xref: /netbsd-src/external/gpl3/gdb.old/dist/bfd/elf32-hppa.c (revision 9fb66d812c00ebfb445c0b47dea128f32aa6fe96)
1 /* BFD back-end for HP PA-RISC ELF files.
2    Copyright (C) 1990-2019 Free Software Foundation, Inc.
3 
4    Original code by
5 	Center for Software Science
6 	Department of Computer Science
7 	University of Utah
8    Largely rewritten by Alan Modra <alan@linuxcare.com.au>
9    Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
10    TLS support written by Randolph Chung <tausq@debian.org>
11 
12    This file is part of BFD, the Binary File Descriptor library.
13 
14    This program is free software; you can redistribute it and/or modify
15    it under the terms of the GNU General Public License as published by
16    the Free Software Foundation; either version 3 of the License, or
17    (at your option) any later version.
18 
19    This program is distributed in the hope that it will be useful,
20    but WITHOUT ANY WARRANTY; without even the implied warranty of
21    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22    GNU General Public License for more details.
23 
24    You should have received a copy of the GNU General Public License
25    along with this program; if not, write to the Free Software
26    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27    MA 02110-1301, USA.  */
28 
29 #include "sysdep.h"
30 #include "bfd.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/hppa.h"
34 #include "libhppa.h"
35 #include "elf32-hppa.h"
36 #define ARCH_SIZE		32
37 #include "elf32-hppa.h"
38 #include "elf-hppa.h"
39 
40 /* In order to gain some understanding of code in this file without
41    knowing all the intricate details of the linker, note the
42    following:
43 
44    Functions named elf32_hppa_* are called by external routines, other
45    functions are only called locally.  elf32_hppa_* functions appear
46    in this file more or less in the order in which they are called
47    from external routines.  eg. elf32_hppa_check_relocs is called
48    early in the link process, elf32_hppa_finish_dynamic_sections is
49    one of the last functions.  */
50 
51 /* We use two hash tables to hold information for linking PA ELF objects.
52 
53    The first is the elf32_hppa_link_hash_table which is derived
54    from the standard ELF linker hash table.  We use this as a place to
55    attach other hash tables and static information.
56 
57    The second is the stub hash table which is derived from the
58    base BFD hash table.  The stub hash table holds the information
59    necessary to build the linker stubs during a link.
60 
61    There are a number of different stubs generated by the linker.
62 
63    Long branch stub:
64    :		ldil LR'X,%r1
65    :		be,n RR'X(%sr4,%r1)
66 
67    PIC long branch stub:
68    :		b,l .+8,%r1
69    :		addil LR'X - ($PIC_pcrel$0 - 4),%r1
70    :		be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
71 
72    Import stub to call shared library routine from normal object file
73    (single sub-space version)
74    :		addil LR'lt_ptr+ltoff,%dp	; get procedure entry point
75    :		ldw RR'lt_ptr+ltoff(%r1),%r21
76    :		bv %r0(%r21)
77    :		ldw RR'lt_ptr+ltoff+4(%r1),%r19	; get new dlt value.
78 
79    Import stub to call shared library routine from shared library
80    (single sub-space version)
81    :		addil LR'ltoff,%r19		; get procedure entry point
82    :		ldw RR'ltoff(%r1),%r21
83    :		bv %r0(%r21)
84    :		ldw RR'ltoff+4(%r1),%r19	; get new dlt value.
85 
86    Import stub to call shared library routine from normal object file
87    (multiple sub-space support)
88    :		addil LR'lt_ptr+ltoff,%dp	; get procedure entry point
89    :		ldw RR'lt_ptr+ltoff(%r1),%r21
90    :		ldw RR'lt_ptr+ltoff+4(%r1),%r19	; get new dlt value.
91    :		ldsid (%r21),%r1
92    :		mtsp %r1,%sr0
93    :		be 0(%sr0,%r21)			; branch to target
94    :		stw %rp,-24(%sp)		; save rp
95 
96    Import stub to call shared library routine from shared library
97    (multiple sub-space support)
98    :		addil LR'ltoff,%r19		; get procedure entry point
99    :		ldw RR'ltoff(%r1),%r21
100    :		ldw RR'ltoff+4(%r1),%r19	; get new dlt value.
101    :		ldsid (%r21),%r1
102    :		mtsp %r1,%sr0
103    :		be 0(%sr0,%r21)			; branch to target
104    :		stw %rp,-24(%sp)		; save rp
105 
106    Export stub to return from shared lib routine (multiple sub-space support)
107    One of these is created for each exported procedure in a shared
108    library (and stored in the shared lib).  Shared lib routines are
109    called via the first instruction in the export stub so that we can
110    do an inter-space return.  Not required for single sub-space.
111    :		bl,n X,%rp			; trap the return
112    :		nop
113    :		ldw -24(%sp),%rp		; restore the original rp
114    :		ldsid (%rp),%r1
115    :		mtsp %r1,%sr0
116    :		be,n 0(%sr0,%rp)		; inter-space return.  */
117 
118 
119 /* Variable names follow a coding style.
120    Please follow this (Apps Hungarian) style:
121 
122    Structure/Variable			Prefix
123    elf_link_hash_table			"etab"
124    elf_link_hash_entry			"eh"
125 
126    elf32_hppa_link_hash_table		"htab"
127    elf32_hppa_link_hash_entry		"hh"
128 
129    bfd_hash_table			"btab"
130    bfd_hash_entry			"bh"
131 
132    bfd_hash_table containing stubs	"bstab"
133    elf32_hppa_stub_hash_entry		"hsh"
134 
135    Always remember to use GNU Coding Style. */
136 
137 #define PLT_ENTRY_SIZE 8
138 #define GOT_ENTRY_SIZE 4
139 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
140 
141 static const bfd_byte plt_stub[] =
142 {
143   0x0e, 0x80, 0x10, 0x96,  /* 1: ldw	0(%r20),%r22		*/
144   0xea, 0xc0, 0xc0, 0x00,  /*    bv	%r0(%r22)		*/
145   0x0e, 0x88, 0x10, 0x95,  /*    ldw	4(%r20),%r21		*/
146 #define PLT_STUB_ENTRY (3*4)
147   0xea, 0x9f, 0x1f, 0xdd,  /*    b,l	1b,%r20			*/
148   0xd6, 0x80, 0x1c, 0x1e,  /*    depi	0,31,2,%r20		*/
149   0x00, 0xc0, 0xff, 0xee,  /* 9: .word	fixup_func		*/
150   0xde, 0xad, 0xbe, 0xef   /*    .word	fixup_ltp		*/
151 };
152 
153 /* Section name for stubs is the associated section name plus this
154    string.  */
155 #define STUB_SUFFIX ".stub"
156 
157 /* We don't need to copy certain PC- or GP-relative dynamic relocs
158    into a shared object's dynamic section.  All the relocs of the
159    limited class we are interested in, are absolute.  */
160 #ifndef RELATIVE_DYNRELOCS
161 #define RELATIVE_DYNRELOCS 0
162 #define IS_ABSOLUTE_RELOC(r_type) 1
163 #define pc_dynrelocs(hh) 0
164 #endif
165 
166 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
167    copying dynamic variables from a shared lib into an app's dynbss
168    section, and instead use a dynamic relocation to point into the
169    shared lib.  */
170 #define ELIMINATE_COPY_RELOCS 1
171 
172 enum elf32_hppa_stub_type
173 {
174   hppa_stub_long_branch,
175   hppa_stub_long_branch_shared,
176   hppa_stub_import,
177   hppa_stub_import_shared,
178   hppa_stub_export,
179   hppa_stub_none
180 };
181 
182 struct elf32_hppa_stub_hash_entry
183 {
184   /* Base hash table entry structure.  */
185   struct bfd_hash_entry bh_root;
186 
187   /* The stub section.  */
188   asection *stub_sec;
189 
190   /* Offset within stub_sec of the beginning of this stub.  */
191   bfd_vma stub_offset;
192 
193   /* Given the symbol's value and its section we can determine its final
194      value when building the stubs (so the stub knows where to jump.  */
195   bfd_vma target_value;
196   asection *target_section;
197 
198   enum elf32_hppa_stub_type stub_type;
199 
200   /* The symbol table entry, if any, that this was derived from.  */
201   struct elf32_hppa_link_hash_entry *hh;
202 
203   /* Where this stub is being called from, or, in the case of combined
204      stub sections, the first input section in the group.  */
205   asection *id_sec;
206 };
207 
208 enum _tls_type
209   {
210     GOT_UNKNOWN = 0,
211     GOT_NORMAL = 1,
212     GOT_TLS_GD = 2,
213     GOT_TLS_LDM = 4,
214     GOT_TLS_IE = 8
215   };
216 
217 struct elf32_hppa_link_hash_entry
218 {
219   struct elf_link_hash_entry eh;
220 
221   /* A pointer to the most recently used stub hash entry against this
222      symbol.  */
223   struct elf32_hppa_stub_hash_entry *hsh_cache;
224 
225   /* Used to count relocations for delayed sizing of relocation
226      sections.  */
227   struct elf_dyn_relocs *dyn_relocs;
228 
229   ENUM_BITFIELD (_tls_type) tls_type : 8;
230 
231   /* Set if this symbol is used by a plabel reloc.  */
232   unsigned int plabel:1;
233 };
234 
235 struct elf32_hppa_link_hash_table
236 {
237   /* The main hash table.  */
238   struct elf_link_hash_table etab;
239 
240   /* The stub hash table.  */
241   struct bfd_hash_table bstab;
242 
243   /* Linker stub bfd.  */
244   bfd *stub_bfd;
245 
246   /* Linker call-backs.  */
247   asection * (*add_stub_section) (const char *, asection *);
248   void (*layout_sections_again) (void);
249 
250   /* Array to keep track of which stub sections have been created, and
251      information on stub grouping.  */
252   struct map_stub
253   {
254     /* This is the section to which stubs in the group will be
255        attached.  */
256     asection *link_sec;
257     /* The stub section.  */
258     asection *stub_sec;
259   } *stub_group;
260 
261   /* Assorted information used by elf32_hppa_size_stubs.  */
262   unsigned int bfd_count;
263   unsigned int top_index;
264   asection **input_list;
265   Elf_Internal_Sym **all_local_syms;
266 
267   /* Used during a final link to store the base of the text and data
268      segments so that we can perform SEGREL relocations.  */
269   bfd_vma text_segment_base;
270   bfd_vma data_segment_base;
271 
272   /* Whether we support multiple sub-spaces for shared libs.  */
273   unsigned int multi_subspace:1;
274 
275   /* Flags set when various size branches are detected.  Used to
276      select suitable defaults for the stub group size.  */
277   unsigned int has_12bit_branch:1;
278   unsigned int has_17bit_branch:1;
279   unsigned int has_22bit_branch:1;
280 
281   /* Set if we need a .plt stub to support lazy dynamic linking.  */
282   unsigned int need_plt_stub:1;
283 
284   /* Small local sym cache.  */
285   struct sym_cache sym_cache;
286 
287   /* Data for LDM relocations.  */
288   union
289   {
290     bfd_signed_vma refcount;
291     bfd_vma offset;
292   } tls_ldm_got;
293 };
294 
295 /* Various hash macros and functions.  */
296 #define hppa_link_hash_table(p) \
297   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
298   == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
299 
300 #define hppa_elf_hash_entry(ent) \
301   ((struct elf32_hppa_link_hash_entry *)(ent))
302 
303 #define hppa_stub_hash_entry(ent) \
304   ((struct elf32_hppa_stub_hash_entry *)(ent))
305 
306 #define hppa_stub_hash_lookup(table, string, create, copy) \
307   ((struct elf32_hppa_stub_hash_entry *) \
308    bfd_hash_lookup ((table), (string), (create), (copy)))
309 
310 #define hppa_elf_local_got_tls_type(abfd) \
311   ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
312 
313 #define hh_name(hh) \
314   (hh ? hh->eh.root.root.string : "<undef>")
315 
316 #define eh_name(eh) \
317   (eh ? eh->root.root.string : "<undef>")
318 
319 /* Assorted hash table functions.  */
320 
321 /* Initialize an entry in the stub hash table.  */
322 
323 static struct bfd_hash_entry *
324 stub_hash_newfunc (struct bfd_hash_entry *entry,
325 		   struct bfd_hash_table *table,
326 		   const char *string)
327 {
328   /* Allocate the structure if it has not already been allocated by a
329      subclass.  */
330   if (entry == NULL)
331     {
332       entry = bfd_hash_allocate (table,
333 				 sizeof (struct elf32_hppa_stub_hash_entry));
334       if (entry == NULL)
335 	return entry;
336     }
337 
338   /* Call the allocation method of the superclass.  */
339   entry = bfd_hash_newfunc (entry, table, string);
340   if (entry != NULL)
341     {
342       struct elf32_hppa_stub_hash_entry *hsh;
343 
344       /* Initialize the local fields.  */
345       hsh = hppa_stub_hash_entry (entry);
346       hsh->stub_sec = NULL;
347       hsh->stub_offset = 0;
348       hsh->target_value = 0;
349       hsh->target_section = NULL;
350       hsh->stub_type = hppa_stub_long_branch;
351       hsh->hh = NULL;
352       hsh->id_sec = NULL;
353     }
354 
355   return entry;
356 }
357 
358 /* Initialize an entry in the link hash table.  */
359 
360 static struct bfd_hash_entry *
361 hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
362 			struct bfd_hash_table *table,
363 			const char *string)
364 {
365   /* Allocate the structure if it has not already been allocated by a
366      subclass.  */
367   if (entry == NULL)
368     {
369       entry = bfd_hash_allocate (table,
370 				 sizeof (struct elf32_hppa_link_hash_entry));
371       if (entry == NULL)
372 	return entry;
373     }
374 
375   /* Call the allocation method of the superclass.  */
376   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
377   if (entry != NULL)
378     {
379       struct elf32_hppa_link_hash_entry *hh;
380 
381       /* Initialize the local fields.  */
382       hh = hppa_elf_hash_entry (entry);
383       hh->hsh_cache = NULL;
384       hh->dyn_relocs = NULL;
385       hh->plabel = 0;
386       hh->tls_type = GOT_UNKNOWN;
387     }
388 
389   return entry;
390 }
391 
392 /* Free the derived linker hash table.  */
393 
394 static void
395 elf32_hppa_link_hash_table_free (bfd *obfd)
396 {
397   struct elf32_hppa_link_hash_table *htab
398     = (struct elf32_hppa_link_hash_table *) obfd->link.hash;
399 
400   bfd_hash_table_free (&htab->bstab);
401   _bfd_elf_link_hash_table_free (obfd);
402 }
403 
404 /* Create the derived linker hash table.  The PA ELF port uses the derived
405    hash table to keep information specific to the PA ELF linker (without
406    using static variables).  */
407 
408 static struct bfd_link_hash_table *
409 elf32_hppa_link_hash_table_create (bfd *abfd)
410 {
411   struct elf32_hppa_link_hash_table *htab;
412   bfd_size_type amt = sizeof (*htab);
413 
414   htab = bfd_zmalloc (amt);
415   if (htab == NULL)
416     return NULL;
417 
418   if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
419 				      sizeof (struct elf32_hppa_link_hash_entry),
420 				      HPPA32_ELF_DATA))
421     {
422       free (htab);
423       return NULL;
424     }
425 
426   /* Init the stub hash table too.  */
427   if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
428 			    sizeof (struct elf32_hppa_stub_hash_entry)))
429     {
430       _bfd_elf_link_hash_table_free (abfd);
431       return NULL;
432     }
433   htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free;
434 
435   htab->text_segment_base = (bfd_vma) -1;
436   htab->data_segment_base = (bfd_vma) -1;
437   return &htab->etab.root;
438 }
439 
440 /* Initialize the linker stubs BFD so that we can use it for linker
441    created dynamic sections.  */
442 
443 void
444 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
445 {
446   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
447 
448   elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32;
449   htab->etab.dynobj = abfd;
450 }
451 
452 /* Build a name for an entry in the stub hash table.  */
453 
454 static char *
455 hppa_stub_name (const asection *input_section,
456 		const asection *sym_sec,
457 		const struct elf32_hppa_link_hash_entry *hh,
458 		const Elf_Internal_Rela *rela)
459 {
460   char *stub_name;
461   bfd_size_type len;
462 
463   if (hh)
464     {
465       len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
466       stub_name = bfd_malloc (len);
467       if (stub_name != NULL)
468 	sprintf (stub_name, "%08x_%s+%x",
469 		 input_section->id & 0xffffffff,
470 		 hh_name (hh),
471 		 (int) rela->r_addend & 0xffffffff);
472     }
473   else
474     {
475       len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
476       stub_name = bfd_malloc (len);
477       if (stub_name != NULL)
478 	sprintf (stub_name, "%08x_%x:%x+%x",
479 		 input_section->id & 0xffffffff,
480 		 sym_sec->id & 0xffffffff,
481 		 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
482 		 (int) rela->r_addend & 0xffffffff);
483     }
484   return stub_name;
485 }
486 
487 /* Look up an entry in the stub hash.  Stub entries are cached because
488    creating the stub name takes a bit of time.  */
489 
490 static struct elf32_hppa_stub_hash_entry *
491 hppa_get_stub_entry (const asection *input_section,
492 		     const asection *sym_sec,
493 		     struct elf32_hppa_link_hash_entry *hh,
494 		     const Elf_Internal_Rela *rela,
495 		     struct elf32_hppa_link_hash_table *htab)
496 {
497   struct elf32_hppa_stub_hash_entry *hsh_entry;
498   const asection *id_sec;
499 
500   /* If this input section is part of a group of sections sharing one
501      stub section, then use the id of the first section in the group.
502      Stub names need to include a section id, as there may well be
503      more than one stub used to reach say, printf, and we need to
504      distinguish between them.  */
505   id_sec = htab->stub_group[input_section->id].link_sec;
506   if (id_sec == NULL)
507     return NULL;
508 
509   if (hh != NULL && hh->hsh_cache != NULL
510       && hh->hsh_cache->hh == hh
511       && hh->hsh_cache->id_sec == id_sec)
512     {
513       hsh_entry = hh->hsh_cache;
514     }
515   else
516     {
517       char *stub_name;
518 
519       stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
520       if (stub_name == NULL)
521 	return NULL;
522 
523       hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
524 					  stub_name, FALSE, FALSE);
525       if (hh != NULL)
526 	hh->hsh_cache = hsh_entry;
527 
528       free (stub_name);
529     }
530 
531   return hsh_entry;
532 }
533 
534 /* Add a new stub entry to the stub hash.  Not all fields of the new
535    stub entry are initialised.  */
536 
537 static struct elf32_hppa_stub_hash_entry *
538 hppa_add_stub (const char *stub_name,
539 	       asection *section,
540 	       struct elf32_hppa_link_hash_table *htab)
541 {
542   asection *link_sec;
543   asection *stub_sec;
544   struct elf32_hppa_stub_hash_entry *hsh;
545 
546   link_sec = htab->stub_group[section->id].link_sec;
547   stub_sec = htab->stub_group[section->id].stub_sec;
548   if (stub_sec == NULL)
549     {
550       stub_sec = htab->stub_group[link_sec->id].stub_sec;
551       if (stub_sec == NULL)
552 	{
553 	  size_t namelen;
554 	  bfd_size_type len;
555 	  char *s_name;
556 
557 	  namelen = strlen (link_sec->name);
558 	  len = namelen + sizeof (STUB_SUFFIX);
559 	  s_name = bfd_alloc (htab->stub_bfd, len);
560 	  if (s_name == NULL)
561 	    return NULL;
562 
563 	  memcpy (s_name, link_sec->name, namelen);
564 	  memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
565 	  stub_sec = (*htab->add_stub_section) (s_name, link_sec);
566 	  if (stub_sec == NULL)
567 	    return NULL;
568 	  htab->stub_group[link_sec->id].stub_sec = stub_sec;
569 	}
570       htab->stub_group[section->id].stub_sec = stub_sec;
571     }
572 
573   /* Enter this entry into the linker stub hash table.  */
574   hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
575 				      TRUE, FALSE);
576   if (hsh == NULL)
577     {
578       /* xgettext:c-format */
579       _bfd_error_handler (_("%pB: cannot create stub entry %s"),
580 			  section->owner, stub_name);
581       return NULL;
582     }
583 
584   hsh->stub_sec = stub_sec;
585   hsh->stub_offset = 0;
586   hsh->id_sec = link_sec;
587   return hsh;
588 }
589 
590 /* Determine the type of stub needed, if any, for a call.  */
591 
592 static enum elf32_hppa_stub_type
593 hppa_type_of_stub (asection *input_sec,
594 		   const Elf_Internal_Rela *rela,
595 		   struct elf32_hppa_link_hash_entry *hh,
596 		   bfd_vma destination,
597 		   struct bfd_link_info *info)
598 {
599   bfd_vma location;
600   bfd_vma branch_offset;
601   bfd_vma max_branch_offset;
602   unsigned int r_type;
603 
604   if (hh != NULL
605       && hh->eh.plt.offset != (bfd_vma) -1
606       && hh->eh.dynindx != -1
607       && !hh->plabel
608       && (bfd_link_pic (info)
609 	  || !hh->eh.def_regular
610 	  || hh->eh.root.type == bfd_link_hash_defweak))
611     {
612       /* We need an import stub.  Decide between hppa_stub_import
613 	 and hppa_stub_import_shared later.  */
614       return hppa_stub_import;
615     }
616 
617   if (destination == (bfd_vma) -1)
618     return hppa_stub_none;
619 
620   /* Determine where the call point is.  */
621   location = (input_sec->output_offset
622 	      + input_sec->output_section->vma
623 	      + rela->r_offset);
624 
625   branch_offset = destination - location - 8;
626   r_type = ELF32_R_TYPE (rela->r_info);
627 
628   /* Determine if a long branch stub is needed.  parisc branch offsets
629      are relative to the second instruction past the branch, ie. +8
630      bytes on from the branch instruction location.  The offset is
631      signed and counts in units of 4 bytes.  */
632   if (r_type == (unsigned int) R_PARISC_PCREL17F)
633     max_branch_offset = (1 << (17 - 1)) << 2;
634 
635   else if (r_type == (unsigned int) R_PARISC_PCREL12F)
636     max_branch_offset = (1 << (12 - 1)) << 2;
637 
638   else /* R_PARISC_PCREL22F.  */
639     max_branch_offset = (1 << (22 - 1)) << 2;
640 
641   if (branch_offset + max_branch_offset >= 2*max_branch_offset)
642     return hppa_stub_long_branch;
643 
644   return hppa_stub_none;
645 }
646 
647 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
648    IN_ARG contains the link info pointer.  */
649 
650 #define LDIL_R1		0x20200000	/* ldil  LR'XXX,%r1		*/
651 #define BE_SR4_R1	0xe0202002	/* be,n  RR'XXX(%sr4,%r1)	*/
652 
653 #define BL_R1		0xe8200000	/* b,l   .+8,%r1		*/
654 #define ADDIL_R1	0x28200000	/* addil LR'XXX,%r1,%r1		*/
655 #define DEPI_R1		0xd4201c1e	/* depi  0,31,2,%r1		*/
656 
657 #define ADDIL_DP	0x2b600000	/* addil LR'XXX,%dp,%r1		*/
658 #define LDW_R1_R21	0x48350000	/* ldw   RR'XXX(%sr0,%r1),%r21	*/
659 #define BV_R0_R21	0xeaa0c000	/* bv    %r0(%r21)		*/
660 #define LDW_R1_R19	0x48330000	/* ldw   RR'XXX(%sr0,%r1),%r19	*/
661 
662 #define ADDIL_R19	0x2a600000	/* addil LR'XXX,%r19,%r1	*/
663 #define LDW_R1_DP	0x483b0000	/* ldw   RR'XXX(%sr0,%r1),%dp	*/
664 
665 #define LDSID_R21_R1	0x02a010a1	/* ldsid (%sr0,%r21),%r1	*/
666 #define MTSP_R1		0x00011820	/* mtsp  %r1,%sr0		*/
667 #define BE_SR0_R21	0xe2a00000	/* be    0(%sr0,%r21)		*/
668 #define STW_RP		0x6bc23fd1	/* stw   %rp,-24(%sr0,%sp)	*/
669 
670 #define BL22_RP		0xe800a002	/* b,l,n XXX,%rp		*/
671 #define BL_RP		0xe8400002	/* b,l,n XXX,%rp		*/
672 #define NOP		0x08000240	/* nop				*/
673 #define LDW_RP		0x4bc23fd1	/* ldw   -24(%sr0,%sp),%rp	*/
674 #define LDSID_RP_R1	0x004010a1	/* ldsid (%sr0,%rp),%r1		*/
675 #define BE_SR0_RP	0xe0400002	/* be,n  0(%sr0,%rp)		*/
676 
677 #ifndef R19_STUBS
678 #define R19_STUBS 1
679 #endif
680 
681 #if R19_STUBS
682 #define LDW_R1_DLT	LDW_R1_R19
683 #else
684 #define LDW_R1_DLT	LDW_R1_DP
685 #endif
686 
687 static bfd_boolean
688 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
689 {
690   struct elf32_hppa_stub_hash_entry *hsh;
691   struct bfd_link_info *info;
692   struct elf32_hppa_link_hash_table *htab;
693   asection *stub_sec;
694   bfd *stub_bfd;
695   bfd_byte *loc;
696   bfd_vma sym_value;
697   bfd_vma insn;
698   bfd_vma off;
699   int val;
700   int size;
701 
702   /* Massage our args to the form they really have.  */
703   hsh = hppa_stub_hash_entry (bh);
704   info = (struct bfd_link_info *)in_arg;
705 
706   htab = hppa_link_hash_table (info);
707   if (htab == NULL)
708     return FALSE;
709 
710   stub_sec = hsh->stub_sec;
711 
712   /* Make a note of the offset within the stubs for this entry.  */
713   hsh->stub_offset = stub_sec->size;
714   loc = stub_sec->contents + hsh->stub_offset;
715 
716   stub_bfd = stub_sec->owner;
717 
718   switch (hsh->stub_type)
719     {
720     case hppa_stub_long_branch:
721       /* Create the long branch.  A long branch is formed with "ldil"
722 	 loading the upper bits of the target address into a register,
723 	 then branching with "be" which adds in the lower bits.
724 	 The "be" has its delay slot nullified.  */
725       sym_value = (hsh->target_value
726 		   + hsh->target_section->output_offset
727 		   + hsh->target_section->output_section->vma);
728 
729       val = hppa_field_adjust (sym_value, 0, e_lrsel);
730       insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
731       bfd_put_32 (stub_bfd, insn, loc);
732 
733       val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
734       insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
735       bfd_put_32 (stub_bfd, insn, loc + 4);
736 
737       size = 8;
738       break;
739 
740     case hppa_stub_long_branch_shared:
741       /* Branches are relative.  This is where we are going to.  */
742       sym_value = (hsh->target_value
743 		   + hsh->target_section->output_offset
744 		   + hsh->target_section->output_section->vma);
745 
746       /* And this is where we are coming from, more or less.  */
747       sym_value -= (hsh->stub_offset
748 		    + stub_sec->output_offset
749 		    + stub_sec->output_section->vma);
750 
751       bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
752       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
753       insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
754       bfd_put_32 (stub_bfd, insn, loc + 4);
755 
756       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
757       insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
758       bfd_put_32 (stub_bfd, insn, loc + 8);
759       size = 12;
760       break;
761 
762     case hppa_stub_import:
763     case hppa_stub_import_shared:
764       off = hsh->hh->eh.plt.offset;
765       if (off >= (bfd_vma) -2)
766 	abort ();
767 
768       off &= ~ (bfd_vma) 1;
769       sym_value = (off
770 		   + htab->etab.splt->output_offset
771 		   + htab->etab.splt->output_section->vma
772 		   - elf_gp (htab->etab.splt->output_section->owner));
773 
774       insn = ADDIL_DP;
775 #if R19_STUBS
776       if (hsh->stub_type == hppa_stub_import_shared)
777 	insn = ADDIL_R19;
778 #endif
779       val = hppa_field_adjust (sym_value, 0, e_lrsel),
780       insn = hppa_rebuild_insn ((int) insn, val, 21);
781       bfd_put_32 (stub_bfd, insn, loc);
782 
783       /* It is critical to use lrsel/rrsel here because we are using
784 	 two different offsets (+0 and +4) from sym_value.  If we use
785 	 lsel/rsel then with unfortunate sym_values we will round
786 	 sym_value+4 up to the next 2k block leading to a mis-match
787 	 between the lsel and rsel value.  */
788       val = hppa_field_adjust (sym_value, 0, e_rrsel);
789       insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
790       bfd_put_32 (stub_bfd, insn, loc + 4);
791 
792       if (htab->multi_subspace)
793 	{
794 	  val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
795 	  insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
796 	  bfd_put_32 (stub_bfd, insn, loc + 8);
797 
798 	  bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
799 	  bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,      loc + 16);
800 	  bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21,   loc + 20);
801 	  bfd_put_32 (stub_bfd, (bfd_vma) STW_RP,       loc + 24);
802 
803 	  size = 28;
804 	}
805       else
806 	{
807 	  bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
808 	  val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
809 	  insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
810 	  bfd_put_32 (stub_bfd, insn, loc + 12);
811 
812 	  size = 16;
813 	}
814 
815       break;
816 
817     case hppa_stub_export:
818       /* Branches are relative.  This is where we are going to.  */
819       sym_value = (hsh->target_value
820 		   + hsh->target_section->output_offset
821 		   + hsh->target_section->output_section->vma);
822 
823       /* And this is where we are coming from.  */
824       sym_value -= (hsh->stub_offset
825 		    + stub_sec->output_offset
826 		    + stub_sec->output_section->vma);
827 
828       if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
829 	  && (!htab->has_22bit_branch
830 	      || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
831 	{
832 	  _bfd_error_handler
833 	    /* xgettext:c-format */
834 	    (_("%pB(%pA+%#" PRIx64 "): "
835 	       "cannot reach %s, recompile with -ffunction-sections"),
836 	     hsh->target_section->owner,
837 	     stub_sec,
838 	     (uint64_t) hsh->stub_offset,
839 	     hsh->bh_root.string);
840 	  bfd_set_error (bfd_error_bad_value);
841 	  return FALSE;
842 	}
843 
844       val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
845       if (!htab->has_22bit_branch)
846 	insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
847       else
848 	insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
849       bfd_put_32 (stub_bfd, insn, loc);
850 
851       bfd_put_32 (stub_bfd, (bfd_vma) NOP,	   loc + 4);
852       bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP,      loc + 8);
853       bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
854       bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1,     loc + 16);
855       bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP,   loc + 20);
856 
857       /* Point the function symbol at the stub.  */
858       hsh->hh->eh.root.u.def.section = stub_sec;
859       hsh->hh->eh.root.u.def.value = stub_sec->size;
860 
861       size = 24;
862       break;
863 
864     default:
865       BFD_FAIL ();
866       return FALSE;
867     }
868 
869   stub_sec->size += size;
870   return TRUE;
871 }
872 
873 #undef LDIL_R1
874 #undef BE_SR4_R1
875 #undef BL_R1
876 #undef ADDIL_R1
877 #undef DEPI_R1
878 #undef LDW_R1_R21
879 #undef LDW_R1_DLT
880 #undef LDW_R1_R19
881 #undef ADDIL_R19
882 #undef LDW_R1_DP
883 #undef LDSID_R21_R1
884 #undef MTSP_R1
885 #undef BE_SR0_R21
886 #undef STW_RP
887 #undef BV_R0_R21
888 #undef BL_RP
889 #undef NOP
890 #undef LDW_RP
891 #undef LDSID_RP_R1
892 #undef BE_SR0_RP
893 
894 /* As above, but don't actually build the stub.  Just bump offset so
895    we know stub section sizes.  */
896 
897 static bfd_boolean
898 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
899 {
900   struct elf32_hppa_stub_hash_entry *hsh;
901   struct elf32_hppa_link_hash_table *htab;
902   int size;
903 
904   /* Massage our args to the form they really have.  */
905   hsh = hppa_stub_hash_entry (bh);
906   htab = in_arg;
907 
908   if (hsh->stub_type == hppa_stub_long_branch)
909     size = 8;
910   else if (hsh->stub_type == hppa_stub_long_branch_shared)
911     size = 12;
912   else if (hsh->stub_type == hppa_stub_export)
913     size = 24;
914   else /* hppa_stub_import or hppa_stub_import_shared.  */
915     {
916       if (htab->multi_subspace)
917 	size = 28;
918       else
919 	size = 16;
920     }
921 
922   hsh->stub_sec->size += size;
923   return TRUE;
924 }
925 
926 /* Return nonzero if ABFD represents an HPPA ELF32 file.
927    Additionally we set the default architecture and machine.  */
928 
929 static bfd_boolean
930 elf32_hppa_object_p (bfd *abfd)
931 {
932   Elf_Internal_Ehdr * i_ehdrp;
933   unsigned int flags;
934 
935   i_ehdrp = elf_elfheader (abfd);
936   if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
937     {
938       /* GCC on hppa-linux produces binaries with OSABI=GNU,
939 	 but the kernel produces corefiles with OSABI=SysV.  */
940       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
941 	  i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
942 	return FALSE;
943     }
944   else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
945     {
946       /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
947 	 but the kernel produces corefiles with OSABI=SysV.  */
948       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
949 	  i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
950 	return FALSE;
951     }
952   else
953     {
954       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
955 	return FALSE;
956     }
957 
958   flags = i_ehdrp->e_flags;
959   switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
960     {
961     case EFA_PARISC_1_0:
962       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
963     case EFA_PARISC_1_1:
964       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
965     case EFA_PARISC_2_0:
966       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
967     case EFA_PARISC_2_0 | EF_PARISC_WIDE:
968       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
969     }
970   return TRUE;
971 }
972 
973 /* Create the .plt and .got sections, and set up our hash table
974    short-cuts to various dynamic sections.  */
975 
976 static bfd_boolean
977 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
978 {
979   struct elf32_hppa_link_hash_table *htab;
980   struct elf_link_hash_entry *eh;
981 
982   /* Don't try to create the .plt and .got twice.  */
983   htab = hppa_link_hash_table (info);
984   if (htab == NULL)
985     return FALSE;
986   if (htab->etab.splt != NULL)
987     return TRUE;
988 
989   /* Call the generic code to do most of the work.  */
990   if (! _bfd_elf_create_dynamic_sections (abfd, info))
991     return FALSE;
992 
993   /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
994      application, because __canonicalize_funcptr_for_compare needs it.  */
995   eh = elf_hash_table (info)->hgot;
996   eh->forced_local = 0;
997   eh->other = STV_DEFAULT;
998   return bfd_elf_link_record_dynamic_symbol (info, eh);
999 }
1000 
1001 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
1002 
1003 static void
1004 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
1005 				 struct elf_link_hash_entry *eh_dir,
1006 				 struct elf_link_hash_entry *eh_ind)
1007 {
1008   struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
1009 
1010   hh_dir = hppa_elf_hash_entry (eh_dir);
1011   hh_ind = hppa_elf_hash_entry (eh_ind);
1012 
1013   if (hh_ind->dyn_relocs != NULL
1014       && eh_ind->root.type == bfd_link_hash_indirect)
1015     {
1016       if (hh_dir->dyn_relocs != NULL)
1017 	{
1018 	  struct elf_dyn_relocs **hdh_pp;
1019 	  struct elf_dyn_relocs *hdh_p;
1020 
1021 	  /* Add reloc counts against the indirect sym to the direct sym
1022 	     list.  Merge any entries against the same section.  */
1023 	  for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
1024 	    {
1025 	      struct elf_dyn_relocs *hdh_q;
1026 
1027 	      for (hdh_q = hh_dir->dyn_relocs;
1028 		   hdh_q != NULL;
1029 		   hdh_q = hdh_q->next)
1030 		if (hdh_q->sec == hdh_p->sec)
1031 		  {
1032 #if RELATIVE_DYNRELOCS
1033 		    hdh_q->pc_count += hdh_p->pc_count;
1034 #endif
1035 		    hdh_q->count += hdh_p->count;
1036 		    *hdh_pp = hdh_p->next;
1037 		    break;
1038 		  }
1039 	      if (hdh_q == NULL)
1040 		hdh_pp = &hdh_p->next;
1041 	    }
1042 	  *hdh_pp = hh_dir->dyn_relocs;
1043 	}
1044 
1045       hh_dir->dyn_relocs = hh_ind->dyn_relocs;
1046       hh_ind->dyn_relocs = NULL;
1047     }
1048 
1049   if (eh_ind->root.type == bfd_link_hash_indirect)
1050     {
1051       hh_dir->plabel |= hh_ind->plabel;
1052       hh_dir->tls_type |= hh_ind->tls_type;
1053       hh_ind->tls_type = GOT_UNKNOWN;
1054     }
1055 
1056   _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
1057 }
1058 
1059 static int
1060 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1061 				int r_type, int is_local ATTRIBUTE_UNUSED)
1062 {
1063   /* For now we don't support linker optimizations.  */
1064   return r_type;
1065 }
1066 
1067 /* Return a pointer to the local GOT, PLT and TLS reference counts
1068    for ABFD.  Returns NULL if the storage allocation fails.  */
1069 
1070 static bfd_signed_vma *
1071 hppa32_elf_local_refcounts (bfd *abfd)
1072 {
1073   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1074   bfd_signed_vma *local_refcounts;
1075 
1076   local_refcounts = elf_local_got_refcounts (abfd);
1077   if (local_refcounts == NULL)
1078     {
1079       bfd_size_type size;
1080 
1081       /* Allocate space for local GOT and PLT reference
1082 	 counts.  Done this way to save polluting elf_obj_tdata
1083 	 with another target specific pointer.  */
1084       size = symtab_hdr->sh_info;
1085       size *= 2 * sizeof (bfd_signed_vma);
1086       /* Add in space to store the local GOT TLS types.  */
1087       size += symtab_hdr->sh_info;
1088       local_refcounts = bfd_zalloc (abfd, size);
1089       if (local_refcounts == NULL)
1090 	return NULL;
1091       elf_local_got_refcounts (abfd) = local_refcounts;
1092       memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
1093 	      symtab_hdr->sh_info);
1094     }
1095   return local_refcounts;
1096 }
1097 
1098 
1099 /* Look through the relocs for a section during the first phase, and
1100    calculate needed space in the global offset table, procedure linkage
1101    table, and dynamic reloc sections.  At this point we haven't
1102    necessarily read all the input files.  */
1103 
1104 static bfd_boolean
1105 elf32_hppa_check_relocs (bfd *abfd,
1106 			 struct bfd_link_info *info,
1107 			 asection *sec,
1108 			 const Elf_Internal_Rela *relocs)
1109 {
1110   Elf_Internal_Shdr *symtab_hdr;
1111   struct elf_link_hash_entry **eh_syms;
1112   const Elf_Internal_Rela *rela;
1113   const Elf_Internal_Rela *rela_end;
1114   struct elf32_hppa_link_hash_table *htab;
1115   asection *sreloc;
1116 
1117   if (bfd_link_relocatable (info))
1118     return TRUE;
1119 
1120   htab = hppa_link_hash_table (info);
1121   if (htab == NULL)
1122     return FALSE;
1123   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1124   eh_syms = elf_sym_hashes (abfd);
1125   sreloc = NULL;
1126 
1127   rela_end = relocs + sec->reloc_count;
1128   for (rela = relocs; rela < rela_end; rela++)
1129     {
1130       enum {
1131 	NEED_GOT = 1,
1132 	NEED_PLT = 2,
1133 	NEED_DYNREL = 4,
1134 	PLT_PLABEL = 8
1135       };
1136 
1137       unsigned int r_symndx, r_type;
1138       struct elf32_hppa_link_hash_entry *hh;
1139       int need_entry = 0;
1140 
1141       r_symndx = ELF32_R_SYM (rela->r_info);
1142 
1143       if (r_symndx < symtab_hdr->sh_info)
1144 	hh = NULL;
1145       else
1146 	{
1147 	  hh =  hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
1148 	  while (hh->eh.root.type == bfd_link_hash_indirect
1149 		 || hh->eh.root.type == bfd_link_hash_warning)
1150 	    hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1151 	}
1152 
1153       r_type = ELF32_R_TYPE (rela->r_info);
1154       r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
1155 
1156       switch (r_type)
1157 	{
1158 	case R_PARISC_DLTIND14F:
1159 	case R_PARISC_DLTIND14R:
1160 	case R_PARISC_DLTIND21L:
1161 	  /* This symbol requires a global offset table entry.  */
1162 	  need_entry = NEED_GOT;
1163 	  break;
1164 
1165 	case R_PARISC_PLABEL14R: /* "Official" procedure labels.  */
1166 	case R_PARISC_PLABEL21L:
1167 	case R_PARISC_PLABEL32:
1168 	  /* If the addend is non-zero, we break badly.  */
1169 	  if (rela->r_addend != 0)
1170 	    abort ();
1171 
1172 	  /* If we are creating a shared library, then we need to
1173 	     create a PLT entry for all PLABELs, because PLABELs with
1174 	     local symbols may be passed via a pointer to another
1175 	     object.  Additionally, output a dynamic relocation
1176 	     pointing to the PLT entry.
1177 
1178 	     For executables, the original 32-bit ABI allowed two
1179 	     different styles of PLABELs (function pointers):  For
1180 	     global functions, the PLABEL word points into the .plt
1181 	     two bytes past a (function address, gp) pair, and for
1182 	     local functions the PLABEL points directly at the
1183 	     function.  The magic +2 for the first type allows us to
1184 	     differentiate between the two.  As you can imagine, this
1185 	     is a real pain when it comes to generating code to call
1186 	     functions indirectly or to compare function pointers.
1187 	     We avoid the mess by always pointing a PLABEL into the
1188 	     .plt, even for local functions.  */
1189 	  need_entry = PLT_PLABEL | NEED_PLT;
1190 	  if (bfd_link_pic (info))
1191 	    need_entry |= NEED_DYNREL;
1192 	  break;
1193 
1194 	case R_PARISC_PCREL12F:
1195 	  htab->has_12bit_branch = 1;
1196 	  goto branch_common;
1197 
1198 	case R_PARISC_PCREL17C:
1199 	case R_PARISC_PCREL17F:
1200 	  htab->has_17bit_branch = 1;
1201 	  goto branch_common;
1202 
1203 	case R_PARISC_PCREL22F:
1204 	  htab->has_22bit_branch = 1;
1205 	branch_common:
1206 	  /* Function calls might need to go through the .plt, and
1207 	     might require long branch stubs.  */
1208 	  if (hh == NULL)
1209 	    {
1210 	      /* We know local syms won't need a .plt entry, and if
1211 		 they need a long branch stub we can't guarantee that
1212 		 we can reach the stub.  So just flag an error later
1213 		 if we're doing a shared link and find we need a long
1214 		 branch stub.  */
1215 	      continue;
1216 	    }
1217 	  else
1218 	    {
1219 	      /* Global symbols will need a .plt entry if they remain
1220 		 global, and in most cases won't need a long branch
1221 		 stub.  Unfortunately, we have to cater for the case
1222 		 where a symbol is forced local by versioning, or due
1223 		 to symbolic linking, and we lose the .plt entry.  */
1224 	      need_entry = NEED_PLT;
1225 	      if (hh->eh.type == STT_PARISC_MILLI)
1226 		need_entry = 0;
1227 	    }
1228 	  break;
1229 
1230 	case R_PARISC_SEGBASE:  /* Used to set segment base.  */
1231 	case R_PARISC_SEGREL32: /* Relative reloc, used for unwind.  */
1232 	case R_PARISC_PCREL14F: /* PC relative load/store.  */
1233 	case R_PARISC_PCREL14R:
1234 	case R_PARISC_PCREL17R: /* External branches.  */
1235 	case R_PARISC_PCREL21L: /* As above, and for load/store too.  */
1236 	case R_PARISC_PCREL32:
1237 	  /* We don't need to propagate the relocation if linking a
1238 	     shared object since these are section relative.  */
1239 	  continue;
1240 
1241 	case R_PARISC_DPREL14F: /* Used for gp rel data load/store.  */
1242 	case R_PARISC_DPREL14R:
1243 	case R_PARISC_DPREL21L:
1244 	  if (bfd_link_pic (info))
1245 	    {
1246 	      _bfd_error_handler
1247 		/* xgettext:c-format */
1248 		(_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"),
1249 		 abfd,
1250 		 elf_hppa_howto_table[r_type].name);
1251 	      bfd_set_error (bfd_error_bad_value);
1252 	      return FALSE;
1253 	    }
1254 	  /* Fall through.  */
1255 
1256 	case R_PARISC_DIR17F: /* Used for external branches.  */
1257 	case R_PARISC_DIR17R:
1258 	case R_PARISC_DIR14F: /* Used for load/store from absolute locn.  */
1259 	case R_PARISC_DIR14R:
1260 	case R_PARISC_DIR21L: /* As above, and for ext branches too.  */
1261 	case R_PARISC_DIR32: /* .word relocs.  */
1262 	  /* We may want to output a dynamic relocation later.  */
1263 	  need_entry = NEED_DYNREL;
1264 	  break;
1265 
1266 	  /* This relocation describes the C++ object vtable hierarchy.
1267 	     Reconstruct it for later use during GC.  */
1268 	case R_PARISC_GNU_VTINHERIT:
1269 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
1270 	    return FALSE;
1271 	  continue;
1272 
1273 	  /* This relocation describes which C++ vtable entries are actually
1274 	     used.  Record for later use during GC.  */
1275 	case R_PARISC_GNU_VTENTRY:
1276 	  BFD_ASSERT (hh != NULL);
1277 	  if (hh != NULL
1278 	      && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
1279 	    return FALSE;
1280 	  continue;
1281 
1282 	case R_PARISC_TLS_GD21L:
1283 	case R_PARISC_TLS_GD14R:
1284 	case R_PARISC_TLS_LDM21L:
1285 	case R_PARISC_TLS_LDM14R:
1286 	  need_entry = NEED_GOT;
1287 	  break;
1288 
1289 	case R_PARISC_TLS_IE21L:
1290 	case R_PARISC_TLS_IE14R:
1291 	  if (bfd_link_dll (info))
1292 	    info->flags |= DF_STATIC_TLS;
1293 	  need_entry = NEED_GOT;
1294 	  break;
1295 
1296 	default:
1297 	  continue;
1298 	}
1299 
1300       /* Now carry out our orders.  */
1301       if (need_entry & NEED_GOT)
1302 	{
1303 	  int tls_type = GOT_NORMAL;
1304 
1305 	  switch (r_type)
1306 	    {
1307 	    default:
1308 	      break;
1309 	    case R_PARISC_TLS_GD21L:
1310 	    case R_PARISC_TLS_GD14R:
1311 	      tls_type = GOT_TLS_GD;
1312 	      break;
1313 	    case R_PARISC_TLS_LDM21L:
1314 	    case R_PARISC_TLS_LDM14R:
1315 	      tls_type = GOT_TLS_LDM;
1316 	      break;
1317 	    case R_PARISC_TLS_IE21L:
1318 	    case R_PARISC_TLS_IE14R:
1319 	      tls_type = GOT_TLS_IE;
1320 	      break;
1321 	    }
1322 
1323 	  /* Allocate space for a GOT entry, as well as a dynamic
1324 	     relocation for this entry.  */
1325 	  if (htab->etab.sgot == NULL)
1326 	    {
1327 	      if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
1328 		return FALSE;
1329 	    }
1330 
1331 	  if (hh != NULL)
1332 	    {
1333 	      if (tls_type == GOT_TLS_LDM)
1334 		htab->tls_ldm_got.refcount += 1;
1335 	      else
1336 		hh->eh.got.refcount += 1;
1337 	      hh->tls_type |= tls_type;
1338 	    }
1339 	  else
1340 	    {
1341 	      bfd_signed_vma *local_got_refcounts;
1342 
1343 	      /* This is a global offset table entry for a local symbol.  */
1344 	      local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1345 	      if (local_got_refcounts == NULL)
1346 		return FALSE;
1347 	      if (tls_type == GOT_TLS_LDM)
1348 		htab->tls_ldm_got.refcount += 1;
1349 	      else
1350 		local_got_refcounts[r_symndx] += 1;
1351 
1352 	      hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type;
1353 	    }
1354 	}
1355 
1356       if (need_entry & NEED_PLT)
1357 	{
1358 	  /* If we are creating a shared library, and this is a reloc
1359 	     against a weak symbol or a global symbol in a dynamic
1360 	     object, then we will be creating an import stub and a
1361 	     .plt entry for the symbol.  Similarly, on a normal link
1362 	     to symbols defined in a dynamic object we'll need the
1363 	     import stub and a .plt entry.  We don't know yet whether
1364 	     the symbol is defined or not, so make an entry anyway and
1365 	     clean up later in adjust_dynamic_symbol.  */
1366 	  if ((sec->flags & SEC_ALLOC) != 0)
1367 	    {
1368 	      if (hh != NULL)
1369 		{
1370 		  hh->eh.needs_plt = 1;
1371 		  hh->eh.plt.refcount += 1;
1372 
1373 		  /* If this .plt entry is for a plabel, mark it so
1374 		     that adjust_dynamic_symbol will keep the entry
1375 		     even if it appears to be local.  */
1376 		  if (need_entry & PLT_PLABEL)
1377 		    hh->plabel = 1;
1378 		}
1379 	      else if (need_entry & PLT_PLABEL)
1380 		{
1381 		  bfd_signed_vma *local_got_refcounts;
1382 		  bfd_signed_vma *local_plt_refcounts;
1383 
1384 		  local_got_refcounts = hppa32_elf_local_refcounts (abfd);
1385 		  if (local_got_refcounts == NULL)
1386 		    return FALSE;
1387 		  local_plt_refcounts = (local_got_refcounts
1388 					 + symtab_hdr->sh_info);
1389 		  local_plt_refcounts[r_symndx] += 1;
1390 		}
1391 	    }
1392 	}
1393 
1394       if ((need_entry & NEED_DYNREL) != 0
1395 	  && (sec->flags & SEC_ALLOC) != 0)
1396 	{
1397 	  /* Flag this symbol as having a non-got, non-plt reference
1398 	     so that we generate copy relocs if it turns out to be
1399 	     dynamic.  */
1400 	  if (hh != NULL)
1401 	    hh->eh.non_got_ref = 1;
1402 
1403 	  /* If we are creating a shared library then we need to copy
1404 	     the reloc into the shared library.  However, if we are
1405 	     linking with -Bsymbolic, we need only copy absolute
1406 	     relocs or relocs against symbols that are not defined in
1407 	     an object we are including in the link.  PC- or DP- or
1408 	     DLT-relative relocs against any local sym or global sym
1409 	     with DEF_REGULAR set, can be discarded.  At this point we
1410 	     have not seen all the input files, so it is possible that
1411 	     DEF_REGULAR is not set now but will be set later (it is
1412 	     never cleared).  We account for that possibility below by
1413 	     storing information in the dyn_relocs field of the
1414 	     hash table entry.
1415 
1416 	     A similar situation to the -Bsymbolic case occurs when
1417 	     creating shared libraries and symbol visibility changes
1418 	     render the symbol local.
1419 
1420 	     As it turns out, all the relocs we will be creating here
1421 	     are absolute, so we cannot remove them on -Bsymbolic
1422 	     links or visibility changes anyway.  A STUB_REL reloc
1423 	     is absolute too, as in that case it is the reloc in the
1424 	     stub we will be creating, rather than copying the PCREL
1425 	     reloc in the branch.
1426 
1427 	     If on the other hand, we are creating an executable, we
1428 	     may need to keep relocations for symbols satisfied by a
1429 	     dynamic library if we manage to avoid copy relocs for the
1430 	     symbol.  */
1431 	  if ((bfd_link_pic (info)
1432 	       && (IS_ABSOLUTE_RELOC (r_type)
1433 		   || (hh != NULL
1434 		       && (!SYMBOLIC_BIND (info, &hh->eh)
1435 			   || hh->eh.root.type == bfd_link_hash_defweak
1436 			   || !hh->eh.def_regular))))
1437 	      || (ELIMINATE_COPY_RELOCS
1438 		  && !bfd_link_pic (info)
1439 		  && hh != NULL
1440 		  && (hh->eh.root.type == bfd_link_hash_defweak
1441 		      || !hh->eh.def_regular)))
1442 	    {
1443 	      struct elf_dyn_relocs *hdh_p;
1444 	      struct elf_dyn_relocs **hdh_head;
1445 
1446 	      /* Create a reloc section in dynobj and make room for
1447 		 this reloc.  */
1448 	      if (sreloc == NULL)
1449 		{
1450 		  sreloc = _bfd_elf_make_dynamic_reloc_section
1451 		    (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
1452 
1453 		  if (sreloc == NULL)
1454 		    {
1455 		      bfd_set_error (bfd_error_bad_value);
1456 		      return FALSE;
1457 		    }
1458 		}
1459 
1460 	      /* If this is a global symbol, we count the number of
1461 		 relocations we need for this symbol.  */
1462 	      if (hh != NULL)
1463 		{
1464 		  hdh_head = &hh->dyn_relocs;
1465 		}
1466 	      else
1467 		{
1468 		  /* Track dynamic relocs needed for local syms too.
1469 		     We really need local syms available to do this
1470 		     easily.  Oh well.  */
1471 		  asection *sr;
1472 		  void *vpp;
1473 		  Elf_Internal_Sym *isym;
1474 
1475 		  isym = bfd_sym_from_r_symndx (&htab->sym_cache,
1476 						abfd, r_symndx);
1477 		  if (isym == NULL)
1478 		    return FALSE;
1479 
1480 		  sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
1481 		  if (sr == NULL)
1482 		    sr = sec;
1483 
1484 		  vpp = &elf_section_data (sr)->local_dynrel;
1485 		  hdh_head = (struct elf_dyn_relocs **) vpp;
1486 		}
1487 
1488 	      hdh_p = *hdh_head;
1489 	      if (hdh_p == NULL || hdh_p->sec != sec)
1490 		{
1491 		  hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
1492 		  if (hdh_p == NULL)
1493 		    return FALSE;
1494 		  hdh_p->next = *hdh_head;
1495 		  *hdh_head = hdh_p;
1496 		  hdh_p->sec = sec;
1497 		  hdh_p->count = 0;
1498 #if RELATIVE_DYNRELOCS
1499 		  hdh_p->pc_count = 0;
1500 #endif
1501 		}
1502 
1503 	      hdh_p->count += 1;
1504 #if RELATIVE_DYNRELOCS
1505 	      if (!IS_ABSOLUTE_RELOC (rtype))
1506 		hdh_p->pc_count += 1;
1507 #endif
1508 	    }
1509 	}
1510     }
1511 
1512   return TRUE;
1513 }
1514 
1515 /* Return the section that should be marked against garbage collection
1516    for a given relocation.  */
1517 
1518 static asection *
1519 elf32_hppa_gc_mark_hook (asection *sec,
1520 			 struct bfd_link_info *info,
1521 			 Elf_Internal_Rela *rela,
1522 			 struct elf_link_hash_entry *hh,
1523 			 Elf_Internal_Sym *sym)
1524 {
1525   if (hh != NULL)
1526     switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
1527       {
1528       case R_PARISC_GNU_VTINHERIT:
1529       case R_PARISC_GNU_VTENTRY:
1530 	return NULL;
1531       }
1532 
1533   return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
1534 }
1535 
1536 /* Support for core dump NOTE sections.  */
1537 
1538 static bfd_boolean
1539 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1540 {
1541   int offset;
1542   size_t size;
1543 
1544   switch (note->descsz)
1545     {
1546       default:
1547 	return FALSE;
1548 
1549       case 396:		/* Linux/hppa */
1550 	/* pr_cursig */
1551 	elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1552 
1553 	/* pr_pid */
1554 	elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1555 
1556 	/* pr_reg */
1557 	offset = 72;
1558 	size = 320;
1559 
1560 	break;
1561     }
1562 
1563   /* Make a ".reg/999" section.  */
1564   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1565 					  size, note->descpos + offset);
1566 }
1567 
1568 static bfd_boolean
1569 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1570 {
1571   switch (note->descsz)
1572     {
1573       default:
1574 	return FALSE;
1575 
1576       case 124:		/* Linux/hppa elf_prpsinfo.  */
1577 	elf_tdata (abfd)->core->program
1578 	  = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1579 	elf_tdata (abfd)->core->command
1580 	  = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1581     }
1582 
1583   /* Note that for some reason, a spurious space is tacked
1584      onto the end of the args in some (at least one anyway)
1585      implementations, so strip it off if it exists.  */
1586   {
1587     char *command = elf_tdata (abfd)->core->command;
1588     int n = strlen (command);
1589 
1590     if (0 < n && command[n - 1] == ' ')
1591       command[n - 1] = '\0';
1592   }
1593 
1594   return TRUE;
1595 }
1596 
1597 /* Our own version of hide_symbol, so that we can keep plt entries for
1598    plabels.  */
1599 
1600 static void
1601 elf32_hppa_hide_symbol (struct bfd_link_info *info,
1602 			struct elf_link_hash_entry *eh,
1603 			bfd_boolean force_local)
1604 {
1605   if (force_local)
1606     {
1607       eh->forced_local = 1;
1608       if (eh->dynindx != -1)
1609 	{
1610 	  eh->dynindx = -1;
1611 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1612 				  eh->dynstr_index);
1613 	}
1614 
1615       /* PR 16082: Remove version information from hidden symbol.  */
1616       eh->verinfo.verdef = NULL;
1617       eh->verinfo.vertree = NULL;
1618     }
1619 
1620   /* STT_GNU_IFUNC symbol must go through PLT.  */
1621   if (! hppa_elf_hash_entry (eh)->plabel
1622       && eh->type != STT_GNU_IFUNC)
1623     {
1624       eh->needs_plt = 0;
1625       eh->plt = elf_hash_table (info)->init_plt_offset;
1626     }
1627 }
1628 
1629 /* Find any dynamic relocs that apply to read-only sections.  */
1630 
1631 static asection *
1632 readonly_dynrelocs (struct elf_link_hash_entry *eh)
1633 {
1634   struct elf32_hppa_link_hash_entry *hh;
1635   struct elf_dyn_relocs *hdh_p;
1636 
1637   hh = hppa_elf_hash_entry (eh);
1638   for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
1639     {
1640       asection *sec = hdh_p->sec->output_section;
1641 
1642       if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
1643 	return hdh_p->sec;
1644     }
1645   return NULL;
1646 }
1647 
1648 /* Return true if we have dynamic relocs against H or any of its weak
1649    aliases, that apply to read-only sections.  Cannot be used after
1650    size_dynamic_sections.  */
1651 
1652 static bfd_boolean
1653 alias_readonly_dynrelocs (struct elf_link_hash_entry *eh)
1654 {
1655   struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1656   do
1657     {
1658       if (readonly_dynrelocs (&hh->eh))
1659 	return TRUE;
1660       hh = hppa_elf_hash_entry (hh->eh.u.alias);
1661     } while (hh != NULL && &hh->eh != eh);
1662 
1663   return FALSE;
1664 }
1665 
1666 /* Adjust a symbol defined by a dynamic object and referenced by a
1667    regular object.  The current definition is in some section of the
1668    dynamic object, but we're not including those sections.  We have to
1669    change the definition to something the rest of the link can
1670    understand.  */
1671 
1672 static bfd_boolean
1673 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
1674 				  struct elf_link_hash_entry *eh)
1675 {
1676   struct elf32_hppa_link_hash_table *htab;
1677   asection *sec, *srel;
1678 
1679   /* If this is a function, put it in the procedure linkage table.  We
1680      will fill in the contents of the procedure linkage table later.  */
1681   if (eh->type == STT_FUNC
1682       || eh->needs_plt)
1683     {
1684       bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh)
1685 			   || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh));
1686       /* Discard dyn_relocs when non-pic if we've decided that a
1687 	 function symbol is local.  */
1688       if (!bfd_link_pic (info) && local)
1689 	hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1690 
1691       /* If the symbol is used by a plabel, we must allocate a PLT slot.
1692 	 The refcounts are not reliable when it has been hidden since
1693 	 hide_symbol can be called before the plabel flag is set.  */
1694       if (hppa_elf_hash_entry (eh)->plabel)
1695 	eh->plt.refcount = 1;
1696 
1697       /* Note that unlike some other backends, the refcount is not
1698 	 incremented for a non-call (and non-plabel) function reference.  */
1699       else if (eh->plt.refcount <= 0
1700 	       || local)
1701 	{
1702 	  /* The .plt entry is not needed when:
1703 	     a) Garbage collection has removed all references to the
1704 	     symbol, or
1705 	     b) We know for certain the symbol is defined in this
1706 	     object, and it's not a weak definition, nor is the symbol
1707 	     used by a plabel relocation.  Either this object is the
1708 	     application or we are doing a shared symbolic link.  */
1709 	  eh->plt.offset = (bfd_vma) -1;
1710 	  eh->needs_plt = 0;
1711 	}
1712 
1713       /* Unlike other targets, elf32-hppa.c does not define a function
1714 	 symbol in a non-pic executable on PLT stub code, so we don't
1715 	 have a local definition in that case.  ie. dyn_relocs can't
1716 	 be discarded.  */
1717 
1718       /* Function symbols can't have copy relocs.  */
1719       return TRUE;
1720     }
1721   else
1722     eh->plt.offset = (bfd_vma) -1;
1723 
1724   htab = hppa_link_hash_table (info);
1725   if (htab == NULL)
1726     return FALSE;
1727 
1728   /* If this is a weak symbol, and there is a real definition, the
1729      processor independent code will have arranged for us to see the
1730      real definition first, and we can just use the same value.  */
1731   if (eh->is_weakalias)
1732     {
1733       struct elf_link_hash_entry *def = weakdef (eh);
1734       BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1735       eh->root.u.def.section = def->root.u.def.section;
1736       eh->root.u.def.value = def->root.u.def.value;
1737       if (def->root.u.def.section == htab->etab.sdynbss
1738 	  || def->root.u.def.section == htab->etab.sdynrelro)
1739 	hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1740       return TRUE;
1741     }
1742 
1743   /* This is a reference to a symbol defined by a dynamic object which
1744      is not a function.  */
1745 
1746   /* If we are creating a shared library, we must presume that the
1747      only references to the symbol are via the global offset table.
1748      For such cases we need not do anything here; the relocations will
1749      be handled correctly by relocate_section.  */
1750   if (bfd_link_pic (info))
1751     return TRUE;
1752 
1753   /* If there are no references to this symbol that do not use the
1754      GOT, we don't need to generate a copy reloc.  */
1755   if (!eh->non_got_ref)
1756     return TRUE;
1757 
1758   /* If -z nocopyreloc was given, we won't generate them either.  */
1759   if (info->nocopyreloc)
1760     return TRUE;
1761 
1762   /* If we don't find any dynamic relocs in read-only sections, then
1763      we'll be keeping the dynamic relocs and avoiding the copy reloc.  */
1764   if (ELIMINATE_COPY_RELOCS
1765       && !alias_readonly_dynrelocs (eh))
1766     return TRUE;
1767 
1768   /* We must allocate the symbol in our .dynbss section, which will
1769      become part of the .bss section of the executable.  There will be
1770      an entry for this symbol in the .dynsym section.  The dynamic
1771      object will contain position independent code, so all references
1772      from the dynamic object to this symbol will go through the global
1773      offset table.  The dynamic linker will use the .dynsym entry to
1774      determine the address it must put in the global offset table, so
1775      both the dynamic object and the regular object will refer to the
1776      same memory location for the variable.  */
1777   if ((eh->root.u.def.section->flags & SEC_READONLY) != 0)
1778     {
1779       sec = htab->etab.sdynrelro;
1780       srel = htab->etab.sreldynrelro;
1781     }
1782   else
1783     {
1784       sec = htab->etab.sdynbss;
1785       srel = htab->etab.srelbss;
1786     }
1787   if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
1788     {
1789       /* We must generate a COPY reloc to tell the dynamic linker to
1790 	 copy the initial value out of the dynamic object and into the
1791 	 runtime process image.  */
1792       srel->size += sizeof (Elf32_External_Rela);
1793       eh->needs_copy = 1;
1794     }
1795 
1796   /* We no longer want dyn_relocs.  */
1797   hppa_elf_hash_entry (eh)->dyn_relocs = NULL;
1798   return _bfd_elf_adjust_dynamic_copy (info, eh, sec);
1799 }
1800 
1801 /* If EH is undefined, make it dynamic if that makes sense.  */
1802 
1803 static bfd_boolean
1804 ensure_undef_dynamic (struct bfd_link_info *info,
1805 		      struct elf_link_hash_entry *eh)
1806 {
1807   struct elf_link_hash_table *htab = elf_hash_table (info);
1808 
1809   if (htab->dynamic_sections_created
1810       && (eh->root.type == bfd_link_hash_undefweak
1811 	  || eh->root.type == bfd_link_hash_undefined)
1812       && eh->dynindx == -1
1813       && !eh->forced_local
1814       && eh->type != STT_PARISC_MILLI
1815       && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)
1816       && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
1817     return bfd_elf_link_record_dynamic_symbol (info, eh);
1818   return TRUE;
1819 }
1820 
1821 /* Allocate space in the .plt for entries that won't have relocations.
1822    ie. plabel entries.  */
1823 
1824 static bfd_boolean
1825 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
1826 {
1827   struct bfd_link_info *info;
1828   struct elf32_hppa_link_hash_table *htab;
1829   struct elf32_hppa_link_hash_entry *hh;
1830   asection *sec;
1831 
1832   if (eh->root.type == bfd_link_hash_indirect)
1833     return TRUE;
1834 
1835   info = (struct bfd_link_info *) inf;
1836   hh = hppa_elf_hash_entry (eh);
1837   htab = hppa_link_hash_table (info);
1838   if (htab == NULL)
1839     return FALSE;
1840 
1841   if (htab->etab.dynamic_sections_created
1842       && eh->plt.refcount > 0)
1843     {
1844       if (!ensure_undef_dynamic (info, eh))
1845 	return FALSE;
1846 
1847       if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh))
1848 	{
1849 	  /* Allocate these later.  From this point on, h->plabel
1850 	     means that the plt entry is only used by a plabel.
1851 	     We'll be using a normal plt entry for this symbol, so
1852 	     clear the plabel indicator.  */
1853 
1854 	  hh->plabel = 0;
1855 	}
1856       else if (hh->plabel)
1857 	{
1858 	  /* Make an entry in the .plt section for plabel references
1859 	     that won't have a .plt entry for other reasons.  */
1860 	  sec = htab->etab.splt;
1861 	  eh->plt.offset = sec->size;
1862 	  sec->size += PLT_ENTRY_SIZE;
1863 	  if (bfd_link_pic (info))
1864 	    htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1865 	}
1866       else
1867 	{
1868 	  /* No .plt entry needed.  */
1869 	  eh->plt.offset = (bfd_vma) -1;
1870 	  eh->needs_plt = 0;
1871 	}
1872     }
1873   else
1874     {
1875       eh->plt.offset = (bfd_vma) -1;
1876       eh->needs_plt = 0;
1877     }
1878 
1879   return TRUE;
1880 }
1881 
1882 /* Calculate size of GOT entries for symbol given its TLS_TYPE.  */
1883 
1884 static inline unsigned int
1885 got_entries_needed (int tls_type)
1886 {
1887   unsigned int need = 0;
1888 
1889   if ((tls_type & GOT_NORMAL) != 0)
1890     need += GOT_ENTRY_SIZE;
1891   if ((tls_type & GOT_TLS_GD) != 0)
1892     need += GOT_ENTRY_SIZE * 2;
1893   if ((tls_type & GOT_TLS_IE) != 0)
1894     need += GOT_ENTRY_SIZE;
1895   return need;
1896 }
1897 
1898 /* Calculate size of relocs needed for symbol given its TLS_TYPE and
1899    NEEDed GOT entries.  TPREL_KNOWN says a TPREL offset can be
1900    calculated at link time.  DTPREL_KNOWN says the same for a DTPREL
1901    offset.  */
1902 
1903 static inline unsigned int
1904 got_relocs_needed (int tls_type, unsigned int need,
1905 		   bfd_boolean dtprel_known, bfd_boolean tprel_known)
1906 {
1907   /* All the entries we allocated need relocs.
1908      Except for GD and IE with local symbols.  */
1909   if ((tls_type & GOT_TLS_GD) != 0 && dtprel_known)
1910     need -= GOT_ENTRY_SIZE;
1911   if ((tls_type & GOT_TLS_IE) != 0 && tprel_known)
1912     need -= GOT_ENTRY_SIZE;
1913   return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE;
1914 }
1915 
1916 /* Allocate space in .plt, .got and associated reloc sections for
1917    global syms.  */
1918 
1919 static bfd_boolean
1920 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
1921 {
1922   struct bfd_link_info *info;
1923   struct elf32_hppa_link_hash_table *htab;
1924   asection *sec;
1925   struct elf32_hppa_link_hash_entry *hh;
1926   struct elf_dyn_relocs *hdh_p;
1927 
1928   if (eh->root.type == bfd_link_hash_indirect)
1929     return TRUE;
1930 
1931   info = inf;
1932   htab = hppa_link_hash_table (info);
1933   if (htab == NULL)
1934     return FALSE;
1935 
1936   hh = hppa_elf_hash_entry (eh);
1937 
1938   if (htab->etab.dynamic_sections_created
1939       && eh->plt.offset != (bfd_vma) -1
1940       && !hh->plabel
1941       && eh->plt.refcount > 0)
1942     {
1943       /* Make an entry in the .plt section.  */
1944       sec = htab->etab.splt;
1945       eh->plt.offset = sec->size;
1946       sec->size += PLT_ENTRY_SIZE;
1947 
1948       /* We also need to make an entry in the .rela.plt section.  */
1949       htab->etab.srelplt->size += sizeof (Elf32_External_Rela);
1950       htab->need_plt_stub = 1;
1951     }
1952 
1953   if (eh->got.refcount > 0)
1954     {
1955       unsigned int need;
1956 
1957       if (!ensure_undef_dynamic (info, eh))
1958 	return FALSE;
1959 
1960       sec = htab->etab.sgot;
1961       eh->got.offset = sec->size;
1962       need = got_entries_needed (hh->tls_type);
1963       sec->size += need;
1964       if (htab->etab.dynamic_sections_created
1965 	  && (bfd_link_dll (info)
1966 	      || (bfd_link_pic (info) && (hh->tls_type & GOT_NORMAL) != 0)
1967 	      || (eh->dynindx != -1
1968 		  && !SYMBOL_REFERENCES_LOCAL (info, eh)))
1969 	  && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1970 	{
1971 	  bfd_boolean local = SYMBOL_REFERENCES_LOCAL (info, eh);
1972 	  htab->etab.srelgot->size
1973 	    += got_relocs_needed (hh->tls_type, need, local,
1974 				  local && bfd_link_executable (info));
1975 	}
1976     }
1977   else
1978     eh->got.offset = (bfd_vma) -1;
1979 
1980   /* If no dynamic sections we can't have dynamic relocs.  */
1981   if (!htab->etab.dynamic_sections_created)
1982     hh->dyn_relocs = NULL;
1983 
1984   /* Discard relocs on undefined syms with non-default visibility.  */
1985   else if ((eh->root.type == bfd_link_hash_undefined
1986 	    && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
1987 	   || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
1988     hh->dyn_relocs = NULL;
1989 
1990   if (hh->dyn_relocs == NULL)
1991     return TRUE;
1992 
1993   /* If this is a -Bsymbolic shared link, then we need to discard all
1994      space allocated for dynamic pc-relative relocs against symbols
1995      defined in a regular object.  For the normal shared case, discard
1996      space for relocs that have become local due to symbol visibility
1997      changes.  */
1998   if (bfd_link_pic (info))
1999     {
2000 #if RELATIVE_DYNRELOCS
2001       if (SYMBOL_CALLS_LOCAL (info, eh))
2002 	{
2003 	  struct elf_dyn_relocs **hdh_pp;
2004 
2005 	  for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
2006 	    {
2007 	      hdh_p->count -= hdh_p->pc_count;
2008 	      hdh_p->pc_count = 0;
2009 	      if (hdh_p->count == 0)
2010 		*hdh_pp = hdh_p->next;
2011 	      else
2012 		hdh_pp = &hdh_p->next;
2013 	    }
2014 	}
2015 #endif
2016 
2017       if (hh->dyn_relocs != NULL)
2018 	{
2019 	  if (!ensure_undef_dynamic (info, eh))
2020 	    return FALSE;
2021 	}
2022     }
2023   else if (ELIMINATE_COPY_RELOCS)
2024     {
2025       /* For the non-shared case, discard space for relocs against
2026 	 symbols which turn out to need copy relocs or are not
2027 	 dynamic.  */
2028 
2029       if (eh->dynamic_adjusted
2030 	  && !eh->def_regular
2031 	  && !ELF_COMMON_DEF_P (eh))
2032 	{
2033 	  if (!ensure_undef_dynamic (info, eh))
2034 	    return FALSE;
2035 
2036 	  if (eh->dynindx == -1)
2037 	    hh->dyn_relocs = NULL;
2038 	}
2039       else
2040 	hh->dyn_relocs = NULL;
2041     }
2042 
2043   /* Finally, allocate space.  */
2044   for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next)
2045     {
2046       asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
2047       sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
2048     }
2049 
2050   return TRUE;
2051 }
2052 
2053 /* This function is called via elf_link_hash_traverse to force
2054    millicode symbols local so they do not end up as globals in the
2055    dynamic symbol table.  We ought to be able to do this in
2056    adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
2057    for all dynamic symbols.  Arguably, this is a bug in
2058    elf_adjust_dynamic_symbol.  */
2059 
2060 static bfd_boolean
2061 clobber_millicode_symbols (struct elf_link_hash_entry *eh,
2062 			   struct bfd_link_info *info)
2063 {
2064   if (eh->type == STT_PARISC_MILLI
2065       && !eh->forced_local)
2066     {
2067       elf32_hppa_hide_symbol (info, eh, TRUE);
2068     }
2069   return TRUE;
2070 }
2071 
2072 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
2073    read-only sections.  */
2074 
2075 static bfd_boolean
2076 maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf)
2077 {
2078   asection *sec;
2079 
2080   if (eh->root.type == bfd_link_hash_indirect)
2081     return TRUE;
2082 
2083   sec = readonly_dynrelocs (eh);
2084   if (sec != NULL)
2085     {
2086       struct bfd_link_info *info = (struct bfd_link_info *) inf;
2087 
2088       info->flags |= DF_TEXTREL;
2089       info->callbacks->minfo
2090 	(_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
2091 	 sec->owner, eh->root.root.string, sec);
2092 
2093       /* Not an error, just cut short the traversal.  */
2094       return FALSE;
2095     }
2096   return TRUE;
2097 }
2098 
2099 /* Set the sizes of the dynamic sections.  */
2100 
2101 static bfd_boolean
2102 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2103 				  struct bfd_link_info *info)
2104 {
2105   struct elf32_hppa_link_hash_table *htab;
2106   bfd *dynobj;
2107   bfd *ibfd;
2108   asection *sec;
2109   bfd_boolean relocs;
2110 
2111   htab = hppa_link_hash_table (info);
2112   if (htab == NULL)
2113     return FALSE;
2114 
2115   dynobj = htab->etab.dynobj;
2116   if (dynobj == NULL)
2117     abort ();
2118 
2119   if (htab->etab.dynamic_sections_created)
2120     {
2121       /* Set the contents of the .interp section to the interpreter.  */
2122       if (bfd_link_executable (info) && !info->nointerp)
2123 	{
2124 	  sec = bfd_get_linker_section (dynobj, ".interp");
2125 	  if (sec == NULL)
2126 	    abort ();
2127 	  sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
2128 	  sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2129 	}
2130 
2131       /* Force millicode symbols local.  */
2132       elf_link_hash_traverse (&htab->etab,
2133 			      clobber_millicode_symbols,
2134 			      info);
2135     }
2136 
2137   /* Set up .got and .plt offsets for local syms, and space for local
2138      dynamic relocs.  */
2139   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2140     {
2141       bfd_signed_vma *local_got;
2142       bfd_signed_vma *end_local_got;
2143       bfd_signed_vma *local_plt;
2144       bfd_signed_vma *end_local_plt;
2145       bfd_size_type locsymcount;
2146       Elf_Internal_Shdr *symtab_hdr;
2147       asection *srel;
2148       char *local_tls_type;
2149 
2150       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
2151 	continue;
2152 
2153       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
2154 	{
2155 	  struct elf_dyn_relocs *hdh_p;
2156 
2157 	  for (hdh_p = ((struct elf_dyn_relocs *)
2158 		    elf_section_data (sec)->local_dynrel);
2159 	       hdh_p != NULL;
2160 	       hdh_p = hdh_p->next)
2161 	    {
2162 	      if (!bfd_is_abs_section (hdh_p->sec)
2163 		  && bfd_is_abs_section (hdh_p->sec->output_section))
2164 		{
2165 		  /* Input section has been discarded, either because
2166 		     it is a copy of a linkonce section or due to
2167 		     linker script /DISCARD/, so we'll be discarding
2168 		     the relocs too.  */
2169 		}
2170 	      else if (hdh_p->count != 0)
2171 		{
2172 		  srel = elf_section_data (hdh_p->sec)->sreloc;
2173 		  srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
2174 		  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
2175 		    info->flags |= DF_TEXTREL;
2176 		}
2177 	    }
2178 	}
2179 
2180       local_got = elf_local_got_refcounts (ibfd);
2181       if (!local_got)
2182 	continue;
2183 
2184       symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
2185       locsymcount = symtab_hdr->sh_info;
2186       end_local_got = local_got + locsymcount;
2187       local_tls_type = hppa_elf_local_got_tls_type (ibfd);
2188       sec = htab->etab.sgot;
2189       srel = htab->etab.srelgot;
2190       for (; local_got < end_local_got; ++local_got)
2191 	{
2192 	  if (*local_got > 0)
2193 	    {
2194 	      unsigned int need;
2195 
2196 	      *local_got = sec->size;
2197 	      need = got_entries_needed (*local_tls_type);
2198 	      sec->size += need;
2199 	      if (bfd_link_dll (info)
2200 		  || (bfd_link_pic (info)
2201 		      && (*local_tls_type & GOT_NORMAL) != 0))
2202 		htab->etab.srelgot->size
2203 		  += got_relocs_needed (*local_tls_type, need, TRUE,
2204 					bfd_link_executable (info));
2205 	    }
2206 	  else
2207 	    *local_got = (bfd_vma) -1;
2208 
2209 	  ++local_tls_type;
2210 	}
2211 
2212       local_plt = end_local_got;
2213       end_local_plt = local_plt + locsymcount;
2214       if (! htab->etab.dynamic_sections_created)
2215 	{
2216 	  /* Won't be used, but be safe.  */
2217 	  for (; local_plt < end_local_plt; ++local_plt)
2218 	    *local_plt = (bfd_vma) -1;
2219 	}
2220       else
2221 	{
2222 	  sec = htab->etab.splt;
2223 	  srel = htab->etab.srelplt;
2224 	  for (; local_plt < end_local_plt; ++local_plt)
2225 	    {
2226 	      if (*local_plt > 0)
2227 		{
2228 		  *local_plt = sec->size;
2229 		  sec->size += PLT_ENTRY_SIZE;
2230 		  if (bfd_link_pic (info))
2231 		    srel->size += sizeof (Elf32_External_Rela);
2232 		}
2233 	      else
2234 		*local_plt = (bfd_vma) -1;
2235 	    }
2236 	}
2237     }
2238 
2239   if (htab->tls_ldm_got.refcount > 0)
2240     {
2241       /* Allocate 2 got entries and 1 dynamic reloc for
2242 	 R_PARISC_TLS_DTPMOD32 relocs.  */
2243       htab->tls_ldm_got.offset = htab->etab.sgot->size;
2244       htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2);
2245       htab->etab.srelgot->size += sizeof (Elf32_External_Rela);
2246     }
2247   else
2248     htab->tls_ldm_got.offset = -1;
2249 
2250   /* Do all the .plt entries without relocs first.  The dynamic linker
2251      uses the last .plt reloc to find the end of the .plt (and hence
2252      the start of the .got) for lazy linking.  */
2253   elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
2254 
2255   /* Allocate global sym .plt and .got entries, and space for global
2256      sym dynamic relocs.  */
2257   elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
2258 
2259   /* The check_relocs and adjust_dynamic_symbol entry points have
2260      determined the sizes of the various dynamic sections.  Allocate
2261      memory for them.  */
2262   relocs = FALSE;
2263   for (sec = dynobj->sections; sec != NULL; sec = sec->next)
2264     {
2265       if ((sec->flags & SEC_LINKER_CREATED) == 0)
2266 	continue;
2267 
2268       if (sec == htab->etab.splt)
2269 	{
2270 	  if (htab->need_plt_stub)
2271 	    {
2272 	      /* Make space for the plt stub at the end of the .plt
2273 		 section.  We want this stub right at the end, up
2274 		 against the .got section.  */
2275 	      int gotalign = bfd_section_alignment (dynobj, htab->etab.sgot);
2276 	      int pltalign = bfd_section_alignment (dynobj, sec);
2277 	      bfd_size_type mask;
2278 
2279 	      if (gotalign > pltalign)
2280 		(void) bfd_set_section_alignment (dynobj, sec, gotalign);
2281 	      mask = ((bfd_size_type) 1 << gotalign) - 1;
2282 	      sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
2283 	    }
2284 	}
2285       else if (sec == htab->etab.sgot
2286 	       || sec == htab->etab.sdynbss
2287 	       || sec == htab->etab.sdynrelro)
2288 	;
2289       else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
2290 	{
2291 	  if (sec->size != 0)
2292 	    {
2293 	      /* Remember whether there are any reloc sections other
2294 		 than .rela.plt.  */
2295 	      if (sec != htab->etab.srelplt)
2296 		relocs = TRUE;
2297 
2298 	      /* We use the reloc_count field as a counter if we need
2299 		 to copy relocs into the output file.  */
2300 	      sec->reloc_count = 0;
2301 	    }
2302 	}
2303       else
2304 	{
2305 	  /* It's not one of our sections, so don't allocate space.  */
2306 	  continue;
2307 	}
2308 
2309       if (sec->size == 0)
2310 	{
2311 	  /* If we don't need this section, strip it from the
2312 	     output file.  This is mostly to handle .rela.bss and
2313 	     .rela.plt.  We must create both sections in
2314 	     create_dynamic_sections, because they must be created
2315 	     before the linker maps input sections to output
2316 	     sections.  The linker does that before
2317 	     adjust_dynamic_symbol is called, and it is that
2318 	     function which decides whether anything needs to go
2319 	     into these sections.  */
2320 	  sec->flags |= SEC_EXCLUDE;
2321 	  continue;
2322 	}
2323 
2324       if ((sec->flags & SEC_HAS_CONTENTS) == 0)
2325 	continue;
2326 
2327       /* Allocate memory for the section contents.  Zero it, because
2328 	 we may not fill in all the reloc sections.  */
2329       sec->contents = bfd_zalloc (dynobj, sec->size);
2330       if (sec->contents == NULL)
2331 	return FALSE;
2332     }
2333 
2334   if (htab->etab.dynamic_sections_created)
2335     {
2336       /* Like IA-64 and HPPA64, always create a DT_PLTGOT.  It
2337 	 actually has nothing to do with the PLT, it is how we
2338 	 communicate the LTP value of a load module to the dynamic
2339 	 linker.  */
2340 #define add_dynamic_entry(TAG, VAL) \
2341   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2342 
2343       if (!add_dynamic_entry (DT_PLTGOT, 0))
2344 	return FALSE;
2345 
2346       /* Add some entries to the .dynamic section.  We fill in the
2347 	 values later, in elf32_hppa_finish_dynamic_sections, but we
2348 	 must add the entries now so that we get the correct size for
2349 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
2350 	 dynamic linker and used by the debugger.  */
2351       if (bfd_link_executable (info))
2352 	{
2353 	  if (!add_dynamic_entry (DT_DEBUG, 0))
2354 	    return FALSE;
2355 	}
2356 
2357       if (htab->etab.srelplt->size != 0)
2358 	{
2359 	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
2360 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2361 	      || !add_dynamic_entry (DT_JMPREL, 0))
2362 	    return FALSE;
2363 	}
2364 
2365       if (relocs)
2366 	{
2367 	  if (!add_dynamic_entry (DT_RELA, 0)
2368 	      || !add_dynamic_entry (DT_RELASZ, 0)
2369 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
2370 	    return FALSE;
2371 
2372 	  /* If any dynamic relocs apply to a read-only section,
2373 	     then we need a DT_TEXTREL entry.  */
2374 	  if ((info->flags & DF_TEXTREL) == 0)
2375 	    elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info);
2376 
2377 	  if ((info->flags & DF_TEXTREL) != 0)
2378 	    {
2379 	      if (!add_dynamic_entry (DT_TEXTREL, 0))
2380 		return FALSE;
2381 	    }
2382 	}
2383     }
2384 #undef add_dynamic_entry
2385 
2386   return TRUE;
2387 }
2388 
2389 /* External entry points for sizing and building linker stubs.  */
2390 
2391 /* Set up various things so that we can make a list of input sections
2392    for each output section included in the link.  Returns -1 on error,
2393    0 when no stubs will be needed, and 1 on success.  */
2394 
2395 int
2396 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
2397 {
2398   bfd *input_bfd;
2399   unsigned int bfd_count;
2400   unsigned int top_id, top_index;
2401   asection *section;
2402   asection **input_list, **list;
2403   bfd_size_type amt;
2404   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2405 
2406   if (htab == NULL)
2407     return -1;
2408 
2409   /* Count the number of input BFDs and find the top input section id.  */
2410   for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
2411        input_bfd != NULL;
2412        input_bfd = input_bfd->link.next)
2413     {
2414       bfd_count += 1;
2415       for (section = input_bfd->sections;
2416 	   section != NULL;
2417 	   section = section->next)
2418 	{
2419 	  if (top_id < section->id)
2420 	    top_id = section->id;
2421 	}
2422     }
2423   htab->bfd_count = bfd_count;
2424 
2425   amt = sizeof (struct map_stub) * (top_id + 1);
2426   htab->stub_group = bfd_zmalloc (amt);
2427   if (htab->stub_group == NULL)
2428     return -1;
2429 
2430   /* We can't use output_bfd->section_count here to find the top output
2431      section index as some sections may have been removed, and
2432      strip_excluded_output_sections doesn't renumber the indices.  */
2433   for (section = output_bfd->sections, top_index = 0;
2434        section != NULL;
2435        section = section->next)
2436     {
2437       if (top_index < section->index)
2438 	top_index = section->index;
2439     }
2440 
2441   htab->top_index = top_index;
2442   amt = sizeof (asection *) * (top_index + 1);
2443   input_list = bfd_malloc (amt);
2444   htab->input_list = input_list;
2445   if (input_list == NULL)
2446     return -1;
2447 
2448   /* For sections we aren't interested in, mark their entries with a
2449      value we can check later.  */
2450   list = input_list + top_index;
2451   do
2452     *list = bfd_abs_section_ptr;
2453   while (list-- != input_list);
2454 
2455   for (section = output_bfd->sections;
2456        section != NULL;
2457        section = section->next)
2458     {
2459       if ((section->flags & SEC_CODE) != 0)
2460 	input_list[section->index] = NULL;
2461     }
2462 
2463   return 1;
2464 }
2465 
2466 /* The linker repeatedly calls this function for each input section,
2467    in the order that input sections are linked into output sections.
2468    Build lists of input sections to determine groupings between which
2469    we may insert linker stubs.  */
2470 
2471 void
2472 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
2473 {
2474   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2475 
2476   if (htab == NULL)
2477     return;
2478 
2479   if (isec->output_section->index <= htab->top_index)
2480     {
2481       asection **list = htab->input_list + isec->output_section->index;
2482       if (*list != bfd_abs_section_ptr)
2483 	{
2484 	  /* Steal the link_sec pointer for our list.  */
2485 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
2486 	  /* This happens to make the list in reverse order,
2487 	     which is what we want.  */
2488 	  PREV_SEC (isec) = *list;
2489 	  *list = isec;
2490 	}
2491     }
2492 }
2493 
2494 /* See whether we can group stub sections together.  Grouping stub
2495    sections may result in fewer stubs.  More importantly, we need to
2496    put all .init* and .fini* stubs at the beginning of the .init or
2497    .fini output sections respectively, because glibc splits the
2498    _init and _fini functions into multiple parts.  Putting a stub in
2499    the middle of a function is not a good idea.  */
2500 
2501 static void
2502 group_sections (struct elf32_hppa_link_hash_table *htab,
2503 		bfd_size_type stub_group_size,
2504 		bfd_boolean stubs_always_before_branch)
2505 {
2506   asection **list = htab->input_list + htab->top_index;
2507   do
2508     {
2509       asection *tail = *list;
2510       if (tail == bfd_abs_section_ptr)
2511 	continue;
2512       while (tail != NULL)
2513 	{
2514 	  asection *curr;
2515 	  asection *prev;
2516 	  bfd_size_type total;
2517 	  bfd_boolean big_sec;
2518 
2519 	  curr = tail;
2520 	  total = tail->size;
2521 	  big_sec = total >= stub_group_size;
2522 
2523 	  while ((prev = PREV_SEC (curr)) != NULL
2524 		 && ((total += curr->output_offset - prev->output_offset)
2525 		     < stub_group_size))
2526 	    curr = prev;
2527 
2528 	  /* OK, the size from the start of CURR to the end is less
2529 	     than 240000 bytes and thus can be handled by one stub
2530 	     section.  (or the tail section is itself larger than
2531 	     240000 bytes, in which case we may be toast.)
2532 	     We should really be keeping track of the total size of
2533 	     stubs added here, as stubs contribute to the final output
2534 	     section size.  That's a little tricky, and this way will
2535 	     only break if stubs added total more than 22144 bytes, or
2536 	     2768 long branch stubs.  It seems unlikely for more than
2537 	     2768 different functions to be called, especially from
2538 	     code only 240000 bytes long.  This limit used to be
2539 	     250000, but c++ code tends to generate lots of little
2540 	     functions, and sometimes violated the assumption.  */
2541 	  do
2542 	    {
2543 	      prev = PREV_SEC (tail);
2544 	      /* Set up this stub group.  */
2545 	      htab->stub_group[tail->id].link_sec = curr;
2546 	    }
2547 	  while (tail != curr && (tail = prev) != NULL);
2548 
2549 	  /* But wait, there's more!  Input sections up to 240000
2550 	     bytes before the stub section can be handled by it too.
2551 	     Don't do this if we have a really large section after the
2552 	     stubs, as adding more stubs increases the chance that
2553 	     branches may not reach into the stub section.  */
2554 	  if (!stubs_always_before_branch && !big_sec)
2555 	    {
2556 	      total = 0;
2557 	      while (prev != NULL
2558 		     && ((total += tail->output_offset - prev->output_offset)
2559 			 < stub_group_size))
2560 		{
2561 		  tail = prev;
2562 		  prev = PREV_SEC (tail);
2563 		  htab->stub_group[tail->id].link_sec = curr;
2564 		}
2565 	    }
2566 	  tail = prev;
2567 	}
2568     }
2569   while (list-- != htab->input_list);
2570   free (htab->input_list);
2571 #undef PREV_SEC
2572 }
2573 
2574 /* Read in all local syms for all input bfds, and create hash entries
2575    for export stubs if we are building a multi-subspace shared lib.
2576    Returns -1 on error, 1 if export stubs created, 0 otherwise.  */
2577 
2578 static int
2579 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
2580 {
2581   unsigned int bfd_indx;
2582   Elf_Internal_Sym *local_syms, **all_local_syms;
2583   int stub_changed = 0;
2584   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2585 
2586   if (htab == NULL)
2587     return -1;
2588 
2589   /* We want to read in symbol extension records only once.  To do this
2590      we need to read in the local symbols in parallel and save them for
2591      later use; so hold pointers to the local symbols in an array.  */
2592   bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
2593   all_local_syms = bfd_zmalloc (amt);
2594   htab->all_local_syms = all_local_syms;
2595   if (all_local_syms == NULL)
2596     return -1;
2597 
2598   /* Walk over all the input BFDs, swapping in local symbols.
2599      If we are creating a shared library, create hash entries for the
2600      export stubs.  */
2601   for (bfd_indx = 0;
2602        input_bfd != NULL;
2603        input_bfd = input_bfd->link.next, bfd_indx++)
2604     {
2605       Elf_Internal_Shdr *symtab_hdr;
2606 
2607       /* We'll need the symbol table in a second.  */
2608       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2609       if (symtab_hdr->sh_info == 0)
2610 	continue;
2611 
2612       /* We need an array of the local symbols attached to the input bfd.  */
2613       local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
2614       if (local_syms == NULL)
2615 	{
2616 	  local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
2617 					     symtab_hdr->sh_info, 0,
2618 					     NULL, NULL, NULL);
2619 	  /* Cache them for elf_link_input_bfd.  */
2620 	  symtab_hdr->contents = (unsigned char *) local_syms;
2621 	}
2622       if (local_syms == NULL)
2623 	return -1;
2624 
2625       all_local_syms[bfd_indx] = local_syms;
2626 
2627       if (bfd_link_pic (info) && htab->multi_subspace)
2628 	{
2629 	  struct elf_link_hash_entry **eh_syms;
2630 	  struct elf_link_hash_entry **eh_symend;
2631 	  unsigned int symcount;
2632 
2633 	  symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
2634 		      - symtab_hdr->sh_info);
2635 	  eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
2636 	  eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
2637 
2638 	  /* Look through the global syms for functions;  We need to
2639 	     build export stubs for all globally visible functions.  */
2640 	  for (; eh_syms < eh_symend; eh_syms++)
2641 	    {
2642 	      struct elf32_hppa_link_hash_entry *hh;
2643 
2644 	      hh = hppa_elf_hash_entry (*eh_syms);
2645 
2646 	      while (hh->eh.root.type == bfd_link_hash_indirect
2647 		     || hh->eh.root.type == bfd_link_hash_warning)
2648 		   hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2649 
2650 	      /* At this point in the link, undefined syms have been
2651 		 resolved, so we need to check that the symbol was
2652 		 defined in this BFD.  */
2653 	      if ((hh->eh.root.type == bfd_link_hash_defined
2654 		   || hh->eh.root.type == bfd_link_hash_defweak)
2655 		  && hh->eh.type == STT_FUNC
2656 		  && hh->eh.root.u.def.section->output_section != NULL
2657 		  && (hh->eh.root.u.def.section->output_section->owner
2658 		      == output_bfd)
2659 		  && hh->eh.root.u.def.section->owner == input_bfd
2660 		  && hh->eh.def_regular
2661 		  && !hh->eh.forced_local
2662 		  && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
2663 		{
2664 		  asection *sec;
2665 		  const char *stub_name;
2666 		  struct elf32_hppa_stub_hash_entry *hsh;
2667 
2668 		  sec = hh->eh.root.u.def.section;
2669 		  stub_name = hh_name (hh);
2670 		  hsh = hppa_stub_hash_lookup (&htab->bstab,
2671 						      stub_name,
2672 						      FALSE, FALSE);
2673 		  if (hsh == NULL)
2674 		    {
2675 		      hsh = hppa_add_stub (stub_name, sec, htab);
2676 		      if (!hsh)
2677 			return -1;
2678 
2679 		      hsh->target_value = hh->eh.root.u.def.value;
2680 		      hsh->target_section = hh->eh.root.u.def.section;
2681 		      hsh->stub_type = hppa_stub_export;
2682 		      hsh->hh = hh;
2683 		      stub_changed = 1;
2684 		    }
2685 		  else
2686 		    {
2687 		      /* xgettext:c-format */
2688 		      _bfd_error_handler (_("%pB: duplicate export stub %s"),
2689 					  input_bfd, stub_name);
2690 		    }
2691 		}
2692 	    }
2693 	}
2694     }
2695 
2696   return stub_changed;
2697 }
2698 
2699 /* Determine and set the size of the stub section for a final link.
2700 
2701    The basic idea here is to examine all the relocations looking for
2702    PC-relative calls to a target that is unreachable with a "bl"
2703    instruction.  */
2704 
2705 bfd_boolean
2706 elf32_hppa_size_stubs
2707   (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
2708    bfd_boolean multi_subspace, bfd_signed_vma group_size,
2709    asection * (*add_stub_section) (const char *, asection *),
2710    void (*layout_sections_again) (void))
2711 {
2712   bfd_size_type stub_group_size;
2713   bfd_boolean stubs_always_before_branch;
2714   bfd_boolean stub_changed;
2715   struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
2716 
2717   if (htab == NULL)
2718     return FALSE;
2719 
2720   /* Stash our params away.  */
2721   htab->stub_bfd = stub_bfd;
2722   htab->multi_subspace = multi_subspace;
2723   htab->add_stub_section = add_stub_section;
2724   htab->layout_sections_again = layout_sections_again;
2725   stubs_always_before_branch = group_size < 0;
2726   if (group_size < 0)
2727     stub_group_size = -group_size;
2728   else
2729     stub_group_size = group_size;
2730   if (stub_group_size == 1)
2731     {
2732       /* Default values.  */
2733       if (stubs_always_before_branch)
2734 	{
2735 	  stub_group_size = 7680000;
2736 	  if (htab->has_17bit_branch || htab->multi_subspace)
2737 	    stub_group_size = 240000;
2738 	  if (htab->has_12bit_branch)
2739 	    stub_group_size = 7500;
2740 	}
2741       else
2742 	{
2743 	  stub_group_size = 6971392;
2744 	  if (htab->has_17bit_branch || htab->multi_subspace)
2745 	    stub_group_size = 217856;
2746 	  if (htab->has_12bit_branch)
2747 	    stub_group_size = 6808;
2748 	}
2749     }
2750 
2751   group_sections (htab, stub_group_size, stubs_always_before_branch);
2752 
2753   switch (get_local_syms (output_bfd, info->input_bfds, info))
2754     {
2755     default:
2756       if (htab->all_local_syms)
2757 	goto error_ret_free_local;
2758       return FALSE;
2759 
2760     case 0:
2761       stub_changed = FALSE;
2762       break;
2763 
2764     case 1:
2765       stub_changed = TRUE;
2766       break;
2767     }
2768 
2769   while (1)
2770     {
2771       bfd *input_bfd;
2772       unsigned int bfd_indx;
2773       asection *stub_sec;
2774 
2775       for (input_bfd = info->input_bfds, bfd_indx = 0;
2776 	   input_bfd != NULL;
2777 	   input_bfd = input_bfd->link.next, bfd_indx++)
2778 	{
2779 	  Elf_Internal_Shdr *symtab_hdr;
2780 	  asection *section;
2781 	  Elf_Internal_Sym *local_syms;
2782 
2783 	  /* We'll need the symbol table in a second.  */
2784 	  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2785 	  if (symtab_hdr->sh_info == 0)
2786 	    continue;
2787 
2788 	  local_syms = htab->all_local_syms[bfd_indx];
2789 
2790 	  /* Walk over each section attached to the input bfd.  */
2791 	  for (section = input_bfd->sections;
2792 	       section != NULL;
2793 	       section = section->next)
2794 	    {
2795 	      Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
2796 
2797 	      /* If there aren't any relocs, then there's nothing more
2798 		 to do.  */
2799 	      if ((section->flags & SEC_RELOC) == 0
2800 		  || (section->flags & SEC_ALLOC) == 0
2801 		  || (section->flags & SEC_LOAD) == 0
2802 		  || (section->flags & SEC_CODE) == 0
2803 		  || section->reloc_count == 0)
2804 		continue;
2805 
2806 	      /* If this section is a link-once section that will be
2807 		 discarded, then don't create any stubs.  */
2808 	      if (section->output_section == NULL
2809 		  || section->output_section->owner != output_bfd)
2810 		continue;
2811 
2812 	      /* Get the relocs.  */
2813 	      internal_relocs
2814 		= _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
2815 					     info->keep_memory);
2816 	      if (internal_relocs == NULL)
2817 		goto error_ret_free_local;
2818 
2819 	      /* Now examine each relocation.  */
2820 	      irela = internal_relocs;
2821 	      irelaend = irela + section->reloc_count;
2822 	      for (; irela < irelaend; irela++)
2823 		{
2824 		  unsigned int r_type, r_indx;
2825 		  enum elf32_hppa_stub_type stub_type;
2826 		  struct elf32_hppa_stub_hash_entry *hsh;
2827 		  asection *sym_sec;
2828 		  bfd_vma sym_value;
2829 		  bfd_vma destination;
2830 		  struct elf32_hppa_link_hash_entry *hh;
2831 		  char *stub_name;
2832 		  const asection *id_sec;
2833 
2834 		  r_type = ELF32_R_TYPE (irela->r_info);
2835 		  r_indx = ELF32_R_SYM (irela->r_info);
2836 
2837 		  if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
2838 		    {
2839 		      bfd_set_error (bfd_error_bad_value);
2840 		    error_ret_free_internal:
2841 		      if (elf_section_data (section)->relocs == NULL)
2842 			free (internal_relocs);
2843 		      goto error_ret_free_local;
2844 		    }
2845 
2846 		  /* Only look for stubs on call instructions.  */
2847 		  if (r_type != (unsigned int) R_PARISC_PCREL12F
2848 		      && r_type != (unsigned int) R_PARISC_PCREL17F
2849 		      && r_type != (unsigned int) R_PARISC_PCREL22F)
2850 		    continue;
2851 
2852 		  /* Now determine the call target, its name, value,
2853 		     section.  */
2854 		  sym_sec = NULL;
2855 		  sym_value = 0;
2856 		  destination = -1;
2857 		  hh = NULL;
2858 		  if (r_indx < symtab_hdr->sh_info)
2859 		    {
2860 		      /* It's a local symbol.  */
2861 		      Elf_Internal_Sym *sym;
2862 		      Elf_Internal_Shdr *hdr;
2863 		      unsigned int shndx;
2864 
2865 		      sym = local_syms + r_indx;
2866 		      if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
2867 			sym_value = sym->st_value;
2868 		      shndx = sym->st_shndx;
2869 		      if (shndx < elf_numsections (input_bfd))
2870 			{
2871 			  hdr = elf_elfsections (input_bfd)[shndx];
2872 			  sym_sec = hdr->bfd_section;
2873 			  destination = (sym_value + irela->r_addend
2874 					 + sym_sec->output_offset
2875 					 + sym_sec->output_section->vma);
2876 			}
2877 		    }
2878 		  else
2879 		    {
2880 		      /* It's an external symbol.  */
2881 		      int e_indx;
2882 
2883 		      e_indx = r_indx - symtab_hdr->sh_info;
2884 		      hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
2885 
2886 		      while (hh->eh.root.type == bfd_link_hash_indirect
2887 			     || hh->eh.root.type == bfd_link_hash_warning)
2888 			hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
2889 
2890 		      if (hh->eh.root.type == bfd_link_hash_defined
2891 			  || hh->eh.root.type == bfd_link_hash_defweak)
2892 			{
2893 			  sym_sec = hh->eh.root.u.def.section;
2894 			  sym_value = hh->eh.root.u.def.value;
2895 			  if (sym_sec->output_section != NULL)
2896 			    destination = (sym_value + irela->r_addend
2897 					   + sym_sec->output_offset
2898 					   + sym_sec->output_section->vma);
2899 			}
2900 		      else if (hh->eh.root.type == bfd_link_hash_undefweak)
2901 			{
2902 			  if (! bfd_link_pic (info))
2903 			    continue;
2904 			}
2905 		      else if (hh->eh.root.type == bfd_link_hash_undefined)
2906 			{
2907 			  if (! (info->unresolved_syms_in_objects == RM_IGNORE
2908 				 && (ELF_ST_VISIBILITY (hh->eh.other)
2909 				     == STV_DEFAULT)
2910 				 && hh->eh.type != STT_PARISC_MILLI))
2911 			    continue;
2912 			}
2913 		      else
2914 			{
2915 			  bfd_set_error (bfd_error_bad_value);
2916 			  goto error_ret_free_internal;
2917 			}
2918 		    }
2919 
2920 		  /* Determine what (if any) linker stub is needed.  */
2921 		  stub_type = hppa_type_of_stub (section, irela, hh,
2922 						 destination, info);
2923 		  if (stub_type == hppa_stub_none)
2924 		    continue;
2925 
2926 		  /* Support for grouping stub sections.  */
2927 		  id_sec = htab->stub_group[section->id].link_sec;
2928 
2929 		  /* Get the name of this stub.  */
2930 		  stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
2931 		  if (!stub_name)
2932 		    goto error_ret_free_internal;
2933 
2934 		  hsh = hppa_stub_hash_lookup (&htab->bstab,
2935 						      stub_name,
2936 						      FALSE, FALSE);
2937 		  if (hsh != NULL)
2938 		    {
2939 		      /* The proper stub has already been created.  */
2940 		      free (stub_name);
2941 		      continue;
2942 		    }
2943 
2944 		  hsh = hppa_add_stub (stub_name, section, htab);
2945 		  if (hsh == NULL)
2946 		    {
2947 		      free (stub_name);
2948 		      goto error_ret_free_internal;
2949 		    }
2950 
2951 		  hsh->target_value = sym_value;
2952 		  hsh->target_section = sym_sec;
2953 		  hsh->stub_type = stub_type;
2954 		  if (bfd_link_pic (info))
2955 		    {
2956 		      if (stub_type == hppa_stub_import)
2957 			hsh->stub_type = hppa_stub_import_shared;
2958 		      else if (stub_type == hppa_stub_long_branch)
2959 			hsh->stub_type = hppa_stub_long_branch_shared;
2960 		    }
2961 		  hsh->hh = hh;
2962 		  stub_changed = TRUE;
2963 		}
2964 
2965 	      /* We're done with the internal relocs, free them.  */
2966 	      if (elf_section_data (section)->relocs == NULL)
2967 		free (internal_relocs);
2968 	    }
2969 	}
2970 
2971       if (!stub_changed)
2972 	break;
2973 
2974       /* OK, we've added some stubs.  Find out the new size of the
2975 	 stub sections.  */
2976       for (stub_sec = htab->stub_bfd->sections;
2977 	   stub_sec != NULL;
2978 	   stub_sec = stub_sec->next)
2979 	if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
2980 	  stub_sec->size = 0;
2981 
2982       bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
2983 
2984       /* Ask the linker to do its stuff.  */
2985       (*htab->layout_sections_again) ();
2986       stub_changed = FALSE;
2987     }
2988 
2989   free (htab->all_local_syms);
2990   return TRUE;
2991 
2992  error_ret_free_local:
2993   free (htab->all_local_syms);
2994   return FALSE;
2995 }
2996 
2997 /* For a final link, this function is called after we have sized the
2998    stubs to provide a value for __gp.  */
2999 
3000 bfd_boolean
3001 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
3002 {
3003   struct bfd_link_hash_entry *h;
3004   asection *sec = NULL;
3005   bfd_vma gp_val = 0;
3006 
3007   h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE);
3008 
3009   if (h != NULL
3010       && (h->type == bfd_link_hash_defined
3011 	  || h->type == bfd_link_hash_defweak))
3012     {
3013       gp_val = h->u.def.value;
3014       sec = h->u.def.section;
3015     }
3016   else
3017     {
3018       asection *splt = bfd_get_section_by_name (abfd, ".plt");
3019       asection *sgot = bfd_get_section_by_name (abfd, ".got");
3020 
3021       /* Choose to point our LTP at, in this order, one of .plt, .got,
3022 	 or .data, if these sections exist.  In the case of choosing
3023 	 .plt try to make the LTP ideal for addressing anywhere in the
3024 	 .plt or .got with a 14 bit signed offset.  Typically, the end
3025 	 of the .plt is the start of the .got, so choose .plt + 0x2000
3026 	 if either the .plt or .got is larger than 0x2000.  If both
3027 	 the .plt and .got are smaller than 0x2000, choose the end of
3028 	 the .plt section.  */
3029       sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
3030 	  ? NULL : splt;
3031       if (sec != NULL)
3032 	{
3033 	  gp_val = sec->size;
3034 	  if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
3035 	    {
3036 	      gp_val = 0x2000;
3037 	    }
3038 	}
3039       else
3040 	{
3041 	  sec = sgot;
3042 	  if (sec != NULL)
3043 	    {
3044 	      if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
3045 		{
3046 		  /* We know we don't have a .plt.  If .got is large,
3047 		     offset our LTP.  */
3048 		  if (sec->size > 0x2000)
3049 		    gp_val = 0x2000;
3050 		}
3051 	    }
3052 	  else
3053 	    {
3054 	      /* No .plt or .got.  Who cares what the LTP is?  */
3055 	      sec = bfd_get_section_by_name (abfd, ".data");
3056 	    }
3057 	}
3058 
3059       if (h != NULL)
3060 	{
3061 	  h->type = bfd_link_hash_defined;
3062 	  h->u.def.value = gp_val;
3063 	  if (sec != NULL)
3064 	    h->u.def.section = sec;
3065 	  else
3066 	    h->u.def.section = bfd_abs_section_ptr;
3067 	}
3068     }
3069 
3070   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
3071     {
3072       if (sec != NULL && sec->output_section != NULL)
3073 	gp_val += sec->output_section->vma + sec->output_offset;
3074 
3075       elf_gp (abfd) = gp_val;
3076     }
3077   return TRUE;
3078 }
3079 
3080 /* Build all the stubs associated with the current output file.  The
3081    stubs are kept in a hash table attached to the main linker hash
3082    table.  We also set up the .plt entries for statically linked PIC
3083    functions here.  This function is called via hppaelf_finish in the
3084    linker.  */
3085 
3086 bfd_boolean
3087 elf32_hppa_build_stubs (struct bfd_link_info *info)
3088 {
3089   asection *stub_sec;
3090   struct bfd_hash_table *table;
3091   struct elf32_hppa_link_hash_table *htab;
3092 
3093   htab = hppa_link_hash_table (info);
3094   if (htab == NULL)
3095     return FALSE;
3096 
3097   for (stub_sec = htab->stub_bfd->sections;
3098        stub_sec != NULL;
3099        stub_sec = stub_sec->next)
3100     if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
3101 	&& stub_sec->size != 0)
3102       {
3103 	/* Allocate memory to hold the linker stubs.  */
3104 	stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
3105 	if (stub_sec->contents == NULL)
3106 	  return FALSE;
3107 	stub_sec->size = 0;
3108       }
3109 
3110   /* Build the stubs as directed by the stub hash table.  */
3111   table = &htab->bstab;
3112   bfd_hash_traverse (table, hppa_build_one_stub, info);
3113 
3114   return TRUE;
3115 }
3116 
3117 /* Return the base vma address which should be subtracted from the real
3118    address when resolving a dtpoff relocation.
3119    This is PT_TLS segment p_vaddr.  */
3120 
3121 static bfd_vma
3122 dtpoff_base (struct bfd_link_info *info)
3123 {
3124   /* If tls_sec is NULL, we should have signalled an error already.  */
3125   if (elf_hash_table (info)->tls_sec == NULL)
3126     return 0;
3127   return elf_hash_table (info)->tls_sec->vma;
3128 }
3129 
3130 /* Return the relocation value for R_PARISC_TLS_TPOFF*..  */
3131 
3132 static bfd_vma
3133 tpoff (struct bfd_link_info *info, bfd_vma address)
3134 {
3135   struct elf_link_hash_table *htab = elf_hash_table (info);
3136 
3137   /* If tls_sec is NULL, we should have signalled an error already.  */
3138   if (htab->tls_sec == NULL)
3139     return 0;
3140   /* hppa TLS ABI is variant I and static TLS block start just after
3141      tcbhead structure which has 2 pointer fields.  */
3142   return (address - htab->tls_sec->vma
3143 	  + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
3144 }
3145 
3146 /* Perform a final link.  */
3147 
3148 static bfd_boolean
3149 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
3150 {
3151   struct stat buf;
3152 
3153   /* Invoke the regular ELF linker to do all the work.  */
3154   if (!bfd_elf_final_link (abfd, info))
3155     return FALSE;
3156 
3157   /* If we're producing a final executable, sort the contents of the
3158      unwind section.  */
3159   if (bfd_link_relocatable (info))
3160     return TRUE;
3161 
3162   /* Do not attempt to sort non-regular files.  This is here
3163      especially for configure scripts and kernel builds which run
3164      tests with "ld [...] -o /dev/null".  */
3165   if (stat (abfd->filename, &buf) != 0
3166       || !S_ISREG(buf.st_mode))
3167     return TRUE;
3168 
3169   return elf_hppa_sort_unwind (abfd);
3170 }
3171 
3172 /* Record the lowest address for the data and text segments.  */
3173 
3174 static void
3175 hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
3176 {
3177   struct elf32_hppa_link_hash_table *htab;
3178 
3179   htab = (struct elf32_hppa_link_hash_table*) data;
3180   if (htab == NULL)
3181     return;
3182 
3183   if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
3184     {
3185       bfd_vma value;
3186       Elf_Internal_Phdr *p;
3187 
3188       p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
3189       BFD_ASSERT (p != NULL);
3190       value = p->p_vaddr;
3191 
3192       if ((section->flags & SEC_READONLY) != 0)
3193 	{
3194 	  if (value < htab->text_segment_base)
3195 	    htab->text_segment_base = value;
3196 	}
3197       else
3198 	{
3199 	  if (value < htab->data_segment_base)
3200 	    htab->data_segment_base = value;
3201 	}
3202     }
3203 }
3204 
3205 /* Perform a relocation as part of a final link.  */
3206 
3207 static bfd_reloc_status_type
3208 final_link_relocate (asection *input_section,
3209 		     bfd_byte *contents,
3210 		     const Elf_Internal_Rela *rela,
3211 		     bfd_vma value,
3212 		     struct elf32_hppa_link_hash_table *htab,
3213 		     asection *sym_sec,
3214 		     struct elf32_hppa_link_hash_entry *hh,
3215 		     struct bfd_link_info *info)
3216 {
3217   int insn;
3218   unsigned int r_type = ELF32_R_TYPE (rela->r_info);
3219   unsigned int orig_r_type = r_type;
3220   reloc_howto_type *howto = elf_hppa_howto_table + r_type;
3221   int r_format = howto->bitsize;
3222   enum hppa_reloc_field_selector_type_alt r_field;
3223   bfd *input_bfd = input_section->owner;
3224   bfd_vma offset = rela->r_offset;
3225   bfd_vma max_branch_offset = 0;
3226   bfd_byte *hit_data = contents + offset;
3227   bfd_signed_vma addend = rela->r_addend;
3228   bfd_vma location;
3229   struct elf32_hppa_stub_hash_entry *hsh = NULL;
3230   int val;
3231 
3232   if (r_type == R_PARISC_NONE)
3233     return bfd_reloc_ok;
3234 
3235   insn = bfd_get_32 (input_bfd, hit_data);
3236 
3237   /* Find out where we are and where we're going.  */
3238   location = (offset +
3239 	      input_section->output_offset +
3240 	      input_section->output_section->vma);
3241 
3242   /* If we are not building a shared library, convert DLTIND relocs to
3243      DPREL relocs.  */
3244   if (!bfd_link_pic (info))
3245     {
3246       switch (r_type)
3247 	{
3248 	  case R_PARISC_DLTIND21L:
3249 	  case R_PARISC_TLS_GD21L:
3250 	  case R_PARISC_TLS_LDM21L:
3251 	  case R_PARISC_TLS_IE21L:
3252 	    r_type = R_PARISC_DPREL21L;
3253 	    break;
3254 
3255 	  case R_PARISC_DLTIND14R:
3256 	  case R_PARISC_TLS_GD14R:
3257 	  case R_PARISC_TLS_LDM14R:
3258 	  case R_PARISC_TLS_IE14R:
3259 	    r_type = R_PARISC_DPREL14R;
3260 	    break;
3261 
3262 	  case R_PARISC_DLTIND14F:
3263 	    r_type = R_PARISC_DPREL14F;
3264 	    break;
3265 	}
3266     }
3267 
3268   switch (r_type)
3269     {
3270     case R_PARISC_PCREL12F:
3271     case R_PARISC_PCREL17F:
3272     case R_PARISC_PCREL22F:
3273       /* If this call should go via the plt, find the import stub in
3274 	 the stub hash.  */
3275       if (sym_sec == NULL
3276 	  || sym_sec->output_section == NULL
3277 	  || (hh != NULL
3278 	      && hh->eh.plt.offset != (bfd_vma) -1
3279 	      && hh->eh.dynindx != -1
3280 	      && !hh->plabel
3281 	      && (bfd_link_pic (info)
3282 		  || !hh->eh.def_regular
3283 		  || hh->eh.root.type == bfd_link_hash_defweak)))
3284 	{
3285 	  hsh = hppa_get_stub_entry (input_section, sym_sec,
3286 				     hh, rela, htab);
3287 	  if (hsh != NULL)
3288 	    {
3289 	      value = (hsh->stub_offset
3290 		       + hsh->stub_sec->output_offset
3291 		       + hsh->stub_sec->output_section->vma);
3292 	      addend = 0;
3293 	    }
3294 	  else if (sym_sec == NULL && hh != NULL
3295 		   && hh->eh.root.type == bfd_link_hash_undefweak)
3296 	    {
3297 	      /* It's OK if undefined weak.  Calls to undefined weak
3298 		 symbols behave as if the "called" function
3299 		 immediately returns.  We can thus call to a weak
3300 		 function without first checking whether the function
3301 		 is defined.  */
3302 	      value = location;
3303 	      addend = 8;
3304 	    }
3305 	  else
3306 	    return bfd_reloc_undefined;
3307 	}
3308       /* Fall thru.  */
3309 
3310     case R_PARISC_PCREL21L:
3311     case R_PARISC_PCREL17C:
3312     case R_PARISC_PCREL17R:
3313     case R_PARISC_PCREL14R:
3314     case R_PARISC_PCREL14F:
3315     case R_PARISC_PCREL32:
3316       /* Make it a pc relative offset.  */
3317       value -= location;
3318       addend -= 8;
3319       break;
3320 
3321     case R_PARISC_DPREL21L:
3322     case R_PARISC_DPREL14R:
3323     case R_PARISC_DPREL14F:
3324       /* Convert instructions that use the linkage table pointer (r19) to
3325 	 instructions that use the global data pointer (dp).  This is the
3326 	 most efficient way of using PIC code in an incomplete executable,
3327 	 but the user must follow the standard runtime conventions for
3328 	 accessing data for this to work.  */
3329       if (orig_r_type != r_type)
3330 	{
3331 	  if (r_type == R_PARISC_DPREL21L)
3332 	    {
3333 	      /* GCC sometimes uses a register other than r19 for the
3334 		 operation, so we must convert any addil instruction
3335 		 that uses this relocation.  */
3336 	      if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
3337 		insn = ADDIL_DP;
3338 	      else
3339 		/* We must have a ldil instruction.  It's too hard to find
3340 		   and convert the associated add instruction, so issue an
3341 		   error.  */
3342 		_bfd_error_handler
3343 		  /* xgettext:c-format */
3344 		  (_("%pB(%pA+%#" PRIx64 "): %s fixup for insn %#x "
3345 		     "is not supported in a non-shared link"),
3346 		   input_bfd,
3347 		   input_section,
3348 		   (uint64_t) offset,
3349 		   howto->name,
3350 		   insn);
3351 	    }
3352 	  else if (r_type == R_PARISC_DPREL14F)
3353 	    {
3354 	      /* This must be a format 1 load/store.  Change the base
3355 		 register to dp.  */
3356 	      insn = (insn & 0xfc1ffff) | (27 << 21);
3357 	    }
3358 	}
3359 
3360       /* For all the DP relative relocations, we need to examine the symbol's
3361 	 section.  If it has no section or if it's a code section, then
3362 	 "data pointer relative" makes no sense.  In that case we don't
3363 	 adjust the "value", and for 21 bit addil instructions, we change the
3364 	 source addend register from %dp to %r0.  This situation commonly
3365 	 arises for undefined weak symbols and when a variable's "constness"
3366 	 is declared differently from the way the variable is defined.  For
3367 	 instance: "extern int foo" with foo defined as "const int foo".  */
3368       if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
3369 	{
3370 	  if ((insn & ((0x3f << 26) | (0x1f << 21)))
3371 	      == (((int) OP_ADDIL << 26) | (27 << 21)))
3372 	    {
3373 	      insn &= ~ (0x1f << 21);
3374 	    }
3375 	  /* Now try to make things easy for the dynamic linker.  */
3376 
3377 	  break;
3378 	}
3379       /* Fall thru.  */
3380 
3381     case R_PARISC_DLTIND21L:
3382     case R_PARISC_DLTIND14R:
3383     case R_PARISC_DLTIND14F:
3384     case R_PARISC_TLS_GD21L:
3385     case R_PARISC_TLS_LDM21L:
3386     case R_PARISC_TLS_IE21L:
3387     case R_PARISC_TLS_GD14R:
3388     case R_PARISC_TLS_LDM14R:
3389     case R_PARISC_TLS_IE14R:
3390       value -= elf_gp (input_section->output_section->owner);
3391       break;
3392 
3393     case R_PARISC_SEGREL32:
3394       if ((sym_sec->flags & SEC_CODE) != 0)
3395 	value -= htab->text_segment_base;
3396       else
3397 	value -= htab->data_segment_base;
3398       break;
3399 
3400     default:
3401       break;
3402     }
3403 
3404   switch (r_type)
3405     {
3406     case R_PARISC_DIR32:
3407     case R_PARISC_DIR14F:
3408     case R_PARISC_DIR17F:
3409     case R_PARISC_PCREL17C:
3410     case R_PARISC_PCREL14F:
3411     case R_PARISC_PCREL32:
3412     case R_PARISC_DPREL14F:
3413     case R_PARISC_PLABEL32:
3414     case R_PARISC_DLTIND14F:
3415     case R_PARISC_SEGBASE:
3416     case R_PARISC_SEGREL32:
3417     case R_PARISC_TLS_DTPMOD32:
3418     case R_PARISC_TLS_DTPOFF32:
3419     case R_PARISC_TLS_TPREL32:
3420       r_field = e_fsel;
3421       break;
3422 
3423     case R_PARISC_DLTIND21L:
3424     case R_PARISC_PCREL21L:
3425     case R_PARISC_PLABEL21L:
3426       r_field = e_lsel;
3427       break;
3428 
3429     case R_PARISC_DIR21L:
3430     case R_PARISC_DPREL21L:
3431     case R_PARISC_TLS_GD21L:
3432     case R_PARISC_TLS_LDM21L:
3433     case R_PARISC_TLS_LDO21L:
3434     case R_PARISC_TLS_IE21L:
3435     case R_PARISC_TLS_LE21L:
3436       r_field = e_lrsel;
3437       break;
3438 
3439     case R_PARISC_PCREL17R:
3440     case R_PARISC_PCREL14R:
3441     case R_PARISC_PLABEL14R:
3442     case R_PARISC_DLTIND14R:
3443       r_field = e_rsel;
3444       break;
3445 
3446     case R_PARISC_DIR17R:
3447     case R_PARISC_DIR14R:
3448     case R_PARISC_DPREL14R:
3449     case R_PARISC_TLS_GD14R:
3450     case R_PARISC_TLS_LDM14R:
3451     case R_PARISC_TLS_LDO14R:
3452     case R_PARISC_TLS_IE14R:
3453     case R_PARISC_TLS_LE14R:
3454       r_field = e_rrsel;
3455       break;
3456 
3457     case R_PARISC_PCREL12F:
3458     case R_PARISC_PCREL17F:
3459     case R_PARISC_PCREL22F:
3460       r_field = e_fsel;
3461 
3462       if (r_type == (unsigned int) R_PARISC_PCREL17F)
3463 	{
3464 	  max_branch_offset = (1 << (17-1)) << 2;
3465 	}
3466       else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3467 	{
3468 	  max_branch_offset = (1 << (12-1)) << 2;
3469 	}
3470       else
3471 	{
3472 	  max_branch_offset = (1 << (22-1)) << 2;
3473 	}
3474 
3475       /* sym_sec is NULL on undefined weak syms or when shared on
3476 	 undefined syms.  We've already checked for a stub for the
3477 	 shared undefined case.  */
3478       if (sym_sec == NULL)
3479 	break;
3480 
3481       /* If the branch is out of reach, then redirect the
3482 	 call to the local stub for this function.  */
3483       if (value + addend + max_branch_offset >= 2*max_branch_offset)
3484 	{
3485 	  hsh = hppa_get_stub_entry (input_section, sym_sec,
3486 				     hh, rela, htab);
3487 	  if (hsh == NULL)
3488 	    return bfd_reloc_undefined;
3489 
3490 	  /* Munge up the value and addend so that we call the stub
3491 	     rather than the procedure directly.  */
3492 	  value = (hsh->stub_offset
3493 		   + hsh->stub_sec->output_offset
3494 		   + hsh->stub_sec->output_section->vma
3495 		   - location);
3496 	  addend = -8;
3497 	}
3498       break;
3499 
3500     /* Something we don't know how to handle.  */
3501     default:
3502       return bfd_reloc_notsupported;
3503     }
3504 
3505   /* Make sure we can reach the stub.  */
3506   if (max_branch_offset != 0
3507       && value + addend + max_branch_offset >= 2*max_branch_offset)
3508     {
3509       _bfd_error_handler
3510 	/* xgettext:c-format */
3511 	(_("%pB(%pA+%#" PRIx64 "): cannot reach %s, "
3512 	   "recompile with -ffunction-sections"),
3513 	 input_bfd,
3514 	 input_section,
3515 	 (uint64_t) offset,
3516 	 hsh->bh_root.string);
3517       bfd_set_error (bfd_error_bad_value);
3518       return bfd_reloc_notsupported;
3519     }
3520 
3521   val = hppa_field_adjust (value, addend, r_field);
3522 
3523   switch (r_type)
3524     {
3525     case R_PARISC_PCREL12F:
3526     case R_PARISC_PCREL17C:
3527     case R_PARISC_PCREL17F:
3528     case R_PARISC_PCREL17R:
3529     case R_PARISC_PCREL22F:
3530     case R_PARISC_DIR17F:
3531     case R_PARISC_DIR17R:
3532       /* This is a branch.  Divide the offset by four.
3533 	 Note that we need to decide whether it's a branch or
3534 	 otherwise by inspecting the reloc.  Inspecting insn won't
3535 	 work as insn might be from a .word directive.  */
3536       val >>= 2;
3537       break;
3538 
3539     default:
3540       break;
3541     }
3542 
3543   insn = hppa_rebuild_insn (insn, val, r_format);
3544 
3545   /* Update the instruction word.  */
3546   bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3547   return bfd_reloc_ok;
3548 }
3549 
3550 /* Relocate an HPPA ELF section.  */
3551 
3552 static bfd_boolean
3553 elf32_hppa_relocate_section (bfd *output_bfd,
3554 			     struct bfd_link_info *info,
3555 			     bfd *input_bfd,
3556 			     asection *input_section,
3557 			     bfd_byte *contents,
3558 			     Elf_Internal_Rela *relocs,
3559 			     Elf_Internal_Sym *local_syms,
3560 			     asection **local_sections)
3561 {
3562   bfd_vma *local_got_offsets;
3563   struct elf32_hppa_link_hash_table *htab;
3564   Elf_Internal_Shdr *symtab_hdr;
3565   Elf_Internal_Rela *rela;
3566   Elf_Internal_Rela *relend;
3567 
3568   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3569 
3570   htab = hppa_link_hash_table (info);
3571   if (htab == NULL)
3572     return FALSE;
3573 
3574   local_got_offsets = elf_local_got_offsets (input_bfd);
3575 
3576   rela = relocs;
3577   relend = relocs + input_section->reloc_count;
3578   for (; rela < relend; rela++)
3579     {
3580       unsigned int r_type;
3581       reloc_howto_type *howto;
3582       unsigned int r_symndx;
3583       struct elf32_hppa_link_hash_entry *hh;
3584       Elf_Internal_Sym *sym;
3585       asection *sym_sec;
3586       bfd_vma relocation;
3587       bfd_reloc_status_type rstatus;
3588       const char *sym_name;
3589       bfd_boolean plabel;
3590       bfd_boolean warned_undef;
3591 
3592       r_type = ELF32_R_TYPE (rela->r_info);
3593       if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
3594 	{
3595 	  bfd_set_error (bfd_error_bad_value);
3596 	  return FALSE;
3597 	}
3598       if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3599 	  || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3600 	continue;
3601 
3602       r_symndx = ELF32_R_SYM (rela->r_info);
3603       hh = NULL;
3604       sym = NULL;
3605       sym_sec = NULL;
3606       warned_undef = FALSE;
3607       if (r_symndx < symtab_hdr->sh_info)
3608 	{
3609 	  /* This is a local symbol, h defaults to NULL.  */
3610 	  sym = local_syms + r_symndx;
3611 	  sym_sec = local_sections[r_symndx];
3612 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
3613 	}
3614       else
3615 	{
3616 	  struct elf_link_hash_entry *eh;
3617 	  bfd_boolean unresolved_reloc, ignored;
3618 	  struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3619 
3620 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
3621 				   r_symndx, symtab_hdr, sym_hashes,
3622 				   eh, sym_sec, relocation,
3623 				   unresolved_reloc, warned_undef,
3624 				   ignored);
3625 
3626 	  if (!bfd_link_relocatable (info)
3627 	      && relocation == 0
3628 	      && eh->root.type != bfd_link_hash_defined
3629 	      && eh->root.type != bfd_link_hash_defweak
3630 	      && eh->root.type != bfd_link_hash_undefweak)
3631 	    {
3632 	      if (info->unresolved_syms_in_objects == RM_IGNORE
3633 		  && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3634 		  && eh->type == STT_PARISC_MILLI)
3635 		{
3636 		  (*info->callbacks->undefined_symbol)
3637 		    (info, eh_name (eh), input_bfd,
3638 		     input_section, rela->r_offset, FALSE);
3639 		  warned_undef = TRUE;
3640 		}
3641 	    }
3642 	  hh = hppa_elf_hash_entry (eh);
3643 	}
3644 
3645       if (sym_sec != NULL && discarded_section (sym_sec))
3646 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3647 					 rela, 1, relend,
3648 					 elf_hppa_howto_table + r_type, 0,
3649 					 contents);
3650 
3651       if (bfd_link_relocatable (info))
3652 	continue;
3653 
3654       /* Do any required modifications to the relocation value, and
3655 	 determine what types of dynamic info we need to output, if
3656 	 any.  */
3657       plabel = 0;
3658       switch (r_type)
3659 	{
3660 	case R_PARISC_DLTIND14F:
3661 	case R_PARISC_DLTIND14R:
3662 	case R_PARISC_DLTIND21L:
3663 	  {
3664 	    bfd_vma off;
3665 	    bfd_boolean do_got = FALSE;
3666 	    bfd_boolean reloc = bfd_link_pic (info);
3667 
3668 	    /* Relocation is to the entry for this symbol in the
3669 	       global offset table.  */
3670 	    if (hh != NULL)
3671 	      {
3672 		bfd_boolean dyn;
3673 
3674 		off = hh->eh.got.offset;
3675 		dyn = htab->etab.dynamic_sections_created;
3676 		reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)
3677 			 && (reloc
3678 			     || (hh->eh.dynindx != -1
3679 				 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh))));
3680 		if (!reloc
3681 		    || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
3682 							 bfd_link_pic (info),
3683 							 &hh->eh))
3684 		  {
3685 		    /* If we aren't going to call finish_dynamic_symbol,
3686 		       then we need to handle initialisation of the .got
3687 		       entry and create needed relocs here.  Since the
3688 		       offset must always be a multiple of 4, we use the
3689 		       least significant bit to record whether we have
3690 		       initialised it already.  */
3691 		    if ((off & 1) != 0)
3692 		      off &= ~1;
3693 		    else
3694 		      {
3695 			hh->eh.got.offset |= 1;
3696 			do_got = TRUE;
3697 		      }
3698 		  }
3699 	      }
3700 	    else
3701 	      {
3702 		/* Local symbol case.  */
3703 		if (local_got_offsets == NULL)
3704 		  abort ();
3705 
3706 		off = local_got_offsets[r_symndx];
3707 
3708 		/* The offset must always be a multiple of 4.  We use
3709 		   the least significant bit to record whether we have
3710 		   already generated the necessary reloc.  */
3711 		if ((off & 1) != 0)
3712 		  off &= ~1;
3713 		else
3714 		  {
3715 		    local_got_offsets[r_symndx] |= 1;
3716 		    do_got = TRUE;
3717 		  }
3718 	      }
3719 
3720 	    if (do_got)
3721 	      {
3722 		if (reloc)
3723 		  {
3724 		    /* Output a dynamic relocation for this GOT entry.
3725 		       In this case it is relative to the base of the
3726 		       object because the symbol index is zero.  */
3727 		    Elf_Internal_Rela outrel;
3728 		    bfd_byte *loc;
3729 		    asection *sec = htab->etab.srelgot;
3730 
3731 		    outrel.r_offset = (off
3732 				       + htab->etab.sgot->output_offset
3733 				       + htab->etab.sgot->output_section->vma);
3734 		    outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
3735 		    outrel.r_addend = relocation;
3736 		    loc = sec->contents;
3737 		    loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
3738 		    bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3739 		  }
3740 		else
3741 		  bfd_put_32 (output_bfd, relocation,
3742 			      htab->etab.sgot->contents + off);
3743 	      }
3744 
3745 	    if (off >= (bfd_vma) -2)
3746 	      abort ();
3747 
3748 	    /* Add the base of the GOT to the relocation value.  */
3749 	    relocation = (off
3750 			  + htab->etab.sgot->output_offset
3751 			  + htab->etab.sgot->output_section->vma);
3752 	  }
3753 	  break;
3754 
3755 	case R_PARISC_SEGREL32:
3756 	  /* If this is the first SEGREL relocation, then initialize
3757 	     the segment base values.  */
3758 	  if (htab->text_segment_base == (bfd_vma) -1)
3759 	    bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
3760 	  break;
3761 
3762 	case R_PARISC_PLABEL14R:
3763 	case R_PARISC_PLABEL21L:
3764 	case R_PARISC_PLABEL32:
3765 	  if (htab->etab.dynamic_sections_created)
3766 	    {
3767 	      bfd_vma off;
3768 	      bfd_boolean do_plt = 0;
3769 	      /* If we have a global symbol with a PLT slot, then
3770 		 redirect this relocation to it.  */
3771 	      if (hh != NULL)
3772 		{
3773 		  off = hh->eh.plt.offset;
3774 		  if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1,
3775 							 bfd_link_pic (info),
3776 							 &hh->eh))
3777 		    {
3778 		      /* In a non-shared link, adjust_dynamic_symbol
3779 			 isn't called for symbols forced local.  We
3780 			 need to write out the plt entry here.  */
3781 		      if ((off & 1) != 0)
3782 			off &= ~1;
3783 		      else
3784 			{
3785 			  hh->eh.plt.offset |= 1;
3786 			  do_plt = 1;
3787 			}
3788 		    }
3789 		}
3790 	      else
3791 		{
3792 		  bfd_vma *local_plt_offsets;
3793 
3794 		  if (local_got_offsets == NULL)
3795 		    abort ();
3796 
3797 		  local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
3798 		  off = local_plt_offsets[r_symndx];
3799 
3800 		  /* As for the local .got entry case, we use the last
3801 		     bit to record whether we've already initialised
3802 		     this local .plt entry.  */
3803 		  if ((off & 1) != 0)
3804 		    off &= ~1;
3805 		  else
3806 		    {
3807 		      local_plt_offsets[r_symndx] |= 1;
3808 		      do_plt = 1;
3809 		    }
3810 		}
3811 
3812 	      if (do_plt)
3813 		{
3814 		  if (bfd_link_pic (info))
3815 		    {
3816 		      /* Output a dynamic IPLT relocation for this
3817 			 PLT entry.  */
3818 		      Elf_Internal_Rela outrel;
3819 		      bfd_byte *loc;
3820 		      asection *s = htab->etab.srelplt;
3821 
3822 		      outrel.r_offset = (off
3823 					 + htab->etab.splt->output_offset
3824 					 + htab->etab.splt->output_section->vma);
3825 		      outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
3826 		      outrel.r_addend = relocation;
3827 		      loc = s->contents;
3828 		      loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
3829 		      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3830 		    }
3831 		  else
3832 		    {
3833 		      bfd_put_32 (output_bfd,
3834 				  relocation,
3835 				  htab->etab.splt->contents + off);
3836 		      bfd_put_32 (output_bfd,
3837 				  elf_gp (htab->etab.splt->output_section->owner),
3838 				  htab->etab.splt->contents + off + 4);
3839 		    }
3840 		}
3841 
3842 	      if (off >= (bfd_vma) -2)
3843 		abort ();
3844 
3845 	      /* PLABELs contain function pointers.  Relocation is to
3846 		 the entry for the function in the .plt.  The magic +2
3847 		 offset signals to $$dyncall that the function pointer
3848 		 is in the .plt and thus has a gp pointer too.
3849 		 Exception:  Undefined PLABELs should have a value of
3850 		 zero.  */
3851 	      if (hh == NULL
3852 		  || (hh->eh.root.type != bfd_link_hash_undefweak
3853 		      && hh->eh.root.type != bfd_link_hash_undefined))
3854 		{
3855 		  relocation = (off
3856 				+ htab->etab.splt->output_offset
3857 				+ htab->etab.splt->output_section->vma
3858 				+ 2);
3859 		}
3860 	      plabel = 1;
3861 	    }
3862 	  /* Fall through.  */
3863 
3864 	case R_PARISC_DIR17F:
3865 	case R_PARISC_DIR17R:
3866 	case R_PARISC_DIR14F:
3867 	case R_PARISC_DIR14R:
3868 	case R_PARISC_DIR21L:
3869 	case R_PARISC_DPREL14F:
3870 	case R_PARISC_DPREL14R:
3871 	case R_PARISC_DPREL21L:
3872 	case R_PARISC_DIR32:
3873 	  if ((input_section->flags & SEC_ALLOC) == 0)
3874 	    break;
3875 
3876 	  if (bfd_link_pic (info)
3877 	      ? ((hh == NULL
3878 		  || hh->dyn_relocs != NULL)
3879 		 && ((hh != NULL && pc_dynrelocs (hh))
3880 		     || IS_ABSOLUTE_RELOC (r_type)))
3881 	      : (hh != NULL
3882 		 && hh->dyn_relocs != NULL))
3883 	    {
3884 	      Elf_Internal_Rela outrel;
3885 	      bfd_boolean skip;
3886 	      asection *sreloc;
3887 	      bfd_byte *loc;
3888 
3889 	      /* When generating a shared object, these relocations
3890 		 are copied into the output file to be resolved at run
3891 		 time.  */
3892 
3893 	      outrel.r_addend = rela->r_addend;
3894 	      outrel.r_offset =
3895 		_bfd_elf_section_offset (output_bfd, info, input_section,
3896 					 rela->r_offset);
3897 	      skip = (outrel.r_offset == (bfd_vma) -1
3898 		      || outrel.r_offset == (bfd_vma) -2);
3899 	      outrel.r_offset += (input_section->output_offset
3900 				  + input_section->output_section->vma);
3901 
3902 	      if (skip)
3903 		{
3904 		  memset (&outrel, 0, sizeof (outrel));
3905 		}
3906 	      else if (hh != NULL
3907 		       && hh->eh.dynindx != -1
3908 		       && (plabel
3909 			   || !IS_ABSOLUTE_RELOC (r_type)
3910 			   || !bfd_link_pic (info)
3911 			   || !SYMBOLIC_BIND (info, &hh->eh)
3912 			   || !hh->eh.def_regular))
3913 		{
3914 		  outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
3915 		}
3916 	      else /* It's a local symbol, or one marked to become local.  */
3917 		{
3918 		  int indx = 0;
3919 
3920 		  /* Add the absolute offset of the symbol.  */
3921 		  outrel.r_addend += relocation;
3922 
3923 		  /* Global plabels need to be processed by the
3924 		     dynamic linker so that functions have at most one
3925 		     fptr.  For this reason, we need to differentiate
3926 		     between global and local plabels, which we do by
3927 		     providing the function symbol for a global plabel
3928 		     reloc, and no symbol for local plabels.  */
3929 		  if (! plabel
3930 		      && sym_sec != NULL
3931 		      && sym_sec->output_section != NULL
3932 		      && ! bfd_is_abs_section (sym_sec))
3933 		    {
3934 		      asection *osec;
3935 
3936 		      osec = sym_sec->output_section;
3937 		      indx = elf_section_data (osec)->dynindx;
3938 		      if (indx == 0)
3939 			{
3940 			  osec = htab->etab.text_index_section;
3941 			  indx = elf_section_data (osec)->dynindx;
3942 			}
3943 		      BFD_ASSERT (indx != 0);
3944 
3945 		      /* We are turning this relocation into one
3946 			 against a section symbol, so subtract out the
3947 			 output section's address but not the offset
3948 			 of the input section in the output section.  */
3949 		      outrel.r_addend -= osec->vma;
3950 		    }
3951 
3952 		  outrel.r_info = ELF32_R_INFO (indx, r_type);
3953 		}
3954 	      sreloc = elf_section_data (input_section)->sreloc;
3955 	      if (sreloc == NULL)
3956 		abort ();
3957 
3958 	      loc = sreloc->contents;
3959 	      loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
3960 	      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3961 	    }
3962 	  break;
3963 
3964 	case R_PARISC_TLS_LDM21L:
3965 	case R_PARISC_TLS_LDM14R:
3966 	  {
3967 	    bfd_vma off;
3968 
3969 	    off = htab->tls_ldm_got.offset;
3970 	    if (off & 1)
3971 	      off &= ~1;
3972 	    else
3973 	      {
3974 		Elf_Internal_Rela outrel;
3975 		bfd_byte *loc;
3976 
3977 		outrel.r_offset = (off
3978 				   + htab->etab.sgot->output_section->vma
3979 				   + htab->etab.sgot->output_offset);
3980 		outrel.r_addend = 0;
3981 		outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
3982 		loc = htab->etab.srelgot->contents;
3983 		loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
3984 
3985 		bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
3986 		htab->tls_ldm_got.offset |= 1;
3987 	      }
3988 
3989 	    /* Add the base of the GOT to the relocation value.  */
3990 	    relocation = (off
3991 			  + htab->etab.sgot->output_offset
3992 			  + htab->etab.sgot->output_section->vma);
3993 
3994 	    break;
3995 	  }
3996 
3997 	case R_PARISC_TLS_LDO21L:
3998 	case R_PARISC_TLS_LDO14R:
3999 	  relocation -= dtpoff_base (info);
4000 	  break;
4001 
4002 	case R_PARISC_TLS_GD21L:
4003 	case R_PARISC_TLS_GD14R:
4004 	case R_PARISC_TLS_IE21L:
4005 	case R_PARISC_TLS_IE14R:
4006 	  {
4007 	    bfd_vma off;
4008 	    int indx;
4009 	    char tls_type;
4010 
4011 	    indx = 0;
4012 	    if (hh != NULL)
4013 	      {
4014 		if (!htab->etab.dynamic_sections_created
4015 		    || hh->eh.dynindx == -1
4016 		    || SYMBOL_REFERENCES_LOCAL (info, &hh->eh)
4017 		    || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))
4018 		  /* This is actually a static link, or it is a
4019 		     -Bsymbolic link and the symbol is defined
4020 		     locally, or the symbol was forced to be local
4021 		     because of a version file.  */
4022 		  ;
4023 		else
4024 		  indx = hh->eh.dynindx;
4025 		off = hh->eh.got.offset;
4026 		tls_type = hh->tls_type;
4027 	      }
4028 	    else
4029 	      {
4030 		off = local_got_offsets[r_symndx];
4031 		tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
4032 	      }
4033 
4034 	    if (tls_type == GOT_UNKNOWN)
4035 	      abort ();
4036 
4037 	    if ((off & 1) != 0)
4038 	      off &= ~1;
4039 	    else
4040 	      {
4041 		bfd_boolean need_relocs = FALSE;
4042 		Elf_Internal_Rela outrel;
4043 		bfd_byte *loc = NULL;
4044 		int cur_off = off;
4045 
4046 		/* The GOT entries have not been initialized yet.  Do it
4047 		   now, and emit any relocations.  If both an IE GOT and a
4048 		   GD GOT are necessary, we emit the GD first.  */
4049 
4050 		if (indx != 0
4051 		    || (bfd_link_dll (info)
4052 			&& (hh == NULL
4053 			    || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh))))
4054 		  {
4055 		    need_relocs = TRUE;
4056 		    loc = htab->etab.srelgot->contents;
4057 		    loc += (htab->etab.srelgot->reloc_count
4058 			    * sizeof (Elf32_External_Rela));
4059 		  }
4060 
4061 		if (tls_type & GOT_TLS_GD)
4062 		  {
4063 		    if (need_relocs)
4064 		      {
4065 			outrel.r_offset
4066 			  = (cur_off
4067 			     + htab->etab.sgot->output_section->vma
4068 			     + htab->etab.sgot->output_offset);
4069 			outrel.r_info
4070 			  = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32);
4071 			outrel.r_addend = 0;
4072 			bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4073 			htab->etab.srelgot->reloc_count++;
4074 			loc += sizeof (Elf32_External_Rela);
4075 			bfd_put_32 (output_bfd, 0,
4076 				    htab->etab.sgot->contents + cur_off);
4077 		      }
4078 		    else
4079 		      /* If we are not emitting relocations for a
4080 			 general dynamic reference, then we must be in a
4081 			 static link or an executable link with the
4082 			 symbol binding locally.  Mark it as belonging
4083 			 to module 1, the executable.  */
4084 		      bfd_put_32 (output_bfd, 1,
4085 				  htab->etab.sgot->contents + cur_off);
4086 
4087 		    if (indx != 0)
4088 		      {
4089 			outrel.r_info
4090 			  = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
4091 			outrel.r_offset += 4;
4092 			bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4093 			htab->etab.srelgot->reloc_count++;
4094 			loc += sizeof (Elf32_External_Rela);
4095 			bfd_put_32 (output_bfd, 0,
4096 				    htab->etab.sgot->contents + cur_off + 4);
4097 		      }
4098 		    else
4099 		      bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
4100 				  htab->etab.sgot->contents + cur_off + 4);
4101 		    cur_off += 8;
4102 		  }
4103 
4104 		if (tls_type & GOT_TLS_IE)
4105 		  {
4106 		    if (need_relocs
4107 			&& !(bfd_link_executable (info)
4108 			     && SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
4109 		      {
4110 			outrel.r_offset
4111 			  = (cur_off
4112 			     + htab->etab.sgot->output_section->vma
4113 			     + htab->etab.sgot->output_offset);
4114 			outrel.r_info = ELF32_R_INFO (indx,
4115 						      R_PARISC_TLS_TPREL32);
4116 			if (indx == 0)
4117 			  outrel.r_addend = relocation - dtpoff_base (info);
4118 			else
4119 			  outrel.r_addend = 0;
4120 			bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4121 			htab->etab.srelgot->reloc_count++;
4122 			loc += sizeof (Elf32_External_Rela);
4123 		      }
4124 		    else
4125 		      bfd_put_32 (output_bfd, tpoff (info, relocation),
4126 				  htab->etab.sgot->contents + cur_off);
4127 		    cur_off += 4;
4128 		  }
4129 
4130 		if (hh != NULL)
4131 		  hh->eh.got.offset |= 1;
4132 		else
4133 		  local_got_offsets[r_symndx] |= 1;
4134 	      }
4135 
4136 	    if ((tls_type & GOT_NORMAL) != 0
4137 		&& (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0)
4138 	      {
4139 		if (hh != NULL)
4140 		  _bfd_error_handler (_("%s has both normal and TLS relocs"),
4141 				      hh_name (hh));
4142 		else
4143 		  {
4144 		    Elf_Internal_Sym *isym
4145 		      = bfd_sym_from_r_symndx (&htab->sym_cache,
4146 					       input_bfd, r_symndx);
4147 		    if (isym == NULL)
4148 		      return FALSE;
4149 		    sym_name
4150 		      = bfd_elf_string_from_elf_section (input_bfd,
4151 							 symtab_hdr->sh_link,
4152 							 isym->st_name);
4153 		    if (sym_name == NULL)
4154 		      return FALSE;
4155 		    if (*sym_name == '\0')
4156 		      sym_name = bfd_section_name (input_bfd, sym_sec);
4157 		    _bfd_error_handler
4158 		      (_("%pB:%s has both normal and TLS relocs"),
4159 		       input_bfd, sym_name);
4160 		  }
4161 		bfd_set_error (bfd_error_bad_value);
4162 		return FALSE;
4163 	      }
4164 
4165 	    if ((tls_type & GOT_TLS_GD)
4166 		&& r_type != R_PARISC_TLS_GD21L
4167 		&& r_type != R_PARISC_TLS_GD14R)
4168 	      off += 2 * GOT_ENTRY_SIZE;
4169 
4170 	    /* Add the base of the GOT to the relocation value.  */
4171 	    relocation = (off
4172 			  + htab->etab.sgot->output_offset
4173 			  + htab->etab.sgot->output_section->vma);
4174 
4175 	    break;
4176 	  }
4177 
4178 	case R_PARISC_TLS_LE21L:
4179 	case R_PARISC_TLS_LE14R:
4180 	  {
4181 	    relocation = tpoff (info, relocation);
4182 	    break;
4183 	  }
4184 	  break;
4185 
4186 	default:
4187 	  break;
4188 	}
4189 
4190       rstatus = final_link_relocate (input_section, contents, rela, relocation,
4191 			       htab, sym_sec, hh, info);
4192 
4193       if (rstatus == bfd_reloc_ok)
4194 	continue;
4195 
4196       if (hh != NULL)
4197 	sym_name = hh_name (hh);
4198       else
4199 	{
4200 	  sym_name = bfd_elf_string_from_elf_section (input_bfd,
4201 						      symtab_hdr->sh_link,
4202 						      sym->st_name);
4203 	  if (sym_name == NULL)
4204 	    return FALSE;
4205 	  if (*sym_name == '\0')
4206 	    sym_name = bfd_section_name (input_bfd, sym_sec);
4207 	}
4208 
4209       howto = elf_hppa_howto_table + r_type;
4210 
4211       if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
4212 	{
4213 	  if (rstatus == bfd_reloc_notsupported || !warned_undef)
4214 	    {
4215 	      _bfd_error_handler
4216 		/* xgettext:c-format */
4217 		(_("%pB(%pA+%#" PRIx64 "): cannot handle %s for %s"),
4218 		 input_bfd,
4219 		 input_section,
4220 		 (uint64_t) rela->r_offset,
4221 		 howto->name,
4222 		 sym_name);
4223 	      bfd_set_error (bfd_error_bad_value);
4224 	      return FALSE;
4225 	    }
4226 	}
4227       else
4228 	(*info->callbacks->reloc_overflow)
4229 	  (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
4230 	   (bfd_vma) 0, input_bfd, input_section, rela->r_offset);
4231     }
4232 
4233   return TRUE;
4234 }
4235 
4236 /* Finish up dynamic symbol handling.  We set the contents of various
4237    dynamic sections here.  */
4238 
4239 static bfd_boolean
4240 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
4241 				  struct bfd_link_info *info,
4242 				  struct elf_link_hash_entry *eh,
4243 				  Elf_Internal_Sym *sym)
4244 {
4245   struct elf32_hppa_link_hash_table *htab;
4246   Elf_Internal_Rela rela;
4247   bfd_byte *loc;
4248 
4249   htab = hppa_link_hash_table (info);
4250   if (htab == NULL)
4251     return FALSE;
4252 
4253   if (eh->plt.offset != (bfd_vma) -1)
4254     {
4255       bfd_vma value;
4256 
4257       if (eh->plt.offset & 1)
4258 	abort ();
4259 
4260       /* This symbol has an entry in the procedure linkage table.  Set
4261 	 it up.
4262 
4263 	 The format of a plt entry is
4264 	 <funcaddr>
4265 	 <__gp>
4266       */
4267       value = 0;
4268       if (eh->root.type == bfd_link_hash_defined
4269 	  || eh->root.type == bfd_link_hash_defweak)
4270 	{
4271 	  value = eh->root.u.def.value;
4272 	  if (eh->root.u.def.section->output_section != NULL)
4273 	    value += (eh->root.u.def.section->output_offset
4274 		      + eh->root.u.def.section->output_section->vma);
4275 	}
4276 
4277       /* Create a dynamic IPLT relocation for this entry.  */
4278       rela.r_offset = (eh->plt.offset
4279 		      + htab->etab.splt->output_offset
4280 		      + htab->etab.splt->output_section->vma);
4281       if (eh->dynindx != -1)
4282 	{
4283 	  rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
4284 	  rela.r_addend = 0;
4285 	}
4286       else
4287 	{
4288 	  /* This symbol has been marked to become local, and is
4289 	     used by a plabel so must be kept in the .plt.  */
4290 	  rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
4291 	  rela.r_addend = value;
4292 	}
4293 
4294       loc = htab->etab.srelplt->contents;
4295       loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
4296       bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc);
4297 
4298       if (!eh->def_regular)
4299 	{
4300 	  /* Mark the symbol as undefined, rather than as defined in
4301 	     the .plt section.  Leave the value alone.  */
4302 	  sym->st_shndx = SHN_UNDEF;
4303 	}
4304     }
4305 
4306   if (eh->got.offset != (bfd_vma) -1
4307       && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0
4308       && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh))
4309     {
4310       bfd_boolean is_dyn = (eh->dynindx != -1
4311 			    && !SYMBOL_REFERENCES_LOCAL (info, eh));
4312 
4313       if (is_dyn || bfd_link_pic (info))
4314 	{
4315 	  /* This symbol has an entry in the global offset table.  Set
4316 	     it up.  */
4317 
4318 	  rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
4319 			   + htab->etab.sgot->output_offset
4320 			   + htab->etab.sgot->output_section->vma);
4321 
4322 	  /* If this is a -Bsymbolic link and the symbol is defined
4323 	     locally or was forced to be local because of a version
4324 	     file, we just want to emit a RELATIVE reloc.  The entry
4325 	     in the global offset table will already have been
4326 	     initialized in the relocate_section function.  */
4327 	  if (!is_dyn)
4328 	    {
4329 	      rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
4330 	      rela.r_addend = (eh->root.u.def.value
4331 			       + eh->root.u.def.section->output_offset
4332 			       + eh->root.u.def.section->output_section->vma);
4333 	    }
4334 	  else
4335 	    {
4336 	      if ((eh->got.offset & 1) != 0)
4337 		abort ();
4338 
4339 	      bfd_put_32 (output_bfd, 0,
4340 			  htab->etab.sgot->contents + (eh->got.offset & ~1));
4341 	      rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
4342 	      rela.r_addend = 0;
4343 	    }
4344 
4345 	  loc = htab->etab.srelgot->contents;
4346 	  loc += (htab->etab.srelgot->reloc_count++
4347 		  * sizeof (Elf32_External_Rela));
4348 	  bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4349 	}
4350     }
4351 
4352   if (eh->needs_copy)
4353     {
4354       asection *sec;
4355 
4356       /* This symbol needs a copy reloc.  Set it up.  */
4357 
4358       if (! (eh->dynindx != -1
4359 	     && (eh->root.type == bfd_link_hash_defined
4360 		 || eh->root.type == bfd_link_hash_defweak)))
4361 	abort ();
4362 
4363       rela.r_offset = (eh->root.u.def.value
4364 		      + eh->root.u.def.section->output_offset
4365 		      + eh->root.u.def.section->output_section->vma);
4366       rela.r_addend = 0;
4367       rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
4368       if (eh->root.u.def.section == htab->etab.sdynrelro)
4369 	sec = htab->etab.sreldynrelro;
4370       else
4371 	sec = htab->etab.srelbss;
4372       loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
4373       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4374     }
4375 
4376   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
4377   if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
4378     {
4379       sym->st_shndx = SHN_ABS;
4380     }
4381 
4382   return TRUE;
4383 }
4384 
4385 /* Used to decide how to sort relocs in an optimal manner for the
4386    dynamic linker, before writing them out.  */
4387 
4388 static enum elf_reloc_type_class
4389 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
4390 			     const asection *rel_sec ATTRIBUTE_UNUSED,
4391 			     const Elf_Internal_Rela *rela)
4392 {
4393   /* Handle TLS relocs first; we don't want them to be marked
4394      relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
4395      check below.  */
4396   switch ((int) ELF32_R_TYPE (rela->r_info))
4397     {
4398       case R_PARISC_TLS_DTPMOD32:
4399       case R_PARISC_TLS_DTPOFF32:
4400       case R_PARISC_TLS_TPREL32:
4401 	return reloc_class_normal;
4402     }
4403 
4404   if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
4405     return reloc_class_relative;
4406 
4407   switch ((int) ELF32_R_TYPE (rela->r_info))
4408     {
4409     case R_PARISC_IPLT:
4410       return reloc_class_plt;
4411     case R_PARISC_COPY:
4412       return reloc_class_copy;
4413     default:
4414       return reloc_class_normal;
4415     }
4416 }
4417 
4418 /* Finish up the dynamic sections.  */
4419 
4420 static bfd_boolean
4421 elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
4422 				    struct bfd_link_info *info)
4423 {
4424   bfd *dynobj;
4425   struct elf32_hppa_link_hash_table *htab;
4426   asection *sdyn;
4427   asection * sgot;
4428 
4429   htab = hppa_link_hash_table (info);
4430   if (htab == NULL)
4431     return FALSE;
4432 
4433   dynobj = htab->etab.dynobj;
4434 
4435   sgot = htab->etab.sgot;
4436   /* A broken linker script might have discarded the dynamic sections.
4437      Catch this here so that we do not seg-fault later on.  */
4438   if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
4439     return FALSE;
4440 
4441   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4442 
4443   if (htab->etab.dynamic_sections_created)
4444     {
4445       Elf32_External_Dyn *dyncon, *dynconend;
4446 
4447       if (sdyn == NULL)
4448 	abort ();
4449 
4450       dyncon = (Elf32_External_Dyn *) sdyn->contents;
4451       dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4452       for (; dyncon < dynconend; dyncon++)
4453 	{
4454 	  Elf_Internal_Dyn dyn;
4455 	  asection *s;
4456 
4457 	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4458 
4459 	  switch (dyn.d_tag)
4460 	    {
4461 	    default:
4462 	      continue;
4463 
4464 	    case DT_PLTGOT:
4465 	      /* Use PLTGOT to set the GOT register.  */
4466 	      dyn.d_un.d_ptr = elf_gp (output_bfd);
4467 	      break;
4468 
4469 	    case DT_JMPREL:
4470 	      s = htab->etab.srelplt;
4471 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
4472 	      break;
4473 
4474 	    case DT_PLTRELSZ:
4475 	      s = htab->etab.srelplt;
4476 	      dyn.d_un.d_val = s->size;
4477 	      break;
4478 	    }
4479 
4480 	  bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4481 	}
4482     }
4483 
4484   if (sgot != NULL && sgot->size != 0)
4485     {
4486       /* Fill in the first entry in the global offset table.
4487 	 We use it to point to our dynamic section, if we have one.  */
4488       bfd_put_32 (output_bfd,
4489 		  sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
4490 		  sgot->contents);
4491 
4492       /* The second entry is reserved for use by the dynamic linker.  */
4493       memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
4494 
4495       /* Set .got entry size.  */
4496       elf_section_data (sgot->output_section)
4497 	->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
4498     }
4499 
4500   if (htab->etab.splt != NULL && htab->etab.splt->size != 0)
4501     {
4502       /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the
4503 	 plt stubs and as such the section does not hold a table of fixed-size
4504 	 entries.  */
4505       elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0;
4506 
4507       if (htab->need_plt_stub)
4508 	{
4509 	  /* Set up the .plt stub.  */
4510 	  memcpy (htab->etab.splt->contents
4511 		  + htab->etab.splt->size - sizeof (plt_stub),
4512 		  plt_stub, sizeof (plt_stub));
4513 
4514 	  if ((htab->etab.splt->output_offset
4515 	       + htab->etab.splt->output_section->vma
4516 	       + htab->etab.splt->size)
4517 	      != (sgot->output_offset
4518 		  + sgot->output_section->vma))
4519 	    {
4520 	      _bfd_error_handler
4521 		(_(".got section not immediately after .plt section"));
4522 	      return FALSE;
4523 	    }
4524 	}
4525     }
4526 
4527   return TRUE;
4528 }
4529 
4530 /* Called when writing out an object file to decide the type of a
4531    symbol.  */
4532 static int
4533 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
4534 {
4535   if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
4536     return STT_PARISC_MILLI;
4537   else
4538     return type;
4539 }
4540 
4541 /* Misc BFD support code.  */
4542 #define bfd_elf32_bfd_is_local_label_name    elf_hppa_is_local_label_name
4543 #define bfd_elf32_bfd_reloc_type_lookup	     elf_hppa_reloc_type_lookup
4544 #define bfd_elf32_bfd_reloc_name_lookup      elf_hppa_reloc_name_lookup
4545 #define elf_info_to_howto		     elf_hppa_info_to_howto
4546 #define elf_info_to_howto_rel		     elf_hppa_info_to_howto_rel
4547 
4548 /* Stuff for the BFD linker.  */
4549 #define bfd_elf32_bfd_final_link	     elf32_hppa_final_link
4550 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
4551 #define elf_backend_adjust_dynamic_symbol    elf32_hppa_adjust_dynamic_symbol
4552 #define elf_backend_copy_indirect_symbol     elf32_hppa_copy_indirect_symbol
4553 #define elf_backend_check_relocs	     elf32_hppa_check_relocs
4554 #define elf_backend_relocs_compatible	     _bfd_elf_relocs_compatible
4555 #define elf_backend_create_dynamic_sections  elf32_hppa_create_dynamic_sections
4556 #define elf_backend_fake_sections	     elf_hppa_fake_sections
4557 #define elf_backend_relocate_section	     elf32_hppa_relocate_section
4558 #define elf_backend_hide_symbol		     elf32_hppa_hide_symbol
4559 #define elf_backend_finish_dynamic_symbol    elf32_hppa_finish_dynamic_symbol
4560 #define elf_backend_finish_dynamic_sections  elf32_hppa_finish_dynamic_sections
4561 #define elf_backend_size_dynamic_sections    elf32_hppa_size_dynamic_sections
4562 #define elf_backend_init_index_section	     _bfd_elf_init_1_index_section
4563 #define elf_backend_gc_mark_hook	     elf32_hppa_gc_mark_hook
4564 #define elf_backend_grok_prstatus	     elf32_hppa_grok_prstatus
4565 #define elf_backend_grok_psinfo		     elf32_hppa_grok_psinfo
4566 #define elf_backend_object_p		     elf32_hppa_object_p
4567 #define elf_backend_final_write_processing   elf_hppa_final_write_processing
4568 #define elf_backend_get_symbol_type	     elf32_hppa_elf_get_symbol_type
4569 #define elf_backend_reloc_type_class	     elf32_hppa_reloc_type_class
4570 #define elf_backend_action_discarded	     elf_hppa_action_discarded
4571 
4572 #define elf_backend_can_gc_sections	     1
4573 #define elf_backend_can_refcount	     1
4574 #define elf_backend_plt_alignment	     2
4575 #define elf_backend_want_got_plt	     0
4576 #define elf_backend_plt_readonly	     0
4577 #define elf_backend_want_plt_sym	     0
4578 #define elf_backend_got_header_size	     8
4579 #define elf_backend_want_dynrelro	     1
4580 #define elf_backend_rela_normal		     1
4581 #define elf_backend_dtrel_excludes_plt	     1
4582 #define elf_backend_no_page_alias	     1
4583 
4584 #define TARGET_BIG_SYM		hppa_elf32_vec
4585 #define TARGET_BIG_NAME		"elf32-hppa"
4586 #define ELF_ARCH		bfd_arch_hppa
4587 #define ELF_TARGET_ID		HPPA32_ELF_DATA
4588 #define ELF_MACHINE_CODE	EM_PARISC
4589 #define ELF_MAXPAGESIZE		0x1000
4590 #define ELF_OSABI		ELFOSABI_HPUX
4591 #define elf32_bed		elf32_hppa_hpux_bed
4592 
4593 #include "elf32-target.h"
4594 
4595 #undef TARGET_BIG_SYM
4596 #define TARGET_BIG_SYM		hppa_elf32_linux_vec
4597 #undef TARGET_BIG_NAME
4598 #define TARGET_BIG_NAME		"elf32-hppa-linux"
4599 #undef ELF_OSABI
4600 #define ELF_OSABI		ELFOSABI_GNU
4601 #undef elf32_bed
4602 #define elf32_bed		elf32_hppa_linux_bed
4603 
4604 #include "elf32-target.h"
4605 
4606 #undef TARGET_BIG_SYM
4607 #define TARGET_BIG_SYM		hppa_elf32_nbsd_vec
4608 #undef TARGET_BIG_NAME
4609 #define TARGET_BIG_NAME		"elf32-hppa-netbsd"
4610 #undef ELF_OSABI
4611 #define ELF_OSABI		ELFOSABI_NETBSD
4612 #undef elf32_bed
4613 #define elf32_bed		elf32_hppa_netbsd_bed
4614 
4615 #include "elf32-target.h"
4616