xref: /netbsd-src/external/gpl3/gdb.old/dist/bfd/elf32-xtensa.c (revision 867d70fc718005c0918b8b8b2f9d7f2d52d0a0db)
1 /* Xtensa-specific support for 32-bit ELF.
2    Copyright (C) 2003-2019 Free Software Foundation, Inc.
3 
4    This file is part of BFD, the Binary File Descriptor library.
5 
6    This program is free software; you can redistribute it and/or
7    modify it under the terms of the GNU General Public License as
8    published by the Free Software Foundation; either version 3 of the
9    License, or (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful, but
12    WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14    General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19    02110-1301, USA.  */
20 
21 #include "sysdep.h"
22 #include "bfd.h"
23 
24 #include <stdarg.h>
25 #include <strings.h>
26 
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
34 
35 #define XTENSA_NO_NOP_REMOVAL 0
36 
37 /* Local helper functions.  */
38 
39 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42   (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44   (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
45 static void do_fix_for_final_link
46   (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
47 
48 /* Local functions to handle Xtensa configurability.  */
49 
50 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53 static xtensa_opcode get_const16_opcode (void);
54 static xtensa_opcode get_l32r_opcode (void);
55 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56 static int get_relocation_opnd (xtensa_opcode, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59   (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
60 static bfd_boolean is_l32r_relocation
61   (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62 static bfd_boolean is_alt_relocation (int);
63 static bfd_boolean is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65   (bfd_byte *, bfd_size_type, bfd_size_type);
66 static xtensa_opcode insn_decode_opcode
67   (bfd_byte *, bfd_size_type, bfd_size_type, int);
68 static bfd_boolean check_branch_target_aligned
69   (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
70 static bfd_boolean check_loop_aligned
71   (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
73 static bfd_size_type get_asm_simplify_size
74   (bfd_byte *, bfd_size_type, bfd_size_type);
75 
76 /* Functions for link-time code simplifications.  */
77 
78 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
79   (bfd_byte *, bfd_vma, bfd_vma, char **);
80 static bfd_reloc_status_type contract_asm_expansion
81   (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
84 
85 /* Access to internal relocations, section contents and symbols.  */
86 
87 static Elf_Internal_Rela *retrieve_internal_relocs
88   (bfd *, asection *, bfd_boolean);
89 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92 static void pin_contents (asection *, bfd_byte *);
93 static void release_contents (asection *, bfd_byte *);
94 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
95 
96 /* Miscellaneous utility functions.  */
97 
98 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
100 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
101 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
102   (bfd *, unsigned long);
103 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106 static bfd_boolean xtensa_is_property_section (asection *);
107 static bfd_boolean xtensa_is_insntable_section (asection *);
108 static bfd_boolean xtensa_is_littable_section (asection *);
109 static bfd_boolean xtensa_is_proptable_section (asection *);
110 static int internal_reloc_compare (const void *, const void *);
111 static int internal_reloc_matches (const void *, const void *);
112 static asection *xtensa_get_property_section (asection *, const char *);
113 static flagword xtensa_get_property_predef_flags (asection *);
114 
115 /* Other functions called directly by the linker.  */
116 
117 typedef void (*deps_callback_t)
118   (asection *, bfd_vma, asection *, bfd_vma, void *);
119 extern bfd_boolean xtensa_callback_required_dependence
120   (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
121 
122 
123 /* Globally visible flag for choosing size optimization of NOP removal
124    instead of branch-target-aware minimization for NOP removal.
125    When nonzero, narrow all instructions and remove all NOPs possible
126    around longcall expansions.  */
127 
128 int elf32xtensa_size_opt;
129 
130 
131 /* The "new_section_hook" is used to set up a per-section
132    "xtensa_relax_info" data structure with additional information used
133    during relaxation.  */
134 
135 typedef struct xtensa_relax_info_struct xtensa_relax_info;
136 
137 
138 /* The GNU tools do not easily allow extending interfaces to pass around
139    the pointer to the Xtensa ISA information, so instead we add a global
140    variable here (in BFD) that can be used by any of the tools that need
141    this information. */
142 
143 xtensa_isa xtensa_default_isa;
144 
145 
146 /* When this is true, relocations may have been modified to refer to
147    symbols from other input files.  The per-section list of "fix"
148    records needs to be checked when resolving relocations.  */
149 
150 static bfd_boolean relaxing_section = FALSE;
151 
152 /* When this is true, during final links, literals that cannot be
153    coalesced and their relocations may be moved to other sections.  */
154 
155 int elf32xtensa_no_literal_movement = 1;
156 
157 /* Place property records for a section into individual property section
158    with xt.prop. prefix.  */
159 
160 bfd_boolean elf32xtensa_separate_props = FALSE;
161 
162 /* Rename one of the generic section flags to better document how it
163    is used here.  */
164 /* Whether relocations have been processed.  */
165 #define reloc_done sec_flg0
166 
167 static reloc_howto_type elf_howto_table[] =
168 {
169   HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
170 	 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
171 	 FALSE, 0, 0, FALSE),
172   HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
173 	 bfd_elf_xtensa_reloc, "R_XTENSA_32",
174 	 TRUE, 0xffffffff, 0xffffffff, FALSE),
175 
176   /* Replace a 32-bit value with a value from the runtime linker (only
177      used by linker-generated stub functions).  The r_addend value is
178      special: 1 means to substitute a pointer to the runtime linker's
179      dynamic resolver function; 2 means to substitute the link map for
180      the shared object.  */
181   HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
182 	 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
183 
184   HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
185 	 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
186 	 FALSE, 0, 0xffffffff, FALSE),
187   HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
188 	 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
189 	 FALSE, 0, 0xffffffff, FALSE),
190   HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
191 	 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
192 	 FALSE, 0, 0xffffffff, FALSE),
193   HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
194 	 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
195 	 FALSE, 0, 0xffffffff, FALSE),
196 
197   EMPTY_HOWTO (7),
198 
199   /* Old relocations for backward compatibility.  */
200   HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
201 	 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
202   HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
203 	 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
204   HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
205 	 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
206 
207   /* Assembly auto-expansion.  */
208   HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
209 	 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
210   /* Relax assembly auto-expansion.  */
211   HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
212 	 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
213 
214   EMPTY_HOWTO (13),
215 
216   HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
217 	 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
218 	 FALSE, 0, 0xffffffff, TRUE),
219 
220   /* GNU extension to record C++ vtable hierarchy.  */
221   HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
222 	 NULL, "R_XTENSA_GNU_VTINHERIT",
223 	 FALSE, 0, 0, FALSE),
224   /* GNU extension to record C++ vtable member usage.  */
225   HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
226 	 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
227 	 FALSE, 0, 0, FALSE),
228 
229   /* Relocations for supporting difference of symbols.  */
230   HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
231 	 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
232   HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
233 	 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
234   HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
235 	 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
236 
237   /* General immediate operand relocations.  */
238   HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
239 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
240   HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
241 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
242   HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
243 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
244   HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
245 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
246   HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
247 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
248   HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
249 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
250   HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
251 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
252   HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
253 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
254   HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
255 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
256   HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
257 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
258   HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
259 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
260   HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
261 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
262   HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
263 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
264   HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
265 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
266   HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
267 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
268 
269   /* "Alternate" relocations.  The meaning of these is opcode-specific.  */
270   HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
271 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
272   HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
273 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
274   HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
275 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
276   HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
277 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
278   HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
279 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
280   HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
281 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
282   HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
283 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
284   HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
285 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
286   HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
287 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
288   HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
289 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
290   HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
291 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
292   HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
293 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
294   HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
295 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
296   HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
297 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
298   HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
299 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
300 
301   /* TLS relocations.  */
302   HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
303 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
304 	 FALSE, 0, 0xffffffff, FALSE),
305   HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
306 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
307 	 FALSE, 0, 0xffffffff, FALSE),
308   HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
309 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
310 	 FALSE, 0, 0xffffffff, FALSE),
311   HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
312 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
313 	 FALSE, 0, 0xffffffff, FALSE),
314   HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
315 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
316 	 FALSE, 0, 0, FALSE),
317   HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
318 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
319 	 FALSE, 0, 0, FALSE),
320   HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
321 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
322 	 FALSE, 0, 0, FALSE),
323 };
324 
325 #if DEBUG_GEN_RELOC
326 #define TRACE(str) \
327   fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
328 #else
329 #define TRACE(str)
330 #endif
331 
332 static reloc_howto_type *
333 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
334 			      bfd_reloc_code_real_type code)
335 {
336   switch (code)
337     {
338     case BFD_RELOC_NONE:
339       TRACE ("BFD_RELOC_NONE");
340       return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
341 
342     case BFD_RELOC_32:
343       TRACE ("BFD_RELOC_32");
344       return &elf_howto_table[(unsigned) R_XTENSA_32 ];
345 
346     case BFD_RELOC_32_PCREL:
347       TRACE ("BFD_RELOC_32_PCREL");
348       return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
349 
350     case BFD_RELOC_XTENSA_DIFF8:
351       TRACE ("BFD_RELOC_XTENSA_DIFF8");
352       return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
353 
354     case BFD_RELOC_XTENSA_DIFF16:
355       TRACE ("BFD_RELOC_XTENSA_DIFF16");
356       return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
357 
358     case BFD_RELOC_XTENSA_DIFF32:
359       TRACE ("BFD_RELOC_XTENSA_DIFF32");
360       return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
361 
362     case BFD_RELOC_XTENSA_RTLD:
363       TRACE ("BFD_RELOC_XTENSA_RTLD");
364       return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
365 
366     case BFD_RELOC_XTENSA_GLOB_DAT:
367       TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
368       return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
369 
370     case BFD_RELOC_XTENSA_JMP_SLOT:
371       TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
372       return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
373 
374     case BFD_RELOC_XTENSA_RELATIVE:
375       TRACE ("BFD_RELOC_XTENSA_RELATIVE");
376       return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
377 
378     case BFD_RELOC_XTENSA_PLT:
379       TRACE ("BFD_RELOC_XTENSA_PLT");
380       return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
381 
382     case BFD_RELOC_XTENSA_OP0:
383       TRACE ("BFD_RELOC_XTENSA_OP0");
384       return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
385 
386     case BFD_RELOC_XTENSA_OP1:
387       TRACE ("BFD_RELOC_XTENSA_OP1");
388       return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
389 
390     case BFD_RELOC_XTENSA_OP2:
391       TRACE ("BFD_RELOC_XTENSA_OP2");
392       return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
393 
394     case BFD_RELOC_XTENSA_ASM_EXPAND:
395       TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
396       return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
397 
398     case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
399       TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
400       return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
401 
402     case BFD_RELOC_VTABLE_INHERIT:
403       TRACE ("BFD_RELOC_VTABLE_INHERIT");
404       return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
405 
406     case BFD_RELOC_VTABLE_ENTRY:
407       TRACE ("BFD_RELOC_VTABLE_ENTRY");
408       return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
409 
410     case BFD_RELOC_XTENSA_TLSDESC_FN:
411       TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
412       return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
413 
414     case BFD_RELOC_XTENSA_TLSDESC_ARG:
415       TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
416       return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
417 
418     case BFD_RELOC_XTENSA_TLS_DTPOFF:
419       TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
420       return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
421 
422     case BFD_RELOC_XTENSA_TLS_TPOFF:
423       TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
424       return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
425 
426     case BFD_RELOC_XTENSA_TLS_FUNC:
427       TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
428       return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
429 
430     case BFD_RELOC_XTENSA_TLS_ARG:
431       TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
432       return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
433 
434     case BFD_RELOC_XTENSA_TLS_CALL:
435       TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
436       return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
437 
438     default:
439       if (code >= BFD_RELOC_XTENSA_SLOT0_OP
440 	  && code <= BFD_RELOC_XTENSA_SLOT14_OP)
441 	{
442 	  unsigned n = (R_XTENSA_SLOT0_OP +
443 			(code - BFD_RELOC_XTENSA_SLOT0_OP));
444 	  return &elf_howto_table[n];
445 	}
446 
447       if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
448 	  && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
449 	{
450 	  unsigned n = (R_XTENSA_SLOT0_ALT +
451 			(code - BFD_RELOC_XTENSA_SLOT0_ALT));
452 	  return &elf_howto_table[n];
453 	}
454 
455       break;
456     }
457 
458   /* xgettext:c-format */
459   _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd, (int) code);
460   bfd_set_error (bfd_error_bad_value);
461   TRACE ("Unknown");
462   return NULL;
463 }
464 
465 static reloc_howto_type *
466 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
467 			      const char *r_name)
468 {
469   unsigned int i;
470 
471   for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
472     if (elf_howto_table[i].name != NULL
473 	&& strcasecmp (elf_howto_table[i].name, r_name) == 0)
474       return &elf_howto_table[i];
475 
476   return NULL;
477 }
478 
479 
480 /* Given an ELF "rela" relocation, find the corresponding howto and record
481    it in the BFD internal arelent representation of the relocation.  */
482 
483 static bfd_boolean
484 elf_xtensa_info_to_howto_rela (bfd *abfd,
485 			       arelent *cache_ptr,
486 			       Elf_Internal_Rela *dst)
487 {
488   unsigned int r_type = ELF32_R_TYPE (dst->r_info);
489 
490   if (r_type >= (unsigned int) R_XTENSA_max)
491     {
492       /* xgettext:c-format */
493       _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
494 			  abfd, r_type);
495       bfd_set_error (bfd_error_bad_value);
496       return FALSE;
497     }
498   cache_ptr->howto = &elf_howto_table[r_type];
499   return TRUE;
500 }
501 
502 
503 /* Functions for the Xtensa ELF linker.  */
504 
505 /* The name of the dynamic interpreter.  This is put in the .interp
506    section.  */
507 
508 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
509 
510 /* The size in bytes of an entry in the procedure linkage table.
511    (This does _not_ include the space for the literals associated with
512    the PLT entry.) */
513 
514 #define PLT_ENTRY_SIZE 16
515 
516 /* For _really_ large PLTs, we may need to alternate between literals
517    and code to keep the literals within the 256K range of the L32R
518    instructions in the code.  It's unlikely that anyone would ever need
519    such a big PLT, but an arbitrary limit on the PLT size would be bad.
520    Thus, we split the PLT into chunks.  Since there's very little
521    overhead (2 extra literals) for each chunk, the chunk size is kept
522    small so that the code for handling multiple chunks get used and
523    tested regularly.  With 254 entries, there are 1K of literals for
524    each chunk, and that seems like a nice round number.  */
525 
526 #define PLT_ENTRIES_PER_CHUNK 254
527 
528 /* PLT entries are actually used as stub functions for lazy symbol
529    resolution.  Once the symbol is resolved, the stub function is never
530    invoked.  Note: the 32-byte frame size used here cannot be changed
531    without a corresponding change in the runtime linker.  */
532 
533 static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] =
534 {
535     {
536       0x6c, 0x10, 0x04,	/* entry sp, 32 */
537       0x18, 0x00, 0x00,	/* l32r  a8, [got entry for rtld's resolver] */
538       0x1a, 0x00, 0x00,	/* l32r  a10, [got entry for rtld's link map] */
539       0x1b, 0x00, 0x00,	/* l32r  a11, [literal for reloc index] */
540       0x0a, 0x80, 0x00,	/* jx    a8 */
541       0			/* unused */
542     },
543     {
544       0x18, 0x00, 0x00,	/* l32r  a8, [got entry for rtld's resolver] */
545       0x1a, 0x00, 0x00,	/* l32r  a10, [got entry for rtld's link map] */
546       0x1b, 0x00, 0x00,	/* l32r  a11, [literal for reloc index] */
547       0x0a, 0x80, 0x00,	/* jx    a8 */
548       0			/* unused */
549     }
550 };
551 
552 static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] =
553 {
554     {
555       0x36, 0x41, 0x00,	/* entry sp, 32 */
556       0x81, 0x00, 0x00,	/* l32r  a8, [got entry for rtld's resolver] */
557       0xa1, 0x00, 0x00,	/* l32r  a10, [got entry for rtld's link map] */
558       0xb1, 0x00, 0x00,	/* l32r  a11, [literal for reloc index] */
559       0xa0, 0x08, 0x00,	/* jx    a8 */
560       0			/* unused */
561     },
562     {
563       0x81, 0x00, 0x00,	/* l32r  a8, [got entry for rtld's resolver] */
564       0xa1, 0x00, 0x00,	/* l32r  a10, [got entry for rtld's link map] */
565       0xb1, 0x00, 0x00,	/* l32r  a11, [literal for reloc index] */
566       0xa0, 0x08, 0x00,	/* jx    a8 */
567       0			/* unused */
568     }
569 };
570 
571 /* The size of the thread control block.  */
572 #define TCB_SIZE	8
573 
574 struct elf_xtensa_link_hash_entry
575 {
576   struct elf_link_hash_entry elf;
577 
578   bfd_signed_vma tlsfunc_refcount;
579 
580 #define GOT_UNKNOWN	0
581 #define GOT_NORMAL	1
582 #define GOT_TLS_GD	2	/* global or local dynamic */
583 #define GOT_TLS_IE	4	/* initial or local exec */
584 #define GOT_TLS_ANY	(GOT_TLS_GD | GOT_TLS_IE)
585   unsigned char tls_type;
586 };
587 
588 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
589 
590 struct elf_xtensa_obj_tdata
591 {
592   struct elf_obj_tdata root;
593 
594   /* tls_type for each local got entry.  */
595   char *local_got_tls_type;
596 
597   bfd_signed_vma *local_tlsfunc_refcounts;
598 };
599 
600 #define elf_xtensa_tdata(abfd) \
601   ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
602 
603 #define elf_xtensa_local_got_tls_type(abfd) \
604   (elf_xtensa_tdata (abfd)->local_got_tls_type)
605 
606 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
607   (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
608 
609 #define is_xtensa_elf(bfd) \
610   (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
611    && elf_tdata (bfd) != NULL \
612    && elf_object_id (bfd) == XTENSA_ELF_DATA)
613 
614 static bfd_boolean
615 elf_xtensa_mkobject (bfd *abfd)
616 {
617   return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
618 				  XTENSA_ELF_DATA);
619 }
620 
621 /* Xtensa ELF linker hash table.  */
622 
623 struct elf_xtensa_link_hash_table
624 {
625   struct elf_link_hash_table elf;
626 
627   /* Short-cuts to get to dynamic linker sections.  */
628   asection *sgotloc;
629   asection *spltlittbl;
630 
631   /* Total count of PLT relocations seen during check_relocs.
632      The actual PLT code must be split into multiple sections and all
633      the sections have to be created before size_dynamic_sections,
634      where we figure out the exact number of PLT entries that will be
635      needed.  It is OK if this count is an overestimate, e.g., some
636      relocations may be removed by GC.  */
637   int plt_reloc_count;
638 
639   struct elf_xtensa_link_hash_entry *tlsbase;
640 };
641 
642 /* Get the Xtensa ELF linker hash table from a link_info structure.  */
643 
644 #define elf_xtensa_hash_table(p) \
645   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
646   == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
647 
648 /* Create an entry in an Xtensa ELF linker hash table.  */
649 
650 static struct bfd_hash_entry *
651 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
652 			      struct bfd_hash_table *table,
653 			      const char *string)
654 {
655   /* Allocate the structure if it has not already been allocated by a
656      subclass.  */
657   if (entry == NULL)
658     {
659       entry = bfd_hash_allocate (table,
660 				 sizeof (struct elf_xtensa_link_hash_entry));
661       if (entry == NULL)
662 	return entry;
663     }
664 
665   /* Call the allocation method of the superclass.  */
666   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
667   if (entry != NULL)
668     {
669       struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
670       eh->tlsfunc_refcount = 0;
671       eh->tls_type = GOT_UNKNOWN;
672     }
673 
674   return entry;
675 }
676 
677 /* Create an Xtensa ELF linker hash table.  */
678 
679 static struct bfd_link_hash_table *
680 elf_xtensa_link_hash_table_create (bfd *abfd)
681 {
682   struct elf_link_hash_entry *tlsbase;
683   struct elf_xtensa_link_hash_table *ret;
684   bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
685 
686   ret = bfd_zmalloc (amt);
687   if (ret == NULL)
688     return NULL;
689 
690   if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
691 				      elf_xtensa_link_hash_newfunc,
692 				      sizeof (struct elf_xtensa_link_hash_entry),
693 				      XTENSA_ELF_DATA))
694     {
695       free (ret);
696       return NULL;
697     }
698 
699   /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
700      for it later.  */
701   tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
702 				  TRUE, FALSE, FALSE);
703   tlsbase->root.type = bfd_link_hash_new;
704   tlsbase->root.u.undef.abfd = NULL;
705   tlsbase->non_elf = 0;
706   ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
707   ret->tlsbase->tls_type = GOT_UNKNOWN;
708 
709   return &ret->elf.root;
710 }
711 
712 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
713 
714 static void
715 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
716 				 struct elf_link_hash_entry *dir,
717 				 struct elf_link_hash_entry *ind)
718 {
719   struct elf_xtensa_link_hash_entry *edir, *eind;
720 
721   edir = elf_xtensa_hash_entry (dir);
722   eind = elf_xtensa_hash_entry (ind);
723 
724   if (ind->root.type == bfd_link_hash_indirect)
725     {
726       edir->tlsfunc_refcount += eind->tlsfunc_refcount;
727       eind->tlsfunc_refcount = 0;
728 
729       if (dir->got.refcount <= 0)
730 	{
731 	  edir->tls_type = eind->tls_type;
732 	  eind->tls_type = GOT_UNKNOWN;
733 	}
734     }
735 
736   _bfd_elf_link_hash_copy_indirect (info, dir, ind);
737 }
738 
739 static inline bfd_boolean
740 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
741 			     struct bfd_link_info *info)
742 {
743   /* Check if we should do dynamic things to this symbol.  The
744      "ignore_protected" argument need not be set, because Xtensa code
745      does not require special handling of STV_PROTECTED to make function
746      pointer comparisons work properly.  The PLT addresses are never
747      used for function pointers.  */
748 
749   return _bfd_elf_dynamic_symbol_p (h, info, 0);
750 }
751 
752 
753 static int
754 property_table_compare (const void *ap, const void *bp)
755 {
756   const property_table_entry *a = (const property_table_entry *) ap;
757   const property_table_entry *b = (const property_table_entry *) bp;
758 
759   if (a->address == b->address)
760     {
761       if (a->size != b->size)
762 	return (a->size - b->size);
763 
764       if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
765 	return ((b->flags & XTENSA_PROP_ALIGN)
766 		- (a->flags & XTENSA_PROP_ALIGN));
767 
768       if ((a->flags & XTENSA_PROP_ALIGN)
769 	  && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
770 	      != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
771 	return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
772 		- GET_XTENSA_PROP_ALIGNMENT (b->flags));
773 
774       if ((a->flags & XTENSA_PROP_UNREACHABLE)
775 	  != (b->flags & XTENSA_PROP_UNREACHABLE))
776 	return ((b->flags & XTENSA_PROP_UNREACHABLE)
777 		- (a->flags & XTENSA_PROP_UNREACHABLE));
778 
779       return (a->flags - b->flags);
780     }
781 
782   return (a->address - b->address);
783 }
784 
785 
786 static int
787 property_table_matches (const void *ap, const void *bp)
788 {
789   const property_table_entry *a = (const property_table_entry *) ap;
790   const property_table_entry *b = (const property_table_entry *) bp;
791 
792   /* Check if one entry overlaps with the other.  */
793   if ((b->address >= a->address && b->address < (a->address + a->size))
794       || (a->address >= b->address && a->address < (b->address + b->size)))
795     return 0;
796 
797   return (a->address - b->address);
798 }
799 
800 
801 /* Get the literal table or property table entries for the given
802    section.  Sets TABLE_P and returns the number of entries.  On
803    error, returns a negative value.  */
804 
805 int
806 xtensa_read_table_entries (bfd *abfd,
807 			   asection *section,
808 			   property_table_entry **table_p,
809 			   const char *sec_name,
810 			   bfd_boolean output_addr)
811 {
812   asection *table_section;
813   bfd_size_type table_size = 0;
814   bfd_byte *table_data;
815   property_table_entry *blocks;
816   int blk, block_count;
817   bfd_size_type num_records;
818   Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
819   bfd_vma section_addr, off;
820   flagword predef_flags;
821   bfd_size_type table_entry_size, section_limit;
822 
823   if (!section
824       || !(section->flags & SEC_ALLOC)
825       || (section->flags & SEC_DEBUGGING))
826     {
827       *table_p = NULL;
828       return 0;
829     }
830 
831   table_section = xtensa_get_property_section (section, sec_name);
832   if (table_section)
833     table_size = table_section->size;
834 
835   if (table_size == 0)
836     {
837       *table_p = NULL;
838       return 0;
839     }
840 
841   predef_flags = xtensa_get_property_predef_flags (table_section);
842   table_entry_size = 12;
843   if (predef_flags)
844     table_entry_size -= 4;
845 
846   num_records = table_size / table_entry_size;
847   table_data = retrieve_contents (abfd, table_section, TRUE);
848   blocks = (property_table_entry *)
849     bfd_malloc (num_records * sizeof (property_table_entry));
850   block_count = 0;
851 
852   if (output_addr)
853     section_addr = section->output_section->vma + section->output_offset;
854   else
855     section_addr = section->vma;
856 
857   internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
858   if (internal_relocs && !table_section->reloc_done)
859     {
860       qsort (internal_relocs, table_section->reloc_count,
861 	     sizeof (Elf_Internal_Rela), internal_reloc_compare);
862       irel = internal_relocs;
863     }
864   else
865     irel = NULL;
866 
867   section_limit = bfd_get_section_limit (abfd, section);
868   rel_end = internal_relocs + table_section->reloc_count;
869 
870   for (off = 0; off < table_size; off += table_entry_size)
871     {
872       bfd_vma address = bfd_get_32 (abfd, table_data + off);
873 
874       /* Skip any relocations before the current offset.  This should help
875 	 avoid confusion caused by unexpected relocations for the preceding
876 	 table entry.  */
877       while (irel &&
878 	     (irel->r_offset < off
879 	      || (irel->r_offset == off
880 		  && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
881 	{
882 	  irel += 1;
883 	  if (irel >= rel_end)
884 	    irel = 0;
885 	}
886 
887       if (irel && irel->r_offset == off)
888 	{
889 	  bfd_vma sym_off;
890 	  unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
891 	  BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
892 
893 	  if (get_elf_r_symndx_section (abfd, r_symndx) != section)
894 	    continue;
895 
896 	  sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
897 	  BFD_ASSERT (sym_off == 0);
898 	  address += (section_addr + sym_off + irel->r_addend);
899 	}
900       else
901 	{
902 	  if (address < section_addr
903 	      || address >= section_addr + section_limit)
904 	    continue;
905 	}
906 
907       blocks[block_count].address = address;
908       blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
909       if (predef_flags)
910 	blocks[block_count].flags = predef_flags;
911       else
912 	blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
913       block_count++;
914     }
915 
916   release_contents (table_section, table_data);
917   release_internal_relocs (table_section, internal_relocs);
918 
919   if (block_count > 0)
920     {
921       /* Now sort them into address order for easy reference.  */
922       qsort (blocks, block_count, sizeof (property_table_entry),
923 	     property_table_compare);
924 
925       /* Check that the table contents are valid.  Problems may occur,
926 	 for example, if an unrelocated object file is stripped.  */
927       for (blk = 1; blk < block_count; blk++)
928 	{
929 	  /* The only circumstance where two entries may legitimately
930 	     have the same address is when one of them is a zero-size
931 	     placeholder to mark a place where fill can be inserted.
932 	     The zero-size entry should come first.  */
933 	  if (blocks[blk - 1].address == blocks[blk].address &&
934 	      blocks[blk - 1].size != 0)
935 	    {
936 	      /* xgettext:c-format */
937 	      _bfd_error_handler (_("%pB(%pA): invalid property table"),
938 				  abfd, section);
939 	      bfd_set_error (bfd_error_bad_value);
940 	      free (blocks);
941 	      return -1;
942 	    }
943 	}
944     }
945 
946   *table_p = blocks;
947   return block_count;
948 }
949 
950 
951 static property_table_entry *
952 elf_xtensa_find_property_entry (property_table_entry *property_table,
953 				int property_table_size,
954 				bfd_vma addr)
955 {
956   property_table_entry entry;
957   property_table_entry *rv;
958 
959   if (property_table_size == 0)
960     return NULL;
961 
962   entry.address = addr;
963   entry.size = 1;
964   entry.flags = 0;
965 
966   rv = bsearch (&entry, property_table, property_table_size,
967 		sizeof (property_table_entry), property_table_matches);
968   return rv;
969 }
970 
971 
972 static bfd_boolean
973 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
974 			    int lit_table_size,
975 			    bfd_vma addr)
976 {
977   if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
978     return TRUE;
979 
980   return FALSE;
981 }
982 
983 
984 /* Look through the relocs for a section during the first phase, and
985    calculate needed space in the dynamic reloc sections.  */
986 
987 static bfd_boolean
988 elf_xtensa_check_relocs (bfd *abfd,
989 			 struct bfd_link_info *info,
990 			 asection *sec,
991 			 const Elf_Internal_Rela *relocs)
992 {
993   struct elf_xtensa_link_hash_table *htab;
994   Elf_Internal_Shdr *symtab_hdr;
995   struct elf_link_hash_entry **sym_hashes;
996   const Elf_Internal_Rela *rel;
997   const Elf_Internal_Rela *rel_end;
998 
999   if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
1000     return TRUE;
1001 
1002   BFD_ASSERT (is_xtensa_elf (abfd));
1003 
1004   htab = elf_xtensa_hash_table (info);
1005   if (htab == NULL)
1006     return FALSE;
1007 
1008   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1009   sym_hashes = elf_sym_hashes (abfd);
1010 
1011   rel_end = relocs + sec->reloc_count;
1012   for (rel = relocs; rel < rel_end; rel++)
1013     {
1014       unsigned int r_type;
1015       unsigned r_symndx;
1016       struct elf_link_hash_entry *h = NULL;
1017       struct elf_xtensa_link_hash_entry *eh;
1018       int tls_type, old_tls_type;
1019       bfd_boolean is_got = FALSE;
1020       bfd_boolean is_plt = FALSE;
1021       bfd_boolean is_tlsfunc = FALSE;
1022 
1023       r_symndx = ELF32_R_SYM (rel->r_info);
1024       r_type = ELF32_R_TYPE (rel->r_info);
1025 
1026       if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1027 	{
1028 	  /* xgettext:c-format */
1029 	  _bfd_error_handler (_("%pB: bad symbol index: %d"),
1030 			      abfd, r_symndx);
1031 	  return FALSE;
1032 	}
1033 
1034       if (r_symndx >= symtab_hdr->sh_info)
1035 	{
1036 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1037 	  while (h->root.type == bfd_link_hash_indirect
1038 		 || h->root.type == bfd_link_hash_warning)
1039 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1040 	}
1041       eh = elf_xtensa_hash_entry (h);
1042 
1043       switch (r_type)
1044 	{
1045 	case R_XTENSA_TLSDESC_FN:
1046 	  if (bfd_link_pic (info))
1047 	    {
1048 	      tls_type = GOT_TLS_GD;
1049 	      is_got = TRUE;
1050 	      is_tlsfunc = TRUE;
1051 	    }
1052 	  else
1053 	    tls_type = GOT_TLS_IE;
1054 	  break;
1055 
1056 	case R_XTENSA_TLSDESC_ARG:
1057 	  if (bfd_link_pic (info))
1058 	    {
1059 	      tls_type = GOT_TLS_GD;
1060 	      is_got = TRUE;
1061 	    }
1062 	  else
1063 	    {
1064 	      tls_type = GOT_TLS_IE;
1065 	      if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1066 		is_got = TRUE;
1067 	    }
1068 	  break;
1069 
1070 	case R_XTENSA_TLS_DTPOFF:
1071 	  if (bfd_link_pic (info))
1072 	    tls_type = GOT_TLS_GD;
1073 	  else
1074 	    tls_type = GOT_TLS_IE;
1075 	  break;
1076 
1077 	case R_XTENSA_TLS_TPOFF:
1078 	  tls_type = GOT_TLS_IE;
1079 	  if (bfd_link_pic (info))
1080 	    info->flags |= DF_STATIC_TLS;
1081 	  if (bfd_link_pic (info) || h)
1082 	    is_got = TRUE;
1083 	  break;
1084 
1085 	case R_XTENSA_32:
1086 	  tls_type = GOT_NORMAL;
1087 	  is_got = TRUE;
1088 	  break;
1089 
1090 	case R_XTENSA_PLT:
1091 	  tls_type = GOT_NORMAL;
1092 	  is_plt = TRUE;
1093 	  break;
1094 
1095 	case R_XTENSA_GNU_VTINHERIT:
1096 	  /* This relocation describes the C++ object vtable hierarchy.
1097 	     Reconstruct it for later use during GC.  */
1098 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1099 	    return FALSE;
1100 	  continue;
1101 
1102 	case R_XTENSA_GNU_VTENTRY:
1103 	  /* This relocation describes which C++ vtable entries are actually
1104 	     used.  Record for later use during GC.  */
1105 	  BFD_ASSERT (h != NULL);
1106 	  if (h != NULL
1107 	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1108 	    return FALSE;
1109 	  continue;
1110 
1111 	default:
1112 	  /* Nothing to do for any other relocations.  */
1113 	  continue;
1114 	}
1115 
1116       if (h)
1117 	{
1118 	  if (is_plt)
1119 	    {
1120 	      if (h->plt.refcount <= 0)
1121 		{
1122 		  h->needs_plt = 1;
1123 		  h->plt.refcount = 1;
1124 		}
1125 	      else
1126 		h->plt.refcount += 1;
1127 
1128 	      /* Keep track of the total PLT relocation count even if we
1129 		 don't yet know whether the dynamic sections will be
1130 		 created.  */
1131 	      htab->plt_reloc_count += 1;
1132 
1133 	      if (elf_hash_table (info)->dynamic_sections_created)
1134 		{
1135 		  if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1136 		    return FALSE;
1137 		}
1138 	    }
1139 	  else if (is_got)
1140 	    {
1141 	      if (h->got.refcount <= 0)
1142 		h->got.refcount = 1;
1143 	      else
1144 		h->got.refcount += 1;
1145 	    }
1146 
1147 	  if (is_tlsfunc)
1148 	    eh->tlsfunc_refcount += 1;
1149 
1150 	  old_tls_type = eh->tls_type;
1151 	}
1152       else
1153 	{
1154 	  /* Allocate storage the first time.  */
1155 	  if (elf_local_got_refcounts (abfd) == NULL)
1156 	    {
1157 	      bfd_size_type size = symtab_hdr->sh_info;
1158 	      void *mem;
1159 
1160 	      mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1161 	      if (mem == NULL)
1162 		return FALSE;
1163 	      elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1164 
1165 	      mem = bfd_zalloc (abfd, size);
1166 	      if (mem == NULL)
1167 		return FALSE;
1168 	      elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1169 
1170 	      mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1171 	      if (mem == NULL)
1172 		return FALSE;
1173 	      elf_xtensa_local_tlsfunc_refcounts (abfd)
1174 		= (bfd_signed_vma *) mem;
1175 	    }
1176 
1177 	  /* This is a global offset table entry for a local symbol.  */
1178 	  if (is_got || is_plt)
1179 	    elf_local_got_refcounts (abfd) [r_symndx] += 1;
1180 
1181 	  if (is_tlsfunc)
1182 	    elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1183 
1184 	  old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1185 	}
1186 
1187       if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1188 	tls_type |= old_tls_type;
1189       /* If a TLS symbol is accessed using IE at least once,
1190 	 there is no point to use a dynamic model for it.  */
1191       else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1192 	       && ((old_tls_type & GOT_TLS_GD) == 0
1193 		   || (tls_type & GOT_TLS_IE) == 0))
1194 	{
1195 	  if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1196 	    tls_type = old_tls_type;
1197 	  else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1198 	    tls_type |= old_tls_type;
1199 	  else
1200 	    {
1201 	      _bfd_error_handler
1202 		/* xgettext:c-format */
1203 		(_("%pB: `%s' accessed both as normal and thread local symbol"),
1204 		 abfd,
1205 		 h ? h->root.root.string : "<local>");
1206 	      return FALSE;
1207 	    }
1208 	}
1209 
1210       if (old_tls_type != tls_type)
1211 	{
1212 	  if (eh)
1213 	    eh->tls_type = tls_type;
1214 	  else
1215 	    elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1216 	}
1217     }
1218 
1219   return TRUE;
1220 }
1221 
1222 
1223 static void
1224 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1225 			   struct elf_link_hash_entry *h)
1226 {
1227   if (bfd_link_pic (info))
1228     {
1229       if (h->plt.refcount > 0)
1230 	{
1231 	  /* For shared objects, there's no need for PLT entries for local
1232 	     symbols (use RELATIVE relocs instead of JMP_SLOT relocs).  */
1233 	  if (h->got.refcount < 0)
1234 	    h->got.refcount = 0;
1235 	  h->got.refcount += h->plt.refcount;
1236 	  h->plt.refcount = 0;
1237 	}
1238     }
1239   else
1240     {
1241       /* Don't need any dynamic relocations at all.  */
1242       h->plt.refcount = 0;
1243       h->got.refcount = 0;
1244     }
1245 }
1246 
1247 
1248 static void
1249 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1250 			struct elf_link_hash_entry *h,
1251 			bfd_boolean force_local)
1252 {
1253   /* For a shared link, move the plt refcount to the got refcount to leave
1254      space for RELATIVE relocs.  */
1255   elf_xtensa_make_sym_local (info, h);
1256 
1257   _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1258 }
1259 
1260 
1261 /* Return the section that should be marked against GC for a given
1262    relocation.  */
1263 
1264 static asection *
1265 elf_xtensa_gc_mark_hook (asection *sec,
1266 			 struct bfd_link_info *info,
1267 			 Elf_Internal_Rela *rel,
1268 			 struct elf_link_hash_entry *h,
1269 			 Elf_Internal_Sym *sym)
1270 {
1271   /* Property sections are marked "KEEP" in the linker scripts, but they
1272      should not cause other sections to be marked.  (This approach relies
1273      on elf_xtensa_discard_info to remove property table entries that
1274      describe discarded sections.  Alternatively, it might be more
1275      efficient to avoid using "KEEP" in the linker scripts and instead use
1276      the gc_mark_extra_sections hook to mark only the property sections
1277      that describe marked sections.  That alternative does not work well
1278      with the current property table sections, which do not correspond
1279      one-to-one with the sections they describe, but that should be fixed
1280      someday.) */
1281   if (xtensa_is_property_section (sec))
1282     return NULL;
1283 
1284   if (h != NULL)
1285     switch (ELF32_R_TYPE (rel->r_info))
1286       {
1287       case R_XTENSA_GNU_VTINHERIT:
1288       case R_XTENSA_GNU_VTENTRY:
1289 	return NULL;
1290       }
1291 
1292   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1293 }
1294 
1295 
1296 /* Create all the dynamic sections.  */
1297 
1298 static bfd_boolean
1299 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1300 {
1301   struct elf_xtensa_link_hash_table *htab;
1302   flagword flags, noalloc_flags;
1303 
1304   htab = elf_xtensa_hash_table (info);
1305   if (htab == NULL)
1306     return FALSE;
1307 
1308   /* First do all the standard stuff.  */
1309   if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1310     return FALSE;
1311 
1312   /* Create any extra PLT sections in case check_relocs has already
1313      been called on all the non-dynamic input files.  */
1314   if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1315     return FALSE;
1316 
1317   noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1318 		   | SEC_LINKER_CREATED | SEC_READONLY);
1319   flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1320 
1321   /* Mark the ".got.plt" section READONLY.  */
1322   if (htab->elf.sgotplt == NULL
1323       || ! bfd_set_section_flags (dynobj, htab->elf.sgotplt, flags))
1324     return FALSE;
1325 
1326   /* Create ".got.loc" (literal tables for use by dynamic linker).  */
1327   htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1328 						      flags);
1329   if (htab->sgotloc == NULL
1330       || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1331     return FALSE;
1332 
1333   /* Create ".xt.lit.plt" (literal table for ".got.plt*").  */
1334   htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1335 							 noalloc_flags);
1336   if (htab->spltlittbl == NULL
1337       || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1338     return FALSE;
1339 
1340   return TRUE;
1341 }
1342 
1343 
1344 static bfd_boolean
1345 add_extra_plt_sections (struct bfd_link_info *info, int count)
1346 {
1347   bfd *dynobj = elf_hash_table (info)->dynobj;
1348   int chunk;
1349 
1350   /* Iterate over all chunks except 0 which uses the standard ".plt" and
1351      ".got.plt" sections.  */
1352   for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1353     {
1354       char *sname;
1355       flagword flags;
1356       asection *s;
1357 
1358       /* Stop when we find a section has already been created.  */
1359       if (elf_xtensa_get_plt_section (info, chunk))
1360 	break;
1361 
1362       flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1363 	       | SEC_LINKER_CREATED | SEC_READONLY);
1364 
1365       sname = (char *) bfd_malloc (10);
1366       sprintf (sname, ".plt.%u", chunk);
1367       s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1368       if (s == NULL
1369 	  || ! bfd_set_section_alignment (dynobj, s, 2))
1370 	return FALSE;
1371 
1372       sname = (char *) bfd_malloc (14);
1373       sprintf (sname, ".got.plt.%u", chunk);
1374       s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1375       if (s == NULL
1376 	  || ! bfd_set_section_alignment (dynobj, s, 2))
1377 	return FALSE;
1378     }
1379 
1380   return TRUE;
1381 }
1382 
1383 
1384 /* Adjust a symbol defined by a dynamic object and referenced by a
1385    regular object.  The current definition is in some section of the
1386    dynamic object, but we're not including those sections.  We have to
1387    change the definition to something the rest of the link can
1388    understand.  */
1389 
1390 static bfd_boolean
1391 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1392 				  struct elf_link_hash_entry *h)
1393 {
1394   /* If this is a weak symbol, and there is a real definition, the
1395      processor independent code will have arranged for us to see the
1396      real definition first, and we can just use the same value.  */
1397   if (h->is_weakalias)
1398     {
1399       struct elf_link_hash_entry *def = weakdef (h);
1400       BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1401       h->root.u.def.section = def->root.u.def.section;
1402       h->root.u.def.value = def->root.u.def.value;
1403       return TRUE;
1404     }
1405 
1406   /* This is a reference to a symbol defined by a dynamic object.  The
1407      reference must go through the GOT, so there's no need for COPY relocs,
1408      .dynbss, etc.  */
1409 
1410   return TRUE;
1411 }
1412 
1413 
1414 static bfd_boolean
1415 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1416 {
1417   struct bfd_link_info *info;
1418   struct elf_xtensa_link_hash_table *htab;
1419   struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1420 
1421   if (h->root.type == bfd_link_hash_indirect)
1422     return TRUE;
1423 
1424   info = (struct bfd_link_info *) arg;
1425   htab = elf_xtensa_hash_table (info);
1426   if (htab == NULL)
1427     return FALSE;
1428 
1429   /* If we saw any use of an IE model for this symbol, we can then optimize
1430      away GOT entries for any TLSDESC_FN relocs.  */
1431   if ((eh->tls_type & GOT_TLS_IE) != 0)
1432     {
1433       BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1434       h->got.refcount -= eh->tlsfunc_refcount;
1435     }
1436 
1437   if (! elf_xtensa_dynamic_symbol_p (h, info))
1438     elf_xtensa_make_sym_local (info, h);
1439 
1440   if (! elf_xtensa_dynamic_symbol_p (h, info)
1441       && h->root.type == bfd_link_hash_undefweak)
1442     return TRUE;
1443 
1444   if (h->plt.refcount > 0)
1445     htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1446 
1447   if (h->got.refcount > 0)
1448     htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1449 
1450   return TRUE;
1451 }
1452 
1453 
1454 static void
1455 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1456 {
1457   struct elf_xtensa_link_hash_table *htab;
1458   bfd *i;
1459 
1460   htab = elf_xtensa_hash_table (info);
1461   if (htab == NULL)
1462     return;
1463 
1464   for (i = info->input_bfds; i; i = i->link.next)
1465     {
1466       bfd_signed_vma *local_got_refcounts;
1467       bfd_size_type j, cnt;
1468       Elf_Internal_Shdr *symtab_hdr;
1469 
1470       local_got_refcounts = elf_local_got_refcounts (i);
1471       if (!local_got_refcounts)
1472 	continue;
1473 
1474       symtab_hdr = &elf_tdata (i)->symtab_hdr;
1475       cnt = symtab_hdr->sh_info;
1476 
1477       for (j = 0; j < cnt; ++j)
1478 	{
1479 	  /* If we saw any use of an IE model for this symbol, we can
1480 	     then optimize away GOT entries for any TLSDESC_FN relocs.  */
1481 	  if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1482 	    {
1483 	      bfd_signed_vma *tlsfunc_refcount
1484 		= &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1485 	      BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1486 	      local_got_refcounts[j] -= *tlsfunc_refcount;
1487 	    }
1488 
1489 	  if (local_got_refcounts[j] > 0)
1490 	    htab->elf.srelgot->size += (local_got_refcounts[j]
1491 					* sizeof (Elf32_External_Rela));
1492 	}
1493     }
1494 }
1495 
1496 
1497 /* Set the sizes of the dynamic sections.  */
1498 
1499 static bfd_boolean
1500 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1501 				  struct bfd_link_info *info)
1502 {
1503   struct elf_xtensa_link_hash_table *htab;
1504   bfd *dynobj, *abfd;
1505   asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1506   bfd_boolean relplt, relgot;
1507   int plt_entries, plt_chunks, chunk;
1508 
1509   plt_entries = 0;
1510   plt_chunks = 0;
1511 
1512   htab = elf_xtensa_hash_table (info);
1513   if (htab == NULL)
1514     return FALSE;
1515 
1516   dynobj = elf_hash_table (info)->dynobj;
1517   if (dynobj == NULL)
1518     abort ();
1519   srelgot = htab->elf.srelgot;
1520   srelplt = htab->elf.srelplt;
1521 
1522   if (elf_hash_table (info)->dynamic_sections_created)
1523     {
1524       BFD_ASSERT (htab->elf.srelgot != NULL
1525 		  && htab->elf.srelplt != NULL
1526 		  && htab->elf.sgot != NULL
1527 		  && htab->spltlittbl != NULL
1528 		  && htab->sgotloc != NULL);
1529 
1530       /* Set the contents of the .interp section to the interpreter.  */
1531       if (bfd_link_executable (info) && !info->nointerp)
1532 	{
1533 	  s = bfd_get_linker_section (dynobj, ".interp");
1534 	  if (s == NULL)
1535 	    abort ();
1536 	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1537 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1538 	}
1539 
1540       /* Allocate room for one word in ".got".  */
1541       htab->elf.sgot->size = 4;
1542 
1543       /* Allocate space in ".rela.got" for literals that reference global
1544 	 symbols and space in ".rela.plt" for literals that have PLT
1545 	 entries.  */
1546       elf_link_hash_traverse (elf_hash_table (info),
1547 			      elf_xtensa_allocate_dynrelocs,
1548 			      (void *) info);
1549 
1550       /* If we are generating a shared object, we also need space in
1551 	 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1552 	 reference local symbols.  */
1553       if (bfd_link_pic (info))
1554 	elf_xtensa_allocate_local_got_size (info);
1555 
1556       /* Allocate space in ".plt" to match the size of ".rela.plt".  For
1557 	 each PLT entry, we need the PLT code plus a 4-byte literal.
1558 	 For each chunk of ".plt", we also need two more 4-byte
1559 	 literals, two corresponding entries in ".rela.got", and an
1560 	 8-byte entry in ".xt.lit.plt".  */
1561       spltlittbl = htab->spltlittbl;
1562       plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1563       plt_chunks =
1564 	(plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1565 
1566       /* Iterate over all the PLT chunks, including any extra sections
1567 	 created earlier because the initial count of PLT relocations
1568 	 was an overestimate.  */
1569       for (chunk = 0;
1570 	   (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1571 	   chunk++)
1572 	{
1573 	  int chunk_entries;
1574 
1575 	  sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1576 	  BFD_ASSERT (sgotplt != NULL);
1577 
1578 	  if (chunk < plt_chunks - 1)
1579 	    chunk_entries = PLT_ENTRIES_PER_CHUNK;
1580 	  else if (chunk == plt_chunks - 1)
1581 	    chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1582 	  else
1583 	    chunk_entries = 0;
1584 
1585 	  if (chunk_entries != 0)
1586 	    {
1587 	      sgotplt->size = 4 * (chunk_entries + 2);
1588 	      splt->size = PLT_ENTRY_SIZE * chunk_entries;
1589 	      srelgot->size += 2 * sizeof (Elf32_External_Rela);
1590 	      spltlittbl->size += 8;
1591 	    }
1592 	  else
1593 	    {
1594 	      sgotplt->size = 0;
1595 	      splt->size = 0;
1596 	    }
1597 	}
1598 
1599       /* Allocate space in ".got.loc" to match the total size of all the
1600 	 literal tables.  */
1601       sgotloc = htab->sgotloc;
1602       sgotloc->size = spltlittbl->size;
1603       for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1604 	{
1605 	  if (abfd->flags & DYNAMIC)
1606 	    continue;
1607 	  for (s = abfd->sections; s != NULL; s = s->next)
1608 	    {
1609 	      if (! discarded_section (s)
1610 		  && xtensa_is_littable_section (s)
1611 		  && s != spltlittbl)
1612 		sgotloc->size += s->size;
1613 	    }
1614 	}
1615     }
1616 
1617   /* Allocate memory for dynamic sections.  */
1618   relplt = FALSE;
1619   relgot = FALSE;
1620   for (s = dynobj->sections; s != NULL; s = s->next)
1621     {
1622       const char *name;
1623 
1624       if ((s->flags & SEC_LINKER_CREATED) == 0)
1625 	continue;
1626 
1627       /* It's OK to base decisions on the section name, because none
1628 	 of the dynobj section names depend upon the input files.  */
1629       name = bfd_get_section_name (dynobj, s);
1630 
1631       if (CONST_STRNEQ (name, ".rela"))
1632 	{
1633 	  if (s->size != 0)
1634 	    {
1635 	      if (strcmp (name, ".rela.plt") == 0)
1636 		relplt = TRUE;
1637 	      else if (strcmp (name, ".rela.got") == 0)
1638 		relgot = TRUE;
1639 
1640 	      /* We use the reloc_count field as a counter if we need
1641 		 to copy relocs into the output file.  */
1642 	      s->reloc_count = 0;
1643 	    }
1644 	}
1645       else if (! CONST_STRNEQ (name, ".plt.")
1646 	       && ! CONST_STRNEQ (name, ".got.plt.")
1647 	       && strcmp (name, ".got") != 0
1648 	       && strcmp (name, ".plt") != 0
1649 	       && strcmp (name, ".got.plt") != 0
1650 	       && strcmp (name, ".xt.lit.plt") != 0
1651 	       && strcmp (name, ".got.loc") != 0)
1652 	{
1653 	  /* It's not one of our sections, so don't allocate space.  */
1654 	  continue;
1655 	}
1656 
1657       if (s->size == 0)
1658 	{
1659 	  /* If we don't need this section, strip it from the output
1660 	     file.  We must create the ".plt*" and ".got.plt*"
1661 	     sections in create_dynamic_sections and/or check_relocs
1662 	     based on a conservative estimate of the PLT relocation
1663 	     count, because the sections must be created before the
1664 	     linker maps input sections to output sections.  The
1665 	     linker does that before size_dynamic_sections, where we
1666 	     compute the exact size of the PLT, so there may be more
1667 	     of these sections than are actually needed.  */
1668 	  s->flags |= SEC_EXCLUDE;
1669 	}
1670       else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1671 	{
1672 	  /* Allocate memory for the section contents.  */
1673 	  s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1674 	  if (s->contents == NULL)
1675 	    return FALSE;
1676 	}
1677     }
1678 
1679   if (elf_hash_table (info)->dynamic_sections_created)
1680     {
1681       /* Add the special XTENSA_RTLD relocations now.  The offsets won't be
1682 	 known until finish_dynamic_sections, but we need to get the relocs
1683 	 in place before they are sorted.  */
1684       for (chunk = 0; chunk < plt_chunks; chunk++)
1685 	{
1686 	  Elf_Internal_Rela irela;
1687 	  bfd_byte *loc;
1688 
1689 	  irela.r_offset = 0;
1690 	  irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1691 	  irela.r_addend = 0;
1692 
1693 	  loc = (srelgot->contents
1694 		 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1695 	  bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1696 	  bfd_elf32_swap_reloca_out (output_bfd, &irela,
1697 				     loc + sizeof (Elf32_External_Rela));
1698 	  srelgot->reloc_count += 2;
1699 	}
1700 
1701       /* Add some entries to the .dynamic section.  We fill in the
1702 	 values later, in elf_xtensa_finish_dynamic_sections, but we
1703 	 must add the entries now so that we get the correct size for
1704 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
1705 	 dynamic linker and used by the debugger.  */
1706 #define add_dynamic_entry(TAG, VAL) \
1707   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1708 
1709       if (bfd_link_executable (info))
1710 	{
1711 	  if (!add_dynamic_entry (DT_DEBUG, 0))
1712 	    return FALSE;
1713 	}
1714 
1715       if (relplt)
1716 	{
1717 	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1718 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1719 	      || !add_dynamic_entry (DT_JMPREL, 0))
1720 	    return FALSE;
1721 	}
1722 
1723       if (relgot)
1724 	{
1725 	  if (!add_dynamic_entry (DT_RELA, 0)
1726 	      || !add_dynamic_entry (DT_RELASZ, 0)
1727 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1728 	    return FALSE;
1729 	}
1730 
1731       if (!add_dynamic_entry (DT_PLTGOT, 0)
1732 	  || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1733 	  || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1734 	return FALSE;
1735     }
1736 #undef add_dynamic_entry
1737 
1738   return TRUE;
1739 }
1740 
1741 static bfd_boolean
1742 elf_xtensa_always_size_sections (bfd *output_bfd,
1743 				 struct bfd_link_info *info)
1744 {
1745   struct elf_xtensa_link_hash_table *htab;
1746   asection *tls_sec;
1747 
1748   htab = elf_xtensa_hash_table (info);
1749   if (htab == NULL)
1750     return FALSE;
1751 
1752   tls_sec = htab->elf.tls_sec;
1753 
1754   if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1755     {
1756       struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1757       struct bfd_link_hash_entry *bh = &tlsbase->root;
1758       const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1759 
1760       tlsbase->type = STT_TLS;
1761       if (!(_bfd_generic_link_add_one_symbol
1762 	    (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1763 	     tls_sec, 0, NULL, FALSE,
1764 	     bed->collect, &bh)))
1765 	return FALSE;
1766       tlsbase->def_regular = 1;
1767       tlsbase->other = STV_HIDDEN;
1768       (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1769     }
1770 
1771   return TRUE;
1772 }
1773 
1774 
1775 /* Return the base VMA address which should be subtracted from real addresses
1776    when resolving @dtpoff relocation.
1777    This is PT_TLS segment p_vaddr.  */
1778 
1779 static bfd_vma
1780 dtpoff_base (struct bfd_link_info *info)
1781 {
1782   /* If tls_sec is NULL, we should have signalled an error already.  */
1783   if (elf_hash_table (info)->tls_sec == NULL)
1784     return 0;
1785   return elf_hash_table (info)->tls_sec->vma;
1786 }
1787 
1788 /* Return the relocation value for @tpoff relocation
1789    if STT_TLS virtual address is ADDRESS.  */
1790 
1791 static bfd_vma
1792 tpoff (struct bfd_link_info *info, bfd_vma address)
1793 {
1794   struct elf_link_hash_table *htab = elf_hash_table (info);
1795   bfd_vma base;
1796 
1797   /* If tls_sec is NULL, we should have signalled an error already.  */
1798   if (htab->tls_sec == NULL)
1799     return 0;
1800   base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1801   return address - htab->tls_sec->vma + base;
1802 }
1803 
1804 /* Perform the specified relocation.  The instruction at (contents + address)
1805    is modified to set one operand to represent the value in "relocation".  The
1806    operand position is determined by the relocation type recorded in the
1807    howto.  */
1808 
1809 #define CALL_SEGMENT_BITS (30)
1810 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1811 
1812 static bfd_reloc_status_type
1813 elf_xtensa_do_reloc (reloc_howto_type *howto,
1814 		     bfd *abfd,
1815 		     asection *input_section,
1816 		     bfd_vma relocation,
1817 		     bfd_byte *contents,
1818 		     bfd_vma address,
1819 		     bfd_boolean is_weak_undef,
1820 		     char **error_message)
1821 {
1822   xtensa_format fmt;
1823   xtensa_opcode opcode;
1824   xtensa_isa isa = xtensa_default_isa;
1825   static xtensa_insnbuf ibuff = NULL;
1826   static xtensa_insnbuf sbuff = NULL;
1827   bfd_vma self_address;
1828   bfd_size_type input_size;
1829   int opnd, slot;
1830   uint32 newval;
1831 
1832   if (!ibuff)
1833     {
1834       ibuff = xtensa_insnbuf_alloc (isa);
1835       sbuff = xtensa_insnbuf_alloc (isa);
1836     }
1837 
1838   input_size = bfd_get_section_limit (abfd, input_section);
1839 
1840   /* Calculate the PC address for this instruction.  */
1841   self_address = (input_section->output_section->vma
1842 		  + input_section->output_offset
1843 		  + address);
1844 
1845   switch (howto->type)
1846     {
1847     case R_XTENSA_NONE:
1848     case R_XTENSA_DIFF8:
1849     case R_XTENSA_DIFF16:
1850     case R_XTENSA_DIFF32:
1851     case R_XTENSA_TLS_FUNC:
1852     case R_XTENSA_TLS_ARG:
1853     case R_XTENSA_TLS_CALL:
1854       return bfd_reloc_ok;
1855 
1856     case R_XTENSA_ASM_EXPAND:
1857       if (!is_weak_undef)
1858 	{
1859 	  /* Check for windowed CALL across a 1GB boundary.  */
1860 	  opcode = get_expanded_call_opcode (contents + address,
1861 					     input_size - address, 0);
1862 	  if (is_windowed_call_opcode (opcode))
1863 	    {
1864 	      if ((self_address >> CALL_SEGMENT_BITS)
1865 		  != (relocation >> CALL_SEGMENT_BITS))
1866 		{
1867 		  *error_message = "windowed longcall crosses 1GB boundary; "
1868 		    "return may fail";
1869 		  return bfd_reloc_dangerous;
1870 		}
1871 	    }
1872 	}
1873       return bfd_reloc_ok;
1874 
1875     case R_XTENSA_ASM_SIMPLIFY:
1876       {
1877 	/* Convert the L32R/CALLX to CALL.  */
1878 	bfd_reloc_status_type retval =
1879 	  elf_xtensa_do_asm_simplify (contents, address, input_size,
1880 				      error_message);
1881 	if (retval != bfd_reloc_ok)
1882 	  return bfd_reloc_dangerous;
1883 
1884 	/* The CALL needs to be relocated.  Continue below for that part.  */
1885 	address += 3;
1886 	self_address += 3;
1887 	howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1888       }
1889       break;
1890 
1891     case R_XTENSA_32:
1892       {
1893 	bfd_vma x;
1894 	x = bfd_get_32 (abfd, contents + address);
1895 	x = x + relocation;
1896 	bfd_put_32 (abfd, x, contents + address);
1897       }
1898       return bfd_reloc_ok;
1899 
1900     case R_XTENSA_32_PCREL:
1901       bfd_put_32 (abfd, relocation - self_address, contents + address);
1902       return bfd_reloc_ok;
1903 
1904     case R_XTENSA_PLT:
1905     case R_XTENSA_TLSDESC_FN:
1906     case R_XTENSA_TLSDESC_ARG:
1907     case R_XTENSA_TLS_DTPOFF:
1908     case R_XTENSA_TLS_TPOFF:
1909       bfd_put_32 (abfd, relocation, contents + address);
1910       return bfd_reloc_ok;
1911     }
1912 
1913   /* Only instruction slot-specific relocations handled below.... */
1914   slot = get_relocation_slot (howto->type);
1915   if (slot == XTENSA_UNDEFINED)
1916     {
1917       *error_message = "unexpected relocation";
1918       return bfd_reloc_dangerous;
1919     }
1920 
1921   /* Read the instruction into a buffer and decode the opcode.  */
1922   xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1923 			     input_size - address);
1924   fmt = xtensa_format_decode (isa, ibuff);
1925   if (fmt == XTENSA_UNDEFINED)
1926     {
1927       *error_message = "cannot decode instruction format";
1928       return bfd_reloc_dangerous;
1929     }
1930 
1931   xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1932 
1933   opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1934   if (opcode == XTENSA_UNDEFINED)
1935     {
1936       *error_message = "cannot decode instruction opcode";
1937       return bfd_reloc_dangerous;
1938     }
1939 
1940   /* Check for opcode-specific "alternate" relocations.  */
1941   if (is_alt_relocation (howto->type))
1942     {
1943       if (opcode == get_l32r_opcode ())
1944 	{
1945 	  /* Handle the special-case of non-PC-relative L32R instructions.  */
1946 	  bfd *output_bfd = input_section->output_section->owner;
1947 	  asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1948 	  if (!lit4_sec)
1949 	    {
1950 	      *error_message = "relocation references missing .lit4 section";
1951 	      return bfd_reloc_dangerous;
1952 	    }
1953 	  self_address = ((lit4_sec->vma & ~0xfff)
1954 			  + 0x40000 - 3); /* -3 to compensate for do_reloc */
1955 	  newval = relocation;
1956 	  opnd = 1;
1957 	}
1958       else if (opcode == get_const16_opcode ())
1959 	{
1960 	  /* ALT used for high 16 bits.
1961 	     Ignore 32-bit overflow.  */
1962 	  newval = (relocation >> 16) & 0xffff;
1963 	  opnd = 1;
1964 	}
1965       else
1966 	{
1967 	  /* No other "alternate" relocations currently defined.  */
1968 	  *error_message = "unexpected relocation";
1969 	  return bfd_reloc_dangerous;
1970 	}
1971     }
1972   else /* Not an "alternate" relocation.... */
1973     {
1974       if (opcode == get_const16_opcode ())
1975 	{
1976 	  newval = relocation & 0xffff;
1977 	  opnd = 1;
1978 	}
1979       else
1980 	{
1981 	  /* ...normal PC-relative relocation.... */
1982 
1983 	  /* Determine which operand is being relocated.  */
1984 	  opnd = get_relocation_opnd (opcode, howto->type);
1985 	  if (opnd == XTENSA_UNDEFINED)
1986 	    {
1987 	      *error_message = "unexpected relocation";
1988 	      return bfd_reloc_dangerous;
1989 	    }
1990 
1991 	  if (!howto->pc_relative)
1992 	    {
1993 	      *error_message = "expected PC-relative relocation";
1994 	      return bfd_reloc_dangerous;
1995 	    }
1996 
1997 	  newval = relocation;
1998 	}
1999     }
2000 
2001   /* Apply the relocation.  */
2002   if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2003       || xtensa_operand_encode (isa, opcode, opnd, &newval)
2004       || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2005 				   sbuff, newval))
2006     {
2007       const char *opname = xtensa_opcode_name (isa, opcode);
2008       const char *msg;
2009 
2010       msg = "cannot encode";
2011       if (is_direct_call_opcode (opcode))
2012 	{
2013 	  if ((relocation & 0x3) != 0)
2014 	    msg = "misaligned call target";
2015 	  else
2016 	    msg = "call target out of range";
2017 	}
2018       else if (opcode == get_l32r_opcode ())
2019 	{
2020 	  if ((relocation & 0x3) != 0)
2021 	    msg = "misaligned literal target";
2022 	  else if (is_alt_relocation (howto->type))
2023 	    msg = "literal target out of range (too many literals)";
2024 	  else if (self_address > relocation)
2025 	    msg = "literal target out of range (try using text-section-literals)";
2026 	  else
2027 	    msg = "literal placed after use";
2028 	}
2029 
2030       *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2031       return bfd_reloc_dangerous;
2032     }
2033 
2034   /* Check for calls across 1GB boundaries.  */
2035   if (is_direct_call_opcode (opcode)
2036       && is_windowed_call_opcode (opcode))
2037     {
2038       if ((self_address >> CALL_SEGMENT_BITS)
2039 	  != (relocation >> CALL_SEGMENT_BITS))
2040 	{
2041 	  *error_message =
2042 	    "windowed call crosses 1GB boundary; return may fail";
2043 	  return bfd_reloc_dangerous;
2044 	}
2045     }
2046 
2047   /* Write the modified instruction back out of the buffer.  */
2048   xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2049   xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2050 			   input_size - address);
2051   return bfd_reloc_ok;
2052 }
2053 
2054 
2055 static char *
2056 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2057 {
2058   /* To reduce the size of the memory leak,
2059      we only use a single message buffer.  */
2060   static bfd_size_type alloc_size = 0;
2061   static char *message = NULL;
2062   bfd_size_type orig_len, len = 0;
2063   bfd_boolean is_append;
2064   va_list ap;
2065 
2066   va_start (ap, arglen);
2067 
2068   is_append = (origmsg == message);
2069 
2070   orig_len = strlen (origmsg);
2071   len = orig_len + strlen (fmt) + arglen + 20;
2072   if (len > alloc_size)
2073     {
2074       message = (char *) bfd_realloc_or_free (message, len);
2075       alloc_size = len;
2076     }
2077   if (message != NULL)
2078     {
2079       if (!is_append)
2080 	memcpy (message, origmsg, orig_len);
2081       vsprintf (message + orig_len, fmt, ap);
2082     }
2083   va_end (ap);
2084   return message;
2085 }
2086 
2087 
2088 /* This function is registered as the "special_function" in the
2089    Xtensa howto for handling simplify operations.
2090    bfd_perform_relocation / bfd_install_relocation use it to
2091    perform (install) the specified relocation.  Since this replaces the code
2092    in bfd_perform_relocation, it is basically an Xtensa-specific,
2093    stripped-down version of bfd_perform_relocation.  */
2094 
2095 static bfd_reloc_status_type
2096 bfd_elf_xtensa_reloc (bfd *abfd,
2097 		      arelent *reloc_entry,
2098 		      asymbol *symbol,
2099 		      void *data,
2100 		      asection *input_section,
2101 		      bfd *output_bfd,
2102 		      char **error_message)
2103 {
2104   bfd_vma relocation;
2105   bfd_reloc_status_type flag;
2106   bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2107   bfd_vma output_base = 0;
2108   reloc_howto_type *howto = reloc_entry->howto;
2109   asection *reloc_target_output_section;
2110   bfd_boolean is_weak_undef;
2111 
2112   if (!xtensa_default_isa)
2113     xtensa_default_isa = xtensa_isa_init (0, 0);
2114 
2115   /* ELF relocs are against symbols.  If we are producing relocatable
2116      output, and the reloc is against an external symbol, the resulting
2117      reloc will also be against the same symbol.  In such a case, we
2118      don't want to change anything about the way the reloc is handled,
2119      since it will all be done at final link time.  This test is similar
2120      to what bfd_elf_generic_reloc does except that it lets relocs with
2121      howto->partial_inplace go through even if the addend is non-zero.
2122      (The real problem is that partial_inplace is set for XTENSA_32
2123      relocs to begin with, but that's a long story and there's little we
2124      can do about it now....)  */
2125 
2126   if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2127     {
2128       reloc_entry->address += input_section->output_offset;
2129       return bfd_reloc_ok;
2130     }
2131 
2132   /* Is the address of the relocation really within the section?  */
2133   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2134     return bfd_reloc_outofrange;
2135 
2136   /* Work out which section the relocation is targeted at and the
2137      initial relocation command value.  */
2138 
2139   /* Get symbol value.  (Common symbols are special.)  */
2140   if (bfd_is_com_section (symbol->section))
2141     relocation = 0;
2142   else
2143     relocation = symbol->value;
2144 
2145   reloc_target_output_section = symbol->section->output_section;
2146 
2147   /* Convert input-section-relative symbol value to absolute.  */
2148   if ((output_bfd && !howto->partial_inplace)
2149       || reloc_target_output_section == NULL)
2150     output_base = 0;
2151   else
2152     output_base = reloc_target_output_section->vma;
2153 
2154   relocation += output_base + symbol->section->output_offset;
2155 
2156   /* Add in supplied addend.  */
2157   relocation += reloc_entry->addend;
2158 
2159   /* Here the variable relocation holds the final address of the
2160      symbol we are relocating against, plus any addend.  */
2161   if (output_bfd)
2162     {
2163       if (!howto->partial_inplace)
2164 	{
2165 	  /* This is a partial relocation, and we want to apply the relocation
2166 	     to the reloc entry rather than the raw data.  Everything except
2167 	     relocations against section symbols has already been handled
2168 	     above.  */
2169 
2170 	  BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2171 	  reloc_entry->addend = relocation;
2172 	  reloc_entry->address += input_section->output_offset;
2173 	  return bfd_reloc_ok;
2174 	}
2175       else
2176 	{
2177 	  reloc_entry->address += input_section->output_offset;
2178 	  reloc_entry->addend = 0;
2179 	}
2180     }
2181 
2182   is_weak_undef = (bfd_is_und_section (symbol->section)
2183 		   && (symbol->flags & BSF_WEAK) != 0);
2184   flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2185 			      (bfd_byte *) data, (bfd_vma) octets,
2186 			      is_weak_undef, error_message);
2187 
2188   if (flag == bfd_reloc_dangerous)
2189     {
2190       /* Add the symbol name to the error message.  */
2191       if (! *error_message)
2192 	*error_message = "";
2193       *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2194 				    strlen (symbol->name) + 17,
2195 				    symbol->name,
2196 				    (unsigned long) reloc_entry->addend);
2197     }
2198 
2199   return flag;
2200 }
2201 
2202 
2203 /* Set up an entry in the procedure linkage table.  */
2204 
2205 static bfd_vma
2206 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2207 			     bfd *output_bfd,
2208 			     unsigned reloc_index)
2209 {
2210   asection *splt, *sgotplt;
2211   bfd_vma plt_base, got_base;
2212   bfd_vma code_offset, lit_offset, abi_offset;
2213   int chunk;
2214 
2215   chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2216   splt = elf_xtensa_get_plt_section (info, chunk);
2217   sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2218   BFD_ASSERT (splt != NULL && sgotplt != NULL);
2219 
2220   plt_base = splt->output_section->vma + splt->output_offset;
2221   got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2222 
2223   lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2224   code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2225 
2226   /* Fill in the literal entry.  This is the offset of the dynamic
2227      relocation entry.  */
2228   bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2229 	      sgotplt->contents + lit_offset);
2230 
2231   /* Fill in the entry in the procedure linkage table.  */
2232   memcpy (splt->contents + code_offset,
2233 	  (bfd_big_endian (output_bfd)
2234 	   ? elf_xtensa_be_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]
2235 	   : elf_xtensa_le_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]),
2236 	  PLT_ENTRY_SIZE);
2237   abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
2238   bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2239 				       plt_base + code_offset + abi_offset),
2240 	      splt->contents + code_offset + abi_offset + 1);
2241   bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2242 				       plt_base + code_offset + abi_offset + 3),
2243 	      splt->contents + code_offset + abi_offset + 4);
2244   bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2245 				       plt_base + code_offset + abi_offset + 6),
2246 	      splt->contents + code_offset + abi_offset + 7);
2247 
2248   return plt_base + code_offset;
2249 }
2250 
2251 
2252 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2253 
2254 static bfd_boolean
2255 replace_tls_insn (Elf_Internal_Rela *rel,
2256 		  bfd *abfd,
2257 		  asection *input_section,
2258 		  bfd_byte *contents,
2259 		  bfd_boolean is_ld_model,
2260 		  char **error_message)
2261 {
2262   static xtensa_insnbuf ibuff = NULL;
2263   static xtensa_insnbuf sbuff = NULL;
2264   xtensa_isa isa = xtensa_default_isa;
2265   xtensa_format fmt;
2266   xtensa_opcode old_op, new_op;
2267   bfd_size_type input_size;
2268   int r_type;
2269   unsigned dest_reg, src_reg;
2270 
2271   if (ibuff == NULL)
2272     {
2273       ibuff = xtensa_insnbuf_alloc (isa);
2274       sbuff = xtensa_insnbuf_alloc (isa);
2275     }
2276 
2277   input_size = bfd_get_section_limit (abfd, input_section);
2278 
2279   /* Read the instruction into a buffer and decode the opcode.  */
2280   xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2281 			     input_size - rel->r_offset);
2282   fmt = xtensa_format_decode (isa, ibuff);
2283   if (fmt == XTENSA_UNDEFINED)
2284     {
2285       *error_message = "cannot decode instruction format";
2286       return FALSE;
2287     }
2288 
2289   BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2290   xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2291 
2292   old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2293   if (old_op == XTENSA_UNDEFINED)
2294     {
2295       *error_message = "cannot decode instruction opcode";
2296       return FALSE;
2297     }
2298 
2299   r_type = ELF32_R_TYPE (rel->r_info);
2300   switch (r_type)
2301     {
2302     case R_XTENSA_TLS_FUNC:
2303     case R_XTENSA_TLS_ARG:
2304       if (old_op != get_l32r_opcode ()
2305 	  || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2306 				       sbuff, &dest_reg) != 0)
2307 	{
2308 	  *error_message = "cannot extract L32R destination for TLS access";
2309 	  return FALSE;
2310 	}
2311       break;
2312 
2313     case R_XTENSA_TLS_CALL:
2314       if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2315 	  || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2316 				       sbuff, &src_reg) != 0)
2317 	{
2318 	  *error_message = "cannot extract CALLXn operands for TLS access";
2319 	  return FALSE;
2320 	}
2321       break;
2322 
2323     default:
2324       abort ();
2325     }
2326 
2327   if (is_ld_model)
2328     {
2329       switch (r_type)
2330 	{
2331 	case R_XTENSA_TLS_FUNC:
2332 	case R_XTENSA_TLS_ARG:
2333 	  /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2334 	     versions of Xtensa).  */
2335 	  new_op = xtensa_opcode_lookup (isa, "nop");
2336 	  if (new_op == XTENSA_UNDEFINED)
2337 	    {
2338 	      new_op = xtensa_opcode_lookup (isa, "or");
2339 	      if (new_op == XTENSA_UNDEFINED
2340 		  || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2341 		  || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2342 					       sbuff, 1) != 0
2343 		  || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2344 					       sbuff, 1) != 0
2345 		  || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2346 					       sbuff, 1) != 0)
2347 		{
2348 		  *error_message = "cannot encode OR for TLS access";
2349 		  return FALSE;
2350 		}
2351 	    }
2352 	  else
2353 	    {
2354 	      if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2355 		{
2356 		  *error_message = "cannot encode NOP for TLS access";
2357 		  return FALSE;
2358 		}
2359 	    }
2360 	  break;
2361 
2362 	case R_XTENSA_TLS_CALL:
2363 	  /* Read THREADPTR into the CALLX's return value register.  */
2364 	  new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2365 	  if (new_op == XTENSA_UNDEFINED
2366 	      || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2367 	      || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2368 					   sbuff, dest_reg + 2) != 0)
2369 	    {
2370 	      *error_message = "cannot encode RUR.THREADPTR for TLS access";
2371 	      return FALSE;
2372 	    }
2373 	  break;
2374 	}
2375     }
2376   else
2377     {
2378       switch (r_type)
2379 	{
2380 	case R_XTENSA_TLS_FUNC:
2381 	  new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2382 	  if (new_op == XTENSA_UNDEFINED
2383 	      || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2384 	      || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2385 					   sbuff, dest_reg) != 0)
2386 	    {
2387 	      *error_message = "cannot encode RUR.THREADPTR for TLS access";
2388 	      return FALSE;
2389 	    }
2390 	  break;
2391 
2392 	case R_XTENSA_TLS_ARG:
2393 	  /* Nothing to do.  Keep the original L32R instruction.  */
2394 	  return TRUE;
2395 
2396 	case R_XTENSA_TLS_CALL:
2397 	  /* Add the CALLX's src register (holding the THREADPTR value)
2398 	     to the first argument register (holding the offset) and put
2399 	     the result in the CALLX's return value register.  */
2400 	  new_op = xtensa_opcode_lookup (isa, "add");
2401 	  if (new_op == XTENSA_UNDEFINED
2402 	      || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2403 	      || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2404 					   sbuff, dest_reg + 2) != 0
2405 	      || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2406 					   sbuff, dest_reg + 2) != 0
2407 	      || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2408 					   sbuff, src_reg) != 0)
2409 	    {
2410 	      *error_message = "cannot encode ADD for TLS access";
2411 	      return FALSE;
2412 	    }
2413 	  break;
2414 	}
2415     }
2416 
2417   xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2418   xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2419 			   input_size - rel->r_offset);
2420 
2421   return TRUE;
2422 }
2423 
2424 
2425 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2426   ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2427    || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2428    || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2429    || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2430    || (R_TYPE) == R_XTENSA_TLS_FUNC \
2431    || (R_TYPE) == R_XTENSA_TLS_ARG \
2432    || (R_TYPE) == R_XTENSA_TLS_CALL)
2433 
2434 /* Relocate an Xtensa ELF section.  This is invoked by the linker for
2435    both relocatable and final links.  */
2436 
2437 static bfd_boolean
2438 elf_xtensa_relocate_section (bfd *output_bfd,
2439 			     struct bfd_link_info *info,
2440 			     bfd *input_bfd,
2441 			     asection *input_section,
2442 			     bfd_byte *contents,
2443 			     Elf_Internal_Rela *relocs,
2444 			     Elf_Internal_Sym *local_syms,
2445 			     asection **local_sections)
2446 {
2447   struct elf_xtensa_link_hash_table *htab;
2448   Elf_Internal_Shdr *symtab_hdr;
2449   Elf_Internal_Rela *rel;
2450   Elf_Internal_Rela *relend;
2451   struct elf_link_hash_entry **sym_hashes;
2452   property_table_entry *lit_table = 0;
2453   int ltblsize = 0;
2454   char *local_got_tls_types;
2455   char *error_message = NULL;
2456   bfd_size_type input_size;
2457   int tls_type;
2458 
2459   if (!xtensa_default_isa)
2460     xtensa_default_isa = xtensa_isa_init (0, 0);
2461 
2462   if (!is_xtensa_elf (input_bfd))
2463     {
2464       bfd_set_error (bfd_error_wrong_format);
2465       return FALSE;
2466     }
2467 
2468   htab = elf_xtensa_hash_table (info);
2469   if (htab == NULL)
2470     return FALSE;
2471 
2472   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2473   sym_hashes = elf_sym_hashes (input_bfd);
2474   local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2475 
2476   if (elf_hash_table (info)->dynamic_sections_created)
2477     {
2478       ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2479 					    &lit_table, XTENSA_LIT_SEC_NAME,
2480 					    TRUE);
2481       if (ltblsize < 0)
2482 	return FALSE;
2483     }
2484 
2485   input_size = bfd_get_section_limit (input_bfd, input_section);
2486 
2487   rel = relocs;
2488   relend = relocs + input_section->reloc_count;
2489   for (; rel < relend; rel++)
2490     {
2491       int r_type;
2492       reloc_howto_type *howto;
2493       unsigned long r_symndx;
2494       struct elf_link_hash_entry *h;
2495       Elf_Internal_Sym *sym;
2496       char sym_type;
2497       const char *name;
2498       asection *sec;
2499       bfd_vma relocation;
2500       bfd_reloc_status_type r;
2501       bfd_boolean is_weak_undef;
2502       bfd_boolean unresolved_reloc;
2503       bfd_boolean warned;
2504       bfd_boolean dynamic_symbol;
2505 
2506       r_type = ELF32_R_TYPE (rel->r_info);
2507       if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2508 	  || r_type == (int) R_XTENSA_GNU_VTENTRY)
2509 	continue;
2510 
2511       if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2512 	{
2513 	  bfd_set_error (bfd_error_bad_value);
2514 	  return FALSE;
2515 	}
2516       howto = &elf_howto_table[r_type];
2517 
2518       r_symndx = ELF32_R_SYM (rel->r_info);
2519 
2520       h = NULL;
2521       sym = NULL;
2522       sec = NULL;
2523       is_weak_undef = FALSE;
2524       unresolved_reloc = FALSE;
2525       warned = FALSE;
2526 
2527       if (howto->partial_inplace && !bfd_link_relocatable (info))
2528 	{
2529 	  /* Because R_XTENSA_32 was made partial_inplace to fix some
2530 	     problems with DWARF info in partial links, there may be
2531 	     an addend stored in the contents.  Take it out of there
2532 	     and move it back into the addend field of the reloc.  */
2533 	  rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2534 	  bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2535 	}
2536 
2537       if (r_symndx < symtab_hdr->sh_info)
2538 	{
2539 	  sym = local_syms + r_symndx;
2540 	  sym_type = ELF32_ST_TYPE (sym->st_info);
2541 	  sec = local_sections[r_symndx];
2542 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2543 	}
2544       else
2545 	{
2546 	  bfd_boolean ignored;
2547 
2548 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2549 				   r_symndx, symtab_hdr, sym_hashes,
2550 				   h, sec, relocation,
2551 				   unresolved_reloc, warned, ignored);
2552 
2553 	  if (relocation == 0
2554 	      && !unresolved_reloc
2555 	      && h->root.type == bfd_link_hash_undefweak)
2556 	    is_weak_undef = TRUE;
2557 
2558 	  sym_type = h->type;
2559 	}
2560 
2561       if (sec != NULL && discarded_section (sec))
2562 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2563 					 rel, 1, relend, howto, 0, contents);
2564 
2565       if (bfd_link_relocatable (info))
2566 	{
2567 	  bfd_vma dest_addr;
2568 	  asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2569 
2570 	  /* This is a relocatable link.
2571 	     1) If the reloc is against a section symbol, adjust
2572 	     according to the output section.
2573 	     2) If there is a new target for this relocation,
2574 	     the new target will be in the same output section.
2575 	     We adjust the relocation by the output section
2576 	     difference.  */
2577 
2578 	  if (relaxing_section)
2579 	    {
2580 	      /* Check if this references a section in another input file.  */
2581 	      if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2582 						contents))
2583 		return FALSE;
2584 	    }
2585 
2586 	  dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2587 	    + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2588 
2589 	  if (r_type == R_XTENSA_ASM_SIMPLIFY)
2590 	    {
2591 	      error_message = NULL;
2592 	      /* Convert ASM_SIMPLIFY into the simpler relocation
2593 		 so that they never escape a relaxing link.  */
2594 	      r = contract_asm_expansion (contents, input_size, rel,
2595 					  &error_message);
2596 	      if (r != bfd_reloc_ok)
2597 		(*info->callbacks->reloc_dangerous)
2598 		  (info, error_message,
2599 		   input_bfd, input_section, rel->r_offset);
2600 
2601 	      r_type = ELF32_R_TYPE (rel->r_info);
2602 	    }
2603 
2604 	  /* This is a relocatable link, so we don't have to change
2605 	     anything unless the reloc is against a section symbol,
2606 	     in which case we have to adjust according to where the
2607 	     section symbol winds up in the output section.  */
2608 	  if (r_symndx < symtab_hdr->sh_info)
2609 	    {
2610 	      sym = local_syms + r_symndx;
2611 	      if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2612 		{
2613 		  sec = local_sections[r_symndx];
2614 		  rel->r_addend += sec->output_offset + sym->st_value;
2615 		}
2616 	    }
2617 
2618 	  /* If there is an addend with a partial_inplace howto,
2619 	     then move the addend to the contents.  This is a hack
2620 	     to work around problems with DWARF in relocatable links
2621 	     with some previous version of BFD.  Now we can't easily get
2622 	     rid of the hack without breaking backward compatibility.... */
2623 	  r = bfd_reloc_ok;
2624 	  howto = &elf_howto_table[r_type];
2625 	  if (howto->partial_inplace && rel->r_addend)
2626 	    {
2627 	      r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2628 				       rel->r_addend, contents,
2629 				       rel->r_offset, FALSE,
2630 				       &error_message);
2631 	      rel->r_addend = 0;
2632 	    }
2633 	  else
2634 	    {
2635 	      /* Put the correct bits in the target instruction, even
2636 		 though the relocation will still be present in the output
2637 		 file.  This makes disassembly clearer, as well as
2638 		 allowing loadable kernel modules to work without needing
2639 		 relocations on anything other than calls and l32r's.  */
2640 
2641 	      /* If it is not in the same section, there is nothing we can do.  */
2642 	      if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2643 		  sym_sec->output_section == input_section->output_section)
2644 		{
2645 		  r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2646 					   dest_addr, contents,
2647 					   rel->r_offset, FALSE,
2648 					   &error_message);
2649 		}
2650 	    }
2651 	  if (r != bfd_reloc_ok)
2652 	    (*info->callbacks->reloc_dangerous)
2653 	      (info, error_message,
2654 	       input_bfd, input_section, rel->r_offset);
2655 
2656 	  /* Done with work for relocatable link; continue with next reloc.  */
2657 	  continue;
2658 	}
2659 
2660       /* This is a final link.  */
2661 
2662       if (relaxing_section)
2663 	{
2664 	  /* Check if this references a section in another input file.  */
2665 	  do_fix_for_final_link (rel, input_bfd, input_section, contents,
2666 				 &relocation);
2667 	}
2668 
2669       /* Sanity check the address.  */
2670       if (rel->r_offset >= input_size
2671 	  && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2672 	{
2673 	  _bfd_error_handler
2674 	    /* xgettext:c-format */
2675 	    (_("%pB(%pA+%#" PRIx64 "): "
2676 	       "relocation offset out of range (size=%#" PRIx64 ")"),
2677 	     input_bfd, input_section, (uint64_t) rel->r_offset,
2678 	     (uint64_t) input_size);
2679 	  bfd_set_error (bfd_error_bad_value);
2680 	  return FALSE;
2681 	}
2682 
2683       if (h != NULL)
2684 	name = h->root.root.string;
2685       else
2686 	{
2687 	  name = (bfd_elf_string_from_elf_section
2688 		  (input_bfd, symtab_hdr->sh_link, sym->st_name));
2689 	  if (name == NULL || *name == '\0')
2690 	    name = bfd_section_name (input_bfd, sec);
2691 	}
2692 
2693       if (r_symndx != STN_UNDEF
2694 	  && r_type != R_XTENSA_NONE
2695 	  && (h == NULL
2696 	      || h->root.type == bfd_link_hash_defined
2697 	      || h->root.type == bfd_link_hash_defweak)
2698 	  && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2699 	{
2700 	  _bfd_error_handler
2701 	    ((sym_type == STT_TLS
2702 	      /* xgettext:c-format */
2703 	      ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
2704 	      /* xgettext:c-format */
2705 	      : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
2706 	     input_bfd,
2707 	     input_section,
2708 	     (uint64_t) rel->r_offset,
2709 	     howto->name,
2710 	     name);
2711 	}
2712 
2713       dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2714 
2715       tls_type = GOT_UNKNOWN;
2716       if (h)
2717 	tls_type = elf_xtensa_hash_entry (h)->tls_type;
2718       else if (local_got_tls_types)
2719 	tls_type = local_got_tls_types [r_symndx];
2720 
2721       switch (r_type)
2722 	{
2723 	case R_XTENSA_32:
2724 	case R_XTENSA_PLT:
2725 	  if (elf_hash_table (info)->dynamic_sections_created
2726 	      && (input_section->flags & SEC_ALLOC) != 0
2727 	      && (dynamic_symbol || bfd_link_pic (info)))
2728 	    {
2729 	      Elf_Internal_Rela outrel;
2730 	      bfd_byte *loc;
2731 	      asection *srel;
2732 
2733 	      if (dynamic_symbol && r_type == R_XTENSA_PLT)
2734 		srel = htab->elf.srelplt;
2735 	      else
2736 		srel = htab->elf.srelgot;
2737 
2738 	      BFD_ASSERT (srel != NULL);
2739 
2740 	      outrel.r_offset =
2741 		_bfd_elf_section_offset (output_bfd, info,
2742 					 input_section, rel->r_offset);
2743 
2744 	      if ((outrel.r_offset | 1) == (bfd_vma) -1)
2745 		memset (&outrel, 0, sizeof outrel);
2746 	      else
2747 		{
2748 		  outrel.r_offset += (input_section->output_section->vma
2749 				      + input_section->output_offset);
2750 
2751 		  /* Complain if the relocation is in a read-only section
2752 		     and not in a literal pool.  */
2753 		  if ((input_section->flags & SEC_READONLY) != 0
2754 		      && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2755 						      outrel.r_offset))
2756 		    {
2757 		      error_message =
2758 			_("dynamic relocation in read-only section");
2759 		      (*info->callbacks->reloc_dangerous)
2760 			(info, error_message,
2761 			 input_bfd, input_section, rel->r_offset);
2762 		    }
2763 
2764 		  if (dynamic_symbol)
2765 		    {
2766 		      outrel.r_addend = rel->r_addend;
2767 		      rel->r_addend = 0;
2768 
2769 		      if (r_type == R_XTENSA_32)
2770 			{
2771 			  outrel.r_info =
2772 			    ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2773 			  relocation = 0;
2774 			}
2775 		      else /* r_type == R_XTENSA_PLT */
2776 			{
2777 			  outrel.r_info =
2778 			    ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2779 
2780 			  /* Create the PLT entry and set the initial
2781 			     contents of the literal entry to the address of
2782 			     the PLT entry.  */
2783 			  relocation =
2784 			    elf_xtensa_create_plt_entry (info, output_bfd,
2785 							 srel->reloc_count);
2786 			}
2787 		      unresolved_reloc = FALSE;
2788 		    }
2789 		  else if (!is_weak_undef)
2790 		    {
2791 		      /* Generate a RELATIVE relocation.  */
2792 		      outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2793 		      outrel.r_addend = 0;
2794 		    }
2795 		  else
2796 		    {
2797 		      continue;
2798 		    }
2799 		}
2800 
2801 	      loc = (srel->contents
2802 		     + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2803 	      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2804 	      BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2805 			  <= srel->size);
2806 	    }
2807 	  else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2808 	    {
2809 	      /* This should only happen for non-PIC code, which is not
2810 		 supposed to be used on systems with dynamic linking.
2811 		 Just ignore these relocations.  */
2812 	      continue;
2813 	    }
2814 	  break;
2815 
2816 	case R_XTENSA_TLS_TPOFF:
2817 	  /* Switch to LE model for local symbols in an executable.  */
2818 	  if (! bfd_link_pic (info) && ! dynamic_symbol)
2819 	    {
2820 	      relocation = tpoff (info, relocation);
2821 	      break;
2822 	    }
2823 	  /* fall through */
2824 
2825 	case R_XTENSA_TLSDESC_FN:
2826 	case R_XTENSA_TLSDESC_ARG:
2827 	  {
2828 	    if (r_type == R_XTENSA_TLSDESC_FN)
2829 	      {
2830 		if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
2831 		  r_type = R_XTENSA_NONE;
2832 	      }
2833 	    else if (r_type == R_XTENSA_TLSDESC_ARG)
2834 	      {
2835 		if (bfd_link_pic (info))
2836 		  {
2837 		    if ((tls_type & GOT_TLS_IE) != 0)
2838 		      r_type = R_XTENSA_TLS_TPOFF;
2839 		  }
2840 		else
2841 		  {
2842 		    r_type = R_XTENSA_TLS_TPOFF;
2843 		    if (! dynamic_symbol)
2844 		      {
2845 			relocation = tpoff (info, relocation);
2846 			break;
2847 		      }
2848 		  }
2849 	      }
2850 
2851 	    if (r_type == R_XTENSA_NONE)
2852 	      /* Nothing to do here; skip to the next reloc.  */
2853 	      continue;
2854 
2855 	    if (! elf_hash_table (info)->dynamic_sections_created)
2856 	      {
2857 		error_message =
2858 		  _("TLS relocation invalid without dynamic sections");
2859 		(*info->callbacks->reloc_dangerous)
2860 		  (info, error_message,
2861 		   input_bfd, input_section, rel->r_offset);
2862 	      }
2863 	    else
2864 	      {
2865 		Elf_Internal_Rela outrel;
2866 		bfd_byte *loc;
2867 		asection *srel = htab->elf.srelgot;
2868 		int indx;
2869 
2870 		outrel.r_offset = (input_section->output_section->vma
2871 				   + input_section->output_offset
2872 				   + rel->r_offset);
2873 
2874 		/* Complain if the relocation is in a read-only section
2875 		   and not in a literal pool.  */
2876 		if ((input_section->flags & SEC_READONLY) != 0
2877 		    && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2878 						     outrel.r_offset))
2879 		  {
2880 		    error_message =
2881 		      _("dynamic relocation in read-only section");
2882 		    (*info->callbacks->reloc_dangerous)
2883 		      (info, error_message,
2884 		       input_bfd, input_section, rel->r_offset);
2885 		  }
2886 
2887 		indx = h && h->dynindx != -1 ? h->dynindx : 0;
2888 		if (indx == 0)
2889 		  outrel.r_addend = relocation - dtpoff_base (info);
2890 		else
2891 		  outrel.r_addend = 0;
2892 		rel->r_addend = 0;
2893 
2894 		outrel.r_info = ELF32_R_INFO (indx, r_type);
2895 		relocation = 0;
2896 		unresolved_reloc = FALSE;
2897 
2898 		BFD_ASSERT (srel);
2899 		loc = (srel->contents
2900 		       + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2901 		bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2902 		BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2903 			    <= srel->size);
2904 	      }
2905 	  }
2906 	  break;
2907 
2908 	case R_XTENSA_TLS_DTPOFF:
2909 	  if (! bfd_link_pic (info))
2910 	    /* Switch from LD model to LE model.  */
2911 	    relocation = tpoff (info, relocation);
2912 	  else
2913 	    relocation -= dtpoff_base (info);
2914 	  break;
2915 
2916 	case R_XTENSA_TLS_FUNC:
2917 	case R_XTENSA_TLS_ARG:
2918 	case R_XTENSA_TLS_CALL:
2919 	  /* Check if optimizing to IE or LE model.  */
2920 	  if ((tls_type & GOT_TLS_IE) != 0)
2921 	    {
2922 	      bfd_boolean is_ld_model =
2923 		(h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2924 	      if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2925 				      is_ld_model, &error_message))
2926 		(*info->callbacks->reloc_dangerous)
2927 		  (info, error_message,
2928 		   input_bfd, input_section, rel->r_offset);
2929 
2930 	      if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2931 		{
2932 		  /* Skip subsequent relocations on the same instruction.  */
2933 		  while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
2934 		    rel++;
2935 		}
2936 	    }
2937 	  continue;
2938 
2939 	default:
2940 	  if (elf_hash_table (info)->dynamic_sections_created
2941 	      && dynamic_symbol && (is_operand_relocation (r_type)
2942 				    || r_type == R_XTENSA_32_PCREL))
2943 	    {
2944 	      error_message =
2945 		vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2946 			     strlen (name) + 2, name);
2947 	      (*info->callbacks->reloc_dangerous)
2948 		(info, error_message, input_bfd, input_section, rel->r_offset);
2949 	      continue;
2950 	    }
2951 	  break;
2952 	}
2953 
2954       /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2955 	 because such sections are not SEC_ALLOC and thus ld.so will
2956 	 not process them.  */
2957       if (unresolved_reloc
2958 	  && !((input_section->flags & SEC_DEBUGGING) != 0
2959 	       && h->def_dynamic)
2960 	  && _bfd_elf_section_offset (output_bfd, info, input_section,
2961 				      rel->r_offset) != (bfd_vma) -1)
2962 	{
2963 	  _bfd_error_handler
2964 	    /* xgettext:c-format */
2965 	    (_("%pB(%pA+%#" PRIx64 "): "
2966 	       "unresolvable %s relocation against symbol `%s'"),
2967 	     input_bfd,
2968 	     input_section,
2969 	     (uint64_t) rel->r_offset,
2970 	     howto->name,
2971 	     name);
2972 	  return FALSE;
2973 	}
2974 
2975       /* TLS optimizations may have changed r_type; update "howto".  */
2976       howto = &elf_howto_table[r_type];
2977 
2978       /* There's no point in calling bfd_perform_relocation here.
2979 	 Just go directly to our "special function".  */
2980       r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2981 			       relocation + rel->r_addend,
2982 			       contents, rel->r_offset, is_weak_undef,
2983 			       &error_message);
2984 
2985       if (r != bfd_reloc_ok && !warned)
2986 	{
2987 	  BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2988 	  BFD_ASSERT (error_message != NULL);
2989 
2990 	  if (rel->r_addend == 0)
2991 	    error_message = vsprint_msg (error_message, ": %s",
2992 					 strlen (name) + 2, name);
2993 	  else
2994 	    error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2995 					 strlen (name) + 22,
2996 					 name, (int) rel->r_addend);
2997 
2998 	  (*info->callbacks->reloc_dangerous)
2999 	    (info, error_message, input_bfd, input_section, rel->r_offset);
3000 	}
3001     }
3002 
3003   if (lit_table)
3004     free (lit_table);
3005 
3006   input_section->reloc_done = TRUE;
3007 
3008   return TRUE;
3009 }
3010 
3011 
3012 /* Finish up dynamic symbol handling.  There's not much to do here since
3013    the PLT and GOT entries are all set up by relocate_section.  */
3014 
3015 static bfd_boolean
3016 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3017 				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
3018 				  struct elf_link_hash_entry *h,
3019 				  Elf_Internal_Sym *sym)
3020 {
3021   if (h->needs_plt && !h->def_regular)
3022     {
3023       /* Mark the symbol as undefined, rather than as defined in
3024 	 the .plt section.  Leave the value alone.  */
3025       sym->st_shndx = SHN_UNDEF;
3026       /* If the symbol is weak, we do need to clear the value.
3027 	 Otherwise, the PLT entry would provide a definition for
3028 	 the symbol even if the symbol wasn't defined anywhere,
3029 	 and so the symbol would never be NULL.  */
3030       if (!h->ref_regular_nonweak)
3031 	sym->st_value = 0;
3032     }
3033 
3034   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
3035   if (h == elf_hash_table (info)->hdynamic
3036       || h == elf_hash_table (info)->hgot)
3037     sym->st_shndx = SHN_ABS;
3038 
3039   return TRUE;
3040 }
3041 
3042 
3043 /* Combine adjacent literal table entries in the output.  Adjacent
3044    entries within each input section may have been removed during
3045    relaxation, but we repeat the process here, even though it's too late
3046    to shrink the output section, because it's important to minimize the
3047    number of literal table entries to reduce the start-up work for the
3048    runtime linker.  Returns the number of remaining table entries or -1
3049    on error.  */
3050 
3051 static int
3052 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3053 				 asection *sxtlit,
3054 				 asection *sgotloc)
3055 {
3056   bfd_byte *contents;
3057   property_table_entry *table;
3058   bfd_size_type section_size, sgotloc_size;
3059   bfd_vma offset;
3060   int n, m, num;
3061 
3062   section_size = sxtlit->size;
3063   BFD_ASSERT (section_size % 8 == 0);
3064   num = section_size / 8;
3065 
3066   sgotloc_size = sgotloc->size;
3067   if (sgotloc_size != section_size)
3068     {
3069       _bfd_error_handler
3070 	(_("internal inconsistency in size of .got.loc section"));
3071       return -1;
3072     }
3073 
3074   table = bfd_malloc (num * sizeof (property_table_entry));
3075   if (table == 0)
3076     return -1;
3077 
3078   /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3079      propagates to the output section, where it doesn't really apply and
3080      where it breaks the following call to bfd_malloc_and_get_section.  */
3081   sxtlit->flags &= ~SEC_IN_MEMORY;
3082 
3083   if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3084     {
3085       if (contents != 0)
3086 	free (contents);
3087       free (table);
3088       return -1;
3089     }
3090 
3091   /* There should never be any relocations left at this point, so this
3092      is quite a bit easier than what is done during relaxation.  */
3093 
3094   /* Copy the raw contents into a property table array and sort it.  */
3095   offset = 0;
3096   for (n = 0; n < num; n++)
3097     {
3098       table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3099       table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3100       offset += 8;
3101     }
3102   qsort (table, num, sizeof (property_table_entry), property_table_compare);
3103 
3104   for (n = 0; n < num; n++)
3105     {
3106       bfd_boolean remove_entry = FALSE;
3107 
3108       if (table[n].size == 0)
3109 	remove_entry = TRUE;
3110       else if (n > 0
3111 	       && (table[n-1].address + table[n-1].size == table[n].address))
3112 	{
3113 	  table[n-1].size += table[n].size;
3114 	  remove_entry = TRUE;
3115 	}
3116 
3117       if (remove_entry)
3118 	{
3119 	  for (m = n; m < num - 1; m++)
3120 	    {
3121 	      table[m].address = table[m+1].address;
3122 	      table[m].size = table[m+1].size;
3123 	    }
3124 
3125 	  n--;
3126 	  num--;
3127 	}
3128     }
3129 
3130   /* Copy the data back to the raw contents.  */
3131   offset = 0;
3132   for (n = 0; n < num; n++)
3133     {
3134       bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3135       bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3136       offset += 8;
3137     }
3138 
3139   /* Clear the removed bytes.  */
3140   if ((bfd_size_type) (num * 8) < section_size)
3141     memset (&contents[num * 8], 0, section_size - num * 8);
3142 
3143   if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3144 				  section_size))
3145     return -1;
3146 
3147   /* Copy the contents to ".got.loc".  */
3148   memcpy (sgotloc->contents, contents, section_size);
3149 
3150   free (contents);
3151   free (table);
3152   return num;
3153 }
3154 
3155 
3156 /* Finish up the dynamic sections.  */
3157 
3158 static bfd_boolean
3159 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3160 				    struct bfd_link_info *info)
3161 {
3162   struct elf_xtensa_link_hash_table *htab;
3163   bfd *dynobj;
3164   asection *sdyn, *srelplt, *srelgot, *sgot, *sxtlit, *sgotloc;
3165   Elf32_External_Dyn *dyncon, *dynconend;
3166   int num_xtlit_entries = 0;
3167 
3168   if (! elf_hash_table (info)->dynamic_sections_created)
3169     return TRUE;
3170 
3171   htab = elf_xtensa_hash_table (info);
3172   if (htab == NULL)
3173     return FALSE;
3174 
3175   dynobj = elf_hash_table (info)->dynobj;
3176   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3177   BFD_ASSERT (sdyn != NULL);
3178 
3179   /* Set the first entry in the global offset table to the address of
3180      the dynamic section.  */
3181   sgot = htab->elf.sgot;
3182   if (sgot)
3183     {
3184       BFD_ASSERT (sgot->size == 4);
3185       if (sdyn == NULL)
3186 	bfd_put_32 (output_bfd, 0, sgot->contents);
3187       else
3188 	bfd_put_32 (output_bfd,
3189 		    sdyn->output_section->vma + sdyn->output_offset,
3190 		    sgot->contents);
3191     }
3192 
3193   srelplt = htab->elf.srelplt;
3194   srelgot = htab->elf.srelgot;
3195   if (srelplt && srelplt->size != 0)
3196     {
3197       asection *sgotplt, *spltlittbl;
3198       int chunk, plt_chunks, plt_entries;
3199       Elf_Internal_Rela irela;
3200       bfd_byte *loc;
3201       unsigned rtld_reloc;
3202 
3203       spltlittbl = htab->spltlittbl;
3204       BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3205 
3206       /* Find the first XTENSA_RTLD relocation.  Presumably the rest
3207 	 of them follow immediately after....  */
3208       for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3209 	{
3210 	  loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3211 	  bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3212 	  if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3213 	    break;
3214 	}
3215       BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3216 
3217       plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3218       plt_chunks =
3219 	(plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3220 
3221       for (chunk = 0; chunk < plt_chunks; chunk++)
3222 	{
3223 	  int chunk_entries = 0;
3224 
3225 	  sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3226 	  BFD_ASSERT (sgotplt != NULL);
3227 
3228 	  /* Emit special RTLD relocations for the first two entries in
3229 	     each chunk of the .got.plt section.  */
3230 
3231 	  loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3232 	  bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3233 	  BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3234 	  irela.r_offset = (sgotplt->output_section->vma
3235 			    + sgotplt->output_offset);
3236 	  irela.r_addend = 1; /* tell rtld to set value to resolver function */
3237 	  bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3238 	  rtld_reloc += 1;
3239 	  BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3240 
3241 	  /* Next literal immediately follows the first.  */
3242 	  loc += sizeof (Elf32_External_Rela);
3243 	  bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3244 	  BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3245 	  irela.r_offset = (sgotplt->output_section->vma
3246 			    + sgotplt->output_offset + 4);
3247 	  /* Tell rtld to set value to object's link map.  */
3248 	  irela.r_addend = 2;
3249 	  bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3250 	  rtld_reloc += 1;
3251 	  BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3252 
3253 	  /* Fill in the literal table.  */
3254 	  if (chunk < plt_chunks - 1)
3255 	    chunk_entries = PLT_ENTRIES_PER_CHUNK;
3256 	  else
3257 	    chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3258 
3259 	  BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3260 	  bfd_put_32 (output_bfd,
3261 		      sgotplt->output_section->vma + sgotplt->output_offset,
3262 		      spltlittbl->contents + (chunk * 8) + 0);
3263 	  bfd_put_32 (output_bfd,
3264 		      8 + (chunk_entries * 4),
3265 		      spltlittbl->contents + (chunk * 8) + 4);
3266 	}
3267 
3268      /* The .xt.lit.plt section has just been modified.  This must
3269 	happen before the code below which combines adjacent literal
3270 	table entries, and the .xt.lit.plt contents have to be forced to
3271 	the output here.  */
3272       if (! bfd_set_section_contents (output_bfd,
3273 				      spltlittbl->output_section,
3274 				      spltlittbl->contents,
3275 				      spltlittbl->output_offset,
3276 				      spltlittbl->size))
3277 	return FALSE;
3278       /* Clear SEC_HAS_CONTENTS so the contents won't be output again.  */
3279       spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3280     }
3281 
3282   /* All the dynamic relocations have been emitted at this point.
3283      Make sure the relocation sections are the correct size.  */
3284   if ((srelgot && srelgot->size != (sizeof (Elf32_External_Rela)
3285 				    * srelgot->reloc_count))
3286       || (srelplt && srelplt->size != (sizeof (Elf32_External_Rela)
3287 				       * srelplt->reloc_count)))
3288     abort ();
3289 
3290   /* Combine adjacent literal table entries.  */
3291   BFD_ASSERT (! bfd_link_relocatable (info));
3292   sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3293   sgotloc = htab->sgotloc;
3294   BFD_ASSERT (sgotloc);
3295   if (sxtlit)
3296     {
3297       num_xtlit_entries =
3298 	elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3299       if (num_xtlit_entries < 0)
3300 	return FALSE;
3301     }
3302 
3303   dyncon = (Elf32_External_Dyn *) sdyn->contents;
3304   dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3305   for (; dyncon < dynconend; dyncon++)
3306     {
3307       Elf_Internal_Dyn dyn;
3308 
3309       bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3310 
3311       switch (dyn.d_tag)
3312 	{
3313 	default:
3314 	  break;
3315 
3316 	case DT_XTENSA_GOT_LOC_SZ:
3317 	  dyn.d_un.d_val = num_xtlit_entries;
3318 	  break;
3319 
3320 	case DT_XTENSA_GOT_LOC_OFF:
3321 	  dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3322 			    + htab->sgotloc->output_offset);
3323 	  break;
3324 
3325 	case DT_PLTGOT:
3326 	  dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
3327 			    + htab->elf.sgot->output_offset);
3328 	  break;
3329 
3330 	case DT_JMPREL:
3331 	  dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
3332 			    + htab->elf.srelplt->output_offset);
3333 	  break;
3334 
3335 	case DT_PLTRELSZ:
3336 	  dyn.d_un.d_val = htab->elf.srelplt->size;
3337 	  break;
3338 	}
3339 
3340       bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3341     }
3342 
3343   return TRUE;
3344 }
3345 
3346 
3347 /* Functions for dealing with the e_flags field.  */
3348 
3349 /* Merge backend specific data from an object file to the output
3350    object file when linking.  */
3351 
3352 static bfd_boolean
3353 elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3354 {
3355   bfd *obfd = info->output_bfd;
3356   unsigned out_mach, in_mach;
3357   flagword out_flag, in_flag;
3358 
3359   /* Check if we have the same endianness.  */
3360   if (!_bfd_generic_verify_endian_match (ibfd, info))
3361     return FALSE;
3362 
3363   /* Don't even pretend to support mixed-format linking.  */
3364   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3365       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3366     return FALSE;
3367 
3368   out_flag = elf_elfheader (obfd)->e_flags;
3369   in_flag = elf_elfheader (ibfd)->e_flags;
3370 
3371   out_mach = out_flag & EF_XTENSA_MACH;
3372   in_mach = in_flag & EF_XTENSA_MACH;
3373   if (out_mach != in_mach)
3374     {
3375       _bfd_error_handler
3376 	/* xgettext:c-format */
3377 	(_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"),
3378 	 ibfd, out_mach, in_mach);
3379       bfd_set_error (bfd_error_wrong_format);
3380       return FALSE;
3381     }
3382 
3383   if (! elf_flags_init (obfd))
3384     {
3385       elf_flags_init (obfd) = TRUE;
3386       elf_elfheader (obfd)->e_flags = in_flag;
3387 
3388       if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3389 	  && bfd_get_arch_info (obfd)->the_default)
3390 	return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3391 				  bfd_get_mach (ibfd));
3392 
3393       return TRUE;
3394     }
3395 
3396   if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3397     elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3398 
3399   if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3400     elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3401 
3402   return TRUE;
3403 }
3404 
3405 
3406 static bfd_boolean
3407 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3408 {
3409   BFD_ASSERT (!elf_flags_init (abfd)
3410 	      || elf_elfheader (abfd)->e_flags == flags);
3411 
3412   elf_elfheader (abfd)->e_flags |= flags;
3413   elf_flags_init (abfd) = TRUE;
3414 
3415   return TRUE;
3416 }
3417 
3418 
3419 static bfd_boolean
3420 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3421 {
3422   FILE *f = (FILE *) farg;
3423   flagword e_flags = elf_elfheader (abfd)->e_flags;
3424 
3425   fprintf (f, "\nXtensa header:\n");
3426   if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3427     fprintf (f, "\nMachine     = Base\n");
3428   else
3429     fprintf (f, "\nMachine Id  = 0x%x\n", e_flags & EF_XTENSA_MACH);
3430 
3431   fprintf (f, "Insn tables = %s\n",
3432 	   (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3433 
3434   fprintf (f, "Literal tables = %s\n",
3435 	   (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3436 
3437   return _bfd_elf_print_private_bfd_data (abfd, farg);
3438 }
3439 
3440 
3441 /* Set the right machine number for an Xtensa ELF file.  */
3442 
3443 static bfd_boolean
3444 elf_xtensa_object_p (bfd *abfd)
3445 {
3446   int mach;
3447   unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3448 
3449   switch (arch)
3450     {
3451     case E_XTENSA_MACH:
3452       mach = bfd_mach_xtensa;
3453       break;
3454     default:
3455       return FALSE;
3456     }
3457 
3458   (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3459   return TRUE;
3460 }
3461 
3462 
3463 /* The final processing done just before writing out an Xtensa ELF object
3464    file.  This gets the Xtensa architecture right based on the machine
3465    number.  */
3466 
3467 static void
3468 elf_xtensa_final_write_processing (bfd *abfd,
3469 				   bfd_boolean linker ATTRIBUTE_UNUSED)
3470 {
3471   int mach;
3472   unsigned long val;
3473 
3474   switch (mach = bfd_get_mach (abfd))
3475     {
3476     case bfd_mach_xtensa:
3477       val = E_XTENSA_MACH;
3478       break;
3479     default:
3480       return;
3481     }
3482 
3483   elf_elfheader (abfd)->e_flags &=  (~ EF_XTENSA_MACH);
3484   elf_elfheader (abfd)->e_flags |= val;
3485 }
3486 
3487 
3488 static enum elf_reloc_type_class
3489 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3490 			     const asection *rel_sec ATTRIBUTE_UNUSED,
3491 			     const Elf_Internal_Rela *rela)
3492 {
3493   switch ((int) ELF32_R_TYPE (rela->r_info))
3494     {
3495     case R_XTENSA_RELATIVE:
3496       return reloc_class_relative;
3497     case R_XTENSA_JMP_SLOT:
3498       return reloc_class_plt;
3499     default:
3500       return reloc_class_normal;
3501     }
3502 }
3503 
3504 
3505 static bfd_boolean
3506 elf_xtensa_discard_info_for_section (bfd *abfd,
3507 				     struct elf_reloc_cookie *cookie,
3508 				     struct bfd_link_info *info,
3509 				     asection *sec)
3510 {
3511   bfd_byte *contents;
3512   bfd_vma offset, actual_offset;
3513   bfd_size_type removed_bytes = 0;
3514   bfd_size_type entry_size;
3515 
3516   if (sec->output_section
3517       && bfd_is_abs_section (sec->output_section))
3518     return FALSE;
3519 
3520   if (xtensa_is_proptable_section (sec))
3521     entry_size = 12;
3522   else
3523     entry_size = 8;
3524 
3525   if (sec->size == 0 || sec->size % entry_size != 0)
3526     return FALSE;
3527 
3528   contents = retrieve_contents (abfd, sec, info->keep_memory);
3529   if (!contents)
3530     return FALSE;
3531 
3532   cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3533   if (!cookie->rels)
3534     {
3535       release_contents (sec, contents);
3536       return FALSE;
3537     }
3538 
3539   /* Sort the relocations.  They should already be in order when
3540      relaxation is enabled, but it might not be.  */
3541   qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3542 	 internal_reloc_compare);
3543 
3544   cookie->rel = cookie->rels;
3545   cookie->relend = cookie->rels + sec->reloc_count;
3546 
3547   for (offset = 0; offset < sec->size; offset += entry_size)
3548     {
3549       actual_offset = offset - removed_bytes;
3550 
3551       /* The ...symbol_deleted_p function will skip over relocs but it
3552 	 won't adjust their offsets, so do that here.  */
3553       while (cookie->rel < cookie->relend
3554 	     && cookie->rel->r_offset < offset)
3555 	{
3556 	  cookie->rel->r_offset -= removed_bytes;
3557 	  cookie->rel++;
3558 	}
3559 
3560       while (cookie->rel < cookie->relend
3561 	     && cookie->rel->r_offset == offset)
3562 	{
3563 	  if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3564 	    {
3565 	      /* Remove the table entry.  (If the reloc type is NONE, then
3566 		 the entry has already been merged with another and deleted
3567 		 during relaxation.)  */
3568 	      if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3569 		{
3570 		  /* Shift the contents up.  */
3571 		  if (offset + entry_size < sec->size)
3572 		    memmove (&contents[actual_offset],
3573 			     &contents[actual_offset + entry_size],
3574 			     sec->size - offset - entry_size);
3575 		  removed_bytes += entry_size;
3576 		}
3577 
3578 	      /* Remove this relocation.  */
3579 	      cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3580 	    }
3581 
3582 	  /* Adjust the relocation offset for previous removals.  This
3583 	     should not be done before calling ...symbol_deleted_p
3584 	     because it might mess up the offset comparisons there.
3585 	     Make sure the offset doesn't underflow in the case where
3586 	     the first entry is removed.  */
3587 	  if (cookie->rel->r_offset >= removed_bytes)
3588 	    cookie->rel->r_offset -= removed_bytes;
3589 	  else
3590 	    cookie->rel->r_offset = 0;
3591 
3592 	  cookie->rel++;
3593 	}
3594     }
3595 
3596   if (removed_bytes != 0)
3597     {
3598       /* Adjust any remaining relocs (shouldn't be any).  */
3599       for (; cookie->rel < cookie->relend; cookie->rel++)
3600 	{
3601 	  if (cookie->rel->r_offset >= removed_bytes)
3602 	    cookie->rel->r_offset -= removed_bytes;
3603 	  else
3604 	    cookie->rel->r_offset = 0;
3605 	}
3606 
3607       /* Clear the removed bytes.  */
3608       memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3609 
3610       pin_contents (sec, contents);
3611       pin_internal_relocs (sec, cookie->rels);
3612 
3613       /* Shrink size.  */
3614       if (sec->rawsize == 0)
3615 	sec->rawsize = sec->size;
3616       sec->size -= removed_bytes;
3617 
3618       if (xtensa_is_littable_section (sec))
3619 	{
3620 	  asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3621 	  if (sgotloc)
3622 	    sgotloc->size -= removed_bytes;
3623 	}
3624     }
3625   else
3626     {
3627       release_contents (sec, contents);
3628       release_internal_relocs (sec, cookie->rels);
3629     }
3630 
3631   return (removed_bytes != 0);
3632 }
3633 
3634 
3635 static bfd_boolean
3636 elf_xtensa_discard_info (bfd *abfd,
3637 			 struct elf_reloc_cookie *cookie,
3638 			 struct bfd_link_info *info)
3639 {
3640   asection *sec;
3641   bfd_boolean changed = FALSE;
3642 
3643   for (sec = abfd->sections; sec != NULL; sec = sec->next)
3644     {
3645       if (xtensa_is_property_section (sec))
3646 	{
3647 	  if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3648 	    changed = TRUE;
3649 	}
3650     }
3651 
3652   return changed;
3653 }
3654 
3655 
3656 static bfd_boolean
3657 elf_xtensa_ignore_discarded_relocs (asection *sec)
3658 {
3659   return xtensa_is_property_section (sec);
3660 }
3661 
3662 
3663 static unsigned int
3664 elf_xtensa_action_discarded (asection *sec)
3665 {
3666   if (strcmp (".xt_except_table", sec->name) == 0)
3667     return 0;
3668 
3669   if (strcmp (".xt_except_desc", sec->name) == 0)
3670     return 0;
3671 
3672   return _bfd_elf_default_action_discarded (sec);
3673 }
3674 
3675 
3676 /* Support for core dump NOTE sections.  */
3677 
3678 static bfd_boolean
3679 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3680 {
3681   int offset;
3682   unsigned int size;
3683 
3684   /* The size for Xtensa is variable, so don't try to recognize the format
3685      based on the size.  Just assume this is GNU/Linux.  */
3686 
3687   /* pr_cursig */
3688   elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3689 
3690   /* pr_pid */
3691   elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3692 
3693   /* pr_reg */
3694   offset = 72;
3695   size = note->descsz - offset - 4;
3696 
3697   /* Make a ".reg/999" section.  */
3698   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3699 					  size, note->descpos + offset);
3700 }
3701 
3702 
3703 static bfd_boolean
3704 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3705 {
3706   switch (note->descsz)
3707     {
3708       default:
3709 	return FALSE;
3710 
3711       case 128:		/* GNU/Linux elf_prpsinfo */
3712 	elf_tdata (abfd)->core->program
3713 	 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3714 	elf_tdata (abfd)->core->command
3715 	 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3716     }
3717 
3718   /* Note that for some reason, a spurious space is tacked
3719      onto the end of the args in some (at least one anyway)
3720      implementations, so strip it off if it exists.  */
3721 
3722   {
3723     char *command = elf_tdata (abfd)->core->command;
3724     int n = strlen (command);
3725 
3726     if (0 < n && command[n - 1] == ' ')
3727       command[n - 1] = '\0';
3728   }
3729 
3730   return TRUE;
3731 }
3732 
3733 
3734 /* Generic Xtensa configurability stuff.  */
3735 
3736 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3737 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3738 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3739 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3740 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3741 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3742 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3743 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3744 
3745 static void
3746 init_call_opcodes (void)
3747 {
3748   if (callx0_op == XTENSA_UNDEFINED)
3749     {
3750       callx0_op  = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3751       callx4_op  = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3752       callx8_op  = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3753       callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3754       call0_op   = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3755       call4_op   = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3756       call8_op   = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3757       call12_op  = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3758     }
3759 }
3760 
3761 
3762 static bfd_boolean
3763 is_indirect_call_opcode (xtensa_opcode opcode)
3764 {
3765   init_call_opcodes ();
3766   return (opcode == callx0_op
3767 	  || opcode == callx4_op
3768 	  || opcode == callx8_op
3769 	  || opcode == callx12_op);
3770 }
3771 
3772 
3773 static bfd_boolean
3774 is_direct_call_opcode (xtensa_opcode opcode)
3775 {
3776   init_call_opcodes ();
3777   return (opcode == call0_op
3778 	  || opcode == call4_op
3779 	  || opcode == call8_op
3780 	  || opcode == call12_op);
3781 }
3782 
3783 
3784 static bfd_boolean
3785 is_windowed_call_opcode (xtensa_opcode opcode)
3786 {
3787   init_call_opcodes ();
3788   return (opcode == call4_op
3789 	  || opcode == call8_op
3790 	  || opcode == call12_op
3791 	  || opcode == callx4_op
3792 	  || opcode == callx8_op
3793 	  || opcode == callx12_op);
3794 }
3795 
3796 
3797 static bfd_boolean
3798 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3799 {
3800   unsigned dst = (unsigned) -1;
3801 
3802   init_call_opcodes ();
3803   if (opcode == callx0_op)
3804     dst = 0;
3805   else if (opcode == callx4_op)
3806     dst = 4;
3807   else if (opcode == callx8_op)
3808     dst = 8;
3809   else if (opcode == callx12_op)
3810     dst = 12;
3811 
3812   if (dst == (unsigned) -1)
3813     return FALSE;
3814 
3815   *pdst = dst;
3816   return TRUE;
3817 }
3818 
3819 
3820 static xtensa_opcode
3821 get_const16_opcode (void)
3822 {
3823   static bfd_boolean done_lookup = FALSE;
3824   static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3825   if (!done_lookup)
3826     {
3827       const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3828       done_lookup = TRUE;
3829     }
3830   return const16_opcode;
3831 }
3832 
3833 
3834 static xtensa_opcode
3835 get_l32r_opcode (void)
3836 {
3837   static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3838   static bfd_boolean done_lookup = FALSE;
3839 
3840   if (!done_lookup)
3841     {
3842       l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3843       done_lookup = TRUE;
3844     }
3845   return l32r_opcode;
3846 }
3847 
3848 
3849 static bfd_vma
3850 l32r_offset (bfd_vma addr, bfd_vma pc)
3851 {
3852   bfd_vma offset;
3853 
3854   offset = addr - ((pc+3) & -4);
3855   BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3856   offset = (signed int) offset >> 2;
3857   BFD_ASSERT ((signed int) offset >> 16 == -1);
3858   return offset;
3859 }
3860 
3861 
3862 static int
3863 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3864 {
3865   xtensa_isa isa = xtensa_default_isa;
3866   int last_immed, last_opnd, opi;
3867 
3868   if (opcode == XTENSA_UNDEFINED)
3869     return XTENSA_UNDEFINED;
3870 
3871   /* Find the last visible PC-relative immediate operand for the opcode.
3872      If there are no PC-relative immediates, then choose the last visible
3873      immediate; otherwise, fail and return XTENSA_UNDEFINED.  */
3874   last_immed = XTENSA_UNDEFINED;
3875   last_opnd = xtensa_opcode_num_operands (isa, opcode);
3876   for (opi = last_opnd - 1; opi >= 0; opi--)
3877     {
3878       if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3879 	continue;
3880       if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3881 	{
3882 	  last_immed = opi;
3883 	  break;
3884 	}
3885       if (last_immed == XTENSA_UNDEFINED
3886 	  && xtensa_operand_is_register (isa, opcode, opi) == 0)
3887 	last_immed = opi;
3888     }
3889   if (last_immed < 0)
3890     return XTENSA_UNDEFINED;
3891 
3892   /* If the operand number was specified in an old-style relocation,
3893      check for consistency with the operand computed above.  */
3894   if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3895     {
3896       int reloc_opnd = r_type - R_XTENSA_OP0;
3897       if (reloc_opnd != last_immed)
3898 	return XTENSA_UNDEFINED;
3899     }
3900 
3901   return last_immed;
3902 }
3903 
3904 
3905 int
3906 get_relocation_slot (int r_type)
3907 {
3908   switch (r_type)
3909     {
3910     case R_XTENSA_OP0:
3911     case R_XTENSA_OP1:
3912     case R_XTENSA_OP2:
3913       return 0;
3914 
3915     default:
3916       if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3917 	return r_type - R_XTENSA_SLOT0_OP;
3918       if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3919 	return r_type - R_XTENSA_SLOT0_ALT;
3920       break;
3921     }
3922 
3923   return XTENSA_UNDEFINED;
3924 }
3925 
3926 
3927 /* Get the opcode for a relocation.  */
3928 
3929 static xtensa_opcode
3930 get_relocation_opcode (bfd *abfd,
3931 		       asection *sec,
3932 		       bfd_byte *contents,
3933 		       Elf_Internal_Rela *irel)
3934 {
3935   static xtensa_insnbuf ibuff = NULL;
3936   static xtensa_insnbuf sbuff = NULL;
3937   xtensa_isa isa = xtensa_default_isa;
3938   xtensa_format fmt;
3939   int slot;
3940 
3941   if (contents == NULL)
3942     return XTENSA_UNDEFINED;
3943 
3944   if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3945     return XTENSA_UNDEFINED;
3946 
3947   if (ibuff == NULL)
3948     {
3949       ibuff = xtensa_insnbuf_alloc (isa);
3950       sbuff = xtensa_insnbuf_alloc (isa);
3951     }
3952 
3953   /* Decode the instruction.  */
3954   xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3955 			     sec->size - irel->r_offset);
3956   fmt = xtensa_format_decode (isa, ibuff);
3957   slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3958   if (slot == XTENSA_UNDEFINED)
3959     return XTENSA_UNDEFINED;
3960   xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3961   return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3962 }
3963 
3964 
3965 bfd_boolean
3966 is_l32r_relocation (bfd *abfd,
3967 		    asection *sec,
3968 		    bfd_byte *contents,
3969 		    Elf_Internal_Rela *irel)
3970 {
3971   xtensa_opcode opcode;
3972   if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
3973     return FALSE;
3974   opcode = get_relocation_opcode (abfd, sec, contents, irel);
3975   return (opcode == get_l32r_opcode ());
3976 }
3977 
3978 
3979 static bfd_size_type
3980 get_asm_simplify_size (bfd_byte *contents,
3981 		       bfd_size_type content_len,
3982 		       bfd_size_type offset)
3983 {
3984   bfd_size_type insnlen, size = 0;
3985 
3986   /* Decode the size of the next two instructions.  */
3987   insnlen = insn_decode_len (contents, content_len, offset);
3988   if (insnlen == 0)
3989     return 0;
3990 
3991   size += insnlen;
3992 
3993   insnlen = insn_decode_len (contents, content_len, offset + size);
3994   if (insnlen == 0)
3995     return 0;
3996 
3997   size += insnlen;
3998   return size;
3999 }
4000 
4001 
4002 bfd_boolean
4003 is_alt_relocation (int r_type)
4004 {
4005   return (r_type >= R_XTENSA_SLOT0_ALT
4006 	  && r_type <= R_XTENSA_SLOT14_ALT);
4007 }
4008 
4009 
4010 bfd_boolean
4011 is_operand_relocation (int r_type)
4012 {
4013   switch (r_type)
4014     {
4015     case R_XTENSA_OP0:
4016     case R_XTENSA_OP1:
4017     case R_XTENSA_OP2:
4018       return TRUE;
4019 
4020     default:
4021       if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4022 	return TRUE;
4023       if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4024 	return TRUE;
4025       break;
4026     }
4027 
4028   return FALSE;
4029 }
4030 
4031 
4032 #define MIN_INSN_LENGTH 2
4033 
4034 /* Return 0 if it fails to decode.  */
4035 
4036 bfd_size_type
4037 insn_decode_len (bfd_byte *contents,
4038 		 bfd_size_type content_len,
4039 		 bfd_size_type offset)
4040 {
4041   int insn_len;
4042   xtensa_isa isa = xtensa_default_isa;
4043   xtensa_format fmt;
4044   static xtensa_insnbuf ibuff = NULL;
4045 
4046   if (offset + MIN_INSN_LENGTH > content_len)
4047     return 0;
4048 
4049   if (ibuff == NULL)
4050     ibuff = xtensa_insnbuf_alloc (isa);
4051   xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4052 			     content_len - offset);
4053   fmt = xtensa_format_decode (isa, ibuff);
4054   if (fmt == XTENSA_UNDEFINED)
4055     return 0;
4056   insn_len = xtensa_format_length (isa, fmt);
4057   if (insn_len ==  XTENSA_UNDEFINED)
4058     return 0;
4059   return insn_len;
4060 }
4061 
4062 
4063 /* Decode the opcode for a single slot instruction.
4064    Return 0 if it fails to decode or the instruction is multi-slot.  */
4065 
4066 xtensa_opcode
4067 insn_decode_opcode (bfd_byte *contents,
4068 		    bfd_size_type content_len,
4069 		    bfd_size_type offset,
4070 		    int slot)
4071 {
4072   xtensa_isa isa = xtensa_default_isa;
4073   xtensa_format fmt;
4074   static xtensa_insnbuf insnbuf = NULL;
4075   static xtensa_insnbuf slotbuf = NULL;
4076 
4077   if (offset + MIN_INSN_LENGTH > content_len)
4078     return XTENSA_UNDEFINED;
4079 
4080   if (insnbuf == NULL)
4081     {
4082       insnbuf = xtensa_insnbuf_alloc (isa);
4083       slotbuf = xtensa_insnbuf_alloc (isa);
4084     }
4085 
4086   xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4087 			     content_len - offset);
4088   fmt = xtensa_format_decode (isa, insnbuf);
4089   if (fmt == XTENSA_UNDEFINED)
4090     return XTENSA_UNDEFINED;
4091 
4092   if (slot >= xtensa_format_num_slots (isa, fmt))
4093     return XTENSA_UNDEFINED;
4094 
4095   xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4096   return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4097 }
4098 
4099 
4100 /* The offset is the offset in the contents.
4101    The address is the address of that offset.  */
4102 
4103 static bfd_boolean
4104 check_branch_target_aligned (bfd_byte *contents,
4105 			     bfd_size_type content_length,
4106 			     bfd_vma offset,
4107 			     bfd_vma address)
4108 {
4109   bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4110   if (insn_len == 0)
4111     return FALSE;
4112   return check_branch_target_aligned_address (address, insn_len);
4113 }
4114 
4115 
4116 static bfd_boolean
4117 check_loop_aligned (bfd_byte *contents,
4118 		    bfd_size_type content_length,
4119 		    bfd_vma offset,
4120 		    bfd_vma address)
4121 {
4122   bfd_size_type loop_len, insn_len;
4123   xtensa_opcode opcode;
4124 
4125   opcode = insn_decode_opcode (contents, content_length, offset, 0);
4126   if (opcode == XTENSA_UNDEFINED
4127       || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4128     {
4129       BFD_ASSERT (FALSE);
4130       return FALSE;
4131     }
4132 
4133   loop_len = insn_decode_len (contents, content_length, offset);
4134   insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4135   if (loop_len == 0 || insn_len == 0)
4136     {
4137       BFD_ASSERT (FALSE);
4138       return FALSE;
4139     }
4140 
4141   return check_branch_target_aligned_address (address + loop_len, insn_len);
4142 }
4143 
4144 
4145 static bfd_boolean
4146 check_branch_target_aligned_address (bfd_vma addr, int len)
4147 {
4148   if (len == 8)
4149     return (addr % 8 == 0);
4150   return ((addr >> 2) == ((addr + len - 1) >> 2));
4151 }
4152 
4153 
4154 /* Instruction widening and narrowing.  */
4155 
4156 /* When FLIX is available we need to access certain instructions only
4157    when they are 16-bit or 24-bit instructions.  This table caches
4158    information about such instructions by walking through all the
4159    opcodes and finding the smallest single-slot format into which each
4160    can be encoded.  */
4161 
4162 static xtensa_format *op_single_fmt_table = NULL;
4163 
4164 
4165 static void
4166 init_op_single_format_table (void)
4167 {
4168   xtensa_isa isa = xtensa_default_isa;
4169   xtensa_insnbuf ibuf;
4170   xtensa_opcode opcode;
4171   xtensa_format fmt;
4172   int num_opcodes;
4173 
4174   if (op_single_fmt_table)
4175     return;
4176 
4177   ibuf = xtensa_insnbuf_alloc (isa);
4178   num_opcodes = xtensa_isa_num_opcodes (isa);
4179 
4180   op_single_fmt_table = (xtensa_format *)
4181     bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4182   for (opcode = 0; opcode < num_opcodes; opcode++)
4183     {
4184       op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4185       for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4186 	{
4187 	  if (xtensa_format_num_slots (isa, fmt) == 1
4188 	      && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4189 	    {
4190 	      xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4191 	      int fmt_length = xtensa_format_length (isa, fmt);
4192 	      if (old_fmt == XTENSA_UNDEFINED
4193 		  || fmt_length < xtensa_format_length (isa, old_fmt))
4194 		op_single_fmt_table[opcode] = fmt;
4195 	    }
4196 	}
4197     }
4198   xtensa_insnbuf_free (isa, ibuf);
4199 }
4200 
4201 
4202 static xtensa_format
4203 get_single_format (xtensa_opcode opcode)
4204 {
4205   init_op_single_format_table ();
4206   return op_single_fmt_table[opcode];
4207 }
4208 
4209 
4210 /* For the set of narrowable instructions we do NOT include the
4211    narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4212    involved during linker relaxation that may require these to
4213    re-expand in some conditions.  Also, the narrowing "or" -> mov.n
4214    requires special case code to ensure it only works when op1 == op2.  */
4215 
4216 struct string_pair
4217 {
4218   const char *wide;
4219   const char *narrow;
4220 };
4221 
4222 struct string_pair narrowable[] =
4223 {
4224   { "add", "add.n" },
4225   { "addi", "addi.n" },
4226   { "addmi", "addi.n" },
4227   { "l32i", "l32i.n" },
4228   { "movi", "movi.n" },
4229   { "ret", "ret.n" },
4230   { "retw", "retw.n" },
4231   { "s32i", "s32i.n" },
4232   { "or", "mov.n" } /* special case only when op1 == op2 */
4233 };
4234 
4235 struct string_pair widenable[] =
4236 {
4237   { "add", "add.n" },
4238   { "addi", "addi.n" },
4239   { "addmi", "addi.n" },
4240   { "beqz", "beqz.n" },
4241   { "bnez", "bnez.n" },
4242   { "l32i", "l32i.n" },
4243   { "movi", "movi.n" },
4244   { "ret", "ret.n" },
4245   { "retw", "retw.n" },
4246   { "s32i", "s32i.n" },
4247   { "or", "mov.n" } /* special case only when op1 == op2 */
4248 };
4249 
4250 
4251 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4252    3-byte instruction to a 2-byte "density" instruction.  If it is valid,
4253    return the instruction buffer holding the narrow instruction.  Otherwise,
4254    return 0.  The set of valid narrowing are specified by a string table
4255    but require some special case operand checks in some cases.  */
4256 
4257 static xtensa_insnbuf
4258 can_narrow_instruction (xtensa_insnbuf slotbuf,
4259 			xtensa_format fmt,
4260 			xtensa_opcode opcode)
4261 {
4262   xtensa_isa isa = xtensa_default_isa;
4263   xtensa_format o_fmt;
4264   unsigned opi;
4265 
4266   static xtensa_insnbuf o_insnbuf = NULL;
4267   static xtensa_insnbuf o_slotbuf = NULL;
4268 
4269   if (o_insnbuf == NULL)
4270     {
4271       o_insnbuf = xtensa_insnbuf_alloc (isa);
4272       o_slotbuf = xtensa_insnbuf_alloc (isa);
4273     }
4274 
4275   for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4276     {
4277       bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4278 
4279       if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4280 	{
4281 	  uint32 value, newval;
4282 	  int i, operand_count, o_operand_count;
4283 	  xtensa_opcode o_opcode;
4284 
4285 	  /* Address does not matter in this case.  We might need to
4286 	     fix it to handle branches/jumps.  */
4287 	  bfd_vma self_address = 0;
4288 
4289 	  o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4290 	  if (o_opcode == XTENSA_UNDEFINED)
4291 	    return 0;
4292 	  o_fmt = get_single_format (o_opcode);
4293 	  if (o_fmt == XTENSA_UNDEFINED)
4294 	    return 0;
4295 
4296 	  if (xtensa_format_length (isa, fmt) != 3
4297 	      || xtensa_format_length (isa, o_fmt) != 2)
4298 	    return 0;
4299 
4300 	  xtensa_format_encode (isa, o_fmt, o_insnbuf);
4301 	  operand_count = xtensa_opcode_num_operands (isa, opcode);
4302 	  o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4303 
4304 	  if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4305 	    return 0;
4306 
4307 	  if (!is_or)
4308 	    {
4309 	      if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4310 		return 0;
4311 	    }
4312 	  else
4313 	    {
4314 	      uint32 rawval0, rawval1, rawval2;
4315 
4316 	      if (o_operand_count + 1 != operand_count
4317 		  || xtensa_operand_get_field (isa, opcode, 0,
4318 					       fmt, 0, slotbuf, &rawval0) != 0
4319 		  || xtensa_operand_get_field (isa, opcode, 1,
4320 					       fmt, 0, slotbuf, &rawval1) != 0
4321 		  || xtensa_operand_get_field (isa, opcode, 2,
4322 					       fmt, 0, slotbuf, &rawval2) != 0
4323 		  || rawval1 != rawval2
4324 		  || rawval0 == rawval1 /* it is a nop */)
4325 		return 0;
4326 	    }
4327 
4328 	  for (i = 0; i < o_operand_count; ++i)
4329 	    {
4330 	      if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4331 					    slotbuf, &value)
4332 		  || xtensa_operand_decode (isa, opcode, i, &value))
4333 		return 0;
4334 
4335 	      /* PC-relative branches need adjustment, but
4336 		 the PC-rel operand will always have a relocation.  */
4337 	      newval = value;
4338 	      if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4339 					   self_address)
4340 		  || xtensa_operand_encode (isa, o_opcode, i, &newval)
4341 		  || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4342 					       o_slotbuf, newval))
4343 		return 0;
4344 	    }
4345 
4346 	  if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4347 	    return 0;
4348 
4349 	  return o_insnbuf;
4350 	}
4351     }
4352   return 0;
4353 }
4354 
4355 
4356 /* Attempt to narrow an instruction.  If the narrowing is valid, perform
4357    the action in-place directly into the contents and return TRUE.  Otherwise,
4358    the return value is FALSE and the contents are not modified.  */
4359 
4360 static bfd_boolean
4361 narrow_instruction (bfd_byte *contents,
4362 		    bfd_size_type content_length,
4363 		    bfd_size_type offset)
4364 {
4365   xtensa_opcode opcode;
4366   bfd_size_type insn_len;
4367   xtensa_isa isa = xtensa_default_isa;
4368   xtensa_format fmt;
4369   xtensa_insnbuf o_insnbuf;
4370 
4371   static xtensa_insnbuf insnbuf = NULL;
4372   static xtensa_insnbuf slotbuf = NULL;
4373 
4374   if (insnbuf == NULL)
4375     {
4376       insnbuf = xtensa_insnbuf_alloc (isa);
4377       slotbuf = xtensa_insnbuf_alloc (isa);
4378     }
4379 
4380   BFD_ASSERT (offset < content_length);
4381 
4382   if (content_length < 2)
4383     return FALSE;
4384 
4385   /* We will hand-code a few of these for a little while.
4386      These have all been specified in the assembler aleady.  */
4387   xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4388 			     content_length - offset);
4389   fmt = xtensa_format_decode (isa, insnbuf);
4390   if (xtensa_format_num_slots (isa, fmt) != 1)
4391     return FALSE;
4392 
4393   if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4394     return FALSE;
4395 
4396   opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4397   if (opcode == XTENSA_UNDEFINED)
4398     return FALSE;
4399   insn_len = xtensa_format_length (isa, fmt);
4400   if (insn_len > content_length)
4401     return FALSE;
4402 
4403   o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4404   if (o_insnbuf)
4405     {
4406       xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4407 			       content_length - offset);
4408       return TRUE;
4409     }
4410 
4411   return FALSE;
4412 }
4413 
4414 
4415 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4416    "density" instruction to a standard 3-byte instruction.  If it is valid,
4417    return the instruction buffer holding the wide instruction.  Otherwise,
4418    return 0.  The set of valid widenings are specified by a string table
4419    but require some special case operand checks in some cases.  */
4420 
4421 static xtensa_insnbuf
4422 can_widen_instruction (xtensa_insnbuf slotbuf,
4423 		       xtensa_format fmt,
4424 		       xtensa_opcode opcode)
4425 {
4426   xtensa_isa isa = xtensa_default_isa;
4427   xtensa_format o_fmt;
4428   unsigned opi;
4429 
4430   static xtensa_insnbuf o_insnbuf = NULL;
4431   static xtensa_insnbuf o_slotbuf = NULL;
4432 
4433   if (o_insnbuf == NULL)
4434     {
4435       o_insnbuf = xtensa_insnbuf_alloc (isa);
4436       o_slotbuf = xtensa_insnbuf_alloc (isa);
4437     }
4438 
4439   for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4440     {
4441       bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4442       bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4443 			       || strcmp ("bnez", widenable[opi].wide) == 0);
4444 
4445       if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4446 	{
4447 	  uint32 value, newval;
4448 	  int i, operand_count, o_operand_count, check_operand_count;
4449 	  xtensa_opcode o_opcode;
4450 
4451 	  /* Address does not matter in this case.  We might need to fix it
4452 	     to handle branches/jumps.  */
4453 	  bfd_vma self_address = 0;
4454 
4455 	  o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4456 	  if (o_opcode == XTENSA_UNDEFINED)
4457 	    return 0;
4458 	  o_fmt = get_single_format (o_opcode);
4459 	  if (o_fmt == XTENSA_UNDEFINED)
4460 	    return 0;
4461 
4462 	  if (xtensa_format_length (isa, fmt) != 2
4463 	      || xtensa_format_length (isa, o_fmt) != 3)
4464 	    return 0;
4465 
4466 	  xtensa_format_encode (isa, o_fmt, o_insnbuf);
4467 	  operand_count = xtensa_opcode_num_operands (isa, opcode);
4468 	  o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4469 	  check_operand_count = o_operand_count;
4470 
4471 	  if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4472 	    return 0;
4473 
4474 	  if (!is_or)
4475 	    {
4476 	      if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4477 		return 0;
4478 	    }
4479 	  else
4480 	    {
4481 	      uint32 rawval0, rawval1;
4482 
4483 	      if (o_operand_count != operand_count + 1
4484 		  || xtensa_operand_get_field (isa, opcode, 0,
4485 					       fmt, 0, slotbuf, &rawval0) != 0
4486 		  || xtensa_operand_get_field (isa, opcode, 1,
4487 					       fmt, 0, slotbuf, &rawval1) != 0
4488 		  || rawval0 == rawval1 /* it is a nop */)
4489 		return 0;
4490 	    }
4491 	  if (is_branch)
4492 	    check_operand_count--;
4493 
4494 	  for (i = 0; i < check_operand_count; i++)
4495 	    {
4496 	      int new_i = i;
4497 	      if (is_or && i == o_operand_count - 1)
4498 		new_i = i - 1;
4499 	      if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4500 					    slotbuf, &value)
4501 		  || xtensa_operand_decode (isa, opcode, new_i, &value))
4502 		return 0;
4503 
4504 	      /* PC-relative branches need adjustment, but
4505 		 the PC-rel operand will always have a relocation.  */
4506 	      newval = value;
4507 	      if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4508 					   self_address)
4509 		  || xtensa_operand_encode (isa, o_opcode, i, &newval)
4510 		  || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4511 					       o_slotbuf, newval))
4512 		return 0;
4513 	    }
4514 
4515 	  if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4516 	    return 0;
4517 
4518 	  return o_insnbuf;
4519 	}
4520     }
4521   return 0;
4522 }
4523 
4524 
4525 /* Attempt to widen an instruction.  If the widening is valid, perform
4526    the action in-place directly into the contents and return TRUE.  Otherwise,
4527    the return value is FALSE and the contents are not modified.  */
4528 
4529 static bfd_boolean
4530 widen_instruction (bfd_byte *contents,
4531 		   bfd_size_type content_length,
4532 		   bfd_size_type offset)
4533 {
4534   xtensa_opcode opcode;
4535   bfd_size_type insn_len;
4536   xtensa_isa isa = xtensa_default_isa;
4537   xtensa_format fmt;
4538   xtensa_insnbuf o_insnbuf;
4539 
4540   static xtensa_insnbuf insnbuf = NULL;
4541   static xtensa_insnbuf slotbuf = NULL;
4542 
4543   if (insnbuf == NULL)
4544     {
4545       insnbuf = xtensa_insnbuf_alloc (isa);
4546       slotbuf = xtensa_insnbuf_alloc (isa);
4547     }
4548 
4549   BFD_ASSERT (offset < content_length);
4550 
4551   if (content_length < 2)
4552     return FALSE;
4553 
4554   /* We will hand-code a few of these for a little while.
4555      These have all been specified in the assembler aleady.  */
4556   xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4557 			     content_length - offset);
4558   fmt = xtensa_format_decode (isa, insnbuf);
4559   if (xtensa_format_num_slots (isa, fmt) != 1)
4560     return FALSE;
4561 
4562   if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4563     return FALSE;
4564 
4565   opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4566   if (opcode == XTENSA_UNDEFINED)
4567     return FALSE;
4568   insn_len = xtensa_format_length (isa, fmt);
4569   if (insn_len > content_length)
4570     return FALSE;
4571 
4572   o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4573   if (o_insnbuf)
4574     {
4575       xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4576 			       content_length - offset);
4577       return TRUE;
4578     }
4579   return FALSE;
4580 }
4581 
4582 
4583 /* Code for transforming CALLs at link-time.  */
4584 
4585 static bfd_reloc_status_type
4586 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4587 			    bfd_vma address,
4588 			    bfd_vma content_length,
4589 			    char **error_message)
4590 {
4591   static xtensa_insnbuf insnbuf = NULL;
4592   static xtensa_insnbuf slotbuf = NULL;
4593   xtensa_format core_format = XTENSA_UNDEFINED;
4594   xtensa_opcode opcode;
4595   xtensa_opcode direct_call_opcode;
4596   xtensa_isa isa = xtensa_default_isa;
4597   bfd_byte *chbuf = contents + address;
4598   int opn;
4599 
4600   if (insnbuf == NULL)
4601     {
4602       insnbuf = xtensa_insnbuf_alloc (isa);
4603       slotbuf = xtensa_insnbuf_alloc (isa);
4604     }
4605 
4606   if (content_length < address)
4607     {
4608       *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4609       return bfd_reloc_other;
4610     }
4611 
4612   opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4613   direct_call_opcode = swap_callx_for_call_opcode (opcode);
4614   if (direct_call_opcode == XTENSA_UNDEFINED)
4615     {
4616       *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4617       return bfd_reloc_other;
4618     }
4619 
4620   /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset.  */
4621   core_format = xtensa_format_lookup (isa, "x24");
4622   opcode = xtensa_opcode_lookup (isa, "or");
4623   xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4624   for (opn = 0; opn < 3; opn++)
4625     {
4626       uint32 regno = 1;
4627       xtensa_operand_encode (isa, opcode, opn, &regno);
4628       xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4629 				slotbuf, regno);
4630     }
4631   xtensa_format_encode (isa, core_format, insnbuf);
4632   xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4633   xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4634 
4635   /* Assemble a CALL ("callN 0") into the 3 byte offset.  */
4636   xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4637   xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4638 
4639   xtensa_format_encode (isa, core_format, insnbuf);
4640   xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4641   xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4642 			   content_length - address - 3);
4643 
4644   return bfd_reloc_ok;
4645 }
4646 
4647 
4648 static bfd_reloc_status_type
4649 contract_asm_expansion (bfd_byte *contents,
4650 			bfd_vma content_length,
4651 			Elf_Internal_Rela *irel,
4652 			char **error_message)
4653 {
4654   bfd_reloc_status_type retval =
4655     elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4656 				error_message);
4657 
4658   if (retval != bfd_reloc_ok)
4659     return bfd_reloc_dangerous;
4660 
4661   /* Update the irel->r_offset field so that the right immediate and
4662      the right instruction are modified during the relocation.  */
4663   irel->r_offset += 3;
4664   irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4665   return bfd_reloc_ok;
4666 }
4667 
4668 
4669 static xtensa_opcode
4670 swap_callx_for_call_opcode (xtensa_opcode opcode)
4671 {
4672   init_call_opcodes ();
4673 
4674   if (opcode == callx0_op) return call0_op;
4675   if (opcode == callx4_op) return call4_op;
4676   if (opcode == callx8_op) return call8_op;
4677   if (opcode == callx12_op) return call12_op;
4678 
4679   /* Return XTENSA_UNDEFINED if the opcode is not an indirect call.  */
4680   return XTENSA_UNDEFINED;
4681 }
4682 
4683 
4684 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4685    CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4686    If not, return XTENSA_UNDEFINED.  */
4687 
4688 #define L32R_TARGET_REG_OPERAND 0
4689 #define CONST16_TARGET_REG_OPERAND 0
4690 #define CALLN_SOURCE_OPERAND 0
4691 
4692 static xtensa_opcode
4693 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4694 {
4695   static xtensa_insnbuf insnbuf = NULL;
4696   static xtensa_insnbuf slotbuf = NULL;
4697   xtensa_format fmt;
4698   xtensa_opcode opcode;
4699   xtensa_isa isa = xtensa_default_isa;
4700   uint32 regno, const16_regno, call_regno;
4701   int offset = 0;
4702 
4703   if (insnbuf == NULL)
4704     {
4705       insnbuf = xtensa_insnbuf_alloc (isa);
4706       slotbuf = xtensa_insnbuf_alloc (isa);
4707     }
4708 
4709   xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4710   fmt = xtensa_format_decode (isa, insnbuf);
4711   if (fmt == XTENSA_UNDEFINED
4712       || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4713     return XTENSA_UNDEFINED;
4714 
4715   opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4716   if (opcode == XTENSA_UNDEFINED)
4717     return XTENSA_UNDEFINED;
4718 
4719   if (opcode == get_l32r_opcode ())
4720     {
4721       if (p_uses_l32r)
4722 	*p_uses_l32r = TRUE;
4723       if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4724 				    fmt, 0, slotbuf, &regno)
4725 	  || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4726 				    &regno))
4727 	return XTENSA_UNDEFINED;
4728     }
4729   else if (opcode == get_const16_opcode ())
4730     {
4731       if (p_uses_l32r)
4732 	*p_uses_l32r = FALSE;
4733       if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4734 				    fmt, 0, slotbuf, &regno)
4735 	  || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4736 				    &regno))
4737 	return XTENSA_UNDEFINED;
4738 
4739       /* Check that the next instruction is also CONST16.  */
4740       offset += xtensa_format_length (isa, fmt);
4741       xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4742       fmt = xtensa_format_decode (isa, insnbuf);
4743       if (fmt == XTENSA_UNDEFINED
4744 	  || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4745 	return XTENSA_UNDEFINED;
4746       opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4747       if (opcode != get_const16_opcode ())
4748 	return XTENSA_UNDEFINED;
4749 
4750       if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4751 				    fmt, 0, slotbuf, &const16_regno)
4752 	  || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4753 				    &const16_regno)
4754 	  || const16_regno != regno)
4755 	return XTENSA_UNDEFINED;
4756     }
4757   else
4758     return XTENSA_UNDEFINED;
4759 
4760   /* Next instruction should be an CALLXn with operand 0 == regno.  */
4761   offset += xtensa_format_length (isa, fmt);
4762   xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4763   fmt = xtensa_format_decode (isa, insnbuf);
4764   if (fmt == XTENSA_UNDEFINED
4765       || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4766     return XTENSA_UNDEFINED;
4767   opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4768   if (opcode == XTENSA_UNDEFINED
4769       || !is_indirect_call_opcode (opcode))
4770     return XTENSA_UNDEFINED;
4771 
4772   if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4773 				fmt, 0, slotbuf, &call_regno)
4774       || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4775 				&call_regno))
4776     return XTENSA_UNDEFINED;
4777 
4778   if (call_regno != regno)
4779     return XTENSA_UNDEFINED;
4780 
4781   return opcode;
4782 }
4783 
4784 
4785 /* Data structures used during relaxation.  */
4786 
4787 /* r_reloc: relocation values.  */
4788 
4789 /* Through the relaxation process, we need to keep track of the values
4790    that will result from evaluating relocations.  The standard ELF
4791    relocation structure is not sufficient for this purpose because we're
4792    operating on multiple input files at once, so we need to know which
4793    input file a relocation refers to.  The r_reloc structure thus
4794    records both the input file (bfd) and ELF relocation.
4795 
4796    For efficiency, an r_reloc also contains a "target_offset" field to
4797    cache the target-section-relative offset value that is represented by
4798    the relocation.
4799 
4800    The r_reloc also contains a virtual offset that allows multiple
4801    inserted literals to be placed at the same "address" with
4802    different offsets.  */
4803 
4804 typedef struct r_reloc_struct r_reloc;
4805 
4806 struct r_reloc_struct
4807 {
4808   bfd *abfd;
4809   Elf_Internal_Rela rela;
4810   bfd_vma target_offset;
4811   bfd_vma virtual_offset;
4812 };
4813 
4814 
4815 /* The r_reloc structure is included by value in literal_value, but not
4816    every literal_value has an associated relocation -- some are simple
4817    constants.  In such cases, we set all the fields in the r_reloc
4818    struct to zero.  The r_reloc_is_const function should be used to
4819    detect this case.  */
4820 
4821 static bfd_boolean
4822 r_reloc_is_const (const r_reloc *r_rel)
4823 {
4824   return (r_rel->abfd == NULL);
4825 }
4826 
4827 
4828 static bfd_vma
4829 r_reloc_get_target_offset (const r_reloc *r_rel)
4830 {
4831   bfd_vma target_offset;
4832   unsigned long r_symndx;
4833 
4834   BFD_ASSERT (!r_reloc_is_const (r_rel));
4835   r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4836   target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4837   return (target_offset + r_rel->rela.r_addend);
4838 }
4839 
4840 
4841 static struct elf_link_hash_entry *
4842 r_reloc_get_hash_entry (const r_reloc *r_rel)
4843 {
4844   unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4845   return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4846 }
4847 
4848 
4849 static asection *
4850 r_reloc_get_section (const r_reloc *r_rel)
4851 {
4852   unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4853   return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4854 }
4855 
4856 
4857 static bfd_boolean
4858 r_reloc_is_defined (const r_reloc *r_rel)
4859 {
4860   asection *sec;
4861   if (r_rel == NULL)
4862     return FALSE;
4863 
4864   sec = r_reloc_get_section (r_rel);
4865   if (sec == bfd_abs_section_ptr
4866       || sec == bfd_com_section_ptr
4867       || sec == bfd_und_section_ptr)
4868     return FALSE;
4869   return TRUE;
4870 }
4871 
4872 
4873 static void
4874 r_reloc_init (r_reloc *r_rel,
4875 	      bfd *abfd,
4876 	      Elf_Internal_Rela *irel,
4877 	      bfd_byte *contents,
4878 	      bfd_size_type content_length)
4879 {
4880   int r_type;
4881   reloc_howto_type *howto;
4882 
4883   if (irel)
4884     {
4885       r_rel->rela = *irel;
4886       r_rel->abfd = abfd;
4887       r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4888       r_rel->virtual_offset = 0;
4889       r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4890       howto = &elf_howto_table[r_type];
4891       if (howto->partial_inplace)
4892 	{
4893 	  bfd_vma inplace_val;
4894 	  BFD_ASSERT (r_rel->rela.r_offset < content_length);
4895 
4896 	  inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4897 	  r_rel->target_offset += inplace_val;
4898 	}
4899     }
4900   else
4901     memset (r_rel, 0, sizeof (r_reloc));
4902 }
4903 
4904 
4905 #if DEBUG
4906 
4907 static void
4908 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4909 {
4910   if (r_reloc_is_defined (r_rel))
4911     {
4912       asection *sec = r_reloc_get_section (r_rel);
4913       fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4914     }
4915   else if (r_reloc_get_hash_entry (r_rel))
4916     fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4917   else
4918     fprintf (fp, " ?? + ");
4919 
4920   fprintf_vma (fp, r_rel->target_offset);
4921   if (r_rel->virtual_offset)
4922     {
4923       fprintf (fp, " + ");
4924       fprintf_vma (fp, r_rel->virtual_offset);
4925     }
4926 
4927   fprintf (fp, ")");
4928 }
4929 
4930 #endif /* DEBUG */
4931 
4932 
4933 /* source_reloc: relocations that reference literals.  */
4934 
4935 /* To determine whether literals can be coalesced, we need to first
4936    record all the relocations that reference the literals.  The
4937    source_reloc structure below is used for this purpose.  The
4938    source_reloc entries are kept in a per-literal-section array, sorted
4939    by offset within the literal section (i.e., target offset).
4940 
4941    The source_sec and r_rel.rela.r_offset fields identify the source of
4942    the relocation.  The r_rel field records the relocation value, i.e.,
4943    the offset of the literal being referenced.  The opnd field is needed
4944    to determine the range of the immediate field to which the relocation
4945    applies, so we can determine whether another literal with the same
4946    value is within range.  The is_null field is true when the relocation
4947    is being removed (e.g., when an L32R is being removed due to a CALLX
4948    that is converted to a direct CALL).  */
4949 
4950 typedef struct source_reloc_struct source_reloc;
4951 
4952 struct source_reloc_struct
4953 {
4954   asection *source_sec;
4955   r_reloc r_rel;
4956   xtensa_opcode opcode;
4957   int opnd;
4958   bfd_boolean is_null;
4959   bfd_boolean is_abs_literal;
4960 };
4961 
4962 
4963 static void
4964 init_source_reloc (source_reloc *reloc,
4965 		   asection *source_sec,
4966 		   const r_reloc *r_rel,
4967 		   xtensa_opcode opcode,
4968 		   int opnd,
4969 		   bfd_boolean is_abs_literal)
4970 {
4971   reloc->source_sec = source_sec;
4972   reloc->r_rel = *r_rel;
4973   reloc->opcode = opcode;
4974   reloc->opnd = opnd;
4975   reloc->is_null = FALSE;
4976   reloc->is_abs_literal = is_abs_literal;
4977 }
4978 
4979 
4980 /* Find the source_reloc for a particular source offset and relocation
4981    type.  Note that the array is sorted by _target_ offset, so this is
4982    just a linear search.  */
4983 
4984 static source_reloc *
4985 find_source_reloc (source_reloc *src_relocs,
4986 		   int src_count,
4987 		   asection *sec,
4988 		   Elf_Internal_Rela *irel)
4989 {
4990   int i;
4991 
4992   for (i = 0; i < src_count; i++)
4993     {
4994       if (src_relocs[i].source_sec == sec
4995 	  && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4996 	  && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4997 	      == ELF32_R_TYPE (irel->r_info)))
4998 	return &src_relocs[i];
4999     }
5000 
5001   return NULL;
5002 }
5003 
5004 
5005 static int
5006 source_reloc_compare (const void *ap, const void *bp)
5007 {
5008   const source_reloc *a = (const source_reloc *) ap;
5009   const source_reloc *b = (const source_reloc *) bp;
5010 
5011   if (a->r_rel.target_offset != b->r_rel.target_offset)
5012     return (a->r_rel.target_offset - b->r_rel.target_offset);
5013 
5014   /* We don't need to sort on these criteria for correctness,
5015      but enforcing a more strict ordering prevents unstable qsort
5016      from behaving differently with different implementations.
5017      Without the code below we get correct but different results
5018      on Solaris 2.7 and 2.8.  We would like to always produce the
5019      same results no matter the host. */
5020 
5021   if ((!a->is_null) - (!b->is_null))
5022     return ((!a->is_null) - (!b->is_null));
5023   return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5024 }
5025 
5026 
5027 /* Literal values and value hash tables.  */
5028 
5029 /* Literals with the same value can be coalesced.  The literal_value
5030    structure records the value of a literal: the "r_rel" field holds the
5031    information from the relocation on the literal (if there is one) and
5032    the "value" field holds the contents of the literal word itself.
5033 
5034    The value_map structure records a literal value along with the
5035    location of a literal holding that value.  The value_map hash table
5036    is indexed by the literal value, so that we can quickly check if a
5037    particular literal value has been seen before and is thus a candidate
5038    for coalescing.  */
5039 
5040 typedef struct literal_value_struct literal_value;
5041 typedef struct value_map_struct value_map;
5042 typedef struct value_map_hash_table_struct value_map_hash_table;
5043 
5044 struct literal_value_struct
5045 {
5046   r_reloc r_rel;
5047   unsigned long value;
5048   bfd_boolean is_abs_literal;
5049 };
5050 
5051 struct value_map_struct
5052 {
5053   literal_value val;			/* The literal value.  */
5054   r_reloc loc;				/* Location of the literal.  */
5055   value_map *next;
5056 };
5057 
5058 struct value_map_hash_table_struct
5059 {
5060   unsigned bucket_count;
5061   value_map **buckets;
5062   unsigned count;
5063   bfd_boolean has_last_loc;
5064   r_reloc last_loc;
5065 };
5066 
5067 
5068 static void
5069 init_literal_value (literal_value *lit,
5070 		    const r_reloc *r_rel,
5071 		    unsigned long value,
5072 		    bfd_boolean is_abs_literal)
5073 {
5074   lit->r_rel = *r_rel;
5075   lit->value = value;
5076   lit->is_abs_literal = is_abs_literal;
5077 }
5078 
5079 
5080 static bfd_boolean
5081 literal_value_equal (const literal_value *src1,
5082 		     const literal_value *src2,
5083 		     bfd_boolean final_static_link)
5084 {
5085   struct elf_link_hash_entry *h1, *h2;
5086 
5087   if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5088     return FALSE;
5089 
5090   if (r_reloc_is_const (&src1->r_rel))
5091     return (src1->value == src2->value);
5092 
5093   if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5094       != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5095     return FALSE;
5096 
5097   if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5098     return FALSE;
5099 
5100   if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5101     return FALSE;
5102 
5103   if (src1->value != src2->value)
5104     return FALSE;
5105 
5106   /* Now check for the same section (if defined) or the same elf_hash
5107      (if undefined or weak).  */
5108   h1 = r_reloc_get_hash_entry (&src1->r_rel);
5109   h2 = r_reloc_get_hash_entry (&src2->r_rel);
5110   if (r_reloc_is_defined (&src1->r_rel)
5111       && (final_static_link
5112 	  || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5113 	      && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5114     {
5115       if (r_reloc_get_section (&src1->r_rel)
5116 	  != r_reloc_get_section (&src2->r_rel))
5117 	return FALSE;
5118     }
5119   else
5120     {
5121       /* Require that the hash entries (i.e., symbols) be identical.  */
5122       if (h1 != h2 || h1 == 0)
5123 	return FALSE;
5124     }
5125 
5126   if (src1->is_abs_literal != src2->is_abs_literal)
5127     return FALSE;
5128 
5129   return TRUE;
5130 }
5131 
5132 
5133 /* Must be power of 2.  */
5134 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5135 
5136 static value_map_hash_table *
5137 value_map_hash_table_init (void)
5138 {
5139   value_map_hash_table *values;
5140 
5141   values = (value_map_hash_table *)
5142     bfd_zmalloc (sizeof (value_map_hash_table));
5143   values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5144   values->count = 0;
5145   values->buckets = (value_map **)
5146     bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5147   if (values->buckets == NULL)
5148     {
5149       free (values);
5150       return NULL;
5151     }
5152   values->has_last_loc = FALSE;
5153 
5154   return values;
5155 }
5156 
5157 
5158 static void
5159 value_map_hash_table_delete (value_map_hash_table *table)
5160 {
5161   free (table->buckets);
5162   free (table);
5163 }
5164 
5165 
5166 static unsigned
5167 hash_bfd_vma (bfd_vma val)
5168 {
5169   return (val >> 2) + (val >> 10);
5170 }
5171 
5172 
5173 static unsigned
5174 literal_value_hash (const literal_value *src)
5175 {
5176   unsigned hash_val;
5177 
5178   hash_val = hash_bfd_vma (src->value);
5179   if (!r_reloc_is_const (&src->r_rel))
5180     {
5181       void *sec_or_hash;
5182 
5183       hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5184       hash_val += hash_bfd_vma (src->r_rel.target_offset);
5185       hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5186 
5187       /* Now check for the same section and the same elf_hash.  */
5188       if (r_reloc_is_defined (&src->r_rel))
5189 	sec_or_hash = r_reloc_get_section (&src->r_rel);
5190       else
5191 	sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5192       hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5193     }
5194   return hash_val;
5195 }
5196 
5197 
5198 /* Check if the specified literal_value has been seen before.  */
5199 
5200 static value_map *
5201 value_map_get_cached_value (value_map_hash_table *map,
5202 			    const literal_value *val,
5203 			    bfd_boolean final_static_link)
5204 {
5205   value_map *map_e;
5206   value_map *bucket;
5207   unsigned idx;
5208 
5209   idx = literal_value_hash (val);
5210   idx = idx & (map->bucket_count - 1);
5211   bucket = map->buckets[idx];
5212   for (map_e = bucket; map_e; map_e = map_e->next)
5213     {
5214       if (literal_value_equal (&map_e->val, val, final_static_link))
5215 	return map_e;
5216     }
5217   return NULL;
5218 }
5219 
5220 
5221 /* Record a new literal value.  It is illegal to call this if VALUE
5222    already has an entry here.  */
5223 
5224 static value_map *
5225 add_value_map (value_map_hash_table *map,
5226 	       const literal_value *val,
5227 	       const r_reloc *loc,
5228 	       bfd_boolean final_static_link)
5229 {
5230   value_map **bucket_p;
5231   unsigned idx;
5232 
5233   value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5234   if (val_e == NULL)
5235     {
5236       bfd_set_error (bfd_error_no_memory);
5237       return NULL;
5238     }
5239 
5240   BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5241   val_e->val = *val;
5242   val_e->loc = *loc;
5243 
5244   idx = literal_value_hash (val);
5245   idx = idx & (map->bucket_count - 1);
5246   bucket_p = &map->buckets[idx];
5247 
5248   val_e->next = *bucket_p;
5249   *bucket_p = val_e;
5250   map->count++;
5251   /* FIXME: Consider resizing the hash table if we get too many entries.  */
5252 
5253   return val_e;
5254 }
5255 
5256 
5257 /* Lists of text actions (ta_) for narrowing, widening, longcall
5258    conversion, space fill, code & literal removal, etc.  */
5259 
5260 /* The following text actions are generated:
5261 
5262    "ta_remove_insn"	    remove an instruction or instructions
5263    "ta_remove_longcall"	    convert longcall to call
5264    "ta_convert_longcall"    convert longcall to nop/call
5265    "ta_narrow_insn"	    narrow a wide instruction
5266    "ta_widen"		    widen a narrow instruction
5267    "ta_fill"		    add fill or remove fill
5268       removed < 0 is a fill; branches to the fill address will be
5269 	changed to address + fill size (e.g., address - removed)
5270       removed >= 0 branches to the fill address will stay unchanged
5271    "ta_remove_literal"	    remove a literal; this action is
5272 			    indicated when a literal is removed
5273 			    or replaced.
5274    "ta_add_literal"	    insert a new literal; this action is
5275 			    indicated when a literal has been moved.
5276 			    It may use a virtual_offset because
5277 			    multiple literals can be placed at the
5278 			    same location.
5279 
5280    For each of these text actions, we also record the number of bytes
5281    removed by performing the text action.  In the case of a "ta_widen"
5282    or a "ta_fill" that adds space, the removed_bytes will be negative.  */
5283 
5284 typedef struct text_action_struct text_action;
5285 typedef struct text_action_list_struct text_action_list;
5286 typedef enum text_action_enum_t text_action_t;
5287 
5288 enum text_action_enum_t
5289 {
5290   ta_none,
5291   ta_remove_insn,	 /* removed = -size */
5292   ta_remove_longcall,	 /* removed = -size */
5293   ta_convert_longcall,	 /* removed = 0 */
5294   ta_narrow_insn,	 /* removed = -1 */
5295   ta_widen_insn,	 /* removed = +1 */
5296   ta_fill,		 /* removed = +size */
5297   ta_remove_literal,
5298   ta_add_literal
5299 };
5300 
5301 
5302 /* Structure for a text action record.  */
5303 struct text_action_struct
5304 {
5305   text_action_t action;
5306   asection *sec;	/* Optional */
5307   bfd_vma offset;
5308   bfd_vma virtual_offset;  /* Zero except for adding literals.  */
5309   int removed_bytes;
5310   literal_value value;	/* Only valid when adding literals.  */
5311 };
5312 
5313 struct removal_by_action_entry_struct
5314 {
5315   bfd_vma offset;
5316   int removed;
5317   int eq_removed;
5318   int eq_removed_before_fill;
5319 };
5320 typedef struct removal_by_action_entry_struct removal_by_action_entry;
5321 
5322 struct removal_by_action_map_struct
5323 {
5324   unsigned n_entries;
5325   removal_by_action_entry *entry;
5326 };
5327 typedef struct removal_by_action_map_struct removal_by_action_map;
5328 
5329 
5330 /* List of all of the actions taken on a text section.  */
5331 struct text_action_list_struct
5332 {
5333   unsigned count;
5334   splay_tree tree;
5335   removal_by_action_map map;
5336 };
5337 
5338 
5339 static text_action *
5340 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5341 {
5342   text_action a;
5343 
5344   /* It is not necessary to fill at the end of a section.  */
5345   if (sec->size == offset)
5346     return NULL;
5347 
5348   a.offset = offset;
5349   a.action = ta_fill;
5350 
5351   splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5352   if (node)
5353     return (text_action *)node->value;
5354   return NULL;
5355 }
5356 
5357 
5358 static int
5359 compute_removed_action_diff (const text_action *ta,
5360 			     asection *sec,
5361 			     bfd_vma offset,
5362 			     int removed,
5363 			     int removable_space)
5364 {
5365   int new_removed;
5366   int current_removed = 0;
5367 
5368   if (ta)
5369     current_removed = ta->removed_bytes;
5370 
5371   BFD_ASSERT (ta == NULL || ta->offset == offset);
5372   BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5373 
5374   /* It is not necessary to fill at the end of a section.  Clean this up.  */
5375   if (sec->size == offset)
5376     new_removed = removable_space - 0;
5377   else
5378     {
5379       int space;
5380       int added = -removed - current_removed;
5381       /* Ignore multiples of the section alignment.  */
5382       added = ((1 << sec->alignment_power) - 1) & added;
5383       new_removed = (-added);
5384 
5385       /* Modify for removable.  */
5386       space = removable_space - new_removed;
5387       new_removed = (removable_space
5388 		     - (((1 << sec->alignment_power) - 1) & space));
5389     }
5390   return (new_removed - current_removed);
5391 }
5392 
5393 
5394 static void
5395 adjust_fill_action (text_action *ta, int fill_diff)
5396 {
5397   ta->removed_bytes += fill_diff;
5398 }
5399 
5400 
5401 static int
5402 text_action_compare (splay_tree_key a, splay_tree_key b)
5403 {
5404   text_action *pa = (text_action *)a;
5405   text_action *pb = (text_action *)b;
5406   static const int action_priority[] =
5407     {
5408       [ta_fill] = 0,
5409       [ta_none] = 1,
5410       [ta_convert_longcall] = 2,
5411       [ta_narrow_insn] = 3,
5412       [ta_remove_insn] = 4,
5413       [ta_remove_longcall] = 5,
5414       [ta_remove_literal] = 6,
5415       [ta_widen_insn] = 7,
5416       [ta_add_literal] = 8,
5417     };
5418 
5419   if (pa->offset == pb->offset)
5420     {
5421       if (pa->action == pb->action)
5422 	  return 0;
5423       return action_priority[pa->action] - action_priority[pb->action];
5424     }
5425   else
5426     return pa->offset < pb->offset ? -1 : 1;
5427 }
5428 
5429 static text_action *
5430 action_first (text_action_list *action_list)
5431 {
5432   splay_tree_node node = splay_tree_min (action_list->tree);
5433   return node ? (text_action *)node->value : NULL;
5434 }
5435 
5436 static text_action *
5437 action_next (text_action_list *action_list, text_action *action)
5438 {
5439   splay_tree_node node = splay_tree_successor (action_list->tree,
5440 					       (splay_tree_key)action);
5441   return node ? (text_action *)node->value : NULL;
5442 }
5443 
5444 /* Add a modification action to the text.  For the case of adding or
5445    removing space, modify any current fill and assume that
5446    "unreachable_space" bytes can be freely contracted.  Note that a
5447    negative removed value is a fill.  */
5448 
5449 static void
5450 text_action_add (text_action_list *l,
5451 		 text_action_t action,
5452 		 asection *sec,
5453 		 bfd_vma offset,
5454 		 int removed)
5455 {
5456   text_action *ta;
5457   text_action a;
5458 
5459   /* It is not necessary to fill at the end of a section.  */
5460   if (action == ta_fill && sec->size == offset)
5461     return;
5462 
5463   /* It is not necessary to fill 0 bytes.  */
5464   if (action == ta_fill && removed == 0)
5465     return;
5466 
5467   a.action = action;
5468   a.offset = offset;
5469 
5470   if (action == ta_fill)
5471     {
5472       splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5473 
5474       if (node)
5475 	{
5476 	  ta = (text_action *)node->value;
5477 	  ta->removed_bytes += removed;
5478 	  return;
5479 	}
5480     }
5481   else
5482     BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
5483 
5484   ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5485   ta->action = action;
5486   ta->sec = sec;
5487   ta->offset = offset;
5488   ta->removed_bytes = removed;
5489   splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5490   ++l->count;
5491 }
5492 
5493 
5494 static void
5495 text_action_add_literal (text_action_list *l,
5496 			 text_action_t action,
5497 			 const r_reloc *loc,
5498 			 const literal_value *value,
5499 			 int removed)
5500 {
5501   text_action *ta;
5502   asection *sec = r_reloc_get_section (loc);
5503   bfd_vma offset = loc->target_offset;
5504   bfd_vma virtual_offset = loc->virtual_offset;
5505 
5506   BFD_ASSERT (action == ta_add_literal);
5507 
5508   /* Create a new record and fill it up.  */
5509   ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5510   ta->action = action;
5511   ta->sec = sec;
5512   ta->offset = offset;
5513   ta->virtual_offset = virtual_offset;
5514   ta->value = *value;
5515   ta->removed_bytes = removed;
5516 
5517   BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5518   splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5519   ++l->count;
5520 }
5521 
5522 
5523 /* Find the total offset adjustment for the relaxations specified by
5524    text_actions, beginning from a particular starting action.  This is
5525    typically used from offset_with_removed_text to search an entire list of
5526    actions, but it may also be called directly when adjusting adjacent offsets
5527    so that each search may begin where the previous one left off.  */
5528 
5529 static int
5530 removed_by_actions (text_action_list *action_list,
5531 		    text_action **p_start_action,
5532 		    bfd_vma offset,
5533 		    bfd_boolean before_fill)
5534 {
5535   text_action *r;
5536   int removed = 0;
5537 
5538   r = *p_start_action;
5539   if (r)
5540     {
5541       splay_tree_node node = splay_tree_lookup (action_list->tree,
5542 						(splay_tree_key)r);
5543       BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5544     }
5545 
5546   while (r)
5547     {
5548       if (r->offset > offset)
5549 	break;
5550 
5551       if (r->offset == offset
5552 	  && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5553 	break;
5554 
5555       removed += r->removed_bytes;
5556 
5557       r = action_next (action_list, r);
5558     }
5559 
5560   *p_start_action = r;
5561   return removed;
5562 }
5563 
5564 
5565 static bfd_vma
5566 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5567 {
5568   text_action *r = action_first (action_list);
5569 
5570   return offset - removed_by_actions (action_list, &r, offset, FALSE);
5571 }
5572 
5573 
5574 static unsigned
5575 action_list_count (text_action_list *action_list)
5576 {
5577   return action_list->count;
5578 }
5579 
5580 typedef struct map_action_fn_context_struct map_action_fn_context;
5581 struct map_action_fn_context_struct
5582 {
5583   int removed;
5584   removal_by_action_map map;
5585   bfd_boolean eq_complete;
5586 };
5587 
5588 static int
5589 map_action_fn (splay_tree_node node, void *p)
5590 {
5591   map_action_fn_context *ctx = p;
5592   text_action *r = (text_action *)node->value;
5593   removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
5594 
5595   if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
5596     {
5597       --ientry;
5598     }
5599   else
5600     {
5601       ++ctx->map.n_entries;
5602       ctx->eq_complete = FALSE;
5603       ientry->offset = r->offset;
5604       ientry->eq_removed_before_fill = ctx->removed;
5605     }
5606 
5607   if (!ctx->eq_complete)
5608     {
5609       if (r->action != ta_fill || r->removed_bytes >= 0)
5610 	{
5611 	  ientry->eq_removed = ctx->removed;
5612 	  ctx->eq_complete = TRUE;
5613 	}
5614       else
5615 	ientry->eq_removed = ctx->removed + r->removed_bytes;
5616     }
5617 
5618   ctx->removed += r->removed_bytes;
5619   ientry->removed = ctx->removed;
5620   return 0;
5621 }
5622 
5623 static void
5624 map_removal_by_action (text_action_list *action_list)
5625 {
5626   map_action_fn_context ctx;
5627 
5628   ctx.removed = 0;
5629   ctx.map.n_entries = 0;
5630   ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5631 			      sizeof (removal_by_action_entry));
5632   ctx.eq_complete = FALSE;
5633 
5634   splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5635   action_list->map = ctx.map;
5636 }
5637 
5638 static int
5639 removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5640 			bfd_boolean before_fill)
5641 {
5642   unsigned a, b;
5643 
5644   if (!action_list->map.entry)
5645     map_removal_by_action (action_list);
5646 
5647   if (!action_list->map.n_entries)
5648     return 0;
5649 
5650   a = 0;
5651   b = action_list->map.n_entries;
5652 
5653   while (b - a > 1)
5654     {
5655       unsigned c = (a + b) / 2;
5656 
5657       if (action_list->map.entry[c].offset <= offset)
5658 	a = c;
5659       else
5660 	b = c;
5661     }
5662 
5663   if (action_list->map.entry[a].offset < offset)
5664     {
5665       return action_list->map.entry[a].removed;
5666     }
5667   else if (action_list->map.entry[a].offset == offset)
5668     {
5669       return before_fill ?
5670 	action_list->map.entry[a].eq_removed_before_fill :
5671 	action_list->map.entry[a].eq_removed;
5672     }
5673   else
5674     {
5675       return 0;
5676     }
5677 }
5678 
5679 static bfd_vma
5680 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5681 {
5682   int removed = removed_by_actions_map (action_list, offset, FALSE);
5683   return offset - removed;
5684 }
5685 
5686 
5687 /* The find_insn_action routine will only find non-fill actions.  */
5688 
5689 static text_action *
5690 find_insn_action (text_action_list *action_list, bfd_vma offset)
5691 {
5692   static const text_action_t action[] =
5693     {
5694       ta_convert_longcall,
5695       ta_remove_longcall,
5696       ta_widen_insn,
5697       ta_narrow_insn,
5698       ta_remove_insn,
5699     };
5700   text_action a;
5701   unsigned i;
5702 
5703   a.offset = offset;
5704   for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5705     {
5706       splay_tree_node node;
5707 
5708       a.action = action[i];
5709       node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5710       if (node)
5711 	return (text_action *)node->value;
5712     }
5713   return NULL;
5714 }
5715 
5716 
5717 #if DEBUG
5718 
5719 static void
5720 print_action (FILE *fp, text_action *r)
5721 {
5722   const char *t = "unknown";
5723   switch (r->action)
5724     {
5725     case ta_remove_insn:
5726       t = "remove_insn"; break;
5727     case ta_remove_longcall:
5728       t = "remove_longcall"; break;
5729     case ta_convert_longcall:
5730       t = "convert_longcall"; break;
5731     case ta_narrow_insn:
5732       t = "narrow_insn"; break;
5733     case ta_widen_insn:
5734       t = "widen_insn"; break;
5735     case ta_fill:
5736       t = "fill"; break;
5737     case ta_none:
5738       t = "none"; break;
5739     case ta_remove_literal:
5740       t = "remove_literal"; break;
5741     case ta_add_literal:
5742       t = "add_literal"; break;
5743     }
5744 
5745   fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5746 	   r->sec->owner->filename,
5747 	   r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5748 }
5749 
5750 static int
5751 print_action_list_fn (splay_tree_node node, void *p)
5752 {
5753   text_action *r = (text_action *)node->value;
5754 
5755   print_action (p, r);
5756   return 0;
5757 }
5758 
5759 static void
5760 print_action_list (FILE *fp, text_action_list *action_list)
5761 {
5762   fprintf (fp, "Text Action\n");
5763   splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
5764 }
5765 
5766 #endif /* DEBUG */
5767 
5768 
5769 /* Lists of literals being coalesced or removed.  */
5770 
5771 /* In the usual case, the literal identified by "from" is being
5772    coalesced with another literal identified by "to".  If the literal is
5773    unused and is being removed altogether, "to.abfd" will be NULL.
5774    The removed_literal entries are kept on a per-section list, sorted
5775    by the "from" offset field.  */
5776 
5777 typedef struct removed_literal_struct removed_literal;
5778 typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
5779 typedef struct removed_literal_list_struct removed_literal_list;
5780 
5781 struct removed_literal_struct
5782 {
5783   r_reloc from;
5784   r_reloc to;
5785   removed_literal *next;
5786 };
5787 
5788 struct removed_literal_map_entry_struct
5789 {
5790   bfd_vma addr;
5791   removed_literal *literal;
5792 };
5793 
5794 struct removed_literal_list_struct
5795 {
5796   removed_literal *head;
5797   removed_literal *tail;
5798 
5799   unsigned n_map;
5800   removed_literal_map_entry *map;
5801 };
5802 
5803 
5804 /* Record that the literal at "from" is being removed.  If "to" is not
5805    NULL, the "from" literal is being coalesced with the "to" literal.  */
5806 
5807 static void
5808 add_removed_literal (removed_literal_list *removed_list,
5809 		     const r_reloc *from,
5810 		     const r_reloc *to)
5811 {
5812   removed_literal *r, *new_r, *next_r;
5813 
5814   new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5815 
5816   new_r->from = *from;
5817   if (to)
5818     new_r->to = *to;
5819   else
5820     new_r->to.abfd = NULL;
5821   new_r->next = NULL;
5822 
5823   r = removed_list->head;
5824   if (r == NULL)
5825     {
5826       removed_list->head = new_r;
5827       removed_list->tail = new_r;
5828     }
5829   /* Special check for common case of append.  */
5830   else if (removed_list->tail->from.target_offset < from->target_offset)
5831     {
5832       removed_list->tail->next = new_r;
5833       removed_list->tail = new_r;
5834     }
5835   else
5836     {
5837       while (r->from.target_offset < from->target_offset && r->next)
5838 	{
5839 	  r = r->next;
5840 	}
5841       next_r = r->next;
5842       r->next = new_r;
5843       new_r->next = next_r;
5844       if (next_r == NULL)
5845 	removed_list->tail = new_r;
5846     }
5847 }
5848 
5849 static void
5850 map_removed_literal (removed_literal_list *removed_list)
5851 {
5852   unsigned n_map = 0;
5853   unsigned i;
5854   removed_literal_map_entry *map = NULL;
5855   removed_literal *r = removed_list->head;
5856 
5857   for (i = 0; r; ++i, r = r->next)
5858     {
5859       if (i == n_map)
5860 	{
5861 	  n_map = (n_map * 2) + 2;
5862 	  map = bfd_realloc (map, n_map * sizeof (*map));
5863 	}
5864       map[i].addr = r->from.target_offset;
5865       map[i].literal = r;
5866     }
5867   removed_list->map = map;
5868   removed_list->n_map = i;
5869 }
5870 
5871 static int
5872 removed_literal_compare (const void *a, const void *b)
5873 {
5874   const removed_literal_map_entry *pa = a;
5875   const removed_literal_map_entry *pb = b;
5876 
5877   if (pa->addr == pb->addr)
5878     return 0;
5879   else
5880     return pa->addr < pb->addr ? -1 : 1;
5881 }
5882 
5883 /* Check if the list of removed literals contains an entry for the
5884    given address.  Return the entry if found.  */
5885 
5886 static removed_literal *
5887 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5888 {
5889   removed_literal_map_entry *p;
5890   removed_literal *r = NULL;
5891 
5892   if (removed_list->map == NULL)
5893     map_removed_literal (removed_list);
5894 
5895   p = bsearch (&addr, removed_list->map, removed_list->n_map,
5896 	       sizeof (*removed_list->map), removed_literal_compare);
5897   if (p)
5898     {
5899       while (p != removed_list->map && (p - 1)->addr == addr)
5900 	--p;
5901       r = p->literal;
5902     }
5903   return r;
5904 }
5905 
5906 
5907 #if DEBUG
5908 
5909 static void
5910 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
5911 {
5912   removed_literal *r;
5913   r = removed_list->head;
5914   if (r)
5915     fprintf (fp, "Removed Literals\n");
5916   for (; r != NULL; r = r->next)
5917     {
5918       print_r_reloc (fp, &r->from);
5919       fprintf (fp, " => ");
5920       if (r->to.abfd == NULL)
5921 	fprintf (fp, "REMOVED");
5922       else
5923 	print_r_reloc (fp, &r->to);
5924       fprintf (fp, "\n");
5925     }
5926 }
5927 
5928 #endif /* DEBUG */
5929 
5930 
5931 /* Per-section data for relaxation.  */
5932 
5933 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5934 
5935 struct xtensa_relax_info_struct
5936 {
5937   bfd_boolean is_relaxable_literal_section;
5938   bfd_boolean is_relaxable_asm_section;
5939   int visited;				/* Number of times visited.  */
5940 
5941   source_reloc *src_relocs;		/* Array[src_count].  */
5942   int src_count;
5943   int src_next;				/* Next src_relocs entry to assign.  */
5944 
5945   removed_literal_list removed_list;
5946   text_action_list action_list;
5947 
5948   reloc_bfd_fix *fix_list;
5949   reloc_bfd_fix *fix_array;
5950   unsigned fix_array_count;
5951 
5952   /* Support for expanding the reloc array that is stored
5953      in the section structure.  If the relocations have been
5954      reallocated, the newly allocated relocations will be referenced
5955      here along with the actual size allocated.  The relocation
5956      count will always be found in the section structure.  */
5957   Elf_Internal_Rela *allocated_relocs;
5958   unsigned relocs_count;
5959   unsigned allocated_relocs_count;
5960 };
5961 
5962 struct elf_xtensa_section_data
5963 {
5964   struct bfd_elf_section_data elf;
5965   xtensa_relax_info relax_info;
5966 };
5967 
5968 
5969 static bfd_boolean
5970 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5971 {
5972   if (!sec->used_by_bfd)
5973     {
5974       struct elf_xtensa_section_data *sdata;
5975       bfd_size_type amt = sizeof (*sdata);
5976 
5977       sdata = bfd_zalloc (abfd, amt);
5978       if (sdata == NULL)
5979 	return FALSE;
5980       sec->used_by_bfd = sdata;
5981     }
5982 
5983   return _bfd_elf_new_section_hook (abfd, sec);
5984 }
5985 
5986 
5987 static xtensa_relax_info *
5988 get_xtensa_relax_info (asection *sec)
5989 {
5990   struct elf_xtensa_section_data *section_data;
5991 
5992   /* No info available if no section or if it is an output section.  */
5993   if (!sec || sec == sec->output_section)
5994     return NULL;
5995 
5996   section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5997   return &section_data->relax_info;
5998 }
5999 
6000 
6001 static void
6002 init_xtensa_relax_info (asection *sec)
6003 {
6004   xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6005 
6006   relax_info->is_relaxable_literal_section = FALSE;
6007   relax_info->is_relaxable_asm_section = FALSE;
6008   relax_info->visited = 0;
6009 
6010   relax_info->src_relocs = NULL;
6011   relax_info->src_count = 0;
6012   relax_info->src_next = 0;
6013 
6014   relax_info->removed_list.head = NULL;
6015   relax_info->removed_list.tail = NULL;
6016 
6017   relax_info->action_list.tree = splay_tree_new (text_action_compare,
6018 						 NULL, NULL);
6019   relax_info->action_list.map.n_entries = 0;
6020   relax_info->action_list.map.entry = NULL;
6021 
6022   relax_info->fix_list = NULL;
6023   relax_info->fix_array = NULL;
6024   relax_info->fix_array_count = 0;
6025 
6026   relax_info->allocated_relocs = NULL;
6027   relax_info->relocs_count = 0;
6028   relax_info->allocated_relocs_count = 0;
6029 }
6030 
6031 
6032 /* Coalescing literals may require a relocation to refer to a section in
6033    a different input file, but the standard relocation information
6034    cannot express that.  Instead, the reloc_bfd_fix structures are used
6035    to "fix" the relocations that refer to sections in other input files.
6036    These structures are kept on per-section lists.  The "src_type" field
6037    records the relocation type in case there are multiple relocations on
6038    the same location.  FIXME: This is ugly; an alternative might be to
6039    add new symbols with the "owner" field to some other input file.  */
6040 
6041 struct reloc_bfd_fix_struct
6042 {
6043   asection *src_sec;
6044   bfd_vma src_offset;
6045   unsigned src_type;			/* Relocation type.  */
6046 
6047   asection *target_sec;
6048   bfd_vma target_offset;
6049   bfd_boolean translated;
6050 
6051   reloc_bfd_fix *next;
6052 };
6053 
6054 
6055 static reloc_bfd_fix *
6056 reloc_bfd_fix_init (asection *src_sec,
6057 		    bfd_vma src_offset,
6058 		    unsigned src_type,
6059 		    asection *target_sec,
6060 		    bfd_vma target_offset,
6061 		    bfd_boolean translated)
6062 {
6063   reloc_bfd_fix *fix;
6064 
6065   fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6066   fix->src_sec = src_sec;
6067   fix->src_offset = src_offset;
6068   fix->src_type = src_type;
6069   fix->target_sec = target_sec;
6070   fix->target_offset = target_offset;
6071   fix->translated = translated;
6072 
6073   return fix;
6074 }
6075 
6076 
6077 static void
6078 add_fix (asection *src_sec, reloc_bfd_fix *fix)
6079 {
6080   xtensa_relax_info *relax_info;
6081 
6082   relax_info = get_xtensa_relax_info (src_sec);
6083   fix->next = relax_info->fix_list;
6084   relax_info->fix_list = fix;
6085 }
6086 
6087 
6088 static int
6089 fix_compare (const void *ap, const void *bp)
6090 {
6091   const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6092   const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6093 
6094   if (a->src_offset != b->src_offset)
6095     return (a->src_offset - b->src_offset);
6096   return (a->src_type - b->src_type);
6097 }
6098 
6099 
6100 static void
6101 cache_fix_array (asection *sec)
6102 {
6103   unsigned i, count = 0;
6104   reloc_bfd_fix *r;
6105   xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6106 
6107   if (relax_info == NULL)
6108     return;
6109   if (relax_info->fix_list == NULL)
6110     return;
6111 
6112   for (r = relax_info->fix_list; r != NULL; r = r->next)
6113     count++;
6114 
6115   relax_info->fix_array =
6116     (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6117   relax_info->fix_array_count = count;
6118 
6119   r = relax_info->fix_list;
6120   for (i = 0; i < count; i++, r = r->next)
6121     {
6122       relax_info->fix_array[count - 1 - i] = *r;
6123       relax_info->fix_array[count - 1 - i].next = NULL;
6124     }
6125 
6126   qsort (relax_info->fix_array, relax_info->fix_array_count,
6127 	 sizeof (reloc_bfd_fix), fix_compare);
6128 }
6129 
6130 
6131 static reloc_bfd_fix *
6132 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6133 {
6134   xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6135   reloc_bfd_fix *rv;
6136   reloc_bfd_fix key;
6137 
6138   if (relax_info == NULL)
6139     return NULL;
6140   if (relax_info->fix_list == NULL)
6141     return NULL;
6142 
6143   if (relax_info->fix_array == NULL)
6144     cache_fix_array (sec);
6145 
6146   key.src_offset = offset;
6147   key.src_type = type;
6148   rv = bsearch (&key, relax_info->fix_array,  relax_info->fix_array_count,
6149 		sizeof (reloc_bfd_fix), fix_compare);
6150   return rv;
6151 }
6152 
6153 
6154 /* Section caching.  */
6155 
6156 typedef struct section_cache_struct section_cache_t;
6157 
6158 struct section_cache_struct
6159 {
6160   asection *sec;
6161 
6162   bfd_byte *contents;		/* Cache of the section contents.  */
6163   bfd_size_type content_length;
6164 
6165   property_table_entry *ptbl;	/* Cache of the section property table.  */
6166   unsigned pte_count;
6167 
6168   Elf_Internal_Rela *relocs;	/* Cache of the section relocations.  */
6169   unsigned reloc_count;
6170 };
6171 
6172 
6173 static void
6174 init_section_cache (section_cache_t *sec_cache)
6175 {
6176   memset (sec_cache, 0, sizeof (*sec_cache));
6177 }
6178 
6179 
6180 static void
6181 free_section_cache (section_cache_t *sec_cache)
6182 {
6183   if (sec_cache->sec)
6184     {
6185       release_contents (sec_cache->sec, sec_cache->contents);
6186       release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6187       if (sec_cache->ptbl)
6188 	free (sec_cache->ptbl);
6189     }
6190 }
6191 
6192 
6193 static bfd_boolean
6194 section_cache_section (section_cache_t *sec_cache,
6195 		       asection *sec,
6196 		       struct bfd_link_info *link_info)
6197 {
6198   bfd *abfd;
6199   property_table_entry *prop_table = NULL;
6200   int ptblsize = 0;
6201   bfd_byte *contents = NULL;
6202   Elf_Internal_Rela *internal_relocs = NULL;
6203   bfd_size_type sec_size;
6204 
6205   if (sec == NULL)
6206     return FALSE;
6207   if (sec == sec_cache->sec)
6208     return TRUE;
6209 
6210   abfd = sec->owner;
6211   sec_size = bfd_get_section_limit (abfd, sec);
6212 
6213   /* Get the contents.  */
6214   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6215   if (contents == NULL && sec_size != 0)
6216     goto err;
6217 
6218   /* Get the relocations.  */
6219   internal_relocs = retrieve_internal_relocs (abfd, sec,
6220 					      link_info->keep_memory);
6221 
6222   /* Get the entry table.  */
6223   ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6224 					XTENSA_PROP_SEC_NAME, FALSE);
6225   if (ptblsize < 0)
6226     goto err;
6227 
6228   /* Fill in the new section cache.  */
6229   free_section_cache (sec_cache);
6230   init_section_cache (sec_cache);
6231 
6232   sec_cache->sec = sec;
6233   sec_cache->contents = contents;
6234   sec_cache->content_length = sec_size;
6235   sec_cache->relocs = internal_relocs;
6236   sec_cache->reloc_count = sec->reloc_count;
6237   sec_cache->pte_count = ptblsize;
6238   sec_cache->ptbl = prop_table;
6239 
6240   return TRUE;
6241 
6242  err:
6243   release_contents (sec, contents);
6244   release_internal_relocs (sec, internal_relocs);
6245   if (prop_table)
6246     free (prop_table);
6247   return FALSE;
6248 }
6249 
6250 
6251 /* Extended basic blocks.  */
6252 
6253 /* An ebb_struct represents an Extended Basic Block.  Within this
6254    range, we guarantee that all instructions are decodable, the
6255    property table entries are contiguous, and no property table
6256    specifies a segment that cannot have instructions moved.  This
6257    structure contains caches of the contents, property table and
6258    relocations for the specified section for easy use.  The range is
6259    specified by ranges of indices for the byte offset, property table
6260    offsets and relocation offsets.  These must be consistent.  */
6261 
6262 typedef struct ebb_struct ebb_t;
6263 
6264 struct ebb_struct
6265 {
6266   asection *sec;
6267 
6268   bfd_byte *contents;		/* Cache of the section contents.  */
6269   bfd_size_type content_length;
6270 
6271   property_table_entry *ptbl;	/* Cache of the section property table.  */
6272   unsigned pte_count;
6273 
6274   Elf_Internal_Rela *relocs;	/* Cache of the section relocations.  */
6275   unsigned reloc_count;
6276 
6277   bfd_vma start_offset;		/* Offset in section.  */
6278   unsigned start_ptbl_idx;	/* Offset in the property table.  */
6279   unsigned start_reloc_idx;	/* Offset in the relocations.  */
6280 
6281   bfd_vma end_offset;
6282   unsigned end_ptbl_idx;
6283   unsigned end_reloc_idx;
6284 
6285   bfd_boolean ends_section;	/* Is this the last ebb in a section?  */
6286 
6287   /* The unreachable property table at the end of this set of blocks;
6288      NULL if the end is not an unreachable block.  */
6289   property_table_entry *ends_unreachable;
6290 };
6291 
6292 
6293 enum ebb_target_enum
6294 {
6295   EBB_NO_ALIGN = 0,
6296   EBB_DESIRE_TGT_ALIGN,
6297   EBB_REQUIRE_TGT_ALIGN,
6298   EBB_REQUIRE_LOOP_ALIGN,
6299   EBB_REQUIRE_ALIGN
6300 };
6301 
6302 
6303 /* proposed_action_struct is similar to the text_action_struct except
6304    that is represents a potential transformation, not one that will
6305    occur.  We build a list of these for an extended basic block
6306    and use them to compute the actual actions desired.  We must be
6307    careful that the entire set of actual actions we perform do not
6308    break any relocations that would fit if the actions were not
6309    performed.  */
6310 
6311 typedef struct proposed_action_struct proposed_action;
6312 
6313 struct proposed_action_struct
6314 {
6315   enum ebb_target_enum align_type; /* for the target alignment */
6316   bfd_vma alignment_pow;
6317   text_action_t action;
6318   bfd_vma offset;
6319   int removed_bytes;
6320   bfd_boolean do_action; /* If false, then we will not perform the action.  */
6321 };
6322 
6323 
6324 /* The ebb_constraint_struct keeps a set of proposed actions for an
6325    extended basic block.   */
6326 
6327 typedef struct ebb_constraint_struct ebb_constraint;
6328 
6329 struct ebb_constraint_struct
6330 {
6331   ebb_t ebb;
6332   bfd_boolean start_movable;
6333 
6334   /* Bytes of extra space at the beginning if movable.  */
6335   int start_extra_space;
6336 
6337   enum ebb_target_enum start_align;
6338 
6339   bfd_boolean end_movable;
6340 
6341   /* Bytes of extra space at the end if movable.  */
6342   int end_extra_space;
6343 
6344   unsigned action_count;
6345   unsigned action_allocated;
6346 
6347   /* Array of proposed actions.  */
6348   proposed_action *actions;
6349 
6350   /* Action alignments -- one for each proposed action.  */
6351   enum ebb_target_enum *action_aligns;
6352 };
6353 
6354 
6355 static void
6356 init_ebb_constraint (ebb_constraint *c)
6357 {
6358   memset (c, 0, sizeof (ebb_constraint));
6359 }
6360 
6361 
6362 static void
6363 free_ebb_constraint (ebb_constraint *c)
6364 {
6365   if (c->actions)
6366     free (c->actions);
6367 }
6368 
6369 
6370 static void
6371 init_ebb (ebb_t *ebb,
6372 	  asection *sec,
6373 	  bfd_byte *contents,
6374 	  bfd_size_type content_length,
6375 	  property_table_entry *prop_table,
6376 	  unsigned ptblsize,
6377 	  Elf_Internal_Rela *internal_relocs,
6378 	  unsigned reloc_count)
6379 {
6380   memset (ebb, 0, sizeof (ebb_t));
6381   ebb->sec = sec;
6382   ebb->contents = contents;
6383   ebb->content_length = content_length;
6384   ebb->ptbl = prop_table;
6385   ebb->pte_count = ptblsize;
6386   ebb->relocs = internal_relocs;
6387   ebb->reloc_count = reloc_count;
6388   ebb->start_offset = 0;
6389   ebb->end_offset = ebb->content_length - 1;
6390   ebb->start_ptbl_idx = 0;
6391   ebb->end_ptbl_idx = ptblsize;
6392   ebb->start_reloc_idx = 0;
6393   ebb->end_reloc_idx = reloc_count;
6394 }
6395 
6396 
6397 /* Extend the ebb to all decodable contiguous sections.  The algorithm
6398    for building a basic block around an instruction is to push it
6399    forward until we hit the end of a section, an unreachable block or
6400    a block that cannot be transformed.  Then we push it backwards
6401    searching for similar conditions.  */
6402 
6403 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6404 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6405 static bfd_size_type insn_block_decodable_len
6406   (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6407 
6408 static bfd_boolean
6409 extend_ebb_bounds (ebb_t *ebb)
6410 {
6411   if (!extend_ebb_bounds_forward (ebb))
6412     return FALSE;
6413   if (!extend_ebb_bounds_backward (ebb))
6414     return FALSE;
6415   return TRUE;
6416 }
6417 
6418 
6419 static bfd_boolean
6420 extend_ebb_bounds_forward (ebb_t *ebb)
6421 {
6422   property_table_entry *the_entry, *new_entry;
6423 
6424   the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6425 
6426   /* Stop when (1) we cannot decode an instruction, (2) we are at
6427      the end of the property tables, (3) we hit a non-contiguous property
6428      table entry, (4) we hit a NO_TRANSFORM region.  */
6429 
6430   while (1)
6431     {
6432       bfd_vma entry_end;
6433       bfd_size_type insn_block_len;
6434 
6435       entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6436       insn_block_len =
6437 	insn_block_decodable_len (ebb->contents, ebb->content_length,
6438 				  ebb->end_offset,
6439 				  entry_end - ebb->end_offset);
6440       if (insn_block_len != (entry_end - ebb->end_offset))
6441 	{
6442 	  _bfd_error_handler
6443 	    /* xgettext:c-format */
6444 	    (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6445 	       "possible configuration mismatch"),
6446 	     ebb->sec->owner, ebb->sec,
6447 	     (uint64_t) (ebb->end_offset + insn_block_len));
6448 	  return FALSE;
6449 	}
6450       ebb->end_offset += insn_block_len;
6451 
6452       if (ebb->end_offset == ebb->sec->size)
6453 	ebb->ends_section = TRUE;
6454 
6455       /* Update the reloc counter.  */
6456       while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6457 	     && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6458 		 < ebb->end_offset))
6459 	{
6460 	  ebb->end_reloc_idx++;
6461 	}
6462 
6463       if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6464 	return TRUE;
6465 
6466       new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6467       if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6468 	  || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6469 	  || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6470 	break;
6471 
6472       if (the_entry->address + the_entry->size != new_entry->address)
6473 	break;
6474 
6475       the_entry = new_entry;
6476       ebb->end_ptbl_idx++;
6477     }
6478 
6479   /* Quick check for an unreachable or end of file just at the end.  */
6480   if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6481     {
6482       if (ebb->end_offset == ebb->content_length)
6483 	ebb->ends_section = TRUE;
6484     }
6485   else
6486     {
6487       new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6488       if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6489 	  && the_entry->address + the_entry->size == new_entry->address)
6490 	ebb->ends_unreachable = new_entry;
6491     }
6492 
6493   /* Any other ending requires exact alignment.  */
6494   return TRUE;
6495 }
6496 
6497 
6498 static bfd_boolean
6499 extend_ebb_bounds_backward (ebb_t *ebb)
6500 {
6501   property_table_entry *the_entry, *new_entry;
6502 
6503   the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6504 
6505   /* Stop when (1) we cannot decode the instructions in the current entry.
6506      (2) we are at the beginning of the property tables, (3) we hit a
6507      non-contiguous property table entry, (4) we hit a NO_TRANSFORM region.  */
6508 
6509   while (1)
6510     {
6511       bfd_vma block_begin;
6512       bfd_size_type insn_block_len;
6513 
6514       block_begin = the_entry->address - ebb->sec->vma;
6515       insn_block_len =
6516 	insn_block_decodable_len (ebb->contents, ebb->content_length,
6517 				  block_begin,
6518 				  ebb->start_offset - block_begin);
6519       if (insn_block_len != ebb->start_offset - block_begin)
6520 	{
6521 	  _bfd_error_handler
6522 	    /* xgettext:c-format */
6523 	    (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6524 	       "possible configuration mismatch"),
6525 	     ebb->sec->owner, ebb->sec,
6526 	     (uint64_t) (ebb->end_offset + insn_block_len));
6527 	  return FALSE;
6528 	}
6529       ebb->start_offset -= insn_block_len;
6530 
6531       /* Update the reloc counter.  */
6532       while (ebb->start_reloc_idx > 0
6533 	     && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6534 		 >= ebb->start_offset))
6535 	{
6536 	  ebb->start_reloc_idx--;
6537 	}
6538 
6539       if (ebb->start_ptbl_idx == 0)
6540 	return TRUE;
6541 
6542       new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6543       if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6544 	  || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6545 	  || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6546 	return TRUE;
6547       if (new_entry->address + new_entry->size != the_entry->address)
6548 	return TRUE;
6549 
6550       the_entry = new_entry;
6551       ebb->start_ptbl_idx--;
6552     }
6553   return TRUE;
6554 }
6555 
6556 
6557 static bfd_size_type
6558 insn_block_decodable_len (bfd_byte *contents,
6559 			  bfd_size_type content_len,
6560 			  bfd_vma block_offset,
6561 			  bfd_size_type block_len)
6562 {
6563   bfd_vma offset = block_offset;
6564 
6565   while (offset < block_offset + block_len)
6566     {
6567       bfd_size_type insn_len = 0;
6568 
6569       insn_len = insn_decode_len (contents, content_len, offset);
6570       if (insn_len == 0)
6571 	return (offset - block_offset);
6572       offset += insn_len;
6573     }
6574   return (offset - block_offset);
6575 }
6576 
6577 
6578 static void
6579 ebb_propose_action (ebb_constraint *c,
6580 		    enum ebb_target_enum align_type,
6581 		    bfd_vma alignment_pow,
6582 		    text_action_t action,
6583 		    bfd_vma offset,
6584 		    int removed_bytes,
6585 		    bfd_boolean do_action)
6586 {
6587   proposed_action *act;
6588 
6589   if (c->action_allocated <= c->action_count)
6590     {
6591       unsigned new_allocated, i;
6592       proposed_action *new_actions;
6593 
6594       new_allocated = (c->action_count + 2) * 2;
6595       new_actions = (proposed_action *)
6596 	bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6597 
6598       for (i = 0; i < c->action_count; i++)
6599 	new_actions[i] = c->actions[i];
6600       if (c->actions)
6601 	free (c->actions);
6602       c->actions = new_actions;
6603       c->action_allocated = new_allocated;
6604     }
6605 
6606   act = &c->actions[c->action_count];
6607   act->align_type = align_type;
6608   act->alignment_pow = alignment_pow;
6609   act->action = action;
6610   act->offset = offset;
6611   act->removed_bytes = removed_bytes;
6612   act->do_action = do_action;
6613 
6614   c->action_count++;
6615 }
6616 
6617 
6618 /* Access to internal relocations, section contents and symbols.  */
6619 
6620 /* During relaxation, we need to modify relocations, section contents,
6621    and symbol definitions, and we need to keep the original values from
6622    being reloaded from the input files, i.e., we need to "pin" the
6623    modified values in memory.  We also want to continue to observe the
6624    setting of the "keep-memory" flag.  The following functions wrap the
6625    standard BFD functions to take care of this for us.  */
6626 
6627 static Elf_Internal_Rela *
6628 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6629 {
6630   Elf_Internal_Rela *internal_relocs;
6631 
6632   if ((sec->flags & SEC_LINKER_CREATED) != 0)
6633     return NULL;
6634 
6635   internal_relocs = elf_section_data (sec)->relocs;
6636   if (internal_relocs == NULL)
6637     internal_relocs = (_bfd_elf_link_read_relocs
6638 		       (abfd, sec, NULL, NULL, keep_memory));
6639   return internal_relocs;
6640 }
6641 
6642 
6643 static void
6644 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6645 {
6646   elf_section_data (sec)->relocs = internal_relocs;
6647 }
6648 
6649 
6650 static void
6651 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6652 {
6653   if (internal_relocs
6654       && elf_section_data (sec)->relocs != internal_relocs)
6655     free (internal_relocs);
6656 }
6657 
6658 
6659 static bfd_byte *
6660 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6661 {
6662   bfd_byte *contents;
6663   bfd_size_type sec_size;
6664 
6665   sec_size = bfd_get_section_limit (abfd, sec);
6666   contents = elf_section_data (sec)->this_hdr.contents;
6667 
6668   if (contents == NULL && sec_size != 0)
6669     {
6670       if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6671 	{
6672 	  if (contents)
6673 	    free (contents);
6674 	  return NULL;
6675 	}
6676       if (keep_memory)
6677 	elf_section_data (sec)->this_hdr.contents = contents;
6678     }
6679   return contents;
6680 }
6681 
6682 
6683 static void
6684 pin_contents (asection *sec, bfd_byte *contents)
6685 {
6686   elf_section_data (sec)->this_hdr.contents = contents;
6687 }
6688 
6689 
6690 static void
6691 release_contents (asection *sec, bfd_byte *contents)
6692 {
6693   if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6694     free (contents);
6695 }
6696 
6697 
6698 static Elf_Internal_Sym *
6699 retrieve_local_syms (bfd *input_bfd)
6700 {
6701   Elf_Internal_Shdr *symtab_hdr;
6702   Elf_Internal_Sym *isymbuf;
6703   size_t locsymcount;
6704 
6705   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6706   locsymcount = symtab_hdr->sh_info;
6707 
6708   isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6709   if (isymbuf == NULL && locsymcount != 0)
6710     isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6711 				    NULL, NULL, NULL);
6712 
6713   /* Save the symbols for this input file so they won't be read again.  */
6714   if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6715     symtab_hdr->contents = (unsigned char *) isymbuf;
6716 
6717   return isymbuf;
6718 }
6719 
6720 
6721 /* Code for link-time relaxation.  */
6722 
6723 /* Initialization for relaxation: */
6724 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6725 static bfd_boolean find_relaxable_sections
6726   (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6727 static bfd_boolean collect_source_relocs
6728   (bfd *, asection *, struct bfd_link_info *);
6729 static bfd_boolean is_resolvable_asm_expansion
6730   (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6731    bfd_boolean *);
6732 static Elf_Internal_Rela *find_associated_l32r_irel
6733   (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6734 static bfd_boolean compute_text_actions
6735   (bfd *, asection *, struct bfd_link_info *);
6736 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6737 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6738 typedef struct reloc_range_list_struct reloc_range_list;
6739 static bfd_boolean check_section_ebb_pcrels_fit
6740   (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6741    reloc_range_list *, const ebb_constraint *,
6742    const xtensa_opcode *);
6743 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6744 static void text_action_add_proposed
6745   (text_action_list *, const ebb_constraint *, asection *);
6746 
6747 /* First pass: */
6748 static bfd_boolean compute_removed_literals
6749   (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6750 static Elf_Internal_Rela *get_irel_at_offset
6751   (asection *, Elf_Internal_Rela *, bfd_vma);
6752 static bfd_boolean is_removable_literal
6753   (const source_reloc *, int, const source_reloc *, int, asection *,
6754    property_table_entry *, int);
6755 static bfd_boolean remove_dead_literal
6756   (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6757    Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6758 static bfd_boolean identify_literal_placement
6759   (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6760    value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6761    source_reloc *, property_table_entry *, int, section_cache_t *,
6762    bfd_boolean);
6763 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6764 static bfd_boolean coalesce_shared_literal
6765   (asection *, source_reloc *, property_table_entry *, int, value_map *);
6766 static bfd_boolean move_shared_literal
6767   (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6768    int, const r_reloc *, const literal_value *, section_cache_t *);
6769 
6770 /* Second pass: */
6771 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6772 static bfd_boolean translate_section_fixes (asection *);
6773 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6774 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6775 static void shrink_dynamic_reloc_sections
6776   (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6777 static bfd_boolean move_literal
6778   (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6779    xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6780 static bfd_boolean relax_property_section
6781   (bfd *, asection *, struct bfd_link_info *);
6782 
6783 /* Third pass: */
6784 static bfd_boolean relax_section_symbols (bfd *, asection *);
6785 
6786 
6787 static bfd_boolean
6788 elf_xtensa_relax_section (bfd *abfd,
6789 			  asection *sec,
6790 			  struct bfd_link_info *link_info,
6791 			  bfd_boolean *again)
6792 {
6793   static value_map_hash_table *values = NULL;
6794   static bfd_boolean relocations_analyzed = FALSE;
6795   xtensa_relax_info *relax_info;
6796 
6797   if (!relocations_analyzed)
6798     {
6799       /* Do some overall initialization for relaxation.  */
6800       values = value_map_hash_table_init ();
6801       if (values == NULL)
6802 	return FALSE;
6803       relaxing_section = TRUE;
6804       if (!analyze_relocations (link_info))
6805 	return FALSE;
6806       relocations_analyzed = TRUE;
6807     }
6808   *again = FALSE;
6809 
6810   /* Don't mess with linker-created sections.  */
6811   if ((sec->flags & SEC_LINKER_CREATED) != 0)
6812     return TRUE;
6813 
6814   relax_info = get_xtensa_relax_info (sec);
6815   BFD_ASSERT (relax_info != NULL);
6816 
6817   switch (relax_info->visited)
6818     {
6819     case 0:
6820       /* Note: It would be nice to fold this pass into
6821 	 analyze_relocations, but it is important for this step that the
6822 	 sections be examined in link order.  */
6823       if (!compute_removed_literals (abfd, sec, link_info, values))
6824 	return FALSE;
6825       *again = TRUE;
6826       break;
6827 
6828     case 1:
6829       if (values)
6830 	value_map_hash_table_delete (values);
6831       values = NULL;
6832       if (!relax_section (abfd, sec, link_info))
6833 	return FALSE;
6834       *again = TRUE;
6835       break;
6836 
6837     case 2:
6838       if (!relax_section_symbols (abfd, sec))
6839 	return FALSE;
6840       break;
6841     }
6842 
6843   relax_info->visited++;
6844   return TRUE;
6845 }
6846 
6847 
6848 /* Initialization for relaxation.  */
6849 
6850 /* This function is called once at the start of relaxation.  It scans
6851    all the input sections and marks the ones that are relaxable (i.e.,
6852    literal sections with L32R relocations against them), and then
6853    collects source_reloc information for all the relocations against
6854    those relaxable sections.  During this process, it also detects
6855    longcalls, i.e., calls relaxed by the assembler into indirect
6856    calls, that can be optimized back into direct calls.  Within each
6857    extended basic block (ebb) containing an optimized longcall, it
6858    computes a set of "text actions" that can be performed to remove
6859    the L32R associated with the longcall while optionally preserving
6860    branch target alignments.  */
6861 
6862 static bfd_boolean
6863 analyze_relocations (struct bfd_link_info *link_info)
6864 {
6865   bfd *abfd;
6866   asection *sec;
6867   bfd_boolean is_relaxable = FALSE;
6868 
6869   /* Initialize the per-section relaxation info.  */
6870   for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6871     for (sec = abfd->sections; sec != NULL; sec = sec->next)
6872       {
6873 	init_xtensa_relax_info (sec);
6874       }
6875 
6876   /* Mark relaxable sections (and count relocations against each one).  */
6877   for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6878     for (sec = abfd->sections; sec != NULL; sec = sec->next)
6879       {
6880 	if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6881 	  return FALSE;
6882       }
6883 
6884   /* Bail out if there are no relaxable sections.  */
6885   if (!is_relaxable)
6886     return TRUE;
6887 
6888   /* Allocate space for source_relocs.  */
6889   for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6890     for (sec = abfd->sections; sec != NULL; sec = sec->next)
6891       {
6892 	xtensa_relax_info *relax_info;
6893 
6894 	relax_info = get_xtensa_relax_info (sec);
6895 	if (relax_info->is_relaxable_literal_section
6896 	    || relax_info->is_relaxable_asm_section)
6897 	  {
6898 	    relax_info->src_relocs = (source_reloc *)
6899 	      bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6900 	  }
6901 	else
6902 	  relax_info->src_count = 0;
6903       }
6904 
6905   /* Collect info on relocations against each relaxable section.  */
6906   for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6907     for (sec = abfd->sections; sec != NULL; sec = sec->next)
6908       {
6909 	if (!collect_source_relocs (abfd, sec, link_info))
6910 	  return FALSE;
6911       }
6912 
6913   /* Compute the text actions.  */
6914   for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6915     for (sec = abfd->sections; sec != NULL; sec = sec->next)
6916       {
6917 	if (!compute_text_actions (abfd, sec, link_info))
6918 	  return FALSE;
6919       }
6920 
6921   return TRUE;
6922 }
6923 
6924 
6925 /* Find all the sections that might be relaxed.  The motivation for
6926    this pass is that collect_source_relocs() needs to record _all_ the
6927    relocations that target each relaxable section.  That is expensive
6928    and unnecessary unless the target section is actually going to be
6929    relaxed.  This pass identifies all such sections by checking if
6930    they have L32Rs pointing to them.  In the process, the total number
6931    of relocations targeting each section is also counted so that we
6932    know how much space to allocate for source_relocs against each
6933    relaxable literal section.  */
6934 
6935 static bfd_boolean
6936 find_relaxable_sections (bfd *abfd,
6937 			 asection *sec,
6938 			 struct bfd_link_info *link_info,
6939 			 bfd_boolean *is_relaxable_p)
6940 {
6941   Elf_Internal_Rela *internal_relocs;
6942   bfd_byte *contents;
6943   bfd_boolean ok = TRUE;
6944   unsigned i;
6945   xtensa_relax_info *source_relax_info;
6946   bfd_boolean is_l32r_reloc;
6947 
6948   internal_relocs = retrieve_internal_relocs (abfd, sec,
6949 					      link_info->keep_memory);
6950   if (internal_relocs == NULL)
6951     return ok;
6952 
6953   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6954   if (contents == NULL && sec->size != 0)
6955     {
6956       ok = FALSE;
6957       goto error_return;
6958     }
6959 
6960   source_relax_info = get_xtensa_relax_info (sec);
6961   for (i = 0; i < sec->reloc_count; i++)
6962     {
6963       Elf_Internal_Rela *irel = &internal_relocs[i];
6964       r_reloc r_rel;
6965       asection *target_sec;
6966       xtensa_relax_info *target_relax_info;
6967 
6968       /* If this section has not already been marked as "relaxable", and
6969 	 if it contains any ASM_EXPAND relocations (marking expanded
6970 	 longcalls) that can be optimized into direct calls, then mark
6971 	 the section as "relaxable".  */
6972       if (source_relax_info
6973 	  && !source_relax_info->is_relaxable_asm_section
6974 	  && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6975 	{
6976 	  bfd_boolean is_reachable = FALSE;
6977 	  if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6978 					   link_info, &is_reachable)
6979 	      && is_reachable)
6980 	    {
6981 	      source_relax_info->is_relaxable_asm_section = TRUE;
6982 	      *is_relaxable_p = TRUE;
6983 	    }
6984 	}
6985 
6986       r_reloc_init (&r_rel, abfd, irel, contents,
6987 		    bfd_get_section_limit (abfd, sec));
6988 
6989       target_sec = r_reloc_get_section (&r_rel);
6990       target_relax_info = get_xtensa_relax_info (target_sec);
6991       if (!target_relax_info)
6992 	continue;
6993 
6994       /* Count PC-relative operand relocations against the target section.
6995 	 Note: The conditions tested here must match the conditions under
6996 	 which init_source_reloc is called in collect_source_relocs().  */
6997       is_l32r_reloc = FALSE;
6998       if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6999 	{
7000 	  xtensa_opcode opcode =
7001 	    get_relocation_opcode (abfd, sec, contents, irel);
7002 	  if (opcode != XTENSA_UNDEFINED)
7003 	    {
7004 	      is_l32r_reloc = (opcode == get_l32r_opcode ());
7005 	      if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7006 		  || is_l32r_reloc)
7007 		target_relax_info->src_count++;
7008 	    }
7009 	}
7010 
7011       if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
7012 	{
7013 	  /* Mark the target section as relaxable.  */
7014 	  target_relax_info->is_relaxable_literal_section = TRUE;
7015 	  *is_relaxable_p = TRUE;
7016 	}
7017     }
7018 
7019  error_return:
7020   release_contents (sec, contents);
7021   release_internal_relocs (sec, internal_relocs);
7022   return ok;
7023 }
7024 
7025 
7026 /* Record _all_ the relocations that point to relaxable sections, and
7027    get rid of ASM_EXPAND relocs by either converting them to
7028    ASM_SIMPLIFY or by removing them.  */
7029 
7030 static bfd_boolean
7031 collect_source_relocs (bfd *abfd,
7032 		       asection *sec,
7033 		       struct bfd_link_info *link_info)
7034 {
7035   Elf_Internal_Rela *internal_relocs;
7036   bfd_byte *contents;
7037   bfd_boolean ok = TRUE;
7038   unsigned i;
7039   bfd_size_type sec_size;
7040 
7041   internal_relocs = retrieve_internal_relocs (abfd, sec,
7042 					      link_info->keep_memory);
7043   if (internal_relocs == NULL)
7044     return ok;
7045 
7046   sec_size = bfd_get_section_limit (abfd, sec);
7047   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7048   if (contents == NULL && sec_size != 0)
7049     {
7050       ok = FALSE;
7051       goto error_return;
7052     }
7053 
7054   /* Record relocations against relaxable literal sections.  */
7055   for (i = 0; i < sec->reloc_count; i++)
7056     {
7057       Elf_Internal_Rela *irel = &internal_relocs[i];
7058       r_reloc r_rel;
7059       asection *target_sec;
7060       xtensa_relax_info *target_relax_info;
7061 
7062       r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7063 
7064       target_sec = r_reloc_get_section (&r_rel);
7065       target_relax_info = get_xtensa_relax_info (target_sec);
7066 
7067       if (target_relax_info
7068 	  && (target_relax_info->is_relaxable_literal_section
7069 	      || target_relax_info->is_relaxable_asm_section))
7070 	{
7071 	  xtensa_opcode opcode = XTENSA_UNDEFINED;
7072 	  int opnd = -1;
7073 	  bfd_boolean is_abs_literal = FALSE;
7074 
7075 	  if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7076 	    {
7077 	      /* None of the current alternate relocs are PC-relative,
7078 		 and only PC-relative relocs matter here.  However, we
7079 		 still need to record the opcode for literal
7080 		 coalescing.  */
7081 	      opcode = get_relocation_opcode (abfd, sec, contents, irel);
7082 	      if (opcode == get_l32r_opcode ())
7083 		{
7084 		  is_abs_literal = TRUE;
7085 		  opnd = 1;
7086 		}
7087 	      else
7088 		opcode = XTENSA_UNDEFINED;
7089 	    }
7090 	  else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7091 	    {
7092 	      opcode = get_relocation_opcode (abfd, sec, contents, irel);
7093 	      opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7094 	    }
7095 
7096 	  if (opcode != XTENSA_UNDEFINED)
7097 	    {
7098 	      int src_next = target_relax_info->src_next++;
7099 	      source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7100 
7101 	      init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7102 				 is_abs_literal);
7103 	    }
7104 	}
7105     }
7106 
7107   /* Now get rid of ASM_EXPAND relocations.  At this point, the
7108      src_relocs array for the target literal section may still be
7109      incomplete, but it must at least contain the entries for the L32R
7110      relocations associated with ASM_EXPANDs because they were just
7111      added in the preceding loop over the relocations.  */
7112 
7113   for (i = 0; i < sec->reloc_count; i++)
7114     {
7115       Elf_Internal_Rela *irel = &internal_relocs[i];
7116       bfd_boolean is_reachable;
7117 
7118       if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7119 					&is_reachable))
7120 	continue;
7121 
7122       if (is_reachable)
7123 	{
7124 	  Elf_Internal_Rela *l32r_irel;
7125 	  r_reloc r_rel;
7126 	  asection *target_sec;
7127 	  xtensa_relax_info *target_relax_info;
7128 
7129 	  /* Mark the source_reloc for the L32R so that it will be
7130 	     removed in compute_removed_literals(), along with the
7131 	     associated literal.  */
7132 	  l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7133 						 irel, internal_relocs);
7134 	  if (l32r_irel == NULL)
7135 	    continue;
7136 
7137 	  r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7138 
7139 	  target_sec = r_reloc_get_section (&r_rel);
7140 	  target_relax_info = get_xtensa_relax_info (target_sec);
7141 
7142 	  if (target_relax_info
7143 	      && (target_relax_info->is_relaxable_literal_section
7144 		  || target_relax_info->is_relaxable_asm_section))
7145 	    {
7146 	      source_reloc *s_reloc;
7147 
7148 	      /* Search the source_relocs for the entry corresponding to
7149 		 the l32r_irel.  Note: The src_relocs array is not yet
7150 		 sorted, but it wouldn't matter anyway because we're
7151 		 searching by source offset instead of target offset.  */
7152 	      s_reloc = find_source_reloc (target_relax_info->src_relocs,
7153 					   target_relax_info->src_next,
7154 					   sec, l32r_irel);
7155 	      BFD_ASSERT (s_reloc);
7156 	      s_reloc->is_null = TRUE;
7157 	    }
7158 
7159 	  /* Convert this reloc to ASM_SIMPLIFY.  */
7160 	  irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7161 				       R_XTENSA_ASM_SIMPLIFY);
7162 	  l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7163 
7164 	  pin_internal_relocs (sec, internal_relocs);
7165 	}
7166       else
7167 	{
7168 	  /* It is resolvable but doesn't reach.  We resolve now
7169 	     by eliminating the relocation -- the call will remain
7170 	     expanded into L32R/CALLX.  */
7171 	  irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7172 	  pin_internal_relocs (sec, internal_relocs);
7173 	}
7174     }
7175 
7176  error_return:
7177   release_contents (sec, contents);
7178   release_internal_relocs (sec, internal_relocs);
7179   return ok;
7180 }
7181 
7182 
7183 /* Return TRUE if the asm expansion can be resolved.  Generally it can
7184    be resolved on a final link or when a partial link locates it in the
7185    same section as the target.  Set "is_reachable" flag if the target of
7186    the call is within the range of a direct call, given the current VMA
7187    for this section and the target section.  */
7188 
7189 bfd_boolean
7190 is_resolvable_asm_expansion (bfd *abfd,
7191 			     asection *sec,
7192 			     bfd_byte *contents,
7193 			     Elf_Internal_Rela *irel,
7194 			     struct bfd_link_info *link_info,
7195 			     bfd_boolean *is_reachable_p)
7196 {
7197   asection *target_sec;
7198   asection *s;
7199   bfd_vma first_vma;
7200   bfd_vma last_vma;
7201   unsigned int first_align;
7202   unsigned int adjust;
7203   bfd_vma target_offset;
7204   r_reloc r_rel;
7205   xtensa_opcode opcode, direct_call_opcode;
7206   bfd_vma self_address;
7207   bfd_vma dest_address;
7208   bfd_boolean uses_l32r;
7209   bfd_size_type sec_size;
7210 
7211   *is_reachable_p = FALSE;
7212 
7213   if (contents == NULL)
7214     return FALSE;
7215 
7216   if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7217     return FALSE;
7218 
7219   sec_size = bfd_get_section_limit (abfd, sec);
7220   opcode = get_expanded_call_opcode (contents + irel->r_offset,
7221 				     sec_size - irel->r_offset, &uses_l32r);
7222   /* Optimization of longcalls that use CONST16 is not yet implemented.  */
7223   if (!uses_l32r)
7224     return FALSE;
7225 
7226   direct_call_opcode = swap_callx_for_call_opcode (opcode);
7227   if (direct_call_opcode == XTENSA_UNDEFINED)
7228     return FALSE;
7229 
7230   /* Check and see that the target resolves.  */
7231   r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7232   if (!r_reloc_is_defined (&r_rel))
7233     return FALSE;
7234 
7235   target_sec = r_reloc_get_section (&r_rel);
7236   target_offset = r_rel.target_offset;
7237 
7238   /* If the target is in a shared library, then it doesn't reach.  This
7239      isn't supposed to come up because the compiler should never generate
7240      non-PIC calls on systems that use shared libraries, but the linker
7241      shouldn't crash regardless.  */
7242   if (!target_sec->output_section)
7243     return FALSE;
7244 
7245   /* For relocatable sections, we can only simplify when the output
7246      section of the target is the same as the output section of the
7247      source.  */
7248   if (bfd_link_relocatable (link_info)
7249       && (target_sec->output_section != sec->output_section
7250 	  || is_reloc_sym_weak (abfd, irel)))
7251     return FALSE;
7252 
7253   if (target_sec->output_section != sec->output_section)
7254     {
7255       /* If the two sections are sufficiently far away that relaxation
7256 	 might take the call out of range, we can't simplify.  For
7257 	 example, a positive displacement call into another memory
7258 	 could get moved to a lower address due to literal removal,
7259 	 but the destination won't move, and so the displacment might
7260 	 get larger.
7261 
7262 	 If the displacement is negative, assume the destination could
7263 	 move as far back as the start of the output section.  The
7264 	 self_address will be at least as far into the output section
7265 	 as it is prior to relaxation.
7266 
7267 	 If the displacement is postive, assume the destination will be in
7268 	 it's pre-relaxed location (because relaxation only makes sections
7269 	 smaller).  The self_address could go all the way to the beginning
7270 	 of the output section.  */
7271 
7272       dest_address = target_sec->output_section->vma;
7273       self_address = sec->output_section->vma;
7274 
7275       if (sec->output_section->vma > target_sec->output_section->vma)
7276 	self_address += sec->output_offset + irel->r_offset + 3;
7277       else
7278 	dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7279       /* Call targets should be four-byte aligned.  */
7280       dest_address = (dest_address + 3) & ~3;
7281     }
7282   else
7283     {
7284 
7285       self_address = (sec->output_section->vma
7286 		      + sec->output_offset + irel->r_offset + 3);
7287       dest_address = (target_sec->output_section->vma
7288 		      + target_sec->output_offset + target_offset);
7289     }
7290 
7291   /* Adjust addresses with alignments for the worst case to see if call insn
7292      can fit.  Don't relax l32r + callx to call if the target can be out of
7293      range due to alignment.
7294      Caller and target addresses are highest and lowest address.
7295      Search all sections between caller and target, looking for max alignment.
7296      The adjustment is max alignment bytes.  If the alignment at the lowest
7297      address is less than the adjustment, apply the adjustment to highest
7298      address.  */
7299 
7300   /* Start from lowest address.
7301      Lowest address aligmnet is from input section.
7302      Initial alignment (adjust) is from input section.  */
7303   if (dest_address > self_address)
7304     {
7305       s = sec->output_section;
7306       last_vma = dest_address;
7307       first_align = sec->alignment_power;
7308       adjust = target_sec->alignment_power;
7309     }
7310   else
7311     {
7312       s = target_sec->output_section;
7313       last_vma = self_address;
7314       first_align = target_sec->alignment_power;
7315       adjust = sec->alignment_power;
7316     }
7317 
7318   first_vma = s->vma;
7319 
7320   /* Find the largest alignment in output section list.  */
7321   for (; s && s->vma >= first_vma && s->vma <= last_vma ; s = s->next)
7322     {
7323       if (s->alignment_power > adjust)
7324 	adjust = s->alignment_power;
7325     }
7326 
7327   if (adjust > first_align)
7328     {
7329       /* Alignment may enlarge the range, adjust highest address.  */
7330       adjust = 1 << adjust;
7331       if (dest_address > self_address)
7332 	{
7333 	  dest_address += adjust;
7334 	}
7335       else
7336 	{
7337 	  self_address += adjust;
7338 	}
7339     }
7340 
7341   *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7342 				      self_address, dest_address);
7343 
7344   if ((self_address >> CALL_SEGMENT_BITS) !=
7345       (dest_address >> CALL_SEGMENT_BITS))
7346     return FALSE;
7347 
7348   return TRUE;
7349 }
7350 
7351 
7352 static Elf_Internal_Rela *
7353 find_associated_l32r_irel (bfd *abfd,
7354 			   asection *sec,
7355 			   bfd_byte *contents,
7356 			   Elf_Internal_Rela *other_irel,
7357 			   Elf_Internal_Rela *internal_relocs)
7358 {
7359   unsigned i;
7360 
7361   for (i = 0; i < sec->reloc_count; i++)
7362     {
7363       Elf_Internal_Rela *irel = &internal_relocs[i];
7364 
7365       if (irel == other_irel)
7366 	continue;
7367       if (irel->r_offset != other_irel->r_offset)
7368 	continue;
7369       if (is_l32r_relocation (abfd, sec, contents, irel))
7370 	return irel;
7371     }
7372 
7373   return NULL;
7374 }
7375 
7376 
7377 static xtensa_opcode *
7378 build_reloc_opcodes (bfd *abfd,
7379 		     asection *sec,
7380 		     bfd_byte *contents,
7381 		     Elf_Internal_Rela *internal_relocs)
7382 {
7383   unsigned i;
7384   xtensa_opcode *reloc_opcodes =
7385     (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7386   for (i = 0; i < sec->reloc_count; i++)
7387     {
7388       Elf_Internal_Rela *irel = &internal_relocs[i];
7389       reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7390     }
7391   return reloc_opcodes;
7392 }
7393 
7394 struct reloc_range_struct
7395 {
7396   bfd_vma addr;
7397   bfd_boolean add; /* TRUE if start of a range, FALSE otherwise.  */
7398   /* Original irel index in the array of relocations for a section.  */
7399   unsigned irel_index;
7400 };
7401 typedef struct reloc_range_struct reloc_range;
7402 
7403 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7404 struct reloc_range_list_entry_struct
7405 {
7406   reloc_range_list_entry *next;
7407   reloc_range_list_entry *prev;
7408   Elf_Internal_Rela *irel;
7409   xtensa_opcode opcode;
7410   int opnum;
7411 };
7412 
7413 struct reloc_range_list_struct
7414 {
7415   /* The rest of the structure is only meaningful when ok is TRUE.  */
7416   bfd_boolean ok;
7417 
7418   unsigned n_range; /* Number of range markers.  */
7419   reloc_range *range; /* Sorted range markers.  */
7420 
7421   unsigned first; /* Index of a first range element in the list.  */
7422   unsigned last; /* One past index of a last range element in the list.  */
7423 
7424   unsigned n_list; /* Number of list elements.  */
7425   reloc_range_list_entry *reloc; /*  */
7426   reloc_range_list_entry list_root;
7427 };
7428 
7429 static int
7430 reloc_range_compare (const void *a, const void *b)
7431 {
7432   const reloc_range *ra = a;
7433   const reloc_range *rb = b;
7434 
7435   if (ra->addr != rb->addr)
7436     return ra->addr < rb->addr ? -1 : 1;
7437   if (ra->add != rb->add)
7438     return ra->add ? -1 : 1;
7439   return 0;
7440 }
7441 
7442 static void
7443 build_reloc_ranges (bfd *abfd, asection *sec,
7444 		    bfd_byte *contents,
7445 		    Elf_Internal_Rela *internal_relocs,
7446 		    xtensa_opcode *reloc_opcodes,
7447 		    reloc_range_list *list)
7448 {
7449   unsigned i;
7450   size_t n = 0;
7451   size_t max_n = 0;
7452   reloc_range *ranges = NULL;
7453   reloc_range_list_entry *reloc =
7454     bfd_malloc (sec->reloc_count * sizeof (*reloc));
7455 
7456   memset (list, 0, sizeof (*list));
7457   list->ok = TRUE;
7458 
7459   for (i = 0; i < sec->reloc_count; i++)
7460     {
7461       Elf_Internal_Rela *irel = &internal_relocs[i];
7462       int r_type = ELF32_R_TYPE (irel->r_info);
7463       reloc_howto_type *howto = &elf_howto_table[r_type];
7464       r_reloc r_rel;
7465 
7466       if (r_type == R_XTENSA_ASM_SIMPLIFY
7467 	  || r_type == R_XTENSA_32_PCREL
7468 	  || !howto->pc_relative)
7469 	continue;
7470 
7471       r_reloc_init (&r_rel, abfd, irel, contents,
7472 		    bfd_get_section_limit (abfd, sec));
7473 
7474       if (r_reloc_get_section (&r_rel) != sec)
7475 	continue;
7476 
7477       if (n + 2 > max_n)
7478 	{
7479 	  max_n = (max_n + 2) * 2;
7480 	  ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7481 	}
7482 
7483       ranges[n].addr = irel->r_offset;
7484       ranges[n + 1].addr = r_rel.target_offset;
7485 
7486       ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7487       ranges[n + 1].add = !ranges[n].add;
7488 
7489       ranges[n].irel_index = i;
7490       ranges[n + 1].irel_index = i;
7491 
7492       n += 2;
7493 
7494       reloc[i].irel = irel;
7495 
7496       /* Every relocation won't possibly be checked in the optimized version of
7497 	 check_section_ebb_pcrels_fit, so this needs to be done here.  */
7498       if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7499 	{
7500 	  /* None of the current alternate relocs are PC-relative,
7501 	     and only PC-relative relocs matter here.  */
7502 	}
7503       else
7504 	{
7505 	  xtensa_opcode opcode;
7506 	  int opnum;
7507 
7508 	  if (reloc_opcodes)
7509 	    opcode = reloc_opcodes[i];
7510 	  else
7511 	    opcode = get_relocation_opcode (abfd, sec, contents, irel);
7512 
7513 	  if (opcode == XTENSA_UNDEFINED)
7514 	    {
7515 	      list->ok = FALSE;
7516 	      break;
7517 	    }
7518 
7519 	  opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7520 	  if (opnum == XTENSA_UNDEFINED)
7521 	    {
7522 	      list->ok = FALSE;
7523 	      break;
7524 	    }
7525 
7526 	  /* Record relocation opcode and opnum as we've calculated them
7527 	     anyway and they won't change.  */
7528 	  reloc[i].opcode = opcode;
7529 	  reloc[i].opnum = opnum;
7530 	}
7531     }
7532 
7533   if (list->ok)
7534     {
7535       ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7536       qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7537 
7538       list->n_range = n;
7539       list->range = ranges;
7540       list->reloc = reloc;
7541       list->list_root.prev = &list->list_root;
7542       list->list_root.next = &list->list_root;
7543     }
7544   else
7545     {
7546       free (ranges);
7547       free (reloc);
7548     }
7549 }
7550 
7551 static void reloc_range_list_append (reloc_range_list *list,
7552 				     unsigned irel_index)
7553 {
7554   reloc_range_list_entry *entry = list->reloc + irel_index;
7555 
7556   entry->prev = list->list_root.prev;
7557   entry->next = &list->list_root;
7558   entry->prev->next = entry;
7559   entry->next->prev = entry;
7560   ++list->n_list;
7561 }
7562 
7563 static void reloc_range_list_remove (reloc_range_list *list,
7564 				     unsigned irel_index)
7565 {
7566   reloc_range_list_entry *entry = list->reloc + irel_index;
7567 
7568   entry->next->prev = entry->prev;
7569   entry->prev->next = entry->next;
7570   --list->n_list;
7571 }
7572 
7573 /* Update relocation list object so that it lists all relocations that cross
7574    [first; last] range.  Range bounds should not decrease with successive
7575    invocations.  */
7576 static void reloc_range_list_update_range (reloc_range_list *list,
7577 					   bfd_vma first, bfd_vma last)
7578 {
7579   /* This should not happen: EBBs are iterated from lower addresses to higher.
7580      But even if that happens there's no need to break: just flush current list
7581      and start from scratch.  */
7582   if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7583       (list->first > 0 && list->range[list->first - 1].addr >= first))
7584     {
7585       list->first = 0;
7586       list->last = 0;
7587       list->n_list = 0;
7588       list->list_root.next = &list->list_root;
7589       list->list_root.prev = &list->list_root;
7590       fprintf (stderr, "%s: move backwards requested\n", __func__);
7591     }
7592 
7593   for (; list->last < list->n_range &&
7594        list->range[list->last].addr <= last; ++list->last)
7595     if (list->range[list->last].add)
7596       reloc_range_list_append (list, list->range[list->last].irel_index);
7597 
7598   for (; list->first < list->n_range &&
7599        list->range[list->first].addr < first; ++list->first)
7600     if (!list->range[list->first].add)
7601       reloc_range_list_remove (list, list->range[list->first].irel_index);
7602 }
7603 
7604 static void free_reloc_range_list (reloc_range_list *list)
7605 {
7606   free (list->range);
7607   free (list->reloc);
7608 }
7609 
7610 /* The compute_text_actions function will build a list of potential
7611    transformation actions for code in the extended basic block of each
7612    longcall that is optimized to a direct call.  From this list we
7613    generate a set of actions to actually perform that optimizes for
7614    space and, if not using size_opt, maintains branch target
7615    alignments.
7616 
7617    These actions to be performed are placed on a per-section list.
7618    The actual changes are performed by relax_section() in the second
7619    pass.  */
7620 
7621 bfd_boolean
7622 compute_text_actions (bfd *abfd,
7623 		      asection *sec,
7624 		      struct bfd_link_info *link_info)
7625 {
7626   xtensa_opcode *reloc_opcodes = NULL;
7627   xtensa_relax_info *relax_info;
7628   bfd_byte *contents;
7629   Elf_Internal_Rela *internal_relocs;
7630   bfd_boolean ok = TRUE;
7631   unsigned i;
7632   property_table_entry *prop_table = 0;
7633   int ptblsize = 0;
7634   bfd_size_type sec_size;
7635   reloc_range_list relevant_relocs;
7636 
7637   relax_info = get_xtensa_relax_info (sec);
7638   BFD_ASSERT (relax_info);
7639   BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7640 
7641   /* Do nothing if the section contains no optimized longcalls.  */
7642   if (!relax_info->is_relaxable_asm_section)
7643     return ok;
7644 
7645   internal_relocs = retrieve_internal_relocs (abfd, sec,
7646 					      link_info->keep_memory);
7647 
7648   if (internal_relocs)
7649     qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7650 	   internal_reloc_compare);
7651 
7652   sec_size = bfd_get_section_limit (abfd, sec);
7653   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7654   if (contents == NULL && sec_size != 0)
7655     {
7656       ok = FALSE;
7657       goto error_return;
7658     }
7659 
7660   ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7661 					XTENSA_PROP_SEC_NAME, FALSE);
7662   if (ptblsize < 0)
7663     {
7664       ok = FALSE;
7665       goto error_return;
7666     }
7667 
7668   /* Precompute the opcode for each relocation.  */
7669   reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7670 
7671   build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7672 		      &relevant_relocs);
7673 
7674   for (i = 0; i < sec->reloc_count; i++)
7675     {
7676       Elf_Internal_Rela *irel = &internal_relocs[i];
7677       bfd_vma r_offset;
7678       property_table_entry *the_entry;
7679       int ptbl_idx;
7680       ebb_t *ebb;
7681       ebb_constraint ebb_table;
7682       bfd_size_type simplify_size;
7683 
7684       if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7685 	continue;
7686       r_offset = irel->r_offset;
7687 
7688       simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7689       if (simplify_size == 0)
7690 	{
7691 	  _bfd_error_handler
7692 	    /* xgettext:c-format */
7693 	    (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for "
7694 	       "XTENSA_ASM_SIMPLIFY relocation; "
7695 	       "possible configuration mismatch"),
7696 	     sec->owner, sec, (uint64_t) r_offset);
7697 	  continue;
7698 	}
7699 
7700       /* If the instruction table is not around, then don't do this
7701 	 relaxation.  */
7702       the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7703 						  sec->vma + irel->r_offset);
7704       if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7705 	{
7706 	  text_action_add (&relax_info->action_list,
7707 			   ta_convert_longcall, sec, r_offset,
7708 			   0);
7709 	  continue;
7710 	}
7711 
7712       /* If the next longcall happens to be at the same address as an
7713 	 unreachable section of size 0, then skip forward.  */
7714       ptbl_idx = the_entry - prop_table;
7715       while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7716 	     && the_entry->size == 0
7717 	     && ptbl_idx + 1 < ptblsize
7718 	     && (prop_table[ptbl_idx + 1].address
7719 		 == prop_table[ptbl_idx].address))
7720 	{
7721 	  ptbl_idx++;
7722 	  the_entry++;
7723 	}
7724 
7725       if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7726 	  /* NO_REORDER is OK */
7727 	continue;
7728 
7729       init_ebb_constraint (&ebb_table);
7730       ebb = &ebb_table.ebb;
7731       init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7732 		internal_relocs, sec->reloc_count);
7733       ebb->start_offset = r_offset + simplify_size;
7734       ebb->end_offset = r_offset + simplify_size;
7735       ebb->start_ptbl_idx = ptbl_idx;
7736       ebb->end_ptbl_idx = ptbl_idx;
7737       ebb->start_reloc_idx = i;
7738       ebb->end_reloc_idx = i;
7739 
7740       if (!extend_ebb_bounds (ebb)
7741 	  || !compute_ebb_proposed_actions (&ebb_table)
7742 	  || !compute_ebb_actions (&ebb_table)
7743 	  || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7744 					    internal_relocs,
7745 					    &relevant_relocs,
7746 					    &ebb_table, reloc_opcodes)
7747 	  || !check_section_ebb_reduces (&ebb_table))
7748 	{
7749 	  /* If anything goes wrong or we get unlucky and something does
7750 	     not fit, with our plan because of expansion between
7751 	     critical branches, just convert to a NOP.  */
7752 
7753 	  text_action_add (&relax_info->action_list,
7754 			   ta_convert_longcall, sec, r_offset, 0);
7755 	  i = ebb_table.ebb.end_reloc_idx;
7756 	  free_ebb_constraint (&ebb_table);
7757 	  continue;
7758 	}
7759 
7760       text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7761 
7762       /* Update the index so we do not go looking at the relocations
7763 	 we have already processed.  */
7764       i = ebb_table.ebb.end_reloc_idx;
7765       free_ebb_constraint (&ebb_table);
7766     }
7767 
7768   free_reloc_range_list (&relevant_relocs);
7769 
7770 #if DEBUG
7771   if (action_list_count (&relax_info->action_list))
7772     print_action_list (stderr, &relax_info->action_list);
7773 #endif
7774 
7775 error_return:
7776   release_contents (sec, contents);
7777   release_internal_relocs (sec, internal_relocs);
7778   if (prop_table)
7779     free (prop_table);
7780   if (reloc_opcodes)
7781     free (reloc_opcodes);
7782 
7783   return ok;
7784 }
7785 
7786 
7787 /* Do not widen an instruction if it is preceeded by a
7788    loop opcode.  It might cause misalignment.  */
7789 
7790 static bfd_boolean
7791 prev_instr_is_a_loop (bfd_byte *contents,
7792 		      bfd_size_type content_length,
7793 		      bfd_size_type offset)
7794 {
7795   xtensa_opcode prev_opcode;
7796 
7797   if (offset < 3)
7798     return FALSE;
7799   prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7800   return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7801 }
7802 
7803 
7804 /* Find all of the possible actions for an extended basic block.  */
7805 
7806 bfd_boolean
7807 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7808 {
7809   const ebb_t *ebb = &ebb_table->ebb;
7810   unsigned rel_idx = ebb->start_reloc_idx;
7811   property_table_entry *entry, *start_entry, *end_entry;
7812   bfd_vma offset = 0;
7813   xtensa_isa isa = xtensa_default_isa;
7814   xtensa_format fmt;
7815   static xtensa_insnbuf insnbuf = NULL;
7816   static xtensa_insnbuf slotbuf = NULL;
7817 
7818   if (insnbuf == NULL)
7819     {
7820       insnbuf = xtensa_insnbuf_alloc (isa);
7821       slotbuf = xtensa_insnbuf_alloc (isa);
7822     }
7823 
7824   start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7825   end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7826 
7827   for (entry = start_entry; entry <= end_entry; entry++)
7828     {
7829       bfd_vma start_offset, end_offset;
7830       bfd_size_type insn_len;
7831 
7832       start_offset = entry->address - ebb->sec->vma;
7833       end_offset = entry->address + entry->size - ebb->sec->vma;
7834 
7835       if (entry == start_entry)
7836 	start_offset = ebb->start_offset;
7837       if (entry == end_entry)
7838 	end_offset = ebb->end_offset;
7839       offset = start_offset;
7840 
7841       if (offset == entry->address - ebb->sec->vma
7842 	  && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7843 	{
7844 	  enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7845 	  BFD_ASSERT (offset != end_offset);
7846 	  if (offset == end_offset)
7847 	    return FALSE;
7848 
7849 	  insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7850 				      offset);
7851 	  if (insn_len == 0)
7852 	    goto decode_error;
7853 
7854 	  if (check_branch_target_aligned_address (offset, insn_len))
7855 	    align_type = EBB_REQUIRE_TGT_ALIGN;
7856 
7857 	  ebb_propose_action (ebb_table, align_type, 0,
7858 			      ta_none, offset, 0, TRUE);
7859 	}
7860 
7861       while (offset != end_offset)
7862 	{
7863 	  Elf_Internal_Rela *irel;
7864 	  xtensa_opcode opcode;
7865 
7866 	  while (rel_idx < ebb->end_reloc_idx
7867 		 && (ebb->relocs[rel_idx].r_offset < offset
7868 		     || (ebb->relocs[rel_idx].r_offset == offset
7869 			 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7870 			     != R_XTENSA_ASM_SIMPLIFY))))
7871 	    rel_idx++;
7872 
7873 	  /* Check for longcall.  */
7874 	  irel = &ebb->relocs[rel_idx];
7875 	  if (irel->r_offset == offset
7876 	      && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7877 	    {
7878 	      bfd_size_type simplify_size;
7879 
7880 	      simplify_size = get_asm_simplify_size (ebb->contents,
7881 						     ebb->content_length,
7882 						     irel->r_offset);
7883 	      if (simplify_size == 0)
7884 		goto decode_error;
7885 
7886 	      ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7887 				  ta_convert_longcall, offset, 0, TRUE);
7888 
7889 	      offset += simplify_size;
7890 	      continue;
7891 	    }
7892 
7893 	  if (offset + MIN_INSN_LENGTH > ebb->content_length)
7894 	    goto decode_error;
7895 	  xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7896 				     ebb->content_length - offset);
7897 	  fmt = xtensa_format_decode (isa, insnbuf);
7898 	  if (fmt == XTENSA_UNDEFINED)
7899 	    goto decode_error;
7900 	  insn_len = xtensa_format_length (isa, fmt);
7901 	  if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7902 	    goto decode_error;
7903 
7904 	  if (xtensa_format_num_slots (isa, fmt) != 1)
7905 	    {
7906 	      offset += insn_len;
7907 	      continue;
7908 	    }
7909 
7910 	  xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7911 	  opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7912 	  if (opcode == XTENSA_UNDEFINED)
7913 	    goto decode_error;
7914 
7915 	  if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7916 	      && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7917 	      && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7918 	    {
7919 	      /* Add an instruction narrow action.  */
7920 	      ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7921 				  ta_narrow_insn, offset, 0, FALSE);
7922 	    }
7923 	  else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7924 		   && can_widen_instruction (slotbuf, fmt, opcode) != 0
7925 		   && ! prev_instr_is_a_loop (ebb->contents,
7926 					      ebb->content_length, offset))
7927 	    {
7928 	      /* Add an instruction widen action.  */
7929 	      ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7930 				  ta_widen_insn, offset, 0, FALSE);
7931 	    }
7932 	  else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7933 	    {
7934 	      /* Check for branch targets.  */
7935 	      ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7936 				  ta_none, offset, 0, TRUE);
7937 	    }
7938 
7939 	  offset += insn_len;
7940 	}
7941     }
7942 
7943   if (ebb->ends_unreachable)
7944     {
7945       ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7946 			  ta_fill, ebb->end_offset, 0, TRUE);
7947     }
7948 
7949   return TRUE;
7950 
7951  decode_error:
7952   _bfd_error_handler
7953     /* xgettext:c-format */
7954     (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
7955        "possible configuration mismatch"),
7956      ebb->sec->owner, ebb->sec, (uint64_t) offset);
7957   return FALSE;
7958 }
7959 
7960 
7961 /* After all of the information has collected about the
7962    transformations possible in an EBB, compute the appropriate actions
7963    here in compute_ebb_actions.  We still must check later to make
7964    sure that the actions do not break any relocations.  The algorithm
7965    used here is pretty greedy.  Basically, it removes as many no-ops
7966    as possible so that the end of the EBB has the same alignment
7967    characteristics as the original.  First, it uses narrowing, then
7968    fill space at the end of the EBB, and finally widenings.  If that
7969    does not work, it tries again with one fewer no-op removed.  The
7970    optimization will only be performed if all of the branch targets
7971    that were aligned before transformation are also aligned after the
7972    transformation.
7973 
7974    When the size_opt flag is set, ignore the branch target alignments,
7975    narrow all wide instructions, and remove all no-ops unless the end
7976    of the EBB prevents it.  */
7977 
7978 bfd_boolean
7979 compute_ebb_actions (ebb_constraint *ebb_table)
7980 {
7981   unsigned i = 0;
7982   unsigned j;
7983   int removed_bytes = 0;
7984   ebb_t *ebb = &ebb_table->ebb;
7985   unsigned seg_idx_start = 0;
7986   unsigned seg_idx_end = 0;
7987 
7988   /* We perform this like the assembler relaxation algorithm: Start by
7989      assuming all instructions are narrow and all no-ops removed; then
7990      walk through....  */
7991 
7992   /* For each segment of this that has a solid constraint, check to
7993      see if there are any combinations that will keep the constraint.
7994      If so, use it.  */
7995   for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
7996     {
7997       bfd_boolean requires_text_end_align = FALSE;
7998       unsigned longcall_count = 0;
7999       unsigned longcall_convert_count = 0;
8000       unsigned narrowable_count = 0;
8001       unsigned narrowable_convert_count = 0;
8002       unsigned widenable_count = 0;
8003       unsigned widenable_convert_count = 0;
8004 
8005       proposed_action *action = NULL;
8006       int align = (1 << ebb_table->ebb.sec->alignment_power);
8007 
8008       seg_idx_start = seg_idx_end;
8009 
8010       for (i = seg_idx_start; i < ebb_table->action_count; i++)
8011 	{
8012 	  action = &ebb_table->actions[i];
8013 	  if (action->action == ta_convert_longcall)
8014 	    longcall_count++;
8015 	  if (action->action == ta_narrow_insn)
8016 	    narrowable_count++;
8017 	  if (action->action == ta_widen_insn)
8018 	    widenable_count++;
8019 	  if (action->action == ta_fill)
8020 	    break;
8021 	  if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8022 	    break;
8023 	  if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8024 	      && !elf32xtensa_size_opt)
8025 	    break;
8026 	}
8027       seg_idx_end = i;
8028 
8029       if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8030 	requires_text_end_align = TRUE;
8031 
8032       if (elf32xtensa_size_opt && !requires_text_end_align
8033 	  && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8034 	  && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8035 	{
8036 	  longcall_convert_count = longcall_count;
8037 	  narrowable_convert_count = narrowable_count;
8038 	  widenable_convert_count = 0;
8039 	}
8040       else
8041 	{
8042 	  /* There is a constraint.  Convert the max number of longcalls.  */
8043 	  narrowable_convert_count = 0;
8044 	  longcall_convert_count = 0;
8045 	  widenable_convert_count = 0;
8046 
8047 	  for (j = 0; j < longcall_count; j++)
8048 	    {
8049 	      int removed = (longcall_count - j) * 3 & (align - 1);
8050 	      unsigned desire_narrow = (align - removed) & (align - 1);
8051 	      unsigned desire_widen = removed;
8052 	      if (desire_narrow <= narrowable_count)
8053 		{
8054 		  narrowable_convert_count = desire_narrow;
8055 		  narrowable_convert_count +=
8056 		    (align * ((narrowable_count - narrowable_convert_count)
8057 			      / align));
8058 		  longcall_convert_count = (longcall_count - j);
8059 		  widenable_convert_count = 0;
8060 		  break;
8061 		}
8062 	      if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8063 		{
8064 		  narrowable_convert_count = 0;
8065 		  longcall_convert_count = longcall_count - j;
8066 		  widenable_convert_count = desire_widen;
8067 		  break;
8068 		}
8069 	    }
8070 	}
8071 
8072       /* Now the number of conversions are saved.  Do them.  */
8073       for (i = seg_idx_start; i < seg_idx_end; i++)
8074 	{
8075 	  action = &ebb_table->actions[i];
8076 	  switch (action->action)
8077 	    {
8078 	    case ta_convert_longcall:
8079 	      if (longcall_convert_count != 0)
8080 		{
8081 		  action->action = ta_remove_longcall;
8082 		  action->do_action = TRUE;
8083 		  action->removed_bytes += 3;
8084 		  longcall_convert_count--;
8085 		}
8086 	      break;
8087 	    case ta_narrow_insn:
8088 	      if (narrowable_convert_count != 0)
8089 		{
8090 		  action->do_action = TRUE;
8091 		  action->removed_bytes += 1;
8092 		  narrowable_convert_count--;
8093 		}
8094 	      break;
8095 	    case ta_widen_insn:
8096 	      if (widenable_convert_count != 0)
8097 		{
8098 		  action->do_action = TRUE;
8099 		  action->removed_bytes -= 1;
8100 		  widenable_convert_count--;
8101 		}
8102 	      break;
8103 	    default:
8104 	      break;
8105 	    }
8106 	}
8107     }
8108 
8109   /* Now we move on to some local opts.  Try to remove each of the
8110      remaining longcalls.  */
8111 
8112   if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8113     {
8114       removed_bytes = 0;
8115       for (i = 0; i < ebb_table->action_count; i++)
8116 	{
8117 	  int old_removed_bytes = removed_bytes;
8118 	  proposed_action *action = &ebb_table->actions[i];
8119 
8120 	  if (action->do_action && action->action == ta_convert_longcall)
8121 	    {
8122 	      bfd_boolean bad_alignment = FALSE;
8123 	      removed_bytes += 3;
8124 	      for (j = i + 1; j < ebb_table->action_count; j++)
8125 		{
8126 		  proposed_action *new_action = &ebb_table->actions[j];
8127 		  bfd_vma offset = new_action->offset;
8128 		  if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8129 		    {
8130 		      if (!check_branch_target_aligned
8131 			  (ebb_table->ebb.contents,
8132 			   ebb_table->ebb.content_length,
8133 			   offset, offset - removed_bytes))
8134 			{
8135 			  bad_alignment = TRUE;
8136 			  break;
8137 			}
8138 		    }
8139 		  if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8140 		    {
8141 		      if (!check_loop_aligned (ebb_table->ebb.contents,
8142 					       ebb_table->ebb.content_length,
8143 					       offset,
8144 					       offset - removed_bytes))
8145 			{
8146 			  bad_alignment = TRUE;
8147 			  break;
8148 			}
8149 		    }
8150 		  if (new_action->action == ta_narrow_insn
8151 		      && !new_action->do_action
8152 		      && ebb_table->ebb.sec->alignment_power == 2)
8153 		    {
8154 		      /* Narrow an instruction and we are done.  */
8155 		      new_action->do_action = TRUE;
8156 		      new_action->removed_bytes += 1;
8157 		      bad_alignment = FALSE;
8158 		      break;
8159 		    }
8160 		  if (new_action->action == ta_widen_insn
8161 		      && new_action->do_action
8162 		      && ebb_table->ebb.sec->alignment_power == 2)
8163 		    {
8164 		      /* Narrow an instruction and we are done.  */
8165 		      new_action->do_action = FALSE;
8166 		      new_action->removed_bytes += 1;
8167 		      bad_alignment = FALSE;
8168 		      break;
8169 		    }
8170 		  if (new_action->do_action)
8171 		    removed_bytes += new_action->removed_bytes;
8172 		}
8173 	      if (!bad_alignment)
8174 		{
8175 		  action->removed_bytes += 3;
8176 		  action->action = ta_remove_longcall;
8177 		  action->do_action = TRUE;
8178 		}
8179 	    }
8180 	  removed_bytes = old_removed_bytes;
8181 	  if (action->do_action)
8182 	    removed_bytes += action->removed_bytes;
8183 	}
8184     }
8185 
8186   removed_bytes = 0;
8187   for (i = 0; i < ebb_table->action_count; ++i)
8188     {
8189       proposed_action *action = &ebb_table->actions[i];
8190       if (action->do_action)
8191 	removed_bytes += action->removed_bytes;
8192     }
8193 
8194   if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8195       && ebb->ends_unreachable)
8196     {
8197       proposed_action *action;
8198       int br;
8199       int extra_space;
8200 
8201       BFD_ASSERT (ebb_table->action_count != 0);
8202       action = &ebb_table->actions[ebb_table->action_count - 1];
8203       BFD_ASSERT (action->action == ta_fill);
8204       BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8205 
8206       extra_space = xtensa_compute_fill_extra_space (ebb->ends_unreachable);
8207       br = action->removed_bytes + removed_bytes + extra_space;
8208       br = br & ((1 << ebb->sec->alignment_power ) - 1);
8209 
8210       action->removed_bytes = extra_space - br;
8211     }
8212   return TRUE;
8213 }
8214 
8215 
8216 /* The xlate_map is a sorted array of address mappings designed to
8217    answer the offset_with_removed_text() query with a binary search instead
8218    of a linear search through the section's action_list.  */
8219 
8220 typedef struct xlate_map_entry xlate_map_entry_t;
8221 typedef struct xlate_map xlate_map_t;
8222 
8223 struct xlate_map_entry
8224 {
8225   bfd_vma orig_address;
8226   bfd_vma new_address;
8227   unsigned size;
8228 };
8229 
8230 struct xlate_map
8231 {
8232   unsigned entry_count;
8233   xlate_map_entry_t *entry;
8234 };
8235 
8236 
8237 static int
8238 xlate_compare (const void *a_v, const void *b_v)
8239 {
8240   const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8241   const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8242   if (a->orig_address < b->orig_address)
8243     return -1;
8244   if (a->orig_address > (b->orig_address + b->size - 1))
8245     return 1;
8246   return 0;
8247 }
8248 
8249 
8250 static bfd_vma
8251 xlate_offset_with_removed_text (const xlate_map_t *map,
8252 				text_action_list *action_list,
8253 				bfd_vma offset)
8254 {
8255   void *r;
8256   xlate_map_entry_t *e;
8257   struct xlate_map_entry se;
8258 
8259   if (map == NULL)
8260     return offset_with_removed_text (action_list, offset);
8261 
8262   if (map->entry_count == 0)
8263     return offset;
8264 
8265   se.orig_address = offset;
8266   r = bsearch (&se, map->entry, map->entry_count,
8267 	       sizeof (xlate_map_entry_t), &xlate_compare);
8268   e = (xlate_map_entry_t *) r;
8269 
8270   /* There could be a jump past the end of the section,
8271      allow it using the last xlate map entry to translate its address.  */
8272   if (e == NULL)
8273     {
8274       e = map->entry + map->entry_count - 1;
8275       if (xlate_compare (&se, e) <= 0)
8276 	e = NULL;
8277     }
8278   BFD_ASSERT (e != NULL);
8279   if (e == NULL)
8280     return offset;
8281   return e->new_address - e->orig_address + offset;
8282 }
8283 
8284 typedef struct xlate_map_context_struct xlate_map_context;
8285 struct xlate_map_context_struct
8286 {
8287   xlate_map_t *map;
8288   xlate_map_entry_t *current_entry;
8289   int removed;
8290 };
8291 
8292 static int
8293 xlate_map_fn (splay_tree_node node, void *p)
8294 {
8295   text_action *r = (text_action *)node->value;
8296   xlate_map_context *ctx = p;
8297   unsigned orig_size = 0;
8298 
8299   switch (r->action)
8300     {
8301     case ta_none:
8302     case ta_remove_insn:
8303     case ta_convert_longcall:
8304     case ta_remove_literal:
8305     case ta_add_literal:
8306       break;
8307     case ta_remove_longcall:
8308       orig_size = 6;
8309       break;
8310     case ta_narrow_insn:
8311       orig_size = 3;
8312       break;
8313     case ta_widen_insn:
8314       orig_size = 2;
8315       break;
8316     case ta_fill:
8317       break;
8318     }
8319   ctx->current_entry->size =
8320     r->offset + orig_size - ctx->current_entry->orig_address;
8321   if (ctx->current_entry->size != 0)
8322     {
8323       ctx->current_entry++;
8324       ctx->map->entry_count++;
8325     }
8326   ctx->current_entry->orig_address = r->offset + orig_size;
8327   ctx->removed += r->removed_bytes;
8328   ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8329   ctx->current_entry->size = 0;
8330   return 0;
8331 }
8332 
8333 /* Build a binary searchable offset translation map from a section's
8334    action list.  */
8335 
8336 static xlate_map_t *
8337 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8338 {
8339   text_action_list *action_list = &relax_info->action_list;
8340   unsigned num_actions = 0;
8341   xlate_map_context ctx;
8342 
8343   ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8344 
8345   if (ctx.map == NULL)
8346     return NULL;
8347 
8348   num_actions = action_list_count (action_list);
8349   ctx.map->entry = (xlate_map_entry_t *)
8350     bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8351   if (ctx.map->entry == NULL)
8352     {
8353       free (ctx.map);
8354       return NULL;
8355     }
8356   ctx.map->entry_count = 0;
8357 
8358   ctx.removed = 0;
8359   ctx.current_entry = &ctx.map->entry[0];
8360 
8361   ctx.current_entry->orig_address = 0;
8362   ctx.current_entry->new_address = 0;
8363   ctx.current_entry->size = 0;
8364 
8365   splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
8366 
8367   ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8368 			     - ctx.current_entry->orig_address);
8369   if (ctx.current_entry->size != 0)
8370     ctx.map->entry_count++;
8371 
8372   return ctx.map;
8373 }
8374 
8375 
8376 /* Free an offset translation map.  */
8377 
8378 static void
8379 free_xlate_map (xlate_map_t *map)
8380 {
8381   if (map && map->entry)
8382     free (map->entry);
8383   if (map)
8384     free (map);
8385 }
8386 
8387 
8388 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8389    relocations in a section will fit if a proposed set of actions
8390    are performed.  */
8391 
8392 static bfd_boolean
8393 check_section_ebb_pcrels_fit (bfd *abfd,
8394 			      asection *sec,
8395 			      bfd_byte *contents,
8396 			      Elf_Internal_Rela *internal_relocs,
8397 			      reloc_range_list *relevant_relocs,
8398 			      const ebb_constraint *constraint,
8399 			      const xtensa_opcode *reloc_opcodes)
8400 {
8401   unsigned i, j;
8402   unsigned n = sec->reloc_count;
8403   Elf_Internal_Rela *irel;
8404   xlate_map_t *xmap = NULL;
8405   bfd_boolean ok = TRUE;
8406   xtensa_relax_info *relax_info;
8407   reloc_range_list_entry *entry = NULL;
8408 
8409   relax_info = get_xtensa_relax_info (sec);
8410 
8411   if (relax_info && sec->reloc_count > 100)
8412     {
8413       xmap = build_xlate_map (sec, relax_info);
8414       /* NULL indicates out of memory, but the slow version
8415 	 can still be used.  */
8416     }
8417 
8418   if (relevant_relocs && constraint->action_count)
8419     {
8420       if (!relevant_relocs->ok)
8421 	{
8422 	  ok = FALSE;
8423 	  n = 0;
8424 	}
8425       else
8426 	{
8427 	  bfd_vma min_offset, max_offset;
8428 	  min_offset = max_offset = constraint->actions[0].offset;
8429 
8430 	  for (i = 1; i < constraint->action_count; ++i)
8431 	    {
8432 	      proposed_action *action = &constraint->actions[i];
8433 	      bfd_vma offset = action->offset;
8434 
8435 	      if (offset < min_offset)
8436 		min_offset = offset;
8437 	      if (offset > max_offset)
8438 		max_offset = offset;
8439 	    }
8440 	  reloc_range_list_update_range (relevant_relocs, min_offset,
8441 					 max_offset);
8442 	  n = relevant_relocs->n_list;
8443 	  entry = &relevant_relocs->list_root;
8444 	}
8445     }
8446   else
8447     {
8448       relevant_relocs = NULL;
8449     }
8450 
8451   for (i = 0; i < n; i++)
8452     {
8453       r_reloc r_rel;
8454       bfd_vma orig_self_offset, orig_target_offset;
8455       bfd_vma self_offset, target_offset;
8456       int r_type;
8457       reloc_howto_type *howto;
8458       int self_removed_bytes, target_removed_bytes;
8459 
8460       if (relevant_relocs)
8461 	{
8462 	  entry = entry->next;
8463 	  irel = entry->irel;
8464 	}
8465       else
8466 	{
8467 	  irel = internal_relocs + i;
8468 	}
8469       r_type = ELF32_R_TYPE (irel->r_info);
8470 
8471       howto = &elf_howto_table[r_type];
8472       /* We maintain the required invariant: PC-relative relocations
8473 	 that fit before linking must fit after linking.  Thus we only
8474 	 need to deal with relocations to the same section that are
8475 	 PC-relative.  */
8476       if (r_type == R_XTENSA_ASM_SIMPLIFY
8477 	  || r_type == R_XTENSA_32_PCREL
8478 	  || !howto->pc_relative)
8479 	continue;
8480 
8481       r_reloc_init (&r_rel, abfd, irel, contents,
8482 		    bfd_get_section_limit (abfd, sec));
8483 
8484       if (r_reloc_get_section (&r_rel) != sec)
8485 	continue;
8486 
8487       orig_self_offset = irel->r_offset;
8488       orig_target_offset = r_rel.target_offset;
8489 
8490       self_offset = orig_self_offset;
8491       target_offset = orig_target_offset;
8492 
8493       if (relax_info)
8494 	{
8495 	  self_offset =
8496 	    xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8497 					    orig_self_offset);
8498 	  target_offset =
8499 	    xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8500 					    orig_target_offset);
8501 	}
8502 
8503       self_removed_bytes = 0;
8504       target_removed_bytes = 0;
8505 
8506       for (j = 0; j < constraint->action_count; ++j)
8507 	{
8508 	  proposed_action *action = &constraint->actions[j];
8509 	  bfd_vma offset = action->offset;
8510 	  int removed_bytes = action->removed_bytes;
8511 	  if (offset < orig_self_offset
8512 	      || (offset == orig_self_offset && action->action == ta_fill
8513 		  && action->removed_bytes < 0))
8514 	    self_removed_bytes += removed_bytes;
8515 	  if (offset < orig_target_offset
8516 	      || (offset == orig_target_offset && action->action == ta_fill
8517 		  && action->removed_bytes < 0))
8518 	    target_removed_bytes += removed_bytes;
8519 	}
8520       self_offset -= self_removed_bytes;
8521       target_offset -= target_removed_bytes;
8522 
8523       /* Try to encode it.  Get the operand and check.  */
8524       if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8525 	{
8526 	  /* None of the current alternate relocs are PC-relative,
8527 	     and only PC-relative relocs matter here.  */
8528 	}
8529       else
8530 	{
8531 	  xtensa_opcode opcode;
8532 	  int opnum;
8533 
8534 	  if (relevant_relocs)
8535 	    {
8536 	      opcode = entry->opcode;
8537 	      opnum = entry->opnum;
8538 	    }
8539 	  else
8540 	    {
8541 	      if (reloc_opcodes)
8542 		opcode = reloc_opcodes[relevant_relocs ?
8543 		  (unsigned)(entry - relevant_relocs->reloc) : i];
8544 	      else
8545 		opcode = get_relocation_opcode (abfd, sec, contents, irel);
8546 	      if (opcode == XTENSA_UNDEFINED)
8547 		{
8548 		  ok = FALSE;
8549 		  break;
8550 		}
8551 
8552 	      opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8553 	      if (opnum == XTENSA_UNDEFINED)
8554 		{
8555 		  ok = FALSE;
8556 		  break;
8557 		}
8558 	    }
8559 
8560 	  if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8561 	    {
8562 	      ok = FALSE;
8563 	      break;
8564 	    }
8565 	}
8566     }
8567 
8568   if (xmap)
8569     free_xlate_map (xmap);
8570 
8571   return ok;
8572 }
8573 
8574 
8575 static bfd_boolean
8576 check_section_ebb_reduces (const ebb_constraint *constraint)
8577 {
8578   int removed = 0;
8579   unsigned i;
8580 
8581   for (i = 0; i < constraint->action_count; i++)
8582     {
8583       const proposed_action *action = &constraint->actions[i];
8584       if (action->do_action)
8585 	removed += action->removed_bytes;
8586     }
8587   if (removed < 0)
8588     return FALSE;
8589 
8590   return TRUE;
8591 }
8592 
8593 
8594 void
8595 text_action_add_proposed (text_action_list *l,
8596 			  const ebb_constraint *ebb_table,
8597 			  asection *sec)
8598 {
8599   unsigned i;
8600 
8601   for (i = 0; i < ebb_table->action_count; i++)
8602     {
8603       proposed_action *action = &ebb_table->actions[i];
8604 
8605       if (!action->do_action)
8606 	continue;
8607       switch (action->action)
8608 	{
8609 	case ta_remove_insn:
8610 	case ta_remove_longcall:
8611 	case ta_convert_longcall:
8612 	case ta_narrow_insn:
8613 	case ta_widen_insn:
8614 	case ta_fill:
8615 	case ta_remove_literal:
8616 	  text_action_add (l, action->action, sec, action->offset,
8617 			   action->removed_bytes);
8618 	  break;
8619 	case ta_none:
8620 	  break;
8621 	default:
8622 	  BFD_ASSERT (0);
8623 	  break;
8624 	}
8625     }
8626 }
8627 
8628 
8629 int
8630 xtensa_compute_fill_extra_space (property_table_entry *entry)
8631 {
8632   int fill_extra_space;
8633 
8634   if (!entry)
8635     return 0;
8636 
8637   if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8638     return 0;
8639 
8640   fill_extra_space = entry->size;
8641   if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8642     {
8643       /* Fill bytes for alignment:
8644 	 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8645       int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8646       int nsm = (1 << pow) - 1;
8647       bfd_vma addr = entry->address + entry->size;
8648       bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8649       fill_extra_space += align_fill;
8650     }
8651   return fill_extra_space;
8652 }
8653 
8654 
8655 /* First relaxation pass.  */
8656 
8657 /* If the section contains relaxable literals, check each literal to
8658    see if it has the same value as another literal that has already
8659    been seen, either in the current section or a previous one.  If so,
8660    add an entry to the per-section list of removed literals.  The
8661    actual changes are deferred until the next pass.  */
8662 
8663 static bfd_boolean
8664 compute_removed_literals (bfd *abfd,
8665 			  asection *sec,
8666 			  struct bfd_link_info *link_info,
8667 			  value_map_hash_table *values)
8668 {
8669   xtensa_relax_info *relax_info;
8670   bfd_byte *contents;
8671   Elf_Internal_Rela *internal_relocs;
8672   source_reloc *src_relocs, *rel;
8673   bfd_boolean ok = TRUE;
8674   property_table_entry *prop_table = NULL;
8675   int ptblsize;
8676   int i, prev_i;
8677   bfd_boolean last_loc_is_prev = FALSE;
8678   bfd_vma last_target_offset = 0;
8679   section_cache_t target_sec_cache;
8680   bfd_size_type sec_size;
8681 
8682   init_section_cache (&target_sec_cache);
8683 
8684   /* Do nothing if it is not a relaxable literal section.  */
8685   relax_info = get_xtensa_relax_info (sec);
8686   BFD_ASSERT (relax_info);
8687   if (!relax_info->is_relaxable_literal_section)
8688     return ok;
8689 
8690   internal_relocs = retrieve_internal_relocs (abfd, sec,
8691 					      link_info->keep_memory);
8692 
8693   sec_size = bfd_get_section_limit (abfd, sec);
8694   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8695   if (contents == NULL && sec_size != 0)
8696     {
8697       ok = FALSE;
8698       goto error_return;
8699     }
8700 
8701   /* Sort the source_relocs by target offset.  */
8702   src_relocs = relax_info->src_relocs;
8703   qsort (src_relocs, relax_info->src_count,
8704 	 sizeof (source_reloc), source_reloc_compare);
8705   qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8706 	 internal_reloc_compare);
8707 
8708   ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8709 					XTENSA_PROP_SEC_NAME, FALSE);
8710   if (ptblsize < 0)
8711     {
8712       ok = FALSE;
8713       goto error_return;
8714     }
8715 
8716   prev_i = -1;
8717   for (i = 0; i < relax_info->src_count; i++)
8718     {
8719       Elf_Internal_Rela *irel = NULL;
8720 
8721       rel = &src_relocs[i];
8722       if (get_l32r_opcode () != rel->opcode)
8723 	continue;
8724       irel = get_irel_at_offset (sec, internal_relocs,
8725 				 rel->r_rel.target_offset);
8726 
8727       /* If the relocation on this is not a simple R_XTENSA_32 or
8728 	 R_XTENSA_PLT then do not consider it.  This may happen when
8729 	 the difference of two symbols is used in a literal.  */
8730       if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8731 		   && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8732 	continue;
8733 
8734       /* If the target_offset for this relocation is the same as the
8735 	 previous relocation, then we've already considered whether the
8736 	 literal can be coalesced.  Skip to the next one....  */
8737       if (i != 0 && prev_i != -1
8738 	  && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8739 	continue;
8740       prev_i = i;
8741 
8742       if (last_loc_is_prev &&
8743 	  last_target_offset + 4 != rel->r_rel.target_offset)
8744 	last_loc_is_prev = FALSE;
8745 
8746       /* Check if the relocation was from an L32R that is being removed
8747 	 because a CALLX was converted to a direct CALL, and check if
8748 	 there are no other relocations to the literal.  */
8749       if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8750 				sec, prop_table, ptblsize))
8751 	{
8752 	  if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8753 				    irel, rel, prop_table, ptblsize))
8754 	    {
8755 	      ok = FALSE;
8756 	      goto error_return;
8757 	    }
8758 	  last_target_offset = rel->r_rel.target_offset;
8759 	  continue;
8760 	}
8761 
8762       if (!identify_literal_placement (abfd, sec, contents, link_info,
8763 				       values,
8764 				       &last_loc_is_prev, irel,
8765 				       relax_info->src_count - i, rel,
8766 				       prop_table, ptblsize,
8767 				       &target_sec_cache, rel->is_abs_literal))
8768 	{
8769 	  ok = FALSE;
8770 	  goto error_return;
8771 	}
8772       last_target_offset = rel->r_rel.target_offset;
8773     }
8774 
8775 #if DEBUG
8776   print_removed_literals (stderr, &relax_info->removed_list);
8777   print_action_list (stderr, &relax_info->action_list);
8778 #endif /* DEBUG */
8779 
8780 error_return:
8781   if (prop_table)
8782     free (prop_table);
8783   free_section_cache (&target_sec_cache);
8784 
8785   release_contents (sec, contents);
8786   release_internal_relocs (sec, internal_relocs);
8787   return ok;
8788 }
8789 
8790 
8791 static Elf_Internal_Rela *
8792 get_irel_at_offset (asection *sec,
8793 		    Elf_Internal_Rela *internal_relocs,
8794 		    bfd_vma offset)
8795 {
8796   unsigned i;
8797   Elf_Internal_Rela *irel;
8798   unsigned r_type;
8799   Elf_Internal_Rela key;
8800 
8801   if (!internal_relocs)
8802     return NULL;
8803 
8804   key.r_offset = offset;
8805   irel = bsearch (&key, internal_relocs, sec->reloc_count,
8806 		  sizeof (Elf_Internal_Rela), internal_reloc_matches);
8807   if (!irel)
8808     return NULL;
8809 
8810   /* bsearch does not guarantee which will be returned if there are
8811      multiple matches.  We need the first that is not an alignment.  */
8812   i = irel - internal_relocs;
8813   while (i > 0)
8814     {
8815       if (internal_relocs[i-1].r_offset != offset)
8816 	break;
8817       i--;
8818     }
8819   for ( ; i < sec->reloc_count; i++)
8820     {
8821       irel = &internal_relocs[i];
8822       r_type = ELF32_R_TYPE (irel->r_info);
8823       if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8824 	return irel;
8825     }
8826 
8827   return NULL;
8828 }
8829 
8830 
8831 bfd_boolean
8832 is_removable_literal (const source_reloc *rel,
8833 		      int i,
8834 		      const source_reloc *src_relocs,
8835 		      int src_count,
8836 		      asection *sec,
8837 		      property_table_entry *prop_table,
8838 		      int ptblsize)
8839 {
8840   const source_reloc *curr_rel;
8841   property_table_entry *entry;
8842 
8843   if (!rel->is_null)
8844     return FALSE;
8845 
8846   entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8847 					  sec->vma + rel->r_rel.target_offset);
8848   if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8849     return FALSE;
8850 
8851   for (++i; i < src_count; ++i)
8852     {
8853       curr_rel = &src_relocs[i];
8854       /* If all others have the same target offset....  */
8855       if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8856 	return TRUE;
8857 
8858       if (!curr_rel->is_null
8859 	  && !xtensa_is_property_section (curr_rel->source_sec)
8860 	  && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8861 	return FALSE;
8862     }
8863   return TRUE;
8864 }
8865 
8866 
8867 bfd_boolean
8868 remove_dead_literal (bfd *abfd,
8869 		     asection *sec,
8870 		     struct bfd_link_info *link_info,
8871 		     Elf_Internal_Rela *internal_relocs,
8872 		     Elf_Internal_Rela *irel,
8873 		     source_reloc *rel,
8874 		     property_table_entry *prop_table,
8875 		     int ptblsize)
8876 {
8877   property_table_entry *entry;
8878   xtensa_relax_info *relax_info;
8879 
8880   relax_info = get_xtensa_relax_info (sec);
8881   if (!relax_info)
8882     return FALSE;
8883 
8884   entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8885 					  sec->vma + rel->r_rel.target_offset);
8886 
8887   /* Mark the unused literal so that it will be removed.  */
8888   add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8889 
8890   text_action_add (&relax_info->action_list,
8891 		   ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8892 
8893   /* If the section is 4-byte aligned, do not add fill.  */
8894   if (sec->alignment_power > 2)
8895     {
8896       int fill_extra_space;
8897       bfd_vma entry_sec_offset;
8898       text_action *fa;
8899       property_table_entry *the_add_entry;
8900       int removed_diff;
8901 
8902       if (entry)
8903 	entry_sec_offset = entry->address - sec->vma + entry->size;
8904       else
8905 	entry_sec_offset = rel->r_rel.target_offset + 4;
8906 
8907       /* If the literal range is at the end of the section,
8908 	 do not add fill.  */
8909       the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8910 						      entry_sec_offset);
8911       fill_extra_space = xtensa_compute_fill_extra_space (the_add_entry);
8912 
8913       fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8914       removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8915 						  -4, fill_extra_space);
8916       if (fa)
8917 	adjust_fill_action (fa, removed_diff);
8918       else
8919 	text_action_add (&relax_info->action_list,
8920 			 ta_fill, sec, entry_sec_offset, removed_diff);
8921     }
8922 
8923   /* Zero out the relocation on this literal location.  */
8924   if (irel)
8925     {
8926       if (elf_hash_table (link_info)->dynamic_sections_created)
8927 	shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8928 
8929       irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8930       pin_internal_relocs (sec, internal_relocs);
8931     }
8932 
8933   /* Do not modify "last_loc_is_prev".  */
8934   return TRUE;
8935 }
8936 
8937 
8938 bfd_boolean
8939 identify_literal_placement (bfd *abfd,
8940 			    asection *sec,
8941 			    bfd_byte *contents,
8942 			    struct bfd_link_info *link_info,
8943 			    value_map_hash_table *values,
8944 			    bfd_boolean *last_loc_is_prev_p,
8945 			    Elf_Internal_Rela *irel,
8946 			    int remaining_src_rels,
8947 			    source_reloc *rel,
8948 			    property_table_entry *prop_table,
8949 			    int ptblsize,
8950 			    section_cache_t *target_sec_cache,
8951 			    bfd_boolean is_abs_literal)
8952 {
8953   literal_value val;
8954   value_map *val_map;
8955   xtensa_relax_info *relax_info;
8956   bfd_boolean literal_placed = FALSE;
8957   r_reloc r_rel;
8958   unsigned long value;
8959   bfd_boolean final_static_link;
8960   bfd_size_type sec_size;
8961 
8962   relax_info = get_xtensa_relax_info (sec);
8963   if (!relax_info)
8964     return FALSE;
8965 
8966   sec_size = bfd_get_section_limit (abfd, sec);
8967 
8968   final_static_link =
8969     (!bfd_link_relocatable (link_info)
8970      && !elf_hash_table (link_info)->dynamic_sections_created);
8971 
8972   /* The placement algorithm first checks to see if the literal is
8973      already in the value map.  If so and the value map is reachable
8974      from all uses, then the literal is moved to that location.  If
8975      not, then we identify the last location where a fresh literal was
8976      placed.  If the literal can be safely moved there, then we do so.
8977      If not, then we assume that the literal is not to move and leave
8978      the literal where it is, marking it as the last literal
8979      location.  */
8980 
8981   /* Find the literal value.  */
8982   value = 0;
8983   r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8984   if (!irel)
8985     {
8986       BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8987       value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8988     }
8989   init_literal_value (&val, &r_rel, value, is_abs_literal);
8990 
8991   /* Check if we've seen another literal with the same value that
8992      is in the same output section.  */
8993   val_map = value_map_get_cached_value (values, &val, final_static_link);
8994 
8995   if (val_map
8996       && (r_reloc_get_section (&val_map->loc)->output_section
8997 	  == sec->output_section)
8998       && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8999       && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
9000     {
9001       /* No change to last_loc_is_prev.  */
9002       literal_placed = TRUE;
9003     }
9004 
9005   /* For relocatable links, do not try to move literals.  To do it
9006      correctly might increase the number of relocations in an input
9007      section making the default relocatable linking fail.  */
9008   if (!bfd_link_relocatable (link_info) && !literal_placed
9009       && values->has_last_loc && !(*last_loc_is_prev_p))
9010     {
9011       asection *target_sec = r_reloc_get_section (&values->last_loc);
9012       if (target_sec && target_sec->output_section == sec->output_section)
9013 	{
9014 	  /* Increment the virtual offset.  */
9015 	  r_reloc try_loc = values->last_loc;
9016 	  try_loc.virtual_offset += 4;
9017 
9018 	  /* There is a last loc that was in the same output section.  */
9019 	  if (relocations_reach (rel, remaining_src_rels, &try_loc)
9020 	      && move_shared_literal (sec, link_info, rel,
9021 				      prop_table, ptblsize,
9022 				      &try_loc, &val, target_sec_cache))
9023 	    {
9024 	      values->last_loc.virtual_offset += 4;
9025 	      literal_placed = TRUE;
9026 	      if (!val_map)
9027 		val_map = add_value_map (values, &val, &try_loc,
9028 					 final_static_link);
9029 	      else
9030 		val_map->loc = try_loc;
9031 	    }
9032 	}
9033     }
9034 
9035   if (!literal_placed)
9036     {
9037       /* Nothing worked, leave the literal alone but update the last loc.  */
9038       values->has_last_loc = TRUE;
9039       values->last_loc = rel->r_rel;
9040       if (!val_map)
9041 	val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
9042       else
9043 	val_map->loc = rel->r_rel;
9044       *last_loc_is_prev_p = TRUE;
9045     }
9046 
9047   return TRUE;
9048 }
9049 
9050 
9051 /* Check if the original relocations (presumably on L32R instructions)
9052    identified by reloc[0..N] can be changed to reference the literal
9053    identified by r_rel.  If r_rel is out of range for any of the
9054    original relocations, then we don't want to coalesce the original
9055    literal with the one at r_rel.  We only check reloc[0..N], where the
9056    offsets are all the same as for reloc[0] (i.e., they're all
9057    referencing the same literal) and where N is also bounded by the
9058    number of remaining entries in the "reloc" array.  The "reloc" array
9059    is sorted by target offset so we know all the entries for the same
9060    literal will be contiguous.  */
9061 
9062 static bfd_boolean
9063 relocations_reach (source_reloc *reloc,
9064 		   int remaining_relocs,
9065 		   const r_reloc *r_rel)
9066 {
9067   bfd_vma from_offset, source_address, dest_address;
9068   asection *sec;
9069   int i;
9070 
9071   if (!r_reloc_is_defined (r_rel))
9072     return FALSE;
9073 
9074   sec = r_reloc_get_section (r_rel);
9075   from_offset = reloc[0].r_rel.target_offset;
9076 
9077   for (i = 0; i < remaining_relocs; i++)
9078     {
9079       if (reloc[i].r_rel.target_offset != from_offset)
9080 	break;
9081 
9082       /* Ignore relocations that have been removed.  */
9083       if (reloc[i].is_null)
9084 	continue;
9085 
9086       /* The original and new output section for these must be the same
9087 	 in order to coalesce.  */
9088       if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9089 	  != sec->output_section)
9090 	return FALSE;
9091 
9092       /* Absolute literals in the same output section can always be
9093 	 combined.  */
9094       if (reloc[i].is_abs_literal)
9095 	continue;
9096 
9097       /* A literal with no PC-relative relocations can be moved anywhere.  */
9098       if (reloc[i].opnd != -1)
9099 	{
9100 	  /* Otherwise, check to see that it fits.  */
9101 	  source_address = (reloc[i].source_sec->output_section->vma
9102 			    + reloc[i].source_sec->output_offset
9103 			    + reloc[i].r_rel.rela.r_offset);
9104 	  dest_address = (sec->output_section->vma
9105 			  + sec->output_offset
9106 			  + r_rel->target_offset);
9107 
9108 	  if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9109 				 source_address, dest_address))
9110 	    return FALSE;
9111 	}
9112     }
9113 
9114   return TRUE;
9115 }
9116 
9117 
9118 /* Move a literal to another literal location because it is
9119    the same as the other literal value.  */
9120 
9121 static bfd_boolean
9122 coalesce_shared_literal (asection *sec,
9123 			 source_reloc *rel,
9124 			 property_table_entry *prop_table,
9125 			 int ptblsize,
9126 			 value_map *val_map)
9127 {
9128   property_table_entry *entry;
9129   text_action *fa;
9130   property_table_entry *the_add_entry;
9131   int removed_diff;
9132   xtensa_relax_info *relax_info;
9133 
9134   relax_info = get_xtensa_relax_info (sec);
9135   if (!relax_info)
9136     return FALSE;
9137 
9138   entry = elf_xtensa_find_property_entry
9139     (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9140   if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
9141     return TRUE;
9142 
9143   /* Mark that the literal will be coalesced.  */
9144   add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9145 
9146   text_action_add (&relax_info->action_list,
9147 		   ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9148 
9149   /* If the section is 4-byte aligned, do not add fill.  */
9150   if (sec->alignment_power > 2)
9151     {
9152       int fill_extra_space;
9153       bfd_vma entry_sec_offset;
9154 
9155       if (entry)
9156 	entry_sec_offset = entry->address - sec->vma + entry->size;
9157       else
9158 	entry_sec_offset = rel->r_rel.target_offset + 4;
9159 
9160       /* If the literal range is at the end of the section,
9161 	 do not add fill.  */
9162       fill_extra_space = 0;
9163       the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9164 						      entry_sec_offset);
9165       if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9166 	fill_extra_space = the_add_entry->size;
9167 
9168       fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9169       removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9170 						  -4, fill_extra_space);
9171       if (fa)
9172 	adjust_fill_action (fa, removed_diff);
9173       else
9174 	text_action_add (&relax_info->action_list,
9175 			 ta_fill, sec, entry_sec_offset, removed_diff);
9176     }
9177 
9178   return TRUE;
9179 }
9180 
9181 
9182 /* Move a literal to another location.  This may actually increase the
9183    total amount of space used because of alignments so we need to do
9184    this carefully.  Also, it may make a branch go out of range.  */
9185 
9186 static bfd_boolean
9187 move_shared_literal (asection *sec,
9188 		     struct bfd_link_info *link_info,
9189 		     source_reloc *rel,
9190 		     property_table_entry *prop_table,
9191 		     int ptblsize,
9192 		     const r_reloc *target_loc,
9193 		     const literal_value *lit_value,
9194 		     section_cache_t *target_sec_cache)
9195 {
9196   property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9197   text_action *fa, *target_fa;
9198   int removed_diff;
9199   xtensa_relax_info *relax_info, *target_relax_info;
9200   asection *target_sec;
9201   ebb_t *ebb;
9202   ebb_constraint ebb_table;
9203   bfd_boolean relocs_fit;
9204 
9205   /* If this routine always returns FALSE, the literals that cannot be
9206      coalesced will not be moved.  */
9207   if (elf32xtensa_no_literal_movement)
9208     return FALSE;
9209 
9210   relax_info = get_xtensa_relax_info (sec);
9211   if (!relax_info)
9212     return FALSE;
9213 
9214   target_sec = r_reloc_get_section (target_loc);
9215   target_relax_info = get_xtensa_relax_info (target_sec);
9216 
9217   /* Literals to undefined sections may not be moved because they
9218      must report an error.  */
9219   if (bfd_is_und_section (target_sec))
9220     return FALSE;
9221 
9222   src_entry = elf_xtensa_find_property_entry
9223     (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9224 
9225   if (!section_cache_section (target_sec_cache, target_sec, link_info))
9226     return FALSE;
9227 
9228   target_entry = elf_xtensa_find_property_entry
9229     (target_sec_cache->ptbl, target_sec_cache->pte_count,
9230      target_sec->vma + target_loc->target_offset);
9231 
9232   if (!target_entry)
9233     return FALSE;
9234 
9235   /* Make sure that we have not broken any branches.  */
9236   relocs_fit = FALSE;
9237 
9238   init_ebb_constraint (&ebb_table);
9239   ebb = &ebb_table.ebb;
9240   init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9241 	    target_sec_cache->content_length,
9242 	    target_sec_cache->ptbl, target_sec_cache->pte_count,
9243 	    target_sec_cache->relocs, target_sec_cache->reloc_count);
9244 
9245   /* Propose to add 4 bytes + worst-case alignment size increase to
9246      destination.  */
9247   ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9248 		      ta_fill, target_loc->target_offset,
9249 		      -4 - (1 << target_sec->alignment_power), TRUE);
9250 
9251   /* Check all of the PC-relative relocations to make sure they still fit.  */
9252   relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9253 					     target_sec_cache->contents,
9254 					     target_sec_cache->relocs, NULL,
9255 					     &ebb_table, NULL);
9256 
9257   if (!relocs_fit)
9258     return FALSE;
9259 
9260   text_action_add_literal (&target_relax_info->action_list,
9261 			   ta_add_literal, target_loc, lit_value, -4);
9262 
9263   if (target_sec->alignment_power > 2 && target_entry != src_entry)
9264     {
9265       /* May need to add or remove some fill to maintain alignment.  */
9266       int fill_extra_space;
9267       bfd_vma entry_sec_offset;
9268 
9269       entry_sec_offset =
9270 	target_entry->address - target_sec->vma + target_entry->size;
9271 
9272       /* If the literal range is at the end of the section,
9273 	 do not add fill.  */
9274       fill_extra_space = 0;
9275       the_add_entry =
9276 	elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9277 					target_sec_cache->pte_count,
9278 					entry_sec_offset);
9279       if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9280 	fill_extra_space = the_add_entry->size;
9281 
9282       target_fa = find_fill_action (&target_relax_info->action_list,
9283 				    target_sec, entry_sec_offset);
9284       removed_diff = compute_removed_action_diff (target_fa, target_sec,
9285 						  entry_sec_offset, 4,
9286 						  fill_extra_space);
9287       if (target_fa)
9288 	adjust_fill_action (target_fa, removed_diff);
9289       else
9290 	text_action_add (&target_relax_info->action_list,
9291 			 ta_fill, target_sec, entry_sec_offset, removed_diff);
9292     }
9293 
9294   /* Mark that the literal will be moved to the new location.  */
9295   add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9296 
9297   /* Remove the literal.  */
9298   text_action_add (&relax_info->action_list,
9299 		   ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9300 
9301   /* If the section is 4-byte aligned, do not add fill.  */
9302   if (sec->alignment_power > 2 && target_entry != src_entry)
9303     {
9304       int fill_extra_space;
9305       bfd_vma entry_sec_offset;
9306 
9307       if (src_entry)
9308 	entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9309       else
9310 	entry_sec_offset = rel->r_rel.target_offset+4;
9311 
9312       /* If the literal range is at the end of the section,
9313 	 do not add fill.  */
9314       fill_extra_space = 0;
9315       the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9316 						      entry_sec_offset);
9317       if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9318 	fill_extra_space = the_add_entry->size;
9319 
9320       fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9321       removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9322 						  -4, fill_extra_space);
9323       if (fa)
9324 	adjust_fill_action (fa, removed_diff);
9325       else
9326 	text_action_add (&relax_info->action_list,
9327 			 ta_fill, sec, entry_sec_offset, removed_diff);
9328     }
9329 
9330   return TRUE;
9331 }
9332 
9333 
9334 /* Second relaxation pass.  */
9335 
9336 static int
9337 action_remove_bytes_fn (splay_tree_node node, void *p)
9338 {
9339   bfd_size_type *final_size = p;
9340   text_action *action = (text_action *)node->value;
9341 
9342   *final_size -= action->removed_bytes;
9343   return 0;
9344 }
9345 
9346 /* Modify all of the relocations to point to the right spot, and if this
9347    is a relaxable section, delete the unwanted literals and fix the
9348    section size.  */
9349 
9350 bfd_boolean
9351 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9352 {
9353   Elf_Internal_Rela *internal_relocs;
9354   xtensa_relax_info *relax_info;
9355   bfd_byte *contents;
9356   bfd_boolean ok = TRUE;
9357   unsigned i;
9358   bfd_boolean rv = FALSE;
9359   bfd_boolean virtual_action;
9360   bfd_size_type sec_size;
9361 
9362   sec_size = bfd_get_section_limit (abfd, sec);
9363   relax_info = get_xtensa_relax_info (sec);
9364   BFD_ASSERT (relax_info);
9365 
9366   /* First translate any of the fixes that have been added already.  */
9367   translate_section_fixes (sec);
9368 
9369   /* Handle property sections (e.g., literal tables) specially.  */
9370   if (xtensa_is_property_section (sec))
9371     {
9372       BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9373       return relax_property_section (abfd, sec, link_info);
9374     }
9375 
9376   internal_relocs = retrieve_internal_relocs (abfd, sec,
9377 					      link_info->keep_memory);
9378   if (!internal_relocs && !action_list_count (&relax_info->action_list))
9379     return TRUE;
9380 
9381   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9382   if (contents == NULL && sec_size != 0)
9383     {
9384       ok = FALSE;
9385       goto error_return;
9386     }
9387 
9388   if (internal_relocs)
9389     {
9390       for (i = 0; i < sec->reloc_count; i++)
9391 	{
9392 	  Elf_Internal_Rela *irel;
9393 	  xtensa_relax_info *target_relax_info;
9394 	  bfd_vma source_offset, old_source_offset;
9395 	  r_reloc r_rel;
9396 	  unsigned r_type;
9397 	  asection *target_sec;
9398 
9399 	  /* Locally change the source address.
9400 	     Translate the target to the new target address.
9401 	     If it points to this section and has been removed,
9402 	     NULLify it.
9403 	     Write it back.  */
9404 
9405 	  irel = &internal_relocs[i];
9406 	  source_offset = irel->r_offset;
9407 	  old_source_offset = source_offset;
9408 
9409 	  r_type = ELF32_R_TYPE (irel->r_info);
9410 	  r_reloc_init (&r_rel, abfd, irel, contents,
9411 			bfd_get_section_limit (abfd, sec));
9412 
9413 	  /* If this section could have changed then we may need to
9414 	     change the relocation's offset.  */
9415 
9416 	  if (relax_info->is_relaxable_literal_section
9417 	      || relax_info->is_relaxable_asm_section)
9418 	    {
9419 	      pin_internal_relocs (sec, internal_relocs);
9420 
9421 	      if (r_type != R_XTENSA_NONE
9422 		  && find_removed_literal (&relax_info->removed_list,
9423 					   irel->r_offset))
9424 		{
9425 		  /* Remove this relocation.  */
9426 		  if (elf_hash_table (link_info)->dynamic_sections_created)
9427 		    shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9428 		  irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9429 		  irel->r_offset = offset_with_removed_text_map
9430 		    (&relax_info->action_list, irel->r_offset);
9431 		  continue;
9432 		}
9433 
9434 	      if (r_type == R_XTENSA_ASM_SIMPLIFY)
9435 		{
9436 		  text_action *action =
9437 		    find_insn_action (&relax_info->action_list,
9438 				      irel->r_offset);
9439 		  if (action && (action->action == ta_convert_longcall
9440 				 || action->action == ta_remove_longcall))
9441 		    {
9442 		      bfd_reloc_status_type retval;
9443 		      char *error_message = NULL;
9444 
9445 		      retval = contract_asm_expansion (contents, sec_size,
9446 						       irel, &error_message);
9447 		      if (retval != bfd_reloc_ok)
9448 			{
9449 			  (*link_info->callbacks->reloc_dangerous)
9450 			    (link_info, error_message, abfd, sec,
9451 			     irel->r_offset);
9452 			  goto error_return;
9453 			}
9454 		      /* Update the action so that the code that moves
9455 			 the contents will do the right thing.  */
9456 		      /* ta_remove_longcall and ta_remove_insn actions are
9457 			 grouped together in the tree as well as
9458 			 ta_convert_longcall and ta_none, so that changes below
9459 			 can be done w/o removing and reinserting action into
9460 			 the tree.  */
9461 
9462 		      if (action->action == ta_remove_longcall)
9463 			action->action = ta_remove_insn;
9464 		      else
9465 			action->action = ta_none;
9466 		      /* Refresh the info in the r_rel.  */
9467 		      r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9468 		      r_type = ELF32_R_TYPE (irel->r_info);
9469 		    }
9470 		}
9471 
9472 	      source_offset = offset_with_removed_text_map
9473 		(&relax_info->action_list, irel->r_offset);
9474 	      irel->r_offset = source_offset;
9475 	    }
9476 
9477 	  /* If the target section could have changed then
9478 	     we may need to change the relocation's target offset.  */
9479 
9480 	  target_sec = r_reloc_get_section (&r_rel);
9481 
9482 	  /* For a reference to a discarded section from a DWARF section,
9483 	     i.e., where action_discarded is PRETEND, the symbol will
9484 	     eventually be modified to refer to the kept section (at least if
9485 	     the kept and discarded sections are the same size).  Anticipate
9486 	     that here and adjust things accordingly.  */
9487 	  if (! elf_xtensa_ignore_discarded_relocs (sec)
9488 	      && elf_xtensa_action_discarded (sec) == PRETEND
9489 	      && sec->sec_info_type != SEC_INFO_TYPE_STABS
9490 	      && target_sec != NULL
9491 	      && discarded_section (target_sec))
9492 	    {
9493 	      /* It would be natural to call _bfd_elf_check_kept_section
9494 		 here, but it's not exported from elflink.c.  It's also a
9495 		 fairly expensive check.  Adjusting the relocations to the
9496 		 discarded section is fairly harmless; it will only adjust
9497 		 some addends and difference values.  If it turns out that
9498 		 _bfd_elf_check_kept_section fails later, it won't matter,
9499 		 so just compare the section names to find the right group
9500 		 member.  */
9501 	      asection *kept = target_sec->kept_section;
9502 	      if (kept != NULL)
9503 		{
9504 		  if ((kept->flags & SEC_GROUP) != 0)
9505 		    {
9506 		      asection *first = elf_next_in_group (kept);
9507 		      asection *s = first;
9508 
9509 		      kept = NULL;
9510 		      while (s != NULL)
9511 			{
9512 			  if (strcmp (s->name, target_sec->name) == 0)
9513 			    {
9514 			      kept = s;
9515 			      break;
9516 			    }
9517 			  s = elf_next_in_group (s);
9518 			  if (s == first)
9519 			    break;
9520 			}
9521 		    }
9522 		}
9523 	      if (kept != NULL
9524 		  && ((target_sec->rawsize != 0
9525 		       ? target_sec->rawsize : target_sec->size)
9526 		      == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9527 		target_sec = kept;
9528 	    }
9529 
9530 	  target_relax_info = get_xtensa_relax_info (target_sec);
9531 	  if (target_relax_info
9532 	      && (target_relax_info->is_relaxable_literal_section
9533 		  || target_relax_info->is_relaxable_asm_section))
9534 	    {
9535 	      r_reloc new_reloc;
9536 	      target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9537 
9538 	      if (r_type == R_XTENSA_DIFF8
9539 		  || r_type == R_XTENSA_DIFF16
9540 		  || r_type == R_XTENSA_DIFF32)
9541 		{
9542 		  bfd_signed_vma diff_value = 0;
9543 		  bfd_vma new_end_offset, diff_mask = 0;
9544 
9545 		  if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9546 		    {
9547 		      (*link_info->callbacks->reloc_dangerous)
9548 			(link_info, _("invalid relocation address"),
9549 			 abfd, sec, old_source_offset);
9550 		      goto error_return;
9551 		    }
9552 
9553 		  switch (r_type)
9554 		    {
9555 		    case R_XTENSA_DIFF8:
9556 		      diff_value =
9557 			bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9558 		      break;
9559 		    case R_XTENSA_DIFF16:
9560 		      diff_value =
9561 			bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9562 		      break;
9563 		    case R_XTENSA_DIFF32:
9564 		      diff_value =
9565 			bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9566 		      break;
9567 		    }
9568 
9569 		  new_end_offset = offset_with_removed_text_map
9570 		    (&target_relax_info->action_list,
9571 		     r_rel.target_offset + diff_value);
9572 		  diff_value = new_end_offset - new_reloc.target_offset;
9573 
9574 		  switch (r_type)
9575 		    {
9576 		    case R_XTENSA_DIFF8:
9577 		      diff_mask = 0x7f;
9578 		      bfd_put_signed_8 (abfd, diff_value,
9579 				 &contents[old_source_offset]);
9580 		      break;
9581 		    case R_XTENSA_DIFF16:
9582 		      diff_mask = 0x7fff;
9583 		      bfd_put_signed_16 (abfd, diff_value,
9584 				  &contents[old_source_offset]);
9585 		      break;
9586 		    case R_XTENSA_DIFF32:
9587 		      diff_mask = 0x7fffffff;
9588 		      bfd_put_signed_32 (abfd, diff_value,
9589 				  &contents[old_source_offset]);
9590 		      break;
9591 		    }
9592 
9593 		  /* Check for overflow. Sign bits must be all zeroes or all ones */
9594 		  if ((diff_value & ~diff_mask) != 0 &&
9595 		      (diff_value & ~diff_mask) != (-1 & ~diff_mask))
9596 		    {
9597 		      (*link_info->callbacks->reloc_dangerous)
9598 			(link_info, _("overflow after relaxation"),
9599 			 abfd, sec, old_source_offset);
9600 		      goto error_return;
9601 		    }
9602 
9603 		  pin_contents (sec, contents);
9604 		}
9605 
9606 	      /* If the relocation still references a section in the same
9607 		 input file, modify the relocation directly instead of
9608 		 adding a "fix" record.  */
9609 	      if (target_sec->owner == abfd)
9610 		{
9611 		  unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9612 		  irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9613 		  irel->r_addend = new_reloc.rela.r_addend;
9614 		  pin_internal_relocs (sec, internal_relocs);
9615 		}
9616 	      else
9617 		{
9618 		  bfd_vma addend_displacement;
9619 		  reloc_bfd_fix *fix;
9620 
9621 		  addend_displacement =
9622 		    new_reloc.target_offset + new_reloc.virtual_offset;
9623 		  fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9624 					    target_sec,
9625 					    addend_displacement, TRUE);
9626 		  add_fix (sec, fix);
9627 		}
9628 	    }
9629 	}
9630     }
9631 
9632   if ((relax_info->is_relaxable_literal_section
9633        || relax_info->is_relaxable_asm_section)
9634       && action_list_count (&relax_info->action_list))
9635     {
9636       /* Walk through the planned actions and build up a table
9637 	 of move, copy and fill records.  Use the move, copy and
9638 	 fill records to perform the actions once.  */
9639 
9640       bfd_size_type final_size, copy_size, orig_insn_size;
9641       bfd_byte *scratch = NULL;
9642       bfd_byte *dup_contents = NULL;
9643       bfd_size_type orig_size = sec->size;
9644       bfd_vma orig_dot = 0;
9645       bfd_vma orig_dot_copied = 0; /* Byte copied already from
9646 					    orig dot in physical memory.  */
9647       bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot.  */
9648       bfd_vma dup_dot = 0;
9649 
9650       text_action *action;
9651 
9652       final_size = sec->size;
9653 
9654       splay_tree_foreach (relax_info->action_list.tree,
9655 			  action_remove_bytes_fn, &final_size);
9656       scratch = (bfd_byte *) bfd_zmalloc (final_size);
9657       dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9658 
9659       /* The dot is the current fill location.  */
9660 #if DEBUG
9661       print_action_list (stderr, &relax_info->action_list);
9662 #endif
9663 
9664       for (action = action_first (&relax_info->action_list); action;
9665 	   action = action_next (&relax_info->action_list, action))
9666 	{
9667 	  virtual_action = FALSE;
9668 	  if (action->offset > orig_dot)
9669 	    {
9670 	      orig_dot += orig_dot_copied;
9671 	      orig_dot_copied = 0;
9672 	      orig_dot_vo = 0;
9673 	      /* Out of the virtual world.  */
9674 	    }
9675 
9676 	  if (action->offset > orig_dot)
9677 	    {
9678 	      copy_size = action->offset - orig_dot;
9679 	      memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9680 	      orig_dot += copy_size;
9681 	      dup_dot += copy_size;
9682 	      BFD_ASSERT (action->offset == orig_dot);
9683 	    }
9684 	  else if (action->offset < orig_dot)
9685 	    {
9686 	      if (action->action == ta_fill
9687 		  && action->offset - action->removed_bytes == orig_dot)
9688 		{
9689 		  /* This is OK because the fill only effects the dup_dot.  */
9690 		}
9691 	      else if (action->action == ta_add_literal)
9692 		{
9693 		  /* TBD.  Might need to handle this.  */
9694 		}
9695 	    }
9696 	  if (action->offset == orig_dot)
9697 	    {
9698 	      if (action->virtual_offset > orig_dot_vo)
9699 		{
9700 		  if (orig_dot_vo == 0)
9701 		    {
9702 		      /* Need to copy virtual_offset bytes.  Probably four.  */
9703 		      copy_size = action->virtual_offset - orig_dot_vo;
9704 		      memmove (&dup_contents[dup_dot],
9705 			       &contents[orig_dot], copy_size);
9706 		      orig_dot_copied = copy_size;
9707 		      dup_dot += copy_size;
9708 		    }
9709 		  virtual_action = TRUE;
9710 		}
9711 	      else
9712 		BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9713 	    }
9714 	  switch (action->action)
9715 	    {
9716 	    case ta_remove_literal:
9717 	    case ta_remove_insn:
9718 	      BFD_ASSERT (action->removed_bytes >= 0);
9719 	      orig_dot += action->removed_bytes;
9720 	      break;
9721 
9722 	    case ta_narrow_insn:
9723 	      orig_insn_size = 3;
9724 	      copy_size = 2;
9725 	      memmove (scratch, &contents[orig_dot], orig_insn_size);
9726 	      BFD_ASSERT (action->removed_bytes == 1);
9727 	      rv = narrow_instruction (scratch, final_size, 0);
9728 	      BFD_ASSERT (rv);
9729 	      memmove (&dup_contents[dup_dot], scratch, copy_size);
9730 	      orig_dot += orig_insn_size;
9731 	      dup_dot += copy_size;
9732 	      break;
9733 
9734 	    case ta_fill:
9735 	      if (action->removed_bytes >= 0)
9736 		orig_dot += action->removed_bytes;
9737 	      else
9738 		{
9739 		  /* Already zeroed in dup_contents.  Just bump the
9740 		     counters.  */
9741 		  dup_dot += (-action->removed_bytes);
9742 		}
9743 	      break;
9744 
9745 	    case ta_none:
9746 	      BFD_ASSERT (action->removed_bytes == 0);
9747 	      break;
9748 
9749 	    case ta_convert_longcall:
9750 	    case ta_remove_longcall:
9751 	      /* These will be removed or converted before we get here.  */
9752 	      BFD_ASSERT (0);
9753 	      break;
9754 
9755 	    case ta_widen_insn:
9756 	      orig_insn_size = 2;
9757 	      copy_size = 3;
9758 	      memmove (scratch, &contents[orig_dot], orig_insn_size);
9759 	      BFD_ASSERT (action->removed_bytes == -1);
9760 	      rv = widen_instruction (scratch, final_size, 0);
9761 	      BFD_ASSERT (rv);
9762 	      memmove (&dup_contents[dup_dot], scratch, copy_size);
9763 	      orig_dot += orig_insn_size;
9764 	      dup_dot += copy_size;
9765 	      break;
9766 
9767 	    case ta_add_literal:
9768 	      orig_insn_size = 0;
9769 	      copy_size = 4;
9770 	      BFD_ASSERT (action->removed_bytes == -4);
9771 	      /* TBD -- place the literal value here and insert
9772 		 into the table.  */
9773 	      memset (&dup_contents[dup_dot], 0, 4);
9774 	      pin_internal_relocs (sec, internal_relocs);
9775 	      pin_contents (sec, contents);
9776 
9777 	      if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9778 				 relax_info, &internal_relocs, &action->value))
9779 		goto error_return;
9780 
9781 	      if (virtual_action)
9782 		orig_dot_vo += copy_size;
9783 
9784 	      orig_dot += orig_insn_size;
9785 	      dup_dot += copy_size;
9786 	      break;
9787 
9788 	    default:
9789 	      /* Not implemented yet.  */
9790 	      BFD_ASSERT (0);
9791 	      break;
9792 	    }
9793 
9794 	  BFD_ASSERT (dup_dot <= final_size);
9795 	  BFD_ASSERT (orig_dot <= orig_size);
9796 	}
9797 
9798       orig_dot += orig_dot_copied;
9799       orig_dot_copied = 0;
9800 
9801       if (orig_dot != orig_size)
9802 	{
9803 	  copy_size = orig_size - orig_dot;
9804 	  BFD_ASSERT (orig_size > orig_dot);
9805 	  BFD_ASSERT (dup_dot + copy_size == final_size);
9806 	  memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9807 	  orig_dot += copy_size;
9808 	  dup_dot += copy_size;
9809 	}
9810       BFD_ASSERT (orig_size == orig_dot);
9811       BFD_ASSERT (final_size == dup_dot);
9812 
9813       /* Move the dup_contents back.  */
9814       if (final_size > orig_size)
9815 	{
9816 	  /* Contents need to be reallocated.  Swap the dup_contents into
9817 	     contents.  */
9818 	  sec->contents = dup_contents;
9819 	  free (contents);
9820 	  contents = dup_contents;
9821 	  pin_contents (sec, contents);
9822 	}
9823       else
9824 	{
9825 	  BFD_ASSERT (final_size <= orig_size);
9826 	  memset (contents, 0, orig_size);
9827 	  memcpy (contents, dup_contents, final_size);
9828 	  free (dup_contents);
9829 	}
9830       free (scratch);
9831       pin_contents (sec, contents);
9832 
9833       if (sec->rawsize == 0)
9834 	sec->rawsize = sec->size;
9835       sec->size = final_size;
9836     }
9837 
9838  error_return:
9839   release_internal_relocs (sec, internal_relocs);
9840   release_contents (sec, contents);
9841   return ok;
9842 }
9843 
9844 
9845 static bfd_boolean
9846 translate_section_fixes (asection *sec)
9847 {
9848   xtensa_relax_info *relax_info;
9849   reloc_bfd_fix *r;
9850 
9851   relax_info = get_xtensa_relax_info (sec);
9852   if (!relax_info)
9853     return TRUE;
9854 
9855   for (r = relax_info->fix_list; r != NULL; r = r->next)
9856     if (!translate_reloc_bfd_fix (r))
9857       return FALSE;
9858 
9859   return TRUE;
9860 }
9861 
9862 
9863 /* Translate a fix given the mapping in the relax info for the target
9864    section.  If it has already been translated, no work is required.  */
9865 
9866 static bfd_boolean
9867 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9868 {
9869   reloc_bfd_fix new_fix;
9870   asection *sec;
9871   xtensa_relax_info *relax_info;
9872   removed_literal *removed;
9873   bfd_vma new_offset, target_offset;
9874 
9875   if (fix->translated)
9876     return TRUE;
9877 
9878   sec = fix->target_sec;
9879   target_offset = fix->target_offset;
9880 
9881   relax_info = get_xtensa_relax_info (sec);
9882   if (!relax_info)
9883     {
9884       fix->translated = TRUE;
9885       return TRUE;
9886     }
9887 
9888   new_fix = *fix;
9889 
9890   /* The fix does not need to be translated if the section cannot change.  */
9891   if (!relax_info->is_relaxable_literal_section
9892       && !relax_info->is_relaxable_asm_section)
9893     {
9894       fix->translated = TRUE;
9895       return TRUE;
9896     }
9897 
9898   /* If the literal has been moved and this relocation was on an
9899      opcode, then the relocation should move to the new literal
9900      location.  Otherwise, the relocation should move within the
9901      section.  */
9902 
9903   removed = FALSE;
9904   if (is_operand_relocation (fix->src_type))
9905     {
9906       /* Check if the original relocation is against a literal being
9907 	 removed.  */
9908       removed = find_removed_literal (&relax_info->removed_list,
9909 				      target_offset);
9910     }
9911 
9912   if (removed)
9913     {
9914       asection *new_sec;
9915 
9916       /* The fact that there is still a relocation to this literal indicates
9917 	 that the literal is being coalesced, not simply removed.  */
9918       BFD_ASSERT (removed->to.abfd != NULL);
9919 
9920       /* This was moved to some other address (possibly another section).  */
9921       new_sec = r_reloc_get_section (&removed->to);
9922       if (new_sec != sec)
9923 	{
9924 	  sec = new_sec;
9925 	  relax_info = get_xtensa_relax_info (sec);
9926 	  if (!relax_info ||
9927 	      (!relax_info->is_relaxable_literal_section
9928 	       && !relax_info->is_relaxable_asm_section))
9929 	    {
9930 	      target_offset = removed->to.target_offset;
9931 	      new_fix.target_sec = new_sec;
9932 	      new_fix.target_offset = target_offset;
9933 	      new_fix.translated = TRUE;
9934 	      *fix = new_fix;
9935 	      return TRUE;
9936 	    }
9937 	}
9938       target_offset = removed->to.target_offset;
9939       new_fix.target_sec = new_sec;
9940     }
9941 
9942   /* The target address may have been moved within its section.  */
9943   new_offset = offset_with_removed_text (&relax_info->action_list,
9944 					 target_offset);
9945 
9946   new_fix.target_offset = new_offset;
9947   new_fix.target_offset = new_offset;
9948   new_fix.translated = TRUE;
9949   *fix = new_fix;
9950   return TRUE;
9951 }
9952 
9953 
9954 /* Fix up a relocation to take account of removed literals.  */
9955 
9956 static asection *
9957 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9958 {
9959   xtensa_relax_info *relax_info;
9960   removed_literal *removed;
9961   bfd_vma target_offset, base_offset;
9962 
9963   *new_rel = *orig_rel;
9964 
9965   if (!r_reloc_is_defined (orig_rel))
9966     return sec ;
9967 
9968   relax_info = get_xtensa_relax_info (sec);
9969   BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9970 			     || relax_info->is_relaxable_asm_section));
9971 
9972   target_offset = orig_rel->target_offset;
9973 
9974   removed = FALSE;
9975   if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9976     {
9977       /* Check if the original relocation is against a literal being
9978 	 removed.  */
9979       removed = find_removed_literal (&relax_info->removed_list,
9980 				      target_offset);
9981     }
9982   if (removed && removed->to.abfd)
9983     {
9984       asection *new_sec;
9985 
9986       /* The fact that there is still a relocation to this literal indicates
9987 	 that the literal is being coalesced, not simply removed.  */
9988       BFD_ASSERT (removed->to.abfd != NULL);
9989 
9990       /* This was moved to some other address
9991 	 (possibly in another section).  */
9992       *new_rel = removed->to;
9993       new_sec = r_reloc_get_section (new_rel);
9994       if (new_sec != sec)
9995 	{
9996 	  sec = new_sec;
9997 	  relax_info = get_xtensa_relax_info (sec);
9998 	  if (!relax_info
9999 	      || (!relax_info->is_relaxable_literal_section
10000 		  && !relax_info->is_relaxable_asm_section))
10001 	    return sec;
10002 	}
10003       target_offset = new_rel->target_offset;
10004     }
10005 
10006   /* Find the base offset of the reloc symbol, excluding any addend from the
10007      reloc or from the section contents (for a partial_inplace reloc).  Then
10008      find the adjusted values of the offsets due to relaxation.  The base
10009      offset is needed to determine the change to the reloc's addend; the reloc
10010      addend should not be adjusted due to relaxations located before the base
10011      offset.  */
10012 
10013   base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
10014   if (base_offset <= target_offset)
10015     {
10016       int base_removed = removed_by_actions_map (&relax_info->action_list,
10017 						 base_offset, FALSE);
10018       int addend_removed = removed_by_actions_map (&relax_info->action_list,
10019 						   target_offset, FALSE) -
10020 	base_removed;
10021 
10022       new_rel->target_offset = target_offset - base_removed - addend_removed;
10023       new_rel->rela.r_addend -= addend_removed;
10024     }
10025   else
10026     {
10027       /* Handle a negative addend.  The base offset comes first.  */
10028       int tgt_removed = removed_by_actions_map (&relax_info->action_list,
10029 						target_offset, FALSE);
10030       int addend_removed = removed_by_actions_map (&relax_info->action_list,
10031 						   base_offset, FALSE) -
10032 	tgt_removed;
10033 
10034       new_rel->target_offset = target_offset - tgt_removed;
10035       new_rel->rela.r_addend += addend_removed;
10036     }
10037 
10038   return sec;
10039 }
10040 
10041 
10042 /* For dynamic links, there may be a dynamic relocation for each
10043    literal.  The number of dynamic relocations must be computed in
10044    size_dynamic_sections, which occurs before relaxation.  When a
10045    literal is removed, this function checks if there is a corresponding
10046    dynamic relocation and shrinks the size of the appropriate dynamic
10047    relocation section accordingly.  At this point, the contents of the
10048    dynamic relocation sections have not yet been filled in, so there's
10049    nothing else that needs to be done.  */
10050 
10051 static void
10052 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10053 			       bfd *abfd,
10054 			       asection *input_section,
10055 			       Elf_Internal_Rela *rel)
10056 {
10057   struct elf_xtensa_link_hash_table *htab;
10058   Elf_Internal_Shdr *symtab_hdr;
10059   struct elf_link_hash_entry **sym_hashes;
10060   unsigned long r_symndx;
10061   int r_type;
10062   struct elf_link_hash_entry *h;
10063   bfd_boolean dynamic_symbol;
10064 
10065   htab = elf_xtensa_hash_table (info);
10066   if (htab == NULL)
10067     return;
10068 
10069   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10070   sym_hashes = elf_sym_hashes (abfd);
10071 
10072   r_type = ELF32_R_TYPE (rel->r_info);
10073   r_symndx = ELF32_R_SYM (rel->r_info);
10074 
10075   if (r_symndx < symtab_hdr->sh_info)
10076     h = NULL;
10077   else
10078     h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10079 
10080   dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
10081 
10082   if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10083       && (input_section->flags & SEC_ALLOC) != 0
10084       && (dynamic_symbol || bfd_link_pic (info))
10085       && (!h || h->root.type != bfd_link_hash_undefweak
10086 	  || (dynamic_symbol && bfd_link_dll (info))))
10087     {
10088       asection *srel;
10089       bfd_boolean is_plt = FALSE;
10090 
10091       if (dynamic_symbol && r_type == R_XTENSA_PLT)
10092 	{
10093 	  srel = htab->elf.srelplt;
10094 	  is_plt = TRUE;
10095 	}
10096       else
10097 	srel = htab->elf.srelgot;
10098 
10099       /* Reduce size of the .rela.* section by one reloc.  */
10100       BFD_ASSERT (srel != NULL);
10101       BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10102       srel->size -= sizeof (Elf32_External_Rela);
10103 
10104       if (is_plt)
10105 	{
10106 	  asection *splt, *sgotplt, *srelgot;
10107 	  int reloc_index, chunk;
10108 
10109 	  /* Find the PLT reloc index of the entry being removed.  This
10110 	     is computed from the size of ".rela.plt".  It is needed to
10111 	     figure out which PLT chunk to resize.  Usually "last index
10112 	     = size - 1" since the index starts at zero, but in this
10113 	     context, the size has just been decremented so there's no
10114 	     need to subtract one.  */
10115 	  reloc_index = srel->size / sizeof (Elf32_External_Rela);
10116 
10117 	  chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
10118 	  splt = elf_xtensa_get_plt_section (info, chunk);
10119 	  sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
10120 	  BFD_ASSERT (splt != NULL && sgotplt != NULL);
10121 
10122 	  /* Check if an entire PLT chunk has just been eliminated.  */
10123 	  if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10124 	    {
10125 	      /* The two magic GOT entries for that chunk can go away.  */
10126 	      srelgot = htab->elf.srelgot;
10127 	      BFD_ASSERT (srelgot != NULL);
10128 	      srelgot->reloc_count -= 2;
10129 	      srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10130 	      sgotplt->size -= 8;
10131 
10132 	      /* There should be only one entry left (and it will be
10133 		 removed below).  */
10134 	      BFD_ASSERT (sgotplt->size == 4);
10135 	      BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
10136 	    }
10137 
10138 	  BFD_ASSERT (sgotplt->size >= 4);
10139 	  BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
10140 
10141 	  sgotplt->size -= 4;
10142 	  splt->size -= PLT_ENTRY_SIZE;
10143 	}
10144     }
10145 }
10146 
10147 
10148 /* Take an r_rel and move it to another section.  This usually
10149    requires extending the interal_relocation array and pinning it.  If
10150    the original r_rel is from the same BFD, we can complete this here.
10151    Otherwise, we add a fix record to let the final link fix the
10152    appropriate address.  Contents and internal relocations for the
10153    section must be pinned after calling this routine.  */
10154 
10155 static bfd_boolean
10156 move_literal (bfd *abfd,
10157 	      struct bfd_link_info *link_info,
10158 	      asection *sec,
10159 	      bfd_vma offset,
10160 	      bfd_byte *contents,
10161 	      xtensa_relax_info *relax_info,
10162 	      Elf_Internal_Rela **internal_relocs_p,
10163 	      const literal_value *lit)
10164 {
10165   Elf_Internal_Rela *new_relocs = NULL;
10166   size_t new_relocs_count = 0;
10167   Elf_Internal_Rela this_rela;
10168   const r_reloc *r_rel;
10169 
10170   r_rel = &lit->r_rel;
10171   BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10172 
10173   if (r_reloc_is_const (r_rel))
10174     bfd_put_32 (abfd, lit->value, contents + offset);
10175   else
10176     {
10177       int r_type;
10178       unsigned i;
10179       reloc_bfd_fix *fix;
10180       unsigned insert_at;
10181 
10182       r_type = ELF32_R_TYPE (r_rel->rela.r_info);
10183 
10184       /* This is the difficult case.  We have to create a fix up.  */
10185       this_rela.r_offset = offset;
10186       this_rela.r_info = ELF32_R_INFO (0, r_type);
10187       this_rela.r_addend =
10188 	r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10189       bfd_put_32 (abfd, lit->value, contents + offset);
10190 
10191       /* Currently, we cannot move relocations during a relocatable link.  */
10192       BFD_ASSERT (!bfd_link_relocatable (link_info));
10193       fix = reloc_bfd_fix_init (sec, offset, r_type,
10194 				r_reloc_get_section (r_rel),
10195 				r_rel->target_offset + r_rel->virtual_offset,
10196 				FALSE);
10197       /* We also need to mark that relocations are needed here.  */
10198       sec->flags |= SEC_RELOC;
10199 
10200       translate_reloc_bfd_fix (fix);
10201       /* This fix has not yet been translated.  */
10202       add_fix (sec, fix);
10203 
10204       /* Add the relocation.  If we have already allocated our own
10205 	 space for the relocations and we have room for more, then use
10206 	 it.  Otherwise, allocate new space and move the literals.  */
10207       insert_at = sec->reloc_count;
10208       for (i = 0; i < sec->reloc_count; ++i)
10209 	{
10210 	  if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10211 	    {
10212 	      insert_at = i;
10213 	      break;
10214 	    }
10215 	}
10216 
10217       if (*internal_relocs_p != relax_info->allocated_relocs
10218 	  || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10219 	{
10220 	  BFD_ASSERT (relax_info->allocated_relocs == NULL
10221 		      || sec->reloc_count == relax_info->relocs_count);
10222 
10223 	  if (relax_info->allocated_relocs_count == 0)
10224 	    new_relocs_count = (sec->reloc_count + 2) * 2;
10225 	  else
10226 	    new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10227 
10228 	  new_relocs = (Elf_Internal_Rela *)
10229 	    bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10230 	  if (!new_relocs)
10231 	    return FALSE;
10232 
10233 	  /* We could handle this more quickly by finding the split point.  */
10234 	  if (insert_at != 0)
10235 	    memcpy (new_relocs, *internal_relocs_p,
10236 		    insert_at * sizeof (Elf_Internal_Rela));
10237 
10238 	  new_relocs[insert_at] = this_rela;
10239 
10240 	  if (insert_at != sec->reloc_count)
10241 	    memcpy (new_relocs + insert_at + 1,
10242 		    (*internal_relocs_p) + insert_at,
10243 		    (sec->reloc_count - insert_at)
10244 		    * sizeof (Elf_Internal_Rela));
10245 
10246 	  if (*internal_relocs_p != relax_info->allocated_relocs)
10247 	    {
10248 	      /* The first time we re-allocate, we can only free the
10249 		 old relocs if they were allocated with bfd_malloc.
10250 		 This is not true when keep_memory is in effect.  */
10251 	      if (!link_info->keep_memory)
10252 		free (*internal_relocs_p);
10253 	    }
10254 	  else
10255 	    free (*internal_relocs_p);
10256 	  relax_info->allocated_relocs = new_relocs;
10257 	  relax_info->allocated_relocs_count = new_relocs_count;
10258 	  elf_section_data (sec)->relocs = new_relocs;
10259 	  sec->reloc_count++;
10260 	  relax_info->relocs_count = sec->reloc_count;
10261 	  *internal_relocs_p = new_relocs;
10262 	}
10263       else
10264 	{
10265 	  if (insert_at != sec->reloc_count)
10266 	    {
10267 	      unsigned idx;
10268 	      for (idx = sec->reloc_count; idx > insert_at; idx--)
10269 		(*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10270 	    }
10271 	  (*internal_relocs_p)[insert_at] = this_rela;
10272 	  sec->reloc_count++;
10273 	  if (relax_info->allocated_relocs)
10274 	    relax_info->relocs_count = sec->reloc_count;
10275 	}
10276     }
10277   return TRUE;
10278 }
10279 
10280 
10281 /* This is similar to relax_section except that when a target is moved,
10282    we shift addresses up.  We also need to modify the size.  This
10283    algorithm does NOT allow for relocations into the middle of the
10284    property sections.  */
10285 
10286 static bfd_boolean
10287 relax_property_section (bfd *abfd,
10288 			asection *sec,
10289 			struct bfd_link_info *link_info)
10290 {
10291   Elf_Internal_Rela *internal_relocs;
10292   bfd_byte *contents;
10293   unsigned i;
10294   bfd_boolean ok = TRUE;
10295   bfd_boolean is_full_prop_section;
10296   size_t last_zfill_target_offset = 0;
10297   asection *last_zfill_target_sec = NULL;
10298   bfd_size_type sec_size;
10299   bfd_size_type entry_size;
10300 
10301   sec_size = bfd_get_section_limit (abfd, sec);
10302   internal_relocs = retrieve_internal_relocs (abfd, sec,
10303 					      link_info->keep_memory);
10304   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10305   if (contents == NULL && sec_size != 0)
10306     {
10307       ok = FALSE;
10308       goto error_return;
10309     }
10310 
10311   is_full_prop_section = xtensa_is_proptable_section (sec);
10312   if (is_full_prop_section)
10313     entry_size = 12;
10314   else
10315     entry_size = 8;
10316 
10317   if (internal_relocs)
10318     {
10319       for (i = 0; i < sec->reloc_count; i++)
10320 	{
10321 	  Elf_Internal_Rela *irel;
10322 	  xtensa_relax_info *target_relax_info;
10323 	  unsigned r_type;
10324 	  asection *target_sec;
10325 	  literal_value val;
10326 	  bfd_byte *size_p, *flags_p;
10327 
10328 	  /* Locally change the source address.
10329 	     Translate the target to the new target address.
10330 	     If it points to this section and has been removed, MOVE IT.
10331 	     Also, don't forget to modify the associated SIZE at
10332 	     (offset + 4).  */
10333 
10334 	  irel = &internal_relocs[i];
10335 	  r_type = ELF32_R_TYPE (irel->r_info);
10336 	  if (r_type == R_XTENSA_NONE)
10337 	    continue;
10338 
10339 	  /* Find the literal value.  */
10340 	  r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10341 	  size_p = &contents[irel->r_offset + 4];
10342 	  flags_p = NULL;
10343 	  if (is_full_prop_section)
10344 	    flags_p = &contents[irel->r_offset + 8];
10345 	  BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10346 
10347 	  target_sec = r_reloc_get_section (&val.r_rel);
10348 	  target_relax_info = get_xtensa_relax_info (target_sec);
10349 
10350 	  if (target_relax_info
10351 	      && (target_relax_info->is_relaxable_literal_section
10352 		  || target_relax_info->is_relaxable_asm_section ))
10353 	    {
10354 	      /* Translate the relocation's destination.  */
10355 	      bfd_vma old_offset = val.r_rel.target_offset;
10356 	      bfd_vma new_offset;
10357 	      long old_size, new_size;
10358 	      int removed_by_old_offset =
10359 		removed_by_actions_map (&target_relax_info->action_list,
10360 					old_offset, FALSE);
10361 	      new_offset = old_offset - removed_by_old_offset;
10362 
10363 	      /* Assert that we are not out of bounds.  */
10364 	      old_size = bfd_get_32 (abfd, size_p);
10365 	      new_size = old_size;
10366 
10367 	      if (old_size == 0)
10368 		{
10369 		  /* Only the first zero-sized unreachable entry is
10370 		     allowed to expand.  In this case the new offset
10371 		     should be the offset before the fill and the new
10372 		     size is the expansion size.  For other zero-sized
10373 		     entries the resulting size should be zero with an
10374 		     offset before or after the fill address depending
10375 		     on whether the expanding unreachable entry
10376 		     preceeds it.  */
10377 		  if (last_zfill_target_sec == 0
10378 		      || last_zfill_target_sec != target_sec
10379 		      || last_zfill_target_offset != old_offset)
10380 		    {
10381 		      bfd_vma new_end_offset = new_offset;
10382 
10383 		      /* Recompute the new_offset, but this time don't
10384 			 include any fill inserted by relaxation.  */
10385 		      removed_by_old_offset =
10386 			removed_by_actions_map (&target_relax_info->action_list,
10387 						old_offset, TRUE);
10388 		      new_offset = old_offset - removed_by_old_offset;
10389 
10390 		      /* If it is not unreachable and we have not yet
10391 			 seen an unreachable at this address, place it
10392 			 before the fill address.  */
10393 		      if (flags_p && (bfd_get_32 (abfd, flags_p)
10394 				      & XTENSA_PROP_UNREACHABLE) != 0)
10395 			{
10396 			  new_size = new_end_offset - new_offset;
10397 
10398 			  last_zfill_target_sec = target_sec;
10399 			  last_zfill_target_offset = old_offset;
10400 			}
10401 		    }
10402 		}
10403 	      else
10404 		{
10405 		  int removed_by_old_offset_size =
10406 		    removed_by_actions_map (&target_relax_info->action_list,
10407 					    old_offset + old_size, TRUE);
10408 		  new_size -= removed_by_old_offset_size - removed_by_old_offset;
10409 		}
10410 
10411 	      if (new_size != old_size)
10412 		{
10413 		  bfd_put_32 (abfd, new_size, size_p);
10414 		  pin_contents (sec, contents);
10415 		}
10416 
10417 	      if (new_offset != old_offset)
10418 		{
10419 		  bfd_vma diff = new_offset - old_offset;
10420 		  irel->r_addend += diff;
10421 		  pin_internal_relocs (sec, internal_relocs);
10422 		}
10423 	    }
10424 	}
10425     }
10426 
10427   /* Combine adjacent property table entries.  This is also done in
10428      finish_dynamic_sections() but at that point it's too late to
10429      reclaim the space in the output section, so we do this twice.  */
10430 
10431   if (internal_relocs && (!bfd_link_relocatable (link_info)
10432 			  || xtensa_is_littable_section (sec)))
10433     {
10434       Elf_Internal_Rela *last_irel = NULL;
10435       Elf_Internal_Rela *irel, *next_rel, *rel_end;
10436       int removed_bytes = 0;
10437       bfd_vma offset;
10438       flagword predef_flags;
10439 
10440       predef_flags = xtensa_get_property_predef_flags (sec);
10441 
10442       /* Walk over memory and relocations at the same time.
10443 	 This REQUIRES that the internal_relocs be sorted by offset.  */
10444       qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10445 	     internal_reloc_compare);
10446 
10447       pin_internal_relocs (sec, internal_relocs);
10448       pin_contents (sec, contents);
10449 
10450       next_rel = internal_relocs;
10451       rel_end = internal_relocs + sec->reloc_count;
10452 
10453       BFD_ASSERT (sec->size % entry_size == 0);
10454 
10455       for (offset = 0; offset < sec->size; offset += entry_size)
10456 	{
10457 	  Elf_Internal_Rela *offset_rel, *extra_rel;
10458 	  bfd_vma bytes_to_remove, size, actual_offset;
10459 	  bfd_boolean remove_this_rel;
10460 	  flagword flags;
10461 
10462 	  /* Find the first relocation for the entry at the current offset.
10463 	     Adjust the offsets of any extra relocations for the previous
10464 	     entry.  */
10465 	  offset_rel = NULL;
10466 	  if (next_rel)
10467 	    {
10468 	      for (irel = next_rel; irel < rel_end; irel++)
10469 		{
10470 		  if ((irel->r_offset == offset
10471 		       && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10472 		      || irel->r_offset > offset)
10473 		    {
10474 		      offset_rel = irel;
10475 		      break;
10476 		    }
10477 		  irel->r_offset -= removed_bytes;
10478 		}
10479 	    }
10480 
10481 	  /* Find the next relocation (if there are any left).  */
10482 	  extra_rel = NULL;
10483 	  if (offset_rel)
10484 	    {
10485 	      for (irel = offset_rel + 1; irel < rel_end; irel++)
10486 		{
10487 		  if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10488 		    {
10489 		      extra_rel = irel;
10490 		      break;
10491 		    }
10492 		}
10493 	    }
10494 
10495 	  /* Check if there are relocations on the current entry.  There
10496 	     should usually be a relocation on the offset field.  If there
10497 	     are relocations on the size or flags, then we can't optimize
10498 	     this entry.  Also, find the next relocation to examine on the
10499 	     next iteration.  */
10500 	  if (offset_rel)
10501 	    {
10502 	      if (offset_rel->r_offset >= offset + entry_size)
10503 		{
10504 		  next_rel = offset_rel;
10505 		  /* There are no relocations on the current entry, but we
10506 		     might still be able to remove it if the size is zero.  */
10507 		  offset_rel = NULL;
10508 		}
10509 	      else if (offset_rel->r_offset > offset
10510 		       || (extra_rel
10511 			   && extra_rel->r_offset < offset + entry_size))
10512 		{
10513 		  /* There is a relocation on the size or flags, so we can't
10514 		     do anything with this entry.  Continue with the next.  */
10515 		  next_rel = offset_rel;
10516 		  continue;
10517 		}
10518 	      else
10519 		{
10520 		  BFD_ASSERT (offset_rel->r_offset == offset);
10521 		  offset_rel->r_offset -= removed_bytes;
10522 		  next_rel = offset_rel + 1;
10523 		}
10524 	    }
10525 	  else
10526 	    next_rel = NULL;
10527 
10528 	  remove_this_rel = FALSE;
10529 	  bytes_to_remove = 0;
10530 	  actual_offset = offset - removed_bytes;
10531 	  size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10532 
10533 	  if (is_full_prop_section)
10534 	    flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10535 	  else
10536 	    flags = predef_flags;
10537 
10538 	  if (size == 0
10539 	      && (flags & XTENSA_PROP_ALIGN) == 0
10540 	      && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10541 	    {
10542 	      /* Always remove entries with zero size and no alignment.  */
10543 	      bytes_to_remove = entry_size;
10544 	      if (offset_rel)
10545 		remove_this_rel = TRUE;
10546 	    }
10547 	  else if (offset_rel
10548 		   && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10549 	    {
10550 	      if (last_irel)
10551 		{
10552 		  flagword old_flags;
10553 		  bfd_vma old_size =
10554 		    bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10555 		  bfd_vma old_address =
10556 		    (last_irel->r_addend
10557 		     + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10558 		  bfd_vma new_address =
10559 		    (offset_rel->r_addend
10560 		     + bfd_get_32 (abfd, &contents[actual_offset]));
10561 		  if (is_full_prop_section)
10562 		    old_flags = bfd_get_32
10563 		      (abfd, &contents[last_irel->r_offset + 8]);
10564 		  else
10565 		    old_flags = predef_flags;
10566 
10567 		  if ((ELF32_R_SYM (offset_rel->r_info)
10568 		       == ELF32_R_SYM (last_irel->r_info))
10569 		      && old_address + old_size == new_address
10570 		      && old_flags == flags
10571 		      && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10572 		      && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10573 		    {
10574 		      /* Fix the old size.  */
10575 		      bfd_put_32 (abfd, old_size + size,
10576 				  &contents[last_irel->r_offset + 4]);
10577 		      bytes_to_remove = entry_size;
10578 		      remove_this_rel = TRUE;
10579 		    }
10580 		  else
10581 		    last_irel = offset_rel;
10582 		}
10583 	      else
10584 		last_irel = offset_rel;
10585 	    }
10586 
10587 	  if (remove_this_rel)
10588 	    {
10589 	      offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10590 	      offset_rel->r_offset = 0;
10591 	    }
10592 
10593 	  if (bytes_to_remove != 0)
10594 	    {
10595 	      removed_bytes += bytes_to_remove;
10596 	      if (offset + bytes_to_remove < sec->size)
10597 		memmove (&contents[actual_offset],
10598 			 &contents[actual_offset + bytes_to_remove],
10599 			 sec->size - offset - bytes_to_remove);
10600 	    }
10601 	}
10602 
10603       if (removed_bytes)
10604 	{
10605 	  /* Fix up any extra relocations on the last entry.  */
10606 	  for (irel = next_rel; irel < rel_end; irel++)
10607 	    irel->r_offset -= removed_bytes;
10608 
10609 	  /* Clear the removed bytes.  */
10610 	  memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10611 
10612 	  if (sec->rawsize == 0)
10613 	    sec->rawsize = sec->size;
10614 	  sec->size -= removed_bytes;
10615 
10616 	  if (xtensa_is_littable_section (sec))
10617 	    {
10618 	      asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10619 	      if (sgotloc)
10620 		sgotloc->size -= removed_bytes;
10621 	    }
10622 	}
10623     }
10624 
10625  error_return:
10626   release_internal_relocs (sec, internal_relocs);
10627   release_contents (sec, contents);
10628   return ok;
10629 }
10630 
10631 
10632 /* Third relaxation pass.  */
10633 
10634 /* Change symbol values to account for removed literals.  */
10635 
10636 bfd_boolean
10637 relax_section_symbols (bfd *abfd, asection *sec)
10638 {
10639   xtensa_relax_info *relax_info;
10640   unsigned int sec_shndx;
10641   Elf_Internal_Shdr *symtab_hdr;
10642   Elf_Internal_Sym *isymbuf;
10643   unsigned i, num_syms, num_locals;
10644 
10645   relax_info = get_xtensa_relax_info (sec);
10646   BFD_ASSERT (relax_info);
10647 
10648   if (!relax_info->is_relaxable_literal_section
10649       && !relax_info->is_relaxable_asm_section)
10650     return TRUE;
10651 
10652   sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10653 
10654   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10655   isymbuf = retrieve_local_syms (abfd);
10656 
10657   num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10658   num_locals = symtab_hdr->sh_info;
10659 
10660   /* Adjust the local symbols defined in this section.  */
10661   for (i = 0; i < num_locals; i++)
10662     {
10663       Elf_Internal_Sym *isym = &isymbuf[i];
10664 
10665       if (isym->st_shndx == sec_shndx)
10666 	{
10667 	  bfd_vma orig_addr = isym->st_value;
10668 	  int removed = removed_by_actions_map (&relax_info->action_list,
10669 						orig_addr, FALSE);
10670 
10671 	  isym->st_value -= removed;
10672 	  if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10673 	    isym->st_size -=
10674 	      removed_by_actions_map (&relax_info->action_list,
10675 				      orig_addr + isym->st_size, FALSE) -
10676 	      removed;
10677 	}
10678     }
10679 
10680   /* Now adjust the global symbols defined in this section.  */
10681   for (i = 0; i < (num_syms - num_locals); i++)
10682     {
10683       struct elf_link_hash_entry *sym_hash;
10684 
10685       sym_hash = elf_sym_hashes (abfd)[i];
10686 
10687       if (sym_hash->root.type == bfd_link_hash_warning)
10688 	sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10689 
10690       if ((sym_hash->root.type == bfd_link_hash_defined
10691 	   || sym_hash->root.type == bfd_link_hash_defweak)
10692 	  && sym_hash->root.u.def.section == sec)
10693 	{
10694 	  bfd_vma orig_addr = sym_hash->root.u.def.value;
10695 	  int removed = removed_by_actions_map (&relax_info->action_list,
10696 						orig_addr, FALSE);
10697 
10698 	  sym_hash->root.u.def.value -= removed;
10699 
10700 	  if (sym_hash->type == STT_FUNC)
10701 	    sym_hash->size -=
10702 	      removed_by_actions_map (&relax_info->action_list,
10703 				      orig_addr + sym_hash->size, FALSE) -
10704 	      removed;
10705 	}
10706     }
10707 
10708   return TRUE;
10709 }
10710 
10711 
10712 /* "Fix" handling functions, called while performing relocations.  */
10713 
10714 static bfd_boolean
10715 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10716 			     bfd *input_bfd,
10717 			     asection *input_section,
10718 			     bfd_byte *contents)
10719 {
10720   r_reloc r_rel;
10721   asection *sec, *old_sec;
10722   bfd_vma old_offset;
10723   int r_type = ELF32_R_TYPE (rel->r_info);
10724   reloc_bfd_fix *fix;
10725 
10726   if (r_type == R_XTENSA_NONE)
10727     return TRUE;
10728 
10729   fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10730   if (!fix)
10731     return TRUE;
10732 
10733   r_reloc_init (&r_rel, input_bfd, rel, contents,
10734 		bfd_get_section_limit (input_bfd, input_section));
10735   old_sec = r_reloc_get_section (&r_rel);
10736   old_offset = r_rel.target_offset;
10737 
10738   if (!old_sec || !r_reloc_is_defined (&r_rel))
10739     {
10740       if (r_type != R_XTENSA_ASM_EXPAND)
10741 	{
10742 	  _bfd_error_handler
10743 	    /* xgettext:c-format */
10744 	    (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"),
10745 	     input_bfd, input_section, (uint64_t) rel->r_offset,
10746 	     elf_howto_table[r_type].name);
10747 	  return FALSE;
10748 	}
10749       /* Leave it be.  Resolution will happen in a later stage.  */
10750     }
10751   else
10752     {
10753       sec = fix->target_sec;
10754       rel->r_addend += ((sec->output_offset + fix->target_offset)
10755 			- (old_sec->output_offset + old_offset));
10756     }
10757   return TRUE;
10758 }
10759 
10760 
10761 static void
10762 do_fix_for_final_link (Elf_Internal_Rela *rel,
10763 		       bfd *input_bfd,
10764 		       asection *input_section,
10765 		       bfd_byte *contents,
10766 		       bfd_vma *relocationp)
10767 {
10768   asection *sec;
10769   int r_type = ELF32_R_TYPE (rel->r_info);
10770   reloc_bfd_fix *fix;
10771   bfd_vma fixup_diff;
10772 
10773   if (r_type == R_XTENSA_NONE)
10774     return;
10775 
10776   fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10777   if (!fix)
10778     return;
10779 
10780   sec = fix->target_sec;
10781 
10782   fixup_diff = rel->r_addend;
10783   if (elf_howto_table[fix->src_type].partial_inplace)
10784     {
10785       bfd_vma inplace_val;
10786       BFD_ASSERT (fix->src_offset
10787 		  < bfd_get_section_limit (input_bfd, input_section));
10788       inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10789       fixup_diff += inplace_val;
10790     }
10791 
10792   *relocationp = (sec->output_section->vma
10793 		  + sec->output_offset
10794 		  + fix->target_offset - fixup_diff);
10795 }
10796 
10797 
10798 /* Miscellaneous utility functions....  */
10799 
10800 static asection *
10801 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10802 {
10803   bfd *dynobj;
10804   char plt_name[17];
10805 
10806   if (chunk == 0)
10807     return elf_hash_table (info)->splt;
10808 
10809   dynobj = elf_hash_table (info)->dynobj;
10810   sprintf (plt_name, ".plt.%u", chunk);
10811   return bfd_get_linker_section (dynobj, plt_name);
10812 }
10813 
10814 
10815 static asection *
10816 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10817 {
10818   bfd *dynobj;
10819   char got_name[21];
10820 
10821   if (chunk == 0)
10822     return elf_hash_table (info)->sgotplt;
10823 
10824   dynobj = elf_hash_table (info)->dynobj;
10825   sprintf (got_name, ".got.plt.%u", chunk);
10826   return bfd_get_linker_section (dynobj, got_name);
10827 }
10828 
10829 
10830 /* Get the input section for a given symbol index.
10831    If the symbol is:
10832    . a section symbol, return the section;
10833    . a common symbol, return the common section;
10834    . an undefined symbol, return the undefined section;
10835    . an indirect symbol, follow the links;
10836    . an absolute value, return the absolute section.  */
10837 
10838 static asection *
10839 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10840 {
10841   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10842   asection *target_sec = NULL;
10843   if (r_symndx < symtab_hdr->sh_info)
10844     {
10845       Elf_Internal_Sym *isymbuf;
10846       unsigned int section_index;
10847 
10848       isymbuf = retrieve_local_syms (abfd);
10849       section_index = isymbuf[r_symndx].st_shndx;
10850 
10851       if (section_index == SHN_UNDEF)
10852 	target_sec = bfd_und_section_ptr;
10853       else if (section_index == SHN_ABS)
10854 	target_sec = bfd_abs_section_ptr;
10855       else if (section_index == SHN_COMMON)
10856 	target_sec = bfd_com_section_ptr;
10857       else
10858 	target_sec = bfd_section_from_elf_index (abfd, section_index);
10859     }
10860   else
10861     {
10862       unsigned long indx = r_symndx - symtab_hdr->sh_info;
10863       struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10864 
10865       while (h->root.type == bfd_link_hash_indirect
10866 	     || h->root.type == bfd_link_hash_warning)
10867 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
10868 
10869       switch (h->root.type)
10870 	{
10871 	case bfd_link_hash_defined:
10872 	case  bfd_link_hash_defweak:
10873 	  target_sec = h->root.u.def.section;
10874 	  break;
10875 	case bfd_link_hash_common:
10876 	  target_sec = bfd_com_section_ptr;
10877 	  break;
10878 	case bfd_link_hash_undefined:
10879 	case bfd_link_hash_undefweak:
10880 	  target_sec = bfd_und_section_ptr;
10881 	  break;
10882 	default: /* New indirect warning.  */
10883 	  target_sec = bfd_und_section_ptr;
10884 	  break;
10885 	}
10886     }
10887   return target_sec;
10888 }
10889 
10890 
10891 static struct elf_link_hash_entry *
10892 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10893 {
10894   unsigned long indx;
10895   struct elf_link_hash_entry *h;
10896   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10897 
10898   if (r_symndx < symtab_hdr->sh_info)
10899     return NULL;
10900 
10901   indx = r_symndx - symtab_hdr->sh_info;
10902   h = elf_sym_hashes (abfd)[indx];
10903   while (h->root.type == bfd_link_hash_indirect
10904 	 || h->root.type == bfd_link_hash_warning)
10905     h = (struct elf_link_hash_entry *) h->root.u.i.link;
10906   return h;
10907 }
10908 
10909 
10910 /* Get the section-relative offset for a symbol number.  */
10911 
10912 static bfd_vma
10913 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10914 {
10915   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10916   bfd_vma offset = 0;
10917 
10918   if (r_symndx < symtab_hdr->sh_info)
10919     {
10920       Elf_Internal_Sym *isymbuf;
10921       isymbuf = retrieve_local_syms (abfd);
10922       offset = isymbuf[r_symndx].st_value;
10923     }
10924   else
10925     {
10926       unsigned long indx = r_symndx - symtab_hdr->sh_info;
10927       struct elf_link_hash_entry *h =
10928 	elf_sym_hashes (abfd)[indx];
10929 
10930       while (h->root.type == bfd_link_hash_indirect
10931 	     || h->root.type == bfd_link_hash_warning)
10932 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
10933       if (h->root.type == bfd_link_hash_defined
10934 	  || h->root.type == bfd_link_hash_defweak)
10935 	offset = h->root.u.def.value;
10936     }
10937   return offset;
10938 }
10939 
10940 
10941 static bfd_boolean
10942 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10943 {
10944   unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10945   struct elf_link_hash_entry *h;
10946 
10947   h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10948   if (h && h->root.type == bfd_link_hash_defweak)
10949     return TRUE;
10950   return FALSE;
10951 }
10952 
10953 
10954 static bfd_boolean
10955 pcrel_reloc_fits (xtensa_opcode opc,
10956 		  int opnd,
10957 		  bfd_vma self_address,
10958 		  bfd_vma dest_address)
10959 {
10960   xtensa_isa isa = xtensa_default_isa;
10961   uint32 valp = dest_address;
10962   if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10963       || xtensa_operand_encode (isa, opc, opnd, &valp))
10964     return FALSE;
10965   return TRUE;
10966 }
10967 
10968 
10969 static bfd_boolean
10970 xtensa_is_property_section (asection *sec)
10971 {
10972   if (xtensa_is_insntable_section (sec)
10973       || xtensa_is_littable_section (sec)
10974       || xtensa_is_proptable_section (sec))
10975     return TRUE;
10976 
10977   return FALSE;
10978 }
10979 
10980 
10981 static bfd_boolean
10982 xtensa_is_insntable_section (asection *sec)
10983 {
10984   if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10985       || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
10986     return TRUE;
10987 
10988   return FALSE;
10989 }
10990 
10991 
10992 static bfd_boolean
10993 xtensa_is_littable_section (asection *sec)
10994 {
10995   if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10996       || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
10997     return TRUE;
10998 
10999   return FALSE;
11000 }
11001 
11002 
11003 static bfd_boolean
11004 xtensa_is_proptable_section (asection *sec)
11005 {
11006   if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
11007       || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
11008     return TRUE;
11009 
11010   return FALSE;
11011 }
11012 
11013 
11014 static int
11015 internal_reloc_compare (const void *ap, const void *bp)
11016 {
11017   const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11018   const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11019 
11020   if (a->r_offset != b->r_offset)
11021     return (a->r_offset - b->r_offset);
11022 
11023   /* We don't need to sort on these criteria for correctness,
11024      but enforcing a more strict ordering prevents unstable qsort
11025      from behaving differently with different implementations.
11026      Without the code below we get correct but different results
11027      on Solaris 2.7 and 2.8.  We would like to always produce the
11028      same results no matter the host.  */
11029 
11030   if (a->r_info != b->r_info)
11031     return (a->r_info - b->r_info);
11032 
11033   return (a->r_addend - b->r_addend);
11034 }
11035 
11036 
11037 static int
11038 internal_reloc_matches (const void *ap, const void *bp)
11039 {
11040   const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11041   const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11042 
11043   /* Check if one entry overlaps with the other; this shouldn't happen
11044      except when searching for a match.  */
11045   return (a->r_offset - b->r_offset);
11046 }
11047 
11048 
11049 /* Predicate function used to look up a section in a particular group.  */
11050 
11051 static bfd_boolean
11052 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11053 {
11054   const char *gname = inf;
11055   const char *group_name = elf_group_name (sec);
11056 
11057   return (group_name == gname
11058 	  || (group_name != NULL
11059 	      && gname != NULL
11060 	      && strcmp (group_name, gname) == 0));
11061 }
11062 
11063 
11064 static char *
11065 xtensa_add_names (const char *base, const char *suffix)
11066 {
11067   if (suffix)
11068     {
11069       size_t base_len = strlen (base);
11070       size_t suffix_len = strlen (suffix);
11071       char *str = bfd_malloc (base_len + suffix_len + 1);
11072 
11073       memcpy (str, base, base_len);
11074       memcpy (str + base_len, suffix, suffix_len + 1);
11075       return str;
11076     }
11077   else
11078     {
11079       return strdup (base);
11080     }
11081 }
11082 
11083 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11084 
11085 static char *
11086 xtensa_property_section_name (asection *sec, const char *base_name,
11087 			      bfd_boolean separate_sections)
11088 {
11089   const char *suffix, *group_name;
11090   char *prop_sec_name;
11091 
11092   group_name = elf_group_name (sec);
11093   if (group_name)
11094     {
11095       suffix = strrchr (sec->name, '.');
11096       if (suffix == sec->name)
11097 	suffix = 0;
11098       prop_sec_name = xtensa_add_names (base_name, suffix);
11099     }
11100   else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
11101     {
11102       char *linkonce_kind = 0;
11103 
11104       if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
11105 	linkonce_kind = "x.";
11106       else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
11107 	linkonce_kind = "p.";
11108       else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11109 	linkonce_kind = "prop.";
11110       else
11111 	abort ();
11112 
11113       prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11114 					   + strlen (linkonce_kind) + 1);
11115       memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
11116       strcpy (prop_sec_name + linkonce_len, linkonce_kind);
11117 
11118       suffix = sec->name + linkonce_len;
11119       /* For backward compatibility, replace "t." instead of inserting
11120 	 the new linkonce_kind (but not for "prop" sections).  */
11121       if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
11122 	suffix += 2;
11123       strcat (prop_sec_name + linkonce_len, suffix);
11124     }
11125   else
11126     {
11127       prop_sec_name = xtensa_add_names (base_name,
11128 					separate_sections ? sec->name : NULL);
11129     }
11130 
11131   return prop_sec_name;
11132 }
11133 
11134 
11135 static asection *
11136 xtensa_get_separate_property_section (asection *sec, const char *base_name,
11137 				      bfd_boolean separate_section)
11138 {
11139   char *prop_sec_name;
11140   asection *prop_sec;
11141 
11142   prop_sec_name = xtensa_property_section_name (sec, base_name,
11143 						separate_section);
11144   prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11145 					 match_section_group,
11146 					 (void *) elf_group_name (sec));
11147   free (prop_sec_name);
11148   return prop_sec;
11149 }
11150 
11151 static asection *
11152 xtensa_get_property_section (asection *sec, const char *base_name)
11153 {
11154   asection *prop_sec;
11155 
11156   /* Try individual property section first.  */
11157   prop_sec = xtensa_get_separate_property_section (sec, base_name, TRUE);
11158 
11159   /* Refer to a common property section if individual is not present.  */
11160   if (!prop_sec)
11161     prop_sec = xtensa_get_separate_property_section (sec, base_name, FALSE);
11162 
11163   return prop_sec;
11164 }
11165 
11166 
11167 asection *
11168 xtensa_make_property_section (asection *sec, const char *base_name)
11169 {
11170   char *prop_sec_name;
11171   asection *prop_sec;
11172 
11173   /* Check if the section already exists.  */
11174   prop_sec_name = xtensa_property_section_name (sec, base_name,
11175 						elf32xtensa_separate_props);
11176   prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11177 					 match_section_group,
11178 					 (void *) elf_group_name (sec));
11179   /* If not, create it.  */
11180   if (! prop_sec)
11181     {
11182       flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11183       flags |= (bfd_get_section_flags (sec->owner, sec)
11184 		& (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11185 
11186       prop_sec = bfd_make_section_anyway_with_flags
11187 	(sec->owner, strdup (prop_sec_name), flags);
11188       if (! prop_sec)
11189 	return 0;
11190 
11191       elf_group_name (prop_sec) = elf_group_name (sec);
11192     }
11193 
11194   free (prop_sec_name);
11195   return prop_sec;
11196 }
11197 
11198 
11199 flagword
11200 xtensa_get_property_predef_flags (asection *sec)
11201 {
11202   if (xtensa_is_insntable_section (sec))
11203     return (XTENSA_PROP_INSN
11204 	    | XTENSA_PROP_NO_TRANSFORM
11205 	    | XTENSA_PROP_INSN_NO_REORDER);
11206 
11207   if (xtensa_is_littable_section (sec))
11208     return (XTENSA_PROP_LITERAL
11209 	    | XTENSA_PROP_NO_TRANSFORM
11210 	    | XTENSA_PROP_INSN_NO_REORDER);
11211 
11212   return 0;
11213 }
11214 
11215 
11216 /* Other functions called directly by the linker.  */
11217 
11218 bfd_boolean
11219 xtensa_callback_required_dependence (bfd *abfd,
11220 				     asection *sec,
11221 				     struct bfd_link_info *link_info,
11222 				     deps_callback_t callback,
11223 				     void *closure)
11224 {
11225   Elf_Internal_Rela *internal_relocs;
11226   bfd_byte *contents;
11227   unsigned i;
11228   bfd_boolean ok = TRUE;
11229   bfd_size_type sec_size;
11230 
11231   sec_size = bfd_get_section_limit (abfd, sec);
11232 
11233   /* ".plt*" sections have no explicit relocations but they contain L32R
11234      instructions that reference the corresponding ".got.plt*" sections.  */
11235   if ((sec->flags & SEC_LINKER_CREATED) != 0
11236       && CONST_STRNEQ (sec->name, ".plt"))
11237     {
11238       asection *sgotplt;
11239 
11240       /* Find the corresponding ".got.plt*" section.  */
11241       if (sec->name[4] == '\0')
11242 	sgotplt = elf_hash_table (link_info)->sgotplt;
11243       else
11244 	{
11245 	  char got_name[14];
11246 	  int chunk = 0;
11247 
11248 	  BFD_ASSERT (sec->name[4] == '.');
11249 	  chunk = strtol (&sec->name[5], NULL, 10);
11250 
11251 	  sprintf (got_name, ".got.plt.%u", chunk);
11252 	  sgotplt = bfd_get_linker_section (sec->owner, got_name);
11253 	}
11254       BFD_ASSERT (sgotplt);
11255 
11256       /* Assume worst-case offsets: L32R at the very end of the ".plt"
11257 	 section referencing a literal at the very beginning of
11258 	 ".got.plt".  This is very close to the real dependence, anyway.  */
11259       (*callback) (sec, sec_size, sgotplt, 0, closure);
11260     }
11261 
11262   /* Only ELF files are supported for Xtensa.  Check here to avoid a segfault
11263      when building uclibc, which runs "ld -b binary /dev/null".  */
11264   if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11265     return ok;
11266 
11267   internal_relocs = retrieve_internal_relocs (abfd, sec,
11268 					      link_info->keep_memory);
11269   if (internal_relocs == NULL
11270       || sec->reloc_count == 0)
11271     return ok;
11272 
11273   /* Cache the contents for the duration of this scan.  */
11274   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11275   if (contents == NULL && sec_size != 0)
11276     {
11277       ok = FALSE;
11278       goto error_return;
11279     }
11280 
11281   if (!xtensa_default_isa)
11282     xtensa_default_isa = xtensa_isa_init (0, 0);
11283 
11284   for (i = 0; i < sec->reloc_count; i++)
11285     {
11286       Elf_Internal_Rela *irel = &internal_relocs[i];
11287       if (is_l32r_relocation (abfd, sec, contents, irel))
11288 	{
11289 	  r_reloc l32r_rel;
11290 	  asection *target_sec;
11291 	  bfd_vma target_offset;
11292 
11293 	  r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11294 	  target_sec = NULL;
11295 	  target_offset = 0;
11296 	  /* L32Rs must be local to the input file.  */
11297 	  if (r_reloc_is_defined (&l32r_rel))
11298 	    {
11299 	      target_sec = r_reloc_get_section (&l32r_rel);
11300 	      target_offset = l32r_rel.target_offset;
11301 	    }
11302 	  (*callback) (sec, irel->r_offset, target_sec, target_offset,
11303 		       closure);
11304 	}
11305     }
11306 
11307  error_return:
11308   release_internal_relocs (sec, internal_relocs);
11309   release_contents (sec, contents);
11310   return ok;
11311 }
11312 
11313 /* The default literal sections should always be marked as "code" (i.e.,
11314    SHF_EXECINSTR).  This is particularly important for the Linux kernel
11315    module loader so that the literals are not placed after the text.  */
11316 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11317 {
11318   { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11319   { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11320   { STRING_COMMA_LEN (".literal"),	0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11321   { STRING_COMMA_LEN (".xtensa.info"),	0, SHT_NOTE,	 0 },
11322   { NULL,			0,	0, 0,		 0 }
11323 };
11324 
11325 #define ELF_TARGET_ID			XTENSA_ELF_DATA
11326 #ifndef ELF_ARCH
11327 #define TARGET_LITTLE_SYM		xtensa_elf32_le_vec
11328 #define TARGET_LITTLE_NAME		"elf32-xtensa-le"
11329 #define TARGET_BIG_SYM			xtensa_elf32_be_vec
11330 #define TARGET_BIG_NAME			"elf32-xtensa-be"
11331 #define ELF_ARCH			bfd_arch_xtensa
11332 
11333 #define ELF_MACHINE_CODE		EM_XTENSA
11334 #define ELF_MACHINE_ALT1		EM_XTENSA_OLD
11335 
11336 #define ELF_MAXPAGESIZE			0x1000
11337 #endif /* ELF_ARCH */
11338 
11339 #define elf_backend_can_gc_sections	1
11340 #define elf_backend_can_refcount	1
11341 #define elf_backend_plt_readonly	1
11342 #define elf_backend_got_header_size	4
11343 #define elf_backend_want_dynbss		0
11344 #define elf_backend_want_got_plt	1
11345 #define elf_backend_dtrel_excludes_plt	1
11346 
11347 #define elf_info_to_howto		     elf_xtensa_info_to_howto_rela
11348 
11349 #define bfd_elf32_mkobject		     elf_xtensa_mkobject
11350 
11351 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11352 #define bfd_elf32_new_section_hook	     elf_xtensa_new_section_hook
11353 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11354 #define bfd_elf32_bfd_relax_section	     elf_xtensa_relax_section
11355 #define bfd_elf32_bfd_reloc_type_lookup	     elf_xtensa_reloc_type_lookup
11356 #define bfd_elf32_bfd_reloc_name_lookup \
11357   elf_xtensa_reloc_name_lookup
11358 #define bfd_elf32_bfd_set_private_flags	     elf_xtensa_set_private_flags
11359 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11360 
11361 #define elf_backend_adjust_dynamic_symbol    elf_xtensa_adjust_dynamic_symbol
11362 #define elf_backend_check_relocs	     elf_xtensa_check_relocs
11363 #define elf_backend_create_dynamic_sections  elf_xtensa_create_dynamic_sections
11364 #define elf_backend_discard_info	     elf_xtensa_discard_info
11365 #define elf_backend_ignore_discarded_relocs  elf_xtensa_ignore_discarded_relocs
11366 #define elf_backend_final_write_processing   elf_xtensa_final_write_processing
11367 #define elf_backend_finish_dynamic_sections  elf_xtensa_finish_dynamic_sections
11368 #define elf_backend_finish_dynamic_symbol    elf_xtensa_finish_dynamic_symbol
11369 #define elf_backend_gc_mark_hook	     elf_xtensa_gc_mark_hook
11370 #define elf_backend_grok_prstatus	     elf_xtensa_grok_prstatus
11371 #define elf_backend_grok_psinfo		     elf_xtensa_grok_psinfo
11372 #define elf_backend_hide_symbol		     elf_xtensa_hide_symbol
11373 #define elf_backend_object_p		     elf_xtensa_object_p
11374 #define elf_backend_reloc_type_class	     elf_xtensa_reloc_type_class
11375 #define elf_backend_relocate_section	     elf_xtensa_relocate_section
11376 #define elf_backend_size_dynamic_sections    elf_xtensa_size_dynamic_sections
11377 #define elf_backend_always_size_sections     elf_xtensa_always_size_sections
11378 #define elf_backend_omit_section_dynsym      _bfd_elf_omit_section_dynsym_all
11379 #define elf_backend_special_sections	     elf_xtensa_special_sections
11380 #define elf_backend_action_discarded	     elf_xtensa_action_discarded
11381 #define elf_backend_copy_indirect_symbol     elf_xtensa_copy_indirect_symbol
11382 
11383 #include "elf32-target.h"
11384