1 /* Xtensa-specific support for 32-bit ELF. 2 Copyright (C) 2003-2015 Free Software Foundation, Inc. 3 4 This file is part of BFD, the Binary File Descriptor library. 5 6 This program is free software; you can redistribute it and/or 7 modify it under the terms of the GNU General Public License as 8 published by the Free Software Foundation; either version 3 of the 9 License, or (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, but 12 WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 19 02110-1301, USA. */ 20 21 #include "sysdep.h" 22 #include "bfd.h" 23 24 #include <stdarg.h> 25 #include <strings.h> 26 27 #include "bfdlink.h" 28 #include "libbfd.h" 29 #include "elf-bfd.h" 30 #include "elf/xtensa.h" 31 #include "xtensa-isa.h" 32 #include "xtensa-config.h" 33 34 #define XTENSA_NO_NOP_REMOVAL 0 35 36 /* Local helper functions. */ 37 38 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int); 39 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4); 40 static bfd_reloc_status_type bfd_elf_xtensa_reloc 41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **); 42 static bfd_boolean do_fix_for_relocatable_link 43 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *); 44 static void do_fix_for_final_link 45 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *); 46 47 /* Local functions to handle Xtensa configurability. */ 48 49 static bfd_boolean is_indirect_call_opcode (xtensa_opcode); 50 static bfd_boolean is_direct_call_opcode (xtensa_opcode); 51 static bfd_boolean is_windowed_call_opcode (xtensa_opcode); 52 static xtensa_opcode get_const16_opcode (void); 53 static xtensa_opcode get_l32r_opcode (void); 54 static bfd_vma l32r_offset (bfd_vma, bfd_vma); 55 static int get_relocation_opnd (xtensa_opcode, int); 56 static int get_relocation_slot (int); 57 static xtensa_opcode get_relocation_opcode 58 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); 59 static bfd_boolean is_l32r_relocation 60 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *); 61 static bfd_boolean is_alt_relocation (int); 62 static bfd_boolean is_operand_relocation (int); 63 static bfd_size_type insn_decode_len 64 (bfd_byte *, bfd_size_type, bfd_size_type); 65 static xtensa_opcode insn_decode_opcode 66 (bfd_byte *, bfd_size_type, bfd_size_type, int); 67 static bfd_boolean check_branch_target_aligned 68 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); 69 static bfd_boolean check_loop_aligned 70 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma); 71 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int); 72 static bfd_size_type get_asm_simplify_size 73 (bfd_byte *, bfd_size_type, bfd_size_type); 74 75 /* Functions for link-time code simplifications. */ 76 77 static bfd_reloc_status_type elf_xtensa_do_asm_simplify 78 (bfd_byte *, bfd_vma, bfd_vma, char **); 79 static bfd_reloc_status_type contract_asm_expansion 80 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **); 81 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode); 82 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *); 83 84 /* Access to internal relocations, section contents and symbols. */ 85 86 static Elf_Internal_Rela *retrieve_internal_relocs 87 (bfd *, asection *, bfd_boolean); 88 static void pin_internal_relocs (asection *, Elf_Internal_Rela *); 89 static void release_internal_relocs (asection *, Elf_Internal_Rela *); 90 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean); 91 static void pin_contents (asection *, bfd_byte *); 92 static void release_contents (asection *, bfd_byte *); 93 static Elf_Internal_Sym *retrieve_local_syms (bfd *); 94 95 /* Miscellaneous utility functions. */ 96 97 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int); 98 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int); 99 static asection *get_elf_r_symndx_section (bfd *, unsigned long); 100 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry 101 (bfd *, unsigned long); 102 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long); 103 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *); 104 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma); 105 static bfd_boolean xtensa_is_property_section (asection *); 106 static bfd_boolean xtensa_is_insntable_section (asection *); 107 static bfd_boolean xtensa_is_littable_section (asection *); 108 static bfd_boolean xtensa_is_proptable_section (asection *); 109 static int internal_reloc_compare (const void *, const void *); 110 static int internal_reloc_matches (const void *, const void *); 111 static asection *xtensa_get_property_section (asection *, const char *); 112 extern asection *xtensa_make_property_section (asection *, const char *); 113 static flagword xtensa_get_property_predef_flags (asection *); 114 115 /* Other functions called directly by the linker. */ 116 117 typedef void (*deps_callback_t) 118 (asection *, bfd_vma, asection *, bfd_vma, void *); 119 extern bfd_boolean xtensa_callback_required_dependence 120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *); 121 122 123 /* Globally visible flag for choosing size optimization of NOP removal 124 instead of branch-target-aware minimization for NOP removal. 125 When nonzero, narrow all instructions and remove all NOPs possible 126 around longcall expansions. */ 127 128 int elf32xtensa_size_opt; 129 130 131 /* The "new_section_hook" is used to set up a per-section 132 "xtensa_relax_info" data structure with additional information used 133 during relaxation. */ 134 135 typedef struct xtensa_relax_info_struct xtensa_relax_info; 136 137 138 /* The GNU tools do not easily allow extending interfaces to pass around 139 the pointer to the Xtensa ISA information, so instead we add a global 140 variable here (in BFD) that can be used by any of the tools that need 141 this information. */ 142 143 xtensa_isa xtensa_default_isa; 144 145 146 /* When this is true, relocations may have been modified to refer to 147 symbols from other input files. The per-section list of "fix" 148 records needs to be checked when resolving relocations. */ 149 150 static bfd_boolean relaxing_section = FALSE; 151 152 /* When this is true, during final links, literals that cannot be 153 coalesced and their relocations may be moved to other sections. */ 154 155 int elf32xtensa_no_literal_movement = 1; 156 157 /* Rename one of the generic section flags to better document how it 158 is used here. */ 159 /* Whether relocations have been processed. */ 160 #define reloc_done sec_flg0 161 162 static reloc_howto_type elf_howto_table[] = 163 { 164 HOWTO (R_XTENSA_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont, 165 bfd_elf_xtensa_reloc, "R_XTENSA_NONE", 166 FALSE, 0, 0, FALSE), 167 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, 168 bfd_elf_xtensa_reloc, "R_XTENSA_32", 169 TRUE, 0xffffffff, 0xffffffff, FALSE), 170 171 /* Replace a 32-bit value with a value from the runtime linker (only 172 used by linker-generated stub functions). The r_addend value is 173 special: 1 means to substitute a pointer to the runtime linker's 174 dynamic resolver function; 2 means to substitute the link map for 175 the shared object. */ 176 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont, 177 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE), 178 179 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, 180 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT", 181 FALSE, 0, 0xffffffff, FALSE), 182 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, 183 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT", 184 FALSE, 0, 0xffffffff, FALSE), 185 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, 186 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE", 187 FALSE, 0, 0xffffffff, FALSE), 188 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, 189 bfd_elf_xtensa_reloc, "R_XTENSA_PLT", 190 FALSE, 0, 0xffffffff, FALSE), 191 192 EMPTY_HOWTO (7), 193 194 /* Old relocations for backward compatibility. */ 195 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont, 196 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE), 197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont, 198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE), 199 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont, 200 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE), 201 202 /* Assembly auto-expansion. */ 203 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont, 204 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE), 205 /* Relax assembly auto-expansion. */ 206 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont, 207 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE), 208 209 EMPTY_HOWTO (13), 210 211 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield, 212 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL", 213 FALSE, 0, 0xffffffff, TRUE), 214 215 /* GNU extension to record C++ vtable hierarchy. */ 216 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont, 217 NULL, "R_XTENSA_GNU_VTINHERIT", 218 FALSE, 0, 0, FALSE), 219 /* GNU extension to record C++ vtable member usage. */ 220 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont, 221 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY", 222 FALSE, 0, 0, FALSE), 223 224 /* Relocations for supporting difference of symbols. */ 225 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed, 226 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE), 227 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed, 228 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE), 229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed, 230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE), 231 232 /* General immediate operand relocations. */ 233 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE), 235 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE), 237 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE), 239 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE), 241 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE), 243 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE), 245 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE), 247 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE), 249 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE), 251 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE), 253 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE), 255 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE), 257 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE), 259 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE), 261 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont, 262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE), 263 264 /* "Alternate" relocations. The meaning of these is opcode-specific. */ 265 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE), 267 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE), 269 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE), 271 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE), 273 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE), 275 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE), 277 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE), 279 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE), 281 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE), 283 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE), 285 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE), 287 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE), 289 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE), 291 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 292 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE), 293 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont, 294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE), 295 296 /* TLS relocations. */ 297 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont, 298 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN", 299 FALSE, 0, 0xffffffff, FALSE), 300 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont, 301 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG", 302 FALSE, 0, 0xffffffff, FALSE), 303 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont, 304 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF", 305 FALSE, 0, 0xffffffff, FALSE), 306 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont, 307 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF", 308 FALSE, 0, 0xffffffff, FALSE), 309 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont, 310 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC", 311 FALSE, 0, 0, FALSE), 312 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont, 313 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG", 314 FALSE, 0, 0, FALSE), 315 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont, 316 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL", 317 FALSE, 0, 0, FALSE), 318 }; 319 320 #if DEBUG_GEN_RELOC 321 #define TRACE(str) \ 322 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str) 323 #else 324 #define TRACE(str) 325 #endif 326 327 static reloc_howto_type * 328 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 329 bfd_reloc_code_real_type code) 330 { 331 switch (code) 332 { 333 case BFD_RELOC_NONE: 334 TRACE ("BFD_RELOC_NONE"); 335 return &elf_howto_table[(unsigned) R_XTENSA_NONE ]; 336 337 case BFD_RELOC_32: 338 TRACE ("BFD_RELOC_32"); 339 return &elf_howto_table[(unsigned) R_XTENSA_32 ]; 340 341 case BFD_RELOC_32_PCREL: 342 TRACE ("BFD_RELOC_32_PCREL"); 343 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ]; 344 345 case BFD_RELOC_XTENSA_DIFF8: 346 TRACE ("BFD_RELOC_XTENSA_DIFF8"); 347 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ]; 348 349 case BFD_RELOC_XTENSA_DIFF16: 350 TRACE ("BFD_RELOC_XTENSA_DIFF16"); 351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ]; 352 353 case BFD_RELOC_XTENSA_DIFF32: 354 TRACE ("BFD_RELOC_XTENSA_DIFF32"); 355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ]; 356 357 case BFD_RELOC_XTENSA_RTLD: 358 TRACE ("BFD_RELOC_XTENSA_RTLD"); 359 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ]; 360 361 case BFD_RELOC_XTENSA_GLOB_DAT: 362 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT"); 363 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ]; 364 365 case BFD_RELOC_XTENSA_JMP_SLOT: 366 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT"); 367 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ]; 368 369 case BFD_RELOC_XTENSA_RELATIVE: 370 TRACE ("BFD_RELOC_XTENSA_RELATIVE"); 371 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ]; 372 373 case BFD_RELOC_XTENSA_PLT: 374 TRACE ("BFD_RELOC_XTENSA_PLT"); 375 return &elf_howto_table[(unsigned) R_XTENSA_PLT ]; 376 377 case BFD_RELOC_XTENSA_OP0: 378 TRACE ("BFD_RELOC_XTENSA_OP0"); 379 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ]; 380 381 case BFD_RELOC_XTENSA_OP1: 382 TRACE ("BFD_RELOC_XTENSA_OP1"); 383 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ]; 384 385 case BFD_RELOC_XTENSA_OP2: 386 TRACE ("BFD_RELOC_XTENSA_OP2"); 387 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ]; 388 389 case BFD_RELOC_XTENSA_ASM_EXPAND: 390 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND"); 391 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ]; 392 393 case BFD_RELOC_XTENSA_ASM_SIMPLIFY: 394 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY"); 395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ]; 396 397 case BFD_RELOC_VTABLE_INHERIT: 398 TRACE ("BFD_RELOC_VTABLE_INHERIT"); 399 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ]; 400 401 case BFD_RELOC_VTABLE_ENTRY: 402 TRACE ("BFD_RELOC_VTABLE_ENTRY"); 403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ]; 404 405 case BFD_RELOC_XTENSA_TLSDESC_FN: 406 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN"); 407 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ]; 408 409 case BFD_RELOC_XTENSA_TLSDESC_ARG: 410 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG"); 411 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ]; 412 413 case BFD_RELOC_XTENSA_TLS_DTPOFF: 414 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF"); 415 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ]; 416 417 case BFD_RELOC_XTENSA_TLS_TPOFF: 418 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF"); 419 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ]; 420 421 case BFD_RELOC_XTENSA_TLS_FUNC: 422 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC"); 423 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ]; 424 425 case BFD_RELOC_XTENSA_TLS_ARG: 426 TRACE ("BFD_RELOC_XTENSA_TLS_ARG"); 427 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ]; 428 429 case BFD_RELOC_XTENSA_TLS_CALL: 430 TRACE ("BFD_RELOC_XTENSA_TLS_CALL"); 431 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ]; 432 433 default: 434 if (code >= BFD_RELOC_XTENSA_SLOT0_OP 435 && code <= BFD_RELOC_XTENSA_SLOT14_OP) 436 { 437 unsigned n = (R_XTENSA_SLOT0_OP + 438 (code - BFD_RELOC_XTENSA_SLOT0_OP)); 439 return &elf_howto_table[n]; 440 } 441 442 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT 443 && code <= BFD_RELOC_XTENSA_SLOT14_ALT) 444 { 445 unsigned n = (R_XTENSA_SLOT0_ALT + 446 (code - BFD_RELOC_XTENSA_SLOT0_ALT)); 447 return &elf_howto_table[n]; 448 } 449 450 break; 451 } 452 453 TRACE ("Unknown"); 454 return NULL; 455 } 456 457 static reloc_howto_type * 458 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 459 const char *r_name) 460 { 461 unsigned int i; 462 463 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++) 464 if (elf_howto_table[i].name != NULL 465 && strcasecmp (elf_howto_table[i].name, r_name) == 0) 466 return &elf_howto_table[i]; 467 468 return NULL; 469 } 470 471 472 /* Given an ELF "rela" relocation, find the corresponding howto and record 473 it in the BFD internal arelent representation of the relocation. */ 474 475 static void 476 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED, 477 arelent *cache_ptr, 478 Elf_Internal_Rela *dst) 479 { 480 unsigned int r_type = ELF32_R_TYPE (dst->r_info); 481 482 if (r_type >= (unsigned int) R_XTENSA_max) 483 { 484 _bfd_error_handler (_("%A: invalid XTENSA reloc number: %d"), abfd, r_type); 485 r_type = 0; 486 } 487 cache_ptr->howto = &elf_howto_table[r_type]; 488 } 489 490 491 /* Functions for the Xtensa ELF linker. */ 492 493 /* The name of the dynamic interpreter. This is put in the .interp 494 section. */ 495 496 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so" 497 498 /* The size in bytes of an entry in the procedure linkage table. 499 (This does _not_ include the space for the literals associated with 500 the PLT entry.) */ 501 502 #define PLT_ENTRY_SIZE 16 503 504 /* For _really_ large PLTs, we may need to alternate between literals 505 and code to keep the literals within the 256K range of the L32R 506 instructions in the code. It's unlikely that anyone would ever need 507 such a big PLT, but an arbitrary limit on the PLT size would be bad. 508 Thus, we split the PLT into chunks. Since there's very little 509 overhead (2 extra literals) for each chunk, the chunk size is kept 510 small so that the code for handling multiple chunks get used and 511 tested regularly. With 254 entries, there are 1K of literals for 512 each chunk, and that seems like a nice round number. */ 513 514 #define PLT_ENTRIES_PER_CHUNK 254 515 516 /* PLT entries are actually used as stub functions for lazy symbol 517 resolution. Once the symbol is resolved, the stub function is never 518 invoked. Note: the 32-byte frame size used here cannot be changed 519 without a corresponding change in the runtime linker. */ 520 521 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] = 522 { 523 0x6c, 0x10, 0x04, /* entry sp, 32 */ 524 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ 525 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ 526 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ 527 0x0a, 0x80, 0x00, /* jx a8 */ 528 0 /* unused */ 529 }; 530 531 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] = 532 { 533 0x36, 0x41, 0x00, /* entry sp, 32 */ 534 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */ 535 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */ 536 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */ 537 0xa0, 0x08, 0x00, /* jx a8 */ 538 0 /* unused */ 539 }; 540 541 /* The size of the thread control block. */ 542 #define TCB_SIZE 8 543 544 struct elf_xtensa_link_hash_entry 545 { 546 struct elf_link_hash_entry elf; 547 548 bfd_signed_vma tlsfunc_refcount; 549 550 #define GOT_UNKNOWN 0 551 #define GOT_NORMAL 1 552 #define GOT_TLS_GD 2 /* global or local dynamic */ 553 #define GOT_TLS_IE 4 /* initial or local exec */ 554 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE) 555 unsigned char tls_type; 556 }; 557 558 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent)) 559 560 struct elf_xtensa_obj_tdata 561 { 562 struct elf_obj_tdata root; 563 564 /* tls_type for each local got entry. */ 565 char *local_got_tls_type; 566 567 bfd_signed_vma *local_tlsfunc_refcounts; 568 }; 569 570 #define elf_xtensa_tdata(abfd) \ 571 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any) 572 573 #define elf_xtensa_local_got_tls_type(abfd) \ 574 (elf_xtensa_tdata (abfd)->local_got_tls_type) 575 576 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \ 577 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts) 578 579 #define is_xtensa_elf(bfd) \ 580 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ 581 && elf_tdata (bfd) != NULL \ 582 && elf_object_id (bfd) == XTENSA_ELF_DATA) 583 584 static bfd_boolean 585 elf_xtensa_mkobject (bfd *abfd) 586 { 587 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata), 588 XTENSA_ELF_DATA); 589 } 590 591 /* Xtensa ELF linker hash table. */ 592 593 struct elf_xtensa_link_hash_table 594 { 595 struct elf_link_hash_table elf; 596 597 /* Short-cuts to get to dynamic linker sections. */ 598 asection *sgot; 599 asection *sgotplt; 600 asection *srelgot; 601 asection *splt; 602 asection *srelplt; 603 asection *sgotloc; 604 asection *spltlittbl; 605 606 /* Total count of PLT relocations seen during check_relocs. 607 The actual PLT code must be split into multiple sections and all 608 the sections have to be created before size_dynamic_sections, 609 where we figure out the exact number of PLT entries that will be 610 needed. It is OK if this count is an overestimate, e.g., some 611 relocations may be removed by GC. */ 612 int plt_reloc_count; 613 614 struct elf_xtensa_link_hash_entry *tlsbase; 615 }; 616 617 /* Get the Xtensa ELF linker hash table from a link_info structure. */ 618 619 #define elf_xtensa_hash_table(p) \ 620 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ 621 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL) 622 623 /* Create an entry in an Xtensa ELF linker hash table. */ 624 625 static struct bfd_hash_entry * 626 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry, 627 struct bfd_hash_table *table, 628 const char *string) 629 { 630 /* Allocate the structure if it has not already been allocated by a 631 subclass. */ 632 if (entry == NULL) 633 { 634 entry = bfd_hash_allocate (table, 635 sizeof (struct elf_xtensa_link_hash_entry)); 636 if (entry == NULL) 637 return entry; 638 } 639 640 /* Call the allocation method of the superclass. */ 641 entry = _bfd_elf_link_hash_newfunc (entry, table, string); 642 if (entry != NULL) 643 { 644 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry); 645 eh->tlsfunc_refcount = 0; 646 eh->tls_type = GOT_UNKNOWN; 647 } 648 649 return entry; 650 } 651 652 /* Create an Xtensa ELF linker hash table. */ 653 654 static struct bfd_link_hash_table * 655 elf_xtensa_link_hash_table_create (bfd *abfd) 656 { 657 struct elf_link_hash_entry *tlsbase; 658 struct elf_xtensa_link_hash_table *ret; 659 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table); 660 661 ret = bfd_zmalloc (amt); 662 if (ret == NULL) 663 return NULL; 664 665 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd, 666 elf_xtensa_link_hash_newfunc, 667 sizeof (struct elf_xtensa_link_hash_entry), 668 XTENSA_ELF_DATA)) 669 { 670 free (ret); 671 return NULL; 672 } 673 674 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking 675 for it later. */ 676 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_", 677 TRUE, FALSE, FALSE); 678 tlsbase->root.type = bfd_link_hash_new; 679 tlsbase->root.u.undef.abfd = NULL; 680 tlsbase->non_elf = 0; 681 ret->tlsbase = elf_xtensa_hash_entry (tlsbase); 682 ret->tlsbase->tls_type = GOT_UNKNOWN; 683 684 return &ret->elf.root; 685 } 686 687 /* Copy the extra info we tack onto an elf_link_hash_entry. */ 688 689 static void 690 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info, 691 struct elf_link_hash_entry *dir, 692 struct elf_link_hash_entry *ind) 693 { 694 struct elf_xtensa_link_hash_entry *edir, *eind; 695 696 edir = elf_xtensa_hash_entry (dir); 697 eind = elf_xtensa_hash_entry (ind); 698 699 if (ind->root.type == bfd_link_hash_indirect) 700 { 701 edir->tlsfunc_refcount += eind->tlsfunc_refcount; 702 eind->tlsfunc_refcount = 0; 703 704 if (dir->got.refcount <= 0) 705 { 706 edir->tls_type = eind->tls_type; 707 eind->tls_type = GOT_UNKNOWN; 708 } 709 } 710 711 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 712 } 713 714 static inline bfd_boolean 715 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h, 716 struct bfd_link_info *info) 717 { 718 /* Check if we should do dynamic things to this symbol. The 719 "ignore_protected" argument need not be set, because Xtensa code 720 does not require special handling of STV_PROTECTED to make function 721 pointer comparisons work properly. The PLT addresses are never 722 used for function pointers. */ 723 724 return _bfd_elf_dynamic_symbol_p (h, info, 0); 725 } 726 727 728 static int 729 property_table_compare (const void *ap, const void *bp) 730 { 731 const property_table_entry *a = (const property_table_entry *) ap; 732 const property_table_entry *b = (const property_table_entry *) bp; 733 734 if (a->address == b->address) 735 { 736 if (a->size != b->size) 737 return (a->size - b->size); 738 739 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN)) 740 return ((b->flags & XTENSA_PROP_ALIGN) 741 - (a->flags & XTENSA_PROP_ALIGN)); 742 743 if ((a->flags & XTENSA_PROP_ALIGN) 744 && (GET_XTENSA_PROP_ALIGNMENT (a->flags) 745 != GET_XTENSA_PROP_ALIGNMENT (b->flags))) 746 return (GET_XTENSA_PROP_ALIGNMENT (a->flags) 747 - GET_XTENSA_PROP_ALIGNMENT (b->flags)); 748 749 if ((a->flags & XTENSA_PROP_UNREACHABLE) 750 != (b->flags & XTENSA_PROP_UNREACHABLE)) 751 return ((b->flags & XTENSA_PROP_UNREACHABLE) 752 - (a->flags & XTENSA_PROP_UNREACHABLE)); 753 754 return (a->flags - b->flags); 755 } 756 757 return (a->address - b->address); 758 } 759 760 761 static int 762 property_table_matches (const void *ap, const void *bp) 763 { 764 const property_table_entry *a = (const property_table_entry *) ap; 765 const property_table_entry *b = (const property_table_entry *) bp; 766 767 /* Check if one entry overlaps with the other. */ 768 if ((b->address >= a->address && b->address < (a->address + a->size)) 769 || (a->address >= b->address && a->address < (b->address + b->size))) 770 return 0; 771 772 return (a->address - b->address); 773 } 774 775 776 /* Get the literal table or property table entries for the given 777 section. Sets TABLE_P and returns the number of entries. On 778 error, returns a negative value. */ 779 780 static int 781 xtensa_read_table_entries (bfd *abfd, 782 asection *section, 783 property_table_entry **table_p, 784 const char *sec_name, 785 bfd_boolean output_addr) 786 { 787 asection *table_section; 788 bfd_size_type table_size = 0; 789 bfd_byte *table_data; 790 property_table_entry *blocks; 791 int blk, block_count; 792 bfd_size_type num_records; 793 Elf_Internal_Rela *internal_relocs, *irel, *rel_end; 794 bfd_vma section_addr, off; 795 flagword predef_flags; 796 bfd_size_type table_entry_size, section_limit; 797 798 if (!section 799 || !(section->flags & SEC_ALLOC) 800 || (section->flags & SEC_DEBUGGING)) 801 { 802 *table_p = NULL; 803 return 0; 804 } 805 806 table_section = xtensa_get_property_section (section, sec_name); 807 if (table_section) 808 table_size = table_section->size; 809 810 if (table_size == 0) 811 { 812 *table_p = NULL; 813 return 0; 814 } 815 816 predef_flags = xtensa_get_property_predef_flags (table_section); 817 table_entry_size = 12; 818 if (predef_flags) 819 table_entry_size -= 4; 820 821 num_records = table_size / table_entry_size; 822 table_data = retrieve_contents (abfd, table_section, TRUE); 823 blocks = (property_table_entry *) 824 bfd_malloc (num_records * sizeof (property_table_entry)); 825 block_count = 0; 826 827 if (output_addr) 828 section_addr = section->output_section->vma + section->output_offset; 829 else 830 section_addr = section->vma; 831 832 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE); 833 if (internal_relocs && !table_section->reloc_done) 834 { 835 qsort (internal_relocs, table_section->reloc_count, 836 sizeof (Elf_Internal_Rela), internal_reloc_compare); 837 irel = internal_relocs; 838 } 839 else 840 irel = NULL; 841 842 section_limit = bfd_get_section_limit (abfd, section); 843 rel_end = internal_relocs + table_section->reloc_count; 844 845 for (off = 0; off < table_size; off += table_entry_size) 846 { 847 bfd_vma address = bfd_get_32 (abfd, table_data + off); 848 849 /* Skip any relocations before the current offset. This should help 850 avoid confusion caused by unexpected relocations for the preceding 851 table entry. */ 852 while (irel && 853 (irel->r_offset < off 854 || (irel->r_offset == off 855 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE))) 856 { 857 irel += 1; 858 if (irel >= rel_end) 859 irel = 0; 860 } 861 862 if (irel && irel->r_offset == off) 863 { 864 bfd_vma sym_off; 865 unsigned long r_symndx = ELF32_R_SYM (irel->r_info); 866 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32); 867 868 if (get_elf_r_symndx_section (abfd, r_symndx) != section) 869 continue; 870 871 sym_off = get_elf_r_symndx_offset (abfd, r_symndx); 872 BFD_ASSERT (sym_off == 0); 873 address += (section_addr + sym_off + irel->r_addend); 874 } 875 else 876 { 877 if (address < section_addr 878 || address >= section_addr + section_limit) 879 continue; 880 } 881 882 blocks[block_count].address = address; 883 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4); 884 if (predef_flags) 885 blocks[block_count].flags = predef_flags; 886 else 887 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8); 888 block_count++; 889 } 890 891 release_contents (table_section, table_data); 892 release_internal_relocs (table_section, internal_relocs); 893 894 if (block_count > 0) 895 { 896 /* Now sort them into address order for easy reference. */ 897 qsort (blocks, block_count, sizeof (property_table_entry), 898 property_table_compare); 899 900 /* Check that the table contents are valid. Problems may occur, 901 for example, if an unrelocated object file is stripped. */ 902 for (blk = 1; blk < block_count; blk++) 903 { 904 /* The only circumstance where two entries may legitimately 905 have the same address is when one of them is a zero-size 906 placeholder to mark a place where fill can be inserted. 907 The zero-size entry should come first. */ 908 if (blocks[blk - 1].address == blocks[blk].address && 909 blocks[blk - 1].size != 0) 910 { 911 (*_bfd_error_handler) (_("%B(%A): invalid property table"), 912 abfd, section); 913 bfd_set_error (bfd_error_bad_value); 914 free (blocks); 915 return -1; 916 } 917 } 918 } 919 920 *table_p = blocks; 921 return block_count; 922 } 923 924 925 static property_table_entry * 926 elf_xtensa_find_property_entry (property_table_entry *property_table, 927 int property_table_size, 928 bfd_vma addr) 929 { 930 property_table_entry entry; 931 property_table_entry *rv; 932 933 if (property_table_size == 0) 934 return NULL; 935 936 entry.address = addr; 937 entry.size = 1; 938 entry.flags = 0; 939 940 rv = bsearch (&entry, property_table, property_table_size, 941 sizeof (property_table_entry), property_table_matches); 942 return rv; 943 } 944 945 946 static bfd_boolean 947 elf_xtensa_in_literal_pool (property_table_entry *lit_table, 948 int lit_table_size, 949 bfd_vma addr) 950 { 951 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr)) 952 return TRUE; 953 954 return FALSE; 955 } 956 957 958 /* Look through the relocs for a section during the first phase, and 959 calculate needed space in the dynamic reloc sections. */ 960 961 static bfd_boolean 962 elf_xtensa_check_relocs (bfd *abfd, 963 struct bfd_link_info *info, 964 asection *sec, 965 const Elf_Internal_Rela *relocs) 966 { 967 struct elf_xtensa_link_hash_table *htab; 968 Elf_Internal_Shdr *symtab_hdr; 969 struct elf_link_hash_entry **sym_hashes; 970 const Elf_Internal_Rela *rel; 971 const Elf_Internal_Rela *rel_end; 972 973 if (info->relocatable || (sec->flags & SEC_ALLOC) == 0) 974 return TRUE; 975 976 BFD_ASSERT (is_xtensa_elf (abfd)); 977 978 htab = elf_xtensa_hash_table (info); 979 if (htab == NULL) 980 return FALSE; 981 982 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 983 sym_hashes = elf_sym_hashes (abfd); 984 985 rel_end = relocs + sec->reloc_count; 986 for (rel = relocs; rel < rel_end; rel++) 987 { 988 unsigned int r_type; 989 unsigned long r_symndx; 990 struct elf_link_hash_entry *h = NULL; 991 struct elf_xtensa_link_hash_entry *eh; 992 int tls_type, old_tls_type; 993 bfd_boolean is_got = FALSE; 994 bfd_boolean is_plt = FALSE; 995 bfd_boolean is_tlsfunc = FALSE; 996 997 r_symndx = ELF32_R_SYM (rel->r_info); 998 r_type = ELF32_R_TYPE (rel->r_info); 999 1000 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) 1001 { 1002 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), 1003 abfd, r_symndx); 1004 return FALSE; 1005 } 1006 1007 if (r_symndx >= symtab_hdr->sh_info) 1008 { 1009 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 1010 while (h->root.type == bfd_link_hash_indirect 1011 || h->root.type == bfd_link_hash_warning) 1012 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1013 1014 /* PR15323, ref flags aren't set for references in the same 1015 object. */ 1016 h->root.non_ir_ref = 1; 1017 } 1018 eh = elf_xtensa_hash_entry (h); 1019 1020 switch (r_type) 1021 { 1022 case R_XTENSA_TLSDESC_FN: 1023 if (info->shared) 1024 { 1025 tls_type = GOT_TLS_GD; 1026 is_got = TRUE; 1027 is_tlsfunc = TRUE; 1028 } 1029 else 1030 tls_type = GOT_TLS_IE; 1031 break; 1032 1033 case R_XTENSA_TLSDESC_ARG: 1034 if (info->shared) 1035 { 1036 tls_type = GOT_TLS_GD; 1037 is_got = TRUE; 1038 } 1039 else 1040 { 1041 tls_type = GOT_TLS_IE; 1042 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase) 1043 is_got = TRUE; 1044 } 1045 break; 1046 1047 case R_XTENSA_TLS_DTPOFF: 1048 if (info->shared) 1049 tls_type = GOT_TLS_GD; 1050 else 1051 tls_type = GOT_TLS_IE; 1052 break; 1053 1054 case R_XTENSA_TLS_TPOFF: 1055 tls_type = GOT_TLS_IE; 1056 if (info->shared) 1057 info->flags |= DF_STATIC_TLS; 1058 if (info->shared || h) 1059 is_got = TRUE; 1060 break; 1061 1062 case R_XTENSA_32: 1063 tls_type = GOT_NORMAL; 1064 is_got = TRUE; 1065 break; 1066 1067 case R_XTENSA_PLT: 1068 tls_type = GOT_NORMAL; 1069 is_plt = TRUE; 1070 break; 1071 1072 case R_XTENSA_GNU_VTINHERIT: 1073 /* This relocation describes the C++ object vtable hierarchy. 1074 Reconstruct it for later use during GC. */ 1075 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 1076 return FALSE; 1077 continue; 1078 1079 case R_XTENSA_GNU_VTENTRY: 1080 /* This relocation describes which C++ vtable entries are actually 1081 used. Record for later use during GC. */ 1082 BFD_ASSERT (h != NULL); 1083 if (h != NULL 1084 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 1085 return FALSE; 1086 continue; 1087 1088 default: 1089 /* Nothing to do for any other relocations. */ 1090 continue; 1091 } 1092 1093 if (h) 1094 { 1095 if (is_plt) 1096 { 1097 if (h->plt.refcount <= 0) 1098 { 1099 h->needs_plt = 1; 1100 h->plt.refcount = 1; 1101 } 1102 else 1103 h->plt.refcount += 1; 1104 1105 /* Keep track of the total PLT relocation count even if we 1106 don't yet know whether the dynamic sections will be 1107 created. */ 1108 htab->plt_reloc_count += 1; 1109 1110 if (elf_hash_table (info)->dynamic_sections_created) 1111 { 1112 if (! add_extra_plt_sections (info, htab->plt_reloc_count)) 1113 return FALSE; 1114 } 1115 } 1116 else if (is_got) 1117 { 1118 if (h->got.refcount <= 0) 1119 h->got.refcount = 1; 1120 else 1121 h->got.refcount += 1; 1122 } 1123 1124 if (is_tlsfunc) 1125 eh->tlsfunc_refcount += 1; 1126 1127 old_tls_type = eh->tls_type; 1128 } 1129 else 1130 { 1131 /* Allocate storage the first time. */ 1132 if (elf_local_got_refcounts (abfd) == NULL) 1133 { 1134 bfd_size_type size = symtab_hdr->sh_info; 1135 void *mem; 1136 1137 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma)); 1138 if (mem == NULL) 1139 return FALSE; 1140 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem; 1141 1142 mem = bfd_zalloc (abfd, size); 1143 if (mem == NULL) 1144 return FALSE; 1145 elf_xtensa_local_got_tls_type (abfd) = (char *) mem; 1146 1147 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma)); 1148 if (mem == NULL) 1149 return FALSE; 1150 elf_xtensa_local_tlsfunc_refcounts (abfd) 1151 = (bfd_signed_vma *) mem; 1152 } 1153 1154 /* This is a global offset table entry for a local symbol. */ 1155 if (is_got || is_plt) 1156 elf_local_got_refcounts (abfd) [r_symndx] += 1; 1157 1158 if (is_tlsfunc) 1159 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1; 1160 1161 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx]; 1162 } 1163 1164 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE)) 1165 tls_type |= old_tls_type; 1166 /* If a TLS symbol is accessed using IE at least once, 1167 there is no point to use a dynamic model for it. */ 1168 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN 1169 && ((old_tls_type & GOT_TLS_GD) == 0 1170 || (tls_type & GOT_TLS_IE) == 0)) 1171 { 1172 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD)) 1173 tls_type = old_tls_type; 1174 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD)) 1175 tls_type |= old_tls_type; 1176 else 1177 { 1178 (*_bfd_error_handler) 1179 (_("%B: `%s' accessed both as normal and thread local symbol"), 1180 abfd, 1181 h ? h->root.root.string : "<local>"); 1182 return FALSE; 1183 } 1184 } 1185 1186 if (old_tls_type != tls_type) 1187 { 1188 if (eh) 1189 eh->tls_type = tls_type; 1190 else 1191 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type; 1192 } 1193 } 1194 1195 return TRUE; 1196 } 1197 1198 1199 static void 1200 elf_xtensa_make_sym_local (struct bfd_link_info *info, 1201 struct elf_link_hash_entry *h) 1202 { 1203 if (info->shared) 1204 { 1205 if (h->plt.refcount > 0) 1206 { 1207 /* For shared objects, there's no need for PLT entries for local 1208 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */ 1209 if (h->got.refcount < 0) 1210 h->got.refcount = 0; 1211 h->got.refcount += h->plt.refcount; 1212 h->plt.refcount = 0; 1213 } 1214 } 1215 else 1216 { 1217 /* Don't need any dynamic relocations at all. */ 1218 h->plt.refcount = 0; 1219 h->got.refcount = 0; 1220 } 1221 } 1222 1223 1224 static void 1225 elf_xtensa_hide_symbol (struct bfd_link_info *info, 1226 struct elf_link_hash_entry *h, 1227 bfd_boolean force_local) 1228 { 1229 /* For a shared link, move the plt refcount to the got refcount to leave 1230 space for RELATIVE relocs. */ 1231 elf_xtensa_make_sym_local (info, h); 1232 1233 _bfd_elf_link_hash_hide_symbol (info, h, force_local); 1234 } 1235 1236 1237 /* Return the section that should be marked against GC for a given 1238 relocation. */ 1239 1240 static asection * 1241 elf_xtensa_gc_mark_hook (asection *sec, 1242 struct bfd_link_info *info, 1243 Elf_Internal_Rela *rel, 1244 struct elf_link_hash_entry *h, 1245 Elf_Internal_Sym *sym) 1246 { 1247 /* Property sections are marked "KEEP" in the linker scripts, but they 1248 should not cause other sections to be marked. (This approach relies 1249 on elf_xtensa_discard_info to remove property table entries that 1250 describe discarded sections. Alternatively, it might be more 1251 efficient to avoid using "KEEP" in the linker scripts and instead use 1252 the gc_mark_extra_sections hook to mark only the property sections 1253 that describe marked sections. That alternative does not work well 1254 with the current property table sections, which do not correspond 1255 one-to-one with the sections they describe, but that should be fixed 1256 someday.) */ 1257 if (xtensa_is_property_section (sec)) 1258 return NULL; 1259 1260 if (h != NULL) 1261 switch (ELF32_R_TYPE (rel->r_info)) 1262 { 1263 case R_XTENSA_GNU_VTINHERIT: 1264 case R_XTENSA_GNU_VTENTRY: 1265 return NULL; 1266 } 1267 1268 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 1269 } 1270 1271 1272 /* Update the GOT & PLT entry reference counts 1273 for the section being removed. */ 1274 1275 static bfd_boolean 1276 elf_xtensa_gc_sweep_hook (bfd *abfd, 1277 struct bfd_link_info *info, 1278 asection *sec, 1279 const Elf_Internal_Rela *relocs) 1280 { 1281 Elf_Internal_Shdr *symtab_hdr; 1282 struct elf_link_hash_entry **sym_hashes; 1283 const Elf_Internal_Rela *rel, *relend; 1284 struct elf_xtensa_link_hash_table *htab; 1285 1286 htab = elf_xtensa_hash_table (info); 1287 if (htab == NULL) 1288 return FALSE; 1289 1290 if (info->relocatable) 1291 return TRUE; 1292 1293 if ((sec->flags & SEC_ALLOC) == 0) 1294 return TRUE; 1295 1296 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1297 sym_hashes = elf_sym_hashes (abfd); 1298 1299 relend = relocs + sec->reloc_count; 1300 for (rel = relocs; rel < relend; rel++) 1301 { 1302 unsigned long r_symndx; 1303 unsigned int r_type; 1304 struct elf_link_hash_entry *h = NULL; 1305 struct elf_xtensa_link_hash_entry *eh; 1306 bfd_boolean is_got = FALSE; 1307 bfd_boolean is_plt = FALSE; 1308 bfd_boolean is_tlsfunc = FALSE; 1309 1310 r_symndx = ELF32_R_SYM (rel->r_info); 1311 if (r_symndx >= symtab_hdr->sh_info) 1312 { 1313 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 1314 while (h->root.type == bfd_link_hash_indirect 1315 || h->root.type == bfd_link_hash_warning) 1316 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1317 } 1318 eh = elf_xtensa_hash_entry (h); 1319 1320 r_type = ELF32_R_TYPE (rel->r_info); 1321 switch (r_type) 1322 { 1323 case R_XTENSA_TLSDESC_FN: 1324 if (info->shared) 1325 { 1326 is_got = TRUE; 1327 is_tlsfunc = TRUE; 1328 } 1329 break; 1330 1331 case R_XTENSA_TLSDESC_ARG: 1332 if (info->shared) 1333 is_got = TRUE; 1334 else 1335 { 1336 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase) 1337 is_got = TRUE; 1338 } 1339 break; 1340 1341 case R_XTENSA_TLS_TPOFF: 1342 if (info->shared || h) 1343 is_got = TRUE; 1344 break; 1345 1346 case R_XTENSA_32: 1347 is_got = TRUE; 1348 break; 1349 1350 case R_XTENSA_PLT: 1351 is_plt = TRUE; 1352 break; 1353 1354 default: 1355 continue; 1356 } 1357 1358 if (h) 1359 { 1360 if (is_plt) 1361 { 1362 if (h->plt.refcount > 0) 1363 h->plt.refcount--; 1364 } 1365 else if (is_got) 1366 { 1367 if (h->got.refcount > 0) 1368 h->got.refcount--; 1369 } 1370 if (is_tlsfunc) 1371 { 1372 if (eh->tlsfunc_refcount > 0) 1373 eh->tlsfunc_refcount--; 1374 } 1375 } 1376 else 1377 { 1378 if (is_got || is_plt) 1379 { 1380 bfd_signed_vma *got_refcount 1381 = &elf_local_got_refcounts (abfd) [r_symndx]; 1382 if (*got_refcount > 0) 1383 *got_refcount -= 1; 1384 } 1385 if (is_tlsfunc) 1386 { 1387 bfd_signed_vma *tlsfunc_refcount 1388 = &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx]; 1389 if (*tlsfunc_refcount > 0) 1390 *tlsfunc_refcount -= 1; 1391 } 1392 } 1393 } 1394 1395 return TRUE; 1396 } 1397 1398 1399 /* Create all the dynamic sections. */ 1400 1401 static bfd_boolean 1402 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) 1403 { 1404 struct elf_xtensa_link_hash_table *htab; 1405 flagword flags, noalloc_flags; 1406 1407 htab = elf_xtensa_hash_table (info); 1408 if (htab == NULL) 1409 return FALSE; 1410 1411 /* First do all the standard stuff. */ 1412 if (! _bfd_elf_create_dynamic_sections (dynobj, info)) 1413 return FALSE; 1414 htab->splt = bfd_get_linker_section (dynobj, ".plt"); 1415 htab->srelplt = bfd_get_linker_section (dynobj, ".rela.plt"); 1416 htab->sgot = bfd_get_linker_section (dynobj, ".got"); 1417 htab->sgotplt = bfd_get_linker_section (dynobj, ".got.plt"); 1418 htab->srelgot = bfd_get_linker_section (dynobj, ".rela.got"); 1419 1420 /* Create any extra PLT sections in case check_relocs has already 1421 been called on all the non-dynamic input files. */ 1422 if (! add_extra_plt_sections (info, htab->plt_reloc_count)) 1423 return FALSE; 1424 1425 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY 1426 | SEC_LINKER_CREATED | SEC_READONLY); 1427 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD; 1428 1429 /* Mark the ".got.plt" section READONLY. */ 1430 if (htab->sgotplt == NULL 1431 || ! bfd_set_section_flags (dynobj, htab->sgotplt, flags)) 1432 return FALSE; 1433 1434 /* Create ".got.loc" (literal tables for use by dynamic linker). */ 1435 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc", 1436 flags); 1437 if (htab->sgotloc == NULL 1438 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2)) 1439 return FALSE; 1440 1441 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */ 1442 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt", 1443 noalloc_flags); 1444 if (htab->spltlittbl == NULL 1445 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2)) 1446 return FALSE; 1447 1448 return TRUE; 1449 } 1450 1451 1452 static bfd_boolean 1453 add_extra_plt_sections (struct bfd_link_info *info, int count) 1454 { 1455 bfd *dynobj = elf_hash_table (info)->dynobj; 1456 int chunk; 1457 1458 /* Iterate over all chunks except 0 which uses the standard ".plt" and 1459 ".got.plt" sections. */ 1460 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--) 1461 { 1462 char *sname; 1463 flagword flags; 1464 asection *s; 1465 1466 /* Stop when we find a section has already been created. */ 1467 if (elf_xtensa_get_plt_section (info, chunk)) 1468 break; 1469 1470 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 1471 | SEC_LINKER_CREATED | SEC_READONLY); 1472 1473 sname = (char *) bfd_malloc (10); 1474 sprintf (sname, ".plt.%u", chunk); 1475 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE); 1476 if (s == NULL 1477 || ! bfd_set_section_alignment (dynobj, s, 2)) 1478 return FALSE; 1479 1480 sname = (char *) bfd_malloc (14); 1481 sprintf (sname, ".got.plt.%u", chunk); 1482 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags); 1483 if (s == NULL 1484 || ! bfd_set_section_alignment (dynobj, s, 2)) 1485 return FALSE; 1486 } 1487 1488 return TRUE; 1489 } 1490 1491 1492 /* Adjust a symbol defined by a dynamic object and referenced by a 1493 regular object. The current definition is in some section of the 1494 dynamic object, but we're not including those sections. We have to 1495 change the definition to something the rest of the link can 1496 understand. */ 1497 1498 static bfd_boolean 1499 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED, 1500 struct elf_link_hash_entry *h) 1501 { 1502 /* If this is a weak symbol, and there is a real definition, the 1503 processor independent code will have arranged for us to see the 1504 real definition first, and we can just use the same value. */ 1505 if (h->u.weakdef) 1506 { 1507 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined 1508 || h->u.weakdef->root.type == bfd_link_hash_defweak); 1509 h->root.u.def.section = h->u.weakdef->root.u.def.section; 1510 h->root.u.def.value = h->u.weakdef->root.u.def.value; 1511 return TRUE; 1512 } 1513 1514 /* This is a reference to a symbol defined by a dynamic object. The 1515 reference must go through the GOT, so there's no need for COPY relocs, 1516 .dynbss, etc. */ 1517 1518 return TRUE; 1519 } 1520 1521 1522 static bfd_boolean 1523 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg) 1524 { 1525 struct bfd_link_info *info; 1526 struct elf_xtensa_link_hash_table *htab; 1527 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h); 1528 1529 if (h->root.type == bfd_link_hash_indirect) 1530 return TRUE; 1531 1532 info = (struct bfd_link_info *) arg; 1533 htab = elf_xtensa_hash_table (info); 1534 if (htab == NULL) 1535 return FALSE; 1536 1537 /* If we saw any use of an IE model for this symbol, we can then optimize 1538 away GOT entries for any TLSDESC_FN relocs. */ 1539 if ((eh->tls_type & GOT_TLS_IE) != 0) 1540 { 1541 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount); 1542 h->got.refcount -= eh->tlsfunc_refcount; 1543 } 1544 1545 if (! elf_xtensa_dynamic_symbol_p (h, info)) 1546 elf_xtensa_make_sym_local (info, h); 1547 1548 if (h->plt.refcount > 0) 1549 htab->srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela)); 1550 1551 if (h->got.refcount > 0) 1552 htab->srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela)); 1553 1554 return TRUE; 1555 } 1556 1557 1558 static void 1559 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info) 1560 { 1561 struct elf_xtensa_link_hash_table *htab; 1562 bfd *i; 1563 1564 htab = elf_xtensa_hash_table (info); 1565 if (htab == NULL) 1566 return; 1567 1568 for (i = info->input_bfds; i; i = i->link.next) 1569 { 1570 bfd_signed_vma *local_got_refcounts; 1571 bfd_size_type j, cnt; 1572 Elf_Internal_Shdr *symtab_hdr; 1573 1574 local_got_refcounts = elf_local_got_refcounts (i); 1575 if (!local_got_refcounts) 1576 continue; 1577 1578 symtab_hdr = &elf_tdata (i)->symtab_hdr; 1579 cnt = symtab_hdr->sh_info; 1580 1581 for (j = 0; j < cnt; ++j) 1582 { 1583 /* If we saw any use of an IE model for this symbol, we can 1584 then optimize away GOT entries for any TLSDESC_FN relocs. */ 1585 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0) 1586 { 1587 bfd_signed_vma *tlsfunc_refcount 1588 = &elf_xtensa_local_tlsfunc_refcounts (i) [j]; 1589 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount); 1590 local_got_refcounts[j] -= *tlsfunc_refcount; 1591 } 1592 1593 if (local_got_refcounts[j] > 0) 1594 htab->srelgot->size += (local_got_refcounts[j] 1595 * sizeof (Elf32_External_Rela)); 1596 } 1597 } 1598 } 1599 1600 1601 /* Set the sizes of the dynamic sections. */ 1602 1603 static bfd_boolean 1604 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, 1605 struct bfd_link_info *info) 1606 { 1607 struct elf_xtensa_link_hash_table *htab; 1608 bfd *dynobj, *abfd; 1609 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc; 1610 bfd_boolean relplt, relgot; 1611 int plt_entries, plt_chunks, chunk; 1612 1613 plt_entries = 0; 1614 plt_chunks = 0; 1615 1616 htab = elf_xtensa_hash_table (info); 1617 if (htab == NULL) 1618 return FALSE; 1619 1620 dynobj = elf_hash_table (info)->dynobj; 1621 if (dynobj == NULL) 1622 abort (); 1623 srelgot = htab->srelgot; 1624 srelplt = htab->srelplt; 1625 1626 if (elf_hash_table (info)->dynamic_sections_created) 1627 { 1628 BFD_ASSERT (htab->srelgot != NULL 1629 && htab->srelplt != NULL 1630 && htab->sgot != NULL 1631 && htab->spltlittbl != NULL 1632 && htab->sgotloc != NULL); 1633 1634 /* Set the contents of the .interp section to the interpreter. */ 1635 if (info->executable) 1636 { 1637 s = bfd_get_linker_section (dynobj, ".interp"); 1638 if (s == NULL) 1639 abort (); 1640 s->size = sizeof ELF_DYNAMIC_INTERPRETER; 1641 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 1642 } 1643 1644 /* Allocate room for one word in ".got". */ 1645 htab->sgot->size = 4; 1646 1647 /* Allocate space in ".rela.got" for literals that reference global 1648 symbols and space in ".rela.plt" for literals that have PLT 1649 entries. */ 1650 elf_link_hash_traverse (elf_hash_table (info), 1651 elf_xtensa_allocate_dynrelocs, 1652 (void *) info); 1653 1654 /* If we are generating a shared object, we also need space in 1655 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that 1656 reference local symbols. */ 1657 if (info->shared) 1658 elf_xtensa_allocate_local_got_size (info); 1659 1660 /* Allocate space in ".plt" to match the size of ".rela.plt". For 1661 each PLT entry, we need the PLT code plus a 4-byte literal. 1662 For each chunk of ".plt", we also need two more 4-byte 1663 literals, two corresponding entries in ".rela.got", and an 1664 8-byte entry in ".xt.lit.plt". */ 1665 spltlittbl = htab->spltlittbl; 1666 plt_entries = srelplt->size / sizeof (Elf32_External_Rela); 1667 plt_chunks = 1668 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; 1669 1670 /* Iterate over all the PLT chunks, including any extra sections 1671 created earlier because the initial count of PLT relocations 1672 was an overestimate. */ 1673 for (chunk = 0; 1674 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL; 1675 chunk++) 1676 { 1677 int chunk_entries; 1678 1679 sgotplt = elf_xtensa_get_gotplt_section (info, chunk); 1680 BFD_ASSERT (sgotplt != NULL); 1681 1682 if (chunk < plt_chunks - 1) 1683 chunk_entries = PLT_ENTRIES_PER_CHUNK; 1684 else if (chunk == plt_chunks - 1) 1685 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); 1686 else 1687 chunk_entries = 0; 1688 1689 if (chunk_entries != 0) 1690 { 1691 sgotplt->size = 4 * (chunk_entries + 2); 1692 splt->size = PLT_ENTRY_SIZE * chunk_entries; 1693 srelgot->size += 2 * sizeof (Elf32_External_Rela); 1694 spltlittbl->size += 8; 1695 } 1696 else 1697 { 1698 sgotplt->size = 0; 1699 splt->size = 0; 1700 } 1701 } 1702 1703 /* Allocate space in ".got.loc" to match the total size of all the 1704 literal tables. */ 1705 sgotloc = htab->sgotloc; 1706 sgotloc->size = spltlittbl->size; 1707 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) 1708 { 1709 if (abfd->flags & DYNAMIC) 1710 continue; 1711 for (s = abfd->sections; s != NULL; s = s->next) 1712 { 1713 if (! discarded_section (s) 1714 && xtensa_is_littable_section (s) 1715 && s != spltlittbl) 1716 sgotloc->size += s->size; 1717 } 1718 } 1719 } 1720 1721 /* Allocate memory for dynamic sections. */ 1722 relplt = FALSE; 1723 relgot = FALSE; 1724 for (s = dynobj->sections; s != NULL; s = s->next) 1725 { 1726 const char *name; 1727 1728 if ((s->flags & SEC_LINKER_CREATED) == 0) 1729 continue; 1730 1731 /* It's OK to base decisions on the section name, because none 1732 of the dynobj section names depend upon the input files. */ 1733 name = bfd_get_section_name (dynobj, s); 1734 1735 if (CONST_STRNEQ (name, ".rela")) 1736 { 1737 if (s->size != 0) 1738 { 1739 if (strcmp (name, ".rela.plt") == 0) 1740 relplt = TRUE; 1741 else if (strcmp (name, ".rela.got") == 0) 1742 relgot = TRUE; 1743 1744 /* We use the reloc_count field as a counter if we need 1745 to copy relocs into the output file. */ 1746 s->reloc_count = 0; 1747 } 1748 } 1749 else if (! CONST_STRNEQ (name, ".plt.") 1750 && ! CONST_STRNEQ (name, ".got.plt.") 1751 && strcmp (name, ".got") != 0 1752 && strcmp (name, ".plt") != 0 1753 && strcmp (name, ".got.plt") != 0 1754 && strcmp (name, ".xt.lit.plt") != 0 1755 && strcmp (name, ".got.loc") != 0) 1756 { 1757 /* It's not one of our sections, so don't allocate space. */ 1758 continue; 1759 } 1760 1761 if (s->size == 0) 1762 { 1763 /* If we don't need this section, strip it from the output 1764 file. We must create the ".plt*" and ".got.plt*" 1765 sections in create_dynamic_sections and/or check_relocs 1766 based on a conservative estimate of the PLT relocation 1767 count, because the sections must be created before the 1768 linker maps input sections to output sections. The 1769 linker does that before size_dynamic_sections, where we 1770 compute the exact size of the PLT, so there may be more 1771 of these sections than are actually needed. */ 1772 s->flags |= SEC_EXCLUDE; 1773 } 1774 else if ((s->flags & SEC_HAS_CONTENTS) != 0) 1775 { 1776 /* Allocate memory for the section contents. */ 1777 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); 1778 if (s->contents == NULL) 1779 return FALSE; 1780 } 1781 } 1782 1783 if (elf_hash_table (info)->dynamic_sections_created) 1784 { 1785 /* Add the special XTENSA_RTLD relocations now. The offsets won't be 1786 known until finish_dynamic_sections, but we need to get the relocs 1787 in place before they are sorted. */ 1788 for (chunk = 0; chunk < plt_chunks; chunk++) 1789 { 1790 Elf_Internal_Rela irela; 1791 bfd_byte *loc; 1792 1793 irela.r_offset = 0; 1794 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD); 1795 irela.r_addend = 0; 1796 1797 loc = (srelgot->contents 1798 + srelgot->reloc_count * sizeof (Elf32_External_Rela)); 1799 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); 1800 bfd_elf32_swap_reloca_out (output_bfd, &irela, 1801 loc + sizeof (Elf32_External_Rela)); 1802 srelgot->reloc_count += 2; 1803 } 1804 1805 /* Add some entries to the .dynamic section. We fill in the 1806 values later, in elf_xtensa_finish_dynamic_sections, but we 1807 must add the entries now so that we get the correct size for 1808 the .dynamic section. The DT_DEBUG entry is filled in by the 1809 dynamic linker and used by the debugger. */ 1810 #define add_dynamic_entry(TAG, VAL) \ 1811 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 1812 1813 if (info->executable) 1814 { 1815 if (!add_dynamic_entry (DT_DEBUG, 0)) 1816 return FALSE; 1817 } 1818 1819 if (relplt) 1820 { 1821 if (!add_dynamic_entry (DT_PLTRELSZ, 0) 1822 || !add_dynamic_entry (DT_PLTREL, DT_RELA) 1823 || !add_dynamic_entry (DT_JMPREL, 0)) 1824 return FALSE; 1825 } 1826 1827 if (relgot) 1828 { 1829 if (!add_dynamic_entry (DT_RELA, 0) 1830 || !add_dynamic_entry (DT_RELASZ, 0) 1831 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) 1832 return FALSE; 1833 } 1834 1835 if (!add_dynamic_entry (DT_PLTGOT, 0) 1836 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0) 1837 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0)) 1838 return FALSE; 1839 } 1840 #undef add_dynamic_entry 1841 1842 return TRUE; 1843 } 1844 1845 static bfd_boolean 1846 elf_xtensa_always_size_sections (bfd *output_bfd, 1847 struct bfd_link_info *info) 1848 { 1849 struct elf_xtensa_link_hash_table *htab; 1850 asection *tls_sec; 1851 1852 htab = elf_xtensa_hash_table (info); 1853 if (htab == NULL) 1854 return FALSE; 1855 1856 tls_sec = htab->elf.tls_sec; 1857 1858 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0) 1859 { 1860 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf; 1861 struct bfd_link_hash_entry *bh = &tlsbase->root; 1862 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 1863 1864 tlsbase->type = STT_TLS; 1865 if (!(_bfd_generic_link_add_one_symbol 1866 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, 1867 tls_sec, 0, NULL, FALSE, 1868 bed->collect, &bh))) 1869 return FALSE; 1870 tlsbase->def_regular = 1; 1871 tlsbase->other = STV_HIDDEN; 1872 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); 1873 } 1874 1875 return TRUE; 1876 } 1877 1878 1879 /* Return the base VMA address which should be subtracted from real addresses 1880 when resolving @dtpoff relocation. 1881 This is PT_TLS segment p_vaddr. */ 1882 1883 static bfd_vma 1884 dtpoff_base (struct bfd_link_info *info) 1885 { 1886 /* If tls_sec is NULL, we should have signalled an error already. */ 1887 if (elf_hash_table (info)->tls_sec == NULL) 1888 return 0; 1889 return elf_hash_table (info)->tls_sec->vma; 1890 } 1891 1892 /* Return the relocation value for @tpoff relocation 1893 if STT_TLS virtual address is ADDRESS. */ 1894 1895 static bfd_vma 1896 tpoff (struct bfd_link_info *info, bfd_vma address) 1897 { 1898 struct elf_link_hash_table *htab = elf_hash_table (info); 1899 bfd_vma base; 1900 1901 /* If tls_sec is NULL, we should have signalled an error already. */ 1902 if (htab->tls_sec == NULL) 1903 return 0; 1904 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power); 1905 return address - htab->tls_sec->vma + base; 1906 } 1907 1908 /* Perform the specified relocation. The instruction at (contents + address) 1909 is modified to set one operand to represent the value in "relocation". The 1910 operand position is determined by the relocation type recorded in the 1911 howto. */ 1912 1913 #define CALL_SEGMENT_BITS (30) 1914 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS) 1915 1916 static bfd_reloc_status_type 1917 elf_xtensa_do_reloc (reloc_howto_type *howto, 1918 bfd *abfd, 1919 asection *input_section, 1920 bfd_vma relocation, 1921 bfd_byte *contents, 1922 bfd_vma address, 1923 bfd_boolean is_weak_undef, 1924 char **error_message) 1925 { 1926 xtensa_format fmt; 1927 xtensa_opcode opcode; 1928 xtensa_isa isa = xtensa_default_isa; 1929 static xtensa_insnbuf ibuff = NULL; 1930 static xtensa_insnbuf sbuff = NULL; 1931 bfd_vma self_address; 1932 bfd_size_type input_size; 1933 int opnd, slot; 1934 uint32 newval; 1935 1936 if (!ibuff) 1937 { 1938 ibuff = xtensa_insnbuf_alloc (isa); 1939 sbuff = xtensa_insnbuf_alloc (isa); 1940 } 1941 1942 input_size = bfd_get_section_limit (abfd, input_section); 1943 1944 /* Calculate the PC address for this instruction. */ 1945 self_address = (input_section->output_section->vma 1946 + input_section->output_offset 1947 + address); 1948 1949 switch (howto->type) 1950 { 1951 case R_XTENSA_NONE: 1952 case R_XTENSA_DIFF8: 1953 case R_XTENSA_DIFF16: 1954 case R_XTENSA_DIFF32: 1955 case R_XTENSA_TLS_FUNC: 1956 case R_XTENSA_TLS_ARG: 1957 case R_XTENSA_TLS_CALL: 1958 return bfd_reloc_ok; 1959 1960 case R_XTENSA_ASM_EXPAND: 1961 if (!is_weak_undef) 1962 { 1963 /* Check for windowed CALL across a 1GB boundary. */ 1964 opcode = get_expanded_call_opcode (contents + address, 1965 input_size - address, 0); 1966 if (is_windowed_call_opcode (opcode)) 1967 { 1968 if ((self_address >> CALL_SEGMENT_BITS) 1969 != (relocation >> CALL_SEGMENT_BITS)) 1970 { 1971 *error_message = "windowed longcall crosses 1GB boundary; " 1972 "return may fail"; 1973 return bfd_reloc_dangerous; 1974 } 1975 } 1976 } 1977 return bfd_reloc_ok; 1978 1979 case R_XTENSA_ASM_SIMPLIFY: 1980 { 1981 /* Convert the L32R/CALLX to CALL. */ 1982 bfd_reloc_status_type retval = 1983 elf_xtensa_do_asm_simplify (contents, address, input_size, 1984 error_message); 1985 if (retval != bfd_reloc_ok) 1986 return bfd_reloc_dangerous; 1987 1988 /* The CALL needs to be relocated. Continue below for that part. */ 1989 address += 3; 1990 self_address += 3; 1991 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ]; 1992 } 1993 break; 1994 1995 case R_XTENSA_32: 1996 { 1997 bfd_vma x; 1998 x = bfd_get_32 (abfd, contents + address); 1999 x = x + relocation; 2000 bfd_put_32 (abfd, x, contents + address); 2001 } 2002 return bfd_reloc_ok; 2003 2004 case R_XTENSA_32_PCREL: 2005 bfd_put_32 (abfd, relocation - self_address, contents + address); 2006 return bfd_reloc_ok; 2007 2008 case R_XTENSA_PLT: 2009 case R_XTENSA_TLSDESC_FN: 2010 case R_XTENSA_TLSDESC_ARG: 2011 case R_XTENSA_TLS_DTPOFF: 2012 case R_XTENSA_TLS_TPOFF: 2013 bfd_put_32 (abfd, relocation, contents + address); 2014 return bfd_reloc_ok; 2015 } 2016 2017 /* Only instruction slot-specific relocations handled below.... */ 2018 slot = get_relocation_slot (howto->type); 2019 if (slot == XTENSA_UNDEFINED) 2020 { 2021 *error_message = "unexpected relocation"; 2022 return bfd_reloc_dangerous; 2023 } 2024 2025 /* Read the instruction into a buffer and decode the opcode. */ 2026 xtensa_insnbuf_from_chars (isa, ibuff, contents + address, 2027 input_size - address); 2028 fmt = xtensa_format_decode (isa, ibuff); 2029 if (fmt == XTENSA_UNDEFINED) 2030 { 2031 *error_message = "cannot decode instruction format"; 2032 return bfd_reloc_dangerous; 2033 } 2034 2035 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); 2036 2037 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff); 2038 if (opcode == XTENSA_UNDEFINED) 2039 { 2040 *error_message = "cannot decode instruction opcode"; 2041 return bfd_reloc_dangerous; 2042 } 2043 2044 /* Check for opcode-specific "alternate" relocations. */ 2045 if (is_alt_relocation (howto->type)) 2046 { 2047 if (opcode == get_l32r_opcode ()) 2048 { 2049 /* Handle the special-case of non-PC-relative L32R instructions. */ 2050 bfd *output_bfd = input_section->output_section->owner; 2051 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4"); 2052 if (!lit4_sec) 2053 { 2054 *error_message = "relocation references missing .lit4 section"; 2055 return bfd_reloc_dangerous; 2056 } 2057 self_address = ((lit4_sec->vma & ~0xfff) 2058 + 0x40000 - 3); /* -3 to compensate for do_reloc */ 2059 newval = relocation; 2060 opnd = 1; 2061 } 2062 else if (opcode == get_const16_opcode ()) 2063 { 2064 /* ALT used for high 16 bits. */ 2065 newval = relocation >> 16; 2066 opnd = 1; 2067 } 2068 else 2069 { 2070 /* No other "alternate" relocations currently defined. */ 2071 *error_message = "unexpected relocation"; 2072 return bfd_reloc_dangerous; 2073 } 2074 } 2075 else /* Not an "alternate" relocation.... */ 2076 { 2077 if (opcode == get_const16_opcode ()) 2078 { 2079 newval = relocation & 0xffff; 2080 opnd = 1; 2081 } 2082 else 2083 { 2084 /* ...normal PC-relative relocation.... */ 2085 2086 /* Determine which operand is being relocated. */ 2087 opnd = get_relocation_opnd (opcode, howto->type); 2088 if (opnd == XTENSA_UNDEFINED) 2089 { 2090 *error_message = "unexpected relocation"; 2091 return bfd_reloc_dangerous; 2092 } 2093 2094 if (!howto->pc_relative) 2095 { 2096 *error_message = "expected PC-relative relocation"; 2097 return bfd_reloc_dangerous; 2098 } 2099 2100 newval = relocation; 2101 } 2102 } 2103 2104 /* Apply the relocation. */ 2105 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address) 2106 || xtensa_operand_encode (isa, opcode, opnd, &newval) 2107 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot, 2108 sbuff, newval)) 2109 { 2110 const char *opname = xtensa_opcode_name (isa, opcode); 2111 const char *msg; 2112 2113 msg = "cannot encode"; 2114 if (is_direct_call_opcode (opcode)) 2115 { 2116 if ((relocation & 0x3) != 0) 2117 msg = "misaligned call target"; 2118 else 2119 msg = "call target out of range"; 2120 } 2121 else if (opcode == get_l32r_opcode ()) 2122 { 2123 if ((relocation & 0x3) != 0) 2124 msg = "misaligned literal target"; 2125 else if (is_alt_relocation (howto->type)) 2126 msg = "literal target out of range (too many literals)"; 2127 else if (self_address > relocation) 2128 msg = "literal target out of range (try using text-section-literals)"; 2129 else 2130 msg = "literal placed after use"; 2131 } 2132 2133 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg); 2134 return bfd_reloc_dangerous; 2135 } 2136 2137 /* Check for calls across 1GB boundaries. */ 2138 if (is_direct_call_opcode (opcode) 2139 && is_windowed_call_opcode (opcode)) 2140 { 2141 if ((self_address >> CALL_SEGMENT_BITS) 2142 != (relocation >> CALL_SEGMENT_BITS)) 2143 { 2144 *error_message = 2145 "windowed call crosses 1GB boundary; return may fail"; 2146 return bfd_reloc_dangerous; 2147 } 2148 } 2149 2150 /* Write the modified instruction back out of the buffer. */ 2151 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff); 2152 xtensa_insnbuf_to_chars (isa, ibuff, contents + address, 2153 input_size - address); 2154 return bfd_reloc_ok; 2155 } 2156 2157 2158 static char * 2159 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...) 2160 { 2161 /* To reduce the size of the memory leak, 2162 we only use a single message buffer. */ 2163 static bfd_size_type alloc_size = 0; 2164 static char *message = NULL; 2165 bfd_size_type orig_len, len = 0; 2166 bfd_boolean is_append; 2167 va_list ap; 2168 2169 va_start (ap, arglen); 2170 2171 is_append = (origmsg == message); 2172 2173 orig_len = strlen (origmsg); 2174 len = orig_len + strlen (fmt) + arglen + 20; 2175 if (len > alloc_size) 2176 { 2177 message = (char *) bfd_realloc_or_free (message, len); 2178 alloc_size = len; 2179 } 2180 if (message != NULL) 2181 { 2182 if (!is_append) 2183 memcpy (message, origmsg, orig_len); 2184 vsprintf (message + orig_len, fmt, ap); 2185 } 2186 va_end (ap); 2187 return message; 2188 } 2189 2190 2191 /* This function is registered as the "special_function" in the 2192 Xtensa howto for handling simplify operations. 2193 bfd_perform_relocation / bfd_install_relocation use it to 2194 perform (install) the specified relocation. Since this replaces the code 2195 in bfd_perform_relocation, it is basically an Xtensa-specific, 2196 stripped-down version of bfd_perform_relocation. */ 2197 2198 static bfd_reloc_status_type 2199 bfd_elf_xtensa_reloc (bfd *abfd, 2200 arelent *reloc_entry, 2201 asymbol *symbol, 2202 void *data, 2203 asection *input_section, 2204 bfd *output_bfd, 2205 char **error_message) 2206 { 2207 bfd_vma relocation; 2208 bfd_reloc_status_type flag; 2209 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd); 2210 bfd_vma output_base = 0; 2211 reloc_howto_type *howto = reloc_entry->howto; 2212 asection *reloc_target_output_section; 2213 bfd_boolean is_weak_undef; 2214 2215 if (!xtensa_default_isa) 2216 xtensa_default_isa = xtensa_isa_init (0, 0); 2217 2218 /* ELF relocs are against symbols. If we are producing relocatable 2219 output, and the reloc is against an external symbol, the resulting 2220 reloc will also be against the same symbol. In such a case, we 2221 don't want to change anything about the way the reloc is handled, 2222 since it will all be done at final link time. This test is similar 2223 to what bfd_elf_generic_reloc does except that it lets relocs with 2224 howto->partial_inplace go through even if the addend is non-zero. 2225 (The real problem is that partial_inplace is set for XTENSA_32 2226 relocs to begin with, but that's a long story and there's little we 2227 can do about it now....) */ 2228 2229 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0) 2230 { 2231 reloc_entry->address += input_section->output_offset; 2232 return bfd_reloc_ok; 2233 } 2234 2235 /* Is the address of the relocation really within the section? */ 2236 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2237 return bfd_reloc_outofrange; 2238 2239 /* Work out which section the relocation is targeted at and the 2240 initial relocation command value. */ 2241 2242 /* Get symbol value. (Common symbols are special.) */ 2243 if (bfd_is_com_section (symbol->section)) 2244 relocation = 0; 2245 else 2246 relocation = symbol->value; 2247 2248 reloc_target_output_section = symbol->section->output_section; 2249 2250 /* Convert input-section-relative symbol value to absolute. */ 2251 if ((output_bfd && !howto->partial_inplace) 2252 || reloc_target_output_section == NULL) 2253 output_base = 0; 2254 else 2255 output_base = reloc_target_output_section->vma; 2256 2257 relocation += output_base + symbol->section->output_offset; 2258 2259 /* Add in supplied addend. */ 2260 relocation += reloc_entry->addend; 2261 2262 /* Here the variable relocation holds the final address of the 2263 symbol we are relocating against, plus any addend. */ 2264 if (output_bfd) 2265 { 2266 if (!howto->partial_inplace) 2267 { 2268 /* This is a partial relocation, and we want to apply the relocation 2269 to the reloc entry rather than the raw data. Everything except 2270 relocations against section symbols has already been handled 2271 above. */ 2272 2273 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM); 2274 reloc_entry->addend = relocation; 2275 reloc_entry->address += input_section->output_offset; 2276 return bfd_reloc_ok; 2277 } 2278 else 2279 { 2280 reloc_entry->address += input_section->output_offset; 2281 reloc_entry->addend = 0; 2282 } 2283 } 2284 2285 is_weak_undef = (bfd_is_und_section (symbol->section) 2286 && (symbol->flags & BSF_WEAK) != 0); 2287 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation, 2288 (bfd_byte *) data, (bfd_vma) octets, 2289 is_weak_undef, error_message); 2290 2291 if (flag == bfd_reloc_dangerous) 2292 { 2293 /* Add the symbol name to the error message. */ 2294 if (! *error_message) 2295 *error_message = ""; 2296 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)", 2297 strlen (symbol->name) + 17, 2298 symbol->name, 2299 (unsigned long) reloc_entry->addend); 2300 } 2301 2302 return flag; 2303 } 2304 2305 2306 /* Set up an entry in the procedure linkage table. */ 2307 2308 static bfd_vma 2309 elf_xtensa_create_plt_entry (struct bfd_link_info *info, 2310 bfd *output_bfd, 2311 unsigned reloc_index) 2312 { 2313 asection *splt, *sgotplt; 2314 bfd_vma plt_base, got_base; 2315 bfd_vma code_offset, lit_offset; 2316 int chunk; 2317 2318 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; 2319 splt = elf_xtensa_get_plt_section (info, chunk); 2320 sgotplt = elf_xtensa_get_gotplt_section (info, chunk); 2321 BFD_ASSERT (splt != NULL && sgotplt != NULL); 2322 2323 plt_base = splt->output_section->vma + splt->output_offset; 2324 got_base = sgotplt->output_section->vma + sgotplt->output_offset; 2325 2326 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4; 2327 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE; 2328 2329 /* Fill in the literal entry. This is the offset of the dynamic 2330 relocation entry. */ 2331 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela), 2332 sgotplt->contents + lit_offset); 2333 2334 /* Fill in the entry in the procedure linkage table. */ 2335 memcpy (splt->contents + code_offset, 2336 (bfd_big_endian (output_bfd) 2337 ? elf_xtensa_be_plt_entry 2338 : elf_xtensa_le_plt_entry), 2339 PLT_ENTRY_SIZE); 2340 bfd_put_16 (output_bfd, l32r_offset (got_base + 0, 2341 plt_base + code_offset + 3), 2342 splt->contents + code_offset + 4); 2343 bfd_put_16 (output_bfd, l32r_offset (got_base + 4, 2344 plt_base + code_offset + 6), 2345 splt->contents + code_offset + 7); 2346 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset, 2347 plt_base + code_offset + 9), 2348 splt->contents + code_offset + 10); 2349 2350 return plt_base + code_offset; 2351 } 2352 2353 2354 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *); 2355 2356 static bfd_boolean 2357 replace_tls_insn (Elf_Internal_Rela *rel, 2358 bfd *abfd, 2359 asection *input_section, 2360 bfd_byte *contents, 2361 bfd_boolean is_ld_model, 2362 char **error_message) 2363 { 2364 static xtensa_insnbuf ibuff = NULL; 2365 static xtensa_insnbuf sbuff = NULL; 2366 xtensa_isa isa = xtensa_default_isa; 2367 xtensa_format fmt; 2368 xtensa_opcode old_op, new_op; 2369 bfd_size_type input_size; 2370 int r_type; 2371 unsigned dest_reg, src_reg; 2372 2373 if (ibuff == NULL) 2374 { 2375 ibuff = xtensa_insnbuf_alloc (isa); 2376 sbuff = xtensa_insnbuf_alloc (isa); 2377 } 2378 2379 input_size = bfd_get_section_limit (abfd, input_section); 2380 2381 /* Read the instruction into a buffer and decode the opcode. */ 2382 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset, 2383 input_size - rel->r_offset); 2384 fmt = xtensa_format_decode (isa, ibuff); 2385 if (fmt == XTENSA_UNDEFINED) 2386 { 2387 *error_message = "cannot decode instruction format"; 2388 return FALSE; 2389 } 2390 2391 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1); 2392 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff); 2393 2394 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff); 2395 if (old_op == XTENSA_UNDEFINED) 2396 { 2397 *error_message = "cannot decode instruction opcode"; 2398 return FALSE; 2399 } 2400 2401 r_type = ELF32_R_TYPE (rel->r_info); 2402 switch (r_type) 2403 { 2404 case R_XTENSA_TLS_FUNC: 2405 case R_XTENSA_TLS_ARG: 2406 if (old_op != get_l32r_opcode () 2407 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0, 2408 sbuff, &dest_reg) != 0) 2409 { 2410 *error_message = "cannot extract L32R destination for TLS access"; 2411 return FALSE; 2412 } 2413 break; 2414 2415 case R_XTENSA_TLS_CALL: 2416 if (! get_indirect_call_dest_reg (old_op, &dest_reg) 2417 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0, 2418 sbuff, &src_reg) != 0) 2419 { 2420 *error_message = "cannot extract CALLXn operands for TLS access"; 2421 return FALSE; 2422 } 2423 break; 2424 2425 default: 2426 abort (); 2427 } 2428 2429 if (is_ld_model) 2430 { 2431 switch (r_type) 2432 { 2433 case R_XTENSA_TLS_FUNC: 2434 case R_XTENSA_TLS_ARG: 2435 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older 2436 versions of Xtensa). */ 2437 new_op = xtensa_opcode_lookup (isa, "nop"); 2438 if (new_op == XTENSA_UNDEFINED) 2439 { 2440 new_op = xtensa_opcode_lookup (isa, "or"); 2441 if (new_op == XTENSA_UNDEFINED 2442 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 2443 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, 2444 sbuff, 1) != 0 2445 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0, 2446 sbuff, 1) != 0 2447 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0, 2448 sbuff, 1) != 0) 2449 { 2450 *error_message = "cannot encode OR for TLS access"; 2451 return FALSE; 2452 } 2453 } 2454 else 2455 { 2456 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0) 2457 { 2458 *error_message = "cannot encode NOP for TLS access"; 2459 return FALSE; 2460 } 2461 } 2462 break; 2463 2464 case R_XTENSA_TLS_CALL: 2465 /* Read THREADPTR into the CALLX's return value register. */ 2466 new_op = xtensa_opcode_lookup (isa, "rur.threadptr"); 2467 if (new_op == XTENSA_UNDEFINED 2468 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 2469 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, 2470 sbuff, dest_reg + 2) != 0) 2471 { 2472 *error_message = "cannot encode RUR.THREADPTR for TLS access"; 2473 return FALSE; 2474 } 2475 break; 2476 } 2477 } 2478 else 2479 { 2480 switch (r_type) 2481 { 2482 case R_XTENSA_TLS_FUNC: 2483 new_op = xtensa_opcode_lookup (isa, "rur.threadptr"); 2484 if (new_op == XTENSA_UNDEFINED 2485 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 2486 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, 2487 sbuff, dest_reg) != 0) 2488 { 2489 *error_message = "cannot encode RUR.THREADPTR for TLS access"; 2490 return FALSE; 2491 } 2492 break; 2493 2494 case R_XTENSA_TLS_ARG: 2495 /* Nothing to do. Keep the original L32R instruction. */ 2496 return TRUE; 2497 2498 case R_XTENSA_TLS_CALL: 2499 /* Add the CALLX's src register (holding the THREADPTR value) 2500 to the first argument register (holding the offset) and put 2501 the result in the CALLX's return value register. */ 2502 new_op = xtensa_opcode_lookup (isa, "add"); 2503 if (new_op == XTENSA_UNDEFINED 2504 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0 2505 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0, 2506 sbuff, dest_reg + 2) != 0 2507 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0, 2508 sbuff, dest_reg + 2) != 0 2509 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0, 2510 sbuff, src_reg) != 0) 2511 { 2512 *error_message = "cannot encode ADD for TLS access"; 2513 return FALSE; 2514 } 2515 break; 2516 } 2517 } 2518 2519 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff); 2520 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset, 2521 input_size - rel->r_offset); 2522 2523 return TRUE; 2524 } 2525 2526 2527 #define IS_XTENSA_TLS_RELOC(R_TYPE) \ 2528 ((R_TYPE) == R_XTENSA_TLSDESC_FN \ 2529 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \ 2530 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \ 2531 || (R_TYPE) == R_XTENSA_TLS_TPOFF \ 2532 || (R_TYPE) == R_XTENSA_TLS_FUNC \ 2533 || (R_TYPE) == R_XTENSA_TLS_ARG \ 2534 || (R_TYPE) == R_XTENSA_TLS_CALL) 2535 2536 /* Relocate an Xtensa ELF section. This is invoked by the linker for 2537 both relocatable and final links. */ 2538 2539 static bfd_boolean 2540 elf_xtensa_relocate_section (bfd *output_bfd, 2541 struct bfd_link_info *info, 2542 bfd *input_bfd, 2543 asection *input_section, 2544 bfd_byte *contents, 2545 Elf_Internal_Rela *relocs, 2546 Elf_Internal_Sym *local_syms, 2547 asection **local_sections) 2548 { 2549 struct elf_xtensa_link_hash_table *htab; 2550 Elf_Internal_Shdr *symtab_hdr; 2551 Elf_Internal_Rela *rel; 2552 Elf_Internal_Rela *relend; 2553 struct elf_link_hash_entry **sym_hashes; 2554 property_table_entry *lit_table = 0; 2555 int ltblsize = 0; 2556 char *local_got_tls_types; 2557 char *error_message = NULL; 2558 bfd_size_type input_size; 2559 int tls_type; 2560 2561 if (!xtensa_default_isa) 2562 xtensa_default_isa = xtensa_isa_init (0, 0); 2563 2564 BFD_ASSERT (is_xtensa_elf (input_bfd)); 2565 2566 htab = elf_xtensa_hash_table (info); 2567 if (htab == NULL) 2568 return FALSE; 2569 2570 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 2571 sym_hashes = elf_sym_hashes (input_bfd); 2572 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd); 2573 2574 if (elf_hash_table (info)->dynamic_sections_created) 2575 { 2576 ltblsize = xtensa_read_table_entries (input_bfd, input_section, 2577 &lit_table, XTENSA_LIT_SEC_NAME, 2578 TRUE); 2579 if (ltblsize < 0) 2580 return FALSE; 2581 } 2582 2583 input_size = bfd_get_section_limit (input_bfd, input_section); 2584 2585 rel = relocs; 2586 relend = relocs + input_section->reloc_count; 2587 for (; rel < relend; rel++) 2588 { 2589 int r_type; 2590 reloc_howto_type *howto; 2591 unsigned long r_symndx; 2592 struct elf_link_hash_entry *h; 2593 Elf_Internal_Sym *sym; 2594 char sym_type; 2595 const char *name; 2596 asection *sec; 2597 bfd_vma relocation; 2598 bfd_reloc_status_type r; 2599 bfd_boolean is_weak_undef; 2600 bfd_boolean unresolved_reloc; 2601 bfd_boolean warned; 2602 bfd_boolean dynamic_symbol; 2603 2604 r_type = ELF32_R_TYPE (rel->r_info); 2605 if (r_type == (int) R_XTENSA_GNU_VTINHERIT 2606 || r_type == (int) R_XTENSA_GNU_VTENTRY) 2607 continue; 2608 2609 if (r_type < 0 || r_type >= (int) R_XTENSA_max) 2610 { 2611 bfd_set_error (bfd_error_bad_value); 2612 return FALSE; 2613 } 2614 howto = &elf_howto_table[r_type]; 2615 2616 r_symndx = ELF32_R_SYM (rel->r_info); 2617 2618 h = NULL; 2619 sym = NULL; 2620 sec = NULL; 2621 is_weak_undef = FALSE; 2622 unresolved_reloc = FALSE; 2623 warned = FALSE; 2624 2625 if (howto->partial_inplace && !info->relocatable) 2626 { 2627 /* Because R_XTENSA_32 was made partial_inplace to fix some 2628 problems with DWARF info in partial links, there may be 2629 an addend stored in the contents. Take it out of there 2630 and move it back into the addend field of the reloc. */ 2631 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset); 2632 bfd_put_32 (input_bfd, 0, contents + rel->r_offset); 2633 } 2634 2635 if (r_symndx < symtab_hdr->sh_info) 2636 { 2637 sym = local_syms + r_symndx; 2638 sym_type = ELF32_ST_TYPE (sym->st_info); 2639 sec = local_sections[r_symndx]; 2640 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 2641 } 2642 else 2643 { 2644 bfd_boolean ignored; 2645 2646 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 2647 r_symndx, symtab_hdr, sym_hashes, 2648 h, sec, relocation, 2649 unresolved_reloc, warned, ignored); 2650 2651 if (relocation == 0 2652 && !unresolved_reloc 2653 && h->root.type == bfd_link_hash_undefweak) 2654 is_weak_undef = TRUE; 2655 2656 sym_type = h->type; 2657 } 2658 2659 if (sec != NULL && discarded_section (sec)) 2660 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 2661 rel, 1, relend, howto, 0, contents); 2662 2663 if (info->relocatable) 2664 { 2665 bfd_vma dest_addr; 2666 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx); 2667 2668 /* This is a relocatable link. 2669 1) If the reloc is against a section symbol, adjust 2670 according to the output section. 2671 2) If there is a new target for this relocation, 2672 the new target will be in the same output section. 2673 We adjust the relocation by the output section 2674 difference. */ 2675 2676 if (relaxing_section) 2677 { 2678 /* Check if this references a section in another input file. */ 2679 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section, 2680 contents)) 2681 return FALSE; 2682 } 2683 2684 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset 2685 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend; 2686 2687 if (r_type == R_XTENSA_ASM_SIMPLIFY) 2688 { 2689 error_message = NULL; 2690 /* Convert ASM_SIMPLIFY into the simpler relocation 2691 so that they never escape a relaxing link. */ 2692 r = contract_asm_expansion (contents, input_size, rel, 2693 &error_message); 2694 if (r != bfd_reloc_ok) 2695 { 2696 if (!((*info->callbacks->reloc_dangerous) 2697 (info, error_message, input_bfd, input_section, 2698 rel->r_offset))) 2699 return FALSE; 2700 } 2701 r_type = ELF32_R_TYPE (rel->r_info); 2702 } 2703 2704 /* This is a relocatable link, so we don't have to change 2705 anything unless the reloc is against a section symbol, 2706 in which case we have to adjust according to where the 2707 section symbol winds up in the output section. */ 2708 if (r_symndx < symtab_hdr->sh_info) 2709 { 2710 sym = local_syms + r_symndx; 2711 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) 2712 { 2713 sec = local_sections[r_symndx]; 2714 rel->r_addend += sec->output_offset + sym->st_value; 2715 } 2716 } 2717 2718 /* If there is an addend with a partial_inplace howto, 2719 then move the addend to the contents. This is a hack 2720 to work around problems with DWARF in relocatable links 2721 with some previous version of BFD. Now we can't easily get 2722 rid of the hack without breaking backward compatibility.... */ 2723 r = bfd_reloc_ok; 2724 howto = &elf_howto_table[r_type]; 2725 if (howto->partial_inplace && rel->r_addend) 2726 { 2727 r = elf_xtensa_do_reloc (howto, input_bfd, input_section, 2728 rel->r_addend, contents, 2729 rel->r_offset, FALSE, 2730 &error_message); 2731 rel->r_addend = 0; 2732 } 2733 else 2734 { 2735 /* Put the correct bits in the target instruction, even 2736 though the relocation will still be present in the output 2737 file. This makes disassembly clearer, as well as 2738 allowing loadable kernel modules to work without needing 2739 relocations on anything other than calls and l32r's. */ 2740 2741 /* If it is not in the same section, there is nothing we can do. */ 2742 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP && 2743 sym_sec->output_section == input_section->output_section) 2744 { 2745 r = elf_xtensa_do_reloc (howto, input_bfd, input_section, 2746 dest_addr, contents, 2747 rel->r_offset, FALSE, 2748 &error_message); 2749 } 2750 } 2751 if (r != bfd_reloc_ok) 2752 { 2753 if (!((*info->callbacks->reloc_dangerous) 2754 (info, error_message, input_bfd, input_section, 2755 rel->r_offset))) 2756 return FALSE; 2757 } 2758 2759 /* Done with work for relocatable link; continue with next reloc. */ 2760 continue; 2761 } 2762 2763 /* This is a final link. */ 2764 2765 if (relaxing_section) 2766 { 2767 /* Check if this references a section in another input file. */ 2768 do_fix_for_final_link (rel, input_bfd, input_section, contents, 2769 &relocation); 2770 } 2771 2772 /* Sanity check the address. */ 2773 if (rel->r_offset >= input_size 2774 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE) 2775 { 2776 (*_bfd_error_handler) 2777 (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"), 2778 input_bfd, input_section, rel->r_offset, input_size); 2779 bfd_set_error (bfd_error_bad_value); 2780 return FALSE; 2781 } 2782 2783 if (h != NULL) 2784 name = h->root.root.string; 2785 else 2786 { 2787 name = (bfd_elf_string_from_elf_section 2788 (input_bfd, symtab_hdr->sh_link, sym->st_name)); 2789 if (name == NULL || *name == '\0') 2790 name = bfd_section_name (input_bfd, sec); 2791 } 2792 2793 if (r_symndx != STN_UNDEF 2794 && r_type != R_XTENSA_NONE 2795 && (h == NULL 2796 || h->root.type == bfd_link_hash_defined 2797 || h->root.type == bfd_link_hash_defweak) 2798 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS)) 2799 { 2800 (*_bfd_error_handler) 2801 ((sym_type == STT_TLS 2802 ? _("%B(%A+0x%lx): %s used with TLS symbol %s") 2803 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")), 2804 input_bfd, 2805 input_section, 2806 (long) rel->r_offset, 2807 howto->name, 2808 name); 2809 } 2810 2811 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); 2812 2813 tls_type = GOT_UNKNOWN; 2814 if (h) 2815 tls_type = elf_xtensa_hash_entry (h)->tls_type; 2816 else if (local_got_tls_types) 2817 tls_type = local_got_tls_types [r_symndx]; 2818 2819 switch (r_type) 2820 { 2821 case R_XTENSA_32: 2822 case R_XTENSA_PLT: 2823 if (elf_hash_table (info)->dynamic_sections_created 2824 && (input_section->flags & SEC_ALLOC) != 0 2825 && (dynamic_symbol || info->shared)) 2826 { 2827 Elf_Internal_Rela outrel; 2828 bfd_byte *loc; 2829 asection *srel; 2830 2831 if (dynamic_symbol && r_type == R_XTENSA_PLT) 2832 srel = htab->srelplt; 2833 else 2834 srel = htab->srelgot; 2835 2836 BFD_ASSERT (srel != NULL); 2837 2838 outrel.r_offset = 2839 _bfd_elf_section_offset (output_bfd, info, 2840 input_section, rel->r_offset); 2841 2842 if ((outrel.r_offset | 1) == (bfd_vma) -1) 2843 memset (&outrel, 0, sizeof outrel); 2844 else 2845 { 2846 outrel.r_offset += (input_section->output_section->vma 2847 + input_section->output_offset); 2848 2849 /* Complain if the relocation is in a read-only section 2850 and not in a literal pool. */ 2851 if ((input_section->flags & SEC_READONLY) != 0 2852 && !elf_xtensa_in_literal_pool (lit_table, ltblsize, 2853 outrel.r_offset)) 2854 { 2855 error_message = 2856 _("dynamic relocation in read-only section"); 2857 if (!((*info->callbacks->reloc_dangerous) 2858 (info, error_message, input_bfd, input_section, 2859 rel->r_offset))) 2860 return FALSE; 2861 } 2862 2863 if (dynamic_symbol) 2864 { 2865 outrel.r_addend = rel->r_addend; 2866 rel->r_addend = 0; 2867 2868 if (r_type == R_XTENSA_32) 2869 { 2870 outrel.r_info = 2871 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT); 2872 relocation = 0; 2873 } 2874 else /* r_type == R_XTENSA_PLT */ 2875 { 2876 outrel.r_info = 2877 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT); 2878 2879 /* Create the PLT entry and set the initial 2880 contents of the literal entry to the address of 2881 the PLT entry. */ 2882 relocation = 2883 elf_xtensa_create_plt_entry (info, output_bfd, 2884 srel->reloc_count); 2885 } 2886 unresolved_reloc = FALSE; 2887 } 2888 else 2889 { 2890 /* Generate a RELATIVE relocation. */ 2891 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE); 2892 outrel.r_addend = 0; 2893 } 2894 } 2895 2896 loc = (srel->contents 2897 + srel->reloc_count++ * sizeof (Elf32_External_Rela)); 2898 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 2899 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count 2900 <= srel->size); 2901 } 2902 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol) 2903 { 2904 /* This should only happen for non-PIC code, which is not 2905 supposed to be used on systems with dynamic linking. 2906 Just ignore these relocations. */ 2907 continue; 2908 } 2909 break; 2910 2911 case R_XTENSA_TLS_TPOFF: 2912 /* Switch to LE model for local symbols in an executable. */ 2913 if (! info->shared && ! dynamic_symbol) 2914 { 2915 relocation = tpoff (info, relocation); 2916 break; 2917 } 2918 /* fall through */ 2919 2920 case R_XTENSA_TLSDESC_FN: 2921 case R_XTENSA_TLSDESC_ARG: 2922 { 2923 if (r_type == R_XTENSA_TLSDESC_FN) 2924 { 2925 if (! info->shared || (tls_type & GOT_TLS_IE) != 0) 2926 r_type = R_XTENSA_NONE; 2927 } 2928 else if (r_type == R_XTENSA_TLSDESC_ARG) 2929 { 2930 if (info->shared) 2931 { 2932 if ((tls_type & GOT_TLS_IE) != 0) 2933 r_type = R_XTENSA_TLS_TPOFF; 2934 } 2935 else 2936 { 2937 r_type = R_XTENSA_TLS_TPOFF; 2938 if (! dynamic_symbol) 2939 { 2940 relocation = tpoff (info, relocation); 2941 break; 2942 } 2943 } 2944 } 2945 2946 if (r_type == R_XTENSA_NONE) 2947 /* Nothing to do here; skip to the next reloc. */ 2948 continue; 2949 2950 if (! elf_hash_table (info)->dynamic_sections_created) 2951 { 2952 error_message = 2953 _("TLS relocation invalid without dynamic sections"); 2954 if (!((*info->callbacks->reloc_dangerous) 2955 (info, error_message, input_bfd, input_section, 2956 rel->r_offset))) 2957 return FALSE; 2958 } 2959 else 2960 { 2961 Elf_Internal_Rela outrel; 2962 bfd_byte *loc; 2963 asection *srel = htab->srelgot; 2964 int indx; 2965 2966 outrel.r_offset = (input_section->output_section->vma 2967 + input_section->output_offset 2968 + rel->r_offset); 2969 2970 /* Complain if the relocation is in a read-only section 2971 and not in a literal pool. */ 2972 if ((input_section->flags & SEC_READONLY) != 0 2973 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize, 2974 outrel.r_offset)) 2975 { 2976 error_message = 2977 _("dynamic relocation in read-only section"); 2978 if (!((*info->callbacks->reloc_dangerous) 2979 (info, error_message, input_bfd, input_section, 2980 rel->r_offset))) 2981 return FALSE; 2982 } 2983 2984 indx = h && h->dynindx != -1 ? h->dynindx : 0; 2985 if (indx == 0) 2986 outrel.r_addend = relocation - dtpoff_base (info); 2987 else 2988 outrel.r_addend = 0; 2989 rel->r_addend = 0; 2990 2991 outrel.r_info = ELF32_R_INFO (indx, r_type); 2992 relocation = 0; 2993 unresolved_reloc = FALSE; 2994 2995 BFD_ASSERT (srel); 2996 loc = (srel->contents 2997 + srel->reloc_count++ * sizeof (Elf32_External_Rela)); 2998 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 2999 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count 3000 <= srel->size); 3001 } 3002 } 3003 break; 3004 3005 case R_XTENSA_TLS_DTPOFF: 3006 if (! info->shared) 3007 /* Switch from LD model to LE model. */ 3008 relocation = tpoff (info, relocation); 3009 else 3010 relocation -= dtpoff_base (info); 3011 break; 3012 3013 case R_XTENSA_TLS_FUNC: 3014 case R_XTENSA_TLS_ARG: 3015 case R_XTENSA_TLS_CALL: 3016 /* Check if optimizing to IE or LE model. */ 3017 if ((tls_type & GOT_TLS_IE) != 0) 3018 { 3019 bfd_boolean is_ld_model = 3020 (h && elf_xtensa_hash_entry (h) == htab->tlsbase); 3021 if (! replace_tls_insn (rel, input_bfd, input_section, contents, 3022 is_ld_model, &error_message)) 3023 { 3024 if (!((*info->callbacks->reloc_dangerous) 3025 (info, error_message, input_bfd, input_section, 3026 rel->r_offset))) 3027 return FALSE; 3028 } 3029 3030 if (r_type != R_XTENSA_TLS_ARG || is_ld_model) 3031 { 3032 /* Skip subsequent relocations on the same instruction. */ 3033 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset) 3034 rel++; 3035 } 3036 } 3037 continue; 3038 3039 default: 3040 if (elf_hash_table (info)->dynamic_sections_created 3041 && dynamic_symbol && (is_operand_relocation (r_type) 3042 || r_type == R_XTENSA_32_PCREL)) 3043 { 3044 error_message = 3045 vsprint_msg ("invalid relocation for dynamic symbol", ": %s", 3046 strlen (name) + 2, name); 3047 if (!((*info->callbacks->reloc_dangerous) 3048 (info, error_message, input_bfd, input_section, 3049 rel->r_offset))) 3050 return FALSE; 3051 continue; 3052 } 3053 break; 3054 } 3055 3056 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections 3057 because such sections are not SEC_ALLOC and thus ld.so will 3058 not process them. */ 3059 if (unresolved_reloc 3060 && !((input_section->flags & SEC_DEBUGGING) != 0 3061 && h->def_dynamic) 3062 && _bfd_elf_section_offset (output_bfd, info, input_section, 3063 rel->r_offset) != (bfd_vma) -1) 3064 { 3065 (*_bfd_error_handler) 3066 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), 3067 input_bfd, 3068 input_section, 3069 (long) rel->r_offset, 3070 howto->name, 3071 name); 3072 return FALSE; 3073 } 3074 3075 /* TLS optimizations may have changed r_type; update "howto". */ 3076 howto = &elf_howto_table[r_type]; 3077 3078 /* There's no point in calling bfd_perform_relocation here. 3079 Just go directly to our "special function". */ 3080 r = elf_xtensa_do_reloc (howto, input_bfd, input_section, 3081 relocation + rel->r_addend, 3082 contents, rel->r_offset, is_weak_undef, 3083 &error_message); 3084 3085 if (r != bfd_reloc_ok && !warned) 3086 { 3087 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other); 3088 BFD_ASSERT (error_message != NULL); 3089 3090 if (rel->r_addend == 0) 3091 error_message = vsprint_msg (error_message, ": %s", 3092 strlen (name) + 2, name); 3093 else 3094 error_message = vsprint_msg (error_message, ": (%s+0x%x)", 3095 strlen (name) + 22, 3096 name, (int) rel->r_addend); 3097 3098 if (!((*info->callbacks->reloc_dangerous) 3099 (info, error_message, input_bfd, input_section, 3100 rel->r_offset))) 3101 return FALSE; 3102 } 3103 } 3104 3105 if (lit_table) 3106 free (lit_table); 3107 3108 input_section->reloc_done = TRUE; 3109 3110 return TRUE; 3111 } 3112 3113 3114 /* Finish up dynamic symbol handling. There's not much to do here since 3115 the PLT and GOT entries are all set up by relocate_section. */ 3116 3117 static bfd_boolean 3118 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED, 3119 struct bfd_link_info *info ATTRIBUTE_UNUSED, 3120 struct elf_link_hash_entry *h, 3121 Elf_Internal_Sym *sym) 3122 { 3123 if (h->needs_plt && !h->def_regular) 3124 { 3125 /* Mark the symbol as undefined, rather than as defined in 3126 the .plt section. Leave the value alone. */ 3127 sym->st_shndx = SHN_UNDEF; 3128 /* If the symbol is weak, we do need to clear the value. 3129 Otherwise, the PLT entry would provide a definition for 3130 the symbol even if the symbol wasn't defined anywhere, 3131 and so the symbol would never be NULL. */ 3132 if (!h->ref_regular_nonweak) 3133 sym->st_value = 0; 3134 } 3135 3136 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ 3137 if (h == elf_hash_table (info)->hdynamic 3138 || h == elf_hash_table (info)->hgot) 3139 sym->st_shndx = SHN_ABS; 3140 3141 return TRUE; 3142 } 3143 3144 3145 /* Combine adjacent literal table entries in the output. Adjacent 3146 entries within each input section may have been removed during 3147 relaxation, but we repeat the process here, even though it's too late 3148 to shrink the output section, because it's important to minimize the 3149 number of literal table entries to reduce the start-up work for the 3150 runtime linker. Returns the number of remaining table entries or -1 3151 on error. */ 3152 3153 static int 3154 elf_xtensa_combine_prop_entries (bfd *output_bfd, 3155 asection *sxtlit, 3156 asection *sgotloc) 3157 { 3158 bfd_byte *contents; 3159 property_table_entry *table; 3160 bfd_size_type section_size, sgotloc_size; 3161 bfd_vma offset; 3162 int n, m, num; 3163 3164 section_size = sxtlit->size; 3165 BFD_ASSERT (section_size % 8 == 0); 3166 num = section_size / 8; 3167 3168 sgotloc_size = sgotloc->size; 3169 if (sgotloc_size != section_size) 3170 { 3171 (*_bfd_error_handler) 3172 (_("internal inconsistency in size of .got.loc section")); 3173 return -1; 3174 } 3175 3176 table = bfd_malloc (num * sizeof (property_table_entry)); 3177 if (table == 0) 3178 return -1; 3179 3180 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this 3181 propagates to the output section, where it doesn't really apply and 3182 where it breaks the following call to bfd_malloc_and_get_section. */ 3183 sxtlit->flags &= ~SEC_IN_MEMORY; 3184 3185 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents)) 3186 { 3187 if (contents != 0) 3188 free (contents); 3189 free (table); 3190 return -1; 3191 } 3192 3193 /* There should never be any relocations left at this point, so this 3194 is quite a bit easier than what is done during relaxation. */ 3195 3196 /* Copy the raw contents into a property table array and sort it. */ 3197 offset = 0; 3198 for (n = 0; n < num; n++) 3199 { 3200 table[n].address = bfd_get_32 (output_bfd, &contents[offset]); 3201 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]); 3202 offset += 8; 3203 } 3204 qsort (table, num, sizeof (property_table_entry), property_table_compare); 3205 3206 for (n = 0; n < num; n++) 3207 { 3208 bfd_boolean remove_entry = FALSE; 3209 3210 if (table[n].size == 0) 3211 remove_entry = TRUE; 3212 else if (n > 0 3213 && (table[n-1].address + table[n-1].size == table[n].address)) 3214 { 3215 table[n-1].size += table[n].size; 3216 remove_entry = TRUE; 3217 } 3218 3219 if (remove_entry) 3220 { 3221 for (m = n; m < num - 1; m++) 3222 { 3223 table[m].address = table[m+1].address; 3224 table[m].size = table[m+1].size; 3225 } 3226 3227 n--; 3228 num--; 3229 } 3230 } 3231 3232 /* Copy the data back to the raw contents. */ 3233 offset = 0; 3234 for (n = 0; n < num; n++) 3235 { 3236 bfd_put_32 (output_bfd, table[n].address, &contents[offset]); 3237 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]); 3238 offset += 8; 3239 } 3240 3241 /* Clear the removed bytes. */ 3242 if ((bfd_size_type) (num * 8) < section_size) 3243 memset (&contents[num * 8], 0, section_size - num * 8); 3244 3245 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0, 3246 section_size)) 3247 return -1; 3248 3249 /* Copy the contents to ".got.loc". */ 3250 memcpy (sgotloc->contents, contents, section_size); 3251 3252 free (contents); 3253 free (table); 3254 return num; 3255 } 3256 3257 3258 /* Finish up the dynamic sections. */ 3259 3260 static bfd_boolean 3261 elf_xtensa_finish_dynamic_sections (bfd *output_bfd, 3262 struct bfd_link_info *info) 3263 { 3264 struct elf_xtensa_link_hash_table *htab; 3265 bfd *dynobj; 3266 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc; 3267 Elf32_External_Dyn *dyncon, *dynconend; 3268 int num_xtlit_entries = 0; 3269 3270 if (! elf_hash_table (info)->dynamic_sections_created) 3271 return TRUE; 3272 3273 htab = elf_xtensa_hash_table (info); 3274 if (htab == NULL) 3275 return FALSE; 3276 3277 dynobj = elf_hash_table (info)->dynobj; 3278 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 3279 BFD_ASSERT (sdyn != NULL); 3280 3281 /* Set the first entry in the global offset table to the address of 3282 the dynamic section. */ 3283 sgot = htab->sgot; 3284 if (sgot) 3285 { 3286 BFD_ASSERT (sgot->size == 4); 3287 if (sdyn == NULL) 3288 bfd_put_32 (output_bfd, 0, sgot->contents); 3289 else 3290 bfd_put_32 (output_bfd, 3291 sdyn->output_section->vma + sdyn->output_offset, 3292 sgot->contents); 3293 } 3294 3295 srelplt = htab->srelplt; 3296 if (srelplt && srelplt->size != 0) 3297 { 3298 asection *sgotplt, *srelgot, *spltlittbl; 3299 int chunk, plt_chunks, plt_entries; 3300 Elf_Internal_Rela irela; 3301 bfd_byte *loc; 3302 unsigned rtld_reloc; 3303 3304 srelgot = htab->srelgot; 3305 spltlittbl = htab->spltlittbl; 3306 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL); 3307 3308 /* Find the first XTENSA_RTLD relocation. Presumably the rest 3309 of them follow immediately after.... */ 3310 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++) 3311 { 3312 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); 3313 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); 3314 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD) 3315 break; 3316 } 3317 BFD_ASSERT (rtld_reloc < srelgot->reloc_count); 3318 3319 plt_entries = srelplt->size / sizeof (Elf32_External_Rela); 3320 plt_chunks = 3321 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK; 3322 3323 for (chunk = 0; chunk < plt_chunks; chunk++) 3324 { 3325 int chunk_entries = 0; 3326 3327 sgotplt = elf_xtensa_get_gotplt_section (info, chunk); 3328 BFD_ASSERT (sgotplt != NULL); 3329 3330 /* Emit special RTLD relocations for the first two entries in 3331 each chunk of the .got.plt section. */ 3332 3333 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela); 3334 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); 3335 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); 3336 irela.r_offset = (sgotplt->output_section->vma 3337 + sgotplt->output_offset); 3338 irela.r_addend = 1; /* tell rtld to set value to resolver function */ 3339 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); 3340 rtld_reloc += 1; 3341 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); 3342 3343 /* Next literal immediately follows the first. */ 3344 loc += sizeof (Elf32_External_Rela); 3345 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela); 3346 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD); 3347 irela.r_offset = (sgotplt->output_section->vma 3348 + sgotplt->output_offset + 4); 3349 /* Tell rtld to set value to object's link map. */ 3350 irela.r_addend = 2; 3351 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc); 3352 rtld_reloc += 1; 3353 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count); 3354 3355 /* Fill in the literal table. */ 3356 if (chunk < plt_chunks - 1) 3357 chunk_entries = PLT_ENTRIES_PER_CHUNK; 3358 else 3359 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK); 3360 3361 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size); 3362 bfd_put_32 (output_bfd, 3363 sgotplt->output_section->vma + sgotplt->output_offset, 3364 spltlittbl->contents + (chunk * 8) + 0); 3365 bfd_put_32 (output_bfd, 3366 8 + (chunk_entries * 4), 3367 spltlittbl->contents + (chunk * 8) + 4); 3368 } 3369 3370 /* All the dynamic relocations have been emitted at this point. 3371 Make sure the relocation sections are the correct size. */ 3372 if (srelgot->size != (sizeof (Elf32_External_Rela) 3373 * srelgot->reloc_count) 3374 || srelplt->size != (sizeof (Elf32_External_Rela) 3375 * srelplt->reloc_count)) 3376 abort (); 3377 3378 /* The .xt.lit.plt section has just been modified. This must 3379 happen before the code below which combines adjacent literal 3380 table entries, and the .xt.lit.plt contents have to be forced to 3381 the output here. */ 3382 if (! bfd_set_section_contents (output_bfd, 3383 spltlittbl->output_section, 3384 spltlittbl->contents, 3385 spltlittbl->output_offset, 3386 spltlittbl->size)) 3387 return FALSE; 3388 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */ 3389 spltlittbl->flags &= ~SEC_HAS_CONTENTS; 3390 } 3391 3392 /* Combine adjacent literal table entries. */ 3393 BFD_ASSERT (! info->relocatable); 3394 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit"); 3395 sgotloc = htab->sgotloc; 3396 BFD_ASSERT (sgotloc); 3397 if (sxtlit) 3398 { 3399 num_xtlit_entries = 3400 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc); 3401 if (num_xtlit_entries < 0) 3402 return FALSE; 3403 } 3404 3405 dyncon = (Elf32_External_Dyn *) sdyn->contents; 3406 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); 3407 for (; dyncon < dynconend; dyncon++) 3408 { 3409 Elf_Internal_Dyn dyn; 3410 3411 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); 3412 3413 switch (dyn.d_tag) 3414 { 3415 default: 3416 break; 3417 3418 case DT_XTENSA_GOT_LOC_SZ: 3419 dyn.d_un.d_val = num_xtlit_entries; 3420 break; 3421 3422 case DT_XTENSA_GOT_LOC_OFF: 3423 dyn.d_un.d_ptr = htab->sgotloc->output_section->vma; 3424 break; 3425 3426 case DT_PLTGOT: 3427 dyn.d_un.d_ptr = htab->sgot->output_section->vma; 3428 break; 3429 3430 case DT_JMPREL: 3431 dyn.d_un.d_ptr = htab->srelplt->output_section->vma; 3432 break; 3433 3434 case DT_PLTRELSZ: 3435 dyn.d_un.d_val = htab->srelplt->output_section->size; 3436 break; 3437 3438 case DT_RELASZ: 3439 /* Adjust RELASZ to not include JMPREL. This matches what 3440 glibc expects and what is done for several other ELF 3441 targets (e.g., i386, alpha), but the "correct" behavior 3442 seems to be unresolved. Since the linker script arranges 3443 for .rela.plt to follow all other relocation sections, we 3444 don't have to worry about changing the DT_RELA entry. */ 3445 if (htab->srelplt) 3446 dyn.d_un.d_val -= htab->srelplt->output_section->size; 3447 break; 3448 } 3449 3450 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 3451 } 3452 3453 return TRUE; 3454 } 3455 3456 3457 /* Functions for dealing with the e_flags field. */ 3458 3459 /* Merge backend specific data from an object file to the output 3460 object file when linking. */ 3461 3462 static bfd_boolean 3463 elf_xtensa_merge_private_bfd_data (bfd *ibfd, bfd *obfd) 3464 { 3465 unsigned out_mach, in_mach; 3466 flagword out_flag, in_flag; 3467 3468 /* Check if we have the same endianness. */ 3469 if (!_bfd_generic_verify_endian_match (ibfd, obfd)) 3470 return FALSE; 3471 3472 /* Don't even pretend to support mixed-format linking. */ 3473 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 3474 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 3475 return FALSE; 3476 3477 out_flag = elf_elfheader (obfd)->e_flags; 3478 in_flag = elf_elfheader (ibfd)->e_flags; 3479 3480 out_mach = out_flag & EF_XTENSA_MACH; 3481 in_mach = in_flag & EF_XTENSA_MACH; 3482 if (out_mach != in_mach) 3483 { 3484 (*_bfd_error_handler) 3485 (_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"), 3486 ibfd, out_mach, in_mach); 3487 bfd_set_error (bfd_error_wrong_format); 3488 return FALSE; 3489 } 3490 3491 if (! elf_flags_init (obfd)) 3492 { 3493 elf_flags_init (obfd) = TRUE; 3494 elf_elfheader (obfd)->e_flags = in_flag; 3495 3496 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) 3497 && bfd_get_arch_info (obfd)->the_default) 3498 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), 3499 bfd_get_mach (ibfd)); 3500 3501 return TRUE; 3502 } 3503 3504 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN)) 3505 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN); 3506 3507 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT)) 3508 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT); 3509 3510 return TRUE; 3511 } 3512 3513 3514 static bfd_boolean 3515 elf_xtensa_set_private_flags (bfd *abfd, flagword flags) 3516 { 3517 BFD_ASSERT (!elf_flags_init (abfd) 3518 || elf_elfheader (abfd)->e_flags == flags); 3519 3520 elf_elfheader (abfd)->e_flags |= flags; 3521 elf_flags_init (abfd) = TRUE; 3522 3523 return TRUE; 3524 } 3525 3526 3527 static bfd_boolean 3528 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg) 3529 { 3530 FILE *f = (FILE *) farg; 3531 flagword e_flags = elf_elfheader (abfd)->e_flags; 3532 3533 fprintf (f, "\nXtensa header:\n"); 3534 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH) 3535 fprintf (f, "\nMachine = Base\n"); 3536 else 3537 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH); 3538 3539 fprintf (f, "Insn tables = %s\n", 3540 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false"); 3541 3542 fprintf (f, "Literal tables = %s\n", 3543 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false"); 3544 3545 return _bfd_elf_print_private_bfd_data (abfd, farg); 3546 } 3547 3548 3549 /* Set the right machine number for an Xtensa ELF file. */ 3550 3551 static bfd_boolean 3552 elf_xtensa_object_p (bfd *abfd) 3553 { 3554 int mach; 3555 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH; 3556 3557 switch (arch) 3558 { 3559 case E_XTENSA_MACH: 3560 mach = bfd_mach_xtensa; 3561 break; 3562 default: 3563 return FALSE; 3564 } 3565 3566 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach); 3567 return TRUE; 3568 } 3569 3570 3571 /* The final processing done just before writing out an Xtensa ELF object 3572 file. This gets the Xtensa architecture right based on the machine 3573 number. */ 3574 3575 static void 3576 elf_xtensa_final_write_processing (bfd *abfd, 3577 bfd_boolean linker ATTRIBUTE_UNUSED) 3578 { 3579 int mach; 3580 unsigned long val; 3581 3582 switch (mach = bfd_get_mach (abfd)) 3583 { 3584 case bfd_mach_xtensa: 3585 val = E_XTENSA_MACH; 3586 break; 3587 default: 3588 return; 3589 } 3590 3591 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH); 3592 elf_elfheader (abfd)->e_flags |= val; 3593 } 3594 3595 3596 static enum elf_reloc_type_class 3597 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 3598 const asection *rel_sec ATTRIBUTE_UNUSED, 3599 const Elf_Internal_Rela *rela) 3600 { 3601 switch ((int) ELF32_R_TYPE (rela->r_info)) 3602 { 3603 case R_XTENSA_RELATIVE: 3604 return reloc_class_relative; 3605 case R_XTENSA_JMP_SLOT: 3606 return reloc_class_plt; 3607 default: 3608 return reloc_class_normal; 3609 } 3610 } 3611 3612 3613 static bfd_boolean 3614 elf_xtensa_discard_info_for_section (bfd *abfd, 3615 struct elf_reloc_cookie *cookie, 3616 struct bfd_link_info *info, 3617 asection *sec) 3618 { 3619 bfd_byte *contents; 3620 bfd_vma offset, actual_offset; 3621 bfd_size_type removed_bytes = 0; 3622 bfd_size_type entry_size; 3623 3624 if (sec->output_section 3625 && bfd_is_abs_section (sec->output_section)) 3626 return FALSE; 3627 3628 if (xtensa_is_proptable_section (sec)) 3629 entry_size = 12; 3630 else 3631 entry_size = 8; 3632 3633 if (sec->size == 0 || sec->size % entry_size != 0) 3634 return FALSE; 3635 3636 contents = retrieve_contents (abfd, sec, info->keep_memory); 3637 if (!contents) 3638 return FALSE; 3639 3640 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory); 3641 if (!cookie->rels) 3642 { 3643 release_contents (sec, contents); 3644 return FALSE; 3645 } 3646 3647 /* Sort the relocations. They should already be in order when 3648 relaxation is enabled, but it might not be. */ 3649 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela), 3650 internal_reloc_compare); 3651 3652 cookie->rel = cookie->rels; 3653 cookie->relend = cookie->rels + sec->reloc_count; 3654 3655 for (offset = 0; offset < sec->size; offset += entry_size) 3656 { 3657 actual_offset = offset - removed_bytes; 3658 3659 /* The ...symbol_deleted_p function will skip over relocs but it 3660 won't adjust their offsets, so do that here. */ 3661 while (cookie->rel < cookie->relend 3662 && cookie->rel->r_offset < offset) 3663 { 3664 cookie->rel->r_offset -= removed_bytes; 3665 cookie->rel++; 3666 } 3667 3668 while (cookie->rel < cookie->relend 3669 && cookie->rel->r_offset == offset) 3670 { 3671 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie)) 3672 { 3673 /* Remove the table entry. (If the reloc type is NONE, then 3674 the entry has already been merged with another and deleted 3675 during relaxation.) */ 3676 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE) 3677 { 3678 /* Shift the contents up. */ 3679 if (offset + entry_size < sec->size) 3680 memmove (&contents[actual_offset], 3681 &contents[actual_offset + entry_size], 3682 sec->size - offset - entry_size); 3683 removed_bytes += entry_size; 3684 } 3685 3686 /* Remove this relocation. */ 3687 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); 3688 } 3689 3690 /* Adjust the relocation offset for previous removals. This 3691 should not be done before calling ...symbol_deleted_p 3692 because it might mess up the offset comparisons there. 3693 Make sure the offset doesn't underflow in the case where 3694 the first entry is removed. */ 3695 if (cookie->rel->r_offset >= removed_bytes) 3696 cookie->rel->r_offset -= removed_bytes; 3697 else 3698 cookie->rel->r_offset = 0; 3699 3700 cookie->rel++; 3701 } 3702 } 3703 3704 if (removed_bytes != 0) 3705 { 3706 /* Adjust any remaining relocs (shouldn't be any). */ 3707 for (; cookie->rel < cookie->relend; cookie->rel++) 3708 { 3709 if (cookie->rel->r_offset >= removed_bytes) 3710 cookie->rel->r_offset -= removed_bytes; 3711 else 3712 cookie->rel->r_offset = 0; 3713 } 3714 3715 /* Clear the removed bytes. */ 3716 memset (&contents[sec->size - removed_bytes], 0, removed_bytes); 3717 3718 pin_contents (sec, contents); 3719 pin_internal_relocs (sec, cookie->rels); 3720 3721 /* Shrink size. */ 3722 if (sec->rawsize == 0) 3723 sec->rawsize = sec->size; 3724 sec->size -= removed_bytes; 3725 3726 if (xtensa_is_littable_section (sec)) 3727 { 3728 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc; 3729 if (sgotloc) 3730 sgotloc->size -= removed_bytes; 3731 } 3732 } 3733 else 3734 { 3735 release_contents (sec, contents); 3736 release_internal_relocs (sec, cookie->rels); 3737 } 3738 3739 return (removed_bytes != 0); 3740 } 3741 3742 3743 static bfd_boolean 3744 elf_xtensa_discard_info (bfd *abfd, 3745 struct elf_reloc_cookie *cookie, 3746 struct bfd_link_info *info) 3747 { 3748 asection *sec; 3749 bfd_boolean changed = FALSE; 3750 3751 for (sec = abfd->sections; sec != NULL; sec = sec->next) 3752 { 3753 if (xtensa_is_property_section (sec)) 3754 { 3755 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec)) 3756 changed = TRUE; 3757 } 3758 } 3759 3760 return changed; 3761 } 3762 3763 3764 static bfd_boolean 3765 elf_xtensa_ignore_discarded_relocs (asection *sec) 3766 { 3767 return xtensa_is_property_section (sec); 3768 } 3769 3770 3771 static unsigned int 3772 elf_xtensa_action_discarded (asection *sec) 3773 { 3774 if (strcmp (".xt_except_table", sec->name) == 0) 3775 return 0; 3776 3777 if (strcmp (".xt_except_desc", sec->name) == 0) 3778 return 0; 3779 3780 return _bfd_elf_default_action_discarded (sec); 3781 } 3782 3783 3784 /* Support for core dump NOTE sections. */ 3785 3786 static bfd_boolean 3787 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 3788 { 3789 int offset; 3790 unsigned int size; 3791 3792 /* The size for Xtensa is variable, so don't try to recognize the format 3793 based on the size. Just assume this is GNU/Linux. */ 3794 3795 /* pr_cursig */ 3796 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); 3797 3798 /* pr_pid */ 3799 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); 3800 3801 /* pr_reg */ 3802 offset = 72; 3803 size = note->descsz - offset - 4; 3804 3805 /* Make a ".reg/999" section. */ 3806 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 3807 size, note->descpos + offset); 3808 } 3809 3810 3811 static bfd_boolean 3812 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 3813 { 3814 switch (note->descsz) 3815 { 3816 default: 3817 return FALSE; 3818 3819 case 128: /* GNU/Linux elf_prpsinfo */ 3820 elf_tdata (abfd)->core->program 3821 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16); 3822 elf_tdata (abfd)->core->command 3823 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80); 3824 } 3825 3826 /* Note that for some reason, a spurious space is tacked 3827 onto the end of the args in some (at least one anyway) 3828 implementations, so strip it off if it exists. */ 3829 3830 { 3831 char *command = elf_tdata (abfd)->core->command; 3832 int n = strlen (command); 3833 3834 if (0 < n && command[n - 1] == ' ') 3835 command[n - 1] = '\0'; 3836 } 3837 3838 return TRUE; 3839 } 3840 3841 3842 /* Generic Xtensa configurability stuff. */ 3843 3844 static xtensa_opcode callx0_op = XTENSA_UNDEFINED; 3845 static xtensa_opcode callx4_op = XTENSA_UNDEFINED; 3846 static xtensa_opcode callx8_op = XTENSA_UNDEFINED; 3847 static xtensa_opcode callx12_op = XTENSA_UNDEFINED; 3848 static xtensa_opcode call0_op = XTENSA_UNDEFINED; 3849 static xtensa_opcode call4_op = XTENSA_UNDEFINED; 3850 static xtensa_opcode call8_op = XTENSA_UNDEFINED; 3851 static xtensa_opcode call12_op = XTENSA_UNDEFINED; 3852 3853 static void 3854 init_call_opcodes (void) 3855 { 3856 if (callx0_op == XTENSA_UNDEFINED) 3857 { 3858 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0"); 3859 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4"); 3860 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8"); 3861 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12"); 3862 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0"); 3863 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4"); 3864 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8"); 3865 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12"); 3866 } 3867 } 3868 3869 3870 static bfd_boolean 3871 is_indirect_call_opcode (xtensa_opcode opcode) 3872 { 3873 init_call_opcodes (); 3874 return (opcode == callx0_op 3875 || opcode == callx4_op 3876 || opcode == callx8_op 3877 || opcode == callx12_op); 3878 } 3879 3880 3881 static bfd_boolean 3882 is_direct_call_opcode (xtensa_opcode opcode) 3883 { 3884 init_call_opcodes (); 3885 return (opcode == call0_op 3886 || opcode == call4_op 3887 || opcode == call8_op 3888 || opcode == call12_op); 3889 } 3890 3891 3892 static bfd_boolean 3893 is_windowed_call_opcode (xtensa_opcode opcode) 3894 { 3895 init_call_opcodes (); 3896 return (opcode == call4_op 3897 || opcode == call8_op 3898 || opcode == call12_op 3899 || opcode == callx4_op 3900 || opcode == callx8_op 3901 || opcode == callx12_op); 3902 } 3903 3904 3905 static bfd_boolean 3906 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst) 3907 { 3908 unsigned dst = (unsigned) -1; 3909 3910 init_call_opcodes (); 3911 if (opcode == callx0_op) 3912 dst = 0; 3913 else if (opcode == callx4_op) 3914 dst = 4; 3915 else if (opcode == callx8_op) 3916 dst = 8; 3917 else if (opcode == callx12_op) 3918 dst = 12; 3919 3920 if (dst == (unsigned) -1) 3921 return FALSE; 3922 3923 *pdst = dst; 3924 return TRUE; 3925 } 3926 3927 3928 static xtensa_opcode 3929 get_const16_opcode (void) 3930 { 3931 static bfd_boolean done_lookup = FALSE; 3932 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED; 3933 if (!done_lookup) 3934 { 3935 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16"); 3936 done_lookup = TRUE; 3937 } 3938 return const16_opcode; 3939 } 3940 3941 3942 static xtensa_opcode 3943 get_l32r_opcode (void) 3944 { 3945 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED; 3946 static bfd_boolean done_lookup = FALSE; 3947 3948 if (!done_lookup) 3949 { 3950 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r"); 3951 done_lookup = TRUE; 3952 } 3953 return l32r_opcode; 3954 } 3955 3956 3957 static bfd_vma 3958 l32r_offset (bfd_vma addr, bfd_vma pc) 3959 { 3960 bfd_vma offset; 3961 3962 offset = addr - ((pc+3) & -4); 3963 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0); 3964 offset = (signed int) offset >> 2; 3965 BFD_ASSERT ((signed int) offset >> 16 == -1); 3966 return offset; 3967 } 3968 3969 3970 static int 3971 get_relocation_opnd (xtensa_opcode opcode, int r_type) 3972 { 3973 xtensa_isa isa = xtensa_default_isa; 3974 int last_immed, last_opnd, opi; 3975 3976 if (opcode == XTENSA_UNDEFINED) 3977 return XTENSA_UNDEFINED; 3978 3979 /* Find the last visible PC-relative immediate operand for the opcode. 3980 If there are no PC-relative immediates, then choose the last visible 3981 immediate; otherwise, fail and return XTENSA_UNDEFINED. */ 3982 last_immed = XTENSA_UNDEFINED; 3983 last_opnd = xtensa_opcode_num_operands (isa, opcode); 3984 for (opi = last_opnd - 1; opi >= 0; opi--) 3985 { 3986 if (xtensa_operand_is_visible (isa, opcode, opi) == 0) 3987 continue; 3988 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1) 3989 { 3990 last_immed = opi; 3991 break; 3992 } 3993 if (last_immed == XTENSA_UNDEFINED 3994 && xtensa_operand_is_register (isa, opcode, opi) == 0) 3995 last_immed = opi; 3996 } 3997 if (last_immed < 0) 3998 return XTENSA_UNDEFINED; 3999 4000 /* If the operand number was specified in an old-style relocation, 4001 check for consistency with the operand computed above. */ 4002 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2) 4003 { 4004 int reloc_opnd = r_type - R_XTENSA_OP0; 4005 if (reloc_opnd != last_immed) 4006 return XTENSA_UNDEFINED; 4007 } 4008 4009 return last_immed; 4010 } 4011 4012 4013 int 4014 get_relocation_slot (int r_type) 4015 { 4016 switch (r_type) 4017 { 4018 case R_XTENSA_OP0: 4019 case R_XTENSA_OP1: 4020 case R_XTENSA_OP2: 4021 return 0; 4022 4023 default: 4024 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) 4025 return r_type - R_XTENSA_SLOT0_OP; 4026 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) 4027 return r_type - R_XTENSA_SLOT0_ALT; 4028 break; 4029 } 4030 4031 return XTENSA_UNDEFINED; 4032 } 4033 4034 4035 /* Get the opcode for a relocation. */ 4036 4037 static xtensa_opcode 4038 get_relocation_opcode (bfd *abfd, 4039 asection *sec, 4040 bfd_byte *contents, 4041 Elf_Internal_Rela *irel) 4042 { 4043 static xtensa_insnbuf ibuff = NULL; 4044 static xtensa_insnbuf sbuff = NULL; 4045 xtensa_isa isa = xtensa_default_isa; 4046 xtensa_format fmt; 4047 int slot; 4048 4049 if (contents == NULL) 4050 return XTENSA_UNDEFINED; 4051 4052 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset) 4053 return XTENSA_UNDEFINED; 4054 4055 if (ibuff == NULL) 4056 { 4057 ibuff = xtensa_insnbuf_alloc (isa); 4058 sbuff = xtensa_insnbuf_alloc (isa); 4059 } 4060 4061 /* Decode the instruction. */ 4062 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset], 4063 sec->size - irel->r_offset); 4064 fmt = xtensa_format_decode (isa, ibuff); 4065 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info)); 4066 if (slot == XTENSA_UNDEFINED) 4067 return XTENSA_UNDEFINED; 4068 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff); 4069 return xtensa_opcode_decode (isa, fmt, slot, sbuff); 4070 } 4071 4072 4073 bfd_boolean 4074 is_l32r_relocation (bfd *abfd, 4075 asection *sec, 4076 bfd_byte *contents, 4077 Elf_Internal_Rela *irel) 4078 { 4079 xtensa_opcode opcode; 4080 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info))) 4081 return FALSE; 4082 opcode = get_relocation_opcode (abfd, sec, contents, irel); 4083 return (opcode == get_l32r_opcode ()); 4084 } 4085 4086 4087 static bfd_size_type 4088 get_asm_simplify_size (bfd_byte *contents, 4089 bfd_size_type content_len, 4090 bfd_size_type offset) 4091 { 4092 bfd_size_type insnlen, size = 0; 4093 4094 /* Decode the size of the next two instructions. */ 4095 insnlen = insn_decode_len (contents, content_len, offset); 4096 if (insnlen == 0) 4097 return 0; 4098 4099 size += insnlen; 4100 4101 insnlen = insn_decode_len (contents, content_len, offset + size); 4102 if (insnlen == 0) 4103 return 0; 4104 4105 size += insnlen; 4106 return size; 4107 } 4108 4109 4110 bfd_boolean 4111 is_alt_relocation (int r_type) 4112 { 4113 return (r_type >= R_XTENSA_SLOT0_ALT 4114 && r_type <= R_XTENSA_SLOT14_ALT); 4115 } 4116 4117 4118 bfd_boolean 4119 is_operand_relocation (int r_type) 4120 { 4121 switch (r_type) 4122 { 4123 case R_XTENSA_OP0: 4124 case R_XTENSA_OP1: 4125 case R_XTENSA_OP2: 4126 return TRUE; 4127 4128 default: 4129 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP) 4130 return TRUE; 4131 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT) 4132 return TRUE; 4133 break; 4134 } 4135 4136 return FALSE; 4137 } 4138 4139 4140 #define MIN_INSN_LENGTH 2 4141 4142 /* Return 0 if it fails to decode. */ 4143 4144 bfd_size_type 4145 insn_decode_len (bfd_byte *contents, 4146 bfd_size_type content_len, 4147 bfd_size_type offset) 4148 { 4149 int insn_len; 4150 xtensa_isa isa = xtensa_default_isa; 4151 xtensa_format fmt; 4152 static xtensa_insnbuf ibuff = NULL; 4153 4154 if (offset + MIN_INSN_LENGTH > content_len) 4155 return 0; 4156 4157 if (ibuff == NULL) 4158 ibuff = xtensa_insnbuf_alloc (isa); 4159 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset], 4160 content_len - offset); 4161 fmt = xtensa_format_decode (isa, ibuff); 4162 if (fmt == XTENSA_UNDEFINED) 4163 return 0; 4164 insn_len = xtensa_format_length (isa, fmt); 4165 if (insn_len == XTENSA_UNDEFINED) 4166 return 0; 4167 return insn_len; 4168 } 4169 4170 4171 /* Decode the opcode for a single slot instruction. 4172 Return 0 if it fails to decode or the instruction is multi-slot. */ 4173 4174 xtensa_opcode 4175 insn_decode_opcode (bfd_byte *contents, 4176 bfd_size_type content_len, 4177 bfd_size_type offset, 4178 int slot) 4179 { 4180 xtensa_isa isa = xtensa_default_isa; 4181 xtensa_format fmt; 4182 static xtensa_insnbuf insnbuf = NULL; 4183 static xtensa_insnbuf slotbuf = NULL; 4184 4185 if (offset + MIN_INSN_LENGTH > content_len) 4186 return XTENSA_UNDEFINED; 4187 4188 if (insnbuf == NULL) 4189 { 4190 insnbuf = xtensa_insnbuf_alloc (isa); 4191 slotbuf = xtensa_insnbuf_alloc (isa); 4192 } 4193 4194 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], 4195 content_len - offset); 4196 fmt = xtensa_format_decode (isa, insnbuf); 4197 if (fmt == XTENSA_UNDEFINED) 4198 return XTENSA_UNDEFINED; 4199 4200 if (slot >= xtensa_format_num_slots (isa, fmt)) 4201 return XTENSA_UNDEFINED; 4202 4203 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf); 4204 return xtensa_opcode_decode (isa, fmt, slot, slotbuf); 4205 } 4206 4207 4208 /* The offset is the offset in the contents. 4209 The address is the address of that offset. */ 4210 4211 static bfd_boolean 4212 check_branch_target_aligned (bfd_byte *contents, 4213 bfd_size_type content_length, 4214 bfd_vma offset, 4215 bfd_vma address) 4216 { 4217 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset); 4218 if (insn_len == 0) 4219 return FALSE; 4220 return check_branch_target_aligned_address (address, insn_len); 4221 } 4222 4223 4224 static bfd_boolean 4225 check_loop_aligned (bfd_byte *contents, 4226 bfd_size_type content_length, 4227 bfd_vma offset, 4228 bfd_vma address) 4229 { 4230 bfd_size_type loop_len, insn_len; 4231 xtensa_opcode opcode; 4232 4233 opcode = insn_decode_opcode (contents, content_length, offset, 0); 4234 if (opcode == XTENSA_UNDEFINED 4235 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1) 4236 { 4237 BFD_ASSERT (FALSE); 4238 return FALSE; 4239 } 4240 4241 loop_len = insn_decode_len (contents, content_length, offset); 4242 insn_len = insn_decode_len (contents, content_length, offset + loop_len); 4243 if (loop_len == 0 || insn_len == 0) 4244 { 4245 BFD_ASSERT (FALSE); 4246 return FALSE; 4247 } 4248 4249 return check_branch_target_aligned_address (address + loop_len, insn_len); 4250 } 4251 4252 4253 static bfd_boolean 4254 check_branch_target_aligned_address (bfd_vma addr, int len) 4255 { 4256 if (len == 8) 4257 return (addr % 8 == 0); 4258 return ((addr >> 2) == ((addr + len - 1) >> 2)); 4259 } 4260 4261 4262 /* Instruction widening and narrowing. */ 4263 4264 /* When FLIX is available we need to access certain instructions only 4265 when they are 16-bit or 24-bit instructions. This table caches 4266 information about such instructions by walking through all the 4267 opcodes and finding the smallest single-slot format into which each 4268 can be encoded. */ 4269 4270 static xtensa_format *op_single_fmt_table = NULL; 4271 4272 4273 static void 4274 init_op_single_format_table (void) 4275 { 4276 xtensa_isa isa = xtensa_default_isa; 4277 xtensa_insnbuf ibuf; 4278 xtensa_opcode opcode; 4279 xtensa_format fmt; 4280 int num_opcodes; 4281 4282 if (op_single_fmt_table) 4283 return; 4284 4285 ibuf = xtensa_insnbuf_alloc (isa); 4286 num_opcodes = xtensa_isa_num_opcodes (isa); 4287 4288 op_single_fmt_table = (xtensa_format *) 4289 bfd_malloc (sizeof (xtensa_format) * num_opcodes); 4290 for (opcode = 0; opcode < num_opcodes; opcode++) 4291 { 4292 op_single_fmt_table[opcode] = XTENSA_UNDEFINED; 4293 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++) 4294 { 4295 if (xtensa_format_num_slots (isa, fmt) == 1 4296 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0) 4297 { 4298 xtensa_opcode old_fmt = op_single_fmt_table[opcode]; 4299 int fmt_length = xtensa_format_length (isa, fmt); 4300 if (old_fmt == XTENSA_UNDEFINED 4301 || fmt_length < xtensa_format_length (isa, old_fmt)) 4302 op_single_fmt_table[opcode] = fmt; 4303 } 4304 } 4305 } 4306 xtensa_insnbuf_free (isa, ibuf); 4307 } 4308 4309 4310 static xtensa_format 4311 get_single_format (xtensa_opcode opcode) 4312 { 4313 init_op_single_format_table (); 4314 return op_single_fmt_table[opcode]; 4315 } 4316 4317 4318 /* For the set of narrowable instructions we do NOT include the 4319 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities 4320 involved during linker relaxation that may require these to 4321 re-expand in some conditions. Also, the narrowing "or" -> mov.n 4322 requires special case code to ensure it only works when op1 == op2. */ 4323 4324 struct string_pair 4325 { 4326 const char *wide; 4327 const char *narrow; 4328 }; 4329 4330 struct string_pair narrowable[] = 4331 { 4332 { "add", "add.n" }, 4333 { "addi", "addi.n" }, 4334 { "addmi", "addi.n" }, 4335 { "l32i", "l32i.n" }, 4336 { "movi", "movi.n" }, 4337 { "ret", "ret.n" }, 4338 { "retw", "retw.n" }, 4339 { "s32i", "s32i.n" }, 4340 { "or", "mov.n" } /* special case only when op1 == op2 */ 4341 }; 4342 4343 struct string_pair widenable[] = 4344 { 4345 { "add", "add.n" }, 4346 { "addi", "addi.n" }, 4347 { "addmi", "addi.n" }, 4348 { "beqz", "beqz.n" }, 4349 { "bnez", "bnez.n" }, 4350 { "l32i", "l32i.n" }, 4351 { "movi", "movi.n" }, 4352 { "ret", "ret.n" }, 4353 { "retw", "retw.n" }, 4354 { "s32i", "s32i.n" }, 4355 { "or", "mov.n" } /* special case only when op1 == op2 */ 4356 }; 4357 4358 4359 /* Check if an instruction can be "narrowed", i.e., changed from a standard 4360 3-byte instruction to a 2-byte "density" instruction. If it is valid, 4361 return the instruction buffer holding the narrow instruction. Otherwise, 4362 return 0. The set of valid narrowing are specified by a string table 4363 but require some special case operand checks in some cases. */ 4364 4365 static xtensa_insnbuf 4366 can_narrow_instruction (xtensa_insnbuf slotbuf, 4367 xtensa_format fmt, 4368 xtensa_opcode opcode) 4369 { 4370 xtensa_isa isa = xtensa_default_isa; 4371 xtensa_format o_fmt; 4372 unsigned opi; 4373 4374 static xtensa_insnbuf o_insnbuf = NULL; 4375 static xtensa_insnbuf o_slotbuf = NULL; 4376 4377 if (o_insnbuf == NULL) 4378 { 4379 o_insnbuf = xtensa_insnbuf_alloc (isa); 4380 o_slotbuf = xtensa_insnbuf_alloc (isa); 4381 } 4382 4383 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++) 4384 { 4385 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0); 4386 4387 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide)) 4388 { 4389 uint32 value, newval; 4390 int i, operand_count, o_operand_count; 4391 xtensa_opcode o_opcode; 4392 4393 /* Address does not matter in this case. We might need to 4394 fix it to handle branches/jumps. */ 4395 bfd_vma self_address = 0; 4396 4397 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow); 4398 if (o_opcode == XTENSA_UNDEFINED) 4399 return 0; 4400 o_fmt = get_single_format (o_opcode); 4401 if (o_fmt == XTENSA_UNDEFINED) 4402 return 0; 4403 4404 if (xtensa_format_length (isa, fmt) != 3 4405 || xtensa_format_length (isa, o_fmt) != 2) 4406 return 0; 4407 4408 xtensa_format_encode (isa, o_fmt, o_insnbuf); 4409 operand_count = xtensa_opcode_num_operands (isa, opcode); 4410 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); 4411 4412 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) 4413 return 0; 4414 4415 if (!is_or) 4416 { 4417 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) 4418 return 0; 4419 } 4420 else 4421 { 4422 uint32 rawval0, rawval1, rawval2; 4423 4424 if (o_operand_count + 1 != operand_count 4425 || xtensa_operand_get_field (isa, opcode, 0, 4426 fmt, 0, slotbuf, &rawval0) != 0 4427 || xtensa_operand_get_field (isa, opcode, 1, 4428 fmt, 0, slotbuf, &rawval1) != 0 4429 || xtensa_operand_get_field (isa, opcode, 2, 4430 fmt, 0, slotbuf, &rawval2) != 0 4431 || rawval1 != rawval2 4432 || rawval0 == rawval1 /* it is a nop */) 4433 return 0; 4434 } 4435 4436 for (i = 0; i < o_operand_count; ++i) 4437 { 4438 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0, 4439 slotbuf, &value) 4440 || xtensa_operand_decode (isa, opcode, i, &value)) 4441 return 0; 4442 4443 /* PC-relative branches need adjustment, but 4444 the PC-rel operand will always have a relocation. */ 4445 newval = value; 4446 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, 4447 self_address) 4448 || xtensa_operand_encode (isa, o_opcode, i, &newval) 4449 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, 4450 o_slotbuf, newval)) 4451 return 0; 4452 } 4453 4454 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) 4455 return 0; 4456 4457 return o_insnbuf; 4458 } 4459 } 4460 return 0; 4461 } 4462 4463 4464 /* Attempt to narrow an instruction. If the narrowing is valid, perform 4465 the action in-place directly into the contents and return TRUE. Otherwise, 4466 the return value is FALSE and the contents are not modified. */ 4467 4468 static bfd_boolean 4469 narrow_instruction (bfd_byte *contents, 4470 bfd_size_type content_length, 4471 bfd_size_type offset) 4472 { 4473 xtensa_opcode opcode; 4474 bfd_size_type insn_len; 4475 xtensa_isa isa = xtensa_default_isa; 4476 xtensa_format fmt; 4477 xtensa_insnbuf o_insnbuf; 4478 4479 static xtensa_insnbuf insnbuf = NULL; 4480 static xtensa_insnbuf slotbuf = NULL; 4481 4482 if (insnbuf == NULL) 4483 { 4484 insnbuf = xtensa_insnbuf_alloc (isa); 4485 slotbuf = xtensa_insnbuf_alloc (isa); 4486 } 4487 4488 BFD_ASSERT (offset < content_length); 4489 4490 if (content_length < 2) 4491 return FALSE; 4492 4493 /* We will hand-code a few of these for a little while. 4494 These have all been specified in the assembler aleady. */ 4495 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], 4496 content_length - offset); 4497 fmt = xtensa_format_decode (isa, insnbuf); 4498 if (xtensa_format_num_slots (isa, fmt) != 1) 4499 return FALSE; 4500 4501 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) 4502 return FALSE; 4503 4504 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); 4505 if (opcode == XTENSA_UNDEFINED) 4506 return FALSE; 4507 insn_len = xtensa_format_length (isa, fmt); 4508 if (insn_len > content_length) 4509 return FALSE; 4510 4511 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode); 4512 if (o_insnbuf) 4513 { 4514 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, 4515 content_length - offset); 4516 return TRUE; 4517 } 4518 4519 return FALSE; 4520 } 4521 4522 4523 /* Check if an instruction can be "widened", i.e., changed from a 2-byte 4524 "density" instruction to a standard 3-byte instruction. If it is valid, 4525 return the instruction buffer holding the wide instruction. Otherwise, 4526 return 0. The set of valid widenings are specified by a string table 4527 but require some special case operand checks in some cases. */ 4528 4529 static xtensa_insnbuf 4530 can_widen_instruction (xtensa_insnbuf slotbuf, 4531 xtensa_format fmt, 4532 xtensa_opcode opcode) 4533 { 4534 xtensa_isa isa = xtensa_default_isa; 4535 xtensa_format o_fmt; 4536 unsigned opi; 4537 4538 static xtensa_insnbuf o_insnbuf = NULL; 4539 static xtensa_insnbuf o_slotbuf = NULL; 4540 4541 if (o_insnbuf == NULL) 4542 { 4543 o_insnbuf = xtensa_insnbuf_alloc (isa); 4544 o_slotbuf = xtensa_insnbuf_alloc (isa); 4545 } 4546 4547 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++) 4548 { 4549 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0); 4550 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0 4551 || strcmp ("bnez", widenable[opi].wide) == 0); 4552 4553 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow)) 4554 { 4555 uint32 value, newval; 4556 int i, operand_count, o_operand_count, check_operand_count; 4557 xtensa_opcode o_opcode; 4558 4559 /* Address does not matter in this case. We might need to fix it 4560 to handle branches/jumps. */ 4561 bfd_vma self_address = 0; 4562 4563 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide); 4564 if (o_opcode == XTENSA_UNDEFINED) 4565 return 0; 4566 o_fmt = get_single_format (o_opcode); 4567 if (o_fmt == XTENSA_UNDEFINED) 4568 return 0; 4569 4570 if (xtensa_format_length (isa, fmt) != 2 4571 || xtensa_format_length (isa, o_fmt) != 3) 4572 return 0; 4573 4574 xtensa_format_encode (isa, o_fmt, o_insnbuf); 4575 operand_count = xtensa_opcode_num_operands (isa, opcode); 4576 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode); 4577 check_operand_count = o_operand_count; 4578 4579 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0) 4580 return 0; 4581 4582 if (!is_or) 4583 { 4584 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count) 4585 return 0; 4586 } 4587 else 4588 { 4589 uint32 rawval0, rawval1; 4590 4591 if (o_operand_count != operand_count + 1 4592 || xtensa_operand_get_field (isa, opcode, 0, 4593 fmt, 0, slotbuf, &rawval0) != 0 4594 || xtensa_operand_get_field (isa, opcode, 1, 4595 fmt, 0, slotbuf, &rawval1) != 0 4596 || rawval0 == rawval1 /* it is a nop */) 4597 return 0; 4598 } 4599 if (is_branch) 4600 check_operand_count--; 4601 4602 for (i = 0; i < check_operand_count; i++) 4603 { 4604 int new_i = i; 4605 if (is_or && i == o_operand_count - 1) 4606 new_i = i - 1; 4607 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0, 4608 slotbuf, &value) 4609 || xtensa_operand_decode (isa, opcode, new_i, &value)) 4610 return 0; 4611 4612 /* PC-relative branches need adjustment, but 4613 the PC-rel operand will always have a relocation. */ 4614 newval = value; 4615 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval, 4616 self_address) 4617 || xtensa_operand_encode (isa, o_opcode, i, &newval) 4618 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0, 4619 o_slotbuf, newval)) 4620 return 0; 4621 } 4622 4623 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf)) 4624 return 0; 4625 4626 return o_insnbuf; 4627 } 4628 } 4629 return 0; 4630 } 4631 4632 4633 /* Attempt to widen an instruction. If the widening is valid, perform 4634 the action in-place directly into the contents and return TRUE. Otherwise, 4635 the return value is FALSE and the contents are not modified. */ 4636 4637 static bfd_boolean 4638 widen_instruction (bfd_byte *contents, 4639 bfd_size_type content_length, 4640 bfd_size_type offset) 4641 { 4642 xtensa_opcode opcode; 4643 bfd_size_type insn_len; 4644 xtensa_isa isa = xtensa_default_isa; 4645 xtensa_format fmt; 4646 xtensa_insnbuf o_insnbuf; 4647 4648 static xtensa_insnbuf insnbuf = NULL; 4649 static xtensa_insnbuf slotbuf = NULL; 4650 4651 if (insnbuf == NULL) 4652 { 4653 insnbuf = xtensa_insnbuf_alloc (isa); 4654 slotbuf = xtensa_insnbuf_alloc (isa); 4655 } 4656 4657 BFD_ASSERT (offset < content_length); 4658 4659 if (content_length < 2) 4660 return FALSE; 4661 4662 /* We will hand-code a few of these for a little while. 4663 These have all been specified in the assembler aleady. */ 4664 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset], 4665 content_length - offset); 4666 fmt = xtensa_format_decode (isa, insnbuf); 4667 if (xtensa_format_num_slots (isa, fmt) != 1) 4668 return FALSE; 4669 4670 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0) 4671 return FALSE; 4672 4673 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); 4674 if (opcode == XTENSA_UNDEFINED) 4675 return FALSE; 4676 insn_len = xtensa_format_length (isa, fmt); 4677 if (insn_len > content_length) 4678 return FALSE; 4679 4680 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode); 4681 if (o_insnbuf) 4682 { 4683 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset, 4684 content_length - offset); 4685 return TRUE; 4686 } 4687 return FALSE; 4688 } 4689 4690 4691 /* Code for transforming CALLs at link-time. */ 4692 4693 static bfd_reloc_status_type 4694 elf_xtensa_do_asm_simplify (bfd_byte *contents, 4695 bfd_vma address, 4696 bfd_vma content_length, 4697 char **error_message) 4698 { 4699 static xtensa_insnbuf insnbuf = NULL; 4700 static xtensa_insnbuf slotbuf = NULL; 4701 xtensa_format core_format = XTENSA_UNDEFINED; 4702 xtensa_opcode opcode; 4703 xtensa_opcode direct_call_opcode; 4704 xtensa_isa isa = xtensa_default_isa; 4705 bfd_byte *chbuf = contents + address; 4706 int opn; 4707 4708 if (insnbuf == NULL) 4709 { 4710 insnbuf = xtensa_insnbuf_alloc (isa); 4711 slotbuf = xtensa_insnbuf_alloc (isa); 4712 } 4713 4714 if (content_length < address) 4715 { 4716 *error_message = _("Attempt to convert L32R/CALLX to CALL failed"); 4717 return bfd_reloc_other; 4718 } 4719 4720 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0); 4721 direct_call_opcode = swap_callx_for_call_opcode (opcode); 4722 if (direct_call_opcode == XTENSA_UNDEFINED) 4723 { 4724 *error_message = _("Attempt to convert L32R/CALLX to CALL failed"); 4725 return bfd_reloc_other; 4726 } 4727 4728 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */ 4729 core_format = xtensa_format_lookup (isa, "x24"); 4730 opcode = xtensa_opcode_lookup (isa, "or"); 4731 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode); 4732 for (opn = 0; opn < 3; opn++) 4733 { 4734 uint32 regno = 1; 4735 xtensa_operand_encode (isa, opcode, opn, ®no); 4736 xtensa_operand_set_field (isa, opcode, opn, core_format, 0, 4737 slotbuf, regno); 4738 } 4739 xtensa_format_encode (isa, core_format, insnbuf); 4740 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); 4741 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address); 4742 4743 /* Assemble a CALL ("callN 0") into the 3 byte offset. */ 4744 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode); 4745 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0); 4746 4747 xtensa_format_encode (isa, core_format, insnbuf); 4748 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf); 4749 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3, 4750 content_length - address - 3); 4751 4752 return bfd_reloc_ok; 4753 } 4754 4755 4756 static bfd_reloc_status_type 4757 contract_asm_expansion (bfd_byte *contents, 4758 bfd_vma content_length, 4759 Elf_Internal_Rela *irel, 4760 char **error_message) 4761 { 4762 bfd_reloc_status_type retval = 4763 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length, 4764 error_message); 4765 4766 if (retval != bfd_reloc_ok) 4767 return bfd_reloc_dangerous; 4768 4769 /* Update the irel->r_offset field so that the right immediate and 4770 the right instruction are modified during the relocation. */ 4771 irel->r_offset += 3; 4772 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP); 4773 return bfd_reloc_ok; 4774 } 4775 4776 4777 static xtensa_opcode 4778 swap_callx_for_call_opcode (xtensa_opcode opcode) 4779 { 4780 init_call_opcodes (); 4781 4782 if (opcode == callx0_op) return call0_op; 4783 if (opcode == callx4_op) return call4_op; 4784 if (opcode == callx8_op) return call8_op; 4785 if (opcode == callx12_op) return call12_op; 4786 4787 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */ 4788 return XTENSA_UNDEFINED; 4789 } 4790 4791 4792 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN; 4793 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode. 4794 If not, return XTENSA_UNDEFINED. */ 4795 4796 #define L32R_TARGET_REG_OPERAND 0 4797 #define CONST16_TARGET_REG_OPERAND 0 4798 #define CALLN_SOURCE_OPERAND 0 4799 4800 static xtensa_opcode 4801 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r) 4802 { 4803 static xtensa_insnbuf insnbuf = NULL; 4804 static xtensa_insnbuf slotbuf = NULL; 4805 xtensa_format fmt; 4806 xtensa_opcode opcode; 4807 xtensa_isa isa = xtensa_default_isa; 4808 uint32 regno, const16_regno, call_regno; 4809 int offset = 0; 4810 4811 if (insnbuf == NULL) 4812 { 4813 insnbuf = xtensa_insnbuf_alloc (isa); 4814 slotbuf = xtensa_insnbuf_alloc (isa); 4815 } 4816 4817 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize); 4818 fmt = xtensa_format_decode (isa, insnbuf); 4819 if (fmt == XTENSA_UNDEFINED 4820 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) 4821 return XTENSA_UNDEFINED; 4822 4823 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); 4824 if (opcode == XTENSA_UNDEFINED) 4825 return XTENSA_UNDEFINED; 4826 4827 if (opcode == get_l32r_opcode ()) 4828 { 4829 if (p_uses_l32r) 4830 *p_uses_l32r = TRUE; 4831 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND, 4832 fmt, 0, slotbuf, ®no) 4833 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND, 4834 ®no)) 4835 return XTENSA_UNDEFINED; 4836 } 4837 else if (opcode == get_const16_opcode ()) 4838 { 4839 if (p_uses_l32r) 4840 *p_uses_l32r = FALSE; 4841 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, 4842 fmt, 0, slotbuf, ®no) 4843 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, 4844 ®no)) 4845 return XTENSA_UNDEFINED; 4846 4847 /* Check that the next instruction is also CONST16. */ 4848 offset += xtensa_format_length (isa, fmt); 4849 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); 4850 fmt = xtensa_format_decode (isa, insnbuf); 4851 if (fmt == XTENSA_UNDEFINED 4852 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) 4853 return XTENSA_UNDEFINED; 4854 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); 4855 if (opcode != get_const16_opcode ()) 4856 return XTENSA_UNDEFINED; 4857 4858 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND, 4859 fmt, 0, slotbuf, &const16_regno) 4860 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND, 4861 &const16_regno) 4862 || const16_regno != regno) 4863 return XTENSA_UNDEFINED; 4864 } 4865 else 4866 return XTENSA_UNDEFINED; 4867 4868 /* Next instruction should be an CALLXn with operand 0 == regno. */ 4869 offset += xtensa_format_length (isa, fmt); 4870 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset); 4871 fmt = xtensa_format_decode (isa, insnbuf); 4872 if (fmt == XTENSA_UNDEFINED 4873 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf)) 4874 return XTENSA_UNDEFINED; 4875 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); 4876 if (opcode == XTENSA_UNDEFINED 4877 || !is_indirect_call_opcode (opcode)) 4878 return XTENSA_UNDEFINED; 4879 4880 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND, 4881 fmt, 0, slotbuf, &call_regno) 4882 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND, 4883 &call_regno)) 4884 return XTENSA_UNDEFINED; 4885 4886 if (call_regno != regno) 4887 return XTENSA_UNDEFINED; 4888 4889 return opcode; 4890 } 4891 4892 4893 /* Data structures used during relaxation. */ 4894 4895 /* r_reloc: relocation values. */ 4896 4897 /* Through the relaxation process, we need to keep track of the values 4898 that will result from evaluating relocations. The standard ELF 4899 relocation structure is not sufficient for this purpose because we're 4900 operating on multiple input files at once, so we need to know which 4901 input file a relocation refers to. The r_reloc structure thus 4902 records both the input file (bfd) and ELF relocation. 4903 4904 For efficiency, an r_reloc also contains a "target_offset" field to 4905 cache the target-section-relative offset value that is represented by 4906 the relocation. 4907 4908 The r_reloc also contains a virtual offset that allows multiple 4909 inserted literals to be placed at the same "address" with 4910 different offsets. */ 4911 4912 typedef struct r_reloc_struct r_reloc; 4913 4914 struct r_reloc_struct 4915 { 4916 bfd *abfd; 4917 Elf_Internal_Rela rela; 4918 bfd_vma target_offset; 4919 bfd_vma virtual_offset; 4920 }; 4921 4922 4923 /* The r_reloc structure is included by value in literal_value, but not 4924 every literal_value has an associated relocation -- some are simple 4925 constants. In such cases, we set all the fields in the r_reloc 4926 struct to zero. The r_reloc_is_const function should be used to 4927 detect this case. */ 4928 4929 static bfd_boolean 4930 r_reloc_is_const (const r_reloc *r_rel) 4931 { 4932 return (r_rel->abfd == NULL); 4933 } 4934 4935 4936 static bfd_vma 4937 r_reloc_get_target_offset (const r_reloc *r_rel) 4938 { 4939 bfd_vma target_offset; 4940 unsigned long r_symndx; 4941 4942 BFD_ASSERT (!r_reloc_is_const (r_rel)); 4943 r_symndx = ELF32_R_SYM (r_rel->rela.r_info); 4944 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx); 4945 return (target_offset + r_rel->rela.r_addend); 4946 } 4947 4948 4949 static struct elf_link_hash_entry * 4950 r_reloc_get_hash_entry (const r_reloc *r_rel) 4951 { 4952 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); 4953 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx); 4954 } 4955 4956 4957 static asection * 4958 r_reloc_get_section (const r_reloc *r_rel) 4959 { 4960 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info); 4961 return get_elf_r_symndx_section (r_rel->abfd, r_symndx); 4962 } 4963 4964 4965 static bfd_boolean 4966 r_reloc_is_defined (const r_reloc *r_rel) 4967 { 4968 asection *sec; 4969 if (r_rel == NULL) 4970 return FALSE; 4971 4972 sec = r_reloc_get_section (r_rel); 4973 if (sec == bfd_abs_section_ptr 4974 || sec == bfd_com_section_ptr 4975 || sec == bfd_und_section_ptr) 4976 return FALSE; 4977 return TRUE; 4978 } 4979 4980 4981 static void 4982 r_reloc_init (r_reloc *r_rel, 4983 bfd *abfd, 4984 Elf_Internal_Rela *irel, 4985 bfd_byte *contents, 4986 bfd_size_type content_length) 4987 { 4988 int r_type; 4989 reloc_howto_type *howto; 4990 4991 if (irel) 4992 { 4993 r_rel->rela = *irel; 4994 r_rel->abfd = abfd; 4995 r_rel->target_offset = r_reloc_get_target_offset (r_rel); 4996 r_rel->virtual_offset = 0; 4997 r_type = ELF32_R_TYPE (r_rel->rela.r_info); 4998 howto = &elf_howto_table[r_type]; 4999 if (howto->partial_inplace) 5000 { 5001 bfd_vma inplace_val; 5002 BFD_ASSERT (r_rel->rela.r_offset < content_length); 5003 5004 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]); 5005 r_rel->target_offset += inplace_val; 5006 } 5007 } 5008 else 5009 memset (r_rel, 0, sizeof (r_reloc)); 5010 } 5011 5012 5013 #if DEBUG 5014 5015 static void 5016 print_r_reloc (FILE *fp, const r_reloc *r_rel) 5017 { 5018 if (r_reloc_is_defined (r_rel)) 5019 { 5020 asection *sec = r_reloc_get_section (r_rel); 5021 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name); 5022 } 5023 else if (r_reloc_get_hash_entry (r_rel)) 5024 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string); 5025 else 5026 fprintf (fp, " ?? + "); 5027 5028 fprintf_vma (fp, r_rel->target_offset); 5029 if (r_rel->virtual_offset) 5030 { 5031 fprintf (fp, " + "); 5032 fprintf_vma (fp, r_rel->virtual_offset); 5033 } 5034 5035 fprintf (fp, ")"); 5036 } 5037 5038 #endif /* DEBUG */ 5039 5040 5041 /* source_reloc: relocations that reference literals. */ 5042 5043 /* To determine whether literals can be coalesced, we need to first 5044 record all the relocations that reference the literals. The 5045 source_reloc structure below is used for this purpose. The 5046 source_reloc entries are kept in a per-literal-section array, sorted 5047 by offset within the literal section (i.e., target offset). 5048 5049 The source_sec and r_rel.rela.r_offset fields identify the source of 5050 the relocation. The r_rel field records the relocation value, i.e., 5051 the offset of the literal being referenced. The opnd field is needed 5052 to determine the range of the immediate field to which the relocation 5053 applies, so we can determine whether another literal with the same 5054 value is within range. The is_null field is true when the relocation 5055 is being removed (e.g., when an L32R is being removed due to a CALLX 5056 that is converted to a direct CALL). */ 5057 5058 typedef struct source_reloc_struct source_reloc; 5059 5060 struct source_reloc_struct 5061 { 5062 asection *source_sec; 5063 r_reloc r_rel; 5064 xtensa_opcode opcode; 5065 int opnd; 5066 bfd_boolean is_null; 5067 bfd_boolean is_abs_literal; 5068 }; 5069 5070 5071 static void 5072 init_source_reloc (source_reloc *reloc, 5073 asection *source_sec, 5074 const r_reloc *r_rel, 5075 xtensa_opcode opcode, 5076 int opnd, 5077 bfd_boolean is_abs_literal) 5078 { 5079 reloc->source_sec = source_sec; 5080 reloc->r_rel = *r_rel; 5081 reloc->opcode = opcode; 5082 reloc->opnd = opnd; 5083 reloc->is_null = FALSE; 5084 reloc->is_abs_literal = is_abs_literal; 5085 } 5086 5087 5088 /* Find the source_reloc for a particular source offset and relocation 5089 type. Note that the array is sorted by _target_ offset, so this is 5090 just a linear search. */ 5091 5092 static source_reloc * 5093 find_source_reloc (source_reloc *src_relocs, 5094 int src_count, 5095 asection *sec, 5096 Elf_Internal_Rela *irel) 5097 { 5098 int i; 5099 5100 for (i = 0; i < src_count; i++) 5101 { 5102 if (src_relocs[i].source_sec == sec 5103 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset 5104 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info) 5105 == ELF32_R_TYPE (irel->r_info))) 5106 return &src_relocs[i]; 5107 } 5108 5109 return NULL; 5110 } 5111 5112 5113 static int 5114 source_reloc_compare (const void *ap, const void *bp) 5115 { 5116 const source_reloc *a = (const source_reloc *) ap; 5117 const source_reloc *b = (const source_reloc *) bp; 5118 5119 if (a->r_rel.target_offset != b->r_rel.target_offset) 5120 return (a->r_rel.target_offset - b->r_rel.target_offset); 5121 5122 /* We don't need to sort on these criteria for correctness, 5123 but enforcing a more strict ordering prevents unstable qsort 5124 from behaving differently with different implementations. 5125 Without the code below we get correct but different results 5126 on Solaris 2.7 and 2.8. We would like to always produce the 5127 same results no matter the host. */ 5128 5129 if ((!a->is_null) - (!b->is_null)) 5130 return ((!a->is_null) - (!b->is_null)); 5131 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela); 5132 } 5133 5134 5135 /* Literal values and value hash tables. */ 5136 5137 /* Literals with the same value can be coalesced. The literal_value 5138 structure records the value of a literal: the "r_rel" field holds the 5139 information from the relocation on the literal (if there is one) and 5140 the "value" field holds the contents of the literal word itself. 5141 5142 The value_map structure records a literal value along with the 5143 location of a literal holding that value. The value_map hash table 5144 is indexed by the literal value, so that we can quickly check if a 5145 particular literal value has been seen before and is thus a candidate 5146 for coalescing. */ 5147 5148 typedef struct literal_value_struct literal_value; 5149 typedef struct value_map_struct value_map; 5150 typedef struct value_map_hash_table_struct value_map_hash_table; 5151 5152 struct literal_value_struct 5153 { 5154 r_reloc r_rel; 5155 unsigned long value; 5156 bfd_boolean is_abs_literal; 5157 }; 5158 5159 struct value_map_struct 5160 { 5161 literal_value val; /* The literal value. */ 5162 r_reloc loc; /* Location of the literal. */ 5163 value_map *next; 5164 }; 5165 5166 struct value_map_hash_table_struct 5167 { 5168 unsigned bucket_count; 5169 value_map **buckets; 5170 unsigned count; 5171 bfd_boolean has_last_loc; 5172 r_reloc last_loc; 5173 }; 5174 5175 5176 static void 5177 init_literal_value (literal_value *lit, 5178 const r_reloc *r_rel, 5179 unsigned long value, 5180 bfd_boolean is_abs_literal) 5181 { 5182 lit->r_rel = *r_rel; 5183 lit->value = value; 5184 lit->is_abs_literal = is_abs_literal; 5185 } 5186 5187 5188 static bfd_boolean 5189 literal_value_equal (const literal_value *src1, 5190 const literal_value *src2, 5191 bfd_boolean final_static_link) 5192 { 5193 struct elf_link_hash_entry *h1, *h2; 5194 5195 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel)) 5196 return FALSE; 5197 5198 if (r_reloc_is_const (&src1->r_rel)) 5199 return (src1->value == src2->value); 5200 5201 if (ELF32_R_TYPE (src1->r_rel.rela.r_info) 5202 != ELF32_R_TYPE (src2->r_rel.rela.r_info)) 5203 return FALSE; 5204 5205 if (src1->r_rel.target_offset != src2->r_rel.target_offset) 5206 return FALSE; 5207 5208 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset) 5209 return FALSE; 5210 5211 if (src1->value != src2->value) 5212 return FALSE; 5213 5214 /* Now check for the same section (if defined) or the same elf_hash 5215 (if undefined or weak). */ 5216 h1 = r_reloc_get_hash_entry (&src1->r_rel); 5217 h2 = r_reloc_get_hash_entry (&src2->r_rel); 5218 if (r_reloc_is_defined (&src1->r_rel) 5219 && (final_static_link 5220 || ((!h1 || h1->root.type != bfd_link_hash_defweak) 5221 && (!h2 || h2->root.type != bfd_link_hash_defweak)))) 5222 { 5223 if (r_reloc_get_section (&src1->r_rel) 5224 != r_reloc_get_section (&src2->r_rel)) 5225 return FALSE; 5226 } 5227 else 5228 { 5229 /* Require that the hash entries (i.e., symbols) be identical. */ 5230 if (h1 != h2 || h1 == 0) 5231 return FALSE; 5232 } 5233 5234 if (src1->is_abs_literal != src2->is_abs_literal) 5235 return FALSE; 5236 5237 return TRUE; 5238 } 5239 5240 5241 /* Must be power of 2. */ 5242 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024 5243 5244 static value_map_hash_table * 5245 value_map_hash_table_init (void) 5246 { 5247 value_map_hash_table *values; 5248 5249 values = (value_map_hash_table *) 5250 bfd_zmalloc (sizeof (value_map_hash_table)); 5251 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT; 5252 values->count = 0; 5253 values->buckets = (value_map **) 5254 bfd_zmalloc (sizeof (value_map *) * values->bucket_count); 5255 if (values->buckets == NULL) 5256 { 5257 free (values); 5258 return NULL; 5259 } 5260 values->has_last_loc = FALSE; 5261 5262 return values; 5263 } 5264 5265 5266 static void 5267 value_map_hash_table_delete (value_map_hash_table *table) 5268 { 5269 free (table->buckets); 5270 free (table); 5271 } 5272 5273 5274 static unsigned 5275 hash_bfd_vma (bfd_vma val) 5276 { 5277 return (val >> 2) + (val >> 10); 5278 } 5279 5280 5281 static unsigned 5282 literal_value_hash (const literal_value *src) 5283 { 5284 unsigned hash_val; 5285 5286 hash_val = hash_bfd_vma (src->value); 5287 if (!r_reloc_is_const (&src->r_rel)) 5288 { 5289 void *sec_or_hash; 5290 5291 hash_val += hash_bfd_vma (src->is_abs_literal * 1000); 5292 hash_val += hash_bfd_vma (src->r_rel.target_offset); 5293 hash_val += hash_bfd_vma (src->r_rel.virtual_offset); 5294 5295 /* Now check for the same section and the same elf_hash. */ 5296 if (r_reloc_is_defined (&src->r_rel)) 5297 sec_or_hash = r_reloc_get_section (&src->r_rel); 5298 else 5299 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel); 5300 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash); 5301 } 5302 return hash_val; 5303 } 5304 5305 5306 /* Check if the specified literal_value has been seen before. */ 5307 5308 static value_map * 5309 value_map_get_cached_value (value_map_hash_table *map, 5310 const literal_value *val, 5311 bfd_boolean final_static_link) 5312 { 5313 value_map *map_e; 5314 value_map *bucket; 5315 unsigned idx; 5316 5317 idx = literal_value_hash (val); 5318 idx = idx & (map->bucket_count - 1); 5319 bucket = map->buckets[idx]; 5320 for (map_e = bucket; map_e; map_e = map_e->next) 5321 { 5322 if (literal_value_equal (&map_e->val, val, final_static_link)) 5323 return map_e; 5324 } 5325 return NULL; 5326 } 5327 5328 5329 /* Record a new literal value. It is illegal to call this if VALUE 5330 already has an entry here. */ 5331 5332 static value_map * 5333 add_value_map (value_map_hash_table *map, 5334 const literal_value *val, 5335 const r_reloc *loc, 5336 bfd_boolean final_static_link) 5337 { 5338 value_map **bucket_p; 5339 unsigned idx; 5340 5341 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map)); 5342 if (val_e == NULL) 5343 { 5344 bfd_set_error (bfd_error_no_memory); 5345 return NULL; 5346 } 5347 5348 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link)); 5349 val_e->val = *val; 5350 val_e->loc = *loc; 5351 5352 idx = literal_value_hash (val); 5353 idx = idx & (map->bucket_count - 1); 5354 bucket_p = &map->buckets[idx]; 5355 5356 val_e->next = *bucket_p; 5357 *bucket_p = val_e; 5358 map->count++; 5359 /* FIXME: Consider resizing the hash table if we get too many entries. */ 5360 5361 return val_e; 5362 } 5363 5364 5365 /* Lists of text actions (ta_) for narrowing, widening, longcall 5366 conversion, space fill, code & literal removal, etc. */ 5367 5368 /* The following text actions are generated: 5369 5370 "ta_remove_insn" remove an instruction or instructions 5371 "ta_remove_longcall" convert longcall to call 5372 "ta_convert_longcall" convert longcall to nop/call 5373 "ta_narrow_insn" narrow a wide instruction 5374 "ta_widen" widen a narrow instruction 5375 "ta_fill" add fill or remove fill 5376 removed < 0 is a fill; branches to the fill address will be 5377 changed to address + fill size (e.g., address - removed) 5378 removed >= 0 branches to the fill address will stay unchanged 5379 "ta_remove_literal" remove a literal; this action is 5380 indicated when a literal is removed 5381 or replaced. 5382 "ta_add_literal" insert a new literal; this action is 5383 indicated when a literal has been moved. 5384 It may use a virtual_offset because 5385 multiple literals can be placed at the 5386 same location. 5387 5388 For each of these text actions, we also record the number of bytes 5389 removed by performing the text action. In the case of a "ta_widen" 5390 or a "ta_fill" that adds space, the removed_bytes will be negative. */ 5391 5392 typedef struct text_action_struct text_action; 5393 typedef struct text_action_list_struct text_action_list; 5394 typedef enum text_action_enum_t text_action_t; 5395 5396 enum text_action_enum_t 5397 { 5398 ta_none, 5399 ta_remove_insn, /* removed = -size */ 5400 ta_remove_longcall, /* removed = -size */ 5401 ta_convert_longcall, /* removed = 0 */ 5402 ta_narrow_insn, /* removed = -1 */ 5403 ta_widen_insn, /* removed = +1 */ 5404 ta_fill, /* removed = +size */ 5405 ta_remove_literal, 5406 ta_add_literal 5407 }; 5408 5409 5410 /* Structure for a text action record. */ 5411 struct text_action_struct 5412 { 5413 text_action_t action; 5414 asection *sec; /* Optional */ 5415 bfd_vma offset; 5416 bfd_vma virtual_offset; /* Zero except for adding literals. */ 5417 int removed_bytes; 5418 literal_value value; /* Only valid when adding literals. */ 5419 5420 text_action *next; 5421 }; 5422 5423 5424 /* List of all of the actions taken on a text section. */ 5425 struct text_action_list_struct 5426 { 5427 text_action *head; 5428 }; 5429 5430 5431 static text_action * 5432 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset) 5433 { 5434 text_action **m_p; 5435 5436 /* It is not necessary to fill at the end of a section. */ 5437 if (sec->size == offset) 5438 return NULL; 5439 5440 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next) 5441 { 5442 text_action *t = *m_p; 5443 /* When the action is another fill at the same address, 5444 just increase the size. */ 5445 if (t->offset == offset && t->action == ta_fill) 5446 return t; 5447 } 5448 return NULL; 5449 } 5450 5451 5452 static int 5453 compute_removed_action_diff (const text_action *ta, 5454 asection *sec, 5455 bfd_vma offset, 5456 int removed, 5457 int removable_space) 5458 { 5459 int new_removed; 5460 int current_removed = 0; 5461 5462 if (ta) 5463 current_removed = ta->removed_bytes; 5464 5465 BFD_ASSERT (ta == NULL || ta->offset == offset); 5466 BFD_ASSERT (ta == NULL || ta->action == ta_fill); 5467 5468 /* It is not necessary to fill at the end of a section. Clean this up. */ 5469 if (sec->size == offset) 5470 new_removed = removable_space - 0; 5471 else 5472 { 5473 int space; 5474 int added = -removed - current_removed; 5475 /* Ignore multiples of the section alignment. */ 5476 added = ((1 << sec->alignment_power) - 1) & added; 5477 new_removed = (-added); 5478 5479 /* Modify for removable. */ 5480 space = removable_space - new_removed; 5481 new_removed = (removable_space 5482 - (((1 << sec->alignment_power) - 1) & space)); 5483 } 5484 return (new_removed - current_removed); 5485 } 5486 5487 5488 static void 5489 adjust_fill_action (text_action *ta, int fill_diff) 5490 { 5491 ta->removed_bytes += fill_diff; 5492 } 5493 5494 5495 /* Add a modification action to the text. For the case of adding or 5496 removing space, modify any current fill and assume that 5497 "unreachable_space" bytes can be freely contracted. Note that a 5498 negative removed value is a fill. */ 5499 5500 static void 5501 text_action_add (text_action_list *l, 5502 text_action_t action, 5503 asection *sec, 5504 bfd_vma offset, 5505 int removed) 5506 { 5507 text_action **m_p; 5508 text_action *ta; 5509 5510 /* It is not necessary to fill at the end of a section. */ 5511 if (action == ta_fill && sec->size == offset) 5512 return; 5513 5514 /* It is not necessary to fill 0 bytes. */ 5515 if (action == ta_fill && removed == 0) 5516 return; 5517 5518 for (m_p = &l->head; *m_p && (*m_p)->offset <= offset; m_p = &(*m_p)->next) 5519 { 5520 text_action *t = *m_p; 5521 5522 if (action == ta_fill) 5523 { 5524 /* When the action is another fill at the same address, 5525 just increase the size. */ 5526 if (t->offset == offset && t->action == ta_fill) 5527 { 5528 t->removed_bytes += removed; 5529 return; 5530 } 5531 /* Fills need to happen before widens so that we don't 5532 insert fill bytes into the instruction stream. */ 5533 if (t->offset == offset && t->action == ta_widen_insn) 5534 break; 5535 } 5536 } 5537 5538 /* Create a new record and fill it up. */ 5539 ta = (text_action *) bfd_zmalloc (sizeof (text_action)); 5540 ta->action = action; 5541 ta->sec = sec; 5542 ta->offset = offset; 5543 ta->removed_bytes = removed; 5544 ta->next = (*m_p); 5545 *m_p = ta; 5546 } 5547 5548 5549 static void 5550 text_action_add_literal (text_action_list *l, 5551 text_action_t action, 5552 const r_reloc *loc, 5553 const literal_value *value, 5554 int removed) 5555 { 5556 text_action **m_p; 5557 text_action *ta; 5558 asection *sec = r_reloc_get_section (loc); 5559 bfd_vma offset = loc->target_offset; 5560 bfd_vma virtual_offset = loc->virtual_offset; 5561 5562 BFD_ASSERT (action == ta_add_literal); 5563 5564 for (m_p = &l->head; *m_p != NULL; m_p = &(*m_p)->next) 5565 { 5566 if ((*m_p)->offset > offset 5567 && ((*m_p)->offset != offset 5568 || (*m_p)->virtual_offset > virtual_offset)) 5569 break; 5570 } 5571 5572 /* Create a new record and fill it up. */ 5573 ta = (text_action *) bfd_zmalloc (sizeof (text_action)); 5574 ta->action = action; 5575 ta->sec = sec; 5576 ta->offset = offset; 5577 ta->virtual_offset = virtual_offset; 5578 ta->value = *value; 5579 ta->removed_bytes = removed; 5580 ta->next = (*m_p); 5581 *m_p = ta; 5582 } 5583 5584 5585 /* Find the total offset adjustment for the relaxations specified by 5586 text_actions, beginning from a particular starting action. This is 5587 typically used from offset_with_removed_text to search an entire list of 5588 actions, but it may also be called directly when adjusting adjacent offsets 5589 so that each search may begin where the previous one left off. */ 5590 5591 static int 5592 removed_by_actions (text_action **p_start_action, 5593 bfd_vma offset, 5594 bfd_boolean before_fill) 5595 { 5596 text_action *r; 5597 int removed = 0; 5598 5599 r = *p_start_action; 5600 while (r) 5601 { 5602 if (r->offset > offset) 5603 break; 5604 5605 if (r->offset == offset 5606 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0)) 5607 break; 5608 5609 removed += r->removed_bytes; 5610 5611 r = r->next; 5612 } 5613 5614 *p_start_action = r; 5615 return removed; 5616 } 5617 5618 5619 static bfd_vma 5620 offset_with_removed_text (text_action_list *action_list, bfd_vma offset) 5621 { 5622 text_action *r = action_list->head; 5623 return offset - removed_by_actions (&r, offset, FALSE); 5624 } 5625 5626 5627 static unsigned 5628 action_list_count (text_action_list *action_list) 5629 { 5630 text_action *r = action_list->head; 5631 unsigned count = 0; 5632 for (r = action_list->head; r != NULL; r = r->next) 5633 { 5634 count++; 5635 } 5636 return count; 5637 } 5638 5639 5640 /* The find_insn_action routine will only find non-fill actions. */ 5641 5642 static text_action * 5643 find_insn_action (text_action_list *action_list, bfd_vma offset) 5644 { 5645 text_action *t; 5646 for (t = action_list->head; t; t = t->next) 5647 { 5648 if (t->offset == offset) 5649 { 5650 switch (t->action) 5651 { 5652 case ta_none: 5653 case ta_fill: 5654 break; 5655 case ta_remove_insn: 5656 case ta_remove_longcall: 5657 case ta_convert_longcall: 5658 case ta_narrow_insn: 5659 case ta_widen_insn: 5660 return t; 5661 case ta_remove_literal: 5662 case ta_add_literal: 5663 BFD_ASSERT (0); 5664 break; 5665 } 5666 } 5667 } 5668 return NULL; 5669 } 5670 5671 5672 #if DEBUG 5673 5674 static void 5675 print_action_list (FILE *fp, text_action_list *action_list) 5676 { 5677 text_action *r; 5678 5679 fprintf (fp, "Text Action\n"); 5680 for (r = action_list->head; r != NULL; r = r->next) 5681 { 5682 const char *t = "unknown"; 5683 switch (r->action) 5684 { 5685 case ta_remove_insn: 5686 t = "remove_insn"; break; 5687 case ta_remove_longcall: 5688 t = "remove_longcall"; break; 5689 case ta_convert_longcall: 5690 t = "convert_longcall"; break; 5691 case ta_narrow_insn: 5692 t = "narrow_insn"; break; 5693 case ta_widen_insn: 5694 t = "widen_insn"; break; 5695 case ta_fill: 5696 t = "fill"; break; 5697 case ta_none: 5698 t = "none"; break; 5699 case ta_remove_literal: 5700 t = "remove_literal"; break; 5701 case ta_add_literal: 5702 t = "add_literal"; break; 5703 } 5704 5705 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n", 5706 r->sec->owner->filename, 5707 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes); 5708 } 5709 } 5710 5711 #endif /* DEBUG */ 5712 5713 5714 /* Lists of literals being coalesced or removed. */ 5715 5716 /* In the usual case, the literal identified by "from" is being 5717 coalesced with another literal identified by "to". If the literal is 5718 unused and is being removed altogether, "to.abfd" will be NULL. 5719 The removed_literal entries are kept on a per-section list, sorted 5720 by the "from" offset field. */ 5721 5722 typedef struct removed_literal_struct removed_literal; 5723 typedef struct removed_literal_list_struct removed_literal_list; 5724 5725 struct removed_literal_struct 5726 { 5727 r_reloc from; 5728 r_reloc to; 5729 removed_literal *next; 5730 }; 5731 5732 struct removed_literal_list_struct 5733 { 5734 removed_literal *head; 5735 removed_literal *tail; 5736 }; 5737 5738 5739 /* Record that the literal at "from" is being removed. If "to" is not 5740 NULL, the "from" literal is being coalesced with the "to" literal. */ 5741 5742 static void 5743 add_removed_literal (removed_literal_list *removed_list, 5744 const r_reloc *from, 5745 const r_reloc *to) 5746 { 5747 removed_literal *r, *new_r, *next_r; 5748 5749 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal)); 5750 5751 new_r->from = *from; 5752 if (to) 5753 new_r->to = *to; 5754 else 5755 new_r->to.abfd = NULL; 5756 new_r->next = NULL; 5757 5758 r = removed_list->head; 5759 if (r == NULL) 5760 { 5761 removed_list->head = new_r; 5762 removed_list->tail = new_r; 5763 } 5764 /* Special check for common case of append. */ 5765 else if (removed_list->tail->from.target_offset < from->target_offset) 5766 { 5767 removed_list->tail->next = new_r; 5768 removed_list->tail = new_r; 5769 } 5770 else 5771 { 5772 while (r->from.target_offset < from->target_offset && r->next) 5773 { 5774 r = r->next; 5775 } 5776 next_r = r->next; 5777 r->next = new_r; 5778 new_r->next = next_r; 5779 if (next_r == NULL) 5780 removed_list->tail = new_r; 5781 } 5782 } 5783 5784 5785 /* Check if the list of removed literals contains an entry for the 5786 given address. Return the entry if found. */ 5787 5788 static removed_literal * 5789 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr) 5790 { 5791 removed_literal *r = removed_list->head; 5792 while (r && r->from.target_offset < addr) 5793 r = r->next; 5794 if (r && r->from.target_offset == addr) 5795 return r; 5796 return NULL; 5797 } 5798 5799 5800 #if DEBUG 5801 5802 static void 5803 print_removed_literals (FILE *fp, removed_literal_list *removed_list) 5804 { 5805 removed_literal *r; 5806 r = removed_list->head; 5807 if (r) 5808 fprintf (fp, "Removed Literals\n"); 5809 for (; r != NULL; r = r->next) 5810 { 5811 print_r_reloc (fp, &r->from); 5812 fprintf (fp, " => "); 5813 if (r->to.abfd == NULL) 5814 fprintf (fp, "REMOVED"); 5815 else 5816 print_r_reloc (fp, &r->to); 5817 fprintf (fp, "\n"); 5818 } 5819 } 5820 5821 #endif /* DEBUG */ 5822 5823 5824 /* Per-section data for relaxation. */ 5825 5826 typedef struct reloc_bfd_fix_struct reloc_bfd_fix; 5827 5828 struct xtensa_relax_info_struct 5829 { 5830 bfd_boolean is_relaxable_literal_section; 5831 bfd_boolean is_relaxable_asm_section; 5832 int visited; /* Number of times visited. */ 5833 5834 source_reloc *src_relocs; /* Array[src_count]. */ 5835 int src_count; 5836 int src_next; /* Next src_relocs entry to assign. */ 5837 5838 removed_literal_list removed_list; 5839 text_action_list action_list; 5840 5841 reloc_bfd_fix *fix_list; 5842 reloc_bfd_fix *fix_array; 5843 unsigned fix_array_count; 5844 5845 /* Support for expanding the reloc array that is stored 5846 in the section structure. If the relocations have been 5847 reallocated, the newly allocated relocations will be referenced 5848 here along with the actual size allocated. The relocation 5849 count will always be found in the section structure. */ 5850 Elf_Internal_Rela *allocated_relocs; 5851 unsigned relocs_count; 5852 unsigned allocated_relocs_count; 5853 }; 5854 5855 struct elf_xtensa_section_data 5856 { 5857 struct bfd_elf_section_data elf; 5858 xtensa_relax_info relax_info; 5859 }; 5860 5861 5862 static bfd_boolean 5863 elf_xtensa_new_section_hook (bfd *abfd, asection *sec) 5864 { 5865 if (!sec->used_by_bfd) 5866 { 5867 struct elf_xtensa_section_data *sdata; 5868 bfd_size_type amt = sizeof (*sdata); 5869 5870 sdata = bfd_zalloc (abfd, amt); 5871 if (sdata == NULL) 5872 return FALSE; 5873 sec->used_by_bfd = sdata; 5874 } 5875 5876 return _bfd_elf_new_section_hook (abfd, sec); 5877 } 5878 5879 5880 static xtensa_relax_info * 5881 get_xtensa_relax_info (asection *sec) 5882 { 5883 struct elf_xtensa_section_data *section_data; 5884 5885 /* No info available if no section or if it is an output section. */ 5886 if (!sec || sec == sec->output_section) 5887 return NULL; 5888 5889 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec); 5890 return §ion_data->relax_info; 5891 } 5892 5893 5894 static void 5895 init_xtensa_relax_info (asection *sec) 5896 { 5897 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); 5898 5899 relax_info->is_relaxable_literal_section = FALSE; 5900 relax_info->is_relaxable_asm_section = FALSE; 5901 relax_info->visited = 0; 5902 5903 relax_info->src_relocs = NULL; 5904 relax_info->src_count = 0; 5905 relax_info->src_next = 0; 5906 5907 relax_info->removed_list.head = NULL; 5908 relax_info->removed_list.tail = NULL; 5909 5910 relax_info->action_list.head = NULL; 5911 5912 relax_info->fix_list = NULL; 5913 relax_info->fix_array = NULL; 5914 relax_info->fix_array_count = 0; 5915 5916 relax_info->allocated_relocs = NULL; 5917 relax_info->relocs_count = 0; 5918 relax_info->allocated_relocs_count = 0; 5919 } 5920 5921 5922 /* Coalescing literals may require a relocation to refer to a section in 5923 a different input file, but the standard relocation information 5924 cannot express that. Instead, the reloc_bfd_fix structures are used 5925 to "fix" the relocations that refer to sections in other input files. 5926 These structures are kept on per-section lists. The "src_type" field 5927 records the relocation type in case there are multiple relocations on 5928 the same location. FIXME: This is ugly; an alternative might be to 5929 add new symbols with the "owner" field to some other input file. */ 5930 5931 struct reloc_bfd_fix_struct 5932 { 5933 asection *src_sec; 5934 bfd_vma src_offset; 5935 unsigned src_type; /* Relocation type. */ 5936 5937 asection *target_sec; 5938 bfd_vma target_offset; 5939 bfd_boolean translated; 5940 5941 reloc_bfd_fix *next; 5942 }; 5943 5944 5945 static reloc_bfd_fix * 5946 reloc_bfd_fix_init (asection *src_sec, 5947 bfd_vma src_offset, 5948 unsigned src_type, 5949 asection *target_sec, 5950 bfd_vma target_offset, 5951 bfd_boolean translated) 5952 { 5953 reloc_bfd_fix *fix; 5954 5955 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix)); 5956 fix->src_sec = src_sec; 5957 fix->src_offset = src_offset; 5958 fix->src_type = src_type; 5959 fix->target_sec = target_sec; 5960 fix->target_offset = target_offset; 5961 fix->translated = translated; 5962 5963 return fix; 5964 } 5965 5966 5967 static void 5968 add_fix (asection *src_sec, reloc_bfd_fix *fix) 5969 { 5970 xtensa_relax_info *relax_info; 5971 5972 relax_info = get_xtensa_relax_info (src_sec); 5973 fix->next = relax_info->fix_list; 5974 relax_info->fix_list = fix; 5975 } 5976 5977 5978 static int 5979 fix_compare (const void *ap, const void *bp) 5980 { 5981 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap; 5982 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp; 5983 5984 if (a->src_offset != b->src_offset) 5985 return (a->src_offset - b->src_offset); 5986 return (a->src_type - b->src_type); 5987 } 5988 5989 5990 static void 5991 cache_fix_array (asection *sec) 5992 { 5993 unsigned i, count = 0; 5994 reloc_bfd_fix *r; 5995 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); 5996 5997 if (relax_info == NULL) 5998 return; 5999 if (relax_info->fix_list == NULL) 6000 return; 6001 6002 for (r = relax_info->fix_list; r != NULL; r = r->next) 6003 count++; 6004 6005 relax_info->fix_array = 6006 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count); 6007 relax_info->fix_array_count = count; 6008 6009 r = relax_info->fix_list; 6010 for (i = 0; i < count; i++, r = r->next) 6011 { 6012 relax_info->fix_array[count - 1 - i] = *r; 6013 relax_info->fix_array[count - 1 - i].next = NULL; 6014 } 6015 6016 qsort (relax_info->fix_array, relax_info->fix_array_count, 6017 sizeof (reloc_bfd_fix), fix_compare); 6018 } 6019 6020 6021 static reloc_bfd_fix * 6022 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type) 6023 { 6024 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec); 6025 reloc_bfd_fix *rv; 6026 reloc_bfd_fix key; 6027 6028 if (relax_info == NULL) 6029 return NULL; 6030 if (relax_info->fix_list == NULL) 6031 return NULL; 6032 6033 if (relax_info->fix_array == NULL) 6034 cache_fix_array (sec); 6035 6036 key.src_offset = offset; 6037 key.src_type = type; 6038 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count, 6039 sizeof (reloc_bfd_fix), fix_compare); 6040 return rv; 6041 } 6042 6043 6044 /* Section caching. */ 6045 6046 typedef struct section_cache_struct section_cache_t; 6047 6048 struct section_cache_struct 6049 { 6050 asection *sec; 6051 6052 bfd_byte *contents; /* Cache of the section contents. */ 6053 bfd_size_type content_length; 6054 6055 property_table_entry *ptbl; /* Cache of the section property table. */ 6056 unsigned pte_count; 6057 6058 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ 6059 unsigned reloc_count; 6060 }; 6061 6062 6063 static void 6064 init_section_cache (section_cache_t *sec_cache) 6065 { 6066 memset (sec_cache, 0, sizeof (*sec_cache)); 6067 } 6068 6069 6070 static void 6071 free_section_cache (section_cache_t *sec_cache) 6072 { 6073 if (sec_cache->sec) 6074 { 6075 release_contents (sec_cache->sec, sec_cache->contents); 6076 release_internal_relocs (sec_cache->sec, sec_cache->relocs); 6077 if (sec_cache->ptbl) 6078 free (sec_cache->ptbl); 6079 } 6080 } 6081 6082 6083 static bfd_boolean 6084 section_cache_section (section_cache_t *sec_cache, 6085 asection *sec, 6086 struct bfd_link_info *link_info) 6087 { 6088 bfd *abfd; 6089 property_table_entry *prop_table = NULL; 6090 int ptblsize = 0; 6091 bfd_byte *contents = NULL; 6092 Elf_Internal_Rela *internal_relocs = NULL; 6093 bfd_size_type sec_size; 6094 6095 if (sec == NULL) 6096 return FALSE; 6097 if (sec == sec_cache->sec) 6098 return TRUE; 6099 6100 abfd = sec->owner; 6101 sec_size = bfd_get_section_limit (abfd, sec); 6102 6103 /* Get the contents. */ 6104 contents = retrieve_contents (abfd, sec, link_info->keep_memory); 6105 if (contents == NULL && sec_size != 0) 6106 goto err; 6107 6108 /* Get the relocations. */ 6109 internal_relocs = retrieve_internal_relocs (abfd, sec, 6110 link_info->keep_memory); 6111 6112 /* Get the entry table. */ 6113 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, 6114 XTENSA_PROP_SEC_NAME, FALSE); 6115 if (ptblsize < 0) 6116 goto err; 6117 6118 /* Fill in the new section cache. */ 6119 free_section_cache (sec_cache); 6120 init_section_cache (sec_cache); 6121 6122 sec_cache->sec = sec; 6123 sec_cache->contents = contents; 6124 sec_cache->content_length = sec_size; 6125 sec_cache->relocs = internal_relocs; 6126 sec_cache->reloc_count = sec->reloc_count; 6127 sec_cache->pte_count = ptblsize; 6128 sec_cache->ptbl = prop_table; 6129 6130 return TRUE; 6131 6132 err: 6133 release_contents (sec, contents); 6134 release_internal_relocs (sec, internal_relocs); 6135 if (prop_table) 6136 free (prop_table); 6137 return FALSE; 6138 } 6139 6140 6141 /* Extended basic blocks. */ 6142 6143 /* An ebb_struct represents an Extended Basic Block. Within this 6144 range, we guarantee that all instructions are decodable, the 6145 property table entries are contiguous, and no property table 6146 specifies a segment that cannot have instructions moved. This 6147 structure contains caches of the contents, property table and 6148 relocations for the specified section for easy use. The range is 6149 specified by ranges of indices for the byte offset, property table 6150 offsets and relocation offsets. These must be consistent. */ 6151 6152 typedef struct ebb_struct ebb_t; 6153 6154 struct ebb_struct 6155 { 6156 asection *sec; 6157 6158 bfd_byte *contents; /* Cache of the section contents. */ 6159 bfd_size_type content_length; 6160 6161 property_table_entry *ptbl; /* Cache of the section property table. */ 6162 unsigned pte_count; 6163 6164 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */ 6165 unsigned reloc_count; 6166 6167 bfd_vma start_offset; /* Offset in section. */ 6168 unsigned start_ptbl_idx; /* Offset in the property table. */ 6169 unsigned start_reloc_idx; /* Offset in the relocations. */ 6170 6171 bfd_vma end_offset; 6172 unsigned end_ptbl_idx; 6173 unsigned end_reloc_idx; 6174 6175 bfd_boolean ends_section; /* Is this the last ebb in a section? */ 6176 6177 /* The unreachable property table at the end of this set of blocks; 6178 NULL if the end is not an unreachable block. */ 6179 property_table_entry *ends_unreachable; 6180 }; 6181 6182 6183 enum ebb_target_enum 6184 { 6185 EBB_NO_ALIGN = 0, 6186 EBB_DESIRE_TGT_ALIGN, 6187 EBB_REQUIRE_TGT_ALIGN, 6188 EBB_REQUIRE_LOOP_ALIGN, 6189 EBB_REQUIRE_ALIGN 6190 }; 6191 6192 6193 /* proposed_action_struct is similar to the text_action_struct except 6194 that is represents a potential transformation, not one that will 6195 occur. We build a list of these for an extended basic block 6196 and use them to compute the actual actions desired. We must be 6197 careful that the entire set of actual actions we perform do not 6198 break any relocations that would fit if the actions were not 6199 performed. */ 6200 6201 typedef struct proposed_action_struct proposed_action; 6202 6203 struct proposed_action_struct 6204 { 6205 enum ebb_target_enum align_type; /* for the target alignment */ 6206 bfd_vma alignment_pow; 6207 text_action_t action; 6208 bfd_vma offset; 6209 int removed_bytes; 6210 bfd_boolean do_action; /* If false, then we will not perform the action. */ 6211 }; 6212 6213 6214 /* The ebb_constraint_struct keeps a set of proposed actions for an 6215 extended basic block. */ 6216 6217 typedef struct ebb_constraint_struct ebb_constraint; 6218 6219 struct ebb_constraint_struct 6220 { 6221 ebb_t ebb; 6222 bfd_boolean start_movable; 6223 6224 /* Bytes of extra space at the beginning if movable. */ 6225 int start_extra_space; 6226 6227 enum ebb_target_enum start_align; 6228 6229 bfd_boolean end_movable; 6230 6231 /* Bytes of extra space at the end if movable. */ 6232 int end_extra_space; 6233 6234 unsigned action_count; 6235 unsigned action_allocated; 6236 6237 /* Array of proposed actions. */ 6238 proposed_action *actions; 6239 6240 /* Action alignments -- one for each proposed action. */ 6241 enum ebb_target_enum *action_aligns; 6242 }; 6243 6244 6245 static void 6246 init_ebb_constraint (ebb_constraint *c) 6247 { 6248 memset (c, 0, sizeof (ebb_constraint)); 6249 } 6250 6251 6252 static void 6253 free_ebb_constraint (ebb_constraint *c) 6254 { 6255 if (c->actions) 6256 free (c->actions); 6257 } 6258 6259 6260 static void 6261 init_ebb (ebb_t *ebb, 6262 asection *sec, 6263 bfd_byte *contents, 6264 bfd_size_type content_length, 6265 property_table_entry *prop_table, 6266 unsigned ptblsize, 6267 Elf_Internal_Rela *internal_relocs, 6268 unsigned reloc_count) 6269 { 6270 memset (ebb, 0, sizeof (ebb_t)); 6271 ebb->sec = sec; 6272 ebb->contents = contents; 6273 ebb->content_length = content_length; 6274 ebb->ptbl = prop_table; 6275 ebb->pte_count = ptblsize; 6276 ebb->relocs = internal_relocs; 6277 ebb->reloc_count = reloc_count; 6278 ebb->start_offset = 0; 6279 ebb->end_offset = ebb->content_length - 1; 6280 ebb->start_ptbl_idx = 0; 6281 ebb->end_ptbl_idx = ptblsize; 6282 ebb->start_reloc_idx = 0; 6283 ebb->end_reloc_idx = reloc_count; 6284 } 6285 6286 6287 /* Extend the ebb to all decodable contiguous sections. The algorithm 6288 for building a basic block around an instruction is to push it 6289 forward until we hit the end of a section, an unreachable block or 6290 a block that cannot be transformed. Then we push it backwards 6291 searching for similar conditions. */ 6292 6293 static bfd_boolean extend_ebb_bounds_forward (ebb_t *); 6294 static bfd_boolean extend_ebb_bounds_backward (ebb_t *); 6295 static bfd_size_type insn_block_decodable_len 6296 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type); 6297 6298 static bfd_boolean 6299 extend_ebb_bounds (ebb_t *ebb) 6300 { 6301 if (!extend_ebb_bounds_forward (ebb)) 6302 return FALSE; 6303 if (!extend_ebb_bounds_backward (ebb)) 6304 return FALSE; 6305 return TRUE; 6306 } 6307 6308 6309 static bfd_boolean 6310 extend_ebb_bounds_forward (ebb_t *ebb) 6311 { 6312 property_table_entry *the_entry, *new_entry; 6313 6314 the_entry = &ebb->ptbl[ebb->end_ptbl_idx]; 6315 6316 /* Stop when (1) we cannot decode an instruction, (2) we are at 6317 the end of the property tables, (3) we hit a non-contiguous property 6318 table entry, (4) we hit a NO_TRANSFORM region. */ 6319 6320 while (1) 6321 { 6322 bfd_vma entry_end; 6323 bfd_size_type insn_block_len; 6324 6325 entry_end = the_entry->address - ebb->sec->vma + the_entry->size; 6326 insn_block_len = 6327 insn_block_decodable_len (ebb->contents, ebb->content_length, 6328 ebb->end_offset, 6329 entry_end - ebb->end_offset); 6330 if (insn_block_len != (entry_end - ebb->end_offset)) 6331 { 6332 (*_bfd_error_handler) 6333 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), 6334 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len); 6335 return FALSE; 6336 } 6337 ebb->end_offset += insn_block_len; 6338 6339 if (ebb->end_offset == ebb->sec->size) 6340 ebb->ends_section = TRUE; 6341 6342 /* Update the reloc counter. */ 6343 while (ebb->end_reloc_idx + 1 < ebb->reloc_count 6344 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset 6345 < ebb->end_offset)) 6346 { 6347 ebb->end_reloc_idx++; 6348 } 6349 6350 if (ebb->end_ptbl_idx + 1 == ebb->pte_count) 6351 return TRUE; 6352 6353 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; 6354 if (((new_entry->flags & XTENSA_PROP_INSN) == 0) 6355 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) 6356 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0)) 6357 break; 6358 6359 if (the_entry->address + the_entry->size != new_entry->address) 6360 break; 6361 6362 the_entry = new_entry; 6363 ebb->end_ptbl_idx++; 6364 } 6365 6366 /* Quick check for an unreachable or end of file just at the end. */ 6367 if (ebb->end_ptbl_idx + 1 == ebb->pte_count) 6368 { 6369 if (ebb->end_offset == ebb->content_length) 6370 ebb->ends_section = TRUE; 6371 } 6372 else 6373 { 6374 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1]; 6375 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0 6376 && the_entry->address + the_entry->size == new_entry->address) 6377 ebb->ends_unreachable = new_entry; 6378 } 6379 6380 /* Any other ending requires exact alignment. */ 6381 return TRUE; 6382 } 6383 6384 6385 static bfd_boolean 6386 extend_ebb_bounds_backward (ebb_t *ebb) 6387 { 6388 property_table_entry *the_entry, *new_entry; 6389 6390 the_entry = &ebb->ptbl[ebb->start_ptbl_idx]; 6391 6392 /* Stop when (1) we cannot decode the instructions in the current entry. 6393 (2) we are at the beginning of the property tables, (3) we hit a 6394 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */ 6395 6396 while (1) 6397 { 6398 bfd_vma block_begin; 6399 bfd_size_type insn_block_len; 6400 6401 block_begin = the_entry->address - ebb->sec->vma; 6402 insn_block_len = 6403 insn_block_decodable_len (ebb->contents, ebb->content_length, 6404 block_begin, 6405 ebb->start_offset - block_begin); 6406 if (insn_block_len != ebb->start_offset - block_begin) 6407 { 6408 (*_bfd_error_handler) 6409 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), 6410 ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len); 6411 return FALSE; 6412 } 6413 ebb->start_offset -= insn_block_len; 6414 6415 /* Update the reloc counter. */ 6416 while (ebb->start_reloc_idx > 0 6417 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset 6418 >= ebb->start_offset)) 6419 { 6420 ebb->start_reloc_idx--; 6421 } 6422 6423 if (ebb->start_ptbl_idx == 0) 6424 return TRUE; 6425 6426 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1]; 6427 if ((new_entry->flags & XTENSA_PROP_INSN) == 0 6428 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0) 6429 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0)) 6430 return TRUE; 6431 if (new_entry->address + new_entry->size != the_entry->address) 6432 return TRUE; 6433 6434 the_entry = new_entry; 6435 ebb->start_ptbl_idx--; 6436 } 6437 return TRUE; 6438 } 6439 6440 6441 static bfd_size_type 6442 insn_block_decodable_len (bfd_byte *contents, 6443 bfd_size_type content_len, 6444 bfd_vma block_offset, 6445 bfd_size_type block_len) 6446 { 6447 bfd_vma offset = block_offset; 6448 6449 while (offset < block_offset + block_len) 6450 { 6451 bfd_size_type insn_len = 0; 6452 6453 insn_len = insn_decode_len (contents, content_len, offset); 6454 if (insn_len == 0) 6455 return (offset - block_offset); 6456 offset += insn_len; 6457 } 6458 return (offset - block_offset); 6459 } 6460 6461 6462 static void 6463 ebb_propose_action (ebb_constraint *c, 6464 enum ebb_target_enum align_type, 6465 bfd_vma alignment_pow, 6466 text_action_t action, 6467 bfd_vma offset, 6468 int removed_bytes, 6469 bfd_boolean do_action) 6470 { 6471 proposed_action *act; 6472 6473 if (c->action_allocated <= c->action_count) 6474 { 6475 unsigned new_allocated, i; 6476 proposed_action *new_actions; 6477 6478 new_allocated = (c->action_count + 2) * 2; 6479 new_actions = (proposed_action *) 6480 bfd_zmalloc (sizeof (proposed_action) * new_allocated); 6481 6482 for (i = 0; i < c->action_count; i++) 6483 new_actions[i] = c->actions[i]; 6484 if (c->actions) 6485 free (c->actions); 6486 c->actions = new_actions; 6487 c->action_allocated = new_allocated; 6488 } 6489 6490 act = &c->actions[c->action_count]; 6491 act->align_type = align_type; 6492 act->alignment_pow = alignment_pow; 6493 act->action = action; 6494 act->offset = offset; 6495 act->removed_bytes = removed_bytes; 6496 act->do_action = do_action; 6497 6498 c->action_count++; 6499 } 6500 6501 6502 /* Access to internal relocations, section contents and symbols. */ 6503 6504 /* During relaxation, we need to modify relocations, section contents, 6505 and symbol definitions, and we need to keep the original values from 6506 being reloaded from the input files, i.e., we need to "pin" the 6507 modified values in memory. We also want to continue to observe the 6508 setting of the "keep-memory" flag. The following functions wrap the 6509 standard BFD functions to take care of this for us. */ 6510 6511 static Elf_Internal_Rela * 6512 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory) 6513 { 6514 Elf_Internal_Rela *internal_relocs; 6515 6516 if ((sec->flags & SEC_LINKER_CREATED) != 0) 6517 return NULL; 6518 6519 internal_relocs = elf_section_data (sec)->relocs; 6520 if (internal_relocs == NULL) 6521 internal_relocs = (_bfd_elf_link_read_relocs 6522 (abfd, sec, NULL, NULL, keep_memory)); 6523 return internal_relocs; 6524 } 6525 6526 6527 static void 6528 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) 6529 { 6530 elf_section_data (sec)->relocs = internal_relocs; 6531 } 6532 6533 6534 static void 6535 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs) 6536 { 6537 if (internal_relocs 6538 && elf_section_data (sec)->relocs != internal_relocs) 6539 free (internal_relocs); 6540 } 6541 6542 6543 static bfd_byte * 6544 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory) 6545 { 6546 bfd_byte *contents; 6547 bfd_size_type sec_size; 6548 6549 sec_size = bfd_get_section_limit (abfd, sec); 6550 contents = elf_section_data (sec)->this_hdr.contents; 6551 6552 if (contents == NULL && sec_size != 0) 6553 { 6554 if (!bfd_malloc_and_get_section (abfd, sec, &contents)) 6555 { 6556 if (contents) 6557 free (contents); 6558 return NULL; 6559 } 6560 if (keep_memory) 6561 elf_section_data (sec)->this_hdr.contents = contents; 6562 } 6563 return contents; 6564 } 6565 6566 6567 static void 6568 pin_contents (asection *sec, bfd_byte *contents) 6569 { 6570 elf_section_data (sec)->this_hdr.contents = contents; 6571 } 6572 6573 6574 static void 6575 release_contents (asection *sec, bfd_byte *contents) 6576 { 6577 if (contents && elf_section_data (sec)->this_hdr.contents != contents) 6578 free (contents); 6579 } 6580 6581 6582 static Elf_Internal_Sym * 6583 retrieve_local_syms (bfd *input_bfd) 6584 { 6585 Elf_Internal_Shdr *symtab_hdr; 6586 Elf_Internal_Sym *isymbuf; 6587 size_t locsymcount; 6588 6589 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 6590 locsymcount = symtab_hdr->sh_info; 6591 6592 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 6593 if (isymbuf == NULL && locsymcount != 0) 6594 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, 6595 NULL, NULL, NULL); 6596 6597 /* Save the symbols for this input file so they won't be read again. */ 6598 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents) 6599 symtab_hdr->contents = (unsigned char *) isymbuf; 6600 6601 return isymbuf; 6602 } 6603 6604 6605 /* Code for link-time relaxation. */ 6606 6607 /* Initialization for relaxation: */ 6608 static bfd_boolean analyze_relocations (struct bfd_link_info *); 6609 static bfd_boolean find_relaxable_sections 6610 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *); 6611 static bfd_boolean collect_source_relocs 6612 (bfd *, asection *, struct bfd_link_info *); 6613 static bfd_boolean is_resolvable_asm_expansion 6614 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *, 6615 bfd_boolean *); 6616 static Elf_Internal_Rela *find_associated_l32r_irel 6617 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *); 6618 static bfd_boolean compute_text_actions 6619 (bfd *, asection *, struct bfd_link_info *); 6620 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *); 6621 static bfd_boolean compute_ebb_actions (ebb_constraint *); 6622 static bfd_boolean check_section_ebb_pcrels_fit 6623 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, const ebb_constraint *, 6624 const xtensa_opcode *); 6625 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *); 6626 static void text_action_add_proposed 6627 (text_action_list *, const ebb_constraint *, asection *); 6628 static int compute_fill_extra_space (property_table_entry *); 6629 6630 /* First pass: */ 6631 static bfd_boolean compute_removed_literals 6632 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *); 6633 static Elf_Internal_Rela *get_irel_at_offset 6634 (asection *, Elf_Internal_Rela *, bfd_vma); 6635 static bfd_boolean is_removable_literal 6636 (const source_reloc *, int, const source_reloc *, int, asection *, 6637 property_table_entry *, int); 6638 static bfd_boolean remove_dead_literal 6639 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *, 6640 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int); 6641 static bfd_boolean identify_literal_placement 6642 (bfd *, asection *, bfd_byte *, struct bfd_link_info *, 6643 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int, 6644 source_reloc *, property_table_entry *, int, section_cache_t *, 6645 bfd_boolean); 6646 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *); 6647 static bfd_boolean coalesce_shared_literal 6648 (asection *, source_reloc *, property_table_entry *, int, value_map *); 6649 static bfd_boolean move_shared_literal 6650 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *, 6651 int, const r_reloc *, const literal_value *, section_cache_t *); 6652 6653 /* Second pass: */ 6654 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *); 6655 static bfd_boolean translate_section_fixes (asection *); 6656 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *); 6657 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *); 6658 static void shrink_dynamic_reloc_sections 6659 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *); 6660 static bfd_boolean move_literal 6661 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *, 6662 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *); 6663 static bfd_boolean relax_property_section 6664 (bfd *, asection *, struct bfd_link_info *); 6665 6666 /* Third pass: */ 6667 static bfd_boolean relax_section_symbols (bfd *, asection *); 6668 6669 6670 static bfd_boolean 6671 elf_xtensa_relax_section (bfd *abfd, 6672 asection *sec, 6673 struct bfd_link_info *link_info, 6674 bfd_boolean *again) 6675 { 6676 static value_map_hash_table *values = NULL; 6677 static bfd_boolean relocations_analyzed = FALSE; 6678 xtensa_relax_info *relax_info; 6679 6680 if (!relocations_analyzed) 6681 { 6682 /* Do some overall initialization for relaxation. */ 6683 values = value_map_hash_table_init (); 6684 if (values == NULL) 6685 return FALSE; 6686 relaxing_section = TRUE; 6687 if (!analyze_relocations (link_info)) 6688 return FALSE; 6689 relocations_analyzed = TRUE; 6690 } 6691 *again = FALSE; 6692 6693 /* Don't mess with linker-created sections. */ 6694 if ((sec->flags & SEC_LINKER_CREATED) != 0) 6695 return TRUE; 6696 6697 relax_info = get_xtensa_relax_info (sec); 6698 BFD_ASSERT (relax_info != NULL); 6699 6700 switch (relax_info->visited) 6701 { 6702 case 0: 6703 /* Note: It would be nice to fold this pass into 6704 analyze_relocations, but it is important for this step that the 6705 sections be examined in link order. */ 6706 if (!compute_removed_literals (abfd, sec, link_info, values)) 6707 return FALSE; 6708 *again = TRUE; 6709 break; 6710 6711 case 1: 6712 if (values) 6713 value_map_hash_table_delete (values); 6714 values = NULL; 6715 if (!relax_section (abfd, sec, link_info)) 6716 return FALSE; 6717 *again = TRUE; 6718 break; 6719 6720 case 2: 6721 if (!relax_section_symbols (abfd, sec)) 6722 return FALSE; 6723 break; 6724 } 6725 6726 relax_info->visited++; 6727 return TRUE; 6728 } 6729 6730 6731 /* Initialization for relaxation. */ 6732 6733 /* This function is called once at the start of relaxation. It scans 6734 all the input sections and marks the ones that are relaxable (i.e., 6735 literal sections with L32R relocations against them), and then 6736 collects source_reloc information for all the relocations against 6737 those relaxable sections. During this process, it also detects 6738 longcalls, i.e., calls relaxed by the assembler into indirect 6739 calls, that can be optimized back into direct calls. Within each 6740 extended basic block (ebb) containing an optimized longcall, it 6741 computes a set of "text actions" that can be performed to remove 6742 the L32R associated with the longcall while optionally preserving 6743 branch target alignments. */ 6744 6745 static bfd_boolean 6746 analyze_relocations (struct bfd_link_info *link_info) 6747 { 6748 bfd *abfd; 6749 asection *sec; 6750 bfd_boolean is_relaxable = FALSE; 6751 6752 /* Initialize the per-section relaxation info. */ 6753 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) 6754 for (sec = abfd->sections; sec != NULL; sec = sec->next) 6755 { 6756 init_xtensa_relax_info (sec); 6757 } 6758 6759 /* Mark relaxable sections (and count relocations against each one). */ 6760 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) 6761 for (sec = abfd->sections; sec != NULL; sec = sec->next) 6762 { 6763 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable)) 6764 return FALSE; 6765 } 6766 6767 /* Bail out if there are no relaxable sections. */ 6768 if (!is_relaxable) 6769 return TRUE; 6770 6771 /* Allocate space for source_relocs. */ 6772 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) 6773 for (sec = abfd->sections; sec != NULL; sec = sec->next) 6774 { 6775 xtensa_relax_info *relax_info; 6776 6777 relax_info = get_xtensa_relax_info (sec); 6778 if (relax_info->is_relaxable_literal_section 6779 || relax_info->is_relaxable_asm_section) 6780 { 6781 relax_info->src_relocs = (source_reloc *) 6782 bfd_malloc (relax_info->src_count * sizeof (source_reloc)); 6783 } 6784 else 6785 relax_info->src_count = 0; 6786 } 6787 6788 /* Collect info on relocations against each relaxable section. */ 6789 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) 6790 for (sec = abfd->sections; sec != NULL; sec = sec->next) 6791 { 6792 if (!collect_source_relocs (abfd, sec, link_info)) 6793 return FALSE; 6794 } 6795 6796 /* Compute the text actions. */ 6797 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next) 6798 for (sec = abfd->sections; sec != NULL; sec = sec->next) 6799 { 6800 if (!compute_text_actions (abfd, sec, link_info)) 6801 return FALSE; 6802 } 6803 6804 return TRUE; 6805 } 6806 6807 6808 /* Find all the sections that might be relaxed. The motivation for 6809 this pass is that collect_source_relocs() needs to record _all_ the 6810 relocations that target each relaxable section. That is expensive 6811 and unnecessary unless the target section is actually going to be 6812 relaxed. This pass identifies all such sections by checking if 6813 they have L32Rs pointing to them. In the process, the total number 6814 of relocations targeting each section is also counted so that we 6815 know how much space to allocate for source_relocs against each 6816 relaxable literal section. */ 6817 6818 static bfd_boolean 6819 find_relaxable_sections (bfd *abfd, 6820 asection *sec, 6821 struct bfd_link_info *link_info, 6822 bfd_boolean *is_relaxable_p) 6823 { 6824 Elf_Internal_Rela *internal_relocs; 6825 bfd_byte *contents; 6826 bfd_boolean ok = TRUE; 6827 unsigned i; 6828 xtensa_relax_info *source_relax_info; 6829 bfd_boolean is_l32r_reloc; 6830 6831 internal_relocs = retrieve_internal_relocs (abfd, sec, 6832 link_info->keep_memory); 6833 if (internal_relocs == NULL) 6834 return ok; 6835 6836 contents = retrieve_contents (abfd, sec, link_info->keep_memory); 6837 if (contents == NULL && sec->size != 0) 6838 { 6839 ok = FALSE; 6840 goto error_return; 6841 } 6842 6843 source_relax_info = get_xtensa_relax_info (sec); 6844 for (i = 0; i < sec->reloc_count; i++) 6845 { 6846 Elf_Internal_Rela *irel = &internal_relocs[i]; 6847 r_reloc r_rel; 6848 asection *target_sec; 6849 xtensa_relax_info *target_relax_info; 6850 6851 /* If this section has not already been marked as "relaxable", and 6852 if it contains any ASM_EXPAND relocations (marking expanded 6853 longcalls) that can be optimized into direct calls, then mark 6854 the section as "relaxable". */ 6855 if (source_relax_info 6856 && !source_relax_info->is_relaxable_asm_section 6857 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND) 6858 { 6859 bfd_boolean is_reachable = FALSE; 6860 if (is_resolvable_asm_expansion (abfd, sec, contents, irel, 6861 link_info, &is_reachable) 6862 && is_reachable) 6863 { 6864 source_relax_info->is_relaxable_asm_section = TRUE; 6865 *is_relaxable_p = TRUE; 6866 } 6867 } 6868 6869 r_reloc_init (&r_rel, abfd, irel, contents, 6870 bfd_get_section_limit (abfd, sec)); 6871 6872 target_sec = r_reloc_get_section (&r_rel); 6873 target_relax_info = get_xtensa_relax_info (target_sec); 6874 if (!target_relax_info) 6875 continue; 6876 6877 /* Count PC-relative operand relocations against the target section. 6878 Note: The conditions tested here must match the conditions under 6879 which init_source_reloc is called in collect_source_relocs(). */ 6880 is_l32r_reloc = FALSE; 6881 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) 6882 { 6883 xtensa_opcode opcode = 6884 get_relocation_opcode (abfd, sec, contents, irel); 6885 if (opcode != XTENSA_UNDEFINED) 6886 { 6887 is_l32r_reloc = (opcode == get_l32r_opcode ()); 6888 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info)) 6889 || is_l32r_reloc) 6890 target_relax_info->src_count++; 6891 } 6892 } 6893 6894 if (is_l32r_reloc && r_reloc_is_defined (&r_rel)) 6895 { 6896 /* Mark the target section as relaxable. */ 6897 target_relax_info->is_relaxable_literal_section = TRUE; 6898 *is_relaxable_p = TRUE; 6899 } 6900 } 6901 6902 error_return: 6903 release_contents (sec, contents); 6904 release_internal_relocs (sec, internal_relocs); 6905 return ok; 6906 } 6907 6908 6909 /* Record _all_ the relocations that point to relaxable sections, and 6910 get rid of ASM_EXPAND relocs by either converting them to 6911 ASM_SIMPLIFY or by removing them. */ 6912 6913 static bfd_boolean 6914 collect_source_relocs (bfd *abfd, 6915 asection *sec, 6916 struct bfd_link_info *link_info) 6917 { 6918 Elf_Internal_Rela *internal_relocs; 6919 bfd_byte *contents; 6920 bfd_boolean ok = TRUE; 6921 unsigned i; 6922 bfd_size_type sec_size; 6923 6924 internal_relocs = retrieve_internal_relocs (abfd, sec, 6925 link_info->keep_memory); 6926 if (internal_relocs == NULL) 6927 return ok; 6928 6929 sec_size = bfd_get_section_limit (abfd, sec); 6930 contents = retrieve_contents (abfd, sec, link_info->keep_memory); 6931 if (contents == NULL && sec_size != 0) 6932 { 6933 ok = FALSE; 6934 goto error_return; 6935 } 6936 6937 /* Record relocations against relaxable literal sections. */ 6938 for (i = 0; i < sec->reloc_count; i++) 6939 { 6940 Elf_Internal_Rela *irel = &internal_relocs[i]; 6941 r_reloc r_rel; 6942 asection *target_sec; 6943 xtensa_relax_info *target_relax_info; 6944 6945 r_reloc_init (&r_rel, abfd, irel, contents, sec_size); 6946 6947 target_sec = r_reloc_get_section (&r_rel); 6948 target_relax_info = get_xtensa_relax_info (target_sec); 6949 6950 if (target_relax_info 6951 && (target_relax_info->is_relaxable_literal_section 6952 || target_relax_info->is_relaxable_asm_section)) 6953 { 6954 xtensa_opcode opcode = XTENSA_UNDEFINED; 6955 int opnd = -1; 6956 bfd_boolean is_abs_literal = FALSE; 6957 6958 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) 6959 { 6960 /* None of the current alternate relocs are PC-relative, 6961 and only PC-relative relocs matter here. However, we 6962 still need to record the opcode for literal 6963 coalescing. */ 6964 opcode = get_relocation_opcode (abfd, sec, contents, irel); 6965 if (opcode == get_l32r_opcode ()) 6966 { 6967 is_abs_literal = TRUE; 6968 opnd = 1; 6969 } 6970 else 6971 opcode = XTENSA_UNDEFINED; 6972 } 6973 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info))) 6974 { 6975 opcode = get_relocation_opcode (abfd, sec, contents, irel); 6976 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); 6977 } 6978 6979 if (opcode != XTENSA_UNDEFINED) 6980 { 6981 int src_next = target_relax_info->src_next++; 6982 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next]; 6983 6984 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd, 6985 is_abs_literal); 6986 } 6987 } 6988 } 6989 6990 /* Now get rid of ASM_EXPAND relocations. At this point, the 6991 src_relocs array for the target literal section may still be 6992 incomplete, but it must at least contain the entries for the L32R 6993 relocations associated with ASM_EXPANDs because they were just 6994 added in the preceding loop over the relocations. */ 6995 6996 for (i = 0; i < sec->reloc_count; i++) 6997 { 6998 Elf_Internal_Rela *irel = &internal_relocs[i]; 6999 bfd_boolean is_reachable; 7000 7001 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info, 7002 &is_reachable)) 7003 continue; 7004 7005 if (is_reachable) 7006 { 7007 Elf_Internal_Rela *l32r_irel; 7008 r_reloc r_rel; 7009 asection *target_sec; 7010 xtensa_relax_info *target_relax_info; 7011 7012 /* Mark the source_reloc for the L32R so that it will be 7013 removed in compute_removed_literals(), along with the 7014 associated literal. */ 7015 l32r_irel = find_associated_l32r_irel (abfd, sec, contents, 7016 irel, internal_relocs); 7017 if (l32r_irel == NULL) 7018 continue; 7019 7020 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size); 7021 7022 target_sec = r_reloc_get_section (&r_rel); 7023 target_relax_info = get_xtensa_relax_info (target_sec); 7024 7025 if (target_relax_info 7026 && (target_relax_info->is_relaxable_literal_section 7027 || target_relax_info->is_relaxable_asm_section)) 7028 { 7029 source_reloc *s_reloc; 7030 7031 /* Search the source_relocs for the entry corresponding to 7032 the l32r_irel. Note: The src_relocs array is not yet 7033 sorted, but it wouldn't matter anyway because we're 7034 searching by source offset instead of target offset. */ 7035 s_reloc = find_source_reloc (target_relax_info->src_relocs, 7036 target_relax_info->src_next, 7037 sec, l32r_irel); 7038 BFD_ASSERT (s_reloc); 7039 s_reloc->is_null = TRUE; 7040 } 7041 7042 /* Convert this reloc to ASM_SIMPLIFY. */ 7043 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), 7044 R_XTENSA_ASM_SIMPLIFY); 7045 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); 7046 7047 pin_internal_relocs (sec, internal_relocs); 7048 } 7049 else 7050 { 7051 /* It is resolvable but doesn't reach. We resolve now 7052 by eliminating the relocation -- the call will remain 7053 expanded into L32R/CALLX. */ 7054 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); 7055 pin_internal_relocs (sec, internal_relocs); 7056 } 7057 } 7058 7059 error_return: 7060 release_contents (sec, contents); 7061 release_internal_relocs (sec, internal_relocs); 7062 return ok; 7063 } 7064 7065 7066 /* Return TRUE if the asm expansion can be resolved. Generally it can 7067 be resolved on a final link or when a partial link locates it in the 7068 same section as the target. Set "is_reachable" flag if the target of 7069 the call is within the range of a direct call, given the current VMA 7070 for this section and the target section. */ 7071 7072 bfd_boolean 7073 is_resolvable_asm_expansion (bfd *abfd, 7074 asection *sec, 7075 bfd_byte *contents, 7076 Elf_Internal_Rela *irel, 7077 struct bfd_link_info *link_info, 7078 bfd_boolean *is_reachable_p) 7079 { 7080 asection *target_sec; 7081 bfd_vma target_offset; 7082 r_reloc r_rel; 7083 xtensa_opcode opcode, direct_call_opcode; 7084 bfd_vma self_address; 7085 bfd_vma dest_address; 7086 bfd_boolean uses_l32r; 7087 bfd_size_type sec_size; 7088 7089 *is_reachable_p = FALSE; 7090 7091 if (contents == NULL) 7092 return FALSE; 7093 7094 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND) 7095 return FALSE; 7096 7097 sec_size = bfd_get_section_limit (abfd, sec); 7098 opcode = get_expanded_call_opcode (contents + irel->r_offset, 7099 sec_size - irel->r_offset, &uses_l32r); 7100 /* Optimization of longcalls that use CONST16 is not yet implemented. */ 7101 if (!uses_l32r) 7102 return FALSE; 7103 7104 direct_call_opcode = swap_callx_for_call_opcode (opcode); 7105 if (direct_call_opcode == XTENSA_UNDEFINED) 7106 return FALSE; 7107 7108 /* Check and see that the target resolves. */ 7109 r_reloc_init (&r_rel, abfd, irel, contents, sec_size); 7110 if (!r_reloc_is_defined (&r_rel)) 7111 return FALSE; 7112 7113 target_sec = r_reloc_get_section (&r_rel); 7114 target_offset = r_rel.target_offset; 7115 7116 /* If the target is in a shared library, then it doesn't reach. This 7117 isn't supposed to come up because the compiler should never generate 7118 non-PIC calls on systems that use shared libraries, but the linker 7119 shouldn't crash regardless. */ 7120 if (!target_sec->output_section) 7121 return FALSE; 7122 7123 /* For relocatable sections, we can only simplify when the output 7124 section of the target is the same as the output section of the 7125 source. */ 7126 if (link_info->relocatable 7127 && (target_sec->output_section != sec->output_section 7128 || is_reloc_sym_weak (abfd, irel))) 7129 return FALSE; 7130 7131 if (target_sec->output_section != sec->output_section) 7132 { 7133 /* If the two sections are sufficiently far away that relaxation 7134 might take the call out of range, we can't simplify. For 7135 example, a positive displacement call into another memory 7136 could get moved to a lower address due to literal removal, 7137 but the destination won't move, and so the displacment might 7138 get larger. 7139 7140 If the displacement is negative, assume the destination could 7141 move as far back as the start of the output section. The 7142 self_address will be at least as far into the output section 7143 as it is prior to relaxation. 7144 7145 If the displacement is postive, assume the destination will be in 7146 it's pre-relaxed location (because relaxation only makes sections 7147 smaller). The self_address could go all the way to the beginning 7148 of the output section. */ 7149 7150 dest_address = target_sec->output_section->vma; 7151 self_address = sec->output_section->vma; 7152 7153 if (sec->output_section->vma > target_sec->output_section->vma) 7154 self_address += sec->output_offset + irel->r_offset + 3; 7155 else 7156 dest_address += bfd_get_section_limit (abfd, target_sec->output_section); 7157 /* Call targets should be four-byte aligned. */ 7158 dest_address = (dest_address + 3) & ~3; 7159 } 7160 else 7161 { 7162 7163 self_address = (sec->output_section->vma 7164 + sec->output_offset + irel->r_offset + 3); 7165 dest_address = (target_sec->output_section->vma 7166 + target_sec->output_offset + target_offset); 7167 } 7168 7169 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0, 7170 self_address, dest_address); 7171 7172 if ((self_address >> CALL_SEGMENT_BITS) != 7173 (dest_address >> CALL_SEGMENT_BITS)) 7174 return FALSE; 7175 7176 return TRUE; 7177 } 7178 7179 7180 static Elf_Internal_Rela * 7181 find_associated_l32r_irel (bfd *abfd, 7182 asection *sec, 7183 bfd_byte *contents, 7184 Elf_Internal_Rela *other_irel, 7185 Elf_Internal_Rela *internal_relocs) 7186 { 7187 unsigned i; 7188 7189 for (i = 0; i < sec->reloc_count; i++) 7190 { 7191 Elf_Internal_Rela *irel = &internal_relocs[i]; 7192 7193 if (irel == other_irel) 7194 continue; 7195 if (irel->r_offset != other_irel->r_offset) 7196 continue; 7197 if (is_l32r_relocation (abfd, sec, contents, irel)) 7198 return irel; 7199 } 7200 7201 return NULL; 7202 } 7203 7204 7205 static xtensa_opcode * 7206 build_reloc_opcodes (bfd *abfd, 7207 asection *sec, 7208 bfd_byte *contents, 7209 Elf_Internal_Rela *internal_relocs) 7210 { 7211 unsigned i; 7212 xtensa_opcode *reloc_opcodes = 7213 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count); 7214 for (i = 0; i < sec->reloc_count; i++) 7215 { 7216 Elf_Internal_Rela *irel = &internal_relocs[i]; 7217 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel); 7218 } 7219 return reloc_opcodes; 7220 } 7221 7222 7223 /* The compute_text_actions function will build a list of potential 7224 transformation actions for code in the extended basic block of each 7225 longcall that is optimized to a direct call. From this list we 7226 generate a set of actions to actually perform that optimizes for 7227 space and, if not using size_opt, maintains branch target 7228 alignments. 7229 7230 These actions to be performed are placed on a per-section list. 7231 The actual changes are performed by relax_section() in the second 7232 pass. */ 7233 7234 bfd_boolean 7235 compute_text_actions (bfd *abfd, 7236 asection *sec, 7237 struct bfd_link_info *link_info) 7238 { 7239 xtensa_opcode *reloc_opcodes = NULL; 7240 xtensa_relax_info *relax_info; 7241 bfd_byte *contents; 7242 Elf_Internal_Rela *internal_relocs; 7243 bfd_boolean ok = TRUE; 7244 unsigned i; 7245 property_table_entry *prop_table = 0; 7246 int ptblsize = 0; 7247 bfd_size_type sec_size; 7248 7249 relax_info = get_xtensa_relax_info (sec); 7250 BFD_ASSERT (relax_info); 7251 BFD_ASSERT (relax_info->src_next == relax_info->src_count); 7252 7253 /* Do nothing if the section contains no optimized longcalls. */ 7254 if (!relax_info->is_relaxable_asm_section) 7255 return ok; 7256 7257 internal_relocs = retrieve_internal_relocs (abfd, sec, 7258 link_info->keep_memory); 7259 7260 if (internal_relocs) 7261 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), 7262 internal_reloc_compare); 7263 7264 sec_size = bfd_get_section_limit (abfd, sec); 7265 contents = retrieve_contents (abfd, sec, link_info->keep_memory); 7266 if (contents == NULL && sec_size != 0) 7267 { 7268 ok = FALSE; 7269 goto error_return; 7270 } 7271 7272 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, 7273 XTENSA_PROP_SEC_NAME, FALSE); 7274 if (ptblsize < 0) 7275 { 7276 ok = FALSE; 7277 goto error_return; 7278 } 7279 7280 for (i = 0; i < sec->reloc_count; i++) 7281 { 7282 Elf_Internal_Rela *irel = &internal_relocs[i]; 7283 bfd_vma r_offset; 7284 property_table_entry *the_entry; 7285 int ptbl_idx; 7286 ebb_t *ebb; 7287 ebb_constraint ebb_table; 7288 bfd_size_type simplify_size; 7289 7290 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY) 7291 continue; 7292 r_offset = irel->r_offset; 7293 7294 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset); 7295 if (simplify_size == 0) 7296 { 7297 (*_bfd_error_handler) 7298 (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"), 7299 sec->owner, sec, r_offset); 7300 continue; 7301 } 7302 7303 /* If the instruction table is not around, then don't do this 7304 relaxation. */ 7305 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, 7306 sec->vma + irel->r_offset); 7307 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL) 7308 { 7309 text_action_add (&relax_info->action_list, 7310 ta_convert_longcall, sec, r_offset, 7311 0); 7312 continue; 7313 } 7314 7315 /* If the next longcall happens to be at the same address as an 7316 unreachable section of size 0, then skip forward. */ 7317 ptbl_idx = the_entry - prop_table; 7318 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE) 7319 && the_entry->size == 0 7320 && ptbl_idx + 1 < ptblsize 7321 && (prop_table[ptbl_idx + 1].address 7322 == prop_table[ptbl_idx].address)) 7323 { 7324 ptbl_idx++; 7325 the_entry++; 7326 } 7327 7328 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM) 7329 /* NO_REORDER is OK */ 7330 continue; 7331 7332 init_ebb_constraint (&ebb_table); 7333 ebb = &ebb_table.ebb; 7334 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize, 7335 internal_relocs, sec->reloc_count); 7336 ebb->start_offset = r_offset + simplify_size; 7337 ebb->end_offset = r_offset + simplify_size; 7338 ebb->start_ptbl_idx = ptbl_idx; 7339 ebb->end_ptbl_idx = ptbl_idx; 7340 ebb->start_reloc_idx = i; 7341 ebb->end_reloc_idx = i; 7342 7343 /* Precompute the opcode for each relocation. */ 7344 if (reloc_opcodes == NULL) 7345 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, 7346 internal_relocs); 7347 7348 if (!extend_ebb_bounds (ebb) 7349 || !compute_ebb_proposed_actions (&ebb_table) 7350 || !compute_ebb_actions (&ebb_table) 7351 || !check_section_ebb_pcrels_fit (abfd, sec, contents, 7352 internal_relocs, &ebb_table, 7353 reloc_opcodes) 7354 || !check_section_ebb_reduces (&ebb_table)) 7355 { 7356 /* If anything goes wrong or we get unlucky and something does 7357 not fit, with our plan because of expansion between 7358 critical branches, just convert to a NOP. */ 7359 7360 text_action_add (&relax_info->action_list, 7361 ta_convert_longcall, sec, r_offset, 0); 7362 i = ebb_table.ebb.end_reloc_idx; 7363 free_ebb_constraint (&ebb_table); 7364 continue; 7365 } 7366 7367 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec); 7368 7369 /* Update the index so we do not go looking at the relocations 7370 we have already processed. */ 7371 i = ebb_table.ebb.end_reloc_idx; 7372 free_ebb_constraint (&ebb_table); 7373 } 7374 7375 #if DEBUG 7376 if (relax_info->action_list.head) 7377 print_action_list (stderr, &relax_info->action_list); 7378 #endif 7379 7380 error_return: 7381 release_contents (sec, contents); 7382 release_internal_relocs (sec, internal_relocs); 7383 if (prop_table) 7384 free (prop_table); 7385 if (reloc_opcodes) 7386 free (reloc_opcodes); 7387 7388 return ok; 7389 } 7390 7391 7392 /* Do not widen an instruction if it is preceeded by a 7393 loop opcode. It might cause misalignment. */ 7394 7395 static bfd_boolean 7396 prev_instr_is_a_loop (bfd_byte *contents, 7397 bfd_size_type content_length, 7398 bfd_size_type offset) 7399 { 7400 xtensa_opcode prev_opcode; 7401 7402 if (offset < 3) 7403 return FALSE; 7404 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0); 7405 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1); 7406 } 7407 7408 7409 /* Find all of the possible actions for an extended basic block. */ 7410 7411 bfd_boolean 7412 compute_ebb_proposed_actions (ebb_constraint *ebb_table) 7413 { 7414 const ebb_t *ebb = &ebb_table->ebb; 7415 unsigned rel_idx = ebb->start_reloc_idx; 7416 property_table_entry *entry, *start_entry, *end_entry; 7417 bfd_vma offset = 0; 7418 xtensa_isa isa = xtensa_default_isa; 7419 xtensa_format fmt; 7420 static xtensa_insnbuf insnbuf = NULL; 7421 static xtensa_insnbuf slotbuf = NULL; 7422 7423 if (insnbuf == NULL) 7424 { 7425 insnbuf = xtensa_insnbuf_alloc (isa); 7426 slotbuf = xtensa_insnbuf_alloc (isa); 7427 } 7428 7429 start_entry = &ebb->ptbl[ebb->start_ptbl_idx]; 7430 end_entry = &ebb->ptbl[ebb->end_ptbl_idx]; 7431 7432 for (entry = start_entry; entry <= end_entry; entry++) 7433 { 7434 bfd_vma start_offset, end_offset; 7435 bfd_size_type insn_len; 7436 7437 start_offset = entry->address - ebb->sec->vma; 7438 end_offset = entry->address + entry->size - ebb->sec->vma; 7439 7440 if (entry == start_entry) 7441 start_offset = ebb->start_offset; 7442 if (entry == end_entry) 7443 end_offset = ebb->end_offset; 7444 offset = start_offset; 7445 7446 if (offset == entry->address - ebb->sec->vma 7447 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0) 7448 { 7449 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN; 7450 BFD_ASSERT (offset != end_offset); 7451 if (offset == end_offset) 7452 return FALSE; 7453 7454 insn_len = insn_decode_len (ebb->contents, ebb->content_length, 7455 offset); 7456 if (insn_len == 0) 7457 goto decode_error; 7458 7459 if (check_branch_target_aligned_address (offset, insn_len)) 7460 align_type = EBB_REQUIRE_TGT_ALIGN; 7461 7462 ebb_propose_action (ebb_table, align_type, 0, 7463 ta_none, offset, 0, TRUE); 7464 } 7465 7466 while (offset != end_offset) 7467 { 7468 Elf_Internal_Rela *irel; 7469 xtensa_opcode opcode; 7470 7471 while (rel_idx < ebb->end_reloc_idx 7472 && (ebb->relocs[rel_idx].r_offset < offset 7473 || (ebb->relocs[rel_idx].r_offset == offset 7474 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info) 7475 != R_XTENSA_ASM_SIMPLIFY)))) 7476 rel_idx++; 7477 7478 /* Check for longcall. */ 7479 irel = &ebb->relocs[rel_idx]; 7480 if (irel->r_offset == offset 7481 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY) 7482 { 7483 bfd_size_type simplify_size; 7484 7485 simplify_size = get_asm_simplify_size (ebb->contents, 7486 ebb->content_length, 7487 irel->r_offset); 7488 if (simplify_size == 0) 7489 goto decode_error; 7490 7491 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, 7492 ta_convert_longcall, offset, 0, TRUE); 7493 7494 offset += simplify_size; 7495 continue; 7496 } 7497 7498 if (offset + MIN_INSN_LENGTH > ebb->content_length) 7499 goto decode_error; 7500 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset], 7501 ebb->content_length - offset); 7502 fmt = xtensa_format_decode (isa, insnbuf); 7503 if (fmt == XTENSA_UNDEFINED) 7504 goto decode_error; 7505 insn_len = xtensa_format_length (isa, fmt); 7506 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED) 7507 goto decode_error; 7508 7509 if (xtensa_format_num_slots (isa, fmt) != 1) 7510 { 7511 offset += insn_len; 7512 continue; 7513 } 7514 7515 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf); 7516 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf); 7517 if (opcode == XTENSA_UNDEFINED) 7518 goto decode_error; 7519 7520 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0 7521 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 7522 && can_narrow_instruction (slotbuf, fmt, opcode) != 0) 7523 { 7524 /* Add an instruction narrow action. */ 7525 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, 7526 ta_narrow_insn, offset, 0, FALSE); 7527 } 7528 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0 7529 && can_widen_instruction (slotbuf, fmt, opcode) != 0 7530 && ! prev_instr_is_a_loop (ebb->contents, 7531 ebb->content_length, offset)) 7532 { 7533 /* Add an instruction widen action. */ 7534 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, 7535 ta_widen_insn, offset, 0, FALSE); 7536 } 7537 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1) 7538 { 7539 /* Check for branch targets. */ 7540 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0, 7541 ta_none, offset, 0, TRUE); 7542 } 7543 7544 offset += insn_len; 7545 } 7546 } 7547 7548 if (ebb->ends_unreachable) 7549 { 7550 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0, 7551 ta_fill, ebb->end_offset, 0, TRUE); 7552 } 7553 7554 return TRUE; 7555 7556 decode_error: 7557 (*_bfd_error_handler) 7558 (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"), 7559 ebb->sec->owner, ebb->sec, offset); 7560 return FALSE; 7561 } 7562 7563 7564 /* After all of the information has collected about the 7565 transformations possible in an EBB, compute the appropriate actions 7566 here in compute_ebb_actions. We still must check later to make 7567 sure that the actions do not break any relocations. The algorithm 7568 used here is pretty greedy. Basically, it removes as many no-ops 7569 as possible so that the end of the EBB has the same alignment 7570 characteristics as the original. First, it uses narrowing, then 7571 fill space at the end of the EBB, and finally widenings. If that 7572 does not work, it tries again with one fewer no-op removed. The 7573 optimization will only be performed if all of the branch targets 7574 that were aligned before transformation are also aligned after the 7575 transformation. 7576 7577 When the size_opt flag is set, ignore the branch target alignments, 7578 narrow all wide instructions, and remove all no-ops unless the end 7579 of the EBB prevents it. */ 7580 7581 bfd_boolean 7582 compute_ebb_actions (ebb_constraint *ebb_table) 7583 { 7584 unsigned i = 0; 7585 unsigned j; 7586 int removed_bytes = 0; 7587 ebb_t *ebb = &ebb_table->ebb; 7588 unsigned seg_idx_start = 0; 7589 unsigned seg_idx_end = 0; 7590 7591 /* We perform this like the assembler relaxation algorithm: Start by 7592 assuming all instructions are narrow and all no-ops removed; then 7593 walk through.... */ 7594 7595 /* For each segment of this that has a solid constraint, check to 7596 see if there are any combinations that will keep the constraint. 7597 If so, use it. */ 7598 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++) 7599 { 7600 bfd_boolean requires_text_end_align = FALSE; 7601 unsigned longcall_count = 0; 7602 unsigned longcall_convert_count = 0; 7603 unsigned narrowable_count = 0; 7604 unsigned narrowable_convert_count = 0; 7605 unsigned widenable_count = 0; 7606 unsigned widenable_convert_count = 0; 7607 7608 proposed_action *action = NULL; 7609 int align = (1 << ebb_table->ebb.sec->alignment_power); 7610 7611 seg_idx_start = seg_idx_end; 7612 7613 for (i = seg_idx_start; i < ebb_table->action_count; i++) 7614 { 7615 action = &ebb_table->actions[i]; 7616 if (action->action == ta_convert_longcall) 7617 longcall_count++; 7618 if (action->action == ta_narrow_insn) 7619 narrowable_count++; 7620 if (action->action == ta_widen_insn) 7621 widenable_count++; 7622 if (action->action == ta_fill) 7623 break; 7624 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN) 7625 break; 7626 if (action->align_type == EBB_REQUIRE_TGT_ALIGN 7627 && !elf32xtensa_size_opt) 7628 break; 7629 } 7630 seg_idx_end = i; 7631 7632 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable) 7633 requires_text_end_align = TRUE; 7634 7635 if (elf32xtensa_size_opt && !requires_text_end_align 7636 && action->align_type != EBB_REQUIRE_LOOP_ALIGN 7637 && action->align_type != EBB_REQUIRE_TGT_ALIGN) 7638 { 7639 longcall_convert_count = longcall_count; 7640 narrowable_convert_count = narrowable_count; 7641 widenable_convert_count = 0; 7642 } 7643 else 7644 { 7645 /* There is a constraint. Convert the max number of longcalls. */ 7646 narrowable_convert_count = 0; 7647 longcall_convert_count = 0; 7648 widenable_convert_count = 0; 7649 7650 for (j = 0; j < longcall_count; j++) 7651 { 7652 int removed = (longcall_count - j) * 3 & (align - 1); 7653 unsigned desire_narrow = (align - removed) & (align - 1); 7654 unsigned desire_widen = removed; 7655 if (desire_narrow <= narrowable_count) 7656 { 7657 narrowable_convert_count = desire_narrow; 7658 narrowable_convert_count += 7659 (align * ((narrowable_count - narrowable_convert_count) 7660 / align)); 7661 longcall_convert_count = (longcall_count - j); 7662 widenable_convert_count = 0; 7663 break; 7664 } 7665 if (desire_widen <= widenable_count && !elf32xtensa_size_opt) 7666 { 7667 narrowable_convert_count = 0; 7668 longcall_convert_count = longcall_count - j; 7669 widenable_convert_count = desire_widen; 7670 break; 7671 } 7672 } 7673 } 7674 7675 /* Now the number of conversions are saved. Do them. */ 7676 for (i = seg_idx_start; i < seg_idx_end; i++) 7677 { 7678 action = &ebb_table->actions[i]; 7679 switch (action->action) 7680 { 7681 case ta_convert_longcall: 7682 if (longcall_convert_count != 0) 7683 { 7684 action->action = ta_remove_longcall; 7685 action->do_action = TRUE; 7686 action->removed_bytes += 3; 7687 longcall_convert_count--; 7688 } 7689 break; 7690 case ta_narrow_insn: 7691 if (narrowable_convert_count != 0) 7692 { 7693 action->do_action = TRUE; 7694 action->removed_bytes += 1; 7695 narrowable_convert_count--; 7696 } 7697 break; 7698 case ta_widen_insn: 7699 if (widenable_convert_count != 0) 7700 { 7701 action->do_action = TRUE; 7702 action->removed_bytes -= 1; 7703 widenable_convert_count--; 7704 } 7705 break; 7706 default: 7707 break; 7708 } 7709 } 7710 } 7711 7712 /* Now we move on to some local opts. Try to remove each of the 7713 remaining longcalls. */ 7714 7715 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable) 7716 { 7717 removed_bytes = 0; 7718 for (i = 0; i < ebb_table->action_count; i++) 7719 { 7720 int old_removed_bytes = removed_bytes; 7721 proposed_action *action = &ebb_table->actions[i]; 7722 7723 if (action->do_action && action->action == ta_convert_longcall) 7724 { 7725 bfd_boolean bad_alignment = FALSE; 7726 removed_bytes += 3; 7727 for (j = i + 1; j < ebb_table->action_count; j++) 7728 { 7729 proposed_action *new_action = &ebb_table->actions[j]; 7730 bfd_vma offset = new_action->offset; 7731 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN) 7732 { 7733 if (!check_branch_target_aligned 7734 (ebb_table->ebb.contents, 7735 ebb_table->ebb.content_length, 7736 offset, offset - removed_bytes)) 7737 { 7738 bad_alignment = TRUE; 7739 break; 7740 } 7741 } 7742 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN) 7743 { 7744 if (!check_loop_aligned (ebb_table->ebb.contents, 7745 ebb_table->ebb.content_length, 7746 offset, 7747 offset - removed_bytes)) 7748 { 7749 bad_alignment = TRUE; 7750 break; 7751 } 7752 } 7753 if (new_action->action == ta_narrow_insn 7754 && !new_action->do_action 7755 && ebb_table->ebb.sec->alignment_power == 2) 7756 { 7757 /* Narrow an instruction and we are done. */ 7758 new_action->do_action = TRUE; 7759 new_action->removed_bytes += 1; 7760 bad_alignment = FALSE; 7761 break; 7762 } 7763 if (new_action->action == ta_widen_insn 7764 && new_action->do_action 7765 && ebb_table->ebb.sec->alignment_power == 2) 7766 { 7767 /* Narrow an instruction and we are done. */ 7768 new_action->do_action = FALSE; 7769 new_action->removed_bytes += 1; 7770 bad_alignment = FALSE; 7771 break; 7772 } 7773 if (new_action->do_action) 7774 removed_bytes += new_action->removed_bytes; 7775 } 7776 if (!bad_alignment) 7777 { 7778 action->removed_bytes += 3; 7779 action->action = ta_remove_longcall; 7780 action->do_action = TRUE; 7781 } 7782 } 7783 removed_bytes = old_removed_bytes; 7784 if (action->do_action) 7785 removed_bytes += action->removed_bytes; 7786 } 7787 } 7788 7789 removed_bytes = 0; 7790 for (i = 0; i < ebb_table->action_count; ++i) 7791 { 7792 proposed_action *action = &ebb_table->actions[i]; 7793 if (action->do_action) 7794 removed_bytes += action->removed_bytes; 7795 } 7796 7797 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0 7798 && ebb->ends_unreachable) 7799 { 7800 proposed_action *action; 7801 int br; 7802 int extra_space; 7803 7804 BFD_ASSERT (ebb_table->action_count != 0); 7805 action = &ebb_table->actions[ebb_table->action_count - 1]; 7806 BFD_ASSERT (action->action == ta_fill); 7807 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE); 7808 7809 extra_space = compute_fill_extra_space (ebb->ends_unreachable); 7810 br = action->removed_bytes + removed_bytes + extra_space; 7811 br = br & ((1 << ebb->sec->alignment_power ) - 1); 7812 7813 action->removed_bytes = extra_space - br; 7814 } 7815 return TRUE; 7816 } 7817 7818 7819 /* The xlate_map is a sorted array of address mappings designed to 7820 answer the offset_with_removed_text() query with a binary search instead 7821 of a linear search through the section's action_list. */ 7822 7823 typedef struct xlate_map_entry xlate_map_entry_t; 7824 typedef struct xlate_map xlate_map_t; 7825 7826 struct xlate_map_entry 7827 { 7828 unsigned orig_address; 7829 unsigned new_address; 7830 unsigned size; 7831 }; 7832 7833 struct xlate_map 7834 { 7835 unsigned entry_count; 7836 xlate_map_entry_t *entry; 7837 }; 7838 7839 7840 static int 7841 xlate_compare (const void *a_v, const void *b_v) 7842 { 7843 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v; 7844 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v; 7845 if (a->orig_address < b->orig_address) 7846 return -1; 7847 if (a->orig_address > (b->orig_address + b->size - 1)) 7848 return 1; 7849 return 0; 7850 } 7851 7852 7853 static bfd_vma 7854 xlate_offset_with_removed_text (const xlate_map_t *map, 7855 text_action_list *action_list, 7856 bfd_vma offset) 7857 { 7858 void *r; 7859 xlate_map_entry_t *e; 7860 7861 if (map == NULL) 7862 return offset_with_removed_text (action_list, offset); 7863 7864 if (map->entry_count == 0) 7865 return offset; 7866 7867 r = bsearch (&offset, map->entry, map->entry_count, 7868 sizeof (xlate_map_entry_t), &xlate_compare); 7869 e = (xlate_map_entry_t *) r; 7870 7871 BFD_ASSERT (e != NULL); 7872 if (e == NULL) 7873 return offset; 7874 return e->new_address - e->orig_address + offset; 7875 } 7876 7877 7878 /* Build a binary searchable offset translation map from a section's 7879 action list. */ 7880 7881 static xlate_map_t * 7882 build_xlate_map (asection *sec, xtensa_relax_info *relax_info) 7883 { 7884 xlate_map_t *map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t)); 7885 text_action_list *action_list = &relax_info->action_list; 7886 unsigned num_actions = 0; 7887 text_action *r; 7888 int removed; 7889 xlate_map_entry_t *current_entry; 7890 7891 if (map == NULL) 7892 return NULL; 7893 7894 num_actions = action_list_count (action_list); 7895 map->entry = (xlate_map_entry_t *) 7896 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1)); 7897 if (map->entry == NULL) 7898 { 7899 free (map); 7900 return NULL; 7901 } 7902 map->entry_count = 0; 7903 7904 removed = 0; 7905 current_entry = &map->entry[0]; 7906 7907 current_entry->orig_address = 0; 7908 current_entry->new_address = 0; 7909 current_entry->size = 0; 7910 7911 for (r = action_list->head; r != NULL; r = r->next) 7912 { 7913 unsigned orig_size = 0; 7914 switch (r->action) 7915 { 7916 case ta_none: 7917 case ta_remove_insn: 7918 case ta_convert_longcall: 7919 case ta_remove_literal: 7920 case ta_add_literal: 7921 break; 7922 case ta_remove_longcall: 7923 orig_size = 6; 7924 break; 7925 case ta_narrow_insn: 7926 orig_size = 3; 7927 break; 7928 case ta_widen_insn: 7929 orig_size = 2; 7930 break; 7931 case ta_fill: 7932 break; 7933 } 7934 current_entry->size = 7935 r->offset + orig_size - current_entry->orig_address; 7936 if (current_entry->size != 0) 7937 { 7938 current_entry++; 7939 map->entry_count++; 7940 } 7941 current_entry->orig_address = r->offset + orig_size; 7942 removed += r->removed_bytes; 7943 current_entry->new_address = r->offset + orig_size - removed; 7944 current_entry->size = 0; 7945 } 7946 7947 current_entry->size = (bfd_get_section_limit (sec->owner, sec) 7948 - current_entry->orig_address); 7949 if (current_entry->size != 0) 7950 map->entry_count++; 7951 7952 return map; 7953 } 7954 7955 7956 /* Free an offset translation map. */ 7957 7958 static void 7959 free_xlate_map (xlate_map_t *map) 7960 { 7961 if (map && map->entry) 7962 free (map->entry); 7963 if (map) 7964 free (map); 7965 } 7966 7967 7968 /* Use check_section_ebb_pcrels_fit to make sure that all of the 7969 relocations in a section will fit if a proposed set of actions 7970 are performed. */ 7971 7972 static bfd_boolean 7973 check_section_ebb_pcrels_fit (bfd *abfd, 7974 asection *sec, 7975 bfd_byte *contents, 7976 Elf_Internal_Rela *internal_relocs, 7977 const ebb_constraint *constraint, 7978 const xtensa_opcode *reloc_opcodes) 7979 { 7980 unsigned i, j; 7981 Elf_Internal_Rela *irel; 7982 xlate_map_t *xmap = NULL; 7983 bfd_boolean ok = TRUE; 7984 xtensa_relax_info *relax_info; 7985 7986 relax_info = get_xtensa_relax_info (sec); 7987 7988 if (relax_info && sec->reloc_count > 100) 7989 { 7990 xmap = build_xlate_map (sec, relax_info); 7991 /* NULL indicates out of memory, but the slow version 7992 can still be used. */ 7993 } 7994 7995 for (i = 0; i < sec->reloc_count; i++) 7996 { 7997 r_reloc r_rel; 7998 bfd_vma orig_self_offset, orig_target_offset; 7999 bfd_vma self_offset, target_offset; 8000 int r_type; 8001 reloc_howto_type *howto; 8002 int self_removed_bytes, target_removed_bytes; 8003 8004 irel = &internal_relocs[i]; 8005 r_type = ELF32_R_TYPE (irel->r_info); 8006 8007 howto = &elf_howto_table[r_type]; 8008 /* We maintain the required invariant: PC-relative relocations 8009 that fit before linking must fit after linking. Thus we only 8010 need to deal with relocations to the same section that are 8011 PC-relative. */ 8012 if (r_type == R_XTENSA_ASM_SIMPLIFY 8013 || r_type == R_XTENSA_32_PCREL 8014 || !howto->pc_relative) 8015 continue; 8016 8017 r_reloc_init (&r_rel, abfd, irel, contents, 8018 bfd_get_section_limit (abfd, sec)); 8019 8020 if (r_reloc_get_section (&r_rel) != sec) 8021 continue; 8022 8023 orig_self_offset = irel->r_offset; 8024 orig_target_offset = r_rel.target_offset; 8025 8026 self_offset = orig_self_offset; 8027 target_offset = orig_target_offset; 8028 8029 if (relax_info) 8030 { 8031 self_offset = 8032 xlate_offset_with_removed_text (xmap, &relax_info->action_list, 8033 orig_self_offset); 8034 target_offset = 8035 xlate_offset_with_removed_text (xmap, &relax_info->action_list, 8036 orig_target_offset); 8037 } 8038 8039 self_removed_bytes = 0; 8040 target_removed_bytes = 0; 8041 8042 for (j = 0; j < constraint->action_count; ++j) 8043 { 8044 proposed_action *action = &constraint->actions[j]; 8045 bfd_vma offset = action->offset; 8046 int removed_bytes = action->removed_bytes; 8047 if (offset < orig_self_offset 8048 || (offset == orig_self_offset && action->action == ta_fill 8049 && action->removed_bytes < 0)) 8050 self_removed_bytes += removed_bytes; 8051 if (offset < orig_target_offset 8052 || (offset == orig_target_offset && action->action == ta_fill 8053 && action->removed_bytes < 0)) 8054 target_removed_bytes += removed_bytes; 8055 } 8056 self_offset -= self_removed_bytes; 8057 target_offset -= target_removed_bytes; 8058 8059 /* Try to encode it. Get the operand and check. */ 8060 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info))) 8061 { 8062 /* None of the current alternate relocs are PC-relative, 8063 and only PC-relative relocs matter here. */ 8064 } 8065 else 8066 { 8067 xtensa_opcode opcode; 8068 int opnum; 8069 8070 if (reloc_opcodes) 8071 opcode = reloc_opcodes[i]; 8072 else 8073 opcode = get_relocation_opcode (abfd, sec, contents, irel); 8074 if (opcode == XTENSA_UNDEFINED) 8075 { 8076 ok = FALSE; 8077 break; 8078 } 8079 8080 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info)); 8081 if (opnum == XTENSA_UNDEFINED) 8082 { 8083 ok = FALSE; 8084 break; 8085 } 8086 8087 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset)) 8088 { 8089 ok = FALSE; 8090 break; 8091 } 8092 } 8093 } 8094 8095 if (xmap) 8096 free_xlate_map (xmap); 8097 8098 return ok; 8099 } 8100 8101 8102 static bfd_boolean 8103 check_section_ebb_reduces (const ebb_constraint *constraint) 8104 { 8105 int removed = 0; 8106 unsigned i; 8107 8108 for (i = 0; i < constraint->action_count; i++) 8109 { 8110 const proposed_action *action = &constraint->actions[i]; 8111 if (action->do_action) 8112 removed += action->removed_bytes; 8113 } 8114 if (removed < 0) 8115 return FALSE; 8116 8117 return TRUE; 8118 } 8119 8120 8121 void 8122 text_action_add_proposed (text_action_list *l, 8123 const ebb_constraint *ebb_table, 8124 asection *sec) 8125 { 8126 unsigned i; 8127 8128 for (i = 0; i < ebb_table->action_count; i++) 8129 { 8130 proposed_action *action = &ebb_table->actions[i]; 8131 8132 if (!action->do_action) 8133 continue; 8134 switch (action->action) 8135 { 8136 case ta_remove_insn: 8137 case ta_remove_longcall: 8138 case ta_convert_longcall: 8139 case ta_narrow_insn: 8140 case ta_widen_insn: 8141 case ta_fill: 8142 case ta_remove_literal: 8143 text_action_add (l, action->action, sec, action->offset, 8144 action->removed_bytes); 8145 break; 8146 case ta_none: 8147 break; 8148 default: 8149 BFD_ASSERT (0); 8150 break; 8151 } 8152 } 8153 } 8154 8155 8156 int 8157 compute_fill_extra_space (property_table_entry *entry) 8158 { 8159 int fill_extra_space; 8160 8161 if (!entry) 8162 return 0; 8163 8164 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0) 8165 return 0; 8166 8167 fill_extra_space = entry->size; 8168 if ((entry->flags & XTENSA_PROP_ALIGN) != 0) 8169 { 8170 /* Fill bytes for alignment: 8171 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */ 8172 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags); 8173 int nsm = (1 << pow) - 1; 8174 bfd_vma addr = entry->address + entry->size; 8175 bfd_vma align_fill = nsm - ((addr + nsm) & nsm); 8176 fill_extra_space += align_fill; 8177 } 8178 return fill_extra_space; 8179 } 8180 8181 8182 /* First relaxation pass. */ 8183 8184 /* If the section contains relaxable literals, check each literal to 8185 see if it has the same value as another literal that has already 8186 been seen, either in the current section or a previous one. If so, 8187 add an entry to the per-section list of removed literals. The 8188 actual changes are deferred until the next pass. */ 8189 8190 static bfd_boolean 8191 compute_removed_literals (bfd *abfd, 8192 asection *sec, 8193 struct bfd_link_info *link_info, 8194 value_map_hash_table *values) 8195 { 8196 xtensa_relax_info *relax_info; 8197 bfd_byte *contents; 8198 Elf_Internal_Rela *internal_relocs; 8199 source_reloc *src_relocs, *rel; 8200 bfd_boolean ok = TRUE; 8201 property_table_entry *prop_table = NULL; 8202 int ptblsize; 8203 int i, prev_i; 8204 bfd_boolean last_loc_is_prev = FALSE; 8205 bfd_vma last_target_offset = 0; 8206 section_cache_t target_sec_cache; 8207 bfd_size_type sec_size; 8208 8209 init_section_cache (&target_sec_cache); 8210 8211 /* Do nothing if it is not a relaxable literal section. */ 8212 relax_info = get_xtensa_relax_info (sec); 8213 BFD_ASSERT (relax_info); 8214 if (!relax_info->is_relaxable_literal_section) 8215 return ok; 8216 8217 internal_relocs = retrieve_internal_relocs (abfd, sec, 8218 link_info->keep_memory); 8219 8220 sec_size = bfd_get_section_limit (abfd, sec); 8221 contents = retrieve_contents (abfd, sec, link_info->keep_memory); 8222 if (contents == NULL && sec_size != 0) 8223 { 8224 ok = FALSE; 8225 goto error_return; 8226 } 8227 8228 /* Sort the source_relocs by target offset. */ 8229 src_relocs = relax_info->src_relocs; 8230 qsort (src_relocs, relax_info->src_count, 8231 sizeof (source_reloc), source_reloc_compare); 8232 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), 8233 internal_reloc_compare); 8234 8235 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table, 8236 XTENSA_PROP_SEC_NAME, FALSE); 8237 if (ptblsize < 0) 8238 { 8239 ok = FALSE; 8240 goto error_return; 8241 } 8242 8243 prev_i = -1; 8244 for (i = 0; i < relax_info->src_count; i++) 8245 { 8246 Elf_Internal_Rela *irel = NULL; 8247 8248 rel = &src_relocs[i]; 8249 if (get_l32r_opcode () != rel->opcode) 8250 continue; 8251 irel = get_irel_at_offset (sec, internal_relocs, 8252 rel->r_rel.target_offset); 8253 8254 /* If the relocation on this is not a simple R_XTENSA_32 or 8255 R_XTENSA_PLT then do not consider it. This may happen when 8256 the difference of two symbols is used in a literal. */ 8257 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32 8258 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT)) 8259 continue; 8260 8261 /* If the target_offset for this relocation is the same as the 8262 previous relocation, then we've already considered whether the 8263 literal can be coalesced. Skip to the next one.... */ 8264 if (i != 0 && prev_i != -1 8265 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset) 8266 continue; 8267 prev_i = i; 8268 8269 if (last_loc_is_prev && 8270 last_target_offset + 4 != rel->r_rel.target_offset) 8271 last_loc_is_prev = FALSE; 8272 8273 /* Check if the relocation was from an L32R that is being removed 8274 because a CALLX was converted to a direct CALL, and check if 8275 there are no other relocations to the literal. */ 8276 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count, 8277 sec, prop_table, ptblsize)) 8278 { 8279 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs, 8280 irel, rel, prop_table, ptblsize)) 8281 { 8282 ok = FALSE; 8283 goto error_return; 8284 } 8285 last_target_offset = rel->r_rel.target_offset; 8286 continue; 8287 } 8288 8289 if (!identify_literal_placement (abfd, sec, contents, link_info, 8290 values, 8291 &last_loc_is_prev, irel, 8292 relax_info->src_count - i, rel, 8293 prop_table, ptblsize, 8294 &target_sec_cache, rel->is_abs_literal)) 8295 { 8296 ok = FALSE; 8297 goto error_return; 8298 } 8299 last_target_offset = rel->r_rel.target_offset; 8300 } 8301 8302 #if DEBUG 8303 print_removed_literals (stderr, &relax_info->removed_list); 8304 print_action_list (stderr, &relax_info->action_list); 8305 #endif /* DEBUG */ 8306 8307 error_return: 8308 if (prop_table) 8309 free (prop_table); 8310 free_section_cache (&target_sec_cache); 8311 8312 release_contents (sec, contents); 8313 release_internal_relocs (sec, internal_relocs); 8314 return ok; 8315 } 8316 8317 8318 static Elf_Internal_Rela * 8319 get_irel_at_offset (asection *sec, 8320 Elf_Internal_Rela *internal_relocs, 8321 bfd_vma offset) 8322 { 8323 unsigned i; 8324 Elf_Internal_Rela *irel; 8325 unsigned r_type; 8326 Elf_Internal_Rela key; 8327 8328 if (!internal_relocs) 8329 return NULL; 8330 8331 key.r_offset = offset; 8332 irel = bsearch (&key, internal_relocs, sec->reloc_count, 8333 sizeof (Elf_Internal_Rela), internal_reloc_matches); 8334 if (!irel) 8335 return NULL; 8336 8337 /* bsearch does not guarantee which will be returned if there are 8338 multiple matches. We need the first that is not an alignment. */ 8339 i = irel - internal_relocs; 8340 while (i > 0) 8341 { 8342 if (internal_relocs[i-1].r_offset != offset) 8343 break; 8344 i--; 8345 } 8346 for ( ; i < sec->reloc_count; i++) 8347 { 8348 irel = &internal_relocs[i]; 8349 r_type = ELF32_R_TYPE (irel->r_info); 8350 if (irel->r_offset == offset && r_type != R_XTENSA_NONE) 8351 return irel; 8352 } 8353 8354 return NULL; 8355 } 8356 8357 8358 bfd_boolean 8359 is_removable_literal (const source_reloc *rel, 8360 int i, 8361 const source_reloc *src_relocs, 8362 int src_count, 8363 asection *sec, 8364 property_table_entry *prop_table, 8365 int ptblsize) 8366 { 8367 const source_reloc *curr_rel; 8368 property_table_entry *entry; 8369 8370 if (!rel->is_null) 8371 return FALSE; 8372 8373 entry = elf_xtensa_find_property_entry (prop_table, ptblsize, 8374 sec->vma + rel->r_rel.target_offset); 8375 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) 8376 return FALSE; 8377 8378 for (++i; i < src_count; ++i) 8379 { 8380 curr_rel = &src_relocs[i]; 8381 /* If all others have the same target offset.... */ 8382 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset) 8383 return TRUE; 8384 8385 if (!curr_rel->is_null 8386 && !xtensa_is_property_section (curr_rel->source_sec) 8387 && !(curr_rel->source_sec->flags & SEC_DEBUGGING)) 8388 return FALSE; 8389 } 8390 return TRUE; 8391 } 8392 8393 8394 bfd_boolean 8395 remove_dead_literal (bfd *abfd, 8396 asection *sec, 8397 struct bfd_link_info *link_info, 8398 Elf_Internal_Rela *internal_relocs, 8399 Elf_Internal_Rela *irel, 8400 source_reloc *rel, 8401 property_table_entry *prop_table, 8402 int ptblsize) 8403 { 8404 property_table_entry *entry; 8405 xtensa_relax_info *relax_info; 8406 8407 relax_info = get_xtensa_relax_info (sec); 8408 if (!relax_info) 8409 return FALSE; 8410 8411 entry = elf_xtensa_find_property_entry (prop_table, ptblsize, 8412 sec->vma + rel->r_rel.target_offset); 8413 8414 /* Mark the unused literal so that it will be removed. */ 8415 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL); 8416 8417 text_action_add (&relax_info->action_list, 8418 ta_remove_literal, sec, rel->r_rel.target_offset, 4); 8419 8420 /* If the section is 4-byte aligned, do not add fill. */ 8421 if (sec->alignment_power > 2) 8422 { 8423 int fill_extra_space; 8424 bfd_vma entry_sec_offset; 8425 text_action *fa; 8426 property_table_entry *the_add_entry; 8427 int removed_diff; 8428 8429 if (entry) 8430 entry_sec_offset = entry->address - sec->vma + entry->size; 8431 else 8432 entry_sec_offset = rel->r_rel.target_offset + 4; 8433 8434 /* If the literal range is at the end of the section, 8435 do not add fill. */ 8436 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, 8437 entry_sec_offset); 8438 fill_extra_space = compute_fill_extra_space (the_add_entry); 8439 8440 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); 8441 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, 8442 -4, fill_extra_space); 8443 if (fa) 8444 adjust_fill_action (fa, removed_diff); 8445 else 8446 text_action_add (&relax_info->action_list, 8447 ta_fill, sec, entry_sec_offset, removed_diff); 8448 } 8449 8450 /* Zero out the relocation on this literal location. */ 8451 if (irel) 8452 { 8453 if (elf_hash_table (link_info)->dynamic_sections_created) 8454 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); 8455 8456 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); 8457 pin_internal_relocs (sec, internal_relocs); 8458 } 8459 8460 /* Do not modify "last_loc_is_prev". */ 8461 return TRUE; 8462 } 8463 8464 8465 bfd_boolean 8466 identify_literal_placement (bfd *abfd, 8467 asection *sec, 8468 bfd_byte *contents, 8469 struct bfd_link_info *link_info, 8470 value_map_hash_table *values, 8471 bfd_boolean *last_loc_is_prev_p, 8472 Elf_Internal_Rela *irel, 8473 int remaining_src_rels, 8474 source_reloc *rel, 8475 property_table_entry *prop_table, 8476 int ptblsize, 8477 section_cache_t *target_sec_cache, 8478 bfd_boolean is_abs_literal) 8479 { 8480 literal_value val; 8481 value_map *val_map; 8482 xtensa_relax_info *relax_info; 8483 bfd_boolean literal_placed = FALSE; 8484 r_reloc r_rel; 8485 unsigned long value; 8486 bfd_boolean final_static_link; 8487 bfd_size_type sec_size; 8488 8489 relax_info = get_xtensa_relax_info (sec); 8490 if (!relax_info) 8491 return FALSE; 8492 8493 sec_size = bfd_get_section_limit (abfd, sec); 8494 8495 final_static_link = 8496 (!link_info->relocatable 8497 && !elf_hash_table (link_info)->dynamic_sections_created); 8498 8499 /* The placement algorithm first checks to see if the literal is 8500 already in the value map. If so and the value map is reachable 8501 from all uses, then the literal is moved to that location. If 8502 not, then we identify the last location where a fresh literal was 8503 placed. If the literal can be safely moved there, then we do so. 8504 If not, then we assume that the literal is not to move and leave 8505 the literal where it is, marking it as the last literal 8506 location. */ 8507 8508 /* Find the literal value. */ 8509 value = 0; 8510 r_reloc_init (&r_rel, abfd, irel, contents, sec_size); 8511 if (!irel) 8512 { 8513 BFD_ASSERT (rel->r_rel.target_offset < sec_size); 8514 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset); 8515 } 8516 init_literal_value (&val, &r_rel, value, is_abs_literal); 8517 8518 /* Check if we've seen another literal with the same value that 8519 is in the same output section. */ 8520 val_map = value_map_get_cached_value (values, &val, final_static_link); 8521 8522 if (val_map 8523 && (r_reloc_get_section (&val_map->loc)->output_section 8524 == sec->output_section) 8525 && relocations_reach (rel, remaining_src_rels, &val_map->loc) 8526 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map)) 8527 { 8528 /* No change to last_loc_is_prev. */ 8529 literal_placed = TRUE; 8530 } 8531 8532 /* For relocatable links, do not try to move literals. To do it 8533 correctly might increase the number of relocations in an input 8534 section making the default relocatable linking fail. */ 8535 if (!link_info->relocatable && !literal_placed 8536 && values->has_last_loc && !(*last_loc_is_prev_p)) 8537 { 8538 asection *target_sec = r_reloc_get_section (&values->last_loc); 8539 if (target_sec && target_sec->output_section == sec->output_section) 8540 { 8541 /* Increment the virtual offset. */ 8542 r_reloc try_loc = values->last_loc; 8543 try_loc.virtual_offset += 4; 8544 8545 /* There is a last loc that was in the same output section. */ 8546 if (relocations_reach (rel, remaining_src_rels, &try_loc) 8547 && move_shared_literal (sec, link_info, rel, 8548 prop_table, ptblsize, 8549 &try_loc, &val, target_sec_cache)) 8550 { 8551 values->last_loc.virtual_offset += 4; 8552 literal_placed = TRUE; 8553 if (!val_map) 8554 val_map = add_value_map (values, &val, &try_loc, 8555 final_static_link); 8556 else 8557 val_map->loc = try_loc; 8558 } 8559 } 8560 } 8561 8562 if (!literal_placed) 8563 { 8564 /* Nothing worked, leave the literal alone but update the last loc. */ 8565 values->has_last_loc = TRUE; 8566 values->last_loc = rel->r_rel; 8567 if (!val_map) 8568 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link); 8569 else 8570 val_map->loc = rel->r_rel; 8571 *last_loc_is_prev_p = TRUE; 8572 } 8573 8574 return TRUE; 8575 } 8576 8577 8578 /* Check if the original relocations (presumably on L32R instructions) 8579 identified by reloc[0..N] can be changed to reference the literal 8580 identified by r_rel. If r_rel is out of range for any of the 8581 original relocations, then we don't want to coalesce the original 8582 literal with the one at r_rel. We only check reloc[0..N], where the 8583 offsets are all the same as for reloc[0] (i.e., they're all 8584 referencing the same literal) and where N is also bounded by the 8585 number of remaining entries in the "reloc" array. The "reloc" array 8586 is sorted by target offset so we know all the entries for the same 8587 literal will be contiguous. */ 8588 8589 static bfd_boolean 8590 relocations_reach (source_reloc *reloc, 8591 int remaining_relocs, 8592 const r_reloc *r_rel) 8593 { 8594 bfd_vma from_offset, source_address, dest_address; 8595 asection *sec; 8596 int i; 8597 8598 if (!r_reloc_is_defined (r_rel)) 8599 return FALSE; 8600 8601 sec = r_reloc_get_section (r_rel); 8602 from_offset = reloc[0].r_rel.target_offset; 8603 8604 for (i = 0; i < remaining_relocs; i++) 8605 { 8606 if (reloc[i].r_rel.target_offset != from_offset) 8607 break; 8608 8609 /* Ignore relocations that have been removed. */ 8610 if (reloc[i].is_null) 8611 continue; 8612 8613 /* The original and new output section for these must be the same 8614 in order to coalesce. */ 8615 if (r_reloc_get_section (&reloc[i].r_rel)->output_section 8616 != sec->output_section) 8617 return FALSE; 8618 8619 /* Absolute literals in the same output section can always be 8620 combined. */ 8621 if (reloc[i].is_abs_literal) 8622 continue; 8623 8624 /* A literal with no PC-relative relocations can be moved anywhere. */ 8625 if (reloc[i].opnd != -1) 8626 { 8627 /* Otherwise, check to see that it fits. */ 8628 source_address = (reloc[i].source_sec->output_section->vma 8629 + reloc[i].source_sec->output_offset 8630 + reloc[i].r_rel.rela.r_offset); 8631 dest_address = (sec->output_section->vma 8632 + sec->output_offset 8633 + r_rel->target_offset); 8634 8635 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd, 8636 source_address, dest_address)) 8637 return FALSE; 8638 } 8639 } 8640 8641 return TRUE; 8642 } 8643 8644 8645 /* Move a literal to another literal location because it is 8646 the same as the other literal value. */ 8647 8648 static bfd_boolean 8649 coalesce_shared_literal (asection *sec, 8650 source_reloc *rel, 8651 property_table_entry *prop_table, 8652 int ptblsize, 8653 value_map *val_map) 8654 { 8655 property_table_entry *entry; 8656 text_action *fa; 8657 property_table_entry *the_add_entry; 8658 int removed_diff; 8659 xtensa_relax_info *relax_info; 8660 8661 relax_info = get_xtensa_relax_info (sec); 8662 if (!relax_info) 8663 return FALSE; 8664 8665 entry = elf_xtensa_find_property_entry 8666 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); 8667 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM)) 8668 return TRUE; 8669 8670 /* Mark that the literal will be coalesced. */ 8671 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc); 8672 8673 text_action_add (&relax_info->action_list, 8674 ta_remove_literal, sec, rel->r_rel.target_offset, 4); 8675 8676 /* If the section is 4-byte aligned, do not add fill. */ 8677 if (sec->alignment_power > 2) 8678 { 8679 int fill_extra_space; 8680 bfd_vma entry_sec_offset; 8681 8682 if (entry) 8683 entry_sec_offset = entry->address - sec->vma + entry->size; 8684 else 8685 entry_sec_offset = rel->r_rel.target_offset + 4; 8686 8687 /* If the literal range is at the end of the section, 8688 do not add fill. */ 8689 fill_extra_space = 0; 8690 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, 8691 entry_sec_offset); 8692 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) 8693 fill_extra_space = the_add_entry->size; 8694 8695 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); 8696 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, 8697 -4, fill_extra_space); 8698 if (fa) 8699 adjust_fill_action (fa, removed_diff); 8700 else 8701 text_action_add (&relax_info->action_list, 8702 ta_fill, sec, entry_sec_offset, removed_diff); 8703 } 8704 8705 return TRUE; 8706 } 8707 8708 8709 /* Move a literal to another location. This may actually increase the 8710 total amount of space used because of alignments so we need to do 8711 this carefully. Also, it may make a branch go out of range. */ 8712 8713 static bfd_boolean 8714 move_shared_literal (asection *sec, 8715 struct bfd_link_info *link_info, 8716 source_reloc *rel, 8717 property_table_entry *prop_table, 8718 int ptblsize, 8719 const r_reloc *target_loc, 8720 const literal_value *lit_value, 8721 section_cache_t *target_sec_cache) 8722 { 8723 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL; 8724 text_action *fa, *target_fa; 8725 int removed_diff; 8726 xtensa_relax_info *relax_info, *target_relax_info; 8727 asection *target_sec; 8728 ebb_t *ebb; 8729 ebb_constraint ebb_table; 8730 bfd_boolean relocs_fit; 8731 8732 /* If this routine always returns FALSE, the literals that cannot be 8733 coalesced will not be moved. */ 8734 if (elf32xtensa_no_literal_movement) 8735 return FALSE; 8736 8737 relax_info = get_xtensa_relax_info (sec); 8738 if (!relax_info) 8739 return FALSE; 8740 8741 target_sec = r_reloc_get_section (target_loc); 8742 target_relax_info = get_xtensa_relax_info (target_sec); 8743 8744 /* Literals to undefined sections may not be moved because they 8745 must report an error. */ 8746 if (bfd_is_und_section (target_sec)) 8747 return FALSE; 8748 8749 src_entry = elf_xtensa_find_property_entry 8750 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset); 8751 8752 if (!section_cache_section (target_sec_cache, target_sec, link_info)) 8753 return FALSE; 8754 8755 target_entry = elf_xtensa_find_property_entry 8756 (target_sec_cache->ptbl, target_sec_cache->pte_count, 8757 target_sec->vma + target_loc->target_offset); 8758 8759 if (!target_entry) 8760 return FALSE; 8761 8762 /* Make sure that we have not broken any branches. */ 8763 relocs_fit = FALSE; 8764 8765 init_ebb_constraint (&ebb_table); 8766 ebb = &ebb_table.ebb; 8767 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents, 8768 target_sec_cache->content_length, 8769 target_sec_cache->ptbl, target_sec_cache->pte_count, 8770 target_sec_cache->relocs, target_sec_cache->reloc_count); 8771 8772 /* Propose to add 4 bytes + worst-case alignment size increase to 8773 destination. */ 8774 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0, 8775 ta_fill, target_loc->target_offset, 8776 -4 - (1 << target_sec->alignment_power), TRUE); 8777 8778 /* Check all of the PC-relative relocations to make sure they still fit. */ 8779 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec, 8780 target_sec_cache->contents, 8781 target_sec_cache->relocs, 8782 &ebb_table, NULL); 8783 8784 if (!relocs_fit) 8785 return FALSE; 8786 8787 text_action_add_literal (&target_relax_info->action_list, 8788 ta_add_literal, target_loc, lit_value, -4); 8789 8790 if (target_sec->alignment_power > 2 && target_entry != src_entry) 8791 { 8792 /* May need to add or remove some fill to maintain alignment. */ 8793 int fill_extra_space; 8794 bfd_vma entry_sec_offset; 8795 8796 entry_sec_offset = 8797 target_entry->address - target_sec->vma + target_entry->size; 8798 8799 /* If the literal range is at the end of the section, 8800 do not add fill. */ 8801 fill_extra_space = 0; 8802 the_add_entry = 8803 elf_xtensa_find_property_entry (target_sec_cache->ptbl, 8804 target_sec_cache->pte_count, 8805 entry_sec_offset); 8806 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) 8807 fill_extra_space = the_add_entry->size; 8808 8809 target_fa = find_fill_action (&target_relax_info->action_list, 8810 target_sec, entry_sec_offset); 8811 removed_diff = compute_removed_action_diff (target_fa, target_sec, 8812 entry_sec_offset, 4, 8813 fill_extra_space); 8814 if (target_fa) 8815 adjust_fill_action (target_fa, removed_diff); 8816 else 8817 text_action_add (&target_relax_info->action_list, 8818 ta_fill, target_sec, entry_sec_offset, removed_diff); 8819 } 8820 8821 /* Mark that the literal will be moved to the new location. */ 8822 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc); 8823 8824 /* Remove the literal. */ 8825 text_action_add (&relax_info->action_list, 8826 ta_remove_literal, sec, rel->r_rel.target_offset, 4); 8827 8828 /* If the section is 4-byte aligned, do not add fill. */ 8829 if (sec->alignment_power > 2 && target_entry != src_entry) 8830 { 8831 int fill_extra_space; 8832 bfd_vma entry_sec_offset; 8833 8834 if (src_entry) 8835 entry_sec_offset = src_entry->address - sec->vma + src_entry->size; 8836 else 8837 entry_sec_offset = rel->r_rel.target_offset+4; 8838 8839 /* If the literal range is at the end of the section, 8840 do not add fill. */ 8841 fill_extra_space = 0; 8842 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize, 8843 entry_sec_offset); 8844 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE)) 8845 fill_extra_space = the_add_entry->size; 8846 8847 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset); 8848 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset, 8849 -4, fill_extra_space); 8850 if (fa) 8851 adjust_fill_action (fa, removed_diff); 8852 else 8853 text_action_add (&relax_info->action_list, 8854 ta_fill, sec, entry_sec_offset, removed_diff); 8855 } 8856 8857 return TRUE; 8858 } 8859 8860 8861 /* Second relaxation pass. */ 8862 8863 /* Modify all of the relocations to point to the right spot, and if this 8864 is a relaxable section, delete the unwanted literals and fix the 8865 section size. */ 8866 8867 bfd_boolean 8868 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info) 8869 { 8870 Elf_Internal_Rela *internal_relocs; 8871 xtensa_relax_info *relax_info; 8872 bfd_byte *contents; 8873 bfd_boolean ok = TRUE; 8874 unsigned i; 8875 bfd_boolean rv = FALSE; 8876 bfd_boolean virtual_action; 8877 bfd_size_type sec_size; 8878 8879 sec_size = bfd_get_section_limit (abfd, sec); 8880 relax_info = get_xtensa_relax_info (sec); 8881 BFD_ASSERT (relax_info); 8882 8883 /* First translate any of the fixes that have been added already. */ 8884 translate_section_fixes (sec); 8885 8886 /* Handle property sections (e.g., literal tables) specially. */ 8887 if (xtensa_is_property_section (sec)) 8888 { 8889 BFD_ASSERT (!relax_info->is_relaxable_literal_section); 8890 return relax_property_section (abfd, sec, link_info); 8891 } 8892 8893 internal_relocs = retrieve_internal_relocs (abfd, sec, 8894 link_info->keep_memory); 8895 if (!internal_relocs && !relax_info->action_list.head) 8896 return TRUE; 8897 8898 contents = retrieve_contents (abfd, sec, link_info->keep_memory); 8899 if (contents == NULL && sec_size != 0) 8900 { 8901 ok = FALSE; 8902 goto error_return; 8903 } 8904 8905 if (internal_relocs) 8906 { 8907 for (i = 0; i < sec->reloc_count; i++) 8908 { 8909 Elf_Internal_Rela *irel; 8910 xtensa_relax_info *target_relax_info; 8911 bfd_vma source_offset, old_source_offset; 8912 r_reloc r_rel; 8913 unsigned r_type; 8914 asection *target_sec; 8915 8916 /* Locally change the source address. 8917 Translate the target to the new target address. 8918 If it points to this section and has been removed, 8919 NULLify it. 8920 Write it back. */ 8921 8922 irel = &internal_relocs[i]; 8923 source_offset = irel->r_offset; 8924 old_source_offset = source_offset; 8925 8926 r_type = ELF32_R_TYPE (irel->r_info); 8927 r_reloc_init (&r_rel, abfd, irel, contents, 8928 bfd_get_section_limit (abfd, sec)); 8929 8930 /* If this section could have changed then we may need to 8931 change the relocation's offset. */ 8932 8933 if (relax_info->is_relaxable_literal_section 8934 || relax_info->is_relaxable_asm_section) 8935 { 8936 pin_internal_relocs (sec, internal_relocs); 8937 8938 if (r_type != R_XTENSA_NONE 8939 && find_removed_literal (&relax_info->removed_list, 8940 irel->r_offset)) 8941 { 8942 /* Remove this relocation. */ 8943 if (elf_hash_table (link_info)->dynamic_sections_created) 8944 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel); 8945 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); 8946 irel->r_offset = offset_with_removed_text 8947 (&relax_info->action_list, irel->r_offset); 8948 continue; 8949 } 8950 8951 if (r_type == R_XTENSA_ASM_SIMPLIFY) 8952 { 8953 text_action *action = 8954 find_insn_action (&relax_info->action_list, 8955 irel->r_offset); 8956 if (action && (action->action == ta_convert_longcall 8957 || action->action == ta_remove_longcall)) 8958 { 8959 bfd_reloc_status_type retval; 8960 char *error_message = NULL; 8961 8962 retval = contract_asm_expansion (contents, sec_size, 8963 irel, &error_message); 8964 if (retval != bfd_reloc_ok) 8965 { 8966 (*link_info->callbacks->reloc_dangerous) 8967 (link_info, error_message, abfd, sec, 8968 irel->r_offset); 8969 goto error_return; 8970 } 8971 /* Update the action so that the code that moves 8972 the contents will do the right thing. */ 8973 if (action->action == ta_remove_longcall) 8974 action->action = ta_remove_insn; 8975 else 8976 action->action = ta_none; 8977 /* Refresh the info in the r_rel. */ 8978 r_reloc_init (&r_rel, abfd, irel, contents, sec_size); 8979 r_type = ELF32_R_TYPE (irel->r_info); 8980 } 8981 } 8982 8983 source_offset = offset_with_removed_text 8984 (&relax_info->action_list, irel->r_offset); 8985 irel->r_offset = source_offset; 8986 } 8987 8988 /* If the target section could have changed then 8989 we may need to change the relocation's target offset. */ 8990 8991 target_sec = r_reloc_get_section (&r_rel); 8992 8993 /* For a reference to a discarded section from a DWARF section, 8994 i.e., where action_discarded is PRETEND, the symbol will 8995 eventually be modified to refer to the kept section (at least if 8996 the kept and discarded sections are the same size). Anticipate 8997 that here and adjust things accordingly. */ 8998 if (! elf_xtensa_ignore_discarded_relocs (sec) 8999 && elf_xtensa_action_discarded (sec) == PRETEND 9000 && sec->sec_info_type != SEC_INFO_TYPE_STABS 9001 && target_sec != NULL 9002 && discarded_section (target_sec)) 9003 { 9004 /* It would be natural to call _bfd_elf_check_kept_section 9005 here, but it's not exported from elflink.c. It's also a 9006 fairly expensive check. Adjusting the relocations to the 9007 discarded section is fairly harmless; it will only adjust 9008 some addends and difference values. If it turns out that 9009 _bfd_elf_check_kept_section fails later, it won't matter, 9010 so just compare the section names to find the right group 9011 member. */ 9012 asection *kept = target_sec->kept_section; 9013 if (kept != NULL) 9014 { 9015 if ((kept->flags & SEC_GROUP) != 0) 9016 { 9017 asection *first = elf_next_in_group (kept); 9018 asection *s = first; 9019 9020 kept = NULL; 9021 while (s != NULL) 9022 { 9023 if (strcmp (s->name, target_sec->name) == 0) 9024 { 9025 kept = s; 9026 break; 9027 } 9028 s = elf_next_in_group (s); 9029 if (s == first) 9030 break; 9031 } 9032 } 9033 } 9034 if (kept != NULL 9035 && ((target_sec->rawsize != 0 9036 ? target_sec->rawsize : target_sec->size) 9037 == (kept->rawsize != 0 ? kept->rawsize : kept->size))) 9038 target_sec = kept; 9039 } 9040 9041 target_relax_info = get_xtensa_relax_info (target_sec); 9042 if (target_relax_info 9043 && (target_relax_info->is_relaxable_literal_section 9044 || target_relax_info->is_relaxable_asm_section)) 9045 { 9046 r_reloc new_reloc; 9047 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec); 9048 9049 if (r_type == R_XTENSA_DIFF8 9050 || r_type == R_XTENSA_DIFF16 9051 || r_type == R_XTENSA_DIFF32) 9052 { 9053 bfd_signed_vma diff_value = 0; 9054 bfd_vma new_end_offset, diff_mask = 0; 9055 9056 if (bfd_get_section_limit (abfd, sec) < old_source_offset) 9057 { 9058 (*link_info->callbacks->reloc_dangerous) 9059 (link_info, _("invalid relocation address"), 9060 abfd, sec, old_source_offset); 9061 goto error_return; 9062 } 9063 9064 switch (r_type) 9065 { 9066 case R_XTENSA_DIFF8: 9067 diff_value = 9068 bfd_get_signed_8 (abfd, &contents[old_source_offset]); 9069 break; 9070 case R_XTENSA_DIFF16: 9071 diff_value = 9072 bfd_get_signed_16 (abfd, &contents[old_source_offset]); 9073 break; 9074 case R_XTENSA_DIFF32: 9075 diff_value = 9076 bfd_get_signed_32 (abfd, &contents[old_source_offset]); 9077 break; 9078 } 9079 9080 new_end_offset = offset_with_removed_text 9081 (&target_relax_info->action_list, 9082 r_rel.target_offset + diff_value); 9083 diff_value = new_end_offset - new_reloc.target_offset; 9084 9085 switch (r_type) 9086 { 9087 case R_XTENSA_DIFF8: 9088 diff_mask = 0x7f; 9089 bfd_put_signed_8 (abfd, diff_value, 9090 &contents[old_source_offset]); 9091 break; 9092 case R_XTENSA_DIFF16: 9093 diff_mask = 0x7fff; 9094 bfd_put_signed_16 (abfd, diff_value, 9095 &contents[old_source_offset]); 9096 break; 9097 case R_XTENSA_DIFF32: 9098 diff_mask = 0x7fffffff; 9099 bfd_put_signed_32 (abfd, diff_value, 9100 &contents[old_source_offset]); 9101 break; 9102 } 9103 9104 /* Check for overflow. Sign bits must be all zeroes or all ones */ 9105 if ((diff_value & ~diff_mask) != 0 && 9106 (diff_value & ~diff_mask) != (-1 & ~diff_mask)) 9107 { 9108 (*link_info->callbacks->reloc_dangerous) 9109 (link_info, _("overflow after relaxation"), 9110 abfd, sec, old_source_offset); 9111 goto error_return; 9112 } 9113 9114 pin_contents (sec, contents); 9115 } 9116 9117 /* If the relocation still references a section in the same 9118 input file, modify the relocation directly instead of 9119 adding a "fix" record. */ 9120 if (target_sec->owner == abfd) 9121 { 9122 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info); 9123 irel->r_info = ELF32_R_INFO (r_symndx, r_type); 9124 irel->r_addend = new_reloc.rela.r_addend; 9125 pin_internal_relocs (sec, internal_relocs); 9126 } 9127 else 9128 { 9129 bfd_vma addend_displacement; 9130 reloc_bfd_fix *fix; 9131 9132 addend_displacement = 9133 new_reloc.target_offset + new_reloc.virtual_offset; 9134 fix = reloc_bfd_fix_init (sec, source_offset, r_type, 9135 target_sec, 9136 addend_displacement, TRUE); 9137 add_fix (sec, fix); 9138 } 9139 } 9140 } 9141 } 9142 9143 if ((relax_info->is_relaxable_literal_section 9144 || relax_info->is_relaxable_asm_section) 9145 && relax_info->action_list.head) 9146 { 9147 /* Walk through the planned actions and build up a table 9148 of move, copy and fill records. Use the move, copy and 9149 fill records to perform the actions once. */ 9150 9151 int removed = 0; 9152 bfd_size_type final_size, copy_size, orig_insn_size; 9153 bfd_byte *scratch = NULL; 9154 bfd_byte *dup_contents = NULL; 9155 bfd_size_type orig_size = sec->size; 9156 bfd_vma orig_dot = 0; 9157 bfd_vma orig_dot_copied = 0; /* Byte copied already from 9158 orig dot in physical memory. */ 9159 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */ 9160 bfd_vma dup_dot = 0; 9161 9162 text_action *action = relax_info->action_list.head; 9163 9164 final_size = sec->size; 9165 for (action = relax_info->action_list.head; action; 9166 action = action->next) 9167 { 9168 final_size -= action->removed_bytes; 9169 } 9170 9171 scratch = (bfd_byte *) bfd_zmalloc (final_size); 9172 dup_contents = (bfd_byte *) bfd_zmalloc (final_size); 9173 9174 /* The dot is the current fill location. */ 9175 #if DEBUG 9176 print_action_list (stderr, &relax_info->action_list); 9177 #endif 9178 9179 for (action = relax_info->action_list.head; action; 9180 action = action->next) 9181 { 9182 virtual_action = FALSE; 9183 if (action->offset > orig_dot) 9184 { 9185 orig_dot += orig_dot_copied; 9186 orig_dot_copied = 0; 9187 orig_dot_vo = 0; 9188 /* Out of the virtual world. */ 9189 } 9190 9191 if (action->offset > orig_dot) 9192 { 9193 copy_size = action->offset - orig_dot; 9194 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); 9195 orig_dot += copy_size; 9196 dup_dot += copy_size; 9197 BFD_ASSERT (action->offset == orig_dot); 9198 } 9199 else if (action->offset < orig_dot) 9200 { 9201 if (action->action == ta_fill 9202 && action->offset - action->removed_bytes == orig_dot) 9203 { 9204 /* This is OK because the fill only effects the dup_dot. */ 9205 } 9206 else if (action->action == ta_add_literal) 9207 { 9208 /* TBD. Might need to handle this. */ 9209 } 9210 } 9211 if (action->offset == orig_dot) 9212 { 9213 if (action->virtual_offset > orig_dot_vo) 9214 { 9215 if (orig_dot_vo == 0) 9216 { 9217 /* Need to copy virtual_offset bytes. Probably four. */ 9218 copy_size = action->virtual_offset - orig_dot_vo; 9219 memmove (&dup_contents[dup_dot], 9220 &contents[orig_dot], copy_size); 9221 orig_dot_copied = copy_size; 9222 dup_dot += copy_size; 9223 } 9224 virtual_action = TRUE; 9225 } 9226 else 9227 BFD_ASSERT (action->virtual_offset <= orig_dot_vo); 9228 } 9229 switch (action->action) 9230 { 9231 case ta_remove_literal: 9232 case ta_remove_insn: 9233 BFD_ASSERT (action->removed_bytes >= 0); 9234 orig_dot += action->removed_bytes; 9235 break; 9236 9237 case ta_narrow_insn: 9238 orig_insn_size = 3; 9239 copy_size = 2; 9240 memmove (scratch, &contents[orig_dot], orig_insn_size); 9241 BFD_ASSERT (action->removed_bytes == 1); 9242 rv = narrow_instruction (scratch, final_size, 0); 9243 BFD_ASSERT (rv); 9244 memmove (&dup_contents[dup_dot], scratch, copy_size); 9245 orig_dot += orig_insn_size; 9246 dup_dot += copy_size; 9247 break; 9248 9249 case ta_fill: 9250 if (action->removed_bytes >= 0) 9251 orig_dot += action->removed_bytes; 9252 else 9253 { 9254 /* Already zeroed in dup_contents. Just bump the 9255 counters. */ 9256 dup_dot += (-action->removed_bytes); 9257 } 9258 break; 9259 9260 case ta_none: 9261 BFD_ASSERT (action->removed_bytes == 0); 9262 break; 9263 9264 case ta_convert_longcall: 9265 case ta_remove_longcall: 9266 /* These will be removed or converted before we get here. */ 9267 BFD_ASSERT (0); 9268 break; 9269 9270 case ta_widen_insn: 9271 orig_insn_size = 2; 9272 copy_size = 3; 9273 memmove (scratch, &contents[orig_dot], orig_insn_size); 9274 BFD_ASSERT (action->removed_bytes == -1); 9275 rv = widen_instruction (scratch, final_size, 0); 9276 BFD_ASSERT (rv); 9277 memmove (&dup_contents[dup_dot], scratch, copy_size); 9278 orig_dot += orig_insn_size; 9279 dup_dot += copy_size; 9280 break; 9281 9282 case ta_add_literal: 9283 orig_insn_size = 0; 9284 copy_size = 4; 9285 BFD_ASSERT (action->removed_bytes == -4); 9286 /* TBD -- place the literal value here and insert 9287 into the table. */ 9288 memset (&dup_contents[dup_dot], 0, 4); 9289 pin_internal_relocs (sec, internal_relocs); 9290 pin_contents (sec, contents); 9291 9292 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents, 9293 relax_info, &internal_relocs, &action->value)) 9294 goto error_return; 9295 9296 if (virtual_action) 9297 orig_dot_vo += copy_size; 9298 9299 orig_dot += orig_insn_size; 9300 dup_dot += copy_size; 9301 break; 9302 9303 default: 9304 /* Not implemented yet. */ 9305 BFD_ASSERT (0); 9306 break; 9307 } 9308 9309 removed += action->removed_bytes; 9310 BFD_ASSERT (dup_dot <= final_size); 9311 BFD_ASSERT (orig_dot <= orig_size); 9312 } 9313 9314 orig_dot += orig_dot_copied; 9315 orig_dot_copied = 0; 9316 9317 if (orig_dot != orig_size) 9318 { 9319 copy_size = orig_size - orig_dot; 9320 BFD_ASSERT (orig_size > orig_dot); 9321 BFD_ASSERT (dup_dot + copy_size == final_size); 9322 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size); 9323 orig_dot += copy_size; 9324 dup_dot += copy_size; 9325 } 9326 BFD_ASSERT (orig_size == orig_dot); 9327 BFD_ASSERT (final_size == dup_dot); 9328 9329 /* Move the dup_contents back. */ 9330 if (final_size > orig_size) 9331 { 9332 /* Contents need to be reallocated. Swap the dup_contents into 9333 contents. */ 9334 sec->contents = dup_contents; 9335 free (contents); 9336 contents = dup_contents; 9337 pin_contents (sec, contents); 9338 } 9339 else 9340 { 9341 BFD_ASSERT (final_size <= orig_size); 9342 memset (contents, 0, orig_size); 9343 memcpy (contents, dup_contents, final_size); 9344 free (dup_contents); 9345 } 9346 free (scratch); 9347 pin_contents (sec, contents); 9348 9349 if (sec->rawsize == 0) 9350 sec->rawsize = sec->size; 9351 sec->size = final_size; 9352 } 9353 9354 error_return: 9355 release_internal_relocs (sec, internal_relocs); 9356 release_contents (sec, contents); 9357 return ok; 9358 } 9359 9360 9361 static bfd_boolean 9362 translate_section_fixes (asection *sec) 9363 { 9364 xtensa_relax_info *relax_info; 9365 reloc_bfd_fix *r; 9366 9367 relax_info = get_xtensa_relax_info (sec); 9368 if (!relax_info) 9369 return TRUE; 9370 9371 for (r = relax_info->fix_list; r != NULL; r = r->next) 9372 if (!translate_reloc_bfd_fix (r)) 9373 return FALSE; 9374 9375 return TRUE; 9376 } 9377 9378 9379 /* Translate a fix given the mapping in the relax info for the target 9380 section. If it has already been translated, no work is required. */ 9381 9382 static bfd_boolean 9383 translate_reloc_bfd_fix (reloc_bfd_fix *fix) 9384 { 9385 reloc_bfd_fix new_fix; 9386 asection *sec; 9387 xtensa_relax_info *relax_info; 9388 removed_literal *removed; 9389 bfd_vma new_offset, target_offset; 9390 9391 if (fix->translated) 9392 return TRUE; 9393 9394 sec = fix->target_sec; 9395 target_offset = fix->target_offset; 9396 9397 relax_info = get_xtensa_relax_info (sec); 9398 if (!relax_info) 9399 { 9400 fix->translated = TRUE; 9401 return TRUE; 9402 } 9403 9404 new_fix = *fix; 9405 9406 /* The fix does not need to be translated if the section cannot change. */ 9407 if (!relax_info->is_relaxable_literal_section 9408 && !relax_info->is_relaxable_asm_section) 9409 { 9410 fix->translated = TRUE; 9411 return TRUE; 9412 } 9413 9414 /* If the literal has been moved and this relocation was on an 9415 opcode, then the relocation should move to the new literal 9416 location. Otherwise, the relocation should move within the 9417 section. */ 9418 9419 removed = FALSE; 9420 if (is_operand_relocation (fix->src_type)) 9421 { 9422 /* Check if the original relocation is against a literal being 9423 removed. */ 9424 removed = find_removed_literal (&relax_info->removed_list, 9425 target_offset); 9426 } 9427 9428 if (removed) 9429 { 9430 asection *new_sec; 9431 9432 /* The fact that there is still a relocation to this literal indicates 9433 that the literal is being coalesced, not simply removed. */ 9434 BFD_ASSERT (removed->to.abfd != NULL); 9435 9436 /* This was moved to some other address (possibly another section). */ 9437 new_sec = r_reloc_get_section (&removed->to); 9438 if (new_sec != sec) 9439 { 9440 sec = new_sec; 9441 relax_info = get_xtensa_relax_info (sec); 9442 if (!relax_info || 9443 (!relax_info->is_relaxable_literal_section 9444 && !relax_info->is_relaxable_asm_section)) 9445 { 9446 target_offset = removed->to.target_offset; 9447 new_fix.target_sec = new_sec; 9448 new_fix.target_offset = target_offset; 9449 new_fix.translated = TRUE; 9450 *fix = new_fix; 9451 return TRUE; 9452 } 9453 } 9454 target_offset = removed->to.target_offset; 9455 new_fix.target_sec = new_sec; 9456 } 9457 9458 /* The target address may have been moved within its section. */ 9459 new_offset = offset_with_removed_text (&relax_info->action_list, 9460 target_offset); 9461 9462 new_fix.target_offset = new_offset; 9463 new_fix.target_offset = new_offset; 9464 new_fix.translated = TRUE; 9465 *fix = new_fix; 9466 return TRUE; 9467 } 9468 9469 9470 /* Fix up a relocation to take account of removed literals. */ 9471 9472 static asection * 9473 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec) 9474 { 9475 xtensa_relax_info *relax_info; 9476 removed_literal *removed; 9477 bfd_vma target_offset, base_offset; 9478 text_action *act; 9479 9480 *new_rel = *orig_rel; 9481 9482 if (!r_reloc_is_defined (orig_rel)) 9483 return sec ; 9484 9485 relax_info = get_xtensa_relax_info (sec); 9486 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section 9487 || relax_info->is_relaxable_asm_section)); 9488 9489 target_offset = orig_rel->target_offset; 9490 9491 removed = FALSE; 9492 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info))) 9493 { 9494 /* Check if the original relocation is against a literal being 9495 removed. */ 9496 removed = find_removed_literal (&relax_info->removed_list, 9497 target_offset); 9498 } 9499 if (removed && removed->to.abfd) 9500 { 9501 asection *new_sec; 9502 9503 /* The fact that there is still a relocation to this literal indicates 9504 that the literal is being coalesced, not simply removed. */ 9505 BFD_ASSERT (removed->to.abfd != NULL); 9506 9507 /* This was moved to some other address 9508 (possibly in another section). */ 9509 *new_rel = removed->to; 9510 new_sec = r_reloc_get_section (new_rel); 9511 if (new_sec != sec) 9512 { 9513 sec = new_sec; 9514 relax_info = get_xtensa_relax_info (sec); 9515 if (!relax_info 9516 || (!relax_info->is_relaxable_literal_section 9517 && !relax_info->is_relaxable_asm_section)) 9518 return sec; 9519 } 9520 target_offset = new_rel->target_offset; 9521 } 9522 9523 /* Find the base offset of the reloc symbol, excluding any addend from the 9524 reloc or from the section contents (for a partial_inplace reloc). Then 9525 find the adjusted values of the offsets due to relaxation. The base 9526 offset is needed to determine the change to the reloc's addend; the reloc 9527 addend should not be adjusted due to relaxations located before the base 9528 offset. */ 9529 9530 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend; 9531 act = relax_info->action_list.head; 9532 if (base_offset <= target_offset) 9533 { 9534 int base_removed = removed_by_actions (&act, base_offset, FALSE); 9535 int addend_removed = removed_by_actions (&act, target_offset, FALSE); 9536 new_rel->target_offset = target_offset - base_removed - addend_removed; 9537 new_rel->rela.r_addend -= addend_removed; 9538 } 9539 else 9540 { 9541 /* Handle a negative addend. The base offset comes first. */ 9542 int tgt_removed = removed_by_actions (&act, target_offset, FALSE); 9543 int addend_removed = removed_by_actions (&act, base_offset, FALSE); 9544 new_rel->target_offset = target_offset - tgt_removed; 9545 new_rel->rela.r_addend += addend_removed; 9546 } 9547 9548 return sec; 9549 } 9550 9551 9552 /* For dynamic links, there may be a dynamic relocation for each 9553 literal. The number of dynamic relocations must be computed in 9554 size_dynamic_sections, which occurs before relaxation. When a 9555 literal is removed, this function checks if there is a corresponding 9556 dynamic relocation and shrinks the size of the appropriate dynamic 9557 relocation section accordingly. At this point, the contents of the 9558 dynamic relocation sections have not yet been filled in, so there's 9559 nothing else that needs to be done. */ 9560 9561 static void 9562 shrink_dynamic_reloc_sections (struct bfd_link_info *info, 9563 bfd *abfd, 9564 asection *input_section, 9565 Elf_Internal_Rela *rel) 9566 { 9567 struct elf_xtensa_link_hash_table *htab; 9568 Elf_Internal_Shdr *symtab_hdr; 9569 struct elf_link_hash_entry **sym_hashes; 9570 unsigned long r_symndx; 9571 int r_type; 9572 struct elf_link_hash_entry *h; 9573 bfd_boolean dynamic_symbol; 9574 9575 htab = elf_xtensa_hash_table (info); 9576 if (htab == NULL) 9577 return; 9578 9579 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 9580 sym_hashes = elf_sym_hashes (abfd); 9581 9582 r_type = ELF32_R_TYPE (rel->r_info); 9583 r_symndx = ELF32_R_SYM (rel->r_info); 9584 9585 if (r_symndx < symtab_hdr->sh_info) 9586 h = NULL; 9587 else 9588 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 9589 9590 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info); 9591 9592 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT) 9593 && (input_section->flags & SEC_ALLOC) != 0 9594 && (dynamic_symbol || info->shared)) 9595 { 9596 asection *srel; 9597 bfd_boolean is_plt = FALSE; 9598 9599 if (dynamic_symbol && r_type == R_XTENSA_PLT) 9600 { 9601 srel = htab->srelplt; 9602 is_plt = TRUE; 9603 } 9604 else 9605 srel = htab->srelgot; 9606 9607 /* Reduce size of the .rela.* section by one reloc. */ 9608 BFD_ASSERT (srel != NULL); 9609 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela)); 9610 srel->size -= sizeof (Elf32_External_Rela); 9611 9612 if (is_plt) 9613 { 9614 asection *splt, *sgotplt, *srelgot; 9615 int reloc_index, chunk; 9616 9617 /* Find the PLT reloc index of the entry being removed. This 9618 is computed from the size of ".rela.plt". It is needed to 9619 figure out which PLT chunk to resize. Usually "last index 9620 = size - 1" since the index starts at zero, but in this 9621 context, the size has just been decremented so there's no 9622 need to subtract one. */ 9623 reloc_index = srel->size / sizeof (Elf32_External_Rela); 9624 9625 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK; 9626 splt = elf_xtensa_get_plt_section (info, chunk); 9627 sgotplt = elf_xtensa_get_gotplt_section (info, chunk); 9628 BFD_ASSERT (splt != NULL && sgotplt != NULL); 9629 9630 /* Check if an entire PLT chunk has just been eliminated. */ 9631 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0) 9632 { 9633 /* The two magic GOT entries for that chunk can go away. */ 9634 srelgot = htab->srelgot; 9635 BFD_ASSERT (srelgot != NULL); 9636 srelgot->reloc_count -= 2; 9637 srelgot->size -= 2 * sizeof (Elf32_External_Rela); 9638 sgotplt->size -= 8; 9639 9640 /* There should be only one entry left (and it will be 9641 removed below). */ 9642 BFD_ASSERT (sgotplt->size == 4); 9643 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE); 9644 } 9645 9646 BFD_ASSERT (sgotplt->size >= 4); 9647 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE); 9648 9649 sgotplt->size -= 4; 9650 splt->size -= PLT_ENTRY_SIZE; 9651 } 9652 } 9653 } 9654 9655 9656 /* Take an r_rel and move it to another section. This usually 9657 requires extending the interal_relocation array and pinning it. If 9658 the original r_rel is from the same BFD, we can complete this here. 9659 Otherwise, we add a fix record to let the final link fix the 9660 appropriate address. Contents and internal relocations for the 9661 section must be pinned after calling this routine. */ 9662 9663 static bfd_boolean 9664 move_literal (bfd *abfd, 9665 struct bfd_link_info *link_info, 9666 asection *sec, 9667 bfd_vma offset, 9668 bfd_byte *contents, 9669 xtensa_relax_info *relax_info, 9670 Elf_Internal_Rela **internal_relocs_p, 9671 const literal_value *lit) 9672 { 9673 Elf_Internal_Rela *new_relocs = NULL; 9674 size_t new_relocs_count = 0; 9675 Elf_Internal_Rela this_rela; 9676 const r_reloc *r_rel; 9677 9678 r_rel = &lit->r_rel; 9679 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p); 9680 9681 if (r_reloc_is_const (r_rel)) 9682 bfd_put_32 (abfd, lit->value, contents + offset); 9683 else 9684 { 9685 int r_type; 9686 unsigned i; 9687 reloc_bfd_fix *fix; 9688 unsigned insert_at; 9689 9690 r_type = ELF32_R_TYPE (r_rel->rela.r_info); 9691 9692 /* This is the difficult case. We have to create a fix up. */ 9693 this_rela.r_offset = offset; 9694 this_rela.r_info = ELF32_R_INFO (0, r_type); 9695 this_rela.r_addend = 9696 r_rel->target_offset - r_reloc_get_target_offset (r_rel); 9697 bfd_put_32 (abfd, lit->value, contents + offset); 9698 9699 /* Currently, we cannot move relocations during a relocatable link. */ 9700 BFD_ASSERT (!link_info->relocatable); 9701 fix = reloc_bfd_fix_init (sec, offset, r_type, 9702 r_reloc_get_section (r_rel), 9703 r_rel->target_offset + r_rel->virtual_offset, 9704 FALSE); 9705 /* We also need to mark that relocations are needed here. */ 9706 sec->flags |= SEC_RELOC; 9707 9708 translate_reloc_bfd_fix (fix); 9709 /* This fix has not yet been translated. */ 9710 add_fix (sec, fix); 9711 9712 /* Add the relocation. If we have already allocated our own 9713 space for the relocations and we have room for more, then use 9714 it. Otherwise, allocate new space and move the literals. */ 9715 insert_at = sec->reloc_count; 9716 for (i = 0; i < sec->reloc_count; ++i) 9717 { 9718 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset) 9719 { 9720 insert_at = i; 9721 break; 9722 } 9723 } 9724 9725 if (*internal_relocs_p != relax_info->allocated_relocs 9726 || sec->reloc_count + 1 > relax_info->allocated_relocs_count) 9727 { 9728 BFD_ASSERT (relax_info->allocated_relocs == NULL 9729 || sec->reloc_count == relax_info->relocs_count); 9730 9731 if (relax_info->allocated_relocs_count == 0) 9732 new_relocs_count = (sec->reloc_count + 2) * 2; 9733 else 9734 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2; 9735 9736 new_relocs = (Elf_Internal_Rela *) 9737 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count)); 9738 if (!new_relocs) 9739 return FALSE; 9740 9741 /* We could handle this more quickly by finding the split point. */ 9742 if (insert_at != 0) 9743 memcpy (new_relocs, *internal_relocs_p, 9744 insert_at * sizeof (Elf_Internal_Rela)); 9745 9746 new_relocs[insert_at] = this_rela; 9747 9748 if (insert_at != sec->reloc_count) 9749 memcpy (new_relocs + insert_at + 1, 9750 (*internal_relocs_p) + insert_at, 9751 (sec->reloc_count - insert_at) 9752 * sizeof (Elf_Internal_Rela)); 9753 9754 if (*internal_relocs_p != relax_info->allocated_relocs) 9755 { 9756 /* The first time we re-allocate, we can only free the 9757 old relocs if they were allocated with bfd_malloc. 9758 This is not true when keep_memory is in effect. */ 9759 if (!link_info->keep_memory) 9760 free (*internal_relocs_p); 9761 } 9762 else 9763 free (*internal_relocs_p); 9764 relax_info->allocated_relocs = new_relocs; 9765 relax_info->allocated_relocs_count = new_relocs_count; 9766 elf_section_data (sec)->relocs = new_relocs; 9767 sec->reloc_count++; 9768 relax_info->relocs_count = sec->reloc_count; 9769 *internal_relocs_p = new_relocs; 9770 } 9771 else 9772 { 9773 if (insert_at != sec->reloc_count) 9774 { 9775 unsigned idx; 9776 for (idx = sec->reloc_count; idx > insert_at; idx--) 9777 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1]; 9778 } 9779 (*internal_relocs_p)[insert_at] = this_rela; 9780 sec->reloc_count++; 9781 if (relax_info->allocated_relocs) 9782 relax_info->relocs_count = sec->reloc_count; 9783 } 9784 } 9785 return TRUE; 9786 } 9787 9788 9789 /* This is similar to relax_section except that when a target is moved, 9790 we shift addresses up. We also need to modify the size. This 9791 algorithm does NOT allow for relocations into the middle of the 9792 property sections. */ 9793 9794 static bfd_boolean 9795 relax_property_section (bfd *abfd, 9796 asection *sec, 9797 struct bfd_link_info *link_info) 9798 { 9799 Elf_Internal_Rela *internal_relocs; 9800 bfd_byte *contents; 9801 unsigned i; 9802 bfd_boolean ok = TRUE; 9803 bfd_boolean is_full_prop_section; 9804 size_t last_zfill_target_offset = 0; 9805 asection *last_zfill_target_sec = NULL; 9806 bfd_size_type sec_size; 9807 bfd_size_type entry_size; 9808 9809 sec_size = bfd_get_section_limit (abfd, sec); 9810 internal_relocs = retrieve_internal_relocs (abfd, sec, 9811 link_info->keep_memory); 9812 contents = retrieve_contents (abfd, sec, link_info->keep_memory); 9813 if (contents == NULL && sec_size != 0) 9814 { 9815 ok = FALSE; 9816 goto error_return; 9817 } 9818 9819 is_full_prop_section = xtensa_is_proptable_section (sec); 9820 if (is_full_prop_section) 9821 entry_size = 12; 9822 else 9823 entry_size = 8; 9824 9825 if (internal_relocs) 9826 { 9827 for (i = 0; i < sec->reloc_count; i++) 9828 { 9829 Elf_Internal_Rela *irel; 9830 xtensa_relax_info *target_relax_info; 9831 unsigned r_type; 9832 asection *target_sec; 9833 literal_value val; 9834 bfd_byte *size_p, *flags_p; 9835 9836 /* Locally change the source address. 9837 Translate the target to the new target address. 9838 If it points to this section and has been removed, MOVE IT. 9839 Also, don't forget to modify the associated SIZE at 9840 (offset + 4). */ 9841 9842 irel = &internal_relocs[i]; 9843 r_type = ELF32_R_TYPE (irel->r_info); 9844 if (r_type == R_XTENSA_NONE) 9845 continue; 9846 9847 /* Find the literal value. */ 9848 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size); 9849 size_p = &contents[irel->r_offset + 4]; 9850 flags_p = NULL; 9851 if (is_full_prop_section) 9852 flags_p = &contents[irel->r_offset + 8]; 9853 BFD_ASSERT (irel->r_offset + entry_size <= sec_size); 9854 9855 target_sec = r_reloc_get_section (&val.r_rel); 9856 target_relax_info = get_xtensa_relax_info (target_sec); 9857 9858 if (target_relax_info 9859 && (target_relax_info->is_relaxable_literal_section 9860 || target_relax_info->is_relaxable_asm_section )) 9861 { 9862 /* Translate the relocation's destination. */ 9863 bfd_vma old_offset = val.r_rel.target_offset; 9864 bfd_vma new_offset; 9865 long old_size, new_size; 9866 text_action *act = target_relax_info->action_list.head; 9867 new_offset = old_offset - 9868 removed_by_actions (&act, old_offset, FALSE); 9869 9870 /* Assert that we are not out of bounds. */ 9871 old_size = bfd_get_32 (abfd, size_p); 9872 new_size = old_size; 9873 9874 if (old_size == 0) 9875 { 9876 /* Only the first zero-sized unreachable entry is 9877 allowed to expand. In this case the new offset 9878 should be the offset before the fill and the new 9879 size is the expansion size. For other zero-sized 9880 entries the resulting size should be zero with an 9881 offset before or after the fill address depending 9882 on whether the expanding unreachable entry 9883 preceeds it. */ 9884 if (last_zfill_target_sec == 0 9885 || last_zfill_target_sec != target_sec 9886 || last_zfill_target_offset != old_offset) 9887 { 9888 bfd_vma new_end_offset = new_offset; 9889 9890 /* Recompute the new_offset, but this time don't 9891 include any fill inserted by relaxation. */ 9892 act = target_relax_info->action_list.head; 9893 new_offset = old_offset - 9894 removed_by_actions (&act, old_offset, TRUE); 9895 9896 /* If it is not unreachable and we have not yet 9897 seen an unreachable at this address, place it 9898 before the fill address. */ 9899 if (flags_p && (bfd_get_32 (abfd, flags_p) 9900 & XTENSA_PROP_UNREACHABLE) != 0) 9901 { 9902 new_size = new_end_offset - new_offset; 9903 9904 last_zfill_target_sec = target_sec; 9905 last_zfill_target_offset = old_offset; 9906 } 9907 } 9908 } 9909 else 9910 new_size -= 9911 removed_by_actions (&act, old_offset + old_size, TRUE); 9912 9913 if (new_size != old_size) 9914 { 9915 bfd_put_32 (abfd, new_size, size_p); 9916 pin_contents (sec, contents); 9917 } 9918 9919 if (new_offset != old_offset) 9920 { 9921 bfd_vma diff = new_offset - old_offset; 9922 irel->r_addend += diff; 9923 pin_internal_relocs (sec, internal_relocs); 9924 } 9925 } 9926 } 9927 } 9928 9929 /* Combine adjacent property table entries. This is also done in 9930 finish_dynamic_sections() but at that point it's too late to 9931 reclaim the space in the output section, so we do this twice. */ 9932 9933 if (internal_relocs && (!link_info->relocatable 9934 || xtensa_is_littable_section (sec))) 9935 { 9936 Elf_Internal_Rela *last_irel = NULL; 9937 Elf_Internal_Rela *irel, *next_rel, *rel_end; 9938 int removed_bytes = 0; 9939 bfd_vma offset; 9940 flagword predef_flags; 9941 9942 predef_flags = xtensa_get_property_predef_flags (sec); 9943 9944 /* Walk over memory and relocations at the same time. 9945 This REQUIRES that the internal_relocs be sorted by offset. */ 9946 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), 9947 internal_reloc_compare); 9948 9949 pin_internal_relocs (sec, internal_relocs); 9950 pin_contents (sec, contents); 9951 9952 next_rel = internal_relocs; 9953 rel_end = internal_relocs + sec->reloc_count; 9954 9955 BFD_ASSERT (sec->size % entry_size == 0); 9956 9957 for (offset = 0; offset < sec->size; offset += entry_size) 9958 { 9959 Elf_Internal_Rela *offset_rel, *extra_rel; 9960 bfd_vma bytes_to_remove, size, actual_offset; 9961 bfd_boolean remove_this_rel; 9962 flagword flags; 9963 9964 /* Find the first relocation for the entry at the current offset. 9965 Adjust the offsets of any extra relocations for the previous 9966 entry. */ 9967 offset_rel = NULL; 9968 if (next_rel) 9969 { 9970 for (irel = next_rel; irel < rel_end; irel++) 9971 { 9972 if ((irel->r_offset == offset 9973 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) 9974 || irel->r_offset > offset) 9975 { 9976 offset_rel = irel; 9977 break; 9978 } 9979 irel->r_offset -= removed_bytes; 9980 } 9981 } 9982 9983 /* Find the next relocation (if there are any left). */ 9984 extra_rel = NULL; 9985 if (offset_rel) 9986 { 9987 for (irel = offset_rel + 1; irel < rel_end; irel++) 9988 { 9989 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE) 9990 { 9991 extra_rel = irel; 9992 break; 9993 } 9994 } 9995 } 9996 9997 /* Check if there are relocations on the current entry. There 9998 should usually be a relocation on the offset field. If there 9999 are relocations on the size or flags, then we can't optimize 10000 this entry. Also, find the next relocation to examine on the 10001 next iteration. */ 10002 if (offset_rel) 10003 { 10004 if (offset_rel->r_offset >= offset + entry_size) 10005 { 10006 next_rel = offset_rel; 10007 /* There are no relocations on the current entry, but we 10008 might still be able to remove it if the size is zero. */ 10009 offset_rel = NULL; 10010 } 10011 else if (offset_rel->r_offset > offset 10012 || (extra_rel 10013 && extra_rel->r_offset < offset + entry_size)) 10014 { 10015 /* There is a relocation on the size or flags, so we can't 10016 do anything with this entry. Continue with the next. */ 10017 next_rel = offset_rel; 10018 continue; 10019 } 10020 else 10021 { 10022 BFD_ASSERT (offset_rel->r_offset == offset); 10023 offset_rel->r_offset -= removed_bytes; 10024 next_rel = offset_rel + 1; 10025 } 10026 } 10027 else 10028 next_rel = NULL; 10029 10030 remove_this_rel = FALSE; 10031 bytes_to_remove = 0; 10032 actual_offset = offset - removed_bytes; 10033 size = bfd_get_32 (abfd, &contents[actual_offset + 4]); 10034 10035 if (is_full_prop_section) 10036 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]); 10037 else 10038 flags = predef_flags; 10039 10040 if (size == 0 10041 && (flags & XTENSA_PROP_ALIGN) == 0 10042 && (flags & XTENSA_PROP_UNREACHABLE) == 0) 10043 { 10044 /* Always remove entries with zero size and no alignment. */ 10045 bytes_to_remove = entry_size; 10046 if (offset_rel) 10047 remove_this_rel = TRUE; 10048 } 10049 else if (offset_rel 10050 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32) 10051 { 10052 if (last_irel) 10053 { 10054 flagword old_flags; 10055 bfd_vma old_size = 10056 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]); 10057 bfd_vma old_address = 10058 (last_irel->r_addend 10059 + bfd_get_32 (abfd, &contents[last_irel->r_offset])); 10060 bfd_vma new_address = 10061 (offset_rel->r_addend 10062 + bfd_get_32 (abfd, &contents[actual_offset])); 10063 if (is_full_prop_section) 10064 old_flags = bfd_get_32 10065 (abfd, &contents[last_irel->r_offset + 8]); 10066 else 10067 old_flags = predef_flags; 10068 10069 if ((ELF32_R_SYM (offset_rel->r_info) 10070 == ELF32_R_SYM (last_irel->r_info)) 10071 && old_address + old_size == new_address 10072 && old_flags == flags 10073 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0 10074 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0) 10075 { 10076 /* Fix the old size. */ 10077 bfd_put_32 (abfd, old_size + size, 10078 &contents[last_irel->r_offset + 4]); 10079 bytes_to_remove = entry_size; 10080 remove_this_rel = TRUE; 10081 } 10082 else 10083 last_irel = offset_rel; 10084 } 10085 else 10086 last_irel = offset_rel; 10087 } 10088 10089 if (remove_this_rel) 10090 { 10091 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE); 10092 offset_rel->r_offset = 0; 10093 } 10094 10095 if (bytes_to_remove != 0) 10096 { 10097 removed_bytes += bytes_to_remove; 10098 if (offset + bytes_to_remove < sec->size) 10099 memmove (&contents[actual_offset], 10100 &contents[actual_offset + bytes_to_remove], 10101 sec->size - offset - bytes_to_remove); 10102 } 10103 } 10104 10105 if (removed_bytes) 10106 { 10107 /* Fix up any extra relocations on the last entry. */ 10108 for (irel = next_rel; irel < rel_end; irel++) 10109 irel->r_offset -= removed_bytes; 10110 10111 /* Clear the removed bytes. */ 10112 memset (&contents[sec->size - removed_bytes], 0, removed_bytes); 10113 10114 if (sec->rawsize == 0) 10115 sec->rawsize = sec->size; 10116 sec->size -= removed_bytes; 10117 10118 if (xtensa_is_littable_section (sec)) 10119 { 10120 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc; 10121 if (sgotloc) 10122 sgotloc->size -= removed_bytes; 10123 } 10124 } 10125 } 10126 10127 error_return: 10128 release_internal_relocs (sec, internal_relocs); 10129 release_contents (sec, contents); 10130 return ok; 10131 } 10132 10133 10134 /* Third relaxation pass. */ 10135 10136 /* Change symbol values to account for removed literals. */ 10137 10138 bfd_boolean 10139 relax_section_symbols (bfd *abfd, asection *sec) 10140 { 10141 xtensa_relax_info *relax_info; 10142 unsigned int sec_shndx; 10143 Elf_Internal_Shdr *symtab_hdr; 10144 Elf_Internal_Sym *isymbuf; 10145 unsigned i, num_syms, num_locals; 10146 10147 relax_info = get_xtensa_relax_info (sec); 10148 BFD_ASSERT (relax_info); 10149 10150 if (!relax_info->is_relaxable_literal_section 10151 && !relax_info->is_relaxable_asm_section) 10152 return TRUE; 10153 10154 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); 10155 10156 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 10157 isymbuf = retrieve_local_syms (abfd); 10158 10159 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym); 10160 num_locals = symtab_hdr->sh_info; 10161 10162 /* Adjust the local symbols defined in this section. */ 10163 for (i = 0; i < num_locals; i++) 10164 { 10165 Elf_Internal_Sym *isym = &isymbuf[i]; 10166 10167 if (isym->st_shndx == sec_shndx) 10168 { 10169 text_action *act = relax_info->action_list.head; 10170 bfd_vma orig_addr = isym->st_value; 10171 10172 isym->st_value -= removed_by_actions (&act, orig_addr, FALSE); 10173 10174 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC) 10175 isym->st_size -= 10176 removed_by_actions (&act, orig_addr + isym->st_size, FALSE); 10177 } 10178 } 10179 10180 /* Now adjust the global symbols defined in this section. */ 10181 for (i = 0; i < (num_syms - num_locals); i++) 10182 { 10183 struct elf_link_hash_entry *sym_hash; 10184 10185 sym_hash = elf_sym_hashes (abfd)[i]; 10186 10187 if (sym_hash->root.type == bfd_link_hash_warning) 10188 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link; 10189 10190 if ((sym_hash->root.type == bfd_link_hash_defined 10191 || sym_hash->root.type == bfd_link_hash_defweak) 10192 && sym_hash->root.u.def.section == sec) 10193 { 10194 text_action *act = relax_info->action_list.head; 10195 bfd_vma orig_addr = sym_hash->root.u.def.value; 10196 10197 sym_hash->root.u.def.value -= 10198 removed_by_actions (&act, orig_addr, FALSE); 10199 10200 if (sym_hash->type == STT_FUNC) 10201 sym_hash->size -= 10202 removed_by_actions (&act, orig_addr + sym_hash->size, FALSE); 10203 } 10204 } 10205 10206 return TRUE; 10207 } 10208 10209 10210 /* "Fix" handling functions, called while performing relocations. */ 10211 10212 static bfd_boolean 10213 do_fix_for_relocatable_link (Elf_Internal_Rela *rel, 10214 bfd *input_bfd, 10215 asection *input_section, 10216 bfd_byte *contents) 10217 { 10218 r_reloc r_rel; 10219 asection *sec, *old_sec; 10220 bfd_vma old_offset; 10221 int r_type = ELF32_R_TYPE (rel->r_info); 10222 reloc_bfd_fix *fix; 10223 10224 if (r_type == R_XTENSA_NONE) 10225 return TRUE; 10226 10227 fix = get_bfd_fix (input_section, rel->r_offset, r_type); 10228 if (!fix) 10229 return TRUE; 10230 10231 r_reloc_init (&r_rel, input_bfd, rel, contents, 10232 bfd_get_section_limit (input_bfd, input_section)); 10233 old_sec = r_reloc_get_section (&r_rel); 10234 old_offset = r_rel.target_offset; 10235 10236 if (!old_sec || !r_reloc_is_defined (&r_rel)) 10237 { 10238 if (r_type != R_XTENSA_ASM_EXPAND) 10239 { 10240 (*_bfd_error_handler) 10241 (_("%B(%A+0x%lx): unexpected fix for %s relocation"), 10242 input_bfd, input_section, rel->r_offset, 10243 elf_howto_table[r_type].name); 10244 return FALSE; 10245 } 10246 /* Leave it be. Resolution will happen in a later stage. */ 10247 } 10248 else 10249 { 10250 sec = fix->target_sec; 10251 rel->r_addend += ((sec->output_offset + fix->target_offset) 10252 - (old_sec->output_offset + old_offset)); 10253 } 10254 return TRUE; 10255 } 10256 10257 10258 static void 10259 do_fix_for_final_link (Elf_Internal_Rela *rel, 10260 bfd *input_bfd, 10261 asection *input_section, 10262 bfd_byte *contents, 10263 bfd_vma *relocationp) 10264 { 10265 asection *sec; 10266 int r_type = ELF32_R_TYPE (rel->r_info); 10267 reloc_bfd_fix *fix; 10268 bfd_vma fixup_diff; 10269 10270 if (r_type == R_XTENSA_NONE) 10271 return; 10272 10273 fix = get_bfd_fix (input_section, rel->r_offset, r_type); 10274 if (!fix) 10275 return; 10276 10277 sec = fix->target_sec; 10278 10279 fixup_diff = rel->r_addend; 10280 if (elf_howto_table[fix->src_type].partial_inplace) 10281 { 10282 bfd_vma inplace_val; 10283 BFD_ASSERT (fix->src_offset 10284 < bfd_get_section_limit (input_bfd, input_section)); 10285 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]); 10286 fixup_diff += inplace_val; 10287 } 10288 10289 *relocationp = (sec->output_section->vma 10290 + sec->output_offset 10291 + fix->target_offset - fixup_diff); 10292 } 10293 10294 10295 /* Miscellaneous utility functions.... */ 10296 10297 static asection * 10298 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk) 10299 { 10300 struct elf_xtensa_link_hash_table *htab; 10301 bfd *dynobj; 10302 char plt_name[10]; 10303 10304 if (chunk == 0) 10305 { 10306 htab = elf_xtensa_hash_table (info); 10307 if (htab == NULL) 10308 return NULL; 10309 10310 return htab->splt; 10311 } 10312 10313 dynobj = elf_hash_table (info)->dynobj; 10314 sprintf (plt_name, ".plt.%u", chunk); 10315 return bfd_get_linker_section (dynobj, plt_name); 10316 } 10317 10318 10319 static asection * 10320 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk) 10321 { 10322 struct elf_xtensa_link_hash_table *htab; 10323 bfd *dynobj; 10324 char got_name[14]; 10325 10326 if (chunk == 0) 10327 { 10328 htab = elf_xtensa_hash_table (info); 10329 if (htab == NULL) 10330 return NULL; 10331 return htab->sgotplt; 10332 } 10333 10334 dynobj = elf_hash_table (info)->dynobj; 10335 sprintf (got_name, ".got.plt.%u", chunk); 10336 return bfd_get_linker_section (dynobj, got_name); 10337 } 10338 10339 10340 /* Get the input section for a given symbol index. 10341 If the symbol is: 10342 . a section symbol, return the section; 10343 . a common symbol, return the common section; 10344 . an undefined symbol, return the undefined section; 10345 . an indirect symbol, follow the links; 10346 . an absolute value, return the absolute section. */ 10347 10348 static asection * 10349 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx) 10350 { 10351 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 10352 asection *target_sec = NULL; 10353 if (r_symndx < symtab_hdr->sh_info) 10354 { 10355 Elf_Internal_Sym *isymbuf; 10356 unsigned int section_index; 10357 10358 isymbuf = retrieve_local_syms (abfd); 10359 section_index = isymbuf[r_symndx].st_shndx; 10360 10361 if (section_index == SHN_UNDEF) 10362 target_sec = bfd_und_section_ptr; 10363 else if (section_index == SHN_ABS) 10364 target_sec = bfd_abs_section_ptr; 10365 else if (section_index == SHN_COMMON) 10366 target_sec = bfd_com_section_ptr; 10367 else 10368 target_sec = bfd_section_from_elf_index (abfd, section_index); 10369 } 10370 else 10371 { 10372 unsigned long indx = r_symndx - symtab_hdr->sh_info; 10373 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx]; 10374 10375 while (h->root.type == bfd_link_hash_indirect 10376 || h->root.type == bfd_link_hash_warning) 10377 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10378 10379 switch (h->root.type) 10380 { 10381 case bfd_link_hash_defined: 10382 case bfd_link_hash_defweak: 10383 target_sec = h->root.u.def.section; 10384 break; 10385 case bfd_link_hash_common: 10386 target_sec = bfd_com_section_ptr; 10387 break; 10388 case bfd_link_hash_undefined: 10389 case bfd_link_hash_undefweak: 10390 target_sec = bfd_und_section_ptr; 10391 break; 10392 default: /* New indirect warning. */ 10393 target_sec = bfd_und_section_ptr; 10394 break; 10395 } 10396 } 10397 return target_sec; 10398 } 10399 10400 10401 static struct elf_link_hash_entry * 10402 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx) 10403 { 10404 unsigned long indx; 10405 struct elf_link_hash_entry *h; 10406 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 10407 10408 if (r_symndx < symtab_hdr->sh_info) 10409 return NULL; 10410 10411 indx = r_symndx - symtab_hdr->sh_info; 10412 h = elf_sym_hashes (abfd)[indx]; 10413 while (h->root.type == bfd_link_hash_indirect 10414 || h->root.type == bfd_link_hash_warning) 10415 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10416 return h; 10417 } 10418 10419 10420 /* Get the section-relative offset for a symbol number. */ 10421 10422 static bfd_vma 10423 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx) 10424 { 10425 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 10426 bfd_vma offset = 0; 10427 10428 if (r_symndx < symtab_hdr->sh_info) 10429 { 10430 Elf_Internal_Sym *isymbuf; 10431 isymbuf = retrieve_local_syms (abfd); 10432 offset = isymbuf[r_symndx].st_value; 10433 } 10434 else 10435 { 10436 unsigned long indx = r_symndx - symtab_hdr->sh_info; 10437 struct elf_link_hash_entry *h = 10438 elf_sym_hashes (abfd)[indx]; 10439 10440 while (h->root.type == bfd_link_hash_indirect 10441 || h->root.type == bfd_link_hash_warning) 10442 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10443 if (h->root.type == bfd_link_hash_defined 10444 || h->root.type == bfd_link_hash_defweak) 10445 offset = h->root.u.def.value; 10446 } 10447 return offset; 10448 } 10449 10450 10451 static bfd_boolean 10452 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel) 10453 { 10454 unsigned long r_symndx = ELF32_R_SYM (rel->r_info); 10455 struct elf_link_hash_entry *h; 10456 10457 h = get_elf_r_symndx_hash_entry (abfd, r_symndx); 10458 if (h && h->root.type == bfd_link_hash_defweak) 10459 return TRUE; 10460 return FALSE; 10461 } 10462 10463 10464 static bfd_boolean 10465 pcrel_reloc_fits (xtensa_opcode opc, 10466 int opnd, 10467 bfd_vma self_address, 10468 bfd_vma dest_address) 10469 { 10470 xtensa_isa isa = xtensa_default_isa; 10471 uint32 valp = dest_address; 10472 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address) 10473 || xtensa_operand_encode (isa, opc, opnd, &valp)) 10474 return FALSE; 10475 return TRUE; 10476 } 10477 10478 10479 static bfd_boolean 10480 xtensa_is_property_section (asection *sec) 10481 { 10482 if (xtensa_is_insntable_section (sec) 10483 || xtensa_is_littable_section (sec) 10484 || xtensa_is_proptable_section (sec)) 10485 return TRUE; 10486 10487 return FALSE; 10488 } 10489 10490 10491 static bfd_boolean 10492 xtensa_is_insntable_section (asection *sec) 10493 { 10494 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME) 10495 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x.")) 10496 return TRUE; 10497 10498 return FALSE; 10499 } 10500 10501 10502 static bfd_boolean 10503 xtensa_is_littable_section (asection *sec) 10504 { 10505 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME) 10506 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p.")) 10507 return TRUE; 10508 10509 return FALSE; 10510 } 10511 10512 10513 static bfd_boolean 10514 xtensa_is_proptable_section (asection *sec) 10515 { 10516 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME) 10517 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop.")) 10518 return TRUE; 10519 10520 return FALSE; 10521 } 10522 10523 10524 static int 10525 internal_reloc_compare (const void *ap, const void *bp) 10526 { 10527 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; 10528 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; 10529 10530 if (a->r_offset != b->r_offset) 10531 return (a->r_offset - b->r_offset); 10532 10533 /* We don't need to sort on these criteria for correctness, 10534 but enforcing a more strict ordering prevents unstable qsort 10535 from behaving differently with different implementations. 10536 Without the code below we get correct but different results 10537 on Solaris 2.7 and 2.8. We would like to always produce the 10538 same results no matter the host. */ 10539 10540 if (a->r_info != b->r_info) 10541 return (a->r_info - b->r_info); 10542 10543 return (a->r_addend - b->r_addend); 10544 } 10545 10546 10547 static int 10548 internal_reloc_matches (const void *ap, const void *bp) 10549 { 10550 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap; 10551 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp; 10552 10553 /* Check if one entry overlaps with the other; this shouldn't happen 10554 except when searching for a match. */ 10555 return (a->r_offset - b->r_offset); 10556 } 10557 10558 10559 /* Predicate function used to look up a section in a particular group. */ 10560 10561 static bfd_boolean 10562 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf) 10563 { 10564 const char *gname = inf; 10565 const char *group_name = elf_group_name (sec); 10566 10567 return (group_name == gname 10568 || (group_name != NULL 10569 && gname != NULL 10570 && strcmp (group_name, gname) == 0)); 10571 } 10572 10573 10574 static int linkonce_len = sizeof (".gnu.linkonce.") - 1; 10575 10576 static char * 10577 xtensa_property_section_name (asection *sec, const char *base_name) 10578 { 10579 const char *suffix, *group_name; 10580 char *prop_sec_name; 10581 10582 group_name = elf_group_name (sec); 10583 if (group_name) 10584 { 10585 suffix = strrchr (sec->name, '.'); 10586 if (suffix == sec->name) 10587 suffix = 0; 10588 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1 10589 + (suffix ? strlen (suffix) : 0)); 10590 strcpy (prop_sec_name, base_name); 10591 if (suffix) 10592 strcat (prop_sec_name, suffix); 10593 } 10594 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0) 10595 { 10596 char *linkonce_kind = 0; 10597 10598 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0) 10599 linkonce_kind = "x."; 10600 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0) 10601 linkonce_kind = "p."; 10602 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0) 10603 linkonce_kind = "prop."; 10604 else 10605 abort (); 10606 10607 prop_sec_name = (char *) bfd_malloc (strlen (sec->name) 10608 + strlen (linkonce_kind) + 1); 10609 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len); 10610 strcpy (prop_sec_name + linkonce_len, linkonce_kind); 10611 10612 suffix = sec->name + linkonce_len; 10613 /* For backward compatibility, replace "t." instead of inserting 10614 the new linkonce_kind (but not for "prop" sections). */ 10615 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.') 10616 suffix += 2; 10617 strcat (prop_sec_name + linkonce_len, suffix); 10618 } 10619 else 10620 prop_sec_name = strdup (base_name); 10621 10622 return prop_sec_name; 10623 } 10624 10625 10626 static asection * 10627 xtensa_get_property_section (asection *sec, const char *base_name) 10628 { 10629 char *prop_sec_name; 10630 asection *prop_sec; 10631 10632 prop_sec_name = xtensa_property_section_name (sec, base_name); 10633 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, 10634 match_section_group, 10635 (void *) elf_group_name (sec)); 10636 free (prop_sec_name); 10637 return prop_sec; 10638 } 10639 10640 10641 asection * 10642 xtensa_make_property_section (asection *sec, const char *base_name) 10643 { 10644 char *prop_sec_name; 10645 asection *prop_sec; 10646 10647 /* Check if the section already exists. */ 10648 prop_sec_name = xtensa_property_section_name (sec, base_name); 10649 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name, 10650 match_section_group, 10651 (void *) elf_group_name (sec)); 10652 /* If not, create it. */ 10653 if (! prop_sec) 10654 { 10655 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY); 10656 flags |= (bfd_get_section_flags (sec->owner, sec) 10657 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES)); 10658 10659 prop_sec = bfd_make_section_anyway_with_flags 10660 (sec->owner, strdup (prop_sec_name), flags); 10661 if (! prop_sec) 10662 return 0; 10663 10664 elf_group_name (prop_sec) = elf_group_name (sec); 10665 } 10666 10667 free (prop_sec_name); 10668 return prop_sec; 10669 } 10670 10671 10672 flagword 10673 xtensa_get_property_predef_flags (asection *sec) 10674 { 10675 if (xtensa_is_insntable_section (sec)) 10676 return (XTENSA_PROP_INSN 10677 | XTENSA_PROP_NO_TRANSFORM 10678 | XTENSA_PROP_INSN_NO_REORDER); 10679 10680 if (xtensa_is_littable_section (sec)) 10681 return (XTENSA_PROP_LITERAL 10682 | XTENSA_PROP_NO_TRANSFORM 10683 | XTENSA_PROP_INSN_NO_REORDER); 10684 10685 return 0; 10686 } 10687 10688 10689 /* Other functions called directly by the linker. */ 10690 10691 bfd_boolean 10692 xtensa_callback_required_dependence (bfd *abfd, 10693 asection *sec, 10694 struct bfd_link_info *link_info, 10695 deps_callback_t callback, 10696 void *closure) 10697 { 10698 Elf_Internal_Rela *internal_relocs; 10699 bfd_byte *contents; 10700 unsigned i; 10701 bfd_boolean ok = TRUE; 10702 bfd_size_type sec_size; 10703 10704 sec_size = bfd_get_section_limit (abfd, sec); 10705 10706 /* ".plt*" sections have no explicit relocations but they contain L32R 10707 instructions that reference the corresponding ".got.plt*" sections. */ 10708 if ((sec->flags & SEC_LINKER_CREATED) != 0 10709 && CONST_STRNEQ (sec->name, ".plt")) 10710 { 10711 asection *sgotplt; 10712 10713 /* Find the corresponding ".got.plt*" section. */ 10714 if (sec->name[4] == '\0') 10715 sgotplt = bfd_get_linker_section (sec->owner, ".got.plt"); 10716 else 10717 { 10718 char got_name[14]; 10719 int chunk = 0; 10720 10721 BFD_ASSERT (sec->name[4] == '.'); 10722 chunk = strtol (&sec->name[5], NULL, 10); 10723 10724 sprintf (got_name, ".got.plt.%u", chunk); 10725 sgotplt = bfd_get_linker_section (sec->owner, got_name); 10726 } 10727 BFD_ASSERT (sgotplt); 10728 10729 /* Assume worst-case offsets: L32R at the very end of the ".plt" 10730 section referencing a literal at the very beginning of 10731 ".got.plt". This is very close to the real dependence, anyway. */ 10732 (*callback) (sec, sec_size, sgotplt, 0, closure); 10733 } 10734 10735 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault 10736 when building uclibc, which runs "ld -b binary /dev/null". */ 10737 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 10738 return ok; 10739 10740 internal_relocs = retrieve_internal_relocs (abfd, sec, 10741 link_info->keep_memory); 10742 if (internal_relocs == NULL 10743 || sec->reloc_count == 0) 10744 return ok; 10745 10746 /* Cache the contents for the duration of this scan. */ 10747 contents = retrieve_contents (abfd, sec, link_info->keep_memory); 10748 if (contents == NULL && sec_size != 0) 10749 { 10750 ok = FALSE; 10751 goto error_return; 10752 } 10753 10754 if (!xtensa_default_isa) 10755 xtensa_default_isa = xtensa_isa_init (0, 0); 10756 10757 for (i = 0; i < sec->reloc_count; i++) 10758 { 10759 Elf_Internal_Rela *irel = &internal_relocs[i]; 10760 if (is_l32r_relocation (abfd, sec, contents, irel)) 10761 { 10762 r_reloc l32r_rel; 10763 asection *target_sec; 10764 bfd_vma target_offset; 10765 10766 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size); 10767 target_sec = NULL; 10768 target_offset = 0; 10769 /* L32Rs must be local to the input file. */ 10770 if (r_reloc_is_defined (&l32r_rel)) 10771 { 10772 target_sec = r_reloc_get_section (&l32r_rel); 10773 target_offset = l32r_rel.target_offset; 10774 } 10775 (*callback) (sec, irel->r_offset, target_sec, target_offset, 10776 closure); 10777 } 10778 } 10779 10780 error_return: 10781 release_internal_relocs (sec, internal_relocs); 10782 release_contents (sec, contents); 10783 return ok; 10784 } 10785 10786 /* The default literal sections should always be marked as "code" (i.e., 10787 SHF_EXECINSTR). This is particularly important for the Linux kernel 10788 module loader so that the literals are not placed after the text. */ 10789 static const struct bfd_elf_special_section elf_xtensa_special_sections[] = 10790 { 10791 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 10792 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 10793 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 10794 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 }, 10795 { NULL, 0, 0, 0, 0 } 10796 }; 10797 10798 #define ELF_TARGET_ID XTENSA_ELF_DATA 10799 #ifndef ELF_ARCH 10800 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec 10801 #define TARGET_LITTLE_NAME "elf32-xtensa-le" 10802 #define TARGET_BIG_SYM xtensa_elf32_be_vec 10803 #define TARGET_BIG_NAME "elf32-xtensa-be" 10804 #define ELF_ARCH bfd_arch_xtensa 10805 10806 #define ELF_MACHINE_CODE EM_XTENSA 10807 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD 10808 10809 #if XCHAL_HAVE_MMU 10810 #define ELF_MAXPAGESIZE (1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE) 10811 #else /* !XCHAL_HAVE_MMU */ 10812 #define ELF_MAXPAGESIZE 1 10813 #endif /* !XCHAL_HAVE_MMU */ 10814 #endif /* ELF_ARCH */ 10815 10816 #define elf_backend_can_gc_sections 1 10817 #define elf_backend_can_refcount 1 10818 #define elf_backend_plt_readonly 1 10819 #define elf_backend_got_header_size 4 10820 #define elf_backend_want_dynbss 0 10821 #define elf_backend_want_got_plt 1 10822 10823 #define elf_info_to_howto elf_xtensa_info_to_howto_rela 10824 10825 #define bfd_elf32_mkobject elf_xtensa_mkobject 10826 10827 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data 10828 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook 10829 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data 10830 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section 10831 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup 10832 #define bfd_elf32_bfd_reloc_name_lookup \ 10833 elf_xtensa_reloc_name_lookup 10834 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags 10835 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create 10836 10837 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol 10838 #define elf_backend_check_relocs elf_xtensa_check_relocs 10839 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections 10840 #define elf_backend_discard_info elf_xtensa_discard_info 10841 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs 10842 #define elf_backend_final_write_processing elf_xtensa_final_write_processing 10843 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections 10844 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol 10845 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook 10846 #define elf_backend_gc_sweep_hook elf_xtensa_gc_sweep_hook 10847 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus 10848 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo 10849 #define elf_backend_hide_symbol elf_xtensa_hide_symbol 10850 #define elf_backend_object_p elf_xtensa_object_p 10851 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class 10852 #define elf_backend_relocate_section elf_xtensa_relocate_section 10853 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections 10854 #define elf_backend_always_size_sections elf_xtensa_always_size_sections 10855 #define elf_backend_omit_section_dynsym \ 10856 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true) 10857 #define elf_backend_special_sections elf_xtensa_special_sections 10858 #define elf_backend_action_discarded elf_xtensa_action_discarded 10859 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol 10860 10861 #include "elf32-target.h" 10862