STT_FILE) 11190 { 11191 if (input_bfd->lto_output) 11192 /* -flto puts a temp file name here. This means builds 11193 are not reproducible. Discard the symbol. */ 11194 continue; 11195 have_file_sym = true; 11196 flinfo->filesym_count += 1; 11197 } 11198 if (!have_file_sym) 11199 { 11200 /* In the absence of debug info, bfd_find_nearest_line uses 11201 FILE symbols to determine the source file for local 11202 function symbols. Provide a FILE symbol here if input 11203 files lack such, so that their symbols won't be 11204 associated with a previous input file. It's not the 11205 source file, but the best we can do. */ 11206 const char *filename; 11207 have_file_sym = true; 11208 flinfo->filesym_count += 1; 11209 memset (&osym, 0, sizeof (osym)); 11210 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); 11211 osym.st_shndx = SHN_ABS; 11212 if (input_bfd->lto_output) 11213 filename = NULL; 11214 else 11215 filename = lbasename (bfd_get_filename (input_bfd)); 11216 if (!elf_link_output_symstrtab (flinfo, filename, &osym, 11217 bfd_abs_section_ptr, NULL)) 11218 return false; 11219 } 11220 11221 osym = *isym; 11222 11223 /* Adjust the section index for the output file. */ 11224 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, 11225 isec->output_section); 11226 if (osym.st_shndx == SHN_BAD) 11227 return false; 11228 11229 /* ELF symbols in relocatable files are section relative, but 11230 in executable files they are virtual addresses. Note that 11231 this code assumes that all ELF sections have an associated 11232 BFD section with a reasonable value for output_offset; below 11233 we assume that they also have a reasonable value for 11234 output_section. Any special sections must be set up to meet 11235 these requirements. */ 11236 osym.st_value += isec->output_offset; 11237 if (!bfd_link_relocatable (flinfo->info)) 11238 { 11239 osym.st_value += isec->output_section->vma; 11240 if (ELF_ST_TYPE (osym.st_info) == STT_TLS) 11241 { 11242 /* STT_TLS symbols are relative to PT_TLS segment base. */ 11243 if (elf_hash_table (flinfo->info)->tls_sec != NULL) 11244 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma; 11245 else 11246 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info), 11247 STT_NOTYPE); 11248 } 11249 } 11250 11251 indx = bfd_get_symcount (output_bfd); 11252 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL); 11253 if (ret == 0) 11254 return false; 11255 else if (ret == 1) 11256 *pindex = indx; 11257 } 11258 11259 if (bed->s->arch_size == 32) 11260 { 11261 r_type_mask = 0xff; 11262 r_sym_shift = 8; 11263 address_size = 4; 11264 } 11265 else 11266 { 11267 r_type_mask = 0xffffffff; 11268 r_sym_shift = 32; 11269 address_size = 8; 11270 } 11271 11272 /* Relocate the contents of each section. */ 11273 sym_hashes = elf_sym_hashes (input_bfd); 11274 for (o = input_bfd->sections; o != NULL; o = o->next) 11275 { 11276 bfd_byte *contents; 11277 11278 if (! o->linker_mark) 11279 { 11280 /* This section was omitted from the link. */ 11281 continue; 11282 } 11283 11284 if (!flinfo->info->resolve_section_groups 11285 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP) 11286 { 11287 /* Deal with the group signature symbol. */ 11288 struct bfd_elf_section_data *sec_data = elf_section_data (o); 11289 unsigned long symndx = sec_data->this_hdr.sh_info; 11290 asection *osec = o->output_section; 11291 11292 BFD_ASSERT (bfd_link_relocatable (flinfo->info)); 11293 if (symndx >= locsymcount 11294 || (elf_bad_symtab (input_bfd) 11295 && flinfo->sections[symndx] == NULL)) 11296 { 11297 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff]; 11298 while (h->root.type == bfd_link_hash_indirect 11299 || h->root.type == bfd_link_hash_warning) 11300 h = (struct elf_link_hash_entry *) h->root.u.i.link; 11301 /* Arrange for symbol to be output. */ 11302 h->indx = -2; 11303 elf_section_data (osec)->this_hdr.sh_info = -2; 11304 } 11305 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION) 11306 { 11307 /* We'll use the output section target_index. */ 11308 asection *sec = flinfo->sections[symndx]->output_section; 11309 elf_section_data (osec)->this_hdr.sh_info = sec->target_index; 11310 } 11311 else 11312 { 11313 if (flinfo->indices[symndx] == -1) 11314 { 11315 /* Otherwise output the local symbol now. */ 11316 Elf_Internal_Sym sym = isymbuf[symndx]; 11317 asection *sec = flinfo->sections[symndx]->output_section; 11318 const char *name; 11319 long indx; 11320 int ret; 11321 11322 name = bfd_elf_string_from_elf_section (input_bfd, 11323 symtab_hdr->sh_link, 11324 sym.st_name); 11325 if (name == NULL) 11326 return false; 11327 11328 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, 11329 sec); 11330 if (sym.st_shndx == SHN_BAD) 11331 return false; 11332 11333 sym.st_value += o->output_offset; 11334 11335 indx = bfd_get_symcount (output_bfd); 11336 ret = elf_link_output_symstrtab (flinfo, name, &sym, o, 11337 NULL); 11338 if (ret == 0) 11339 return false; 11340 else if (ret == 1) 11341 flinfo->indices[symndx] = indx; 11342 else 11343 abort (); 11344 } 11345 elf_section_data (osec)->this_hdr.sh_info 11346 = flinfo->indices[symndx]; 11347 } 11348 } 11349 11350 if ((o->flags & SEC_HAS_CONTENTS) == 0 11351 || (o->size == 0 && (o->flags & SEC_RELOC) == 0)) 11352 continue; 11353 11354 if ((o->flags & SEC_LINKER_CREATED) != 0) 11355 { 11356 /* Section was created by _bfd_elf_link_create_dynamic_sections 11357 or somesuch. */ 11358 continue; 11359 } 11360 11361 /* Get the contents of the section. They have been cached by a 11362 relaxation routine. Note that o is a section in an input 11363 file, so the contents field will not have been set by any of 11364 the routines which work on output files. */ 11365 if (elf_section_data (o)->this_hdr.contents != NULL) 11366 { 11367 contents = elf_section_data (o)->this_hdr.contents; 11368 if (bed->caches_rawsize 11369 && o->rawsize != 0 11370 && o->rawsize < o->size) 11371 { 11372 memcpy (flinfo->contents, contents, o->rawsize); 11373 contents = flinfo->contents; 11374 } 11375 } 11376 else 11377 { 11378 contents = flinfo->contents; 11379 if (! bfd_get_full_section_contents (input_bfd, o, &contents)) 11380 return false; 11381 } 11382 11383 if ((o->flags & SEC_RELOC) != 0) 11384 { 11385 Elf_Internal_Rela *internal_relocs; 11386 Elf_Internal_Rela *rel, *relend; 11387 int action_discarded; 11388 int ret; 11389 11390 /* Get the swapped relocs. */ 11391 internal_relocs 11392 = _bfd_elf_link_info_read_relocs (input_bfd, flinfo->info, o, 11393 flinfo->external_relocs, 11394 flinfo->internal_relocs, 11395 false); 11396 if (internal_relocs == NULL 11397 && o->reloc_count > 0) 11398 return false; 11399 11400 action_discarded = -1; 11401 if (!elf_section_ignore_discarded_relocs (o)) 11402 action_discarded = (*bed->action_discarded) (o); 11403 11404 /* Run through the relocs evaluating complex reloc symbols and 11405 looking for relocs against symbols from discarded sections 11406 or section symbols from removed link-once sections. 11407 Complain about relocs against discarded sections. Zero 11408 relocs against removed link-once sections. */ 11409 11410 rel = internal_relocs; 11411 relend = rel + o->reloc_count; 11412 for ( ; rel < relend; rel++) 11413 { 11414 unsigned long r_symndx = rel->r_info >> r_sym_shift; 11415 unsigned int s_type; 11416 asection **ps, *sec; 11417 struct elf_link_hash_entry *h = NULL; 11418 const char *sym_name; 11419 11420 if (r_symndx == STN_UNDEF) 11421 continue; 11422 11423 if (r_symndx >= locsymcount 11424 || (elf_bad_symtab (input_bfd) 11425 && flinfo->sections[r_symndx] == NULL)) 11426 { 11427 h = sym_hashes[r_symndx - extsymoff]; 11428 11429 /* Badly formatted input files can contain relocs that 11430 reference non-existant symbols. Check here so that 11431 we do not seg fault. */ 11432 if (h == NULL) 11433 { 11434 _bfd_error_handler 11435 /* xgettext:c-format */ 11436 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA " 11437 "that references a non-existent global symbol"), 11438 input_bfd, (uint64_t) rel->r_info, o); 11439 bfd_set_error (bfd_error_bad_value); 11440 return false; 11441 } 11442 11443 while (h->root.type == bfd_link_hash_indirect 11444 || h->root.type == bfd_link_hash_warning) 11445 h = (struct elf_link_hash_entry *) h->root.u.i.link; 11446 11447 s_type = h->type; 11448 11449 /* If a plugin symbol is referenced from a non-IR file, 11450 mark the symbol as undefined. Note that the 11451 linker may attach linker created dynamic sections 11452 to the plugin bfd. Symbols defined in linker 11453 created sections are not plugin symbols. */ 11454 if ((h->root.non_ir_ref_regular 11455 || h->root.non_ir_ref_dynamic) 11456 && (h->root.type == bfd_link_hash_defined 11457 || h->root.type == bfd_link_hash_defweak) 11458 && (h->root.u.def.section->flags 11459 & SEC_LINKER_CREATED) == 0 11460 && h->root.u.def.section->owner != NULL 11461 && (h->root.u.def.section->owner->flags 11462 & BFD_PLUGIN) != 0) 11463 { 11464 h->root.type = bfd_link_hash_undefined; 11465 h->root.u.undef.abfd = h->root.u.def.section->owner; 11466 } 11467 11468 ps = NULL; 11469 if (h->root.type == bfd_link_hash_defined 11470 || h->root.type == bfd_link_hash_defweak) 11471 ps = &h->root.u.def.section; 11472 11473 sym_name = h->root.root.string; 11474 } 11475 else 11476 { 11477 Elf_Internal_Sym *sym = isymbuf + r_symndx; 11478 11479 s_type = ELF_ST_TYPE (sym->st_info); 11480 ps = &flinfo->sections[r_symndx]; 11481 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, 11482 sym, *ps); 11483 } 11484 11485 if ((s_type == STT_RELC || s_type == STT_SRELC) 11486 && !bfd_link_relocatable (flinfo->info)) 11487 { 11488 bfd_vma val; 11489 bfd_vma dot = (rel->r_offset 11490 + o->output_offset + o->output_section->vma); 11491 #ifdef DEBUG 11492 printf ("Encountered a complex symbol!"); 11493 printf (" (input_bfd %s, section %s, reloc %ld\n", 11494 bfd_get_filename (input_bfd), o->name, 11495 (long) (rel - internal_relocs)); 11496 printf (" symbol: idx %8.8lx, name %s\n", 11497 r_symndx, sym_name); 11498 printf (" reloc : info %8.8lx, addr %8.8lx\n", 11499 (unsigned long) rel->r_info, 11500 (unsigned long) rel->r_offset); 11501 #endif 11502 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot, 11503 isymbuf, locsymcount, s_type == STT_SRELC)) 11504 return false; 11505 11506 /* Symbol evaluated OK. Update to absolute value. */ 11507 set_symbol_value (input_bfd, isymbuf, locsymcount, 11508 r_symndx, val); 11509 continue; 11510 } 11511 11512 if (action_discarded != -1 && ps != NULL) 11513 { 11514 /* Complain if the definition comes from a 11515 discarded section. */ 11516 if ((sec = *ps) != NULL && discarded_section (sec)) 11517 { 11518 BFD_ASSERT (r_symndx != STN_UNDEF); 11519 if (action_discarded & COMPLAIN) 11520 (*flinfo->info->callbacks->einfo) 11521 /* xgettext:c-format */ 11522 (_("%X`%s' referenced in section `%pA' of %pB: " 11523 "defined in discarded section `%pA' of %pB\n"), 11524 sym_name, o, input_bfd, sec, sec->owner); 11525 11526 /* Try to do the best we can to support buggy old 11527 versions of gcc. Pretend that the symbol is 11528 really defined in the kept linkonce section. 11529 FIXME: This is quite broken. Modifying the 11530 symbol here means we will be changing all later 11531 uses of the symbol, not just in this section. */ 11532 if (action_discarded & PRETEND) 11533 { 11534 asection *kept; 11535 11536 kept = _bfd_elf_check_kept_section (sec, 11537 flinfo->info); 11538 if (kept != NULL) 11539 { 11540 *ps = kept; 11541 continue; 11542 } 11543 } 11544 } 11545 } 11546 } 11547 11548 /* Relocate the section by invoking a back end routine. 11549 11550 The back end routine is responsible for adjusting the 11551 section contents as necessary, and (if using Rela relocs 11552 and generating a relocatable output file) adjusting the 11553 reloc addend as necessary. 11554 11555 The back end routine does not have to worry about setting 11556 the reloc address or the reloc symbol index. 11557 11558 The back end routine is given a pointer to the swapped in 11559 internal symbols, and can access the hash table entries 11560 for the external symbols via elf_sym_hashes (input_bfd). 11561 11562 When generating relocatable output, the back end routine 11563 must handle STB_LOCAL/STT_SECTION symbols specially. The 11564 output symbol is going to be a section symbol 11565 corresponding to the output section, which will require 11566 the addend to be adjusted. */ 11567 11568 ret = (*relocate_section) (output_bfd, flinfo->info, 11569 input_bfd, o, contents, 11570 internal_relocs, 11571 isymbuf, 11572 flinfo->sections); 11573 if (!ret) 11574 return false; 11575 11576 if (ret == 2 11577 || bfd_link_relocatable (flinfo->info) 11578 || flinfo->info->emitrelocations) 11579 { 11580 Elf_Internal_Rela *irela; 11581 Elf_Internal_Rela *irelaend, *irelamid; 11582 bfd_vma last_offset; 11583 struct elf_link_hash_entry **rel_hash; 11584 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list; 11585 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr; 11586 unsigned int next_erel; 11587 bool rela_normal; 11588 struct bfd_elf_section_data *esdi, *esdo; 11589 11590 esdi = elf_section_data (o); 11591 esdo = elf_section_data (o->output_section); 11592 rela_normal = false; 11593 11594 /* Adjust the reloc addresses and symbol indices. */ 11595 11596 irela = internal_relocs; 11597 irelaend = irela + o->reloc_count; 11598 rel_hash = PTR_ADD (esdo->rel.hashes, esdo->rel.count); 11599 /* We start processing the REL relocs, if any. When we reach 11600 IRELAMID in the loop, we switch to the RELA relocs. */ 11601 irelamid = irela; 11602 if (esdi->rel.hdr != NULL) 11603 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr) 11604 * bed->s->int_rels_per_ext_rel); 11605 rel_hash_list = rel_hash; 11606 rela_hash_list = NULL; 11607 last_offset = o->output_offset; 11608 if (!bfd_link_relocatable (flinfo->info)) 11609 last_offset += o->output_section->vma; 11610 for (next_erel = 0; irela < irelaend; irela++, next_erel++) 11611 { 11612 unsigned long r_symndx; 11613 asection *sec; 11614 Elf_Internal_Sym sym; 11615 11616 if (next_erel == bed->s->int_rels_per_ext_rel) 11617 { 11618 rel_hash++; 11619 next_erel = 0; 11620 } 11621 11622 if (irela == irelamid) 11623 { 11624 rel_hash = PTR_ADD (esdo->rela.hashes, esdo->rela.count); 11625 rela_hash_list = rel_hash; 11626 rela_normal = bed->rela_normal; 11627 } 11628 11629 irela->r_offset = _bfd_elf_section_offset (output_bfd, 11630 flinfo->info, o, 11631 irela->r_offset); 11632 if (irela->r_offset >= (bfd_vma) -2) 11633 { 11634 /* This is a reloc for a deleted entry or somesuch. 11635 Turn it into an R_*_NONE reloc, at the same 11636 offset as the last reloc. elf_eh_frame.c and 11637 bfd_elf_discard_info rely on reloc offsets 11638 being ordered. */ 11639 irela->r_offset = last_offset; 11640 irela->r_info = 0; 11641 irela->r_addend = 0; 11642 continue; 11643 } 11644 11645 irela->r_offset += o->output_offset; 11646 11647 /* Relocs in an executable have to be virtual addresses. */ 11648 if (!bfd_link_relocatable (flinfo->info)) 11649 irela->r_offset += o->output_section->vma; 11650 11651 last_offset = irela->r_offset; 11652 11653 r_symndx = irela->r_info >> r_sym_shift; 11654 if (r_symndx == STN_UNDEF) 11655 continue; 11656 11657 if (r_symndx >= locsymcount 11658 || (elf_bad_symtab (input_bfd) 11659 && flinfo->sections[r_symndx] == NULL)) 11660 { 11661 struct elf_link_hash_entry *rh; 11662 unsigned long indx; 11663 11664 /* This is a reloc against a global symbol. We 11665 have not yet output all the local symbols, so 11666 we do not know the symbol index of any global 11667 symbol. We set the rel_hash entry for this 11668 reloc to point to the global hash table entry 11669 for this symbol. The symbol index is then 11670 set at the end of bfd_elf_final_link. */ 11671 indx = r_symndx - extsymoff; 11672 rh = elf_sym_hashes (input_bfd)[indx]; 11673 while (rh->root.type == bfd_link_hash_indirect 11674 || rh->root.type == bfd_link_hash_warning) 11675 rh = (struct elf_link_hash_entry *) rh->root.u.i.link; 11676 11677 /* Setting the index to -2 tells 11678 elf_link_output_extsym that this symbol is 11679 used by a reloc. */ 11680 BFD_ASSERT (rh->indx < 0); 11681 rh->indx = -2; 11682 *rel_hash = rh; 11683 11684 continue; 11685 } 11686 11687 /* This is a reloc against a local symbol. */ 11688 11689 *rel_hash = NULL; 11690 sym = isymbuf[r_symndx]; 11691 sec = flinfo->sections[r_symndx]; 11692 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION) 11693 { 11694 /* I suppose the backend ought to fill in the 11695 section of any STT_SECTION symbol against a 11696 processor specific section. */ 11697 r_symndx = STN_UNDEF; 11698 if (bfd_is_abs_section (sec)) 11699 ; 11700 else if (sec == NULL || sec->owner == NULL) 11701 { 11702 bfd_set_error (bfd_error_bad_value); 11703 return false; 11704 } 11705 else 11706 { 11707 asection *osec = sec->output_section; 11708 11709 /* If we have discarded a section, the output 11710 section will be the absolute section. In 11711 case of discarded SEC_MERGE sections, use 11712 the kept section. relocate_section should 11713 have already handled discarded linkonce 11714 sections. */ 11715 if (bfd_is_abs_section (osec) 11716 && sec->kept_section != NULL 11717 && sec->kept_section->output_section != NULL) 11718 { 11719 osec = sec->kept_section->output_section; 11720 irela->r_addend -= osec->vma; 11721 } 11722 11723 if (!bfd_is_abs_section (osec)) 11724 { 11725 r_symndx = osec->target_index; 11726 if (r_symndx == STN_UNDEF) 11727 { 11728 irela->r_addend += osec->vma; 11729 osec = _bfd_nearby_section (output_bfd, osec, 11730 osec->vma); 11731 irela->r_addend -= osec->vma; 11732 r_symndx = osec->target_index; 11733 } 11734 } 11735 } 11736 11737 /* Adjust the addend according to where the 11738 section winds up in the output section. */ 11739 if (rela_normal) 11740 irela->r_addend += sec->output_offset; 11741 } 11742 else 11743 { 11744 if (flinfo->indices[r_symndx] == -1) 11745 { 11746 unsigned long shlink; 11747 const char *name; 11748 asection *osec; 11749 long indx; 11750 11751 if (flinfo->info->strip == strip_all) 11752 { 11753 /* You can't do ld -r -s. */ 11754 bfd_set_error (bfd_error_invalid_operation); 11755 return false; 11756 } 11757 11758 /* This symbol was skipped earlier, but 11759 since it is needed by a reloc, we 11760 must output it now. */ 11761 shlink = symtab_hdr->sh_link; 11762 name = (bfd_elf_string_from_elf_section 11763 (input_bfd, shlink, sym.st_name)); 11764 if (name == NULL) 11765 return false; 11766 11767 osec = sec->output_section; 11768 sym.st_shndx = 11769 _bfd_elf_section_from_bfd_section (output_bfd, 11770 osec); 11771 if (sym.st_shndx == SHN_BAD) 11772 return false; 11773 11774 sym.st_value += sec->output_offset; 11775 if (!bfd_link_relocatable (flinfo->info)) 11776 { 11777 sym.st_value += osec->vma; 11778 if (ELF_ST_TYPE (sym.st_info) == STT_TLS) 11779 { 11780 struct elf_link_hash_table *htab 11781 = elf_hash_table (flinfo->info); 11782 11783 /* STT_TLS symbols are relative to PT_TLS 11784 segment base. */ 11785 if (htab->tls_sec != NULL) 11786 sym.st_value -= htab->tls_sec->vma; 11787 else 11788 sym.st_info 11789 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info), 11790 STT_NOTYPE); 11791 } 11792 } 11793 11794 indx = bfd_get_symcount (output_bfd); 11795 ret = elf_link_output_symstrtab (flinfo, name, 11796 &sym, sec, 11797 NULL); 11798 if (ret == 0) 11799 return false; 11800 else if (ret == 1) 11801 flinfo->indices[r_symndx] = indx; 11802 else 11803 abort (); 11804 } 11805 11806 r_symndx = flinfo->indices[r_symndx]; 11807 } 11808 11809 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift 11810 | (irela->r_info & r_type_mask)); 11811 } 11812 11813 /* Swap out the relocs. */ 11814 input_rel_hdr = esdi->rel.hdr; 11815 if (input_rel_hdr && input_rel_hdr->sh_size != 0) 11816 { 11817 if (!bed->elf_backend_emit_relocs (output_bfd, o, 11818 input_rel_hdr, 11819 internal_relocs, 11820 rel_hash_list)) 11821 return false; 11822 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr) 11823 * bed->s->int_rels_per_ext_rel); 11824 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr); 11825 } 11826 11827 input_rela_hdr = esdi->rela.hdr; 11828 if (input_rela_hdr && input_rela_hdr->sh_size != 0) 11829 { 11830 if (!bed->elf_backend_emit_relocs (output_bfd, o, 11831 input_rela_hdr, 11832 internal_relocs, 11833 rela_hash_list)) 11834 return false; 11835 } 11836 } 11837 } 11838 11839 /* Write out the modified section contents. */ 11840 if (bed->elf_backend_write_section 11841 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o, 11842 contents)) 11843 { 11844 /* Section written out. */ 11845 } 11846 else switch (o->sec_info_type) 11847 { 11848 case SEC_INFO_TYPE_STABS: 11849 if (! (_bfd_write_section_stabs 11850 (output_bfd, 11851 &elf_hash_table (flinfo->info)->stab_info, 11852 o, &elf_section_data (o)->sec_info, contents))) 11853 return false; 11854 break; 11855 case SEC_INFO_TYPE_MERGE: 11856 if (! _bfd_write_merged_section (output_bfd, o, 11857 elf_section_data (o)->sec_info)) 11858 return false; 11859 break; 11860 case SEC_INFO_TYPE_EH_FRAME: 11861 { 11862 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info, 11863 o, contents)) 11864 return false; 11865 } 11866 break; 11867 case SEC_INFO_TYPE_EH_FRAME_ENTRY: 11868 { 11869 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd, 11870 flinfo->info, 11871 o, contents)) 11872 return false; 11873 } 11874 break; 11875 case SEC_INFO_TYPE_SFRAME: 11876 { 11877 /* Merge .sframe sections into the ctf frame encoder 11878 context of the output_bfd's section. The final .sframe 11879 output section will be written out later. */ 11880 if (!_bfd_elf_merge_section_sframe (output_bfd, flinfo->info, 11881 o, contents)) 11882 return false; 11883 } 11884 break; 11885 default: 11886 { 11887 if (! (o->flags & SEC_EXCLUDE)) 11888 { 11889 file_ptr offset = (file_ptr) o->output_offset; 11890 bfd_size_type todo = o->size; 11891 11892 offset *= bfd_octets_per_byte (output_bfd, o); 11893 11894 if ((o->flags & SEC_ELF_REVERSE_COPY) 11895 && o->size > address_size) 11896 { 11897 /* Reverse-copy input section to output. */ 11898 11899 if ((o->size & (address_size - 1)) != 0 11900 || (o->reloc_count != 0 11901 && (o->size * bed->s->int_rels_per_ext_rel 11902 != o->reloc_count * address_size))) 11903 { 11904 _bfd_error_handler 11905 /* xgettext:c-format */ 11906 (_("error: %pB: size of section %pA is not " 11907 "multiple of address size"), 11908 input_bfd, o); 11909 bfd_set_error (bfd_error_bad_value); 11910 return false; 11911 } 11912 11913 do 11914 { 11915 todo -= address_size; 11916 if (! bfd_set_section_contents (output_bfd, 11917 o->output_section, 11918 contents + todo, 11919 offset, 11920 address_size)) 11921 return false; 11922 if (todo == 0) 11923 break; 11924 offset += address_size; 11925 } 11926 while (1); 11927 } 11928 else if (! bfd_set_section_contents (output_bfd, 11929 o->output_section, 11930 contents, 11931 offset, todo)) 11932 return false; 11933 } 11934 } 11935 break; 11936 } 11937 } 11938 11939 return true; 11940 } 11941 11942 /* Generate a reloc when linking an ELF file. This is a reloc 11943 requested by the linker, and does not come from any input file. This 11944 is used to build constructor and destructor tables when linking 11945 with -Ur. */ 11946 11947 static bool 11948 elf_reloc_link_order (bfd *output_bfd, 11949 struct bfd_link_info *info, 11950 asection *output_section, 11951 struct bfd_link_order *link_order) 11952 { 11953 reloc_howto_type *howto; 11954 long indx; 11955 bfd_vma offset; 11956 bfd_vma addend; 11957 struct bfd_elf_section_reloc_data *reldata; 11958 struct elf_link_hash_entry **rel_hash_ptr; 11959 Elf_Internal_Shdr *rel_hdr; 11960 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 11961 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL]; 11962 bfd_byte *erel; 11963 unsigned int i; 11964 struct bfd_elf_section_data *esdo = elf_section_data (output_section); 11965 11966 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); 11967 if (howto == NULL) 11968 { 11969 bfd_set_error (bfd_error_bad_value); 11970 return false; 11971 } 11972 11973 addend = link_order->u.reloc.p->addend; 11974 11975 if (esdo->rel.hdr) 11976 reldata = &esdo->rel; 11977 else if (esdo->rela.hdr) 11978 reldata = &esdo->rela; 11979 else 11980 { 11981 reldata = NULL; 11982 BFD_ASSERT (0); 11983 } 11984 11985 /* Figure out the symbol index. */ 11986 rel_hash_ptr = reldata->hashes + reldata->count; 11987 if (link_order->type == bfd_section_reloc_link_order) 11988 { 11989 indx = link_order->u.reloc.p->u.section->target_index; 11990 BFD_ASSERT (indx != 0); 11991 *rel_hash_ptr = NULL; 11992 } 11993 else 11994 { 11995 struct elf_link_hash_entry *h; 11996 11997 /* Treat a reloc against a defined symbol as though it were 11998 actually against the section. */ 11999 h = ((struct elf_link_hash_entry *) 12000 bfd_wrapped_link_hash_lookup (output_bfd, info, 12001 link_order->u.reloc.p->u.name, 12002 false, false, true)); 12003 if (h != NULL 12004 && (h->root.type == bfd_link_hash_defined 12005 || h->root.type == bfd_link_hash_defweak)) 12006 { 12007 asection *section; 12008 12009 section = h->root.u.def.section; 12010 indx = section->output_section->target_index; 12011 *rel_hash_ptr = NULL; 12012 /* It seems that we ought to add the symbol value to the 12013 addend here, but in practice it has already been added 12014 because it was passed to constructor_callback. */ 12015 addend += section->output_section->vma + section->output_offset; 12016 } 12017 else if (h != NULL) 12018 { 12019 /* Setting the index to -2 tells elf_link_output_extsym that 12020 this symbol is used by a reloc. */ 12021 h->indx = -2; 12022 *rel_hash_ptr = h; 12023 indx = 0; 12024 } 12025 else 12026 { 12027 (*info->callbacks->unattached_reloc) 12028 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0); 12029 indx = 0; 12030 } 12031 } 12032 12033 /* If this is an inplace reloc, we must write the addend into the 12034 object file. */ 12035 if (howto->partial_inplace && addend != 0) 12036 { 12037 bfd_size_type size; 12038 bfd_reloc_status_type rstat; 12039 bfd_byte *buf; 12040 bool ok; 12041 const char *sym_name; 12042 bfd_size_type octets; 12043 12044 size = (bfd_size_type) bfd_get_reloc_size (howto); 12045 buf = (bfd_byte *) bfd_zmalloc (size); 12046 if (buf == NULL && size != 0) 12047 return false; 12048 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); 12049 switch (rstat) 12050 { 12051 case bfd_reloc_ok: 12052 break; 12053 12054 default: 12055 case bfd_reloc_outofrange: 12056 abort (); 12057 12058 case bfd_reloc_overflow: 12059 if (link_order->type == bfd_section_reloc_link_order) 12060 sym_name = bfd_section_name (link_order->u.reloc.p->u.section); 12061 else 12062 sym_name = link_order->u.reloc.p->u.name; 12063 (*info->callbacks->reloc_overflow) (info, NULL, sym_name, 12064 howto->name, addend, NULL, NULL, 12065 (bfd_vma) 0); 12066 break; 12067 } 12068 12069 octets = link_order->offset * bfd_octets_per_byte (output_bfd, 12070 output_section); 12071 ok = bfd_set_section_contents (output_bfd, output_section, buf, 12072 octets, size); 12073 free (buf); 12074 if (! ok) 12075 return false; 12076 } 12077 12078 /* The address of a reloc is relative to the section in a 12079 relocatable file, and is a virtual address in an executable 12080 file. */ 12081 offset = link_order->offset; 12082 if (! bfd_link_relocatable (info)) 12083 offset += output_section->vma; 12084 12085 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++) 12086 { 12087 irel[i].r_offset = offset; 12088 irel[i].r_info = 0; 12089 irel[i].r_addend = 0; 12090 } 12091 if (bed->s->arch_size == 32) 12092 irel[0].r_info = ELF32_R_INFO (indx, howto->type); 12093 else 12094 irel[0].r_info = ELF64_R_INFO (indx, howto->type); 12095 12096 rel_hdr = reldata->hdr; 12097 erel = rel_hdr->contents; 12098 if (rel_hdr->sh_type == SHT_REL) 12099 { 12100 erel += reldata->count * bed->s->sizeof_rel; 12101 (*bed->s->swap_reloc_out) (output_bfd, irel, erel); 12102 } 12103 else 12104 { 12105 irel[0].r_addend = addend; 12106 erel += reldata->count * bed->s->sizeof_rela; 12107 (*bed->s->swap_reloca_out) (output_bfd, irel, erel); 12108 } 12109 12110 ++reldata->count; 12111 12112 return true; 12113 } 12114 12115 /* Generate an import library in INFO->implib_bfd from symbols in ABFD. 12116 Returns TRUE upon success, FALSE otherwise. */ 12117 12118 static bool 12119 elf_output_implib (bfd *abfd, struct bfd_link_info *info) 12120 { 12121 bool ret = false; 12122 bfd *implib_bfd; 12123 const struct elf_backend_data *bed; 12124 flagword flags; 12125 enum bfd_architecture arch; 12126 unsigned int mach; 12127 asymbol **sympp = NULL; 12128 long symsize; 12129 long symcount; 12130 long src_count; 12131 elf_symbol_type *osymbuf; 12132 size_t amt; 12133 12134 implib_bfd = info->out_implib_bfd; 12135 bed = get_elf_backend_data (abfd); 12136 12137 if (!bfd_set_format (implib_bfd, bfd_object)) 12138 return false; 12139 12140 /* Use flag from executable but make it a relocatable object. */ 12141 flags = bfd_get_file_flags (abfd); 12142 flags &= ~HAS_RELOC; 12143 if (!bfd_set_start_address (implib_bfd, 0) 12144 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P)) 12145 return false; 12146 12147 /* Copy architecture of output file to import library file. */ 12148 arch = bfd_get_arch (abfd); 12149 mach = bfd_get_mach (abfd); 12150 if (!bfd_set_arch_mach (implib_bfd, arch, mach) 12151 && (abfd->target_defaulted 12152 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd))) 12153 return false; 12154 12155 /* Get symbol table size. */ 12156 symsize = bfd_get_symtab_upper_bound (abfd); 12157 if (symsize < 0) 12158 return false; 12159 12160 /* Read in the symbol table. */ 12161 sympp = (asymbol **) bfd_malloc (symsize); 12162 if (sympp == NULL) 12163 return false; 12164 12165 symcount = bfd_canonicalize_symtab (abfd, sympp); 12166 if (symcount < 0) 12167 goto free_sym_buf; 12168 12169 /* Allow the BFD backend to copy any private header data it 12170 understands from the output BFD to the import library BFD. */ 12171 if (! bfd_copy_private_header_data (abfd, implib_bfd)) 12172 goto free_sym_buf; 12173 12174 /* Filter symbols to appear in the import library. */ 12175 if (bed->elf_backend_filter_implib_symbols) 12176 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp, 12177 symcount); 12178 else 12179 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount); 12180 if (symcount == 0) 12181 { 12182 bfd_set_error (bfd_error_no_symbols); 12183 _bfd_error_handler (_("%pB: no symbol found for import library"), 12184 implib_bfd); 12185 goto free_sym_buf; 12186 } 12187 12188 12189 /* Make symbols absolute. */ 12190 amt = symcount * sizeof (*osymbuf); 12191 osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt); 12192 if (osymbuf == NULL) 12193 goto free_sym_buf; 12194 12195 for (src_count = 0; src_count < symcount; src_count++) 12196 { 12197 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count], 12198 sizeof (*osymbuf)); 12199 osymbuf[src_count].symbol.section = bfd_abs_section_ptr; 12200 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS; 12201 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma; 12202 osymbuf[src_count].internal_elf_sym.st_value = 12203 osymbuf[src_count].symbol.value; 12204 sympp[src_count] = &osymbuf[src_count].symbol; 12205 } 12206 12207 bfd_set_symtab (implib_bfd, sympp, symcount); 12208 12209 /* Allow the BFD backend to copy any private data it understands 12210 from the output BFD to the import library BFD. This is done last 12211 to permit the routine to look at the filtered symbol table. */ 12212 if (! bfd_copy_private_bfd_data (abfd, implib_bfd)) 12213 goto free_sym_buf; 12214 12215 if (!bfd_close (implib_bfd)) 12216 goto free_sym_buf; 12217 12218 ret = true; 12219 12220 free_sym_buf: 12221 free (sympp); 12222 return ret; 12223 } 12224 12225 static void 12226 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo) 12227 { 12228 asection *o; 12229 12230 if (flinfo->symstrtab != NULL) 12231 _bfd_elf_strtab_free (flinfo->symstrtab); 12232 free (flinfo->contents); 12233 free (flinfo->external_relocs); 12234 free (flinfo->internal_relocs); 12235 free (flinfo->external_syms); 12236 free (flinfo->locsym_shndx); 12237 free (flinfo->internal_syms); 12238 free (flinfo->indices); 12239 free (flinfo->sections); 12240 if (flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1) 12241 free (flinfo->symshndxbuf); 12242 for (o = obfd->sections; o != NULL; o = o->next) 12243 { 12244 struct bfd_elf_section_data *esdo = elf_section_data (o); 12245 free (esdo->rel.hashes); 12246 free (esdo->rela.hashes); 12247 } 12248 } 12249 12250 /* Do the final step of an ELF link. */ 12251 12252 bool 12253 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info) 12254 { 12255 bool dynamic; 12256 bool emit_relocs; 12257 bfd *dynobj; 12258 struct elf_final_link_info flinfo; 12259 asection *o; 12260 struct bfd_link_order *p; 12261 bfd *sub; 12262 bfd_size_type max_contents_size; 12263 bfd_size_type max_external_reloc_size; 12264 bfd_size_type max_internal_reloc_count; 12265 bfd_size_type max_sym_count; 12266 bfd_size_type max_sym_shndx_count; 12267 Elf_Internal_Sym elfsym; 12268 unsigned int i; 12269 Elf_Internal_Shdr *symtab_hdr; 12270 Elf_Internal_Shdr *symtab_shndx_hdr; 12271 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 12272 struct elf_outext_info eoinfo; 12273 bool merged; 12274 size_t relativecount; 12275 size_t relr_entsize; 12276 asection *reldyn = 0; 12277 bfd_size_type amt; 12278 asection *attr_section = NULL; 12279 bfd_vma attr_size = 0; 12280 const char *std_attrs_section; 12281 struct elf_link_hash_table *htab = elf_hash_table (info); 12282 bool sections_removed; 12283 bool ret; 12284 12285 if (!is_elf_hash_table (&htab->root)) 12286 return false; 12287 12288 if (bfd_link_pic (info)) 12289 abfd->flags |= DYNAMIC; 12290 12291 dynamic = htab->dynamic_sections_created; 12292 dynobj = htab->dynobj; 12293 12294 emit_relocs = (bfd_link_relocatable (info) 12295 || info->emitrelocations); 12296 12297 memset (&flinfo, 0, sizeof (flinfo)); 12298 flinfo.info = info; 12299 flinfo.output_bfd = abfd; 12300 flinfo.symstrtab = _bfd_elf_strtab_init (); 12301 if (flinfo.symstrtab == NULL) 12302 return false; 12303 12304 if (! dynamic) 12305 { 12306 flinfo.hash_sec = NULL; 12307 flinfo.symver_sec = NULL; 12308 } 12309 else 12310 { 12311 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash"); 12312 /* Note that dynsym_sec can be NULL (on VMS). */ 12313 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version"); 12314 /* Note that it is OK if symver_sec is NULL. */ 12315 } 12316 12317 if (info->unique_symbol 12318 && !bfd_hash_table_init (&flinfo.local_hash_table, 12319 local_hash_newfunc, 12320 sizeof (struct local_hash_entry))) 12321 return false; 12322 12323 /* The object attributes have been merged. Remove the input 12324 sections from the link, and set the contents of the output 12325 section. */ 12326 sections_removed = false; 12327 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section; 12328 for (o = abfd->sections; o != NULL; o = o->next) 12329 { 12330 bool remove_section = false; 12331 12332 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0) 12333 || strcmp (o->name, ".gnu.attributes") == 0) 12334 { 12335 for (p = o->map_head.link_order; p != NULL; p = p->next) 12336 { 12337 asection *input_section; 12338 12339 if (p->type != bfd_indirect_link_order) 12340 continue; 12341 input_section = p->u.indirect.section; 12342 /* Hack: reset the SEC_HAS_CONTENTS flag so that 12343 elf_link_input_bfd ignores this section. */ 12344 input_section->flags &= ~SEC_HAS_CONTENTS; 12345 } 12346 12347 attr_size = bfd_elf_obj_attr_size (abfd); 12348 bfd_set_section_size (o, attr_size); 12349 /* Skip this section later on. */ 12350 o->map_head.link_order = NULL; 12351 if (attr_size) 12352 attr_section = o; 12353 else 12354 remove_section = true; 12355 } 12356 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0) 12357 { 12358 /* Remove empty group section from linker output. */ 12359 remove_section = true; 12360 } 12361 if (remove_section) 12362 { 12363 o->flags |= SEC_EXCLUDE; 12364 bfd_section_list_remove (abfd, o); 12365 abfd->section_count--; 12366 sections_removed = true; 12367 } 12368 } 12369 if (sections_removed) 12370 _bfd_fix_excluded_sec_syms (abfd, info); 12371 12372 /* Count up the number of relocations we will output for each output 12373 section, so that we know the sizes of the reloc sections. We 12374 also figure out some maximum sizes. */ 12375 max_contents_size = 0; 12376 max_external_reloc_size = 0; 12377 max_internal_reloc_count = 0; 12378 max_sym_count = 0; 12379 max_sym_shndx_count = 0; 12380 merged = false; 12381 for (o = abfd->sections; o != NULL; o = o->next) 12382 { 12383 struct bfd_elf_section_data *esdo = elf_section_data (o); 12384 o->reloc_count = 0; 12385 12386 for (p = o->map_head.link_order; p != NULL; p = p->next) 12387 { 12388 unsigned int reloc_count = 0; 12389 unsigned int additional_reloc_count = 0; 12390 struct bfd_elf_section_data *esdi = NULL; 12391 12392 if (p->type == bfd_section_reloc_link_order 12393 || p->type == bfd_symbol_reloc_link_order) 12394 reloc_count = 1; 12395 else if (p->type == bfd_indirect_link_order) 12396 { 12397 asection *sec; 12398 12399 sec = p->u.indirect.section; 12400 12401 /* Mark all sections which are to be included in the 12402 link. This will normally be every section. We need 12403 to do this so that we can identify any sections which 12404 the linker has decided to not include. */ 12405 sec->linker_mark = true; 12406 12407 if (sec->flags & SEC_MERGE) 12408 merged = true; 12409 12410 if (sec->rawsize > max_contents_size) 12411 max_contents_size = sec->rawsize; 12412 if (sec->size > max_contents_size) 12413 max_contents_size = sec->size; 12414 12415 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour 12416 && (sec->owner->flags & DYNAMIC) == 0) 12417 { 12418 size_t sym_count; 12419 12420 /* We are interested in just local symbols, not all 12421 symbols. */ 12422 if (elf_bad_symtab (sec->owner)) 12423 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size 12424 / bed->s->sizeof_sym); 12425 else 12426 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; 12427 12428 if (sym_count > max_sym_count) 12429 max_sym_count = sym_count; 12430 12431 if (sym_count > max_sym_shndx_count 12432 && elf_symtab_shndx_list (sec->owner) != NULL) 12433 max_sym_shndx_count = sym_count; 12434 12435 esdi = elf_section_data (sec); 12436 12437 if (esdi->this_hdr.sh_type == SHT_REL 12438 || esdi->this_hdr.sh_type == SHT_RELA) 12439 /* Some backends use reloc_count in relocation sections 12440 to count particular types of relocs. Of course, 12441 reloc sections themselves can't have relocations. */ 12442 ; 12443 else if (emit_relocs) 12444 { 12445 reloc_count = sec->reloc_count; 12446 if (bed->elf_backend_count_additional_relocs) 12447 { 12448 int c; 12449 c = (*bed->elf_backend_count_additional_relocs) (sec); 12450 additional_reloc_count += c; 12451 } 12452 } 12453 else if (bed->elf_backend_count_relocs) 12454 reloc_count = (*bed->elf_backend_count_relocs) (info, sec); 12455 12456 if ((sec->flags & SEC_RELOC) != 0) 12457 { 12458 size_t ext_size = 0; 12459 12460 if (esdi->rel.hdr != NULL) 12461 ext_size = esdi->rel.hdr->sh_size; 12462 if (esdi->rela.hdr != NULL) 12463 ext_size += esdi->rela.hdr->sh_size; 12464 12465 if (ext_size > max_external_reloc_size) 12466 max_external_reloc_size = ext_size; 12467 if (sec->reloc_count > max_internal_reloc_count) 12468 max_internal_reloc_count = sec->reloc_count; 12469 } 12470 } 12471 } 12472 12473 if (reloc_count == 0) 12474 continue; 12475 12476 reloc_count += additional_reloc_count; 12477 o->reloc_count += reloc_count; 12478 12479 if (p->type == bfd_indirect_link_order && emit_relocs) 12480 { 12481 if (esdi->rel.hdr) 12482 { 12483 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr); 12484 esdo->rel.count += additional_reloc_count; 12485 } 12486 if (esdi->rela.hdr) 12487 { 12488 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr); 12489 esdo->rela.count += additional_reloc_count; 12490 } 12491 } 12492 else 12493 { 12494 if (o->use_rela_p) 12495 esdo->rela.count += reloc_count; 12496 else 12497 esdo->rel.count += reloc_count; 12498 } 12499 } 12500 12501 if (o->reloc_count > 0) 12502 o->flags |= SEC_RELOC; 12503 else 12504 { 12505 /* Explicitly clear the SEC_RELOC flag. The linker tends to 12506 set it (this is probably a bug) and if it is set 12507 assign_section_numbers will create a reloc section. */ 12508 o->flags &=~ SEC_RELOC; 12509 } 12510 12511 /* If the SEC_ALLOC flag is not set, force the section VMA to 12512 zero. This is done in elf_fake_sections as well, but forcing 12513 the VMA to 0 here will ensure that relocs against these 12514 sections are handled correctly. */ 12515 if ((o->flags & SEC_ALLOC) == 0 12516 && ! o->user_set_vma) 12517 o->vma = 0; 12518 } 12519 12520 if (! bfd_link_relocatable (info) && merged) 12521 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd); 12522 12523 /* Figure out the file positions for everything but the symbol table 12524 and the relocs. We set symcount to force assign_section_numbers 12525 to create a symbol table. */ 12526 abfd->symcount = info->strip != strip_all || emit_relocs; 12527 BFD_ASSERT (! abfd->output_has_begun); 12528 if (! _bfd_elf_compute_section_file_positions (abfd, info)) 12529 goto error_return; 12530 12531 /* Set sizes, and assign file positions for reloc sections. */ 12532 for (o = abfd->sections; o != NULL; o = o->next) 12533 { 12534 struct bfd_elf_section_data *esdo = elf_section_data (o); 12535 if ((o->flags & SEC_RELOC) != 0) 12536 { 12537 if (esdo->rel.hdr 12538 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel))) 12539 goto error_return; 12540 12541 if (esdo->rela.hdr 12542 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela))) 12543 goto error_return; 12544 } 12545 12546 /* _bfd_elf_compute_section_file_positions makes temporary use 12547 of target_index. Reset it. */ 12548 o->target_index = 0; 12549 12550 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them 12551 to count upwards while actually outputting the relocations. */ 12552 esdo->rel.count = 0; 12553 esdo->rela.count = 0; 12554 12555 if ((esdo->this_hdr.sh_offset == (file_ptr) -1) 12556 && !bfd_section_is_ctf (o)) 12557 { 12558 /* Cache the section contents so that they can be compressed 12559 later. Use bfd_malloc since it will be freed by 12560 bfd_compress_section_contents. */ 12561 unsigned char *contents = esdo->this_hdr.contents; 12562 if (contents != NULL) 12563 abort (); 12564 contents 12565 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size); 12566 if (contents == NULL) 12567 goto error_return; 12568 esdo->this_hdr.contents = contents; 12569 } 12570 } 12571 12572 /* We have now assigned file positions for all the sections except .symtab, 12573 .strtab, and non-loaded reloc and compressed debugging sections. We start 12574 the .symtab section at the current file position, and write directly to it. 12575 We build the .strtab section in memory. */ 12576 abfd->symcount = 0; 12577 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 12578 /* sh_name is set in prep_headers. */ 12579 symtab_hdr->sh_type = SHT_SYMTAB; 12580 /* sh_flags, sh_addr and sh_size all start off zero. */ 12581 symtab_hdr->sh_entsize = bed->s->sizeof_sym; 12582 /* sh_link is set in assign_section_numbers. */ 12583 /* sh_info is set below. */ 12584 /* sh_offset is set just below. */ 12585 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; 12586 12587 if (max_sym_count < 20) 12588 max_sym_count = 20; 12589 htab->strtabsize = max_sym_count; 12590 amt = max_sym_count * sizeof (struct elf_sym_strtab); 12591 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt); 12592 if (htab->strtab == NULL) 12593 goto error_return; 12594 /* The real buffer will be allocated in elf_link_swap_symbols_out. */ 12595 flinfo.symshndxbuf 12596 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF) 12597 ? (Elf_External_Sym_Shndx *) -1 : NULL); 12598 12599 if (info->strip != strip_all || emit_relocs) 12600 { 12601 file_ptr off = elf_next_file_pos (abfd); 12602 12603 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true); 12604 12605 /* Note that at this point elf_next_file_pos (abfd) is 12606 incorrect. We do not yet know the size of the .symtab section. 12607 We correct next_file_pos below, after we do know the size. */ 12608 12609 /* Start writing out the symbol table. The first symbol is always a 12610 dummy symbol. */ 12611 elfsym.st_value = 0; 12612 elfsym.st_size = 0; 12613 elfsym.st_info = 0; 12614 elfsym.st_other = 0; 12615 elfsym.st_shndx = SHN_UNDEF; 12616 elfsym.st_target_internal = 0; 12617 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, 12618 bfd_und_section_ptr, NULL) != 1) 12619 goto error_return; 12620 12621 /* Output a symbol for each section if asked or they are used for 12622 relocs. These symbols usually have no names. We store the 12623 index of each one in the index field of the section, so that 12624 we can find it again when outputting relocs. */ 12625 12626 if (bfd_keep_unused_section_symbols (abfd) || emit_relocs) 12627 { 12628 bool name_local_sections 12629 = (bed->elf_backend_name_local_section_symbols 12630 && bed->elf_backend_name_local_section_symbols (abfd)); 12631 const char *name = NULL; 12632 12633 elfsym.st_size = 0; 12634 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); 12635 elfsym.st_other = 0; 12636 elfsym.st_value = 0; 12637 elfsym.st_target_internal = 0; 12638 for (i = 1; i < elf_numsections (abfd); i++) 12639 { 12640 o = bfd_section_from_elf_index (abfd, i); 12641 if (o != NULL) 12642 { 12643 o->target_index = bfd_get_symcount (abfd); 12644 elfsym.st_shndx = i; 12645 if (!bfd_link_relocatable (info)) 12646 elfsym.st_value = o->vma; 12647 if (name_local_sections) 12648 name = o->name; 12649 if (elf_link_output_symstrtab (&flinfo, name, &elfsym, o, 12650 NULL) != 1) 12651 goto error_return; 12652 } 12653 } 12654 } 12655 } 12656 12657 /* On some targets like Irix 5 the symbol split between local and global 12658 ones recorded in the sh_info field needs to be done between section 12659 and all other symbols. */ 12660 if (bed->elf_backend_elfsym_local_is_section 12661 && bed->elf_backend_elfsym_local_is_section (abfd)) 12662 symtab_hdr->sh_info = bfd_get_symcount (abfd); 12663 12664 /* Allocate some memory to hold information read in from the input 12665 files. */ 12666 if (max_contents_size != 0) 12667 { 12668 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); 12669 if (flinfo.contents == NULL) 12670 goto error_return; 12671 } 12672 12673 if (max_external_reloc_size != 0) 12674 { 12675 flinfo.external_relocs = bfd_malloc (max_external_reloc_size); 12676 if (flinfo.external_relocs == NULL) 12677 goto error_return; 12678 } 12679 12680 if (max_internal_reloc_count != 0) 12681 { 12682 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela); 12683 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt); 12684 if (flinfo.internal_relocs == NULL) 12685 goto error_return; 12686 } 12687 12688 if (max_sym_count != 0) 12689 { 12690 amt = max_sym_count * bed->s->sizeof_sym; 12691 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt); 12692 if (flinfo.external_syms == NULL) 12693 goto error_return; 12694 12695 amt = max_sym_count * sizeof (Elf_Internal_Sym); 12696 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt); 12697 if (flinfo.internal_syms == NULL) 12698 goto error_return; 12699 12700 amt = max_sym_count * sizeof (long); 12701 flinfo.indices = (long int *) bfd_malloc (amt); 12702 if (flinfo.indices == NULL) 12703 goto error_return; 12704 12705 amt = max_sym_count * sizeof (asection *); 12706 flinfo.sections = (asection **) bfd_malloc (amt); 12707 if (flinfo.sections == NULL) 12708 goto error_return; 12709 } 12710 12711 if (max_sym_shndx_count != 0) 12712 { 12713 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx); 12714 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt); 12715 if (flinfo.locsym_shndx == NULL) 12716 goto error_return; 12717 } 12718 12719 if (htab->tls_sec) 12720 { 12721 bfd_vma base, end = 0; /* Both bytes. */ 12722 asection *sec; 12723 12724 for (sec = htab->tls_sec; 12725 sec && (sec->flags & SEC_THREAD_LOCAL); 12726 sec = sec->next) 12727 { 12728 bfd_size_type size = sec->size; 12729 unsigned int opb = bfd_octets_per_byte (abfd, sec); 12730 12731 if (size == 0 12732 && (sec->flags & SEC_HAS_CONTENTS) == 0) 12733 { 12734 struct bfd_link_order *ord = sec->map_tail.link_order; 12735 12736 if (ord != NULL) 12737 size = ord->offset * opb + ord->size; 12738 } 12739 end = sec->vma + size / opb; 12740 } 12741 base = htab->tls_sec->vma; 12742 /* Only align end of TLS section if static TLS doesn't have special 12743 alignment requirements. */ 12744 if (bed->static_tls_alignment == 1) 12745 end = align_power (end, htab->tls_sec->alignment_power); 12746 htab->tls_size = end - base; 12747 } 12748 12749 if (!_bfd_elf_fixup_eh_frame_hdr (info)) 12750 return false; 12751 12752 /* Finish relative relocations here after regular symbol processing 12753 is finished if DT_RELR is enabled. */ 12754 if (info->enable_dt_relr 12755 && bed->finish_relative_relocs 12756 && !bed->finish_relative_relocs (info)) 12757 info->callbacks->einfo 12758 (_("%F%P: %pB: failed to finish relative relocations\n"), abfd); 12759 12760 /* Since ELF permits relocations to be against local symbols, we 12761 must have the local symbols available when we do the relocations. 12762 Since we would rather only read the local symbols once, and we 12763 would rather not keep them in memory, we handle all the 12764 relocations for a single input file at the same time. 12765 12766 Unfortunately, there is no way to know the total number of local 12767 symbols until we have seen all of them, and the local symbol 12768 indices precede the global symbol indices. This means that when 12769 we are generating relocatable output, and we see a reloc against 12770 a global symbol, we can not know the symbol index until we have 12771 finished examining all the local symbols to see which ones we are 12772 going to output. To deal with this, we keep the relocations in 12773 memory, and don't output them until the end of the link. This is 12774 an unfortunate waste of memory, but I don't see a good way around 12775 it. Fortunately, it only happens when performing a relocatable 12776 link, which is not the common case. FIXME: If keep_memory is set 12777 we could write the relocs out and then read them again; I don't 12778 know how bad the memory loss will be. */ 12779 12780 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 12781 sub->output_has_begun = false; 12782 for (o = abfd->sections; o != NULL; o = o->next) 12783 { 12784 for (p = o->map_head.link_order; p != NULL; p = p->next) 12785 { 12786 if (p->type == bfd_indirect_link_order 12787 && (bfd_get_flavour ((sub = p->u.indirect.section->owner)) 12788 == bfd_target_elf_flavour) 12789 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass) 12790 { 12791 if (! sub->output_has_begun) 12792 { 12793 if (! elf_link_input_bfd (&flinfo, sub)) 12794 goto error_return; 12795 sub->output_has_begun = true; 12796 } 12797 } 12798 else if (p->type == bfd_section_reloc_link_order 12799 || p->type == bfd_symbol_reloc_link_order) 12800 { 12801 if (! elf_reloc_link_order (abfd, info, o, p)) 12802 goto error_return; 12803 } 12804 else 12805 { 12806 if (! _bfd_default_link_order (abfd, info, o, p)) 12807 { 12808 if (p->type == bfd_indirect_link_order 12809 && (bfd_get_flavour (sub) 12810 == bfd_target_elf_flavour) 12811 && (elf_elfheader (sub)->e_ident[EI_CLASS] 12812 != bed->s->elfclass)) 12813 { 12814 const char *iclass, *oclass; 12815 12816 switch (bed->s->elfclass) 12817 { 12818 case ELFCLASS64: oclass = "ELFCLASS64"; break; 12819 case ELFCLASS32: oclass = "ELFCLASS32"; break; 12820 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break; 12821 default: abort (); 12822 } 12823 12824 switch (elf_elfheader (sub)->e_ident[EI_CLASS]) 12825 { 12826 case ELFCLASS64: iclass = "ELFCLASS64"; break; 12827 case ELFCLASS32: iclass = "ELFCLASS32"; break; 12828 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break; 12829 default: abort (); 12830 } 12831 12832 bfd_set_error (bfd_error_wrong_format); 12833 _bfd_error_handler 12834 /* xgettext:c-format */ 12835 (_("%pB: file class %s incompatible with %s"), 12836 sub, iclass, oclass); 12837 } 12838 12839 goto error_return; 12840 } 12841 } 12842 } 12843 } 12844 12845 /* Free symbol buffer if needed. */ 12846 if (!info->reduce_memory_overheads) 12847 { 12848 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 12849 if (bfd_get_flavour (sub) == bfd_target_elf_flavour) 12850 { 12851 free (elf_tdata (sub)->symbuf); 12852 elf_tdata (sub)->symbuf = NULL; 12853 } 12854 } 12855 12856 ret = true; 12857 12858 /* Output any global symbols that got converted to local in a 12859 version script or due to symbol visibility. We do this in a 12860 separate step since ELF requires all local symbols to appear 12861 prior to any global symbols. FIXME: We should only do this if 12862 some global symbols were, in fact, converted to become local. 12863 FIXME: Will this work correctly with the Irix 5 linker? */ 12864 eoinfo.failed = false; 12865 eoinfo.flinfo = &flinfo; 12866 eoinfo.localsyms = true; 12867 eoinfo.file_sym_done = false; 12868 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); 12869 if (eoinfo.failed) 12870 { 12871 ret = false; 12872 goto return_local_hash_table; 12873 } 12874 12875 /* If backend needs to output some local symbols not present in the hash 12876 table, do it now. */ 12877 if (bed->elf_backend_output_arch_local_syms) 12878 { 12879 if (! ((*bed->elf_backend_output_arch_local_syms) 12880 (abfd, info, &flinfo, elf_link_output_symstrtab))) 12881 { 12882 ret = false; 12883 goto return_local_hash_table; 12884 } 12885 } 12886 12887 /* That wrote out all the local symbols. Finish up the symbol table 12888 with the global symbols. Even if we want to strip everything we 12889 can, we still need to deal with those global symbols that got 12890 converted to local in a version script. */ 12891 12892 /* The sh_info field records the index of the first non local symbol. */ 12893 if (!symtab_hdr->sh_info) 12894 symtab_hdr->sh_info = bfd_get_symcount (abfd); 12895 12896 if (dynamic 12897 && htab->dynsym != NULL 12898 && htab->dynsym->output_section != bfd_abs_section_ptr) 12899 { 12900 Elf_Internal_Sym sym; 12901 bfd_byte *dynsym = htab->dynsym->contents; 12902 12903 o = htab->dynsym->output_section; 12904 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1; 12905 12906 /* Write out the section symbols for the output sections. */ 12907 if (bfd_link_pic (info) 12908 || htab->is_relocatable_executable) 12909 { 12910 asection *s; 12911 12912 sym.st_size = 0; 12913 sym.st_name = 0; 12914 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); 12915 sym.st_other = 0; 12916 sym.st_target_internal = 0; 12917 12918 for (s = abfd->sections; s != NULL; s = s->next) 12919 { 12920 int indx; 12921 bfd_byte *dest; 12922 long dynindx; 12923 12924 dynindx = elf_section_data (s)->dynindx; 12925 if (dynindx <= 0) 12926 continue; 12927 indx = elf_section_data (s)->this_idx; 12928 BFD_ASSERT (indx > 0); 12929 sym.st_shndx = indx; 12930 if (! check_dynsym (abfd, &sym)) 12931 { 12932 ret = false; 12933 goto return_local_hash_table; 12934 } 12935 sym.st_value = s->vma; 12936 dest = dynsym + dynindx * bed->s->sizeof_sym; 12937 12938 /* Inform the linker of the addition of this symbol. */ 12939 12940 if (info->callbacks->ctf_new_dynsym) 12941 info->callbacks->ctf_new_dynsym (dynindx, &sym); 12942 12943 bed->s->swap_symbol_out (abfd, &sym, dest, 0); 12944 } 12945 } 12946 12947 /* Write out the local dynsyms. */ 12948 if (htab->dynlocal) 12949 { 12950 struct elf_link_local_dynamic_entry *e; 12951 for (e = htab->dynlocal; e ; e = e->next) 12952 { 12953 asection *s; 12954 bfd_byte *dest; 12955 12956 /* Copy the internal symbol and turn off visibility. 12957 Note that we saved a word of storage and overwrote 12958 the original st_name with the dynstr_index. */ 12959 sym = e->isym; 12960 sym.st_other &= ~ELF_ST_VISIBILITY (-1); 12961 sym.st_shndx = SHN_UNDEF; 12962 12963 s = bfd_section_from_elf_index (e->input_bfd, 12964 e->isym.st_shndx); 12965 if (s != NULL 12966 && s->output_section != NULL 12967 && elf_section_data (s->output_section) != NULL) 12968 { 12969 sym.st_shndx = 12970 elf_section_data (s->output_section)->this_idx; 12971 if (! check_dynsym (abfd, &sym)) 12972 { 12973 ret = false; 12974 goto return_local_hash_table; 12975 } 12976 sym.st_value = (s->output_section->vma 12977 + s->output_offset 12978 + e->isym.st_value); 12979 } 12980 12981 /* Inform the linker of the addition of this symbol. */ 12982 12983 if (info->callbacks->ctf_new_dynsym) 12984 info->callbacks->ctf_new_dynsym (e->dynindx, &sym); 12985 12986 dest = dynsym + e->dynindx * bed->s->sizeof_sym; 12987 bed->s->swap_symbol_out (abfd, &sym, dest, 0); 12988 } 12989 } 12990 } 12991 12992 /* We get the global symbols from the hash table. */ 12993 eoinfo.failed = false; 12994 eoinfo.localsyms = false; 12995 eoinfo.flinfo = &flinfo; 12996 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); 12997 if (eoinfo.failed) 12998 { 12999 ret = false; 13000 goto return_local_hash_table; 13001 } 13002 13003 /* If backend needs to output some symbols not present in the hash 13004 table, do it now. */ 13005 if (bed->elf_backend_output_arch_syms 13006 && (info->strip != strip_all || emit_relocs)) 13007 { 13008 if (! ((*bed->elf_backend_output_arch_syms) 13009 (abfd, info, &flinfo, elf_link_output_symstrtab))) 13010 { 13011 ret = false; 13012 goto return_local_hash_table; 13013 } 13014 } 13015 13016 /* Finalize the .strtab section. */ 13017 _bfd_elf_strtab_finalize (flinfo.symstrtab); 13018 13019 /* Swap out the .strtab section. */ 13020 if (!elf_link_swap_symbols_out (&flinfo)) 13021 { 13022 ret = false; 13023 goto return_local_hash_table; 13024 } 13025 13026 /* Now we know the size of the symtab section. */ 13027 if (bfd_get_symcount (abfd) > 0) 13028 { 13029 /* Finish up and write out the symbol string table (.strtab) 13030 section. */ 13031 Elf_Internal_Shdr *symstrtab_hdr = NULL; 13032 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size; 13033 13034 if (elf_symtab_shndx_list (abfd)) 13035 { 13036 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr; 13037 13038 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0) 13039 { 13040 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX; 13041 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); 13042 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); 13043 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx); 13044 symtab_shndx_hdr->sh_size = amt; 13045 13046 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr, 13047 off, true); 13048 13049 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0 13050 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt)) 13051 { 13052 ret = false; 13053 goto return_local_hash_table; 13054 } 13055 } 13056 } 13057 13058 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; 13059 /* sh_name was set in prep_headers. */ 13060 symstrtab_hdr->sh_type = SHT_STRTAB; 13061 symstrtab_hdr->sh_flags = bed->elf_strtab_flags; 13062 symstrtab_hdr->sh_addr = 0; 13063 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab); 13064 symstrtab_hdr->sh_entsize = 0; 13065 symstrtab_hdr->sh_link = 0; 13066 symstrtab_hdr->sh_info = 0; 13067 /* sh_offset is set just below. */ 13068 symstrtab_hdr->sh_addralign = 1; 13069 13070 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, 13071 off, true); 13072 elf_next_file_pos (abfd) = off; 13073 13074 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 13075 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab)) 13076 { 13077 ret = false; 13078 goto return_local_hash_table; 13079 } 13080 } 13081 13082 if (info->out_implib_bfd && !elf_output_implib (abfd, info)) 13083 { 13084 _bfd_error_handler (_("%pB: failed to generate import library"), 13085 info->out_implib_bfd); 13086 ret = false; 13087 goto return_local_hash_table; 13088 } 13089 13090 /* Adjust the relocs to have the correct symbol indices. */ 13091 for (o = abfd->sections; o != NULL; o = o->next) 13092 { 13093 struct bfd_elf_section_data *esdo = elf_section_data (o); 13094 bool sort; 13095 13096 if ((o->flags & SEC_RELOC) == 0) 13097 continue; 13098 13099 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o); 13100 if (esdo->rel.hdr != NULL 13101 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info)) 13102 { 13103 ret = false; 13104 goto return_local_hash_table; 13105 } 13106 if (esdo->rela.hdr != NULL 13107 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info)) 13108 { 13109 ret = false; 13110 goto return_local_hash_table; 13111 } 13112 13113 /* Set the reloc_count field to 0 to prevent write_relocs from 13114 trying to swap the relocs out itself. */ 13115 o->reloc_count = 0; 13116 } 13117 13118 relativecount = 0; 13119 if (dynamic && info->combreloc && dynobj != NULL) 13120 relativecount = elf_link_sort_relocs (abfd, info, &reldyn); 13121 13122 relr_entsize = 0; 13123 if (htab->srelrdyn != NULL 13124 && htab->srelrdyn->output_section != NULL 13125 && htab->srelrdyn->size != 0) 13126 { 13127 asection *s = htab->srelrdyn->output_section; 13128 relr_entsize = elf_section_data (s)->this_hdr.sh_entsize; 13129 if (relr_entsize == 0) 13130 { 13131 relr_entsize = bed->s->arch_size / 8; 13132 elf_section_data (s)->this_hdr.sh_entsize = relr_entsize; 13133 } 13134 } 13135 13136 /* If we are linking against a dynamic object, or generating a 13137 shared library, finish up the dynamic linking information. */ 13138 if (dynamic) 13139 { 13140 bfd_byte *dyncon, *dynconend; 13141 13142 /* Fix up .dynamic entries. */ 13143 o = bfd_get_linker_section (dynobj, ".dynamic"); 13144 BFD_ASSERT (o != NULL); 13145 13146 dyncon = o->contents; 13147 dynconend = PTR_ADD (o->contents, o->size); 13148 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) 13149 { 13150 Elf_Internal_Dyn dyn; 13151 const char *name; 13152 unsigned int type; 13153 bfd_size_type sh_size; 13154 bfd_vma sh_addr; 13155 13156 bed->s->swap_dyn_in (dynobj, dyncon, &dyn); 13157 13158 switch (dyn.d_tag) 13159 { 13160 default: 13161 continue; 13162 case DT_NULL: 13163 if (relativecount != 0) 13164 { 13165 switch (elf_section_data (reldyn)->this_hdr.sh_type) 13166 { 13167 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break; 13168 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break; 13169 } 13170 if (dyn.d_tag != DT_NULL 13171 && dynconend - dyncon >= bed->s->sizeof_dyn) 13172 { 13173 dyn.d_un.d_val = relativecount; 13174 relativecount = 0; 13175 break; 13176 } 13177 relativecount = 0; 13178 } 13179 if (relr_entsize != 0) 13180 { 13181 if (dynconend - dyncon >= 3 * bed->s->sizeof_dyn) 13182 { 13183 asection *s = htab->srelrdyn; 13184 dyn.d_tag = DT_RELR; 13185 dyn.d_un.d_ptr 13186 = s->output_section->vma + s->output_offset; 13187 bed->s->swap_dyn_out (dynobj, &dyn, dyncon); 13188 dyncon += bed->s->sizeof_dyn; 13189 13190 dyn.d_tag = DT_RELRSZ; 13191 dyn.d_un.d_val = s->size; 13192 bed->s->swap_dyn_out (dynobj, &dyn, dyncon); 13193 dyncon += bed->s->sizeof_dyn; 13194 13195 dyn.d_tag = DT_RELRENT; 13196 dyn.d_un.d_val = relr_entsize; 13197 relr_entsize = 0; 13198 break; 13199 } 13200 relr_entsize = 0; 13201 } 13202 continue; 13203 13204 case DT_INIT: 13205 name = info->init_function; 13206 goto get_sym; 13207 case DT_FINI: 13208 name = info->fini_function; 13209 get_sym: 13210 { 13211 struct elf_link_hash_entry *h; 13212 13213 h = elf_link_hash_lookup (htab, name, false, false, true); 13214 if (h != NULL 13215 && (h->root.type == bfd_link_hash_defined 13216 || h->root.type == bfd_link_hash_defweak)) 13217 { 13218 dyn.d_un.d_ptr = h->root.u.def.value; 13219 o = h->root.u.def.section; 13220 if (o->output_section != NULL) 13221 dyn.d_un.d_ptr += (o->output_section->vma 13222 + o->output_offset); 13223 else 13224 { 13225 /* The symbol is imported from another shared 13226 library and does not apply to this one. */ 13227 dyn.d_un.d_ptr = 0; 13228 } 13229 break; 13230 } 13231 } 13232 continue; 13233 13234 case DT_PREINIT_ARRAYSZ: 13235 name = ".preinit_array"; 13236 goto get_out_size; 13237 case DT_INIT_ARRAYSZ: 13238 name = ".init_array"; 13239 goto get_out_size; 13240 case DT_FINI_ARRAYSZ: 13241 name = ".fini_array"; 13242 get_out_size: 13243 o = bfd_get_section_by_name (abfd, name); 13244 if (o == NULL) 13245 { 13246 _bfd_error_handler 13247 (_("could not find section %s"), name); 13248 goto error_return; 13249 } 13250 if (o->size == 0) 13251 _bfd_error_handler 13252 (_("warning: %s section has zero size"), name); 13253 dyn.d_un.d_val = o->size; 13254 break; 13255 13256 case DT_PREINIT_ARRAY: 13257 name = ".preinit_array"; 13258 goto get_out_vma; 13259 case DT_INIT_ARRAY: 13260 name = ".init_array"; 13261 goto get_out_vma; 13262 case DT_FINI_ARRAY: 13263 name = ".fini_array"; 13264 get_out_vma: 13265 o = bfd_get_section_by_name (abfd, name); 13266 goto do_vma; 13267 13268 case DT_HASH: 13269 name = ".hash"; 13270 goto get_vma; 13271 case DT_GNU_HASH: 13272 name = ".gnu.hash"; 13273 goto get_vma; 13274 case DT_STRTAB: 13275 name = ".dynstr"; 13276 goto get_vma; 13277 case DT_SYMTAB: 13278 name = ".dynsym"; 13279 goto get_vma; 13280 case DT_VERDEF: 13281 name = ".gnu.version_d"; 13282 goto get_vma; 13283 case DT_VERNEED: 13284 name = ".gnu.version_r"; 13285 goto get_vma; 13286 case DT_VERSYM: 13287 name = ".gnu.version"; 13288 get_vma: 13289 o = bfd_get_linker_section (dynobj, name); 13290 do_vma: 13291 if (o == NULL || bfd_is_abs_section (o->output_section)) 13292 { 13293 _bfd_error_handler 13294 (_("could not find section %s"), name); 13295 goto error_return; 13296 } 13297 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE) 13298 { 13299 _bfd_error_handler 13300 (_("warning: section '%s' is being made into a note"), name); 13301 bfd_set_error (bfd_error_nonrepresentable_section); 13302 goto error_return; 13303 } 13304 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset; 13305 break; 13306 13307 case DT_REL: 13308 case DT_RELA: 13309 case DT_RELSZ: 13310 case DT_RELASZ: 13311 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) 13312 type = SHT_REL; 13313 else 13314 type = SHT_RELA; 13315 sh_size = 0; 13316 sh_addr = 0; 13317 for (i = 1; i < elf_numsections (abfd); i++) 13318 { 13319 Elf_Internal_Shdr *hdr; 13320 13321 hdr = elf_elfsections (abfd)[i]; 13322 if (hdr->sh_type == type 13323 && (hdr->sh_flags & SHF_ALLOC) != 0) 13324 { 13325 sh_size += hdr->sh_size; 13326 if (sh_addr == 0 13327 || sh_addr > hdr->sh_addr) 13328 sh_addr = hdr->sh_addr; 13329 } 13330 } 13331 13332 if (bed->dtrel_excludes_plt && htab->srelplt != NULL) 13333 { 13334 unsigned int opb = bfd_octets_per_byte (abfd, o); 13335 13336 /* Don't count procedure linkage table relocs in the 13337 overall reloc count. */ 13338 sh_size -= htab->srelplt->size; 13339 if (sh_size == 0) 13340 /* If the size is zero, make the address zero too. 13341 This is to avoid a glibc bug. If the backend 13342 emits DT_RELA/DT_RELASZ even when DT_RELASZ is 13343 zero, then we'll put DT_RELA at the end of 13344 DT_JMPREL. glibc will interpret the end of 13345 DT_RELA matching the end of DT_JMPREL as the 13346 case where DT_RELA includes DT_JMPREL, and for 13347 LD_BIND_NOW will decide that processing DT_RELA 13348 will process the PLT relocs too. Net result: 13349 No PLT relocs applied. */ 13350 sh_addr = 0; 13351 13352 /* If .rela.plt is the first .rela section, exclude 13353 it from DT_RELA. */ 13354 else if (sh_addr == (htab->srelplt->output_section->vma 13355 + htab->srelplt->output_offset) * opb) 13356 sh_addr += htab->srelplt->size; 13357 } 13358 13359 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) 13360 dyn.d_un.d_val = sh_size; 13361 else 13362 dyn.d_un.d_ptr = sh_addr; 13363 break; 13364 } 13365 bed->s->swap_dyn_out (dynobj, &dyn, dyncon); 13366 } 13367 } 13368 13369 /* If we have created any dynamic sections, then output them. */ 13370 if (dynobj != NULL) 13371 { 13372 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) 13373 goto error_return; 13374 13375 /* Check for DT_TEXTREL (late, in case the backend removes it). */ 13376 if (bfd_link_textrel_check (info) 13377 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL 13378 && o->size != 0) 13379 { 13380 bfd_byte *dyncon, *dynconend; 13381 13382 dyncon = o->contents; 13383 dynconend = o->contents + o->size; 13384 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) 13385 { 13386 Elf_Internal_Dyn dyn; 13387 13388 bed->s->swap_dyn_in (dynobj, dyncon, &dyn); 13389 13390 if (dyn.d_tag == DT_TEXTREL) 13391 { 13392 if (info->textrel_check == textrel_check_error) 13393 info->callbacks->einfo 13394 (_("%P%X: read-only segment has dynamic relocations\n")); 13395 else if (bfd_link_dll (info)) 13396 info->callbacks->einfo 13397 (_("%P: warning: creating DT_TEXTREL in a shared object\n")); 13398 else if (bfd_link_pde (info)) 13399 info->callbacks->einfo 13400 (_("%P: warning: creating DT_TEXTREL in a PDE\n")); 13401 else 13402 info->callbacks->einfo 13403 (_("%P: warning: creating DT_TEXTREL in a PIE\n")); 13404 break; 13405 } 13406 } 13407 } 13408 13409 for (o = dynobj->sections; o != NULL; o = o->next) 13410 { 13411 if ((o->flags & SEC_HAS_CONTENTS) == 0 13412 || o->size == 0 13413 || o->output_section == bfd_abs_section_ptr) 13414 continue; 13415 if ((o->flags & SEC_LINKER_CREATED) == 0) 13416 { 13417 /* At this point, we are only interested in sections 13418 created by _bfd_elf_link_create_dynamic_sections. */ 13419 continue; 13420 } 13421 if (htab->stab_info.stabstr == o) 13422 continue; 13423 if (htab->eh_info.hdr_sec == o) 13424 continue; 13425 if (strcmp (o->name, ".dynstr") != 0) 13426 { 13427 bfd_size_type octets = ((file_ptr) o->output_offset 13428 * bfd_octets_per_byte (abfd, o)); 13429 if (!bfd_set_section_contents (abfd, o->output_section, 13430 o->contents, octets, o->size)) 13431 goto error_return; 13432 } 13433 else 13434 { 13435 /* The contents of the .dynstr section are actually in a 13436 stringtab. */ 13437 file_ptr off; 13438 13439 off = elf_section_data (o->output_section)->this_hdr.sh_offset; 13440 if (bfd_seek (abfd, off, SEEK_SET) != 0 13441 || !_bfd_elf_strtab_emit (abfd, htab->dynstr)) 13442 goto error_return; 13443 } 13444 } 13445 } 13446 13447 if (!info->resolve_section_groups) 13448 { 13449 bool failed = false; 13450 13451 BFD_ASSERT (bfd_link_relocatable (info)); 13452 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); 13453 if (failed) 13454 goto error_return; 13455 } 13456 13457 /* If we have optimized stabs strings, output them. */ 13458 if (htab->stab_info.stabstr != NULL) 13459 { 13460 if (!_bfd_write_stab_strings (abfd, &htab->stab_info)) 13461 goto error_return; 13462 } 13463 13464 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info)) 13465 goto error_return; 13466 13467 if (! _bfd_elf_write_section_sframe (abfd, info)) 13468 goto error_return; 13469 13470 if (info->callbacks->emit_ctf) 13471 info->callbacks->emit_ctf (); 13472 13473 elf_final_link_free (abfd, &flinfo); 13474 13475 if (attr_section) 13476 { 13477 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size); 13478 if (contents == NULL) 13479 { 13480 /* Bail out and fail. */ 13481 ret = false; 13482 goto return_local_hash_table; 13483 } 13484 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size); 13485 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size); 13486 free (contents); 13487 } 13488 13489 return_local_hash_table: 13490 if (info->unique_symbol) 13491 bfd_hash_table_free (&flinfo.local_hash_table); 13492 return ret; 13493 13494 error_return: 13495 elf_final_link_free (abfd, &flinfo); 13496 ret = false; 13497 goto return_local_hash_table; 13498 } 13499 13500 /* Initialize COOKIE for input bfd ABFD. */ 13501 13502 static bool 13503 init_reloc_cookie (struct elf_reloc_cookie *cookie, 13504 struct bfd_link_info *info, bfd *abfd) 13505 { 13506 Elf_Internal_Shdr *symtab_hdr; 13507 const struct elf_backend_data *bed; 13508 13509 bed = get_elf_backend_data (abfd); 13510 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 13511 13512 cookie->abfd = abfd; 13513 cookie->sym_hashes = elf_sym_hashes (abfd); 13514 cookie->bad_symtab = elf_bad_symtab (abfd); 13515 if (cookie->bad_symtab) 13516 { 13517 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; 13518 cookie->extsymoff = 0; 13519 } 13520 else 13521 { 13522 cookie->locsymcount = symtab_hdr->sh_info; 13523 cookie->extsymoff = symtab_hdr->sh_info; 13524 } 13525 13526 if (bed->s->arch_size == 32) 13527 cookie->r_sym_shift = 8; 13528 else 13529 cookie->r_sym_shift = 32; 13530 13531 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents; 13532 if (cookie->locsyms == NULL && cookie->locsymcount != 0) 13533 { 13534 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, 13535 cookie->locsymcount, 0, 13536 NULL, NULL, NULL); 13537 if (cookie->locsyms == NULL) 13538 { 13539 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n")); 13540 return false; 13541 } 13542 if (_bfd_link_keep_memory (info) ) 13543 { 13544 symtab_hdr->contents = (bfd_byte *) cookie->locsyms; 13545 info->cache_size += (cookie->locsymcount 13546 * sizeof (Elf_External_Sym_Shndx)); 13547 } 13548 } 13549 return true; 13550 } 13551 13552 /* Free the memory allocated by init_reloc_cookie, if appropriate. */ 13553 13554 static void 13555 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd) 13556 { 13557 Elf_Internal_Shdr *symtab_hdr; 13558 13559 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 13560 if (symtab_hdr->contents != (unsigned char *) cookie->locsyms) 13561 free (cookie->locsyms); 13562 } 13563 13564 /* Initialize the relocation information in COOKIE for input section SEC 13565 of input bfd ABFD. */ 13566 13567 static bool 13568 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie, 13569 struct bfd_link_info *info, bfd *abfd, 13570 asection *sec) 13571 { 13572 if (sec->reloc_count == 0) 13573 { 13574 cookie->rels = NULL; 13575 cookie->relend = NULL; 13576 } 13577 else 13578 { 13579 cookie->rels = _bfd_elf_link_info_read_relocs (abfd, info, sec, 13580 NULL, NULL, 13581 _bfd_link_keep_memory (info)); 13582 if (cookie->rels == NULL) 13583 return false; 13584 cookie->rel = cookie->rels; 13585 cookie->relend = cookie->rels + sec->reloc_count; 13586 } 13587 cookie->rel = cookie->rels; 13588 return true; 13589 } 13590 13591 /* Free the memory allocated by init_reloc_cookie_rels, 13592 if appropriate. */ 13593 13594 static void 13595 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie, 13596 asection *sec) 13597 { 13598 if (elf_section_data (sec)->relocs != cookie->rels) 13599 free (cookie->rels); 13600 } 13601 13602 /* Initialize the whole of COOKIE for input section SEC. */ 13603 13604 static bool 13605 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, 13606 struct bfd_link_info *info, 13607 asection *sec) 13608 { 13609 if (!init_reloc_cookie (cookie, info, sec->owner)) 13610 goto error1; 13611 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec)) 13612 goto error2; 13613 return true; 13614 13615 error2: 13616 fini_reloc_cookie (cookie, sec->owner); 13617 error1: 13618 return false; 13619 } 13620 13621 /* Free the memory allocated by init_reloc_cookie_for_section, 13622 if appropriate. */ 13623 13624 static void 13625 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, 13626 asection *sec) 13627 { 13628 fini_reloc_cookie_rels (cookie, sec); 13629 fini_reloc_cookie (cookie, sec->owner); 13630 } 13631 13632 /* Garbage collect unused sections. */ 13633 13634 /* Default gc_mark_hook. */ 13635 13636 asection * 13637 _bfd_elf_gc_mark_hook (asection *sec, 13638 struct bfd_link_info *info ATTRIBUTE_UNUSED, 13639 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED, 13640 struct elf_link_hash_entry *h, 13641 Elf_Internal_Sym *sym) 13642 { 13643 if (h != NULL) 13644 { 13645 switch (h->root.type) 13646 { 13647 case bfd_link_hash_defined: 13648 case bfd_link_hash_defweak: 13649 return h->root.u.def.section; 13650 13651 case bfd_link_hash_common: 13652 return h->root.u.c.p->section; 13653 13654 default: 13655 break; 13656 } 13657 } 13658 else 13659 return bfd_section_from_elf_index (sec->owner, sym->st_shndx); 13660 13661 return NULL; 13662 } 13663 13664 /* Return the debug definition section. */ 13665 13666 static asection * 13667 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED, 13668 struct bfd_link_info *info ATTRIBUTE_UNUSED, 13669 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED, 13670 struct elf_link_hash_entry *h, 13671 Elf_Internal_Sym *sym) 13672 { 13673 if (h != NULL) 13674 { 13675 /* Return the global debug definition section. */ 13676 if ((h->root.type == bfd_link_hash_defined 13677 || h->root.type == bfd_link_hash_defweak) 13678 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0) 13679 return h->root.u.def.section; 13680 } 13681 else 13682 { 13683 /* Return the local debug definition section. */ 13684 asection *isec = bfd_section_from_elf_index (sec->owner, 13685 sym->st_shndx); 13686 if ((isec->flags & SEC_DEBUGGING) != 0) 13687 return isec; 13688 } 13689 13690 return NULL; 13691 } 13692 13693 /* COOKIE->rel describes a relocation against section SEC, which is 13694 a section we've decided to keep. Return the section that contains 13695 the relocation symbol, or NULL if no section contains it. */ 13696 13697 asection * 13698 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec, 13699 elf_gc_mark_hook_fn gc_mark_hook, 13700 struct elf_reloc_cookie *cookie, 13701 bool *start_stop) 13702 { 13703 unsigned long r_symndx; 13704 struct elf_link_hash_entry *h, *hw; 13705 13706 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift; 13707 if (r_symndx == STN_UNDEF) 13708 return NULL; 13709 13710 if (r_symndx >= cookie->locsymcount 13711 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL) 13712 { 13713 bool was_marked; 13714 13715 h = cookie->sym_hashes[r_symndx - cookie->extsymoff]; 13716 if (h == NULL) 13717 { 13718 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"), 13719 sec->owner); 13720 return NULL; 13721 } 13722 while (h->root.type == bfd_link_hash_indirect 13723 || h->root.type == bfd_link_hash_warning) 13724 h = (struct elf_link_hash_entry *) h->root.u.i.link; 13725 13726 was_marked = h->mark; 13727 h->mark = 1; 13728 /* Keep all aliases of the symbol too. If an object symbol 13729 needs to be copied into .dynbss then all of its aliases 13730 should be present as dynamic symbols, not just the one used 13731 on the copy relocation. */ 13732 hw = h; 13733 while (hw->is_weakalias) 13734 { 13735 hw = hw->u.alias; 13736 hw->mark = 1; 13737 } 13738 13739 if (!was_marked && h->start_stop && !h->root.ldscript_def) 13740 { 13741 if (info->start_stop_gc) 13742 return NULL; 13743 13744 /* To work around a glibc bug, mark XXX input sections 13745 when there is a reference to __start_XXX or __stop_XXX 13746 symbols. */ 13747 else if (start_stop != NULL) 13748 { 13749 asection *s = h->u2.start_stop_section; 13750 *start_stop = true; 13751 return s; 13752 } 13753 } 13754 13755 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL); 13756 } 13757 13758 return (*gc_mark_hook) (sec, info, cookie->rel, NULL, 13759 &cookie->locsyms[r_symndx]); 13760 } 13761 13762 /* COOKIE->rel describes a relocation against section SEC, which is 13763 a section we've decided to keep. Mark the section that contains 13764 the relocation symbol. */ 13765 13766 bool 13767 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info, 13768 asection *sec, 13769 elf_gc_mark_hook_fn gc_mark_hook, 13770 struct elf_reloc_cookie *cookie) 13771 { 13772 asection *rsec; 13773 bool start_stop = false; 13774 13775 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop); 13776 while (rsec != NULL) 13777 { 13778 if (!rsec->gc_mark) 13779 { 13780 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour 13781 || (rsec->owner->flags & DYNAMIC) != 0) 13782 rsec->gc_mark = 1; 13783 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook)) 13784 return false; 13785 } 13786 if (!start_stop) 13787 break; 13788 rsec = bfd_get_next_section_by_name (rsec->owner, rsec); 13789 } 13790 return true; 13791 } 13792 13793 /* The mark phase of garbage collection. For a given section, mark 13794 it and any sections in this section's group, and all the sections 13795 which define symbols to which it refers. */ 13796 13797 bool 13798 _bfd_elf_gc_mark (struct bfd_link_info *info, 13799 asection *sec, 13800 elf_gc_mark_hook_fn gc_mark_hook) 13801 { 13802 bool ret; 13803 asection *group_sec, *eh_frame; 13804 13805 sec->gc_mark = 1; 13806 13807 /* Mark all the sections in the group. */ 13808 group_sec = elf_section_data (sec)->next_in_group; 13809 if (group_sec && !group_sec->gc_mark) 13810 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook)) 13811 return false; 13812 13813 /* Look through the section relocs. */ 13814 ret = true; 13815 eh_frame = elf_eh_frame_section (sec->owner); 13816 if ((sec->flags & SEC_RELOC) != 0 13817 && sec->reloc_count > 0 13818 && sec != eh_frame) 13819 { 13820 struct elf_reloc_cookie cookie; 13821 13822 if (!init_reloc_cookie_for_section (&cookie, info, sec)) 13823 ret = false; 13824 else 13825 { 13826 for (; cookie.rel < cookie.relend; cookie.rel++) 13827 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie)) 13828 { 13829 ret = false; 13830 break; 13831 } 13832 fini_reloc_cookie_for_section (&cookie, sec); 13833 } 13834 } 13835 13836 if (ret && eh_frame && elf_fde_list (sec)) 13837 { 13838 struct elf_reloc_cookie cookie; 13839 13840 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame)) 13841 ret = false; 13842 else 13843 { 13844 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame, 13845 gc_mark_hook, &cookie)) 13846 ret = false; 13847 fini_reloc_cookie_for_section (&cookie, eh_frame); 13848 } 13849 } 13850 13851 eh_frame = elf_section_eh_frame_entry (sec); 13852 if (ret && eh_frame && !eh_frame->gc_mark) 13853 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook)) 13854 ret = false; 13855 13856 return ret; 13857 } 13858 13859 /* Scan and mark sections in a special or debug section group. */ 13860 13861 static void 13862 _bfd_elf_gc_mark_debug_special_section_group (asection *grp) 13863 { 13864 /* Point to first section of section group. */ 13865 asection *ssec; 13866 /* Used to iterate the section group. */ 13867 asection *msec; 13868 13869 bool is_special_grp = true; 13870 bool is_debug_grp = true; 13871 13872 /* First scan to see if group contains any section other than debug 13873 and special section. */ 13874 ssec = msec = elf_next_in_group (grp); 13875 do 13876 { 13877 if ((msec->flags & SEC_DEBUGGING) == 0) 13878 is_debug_grp = false; 13879 13880 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0) 13881 is_special_grp = false; 13882 13883 msec = elf_next_in_group (msec); 13884 } 13885 while (msec != ssec); 13886 13887 /* If this is a pure debug section group or pure special section group, 13888 keep all sections in this group. */ 13889 if (is_debug_grp || is_special_grp) 13890 { 13891 do 13892 { 13893 msec->gc_mark = 1; 13894 msec = elf_next_in_group (msec); 13895 } 13896 while (msec != ssec); 13897 } 13898 } 13899 13900 /* Keep debug and special sections. */ 13901 13902 bool 13903 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info, 13904 elf_gc_mark_hook_fn mark_hook) 13905 { 13906 bfd *ibfd; 13907 13908 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 13909 { 13910 asection *isec; 13911 bool some_kept; 13912 bool debug_frag_seen; 13913 bool has_kept_debug_info; 13914 13915 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) 13916 continue; 13917 isec = ibfd->sections; 13918 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 13919 continue; 13920 13921 /* Ensure all linker created sections are kept, 13922 see if any other section is already marked, 13923 and note if we have any fragmented debug sections. */ 13924 debug_frag_seen = some_kept = has_kept_debug_info = false; 13925 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 13926 { 13927 if ((isec->flags & SEC_LINKER_CREATED) != 0) 13928 isec->gc_mark = 1; 13929 else if (isec->gc_mark 13930 && (isec->flags & SEC_ALLOC) != 0 13931 && elf_section_type (isec) != SHT_NOTE) 13932 some_kept = true; 13933 else 13934 { 13935 /* Since all sections, except for backend specific ones, 13936 have been garbage collected, call mark_hook on this 13937 section if any of its linked-to sections is marked. */ 13938 asection *linked_to_sec; 13939 for (linked_to_sec = elf_linked_to_section (isec); 13940 linked_to_sec != NULL && !linked_to_sec->linker_mark; 13941 linked_to_sec = elf_linked_to_section (linked_to_sec)) 13942 { 13943 if (linked_to_sec->gc_mark) 13944 { 13945 if (!_bfd_elf_gc_mark (info, isec, mark_hook)) 13946 return false; 13947 break; 13948 } 13949 linked_to_sec->linker_mark = 1; 13950 } 13951 for (linked_to_sec = elf_linked_to_section (isec); 13952 linked_to_sec != NULL && linked_to_sec->linker_mark; 13953 linked_to_sec = elf_linked_to_section (linked_to_sec)) 13954 linked_to_sec->linker_mark = 0; 13955 } 13956 13957 if (!debug_frag_seen 13958 && (isec->flags & SEC_DEBUGGING) 13959 && startswith (isec->name, ".debug_line.")) 13960 debug_frag_seen = true; 13961 else if (strcmp (bfd_section_name (isec), 13962 "__patchable_function_entries") == 0 13963 && elf_linked_to_section (isec) == NULL) 13964 info->callbacks->einfo (_("%F%P: %pB(%pA): error: " 13965 "need linked-to section " 13966 "for --gc-sections\n"), 13967 isec->owner, isec); 13968 } 13969 13970 /* If no non-note alloc section in this file will be kept, then 13971 we can toss out the debug and special sections. */ 13972 if (!some_kept) 13973 continue; 13974 13975 /* Keep debug and special sections like .comment when they are 13976 not part of a group. Also keep section groups that contain 13977 just debug sections or special sections. NB: Sections with 13978 linked-to section has been handled above. */ 13979 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 13980 { 13981 if ((isec->flags & SEC_GROUP) != 0) 13982 _bfd_elf_gc_mark_debug_special_section_group (isec); 13983 else if (((isec->flags & SEC_DEBUGGING) != 0 13984 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0) 13985 && elf_next_in_group (isec) == NULL 13986 && elf_linked_to_section (isec) == NULL) 13987 isec->gc_mark = 1; 13988 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0) 13989 has_kept_debug_info = true; 13990 } 13991 13992 /* Look for CODE sections which are going to be discarded, 13993 and find and discard any fragmented debug sections which 13994 are associated with that code section. */ 13995 if (debug_frag_seen) 13996 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 13997 if ((isec->flags & SEC_CODE) != 0 13998 && isec->gc_mark == 0) 13999 { 14000 unsigned int ilen; 14001 asection *dsec; 14002 14003 ilen = strlen (isec->name); 14004 14005 /* Association is determined by the name of the debug 14006 section containing the name of the code section as 14007 a suffix. For example .debug_line.text.foo is a 14008 debug section associated with .text.foo. */ 14009 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next) 14010 { 14011 unsigned int dlen; 14012 14013 if (dsec->gc_mark == 0 14014 || (dsec->flags & SEC_DEBUGGING) == 0) 14015 continue; 14016 14017 dlen = strlen (dsec->name); 14018 14019 if (dlen > ilen 14020 && strncmp (dsec->name + (dlen - ilen), 14021 isec->name, ilen) == 0) 14022 dsec->gc_mark = 0; 14023 } 14024 } 14025 14026 /* Mark debug sections referenced by kept debug sections. */ 14027 if (has_kept_debug_info) 14028 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 14029 if (isec->gc_mark 14030 && (isec->flags & SEC_DEBUGGING) != 0) 14031 if (!_bfd_elf_gc_mark (info, isec, 14032 elf_gc_mark_debug_section)) 14033 return false; 14034 } 14035 return true; 14036 } 14037 14038 static bool 14039 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info) 14040 { 14041 bfd *sub; 14042 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14043 14044 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 14045 { 14046 asection *o; 14047 14048 if (bfd_get_flavour (sub) != bfd_target_elf_flavour 14049 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info)) 14050 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec)) 14051 continue; 14052 o = sub->sections; 14053 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 14054 continue; 14055 14056 for (o = sub->sections; o != NULL; o = o->next) 14057 { 14058 /* When any section in a section group is kept, we keep all 14059 sections in the section group. If the first member of 14060 the section group is excluded, we will also exclude the 14061 group section. */ 14062 if (o->flags & SEC_GROUP) 14063 { 14064 asection *first = elf_next_in_group (o); 14065 o->gc_mark = first->gc_mark; 14066 } 14067 14068 if (o->gc_mark) 14069 continue; 14070 14071 /* Skip sweeping sections already excluded. */ 14072 if (o->flags & SEC_EXCLUDE) 14073 continue; 14074 14075 /* Since this is early in the link process, it is simple 14076 to remove a section from the output. */ 14077 o->flags |= SEC_EXCLUDE; 14078 14079 if (info->print_gc_sections && o->size != 0) 14080 /* xgettext:c-format */ 14081 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"), 14082 o, sub); 14083 } 14084 } 14085 14086 return true; 14087 } 14088 14089 /* Propagate collected vtable information. This is called through 14090 elf_link_hash_traverse. */ 14091 14092 static bool 14093 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp) 14094 { 14095 /* Those that are not vtables. */ 14096 if (h->start_stop 14097 || h->u2.vtable == NULL 14098 || h->u2.vtable->parent == NULL) 14099 return true; 14100 14101 /* Those vtables that do not have parents, we cannot merge. */ 14102 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1) 14103 return true; 14104 14105 /* If we've already been done, exit. */ 14106 if (h->u2.vtable->used && h->u2.vtable->used[-1]) 14107 return true; 14108 14109 /* Make sure the parent's table is up to date. */ 14110 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp); 14111 14112 if (h->u2.vtable->used == NULL) 14113 { 14114 /* None of this table's entries were referenced. Re-use the 14115 parent's table. */ 14116 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used; 14117 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size; 14118 } 14119 else 14120 { 14121 size_t n; 14122 bool *cu, *pu; 14123 14124 /* Or the parent's entries into ours. */ 14125 cu = h->u2.vtable->used; 14126 cu[-1] = true; 14127 pu = h->u2.vtable->parent->u2.vtable->used; 14128 if (pu != NULL) 14129 { 14130 const struct elf_backend_data *bed; 14131 unsigned int log_file_align; 14132 14133 bed = get_elf_backend_data (h->root.u.def.section->owner); 14134 log_file_align = bed->s->log_file_align; 14135 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align; 14136 while (n--) 14137 { 14138 if (*pu) 14139 *cu = true; 14140 pu++; 14141 cu++; 14142 } 14143 } 14144 } 14145 14146 return true; 14147 } 14148 14149 struct link_info_ok 14150 { 14151 struct bfd_link_info *info; 14152 bool ok; 14153 }; 14154 14155 static bool 14156 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, 14157 void *ptr) 14158 { 14159 asection *sec; 14160 bfd_vma hstart, hend; 14161 Elf_Internal_Rela *relstart, *relend, *rel; 14162 const struct elf_backend_data *bed; 14163 unsigned int log_file_align; 14164 struct link_info_ok *info = (struct link_info_ok *) ptr; 14165 14166 /* Take care of both those symbols that do not describe vtables as 14167 well as those that are not loaded. */ 14168 if (h->start_stop 14169 || h->u2.vtable == NULL 14170 || h->u2.vtable->parent == NULL) 14171 return true; 14172 14173 BFD_ASSERT (h->root.type == bfd_link_hash_defined 14174 || h->root.type == bfd_link_hash_defweak); 14175 14176 sec = h->root.u.def.section; 14177 hstart = h->root.u.def.value; 14178 hend = hstart + h->size; 14179 14180 relstart = _bfd_elf_link_info_read_relocs (sec->owner, info->info, 14181 sec, NULL, NULL, true); 14182 if (!relstart) 14183 return info->ok = false; 14184 bed = get_elf_backend_data (sec->owner); 14185 log_file_align = bed->s->log_file_align; 14186 14187 relend = relstart + sec->reloc_count; 14188 14189 for (rel = relstart; rel < relend; ++rel) 14190 if (rel->r_offset >= hstart && rel->r_offset < hend) 14191 { 14192 /* If the entry is in use, do nothing. */ 14193 if (h->u2.vtable->used 14194 && (rel->r_offset - hstart) < h->u2.vtable->size) 14195 { 14196 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align; 14197 if (h->u2.vtable->used[entry]) 14198 continue; 14199 } 14200 /* Otherwise, kill it. */ 14201 rel->r_offset = rel->r_info = rel->r_addend = 0; 14202 } 14203 14204 return true; 14205 } 14206 14207 /* Mark sections containing dynamically referenced symbols. When 14208 building shared libraries, we must assume that any visible symbol is 14209 referenced. */ 14210 14211 bool 14212 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf) 14213 { 14214 struct bfd_link_info *info = (struct bfd_link_info *) inf; 14215 struct bfd_elf_dynamic_list *d = info->dynamic_list; 14216 14217 if ((h->root.type == bfd_link_hash_defined 14218 || h->root.type == bfd_link_hash_defweak) 14219 && (!h->start_stop 14220 || h->root.ldscript_def 14221 || !info->start_stop_gc) 14222 && ((h->ref_dynamic && !h->forced_local) 14223 || ((h->def_regular || ELF_COMMON_DEF_P (h)) 14224 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL 14225 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN 14226 && (!bfd_link_executable (info) 14227 || info->gc_keep_exported 14228 || info->export_dynamic 14229 || (h->dynamic 14230 && d != NULL 14231 && (*d->match) (&d->head, NULL, h->root.root.string))) 14232 && (h->versioned >= versioned 14233 || !bfd_hide_sym_by_version (info->version_info, 14234 h->root.root.string))))) 14235 h->root.u.def.section->flags |= SEC_KEEP; 14236 14237 return true; 14238 } 14239 14240 /* Keep all sections containing symbols undefined on the command-line, 14241 and the section containing the entry symbol. */ 14242 14243 void 14244 _bfd_elf_gc_keep (struct bfd_link_info *info) 14245 { 14246 struct bfd_sym_chain *sym; 14247 14248 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next) 14249 { 14250 struct elf_link_hash_entry *h; 14251 14252 h = elf_link_hash_lookup (elf_hash_table (info), sym->name, 14253 false, false, false); 14254 14255 if (h != NULL 14256 && (h->root.type == bfd_link_hash_defined 14257 || h->root.type == bfd_link_hash_defweak) 14258 && !bfd_is_const_section (h->root.u.def.section)) 14259 h->root.u.def.section->flags |= SEC_KEEP; 14260 } 14261 } 14262 14263 bool 14264 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED, 14265 struct bfd_link_info *info) 14266 { 14267 bfd *ibfd = info->input_bfds; 14268 14269 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 14270 { 14271 asection *sec; 14272 struct elf_reloc_cookie cookie; 14273 14274 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) 14275 continue; 14276 sec = ibfd->sections; 14277 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 14278 continue; 14279 14280 if (!init_reloc_cookie (&cookie, info, ibfd)) 14281 return false; 14282 14283 for (sec = ibfd->sections; sec; sec = sec->next) 14284 { 14285 if (startswith (bfd_section_name (sec), ".eh_frame_entry") 14286 && init_reloc_cookie_rels (&cookie, info, ibfd, sec)) 14287 { 14288 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie); 14289 fini_reloc_cookie_rels (&cookie, sec); 14290 } 14291 } 14292 } 14293 return true; 14294 } 14295 14296 /* Do mark and sweep of unused sections. */ 14297 14298 bool 14299 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info) 14300 { 14301 bool ok = true; 14302 bfd *sub; 14303 elf_gc_mark_hook_fn gc_mark_hook; 14304 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14305 struct elf_link_hash_table *htab; 14306 struct link_info_ok info_ok; 14307 14308 if (!bed->can_gc_sections 14309 || !is_elf_hash_table (info->hash)) 14310 { 14311 _bfd_error_handler(_("warning: gc-sections option ignored")); 14312 return true; 14313 } 14314 14315 bed->gc_keep (info); 14316 htab = elf_hash_table (info); 14317 14318 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section 14319 at the .eh_frame section if we can mark the FDEs individually. */ 14320 for (sub = info->input_bfds; 14321 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL; 14322 sub = sub->link.next) 14323 { 14324 asection *sec; 14325 struct elf_reloc_cookie cookie; 14326 14327 sec = sub->sections; 14328 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 14329 continue; 14330 sec = bfd_get_section_by_name (sub, ".eh_frame"); 14331 while (sec && init_reloc_cookie_for_section (&cookie, info, sec)) 14332 { 14333 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie); 14334 if (elf_section_data (sec)->sec_info 14335 && (sec->flags & SEC_LINKER_CREATED) == 0) 14336 elf_eh_frame_section (sub) = sec; 14337 fini_reloc_cookie_for_section (&cookie, sec); 14338 sec = bfd_get_next_section_by_name (NULL, sec); 14339 } 14340 } 14341 14342 /* Apply transitive closure to the vtable entry usage info. */ 14343 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok); 14344 if (!ok) 14345 return false; 14346 14347 /* Kill the vtable relocations that were not used. */ 14348 info_ok.info = info; 14349 info_ok.ok = true; 14350 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &info_ok); 14351 if (!info_ok.ok) 14352 return false; 14353 14354 /* Mark dynamically referenced symbols. */ 14355 if (htab->dynamic_sections_created || info->gc_keep_exported) 14356 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info); 14357 14358 /* Grovel through relocs to find out who stays ... */ 14359 gc_mark_hook = bed->gc_mark_hook; 14360 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 14361 { 14362 asection *o; 14363 14364 if (bfd_get_flavour (sub) != bfd_target_elf_flavour 14365 || elf_object_id (sub) != elf_hash_table_id (htab) 14366 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec)) 14367 continue; 14368 14369 o = sub->sections; 14370 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 14371 continue; 14372 14373 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep). 14374 Also treat note sections as a root, if the section is not part 14375 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as 14376 well as FINI_ARRAY sections for ld -r. */ 14377 for (o = sub->sections; o != NULL; o = o->next) 14378 if (!o->gc_mark 14379 && (o->flags & SEC_EXCLUDE) == 0 14380 && ((o->flags & SEC_KEEP) != 0 14381 || (bfd_link_relocatable (info) 14382 && ((elf_section_data (o)->this_hdr.sh_type 14383 == SHT_PREINIT_ARRAY) 14384 || (elf_section_data (o)->this_hdr.sh_type 14385 == SHT_INIT_ARRAY) 14386 || (elf_section_data (o)->this_hdr.sh_type 14387 == SHT_FINI_ARRAY))) 14388 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE 14389 && elf_next_in_group (o) == NULL 14390 && elf_linked_to_section (o) == NULL) 14391 || ((elf_tdata (sub)->has_gnu_osabi & elf_gnu_osabi_retain) 14392 && (elf_section_flags (o) & SHF_GNU_RETAIN)))) 14393 { 14394 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) 14395 return false; 14396 } 14397 } 14398 14399 /* Allow the backend to mark additional target specific sections. */ 14400 bed->gc_mark_extra_sections (info, gc_mark_hook); 14401 14402 /* ... and mark SEC_EXCLUDE for those that go. */ 14403 return elf_gc_sweep (abfd, info); 14404 } 14405 14406 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */ 14407 14408 bool 14409 bfd_elf_gc_record_vtinherit (bfd *abfd, 14410 asection *sec, 14411 struct elf_link_hash_entry *h, 14412 bfd_vma offset) 14413 { 14414 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; 14415 struct elf_link_hash_entry **search, *child; 14416 size_t extsymcount; 14417 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14418 14419 /* The sh_info field of the symtab header tells us where the 14420 external symbols start. We don't care about the local symbols at 14421 this point. */ 14422 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym; 14423 if (!elf_bad_symtab (abfd)) 14424 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info; 14425 14426 sym_hashes = elf_sym_hashes (abfd); 14427 sym_hashes_end = PTR_ADD (sym_hashes, extsymcount); 14428 14429 /* Hunt down the child symbol, which is in this section at the same 14430 offset as the relocation. */ 14431 for (search = sym_hashes; search != sym_hashes_end; ++search) 14432 { 14433 if ((child = *search) != NULL 14434 && (child->root.type == bfd_link_hash_defined 14435 || child->root.type == bfd_link_hash_defweak) 14436 && child->root.u.def.section == sec 14437 && child->root.u.def.value == offset) 14438 goto win; 14439 } 14440 14441 /* xgettext:c-format */ 14442 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"), 14443 abfd, sec, (uint64_t) offset); 14444 bfd_set_error (bfd_error_invalid_operation); 14445 return false; 14446 14447 win: 14448 if (!child->u2.vtable) 14449 { 14450 child->u2.vtable = ((struct elf_link_virtual_table_entry *) 14451 bfd_zalloc (abfd, sizeof (*child->u2.vtable))); 14452 if (!child->u2.vtable) 14453 return false; 14454 } 14455 if (!h) 14456 { 14457 /* This *should* only be the absolute section. It could potentially 14458 be that someone has defined a non-global vtable though, which 14459 would be bad. It isn't worth paging in the local symbols to be 14460 sure though; that case should simply be handled by the assembler. */ 14461 14462 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1; 14463 } 14464 else 14465 child->u2.vtable->parent = h; 14466 14467 return true; 14468 } 14469 14470 /* Called from check_relocs to record the existence of a VTENTRY reloc. */ 14471 14472 bool 14473 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec, 14474 struct elf_link_hash_entry *h, 14475 bfd_vma addend) 14476 { 14477 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14478 unsigned int log_file_align = bed->s->log_file_align; 14479 14480 if (!h) 14481 { 14482 /* xgettext:c-format */ 14483 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"), 14484 abfd, sec); 14485 bfd_set_error (bfd_error_bad_value); 14486 return false; 14487 } 14488 14489 if (!h->u2.vtable) 14490 { 14491 h->u2.vtable = ((struct elf_link_virtual_table_entry *) 14492 bfd_zalloc (abfd, sizeof (*h->u2.vtable))); 14493 if (!h->u2.vtable) 14494 return false; 14495 } 14496 14497 if (addend >= h->u2.vtable->size) 14498 { 14499 size_t size, bytes, file_align; 14500 bool *ptr = h->u2.vtable->used; 14501 14502 /* While the symbol is undefined, we have to be prepared to handle 14503 a zero size. */ 14504 file_align = 1 << log_file_align; 14505 if (h->root.type == bfd_link_hash_undefined) 14506 size = addend + file_align; 14507 else 14508 { 14509 size = h->size; 14510 if (addend >= size) 14511 { 14512 /* Oops! We've got a reference past the defined end of 14513 the table. This is probably a bug -- shall we warn? */ 14514 size = addend + file_align; 14515 } 14516 } 14517 size = (size + file_align - 1) & -file_align; 14518 14519 /* Allocate one extra entry for use as a "done" flag for the 14520 consolidation pass. */ 14521 bytes = ((size >> log_file_align) + 1) * sizeof (bool); 14522 14523 if (ptr) 14524 { 14525 ptr = (bool *) bfd_realloc (ptr - 1, bytes); 14526 14527 if (ptr != NULL) 14528 { 14529 size_t oldbytes; 14530 14531 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1) 14532 * sizeof (bool)); 14533 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes); 14534 } 14535 } 14536 else 14537 ptr = (bool *) bfd_zmalloc (bytes); 14538 14539 if (ptr == NULL) 14540 return false; 14541 14542 /* And arrange for that done flag to be at index -1. */ 14543 h->u2.vtable->used = ptr + 1; 14544 h->u2.vtable->size = size; 14545 } 14546 14547 h->u2.vtable->used[addend >> log_file_align] = true; 14548 14549 return true; 14550 } 14551 14552 /* Map an ELF section header flag to its corresponding string. */ 14553 typedef struct 14554 { 14555 char *flag_name; 14556 flagword flag_value; 14557 } elf_flags_to_name_table; 14558 14559 static const elf_flags_to_name_table elf_flags_to_names [] = 14560 { 14561 { "SHF_WRITE", SHF_WRITE }, 14562 { "SHF_ALLOC", SHF_ALLOC }, 14563 { "SHF_EXECINSTR", SHF_EXECINSTR }, 14564 { "SHF_MERGE", SHF_MERGE }, 14565 { "SHF_STRINGS", SHF_STRINGS }, 14566 { "SHF_INFO_LINK", SHF_INFO_LINK}, 14567 { "SHF_LINK_ORDER", SHF_LINK_ORDER}, 14568 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING}, 14569 { "SHF_GROUP", SHF_GROUP }, 14570 { "SHF_TLS", SHF_TLS }, 14571 { "SHF_MASKOS", SHF_MASKOS }, 14572 { "SHF_EXCLUDE", SHF_EXCLUDE }, 14573 }; 14574 14575 /* Returns TRUE if the section is to be included, otherwise FALSE. */ 14576 bool 14577 bfd_elf_lookup_section_flags (struct bfd_link_info *info, 14578 struct flag_info *flaginfo, 14579 asection *section) 14580 { 14581 const bfd_vma sh_flags = elf_section_flags (section); 14582 14583 if (!flaginfo->flags_initialized) 14584 { 14585 bfd *obfd = info->output_bfd; 14586 const struct elf_backend_data *bed = get_elf_backend_data (obfd); 14587 struct flag_info_list *tf = flaginfo->flag_list; 14588 int with_hex = 0; 14589 int without_hex = 0; 14590 14591 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next) 14592 { 14593 unsigned i; 14594 flagword (*lookup) (char *); 14595 14596 lookup = bed->elf_backend_lookup_section_flags_hook; 14597 if (lookup != NULL) 14598 { 14599 flagword hexval = (*lookup) ((char *) tf->name); 14600 14601 if (hexval != 0) 14602 { 14603 if (tf->with == with_flags) 14604 with_hex |= hexval; 14605 else if (tf->with == without_flags) 14606 without_hex |= hexval; 14607 tf->valid = true; 14608 continue; 14609 } 14610 } 14611 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i) 14612 { 14613 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0) 14614 { 14615 if (tf->with == with_flags) 14616 with_hex |= elf_flags_to_names[i].flag_value; 14617 else if (tf->with == without_flags) 14618 without_hex |= elf_flags_to_names[i].flag_value; 14619 tf->valid = true; 14620 break; 14621 } 14622 } 14623 if (!tf->valid) 14624 { 14625 info->callbacks->einfo 14626 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name); 14627 return false; 14628 } 14629 } 14630 flaginfo->flags_initialized = true; 14631 flaginfo->only_with_flags |= with_hex; 14632 flaginfo->not_with_flags |= without_hex; 14633 } 14634 14635 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags) 14636 return false; 14637 14638 if ((flaginfo->not_with_flags & sh_flags) != 0) 14639 return false; 14640 14641 return true; 14642 } 14643 14644 struct alloc_got_off_arg { 14645 bfd_vma gotoff; 14646 struct bfd_link_info *info; 14647 }; 14648 14649 /* We need a special top-level link routine to convert got reference counts 14650 to real got offsets. */ 14651 14652 static bool 14653 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg) 14654 { 14655 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg; 14656 bfd *obfd = gofarg->info->output_bfd; 14657 const struct elf_backend_data *bed = get_elf_backend_data (obfd); 14658 14659 if (h->got.refcount > 0) 14660 { 14661 h->got.offset = gofarg->gotoff; 14662 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0); 14663 } 14664 else 14665 h->got.offset = (bfd_vma) -1; 14666 14667 return true; 14668 } 14669 14670 /* And an accompanying bit to work out final got entry offsets once 14671 we're done. Should be called from final_link. */ 14672 14673 bool 14674 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd, 14675 struct bfd_link_info *info) 14676 { 14677 bfd *i; 14678 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14679 bfd_vma gotoff; 14680 struct alloc_got_off_arg gofarg; 14681 14682 BFD_ASSERT (abfd == info->output_bfd); 14683 14684 if (! is_elf_hash_table (info->hash)) 14685 return false; 14686 14687 /* The GOT offset is relative to the .got section, but the GOT header is 14688 put into the .got.plt section, if the backend uses it. */ 14689 if (bed->want_got_plt) 14690 gotoff = 0; 14691 else 14692 gotoff = bed->got_header_size; 14693 14694 /* Do the local .got entries first. */ 14695 for (i = info->input_bfds; i; i = i->link.next) 14696 { 14697 bfd_signed_vma *local_got; 14698 size_t j, locsymcount; 14699 Elf_Internal_Shdr *symtab_hdr; 14700 14701 if (bfd_get_flavour (i) != bfd_target_elf_flavour) 14702 continue; 14703 14704 local_got = elf_local_got_refcounts (i); 14705 if (!local_got) 14706 continue; 14707 14708 symtab_hdr = &elf_tdata (i)->symtab_hdr; 14709 if (elf_bad_symtab (i)) 14710 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; 14711 else 14712 locsymcount = symtab_hdr->sh_info; 14713 14714 for (j = 0; j < locsymcount; ++j) 14715 { 14716 if (local_got[j] > 0) 14717 { 14718 local_got[j] = gotoff; 14719 gotoff += bed->got_elt_size (abfd, info, NULL, i, j); 14720 } 14721 else 14722 local_got[j] = (bfd_vma) -1; 14723 } 14724 } 14725 14726 /* Then the global .got entries. .plt refcounts are handled by 14727 adjust_dynamic_symbol */ 14728 gofarg.gotoff = gotoff; 14729 gofarg.info = info; 14730 elf_link_hash_traverse (elf_hash_table (info), 14731 elf_gc_allocate_got_offsets, 14732 &gofarg); 14733 return true; 14734 } 14735 14736 /* Many folk need no more in the way of final link than this, once 14737 got entry reference counting is enabled. */ 14738 14739 bool 14740 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info) 14741 { 14742 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info)) 14743 return false; 14744 14745 /* Invoke the regular ELF backend linker to do all the work. */ 14746 return bfd_elf_final_link (abfd, info); 14747 } 14748 14749 bool 14750 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie) 14751 { 14752 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie; 14753 14754 if (rcookie->bad_symtab) 14755 rcookie->rel = rcookie->rels; 14756 14757 for (; rcookie->rel < rcookie->relend; rcookie->rel++) 14758 { 14759 unsigned long r_symndx; 14760 14761 if (! rcookie->bad_symtab) 14762 if (rcookie->rel->r_offset > offset) 14763 return false; 14764 if (rcookie->rel->r_offset != offset) 14765 continue; 14766 14767 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift; 14768 if (r_symndx == STN_UNDEF) 14769 return true; 14770 14771 if (r_symndx >= rcookie->locsymcount 14772 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL) 14773 { 14774 struct elf_link_hash_entry *h; 14775 14776 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff]; 14777 14778 while (h->root.type == bfd_link_hash_indirect 14779 || h->root.type == bfd_link_hash_warning) 14780 h = (struct elf_link_hash_entry *) h->root.u.i.link; 14781 14782 if ((h->root.type == bfd_link_hash_defined 14783 || h->root.type == bfd_link_hash_defweak) 14784 && (h->root.u.def.section->owner != rcookie->abfd 14785 || h->root.u.def.section->kept_section != NULL 14786 || discarded_section (h->root.u.def.section))) 14787 return true; 14788 } 14789 else 14790 { 14791 /* It's not a relocation against a global symbol, 14792 but it could be a relocation against a local 14793 symbol for a discarded section. */ 14794 asection *isec; 14795 Elf_Internal_Sym *isym; 14796 14797 /* Need to: get the symbol; get the section. */ 14798 isym = &rcookie->locsyms[r_symndx]; 14799 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx); 14800 if (isec != NULL 14801 && (isec->kept_section != NULL 14802 || discarded_section (isec))) 14803 return true; 14804 } 14805 return false; 14806 } 14807 return false; 14808 } 14809 14810 /* Discard unneeded references to discarded sections. 14811 Returns -1 on error, 1 if any section's size was changed, 0 if 14812 nothing changed. This function assumes that the relocations are in 14813 sorted order, which is true for all known assemblers. */ 14814 14815 int 14816 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info) 14817 { 14818 struct elf_reloc_cookie cookie; 14819 asection *o; 14820 bfd *abfd; 14821 int changed = 0; 14822 14823 if (info->traditional_format 14824 || !is_elf_hash_table (info->hash)) 14825 return 0; 14826 14827 o = bfd_get_section_by_name (output_bfd, ".stab"); 14828 if (o != NULL) 14829 { 14830 asection *i; 14831 14832 for (i = o->map_head.s; i != NULL; i = i->map_head.s) 14833 { 14834 if (i->size == 0 14835 || i->reloc_count == 0 14836 || i->sec_info_type != SEC_INFO_TYPE_STABS) 14837 continue; 14838 14839 abfd = i->owner; 14840 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 14841 continue; 14842 14843 if (!init_reloc_cookie_for_section (&cookie, info, i)) 14844 return -1; 14845 14846 if (_bfd_discard_section_stabs (abfd, i, 14847 elf_section_data (i)->sec_info, 14848 bfd_elf_reloc_symbol_deleted_p, 14849 &cookie)) 14850 changed = 1; 14851 14852 fini_reloc_cookie_for_section (&cookie, i); 14853 } 14854 } 14855 14856 o = NULL; 14857 if (info->eh_frame_hdr_type != COMPACT_EH_HDR) 14858 o = bfd_get_section_by_name (output_bfd, ".eh_frame"); 14859 if (o != NULL) 14860 { 14861 asection *i; 14862 int eh_changed = 0; 14863 unsigned int eh_alignment; /* Octets. */ 14864 14865 for (i = o->map_head.s; i != NULL; i = i->map_head.s) 14866 { 14867 if (i->size == 0) 14868 continue; 14869 14870 abfd = i->owner; 14871 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 14872 continue; 14873 14874 if (!init_reloc_cookie_for_section (&cookie, info, i)) 14875 return -1; 14876 14877 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie); 14878 if (_bfd_elf_discard_section_eh_frame (abfd, info, i, 14879 bfd_elf_reloc_symbol_deleted_p, 14880 &cookie)) 14881 { 14882 eh_changed = 1; 14883 if (i->size != i->rawsize) 14884 changed = 1; 14885 } 14886 14887 fini_reloc_cookie_for_section (&cookie, i); 14888 } 14889 14890 eh_alignment = ((1 << o->alignment_power) 14891 * bfd_octets_per_byte (output_bfd, o)); 14892 /* Skip over zero terminator, and prevent empty sections from 14893 adding alignment padding at the end. */ 14894 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s) 14895 if (i->size == 0) 14896 i->flags |= SEC_EXCLUDE; 14897 else if (i->size > 4) 14898 break; 14899 /* The last non-empty eh_frame section doesn't need padding. */ 14900 if (i != NULL) 14901 i = i->map_tail.s; 14902 /* Any prior sections must pad the last FDE out to the output 14903 section alignment. Otherwise we might have zero padding 14904 between sections, which would be seen as a terminator. */ 14905 for (; i != NULL; i = i->map_tail.s) 14906 if (i->size == 4) 14907 /* All but the last zero terminator should have been removed. */ 14908 BFD_FAIL (); 14909 else 14910 { 14911 bfd_size_type size 14912 = (i->size + eh_alignment - 1) & -eh_alignment; 14913 if (i->size != size) 14914 { 14915 i->size = size; 14916 changed = 1; 14917 eh_changed = 1; 14918 } 14919 } 14920 if (eh_changed) 14921 elf_link_hash_traverse (elf_hash_table (info), 14922 _bfd_elf_adjust_eh_frame_global_symbol, NULL); 14923 } 14924 14925 o = bfd_get_section_by_name (output_bfd, ".sframe"); 14926 if (o != NULL) 14927 { 14928 asection *i; 14929 14930 for (i = o->map_head.s; i != NULL; i = i->map_head.s) 14931 { 14932 if (i->size == 0) 14933 continue; 14934 14935 abfd = i->owner; 14936 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 14937 continue; 14938 14939 if (!init_reloc_cookie_for_section (&cookie, info, i)) 14940 return -1; 14941 14942 if (_bfd_elf_parse_sframe (abfd, info, i, &cookie)) 14943 { 14944 if (_bfd_elf_discard_section_sframe (i, 14945 bfd_elf_reloc_symbol_deleted_p, 14946 &cookie)) 14947 { 14948 if (i->size != i->rawsize) 14949 changed = 1; 14950 } 14951 } 14952 fini_reloc_cookie_for_section (&cookie, i); 14953 } 14954 /* Update the reference to the output .sframe section. Used to 14955 determine later if PT_GNU_SFRAME segment is to be generated. */ 14956 if (!_bfd_elf_set_section_sframe (output_bfd, info)) 14957 return -1; 14958 } 14959 14960 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) 14961 { 14962 const struct elf_backend_data *bed; 14963 asection *s; 14964 14965 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 14966 continue; 14967 s = abfd->sections; 14968 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 14969 continue; 14970 14971 bed = get_elf_backend_data (abfd); 14972 14973 if (bed->elf_backend_discard_info != NULL) 14974 { 14975 if (!init_reloc_cookie (&cookie, info, abfd)) 14976 return -1; 14977 14978 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info)) 14979 changed = 1; 14980 14981 fini_reloc_cookie (&cookie, abfd); 14982 } 14983 } 14984 14985 if (info->eh_frame_hdr_type == COMPACT_EH_HDR) 14986 _bfd_elf_end_eh_frame_parsing (info); 14987 14988 if (info->eh_frame_hdr_type 14989 && !bfd_link_relocatable (info) 14990 && _bfd_elf_discard_section_eh_frame_hdr (info)) 14991 changed = 1; 14992 14993 return changed; 14994 } 14995 14996 bool 14997 _bfd_elf_section_already_linked (bfd *abfd, 14998 asection *sec, 14999 struct bfd_link_info *info) 15000 { 15001 flagword flags; 15002 const char *name, *key; 15003 struct bfd_section_already_linked *l; 15004 struct bfd_section_already_linked_hash_entry *already_linked_list; 15005 15006 if (sec->output_section == bfd_abs_section_ptr) 15007 return false; 15008 15009 flags = sec->flags; 15010 15011 /* Return if it isn't a linkonce section. A comdat group section 15012 also has SEC_LINK_ONCE set. */ 15013 if ((flags & SEC_LINK_ONCE) == 0) 15014 return false; 15015 15016 /* Don't put group member sections on our list of already linked 15017 sections. They are handled as a group via their group section. */ 15018 if (elf_sec_group (sec) != NULL) 15019 return false; 15020 15021 /* For a SHT_GROUP section, use the group signature as the key. */ 15022 name = sec->name; 15023 if ((flags & SEC_GROUP) != 0 15024 && elf_next_in_group (sec) != NULL 15025 && elf_group_name (elf_next_in_group (sec)) != NULL) 15026 key = elf_group_name (elf_next_in_group (sec)); 15027 else 15028 { 15029 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */ 15030 if (startswith (name, ".gnu.linkonce.") 15031 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL) 15032 key++; 15033 else 15034 /* Must be a user linkonce section that doesn't follow gcc's 15035 naming convention. In this case we won't be matching 15036 single member groups. */ 15037 key = name; 15038 } 15039 15040 already_linked_list = bfd_section_already_linked_table_lookup (key); 15041 15042 for (l = already_linked_list->entry; l != NULL; l = l->next) 15043 { 15044 /* We may have 2 different types of sections on the list: group 15045 sections with a signature of <key> (<key> is some string), 15046 and linkonce sections named .gnu.linkonce.<type>.<key>. 15047 Match like sections. LTO plugin sections are an exception. 15048 They are always named .gnu.linkonce.t.<key> and match either 15049 type of section. */ 15050 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP) 15051 && ((flags & SEC_GROUP) != 0 15052 || strcmp (name, l->sec->name) == 0)) 15053 || (l->sec->owner->flags & BFD_PLUGIN) != 0 15054 || (sec->owner->flags & BFD_PLUGIN) != 0) 15055 { 15056 /* The section has already been linked. See if we should 15057 issue a warning. */ 15058 if (!_bfd_handle_already_linked (sec, l, info)) 15059 return false; 15060 15061 if (flags & SEC_GROUP) 15062 { 15063 asection *first = elf_next_in_group (sec); 15064 asection *s = first; 15065 15066 while (s != NULL) 15067 { 15068 s->output_section = bfd_abs_section_ptr; 15069 /* Record which group discards it. */ 15070 s->kept_section = l->sec; 15071 s = elf_next_in_group (s); 15072 /* These lists are circular. */ 15073 if (s == first) 15074 break; 15075 } 15076 } 15077 15078 return true; 15079 } 15080 } 15081 15082 /* A single member comdat group section may be discarded by a 15083 linkonce section and vice versa. */ 15084 if ((flags & SEC_GROUP) != 0) 15085 { 15086 asection *first = elf_next_in_group (sec); 15087 15088 if (first != NULL && elf_next_in_group (first) == first) 15089 /* Check this single member group against linkonce sections. */ 15090 for (l = already_linked_list->entry; l != NULL; l = l->next) 15091 if ((l->sec->flags & SEC_GROUP) == 0 15092 && bfd_elf_match_symbols_in_sections (l->sec, first, info)) 15093 { 15094 first->output_section = bfd_abs_section_ptr; 15095 first->kept_section = l->sec; 15096 sec->output_section = bfd_abs_section_ptr; 15097 break; 15098 } 15099 } 15100 else 15101 /* Check this linkonce section against single member groups. */ 15102 for (l = already_linked_list->entry; l != NULL; l = l->next) 15103 if (l->sec->flags & SEC_GROUP) 15104 { 15105 asection *first = elf_next_in_group (l->sec); 15106 15107 if (first != NULL 15108 && elf_next_in_group (first) == first 15109 && bfd_elf_match_symbols_in_sections (first, sec, info)) 15110 { 15111 sec->output_section = bfd_abs_section_ptr; 15112 sec->kept_section = first; 15113 break; 15114 } 15115 } 15116 15117 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F' 15118 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4 15119 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce' 15120 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its 15121 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded 15122 but its `.gnu.linkonce.t.F' is discarded means we chose one-only 15123 `.gnu.linkonce.t.F' section from a different bfd not requiring any 15124 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded. 15125 The reverse order cannot happen as there is never a bfd with only the 15126 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not 15127 matter as here were are looking only for cross-bfd sections. */ 15128 15129 if ((flags & SEC_GROUP) == 0 && startswith (name, ".gnu.linkonce.r.")) 15130 for (l = already_linked_list->entry; l != NULL; l = l->next) 15131 if ((l->sec->flags & SEC_GROUP) == 0 15132 && startswith (l->sec->name, ".gnu.linkonce.t.")) 15133 { 15134 if (abfd != l->sec->owner) 15135 sec->output_section = bfd_abs_section_ptr; 15136 break; 15137 } 15138 15139 /* This is the first section with this name. Record it. */ 15140 if (!bfd_section_already_linked_table_insert (already_linked_list, sec)) 15141 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n")); 15142 return sec->output_section == bfd_abs_section_ptr; 15143 } 15144 15145 bool 15146 _bfd_elf_common_definition (Elf_Internal_Sym *sym) 15147 { 15148 return sym->st_shndx == SHN_COMMON; 15149 } 15150 15151 unsigned int 15152 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED) 15153 { 15154 return SHN_COMMON; 15155 } 15156 15157 asection * 15158 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED) 15159 { 15160 return bfd_com_section_ptr; 15161 } 15162 15163 bfd_vma 15164 _bfd_elf_default_got_elt_size (bfd *abfd, 15165 struct bfd_link_info *info ATTRIBUTE_UNUSED, 15166 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED, 15167 bfd *ibfd ATTRIBUTE_UNUSED, 15168 unsigned long symndx ATTRIBUTE_UNUSED) 15169 { 15170 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 15171 return bed->s->arch_size / 8; 15172 } 15173 15174 /* Routines to support the creation of dynamic relocs. */ 15175 15176 /* Returns the name of the dynamic reloc section associated with SEC. */ 15177 15178 static const char * 15179 get_dynamic_reloc_section_name (bfd * abfd, 15180 asection * sec, 15181 bool is_rela) 15182 { 15183 char *name; 15184 const char *old_name = bfd_section_name (sec); 15185 const char *prefix = is_rela ? ".rela" : ".rel"; 15186 15187 if (old_name == NULL) 15188 return NULL; 15189 15190 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1); 15191 sprintf (name, "%s%s", prefix, old_name); 15192 15193 return name; 15194 } 15195 15196 /* Returns the dynamic reloc section associated with SEC. 15197 If necessary compute the name of the dynamic reloc section based 15198 on SEC's name (looked up in ABFD's string table) and the setting 15199 of IS_RELA. */ 15200 15201 asection * 15202 _bfd_elf_get_dynamic_reloc_section (bfd *abfd, 15203 asection *sec, 15204 bool is_rela) 15205 { 15206 asection *reloc_sec = elf_section_data (sec)->sreloc; 15207 15208 if (reloc_sec == NULL) 15209 { 15210 const char *name = get_dynamic_reloc_section_name (abfd, sec, is_rela); 15211 15212 if (name != NULL) 15213 { 15214 reloc_sec = bfd_get_linker_section (abfd, name); 15215 15216 if (reloc_sec != NULL) 15217 elf_section_data (sec)->sreloc = reloc_sec; 15218 } 15219 } 15220 15221 return reloc_sec; 15222 } 15223 15224 /* Returns the dynamic reloc section associated with SEC. If the 15225 section does not exist it is created and attached to the DYNOBJ 15226 bfd and stored in the SRELOC field of SEC's elf_section_data 15227 structure. 15228 15229 ALIGNMENT is the alignment for the newly created section and 15230 IS_RELA defines whether the name should be .rela.<SEC's name> 15231 or .rel.<SEC's name>. The section name is looked up in the 15232 string table associated with ABFD. */ 15233 15234 asection * 15235 _bfd_elf_make_dynamic_reloc_section (asection *sec, 15236 bfd *dynobj, 15237 unsigned int alignment, 15238 bfd *abfd, 15239 bool is_rela) 15240 { 15241 asection * reloc_sec = elf_section_data (sec)->sreloc; 15242 15243 if (reloc_sec == NULL) 15244 { 15245 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela); 15246 15247 if (name == NULL) 15248 return NULL; 15249 15250 reloc_sec = bfd_get_linker_section (dynobj, name); 15251 15252 if (reloc_sec == NULL) 15253 { 15254 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY 15255 | SEC_IN_MEMORY | SEC_LINKER_CREATED); 15256 if ((sec->flags & SEC_ALLOC) != 0) 15257 flags |= SEC_ALLOC | SEC_LOAD; 15258 15259 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags); 15260 if (reloc_sec != NULL) 15261 { 15262 /* _bfd_elf_get_sec_type_attr chooses a section type by 15263 name. Override as it may be wrong, eg. for a user 15264 section named "auto" we'll get ".relauto" which is 15265 seen to be a .rela section. */ 15266 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL; 15267 if (!bfd_set_section_alignment (reloc_sec, alignment)) 15268 reloc_sec = NULL; 15269 } 15270 } 15271 15272 elf_section_data (sec)->sreloc = reloc_sec; 15273 } 15274 15275 return reloc_sec; 15276 } 15277 15278 /* Copy the ELF symbol type and other attributes for a linker script 15279 assignment from HSRC to HDEST. Generally this should be treated as 15280 if we found a strong non-dynamic definition for HDEST (except that 15281 ld ignores multiple definition errors). */ 15282 void 15283 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd, 15284 struct bfd_link_hash_entry *hdest, 15285 struct bfd_link_hash_entry *hsrc) 15286 { 15287 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest; 15288 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc; 15289 Elf_Internal_Sym isym; 15290 15291 ehdest->type = ehsrc->type; 15292 ehdest->target_internal = ehsrc->target_internal; 15293 15294 isym.st_other = ehsrc->other; 15295 elf_merge_st_other (abfd, ehdest, isym.st_other, NULL, true, false); 15296 } 15297 15298 /* Append a RELA relocation REL to section S in BFD. */ 15299 15300 void 15301 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) 15302 { 15303 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 15304 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); 15305 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size); 15306 bed->s->swap_reloca_out (abfd, rel, loc); 15307 } 15308 15309 /* Append a REL relocation REL to section S in BFD. */ 15310 15311 void 15312 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel) 15313 { 15314 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 15315 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel); 15316 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size); 15317 bed->s->swap_reloc_out (abfd, rel, loc); 15318 } 15319 15320 /* Define __start, __stop, .startof. or .sizeof. symbol. */ 15321 15322 struct bfd_link_hash_entry * 15323 bfd_elf_define_start_stop (struct bfd_link_info *info, 15324 const char *symbol, asection *sec) 15325 { 15326 struct elf_link_hash_entry *h; 15327 15328 h = elf_link_hash_lookup (elf_hash_table (info), symbol, 15329 false, false, true); 15330 /* NB: Common symbols will be turned into definition later. */ 15331 if (h != NULL 15332 && !h->root.ldscript_def 15333 && (h->root.type == bfd_link_hash_undefined 15334 || h->root.type == bfd_link_hash_undefweak 15335 || ((h->ref_regular || h->def_dynamic) 15336 && !h->def_regular 15337 && h->root.type != bfd_link_hash_common))) 15338 { 15339 bool was_dynamic = h->ref_dynamic || h->def_dynamic; 15340 h->verinfo.verdef = NULL; 15341 h->root.type = bfd_link_hash_defined; 15342 h->root.u.def.section = sec; 15343 h->root.u.def.value = 0; 15344 h->def_regular = 1; 15345 h->def_dynamic = 0; 15346 h->start_stop = 1; 15347 h->u2.start_stop_section = sec; 15348 if (symbol[0] == '.') 15349 { 15350 /* .startof. and .sizeof. symbols are local. */ 15351 const struct elf_backend_data *bed; 15352 bed = get_elf_backend_data (info->output_bfd); 15353 (*bed->elf_backend_hide_symbol) (info, h, true); 15354 } 15355 else 15356 { 15357 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) 15358 h->other = ((h->other & ~ELF_ST_VISIBILITY (-1)) 15359 | info->start_stop_visibility); 15360 if (was_dynamic) 15361 bfd_elf_link_record_dynamic_symbol (info, h); 15362 } 15363 return &h->root; 15364 } 15365 return NULL; 15366 } 15367 15368 /* Find dynamic relocs for H that apply to read-only sections. */ 15369 15370 asection * 15371 _bfd_elf_readonly_dynrelocs (struct elf_link_hash_entry *h) 15372 { 15373 struct elf_dyn_relocs *p; 15374 15375 for (p = h->dyn_relocs; p != NULL; p = p->next) 15376 { 15377 asection *s = p->sec->output_section; 15378 15379 if (s != NULL && (s->flags & SEC_READONLY) != 0) 15380 return p->sec; 15381 } 15382 return NULL; 15383 } 15384 15385 /* Set DF_TEXTREL if we find any dynamic relocs that apply to 15386 read-only sections. */ 15387 15388 bool 15389 _bfd_elf_maybe_set_textrel (struct elf_link_hash_entry *h, void *inf) 15390 { 15391 asection *sec; 15392 15393 if (h->root.type == bfd_link_hash_indirect) 15394 return true; 15395 15396 sec = _bfd_elf_readonly_dynrelocs (h); 15397 if (sec != NULL) 15398 { 15399 struct bfd_link_info *info = (struct bfd_link_info *) inf; 15400 15401 info->flags |= DF_TEXTREL; 15402 /* xgettext:c-format */ 15403 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' " 15404 "in read-only section `%pA'\n"), 15405 sec->owner, h->root.root.string, sec); 15406 15407 if (bfd_link_textrel_check (info)) 15408 /* xgettext:c-format */ 15409 info->callbacks->einfo (_("%P: %pB: warning: relocation against `%s' " 15410 "in read-only section `%pA'\n"), 15411 sec->owner, h->root.root.string, sec); 15412 15413 /* Not an error, just cut short the traversal. */ 15414 return false; 15415 } 15416 return true; 15417 } 15418 15419 /* Add dynamic tags. */ 15420 15421 bool 15422 _bfd_elf_add_dynamic_tags (bfd *output_bfd, struct bfd_link_info *info, 15423 bool need_dynamic_reloc) 15424 { 15425 struct elf_link_hash_table *htab = elf_hash_table (info); 15426 15427 if (htab->dynamic_sections_created) 15428 { 15429 /* Add some entries to the .dynamic section. We fill in the 15430 values later, in finish_dynamic_sections, but we must add 15431 the entries now so that we get the correct size for the 15432 .dynamic section. The DT_DEBUG entry is filled in by the 15433 dynamic linker and used by the debugger. */ 15434 #define add_dynamic_entry(TAG, VAL) \ 15435 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 15436 15437 const struct elf_backend_data *bed 15438 = get_elf_backend_data (output_bfd); 15439 15440 if (bfd_link_executable (info)) 15441 { 15442 if (!add_dynamic_entry (DT_DEBUG, 0)) 15443 return false; 15444 } 15445 15446 if (htab->dt_pltgot_required || htab->splt->size != 0) 15447 { 15448 /* DT_PLTGOT is used by prelink even if there is no PLT 15449 relocation. */ 15450 if (!add_dynamic_entry (DT_PLTGOT, 0)) 15451 return false; 15452 } 15453 15454 if (htab->dt_jmprel_required || htab->srelplt->size != 0) 15455 { 15456 if (!add_dynamic_entry (DT_PLTRELSZ, 0) 15457 || !add_dynamic_entry (DT_PLTREL, 15458 (bed->rela_plts_and_copies_p 15459 ? DT_RELA : DT_REL)) 15460 || !add_dynamic_entry (DT_JMPREL, 0)) 15461 return false; 15462 } 15463 15464 if (htab->tlsdesc_plt 15465 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0) 15466 || !add_dynamic_entry (DT_TLSDESC_GOT, 0))) 15467 return false; 15468 15469 if (need_dynamic_reloc) 15470 { 15471 if (bed->rela_plts_and_copies_p) 15472 { 15473 if (!add_dynamic_entry (DT_RELA, 0) 15474 || !add_dynamic_entry (DT_RELASZ, 0) 15475 || !add_dynamic_entry (DT_RELAENT, 15476 bed->s->sizeof_rela)) 15477 return false; 15478 } 15479 else 15480 { 15481 if (!add_dynamic_entry (DT_REL, 0) 15482 || !add_dynamic_entry (DT_RELSZ, 0) 15483 || !add_dynamic_entry (DT_RELENT, 15484 bed->s->sizeof_rel)) 15485 return false; 15486 } 15487 15488 /* If any dynamic relocs apply to a read-only section, 15489 then we need a DT_TEXTREL entry. */ 15490 if ((info->flags & DF_TEXTREL) == 0) 15491 elf_link_hash_traverse (htab, _bfd_elf_maybe_set_textrel, 15492 info); 15493 15494 if ((info->flags & DF_TEXTREL) != 0) 15495 { 15496 if (htab->ifunc_resolvers) 15497 info->callbacks->einfo 15498 (_("%P: warning: GNU indirect functions with DT_TEXTREL " 15499 "may result in a segfault at runtime; recompile with %s\n"), 15500 bfd_link_dll (info) ? "-fPIC" : "-fPIE"); 15501 15502 if (!add_dynamic_entry (DT_TEXTREL, 0)) 15503 return false; 15504 } 15505 } 15506 } 15507 #undef add_dynamic_entry 15508 15509 return true; 15510 } 15511