1 /* BFD back-end for HP PA-RISC ELF files. 2 Copyright (C) 1990-2019 Free Software Foundation, Inc. 3 4 Original code by 5 Center for Software Science 6 Department of Computer Science 7 University of Utah 8 Largely rewritten by Alan Modra <alan@linuxcare.com.au> 9 Naming cleanup by Carlos O'Donell <carlos@systemhalted.org> 10 TLS support written by Randolph Chung <tausq@debian.org> 11 12 This file is part of BFD, the Binary File Descriptor library. 13 14 This program is free software; you can redistribute it and/or modify 15 it under the terms of the GNU General Public License as published by 16 the Free Software Foundation; either version 3 of the License, or 17 (at your option) any later version. 18 19 This program is distributed in the hope that it will be useful, 20 but WITHOUT ANY WARRANTY; without even the implied warranty of 21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 22 GNU General Public License for more details. 23 24 You should have received a copy of the GNU General Public License 25 along with this program; if not, write to the Free Software 26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 27 MA 02110-1301, USA. */ 28 29 #include "sysdep.h" 30 #include "bfd.h" 31 #include "libbfd.h" 32 #include "elf-bfd.h" 33 #include "elf/hppa.h" 34 #include "libhppa.h" 35 #include "elf32-hppa.h" 36 #define ARCH_SIZE 32 37 #include "elf32-hppa.h" 38 #include "elf-hppa.h" 39 40 /* In order to gain some understanding of code in this file without 41 knowing all the intricate details of the linker, note the 42 following: 43 44 Functions named elf32_hppa_* are called by external routines, other 45 functions are only called locally. elf32_hppa_* functions appear 46 in this file more or less in the order in which they are called 47 from external routines. eg. elf32_hppa_check_relocs is called 48 early in the link process, elf32_hppa_finish_dynamic_sections is 49 one of the last functions. */ 50 51 /* We use two hash tables to hold information for linking PA ELF objects. 52 53 The first is the elf32_hppa_link_hash_table which is derived 54 from the standard ELF linker hash table. We use this as a place to 55 attach other hash tables and static information. 56 57 The second is the stub hash table which is derived from the 58 base BFD hash table. The stub hash table holds the information 59 necessary to build the linker stubs during a link. 60 61 There are a number of different stubs generated by the linker. 62 63 Long branch stub: 64 : ldil LR'X,%r1 65 : be,n RR'X(%sr4,%r1) 66 67 PIC long branch stub: 68 : b,l .+8,%r1 69 : addil LR'X - ($PIC_pcrel$0 - 4),%r1 70 : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1) 71 72 Import stub to call shared library routine from normal object file 73 (single sub-space version) 74 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point 75 : ldw RR'lt_ptr+ltoff(%r1),%r21 76 : bv %r0(%r21) 77 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value. 78 79 Import stub to call shared library routine from shared library 80 (single sub-space version) 81 : addil LR'ltoff,%r19 ; get procedure entry point 82 : ldw RR'ltoff(%r1),%r21 83 : bv %r0(%r21) 84 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value. 85 86 Import stub to call shared library routine from normal object file 87 (multiple sub-space support) 88 : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point 89 : ldw RR'lt_ptr+ltoff(%r1),%r21 90 : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value. 91 : ldsid (%r21),%r1 92 : mtsp %r1,%sr0 93 : be 0(%sr0,%r21) ; branch to target 94 : stw %rp,-24(%sp) ; save rp 95 96 Import stub to call shared library routine from shared library 97 (multiple sub-space support) 98 : addil LR'ltoff,%r19 ; get procedure entry point 99 : ldw RR'ltoff(%r1),%r21 100 : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value. 101 : ldsid (%r21),%r1 102 : mtsp %r1,%sr0 103 : be 0(%sr0,%r21) ; branch to target 104 : stw %rp,-24(%sp) ; save rp 105 106 Export stub to return from shared lib routine (multiple sub-space support) 107 One of these is created for each exported procedure in a shared 108 library (and stored in the shared lib). Shared lib routines are 109 called via the first instruction in the export stub so that we can 110 do an inter-space return. Not required for single sub-space. 111 : bl,n X,%rp ; trap the return 112 : nop 113 : ldw -24(%sp),%rp ; restore the original rp 114 : ldsid (%rp),%r1 115 : mtsp %r1,%sr0 116 : be,n 0(%sr0,%rp) ; inter-space return. */ 117 118 119 /* Variable names follow a coding style. 120 Please follow this (Apps Hungarian) style: 121 122 Structure/Variable Prefix 123 elf_link_hash_table "etab" 124 elf_link_hash_entry "eh" 125 126 elf32_hppa_link_hash_table "htab" 127 elf32_hppa_link_hash_entry "hh" 128 129 bfd_hash_table "btab" 130 bfd_hash_entry "bh" 131 132 bfd_hash_table containing stubs "bstab" 133 elf32_hppa_stub_hash_entry "hsh" 134 135 Always remember to use GNU Coding Style. */ 136 137 #define PLT_ENTRY_SIZE 8 138 #define GOT_ENTRY_SIZE 4 139 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" 140 141 static const bfd_byte plt_stub[] = 142 { 143 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */ 144 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */ 145 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */ 146 #define PLT_STUB_ENTRY (3*4) 147 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */ 148 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */ 149 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */ 150 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */ 151 }; 152 153 /* Section name for stubs is the associated section name plus this 154 string. */ 155 #define STUB_SUFFIX ".stub" 156 157 /* We don't need to copy certain PC- or GP-relative dynamic relocs 158 into a shared object's dynamic section. All the relocs of the 159 limited class we are interested in, are absolute. */ 160 #ifndef RELATIVE_DYNRELOCS 161 #define RELATIVE_DYNRELOCS 0 162 #define IS_ABSOLUTE_RELOC(r_type) 1 163 #define pc_dynrelocs(hh) 0 164 #endif 165 166 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid 167 copying dynamic variables from a shared lib into an app's dynbss 168 section, and instead use a dynamic relocation to point into the 169 shared lib. */ 170 #define ELIMINATE_COPY_RELOCS 1 171 172 enum elf32_hppa_stub_type 173 { 174 hppa_stub_long_branch, 175 hppa_stub_long_branch_shared, 176 hppa_stub_import, 177 hppa_stub_import_shared, 178 hppa_stub_export, 179 hppa_stub_none 180 }; 181 182 struct elf32_hppa_stub_hash_entry 183 { 184 /* Base hash table entry structure. */ 185 struct bfd_hash_entry bh_root; 186 187 /* The stub section. */ 188 asection *stub_sec; 189 190 /* Offset within stub_sec of the beginning of this stub. */ 191 bfd_vma stub_offset; 192 193 /* Given the symbol's value and its section we can determine its final 194 value when building the stubs (so the stub knows where to jump. */ 195 bfd_vma target_value; 196 asection *target_section; 197 198 enum elf32_hppa_stub_type stub_type; 199 200 /* The symbol table entry, if any, that this was derived from. */ 201 struct elf32_hppa_link_hash_entry *hh; 202 203 /* Where this stub is being called from, or, in the case of combined 204 stub sections, the first input section in the group. */ 205 asection *id_sec; 206 }; 207 208 enum _tls_type 209 { 210 GOT_UNKNOWN = 0, 211 GOT_NORMAL = 1, 212 GOT_TLS_GD = 2, 213 GOT_TLS_LDM = 4, 214 GOT_TLS_IE = 8 215 }; 216 217 struct elf32_hppa_link_hash_entry 218 { 219 struct elf_link_hash_entry eh; 220 221 /* A pointer to the most recently used stub hash entry against this 222 symbol. */ 223 struct elf32_hppa_stub_hash_entry *hsh_cache; 224 225 /* Used to count relocations for delayed sizing of relocation 226 sections. */ 227 struct elf_dyn_relocs *dyn_relocs; 228 229 ENUM_BITFIELD (_tls_type) tls_type : 8; 230 231 /* Set if this symbol is used by a plabel reloc. */ 232 unsigned int plabel:1; 233 }; 234 235 struct elf32_hppa_link_hash_table 236 { 237 /* The main hash table. */ 238 struct elf_link_hash_table etab; 239 240 /* The stub hash table. */ 241 struct bfd_hash_table bstab; 242 243 /* Linker stub bfd. */ 244 bfd *stub_bfd; 245 246 /* Linker call-backs. */ 247 asection * (*add_stub_section) (const char *, asection *); 248 void (*layout_sections_again) (void); 249 250 /* Array to keep track of which stub sections have been created, and 251 information on stub grouping. */ 252 struct map_stub 253 { 254 /* This is the section to which stubs in the group will be 255 attached. */ 256 asection *link_sec; 257 /* The stub section. */ 258 asection *stub_sec; 259 } *stub_group; 260 261 /* Assorted information used by elf32_hppa_size_stubs. */ 262 unsigned int bfd_count; 263 unsigned int top_index; 264 asection **input_list; 265 Elf_Internal_Sym **all_local_syms; 266 267 /* Used during a final link to store the base of the text and data 268 segments so that we can perform SEGREL relocations. */ 269 bfd_vma text_segment_base; 270 bfd_vma data_segment_base; 271 272 /* Whether we support multiple sub-spaces for shared libs. */ 273 unsigned int multi_subspace:1; 274 275 /* Flags set when various size branches are detected. Used to 276 select suitable defaults for the stub group size. */ 277 unsigned int has_12bit_branch:1; 278 unsigned int has_17bit_branch:1; 279 unsigned int has_22bit_branch:1; 280 281 /* Set if we need a .plt stub to support lazy dynamic linking. */ 282 unsigned int need_plt_stub:1; 283 284 /* Small local sym cache. */ 285 struct sym_cache sym_cache; 286 287 /* Data for LDM relocations. */ 288 union 289 { 290 bfd_signed_vma refcount; 291 bfd_vma offset; 292 } tls_ldm_got; 293 }; 294 295 /* Various hash macros and functions. */ 296 #define hppa_link_hash_table(p) \ 297 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ 298 == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL) 299 300 #define hppa_elf_hash_entry(ent) \ 301 ((struct elf32_hppa_link_hash_entry *)(ent)) 302 303 #define hppa_stub_hash_entry(ent) \ 304 ((struct elf32_hppa_stub_hash_entry *)(ent)) 305 306 #define hppa_stub_hash_lookup(table, string, create, copy) \ 307 ((struct elf32_hppa_stub_hash_entry *) \ 308 bfd_hash_lookup ((table), (string), (create), (copy))) 309 310 #define hppa_elf_local_got_tls_type(abfd) \ 311 ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2))) 312 313 #define hh_name(hh) \ 314 (hh ? hh->eh.root.root.string : "<undef>") 315 316 #define eh_name(eh) \ 317 (eh ? eh->root.root.string : "<undef>") 318 319 /* Assorted hash table functions. */ 320 321 /* Initialize an entry in the stub hash table. */ 322 323 static struct bfd_hash_entry * 324 stub_hash_newfunc (struct bfd_hash_entry *entry, 325 struct bfd_hash_table *table, 326 const char *string) 327 { 328 /* Allocate the structure if it has not already been allocated by a 329 subclass. */ 330 if (entry == NULL) 331 { 332 entry = bfd_hash_allocate (table, 333 sizeof (struct elf32_hppa_stub_hash_entry)); 334 if (entry == NULL) 335 return entry; 336 } 337 338 /* Call the allocation method of the superclass. */ 339 entry = bfd_hash_newfunc (entry, table, string); 340 if (entry != NULL) 341 { 342 struct elf32_hppa_stub_hash_entry *hsh; 343 344 /* Initialize the local fields. */ 345 hsh = hppa_stub_hash_entry (entry); 346 hsh->stub_sec = NULL; 347 hsh->stub_offset = 0; 348 hsh->target_value = 0; 349 hsh->target_section = NULL; 350 hsh->stub_type = hppa_stub_long_branch; 351 hsh->hh = NULL; 352 hsh->id_sec = NULL; 353 } 354 355 return entry; 356 } 357 358 /* Initialize an entry in the link hash table. */ 359 360 static struct bfd_hash_entry * 361 hppa_link_hash_newfunc (struct bfd_hash_entry *entry, 362 struct bfd_hash_table *table, 363 const char *string) 364 { 365 /* Allocate the structure if it has not already been allocated by a 366 subclass. */ 367 if (entry == NULL) 368 { 369 entry = bfd_hash_allocate (table, 370 sizeof (struct elf32_hppa_link_hash_entry)); 371 if (entry == NULL) 372 return entry; 373 } 374 375 /* Call the allocation method of the superclass. */ 376 entry = _bfd_elf_link_hash_newfunc (entry, table, string); 377 if (entry != NULL) 378 { 379 struct elf32_hppa_link_hash_entry *hh; 380 381 /* Initialize the local fields. */ 382 hh = hppa_elf_hash_entry (entry); 383 hh->hsh_cache = NULL; 384 hh->dyn_relocs = NULL; 385 hh->plabel = 0; 386 hh->tls_type = GOT_UNKNOWN; 387 } 388 389 return entry; 390 } 391 392 /* Free the derived linker hash table. */ 393 394 static void 395 elf32_hppa_link_hash_table_free (bfd *obfd) 396 { 397 struct elf32_hppa_link_hash_table *htab 398 = (struct elf32_hppa_link_hash_table *) obfd->link.hash; 399 400 bfd_hash_table_free (&htab->bstab); 401 _bfd_elf_link_hash_table_free (obfd); 402 } 403 404 /* Create the derived linker hash table. The PA ELF port uses the derived 405 hash table to keep information specific to the PA ELF linker (without 406 using static variables). */ 407 408 static struct bfd_link_hash_table * 409 elf32_hppa_link_hash_table_create (bfd *abfd) 410 { 411 struct elf32_hppa_link_hash_table *htab; 412 bfd_size_type amt = sizeof (*htab); 413 414 htab = bfd_zmalloc (amt); 415 if (htab == NULL) 416 return NULL; 417 418 if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc, 419 sizeof (struct elf32_hppa_link_hash_entry), 420 HPPA32_ELF_DATA)) 421 { 422 free (htab); 423 return NULL; 424 } 425 426 /* Init the stub hash table too. */ 427 if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc, 428 sizeof (struct elf32_hppa_stub_hash_entry))) 429 { 430 _bfd_elf_link_hash_table_free (abfd); 431 return NULL; 432 } 433 htab->etab.root.hash_table_free = elf32_hppa_link_hash_table_free; 434 435 htab->text_segment_base = (bfd_vma) -1; 436 htab->data_segment_base = (bfd_vma) -1; 437 return &htab->etab.root; 438 } 439 440 /* Initialize the linker stubs BFD so that we can use it for linker 441 created dynamic sections. */ 442 443 void 444 elf32_hppa_init_stub_bfd (bfd *abfd, struct bfd_link_info *info) 445 { 446 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); 447 448 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS32; 449 htab->etab.dynobj = abfd; 450 } 451 452 /* Build a name for an entry in the stub hash table. */ 453 454 static char * 455 hppa_stub_name (const asection *input_section, 456 const asection *sym_sec, 457 const struct elf32_hppa_link_hash_entry *hh, 458 const Elf_Internal_Rela *rela) 459 { 460 char *stub_name; 461 bfd_size_type len; 462 463 if (hh) 464 { 465 len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1; 466 stub_name = bfd_malloc (len); 467 if (stub_name != NULL) 468 sprintf (stub_name, "%08x_%s+%x", 469 input_section->id & 0xffffffff, 470 hh_name (hh), 471 (int) rela->r_addend & 0xffffffff); 472 } 473 else 474 { 475 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1; 476 stub_name = bfd_malloc (len); 477 if (stub_name != NULL) 478 sprintf (stub_name, "%08x_%x:%x+%x", 479 input_section->id & 0xffffffff, 480 sym_sec->id & 0xffffffff, 481 (int) ELF32_R_SYM (rela->r_info) & 0xffffffff, 482 (int) rela->r_addend & 0xffffffff); 483 } 484 return stub_name; 485 } 486 487 /* Look up an entry in the stub hash. Stub entries are cached because 488 creating the stub name takes a bit of time. */ 489 490 static struct elf32_hppa_stub_hash_entry * 491 hppa_get_stub_entry (const asection *input_section, 492 const asection *sym_sec, 493 struct elf32_hppa_link_hash_entry *hh, 494 const Elf_Internal_Rela *rela, 495 struct elf32_hppa_link_hash_table *htab) 496 { 497 struct elf32_hppa_stub_hash_entry *hsh_entry; 498 const asection *id_sec; 499 500 /* If this input section is part of a group of sections sharing one 501 stub section, then use the id of the first section in the group. 502 Stub names need to include a section id, as there may well be 503 more than one stub used to reach say, printf, and we need to 504 distinguish between them. */ 505 id_sec = htab->stub_group[input_section->id].link_sec; 506 if (id_sec == NULL) 507 return NULL; 508 509 if (hh != NULL && hh->hsh_cache != NULL 510 && hh->hsh_cache->hh == hh 511 && hh->hsh_cache->id_sec == id_sec) 512 { 513 hsh_entry = hh->hsh_cache; 514 } 515 else 516 { 517 char *stub_name; 518 519 stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela); 520 if (stub_name == NULL) 521 return NULL; 522 523 hsh_entry = hppa_stub_hash_lookup (&htab->bstab, 524 stub_name, FALSE, FALSE); 525 if (hh != NULL) 526 hh->hsh_cache = hsh_entry; 527 528 free (stub_name); 529 } 530 531 return hsh_entry; 532 } 533 534 /* Add a new stub entry to the stub hash. Not all fields of the new 535 stub entry are initialised. */ 536 537 static struct elf32_hppa_stub_hash_entry * 538 hppa_add_stub (const char *stub_name, 539 asection *section, 540 struct elf32_hppa_link_hash_table *htab) 541 { 542 asection *link_sec; 543 asection *stub_sec; 544 struct elf32_hppa_stub_hash_entry *hsh; 545 546 link_sec = htab->stub_group[section->id].link_sec; 547 stub_sec = htab->stub_group[section->id].stub_sec; 548 if (stub_sec == NULL) 549 { 550 stub_sec = htab->stub_group[link_sec->id].stub_sec; 551 if (stub_sec == NULL) 552 { 553 size_t namelen; 554 bfd_size_type len; 555 char *s_name; 556 557 namelen = strlen (link_sec->name); 558 len = namelen + sizeof (STUB_SUFFIX); 559 s_name = bfd_alloc (htab->stub_bfd, len); 560 if (s_name == NULL) 561 return NULL; 562 563 memcpy (s_name, link_sec->name, namelen); 564 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX)); 565 stub_sec = (*htab->add_stub_section) (s_name, link_sec); 566 if (stub_sec == NULL) 567 return NULL; 568 htab->stub_group[link_sec->id].stub_sec = stub_sec; 569 } 570 htab->stub_group[section->id].stub_sec = stub_sec; 571 } 572 573 /* Enter this entry into the linker stub hash table. */ 574 hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name, 575 TRUE, FALSE); 576 if (hsh == NULL) 577 { 578 /* xgettext:c-format */ 579 _bfd_error_handler (_("%pB: cannot create stub entry %s"), 580 section->owner, stub_name); 581 return NULL; 582 } 583 584 hsh->stub_sec = stub_sec; 585 hsh->stub_offset = 0; 586 hsh->id_sec = link_sec; 587 return hsh; 588 } 589 590 /* Determine the type of stub needed, if any, for a call. */ 591 592 static enum elf32_hppa_stub_type 593 hppa_type_of_stub (asection *input_sec, 594 const Elf_Internal_Rela *rela, 595 struct elf32_hppa_link_hash_entry *hh, 596 bfd_vma destination, 597 struct bfd_link_info *info) 598 { 599 bfd_vma location; 600 bfd_vma branch_offset; 601 bfd_vma max_branch_offset; 602 unsigned int r_type; 603 604 if (hh != NULL 605 && hh->eh.plt.offset != (bfd_vma) -1 606 && hh->eh.dynindx != -1 607 && !hh->plabel 608 && (bfd_link_pic (info) 609 || !hh->eh.def_regular 610 || hh->eh.root.type == bfd_link_hash_defweak)) 611 { 612 /* We need an import stub. Decide between hppa_stub_import 613 and hppa_stub_import_shared later. */ 614 return hppa_stub_import; 615 } 616 617 if (destination == (bfd_vma) -1) 618 return hppa_stub_none; 619 620 /* Determine where the call point is. */ 621 location = (input_sec->output_offset 622 + input_sec->output_section->vma 623 + rela->r_offset); 624 625 branch_offset = destination - location - 8; 626 r_type = ELF32_R_TYPE (rela->r_info); 627 628 /* Determine if a long branch stub is needed. parisc branch offsets 629 are relative to the second instruction past the branch, ie. +8 630 bytes on from the branch instruction location. The offset is 631 signed and counts in units of 4 bytes. */ 632 if (r_type == (unsigned int) R_PARISC_PCREL17F) 633 max_branch_offset = (1 << (17 - 1)) << 2; 634 635 else if (r_type == (unsigned int) R_PARISC_PCREL12F) 636 max_branch_offset = (1 << (12 - 1)) << 2; 637 638 else /* R_PARISC_PCREL22F. */ 639 max_branch_offset = (1 << (22 - 1)) << 2; 640 641 if (branch_offset + max_branch_offset >= 2*max_branch_offset) 642 return hppa_stub_long_branch; 643 644 return hppa_stub_none; 645 } 646 647 /* Build one linker stub as defined by the stub hash table entry GEN_ENTRY. 648 IN_ARG contains the link info pointer. */ 649 650 #define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */ 651 #define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */ 652 653 #define BL_R1 0xe8200000 /* b,l .+8,%r1 */ 654 #define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */ 655 #define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */ 656 657 #define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */ 658 #define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */ 659 #define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */ 660 #define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */ 661 662 #define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */ 663 #define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */ 664 665 #define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */ 666 #define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */ 667 #define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */ 668 #define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */ 669 670 #define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */ 671 #define BL_RP 0xe8400002 /* b,l,n XXX,%rp */ 672 #define NOP 0x08000240 /* nop */ 673 #define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */ 674 #define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */ 675 #define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */ 676 677 #ifndef R19_STUBS 678 #define R19_STUBS 1 679 #endif 680 681 #if R19_STUBS 682 #define LDW_R1_DLT LDW_R1_R19 683 #else 684 #define LDW_R1_DLT LDW_R1_DP 685 #endif 686 687 static bfd_boolean 688 hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg) 689 { 690 struct elf32_hppa_stub_hash_entry *hsh; 691 struct bfd_link_info *info; 692 struct elf32_hppa_link_hash_table *htab; 693 asection *stub_sec; 694 bfd *stub_bfd; 695 bfd_byte *loc; 696 bfd_vma sym_value; 697 bfd_vma insn; 698 bfd_vma off; 699 int val; 700 int size; 701 702 /* Massage our args to the form they really have. */ 703 hsh = hppa_stub_hash_entry (bh); 704 info = (struct bfd_link_info *)in_arg; 705 706 htab = hppa_link_hash_table (info); 707 if (htab == NULL) 708 return FALSE; 709 710 stub_sec = hsh->stub_sec; 711 712 /* Make a note of the offset within the stubs for this entry. */ 713 hsh->stub_offset = stub_sec->size; 714 loc = stub_sec->contents + hsh->stub_offset; 715 716 stub_bfd = stub_sec->owner; 717 718 switch (hsh->stub_type) 719 { 720 case hppa_stub_long_branch: 721 /* Create the long branch. A long branch is formed with "ldil" 722 loading the upper bits of the target address into a register, 723 then branching with "be" which adds in the lower bits. 724 The "be" has its delay slot nullified. */ 725 sym_value = (hsh->target_value 726 + hsh->target_section->output_offset 727 + hsh->target_section->output_section->vma); 728 729 val = hppa_field_adjust (sym_value, 0, e_lrsel); 730 insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21); 731 bfd_put_32 (stub_bfd, insn, loc); 732 733 val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2; 734 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17); 735 bfd_put_32 (stub_bfd, insn, loc + 4); 736 737 size = 8; 738 break; 739 740 case hppa_stub_long_branch_shared: 741 /* Branches are relative. This is where we are going to. */ 742 sym_value = (hsh->target_value 743 + hsh->target_section->output_offset 744 + hsh->target_section->output_section->vma); 745 746 /* And this is where we are coming from, more or less. */ 747 sym_value -= (hsh->stub_offset 748 + stub_sec->output_offset 749 + stub_sec->output_section->vma); 750 751 bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc); 752 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel); 753 insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21); 754 bfd_put_32 (stub_bfd, insn, loc + 4); 755 756 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2; 757 insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17); 758 bfd_put_32 (stub_bfd, insn, loc + 8); 759 size = 12; 760 break; 761 762 case hppa_stub_import: 763 case hppa_stub_import_shared: 764 off = hsh->hh->eh.plt.offset; 765 if (off >= (bfd_vma) -2) 766 abort (); 767 768 off &= ~ (bfd_vma) 1; 769 sym_value = (off 770 + htab->etab.splt->output_offset 771 + htab->etab.splt->output_section->vma 772 - elf_gp (htab->etab.splt->output_section->owner)); 773 774 insn = ADDIL_DP; 775 #if R19_STUBS 776 if (hsh->stub_type == hppa_stub_import_shared) 777 insn = ADDIL_R19; 778 #endif 779 val = hppa_field_adjust (sym_value, 0, e_lrsel), 780 insn = hppa_rebuild_insn ((int) insn, val, 21); 781 bfd_put_32 (stub_bfd, insn, loc); 782 783 /* It is critical to use lrsel/rrsel here because we are using 784 two different offsets (+0 and +4) from sym_value. If we use 785 lsel/rsel then with unfortunate sym_values we will round 786 sym_value+4 up to the next 2k block leading to a mis-match 787 between the lsel and rsel value. */ 788 val = hppa_field_adjust (sym_value, 0, e_rrsel); 789 insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14); 790 bfd_put_32 (stub_bfd, insn, loc + 4); 791 792 if (htab->multi_subspace) 793 { 794 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel); 795 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14); 796 bfd_put_32 (stub_bfd, insn, loc + 8); 797 798 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12); 799 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16); 800 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20); 801 bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24); 802 803 size = 28; 804 } 805 else 806 { 807 bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8); 808 val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel); 809 insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14); 810 bfd_put_32 (stub_bfd, insn, loc + 12); 811 812 size = 16; 813 } 814 815 break; 816 817 case hppa_stub_export: 818 /* Branches are relative. This is where we are going to. */ 819 sym_value = (hsh->target_value 820 + hsh->target_section->output_offset 821 + hsh->target_section->output_section->vma); 822 823 /* And this is where we are coming from. */ 824 sym_value -= (hsh->stub_offset 825 + stub_sec->output_offset 826 + stub_sec->output_section->vma); 827 828 if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2)) 829 && (!htab->has_22bit_branch 830 || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2)))) 831 { 832 _bfd_error_handler 833 /* xgettext:c-format */ 834 (_("%pB(%pA+%#" PRIx64 "): " 835 "cannot reach %s, recompile with -ffunction-sections"), 836 hsh->target_section->owner, 837 stub_sec, 838 (uint64_t) hsh->stub_offset, 839 hsh->bh_root.string); 840 bfd_set_error (bfd_error_bad_value); 841 return FALSE; 842 } 843 844 val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2; 845 if (!htab->has_22bit_branch) 846 insn = hppa_rebuild_insn ((int) BL_RP, val, 17); 847 else 848 insn = hppa_rebuild_insn ((int) BL22_RP, val, 22); 849 bfd_put_32 (stub_bfd, insn, loc); 850 851 bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4); 852 bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8); 853 bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12); 854 bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16); 855 bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20); 856 857 /* Point the function symbol at the stub. */ 858 hsh->hh->eh.root.u.def.section = stub_sec; 859 hsh->hh->eh.root.u.def.value = stub_sec->size; 860 861 size = 24; 862 break; 863 864 default: 865 BFD_FAIL (); 866 return FALSE; 867 } 868 869 stub_sec->size += size; 870 return TRUE; 871 } 872 873 #undef LDIL_R1 874 #undef BE_SR4_R1 875 #undef BL_R1 876 #undef ADDIL_R1 877 #undef DEPI_R1 878 #undef LDW_R1_R21 879 #undef LDW_R1_DLT 880 #undef LDW_R1_R19 881 #undef ADDIL_R19 882 #undef LDW_R1_DP 883 #undef LDSID_R21_R1 884 #undef MTSP_R1 885 #undef BE_SR0_R21 886 #undef STW_RP 887 #undef BV_R0_R21 888 #undef BL_RP 889 #undef NOP 890 #undef LDW_RP 891 #undef LDSID_RP_R1 892 #undef BE_SR0_RP 893 894 /* As above, but don't actually build the stub. Just bump offset so 895 we know stub section sizes. */ 896 897 static bfd_boolean 898 hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg) 899 { 900 struct elf32_hppa_stub_hash_entry *hsh; 901 struct elf32_hppa_link_hash_table *htab; 902 int size; 903 904 /* Massage our args to the form they really have. */ 905 hsh = hppa_stub_hash_entry (bh); 906 htab = in_arg; 907 908 if (hsh->stub_type == hppa_stub_long_branch) 909 size = 8; 910 else if (hsh->stub_type == hppa_stub_long_branch_shared) 911 size = 12; 912 else if (hsh->stub_type == hppa_stub_export) 913 size = 24; 914 else /* hppa_stub_import or hppa_stub_import_shared. */ 915 { 916 if (htab->multi_subspace) 917 size = 28; 918 else 919 size = 16; 920 } 921 922 hsh->stub_sec->size += size; 923 return TRUE; 924 } 925 926 /* Return nonzero if ABFD represents an HPPA ELF32 file. 927 Additionally we set the default architecture and machine. */ 928 929 static bfd_boolean 930 elf32_hppa_object_p (bfd *abfd) 931 { 932 Elf_Internal_Ehdr * i_ehdrp; 933 unsigned int flags; 934 935 i_ehdrp = elf_elfheader (abfd); 936 if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0) 937 { 938 /* GCC on hppa-linux produces binaries with OSABI=GNU, 939 but the kernel produces corefiles with OSABI=SysV. */ 940 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU && 941 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ 942 return FALSE; 943 } 944 else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0) 945 { 946 /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD, 947 but the kernel produces corefiles with OSABI=SysV. */ 948 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD && 949 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */ 950 return FALSE; 951 } 952 else 953 { 954 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX) 955 return FALSE; 956 } 957 958 flags = i_ehdrp->e_flags; 959 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE)) 960 { 961 case EFA_PARISC_1_0: 962 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10); 963 case EFA_PARISC_1_1: 964 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11); 965 case EFA_PARISC_2_0: 966 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20); 967 case EFA_PARISC_2_0 | EF_PARISC_WIDE: 968 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25); 969 } 970 return TRUE; 971 } 972 973 /* Create the .plt and .got sections, and set up our hash table 974 short-cuts to various dynamic sections. */ 975 976 static bfd_boolean 977 elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 978 { 979 struct elf32_hppa_link_hash_table *htab; 980 struct elf_link_hash_entry *eh; 981 982 /* Don't try to create the .plt and .got twice. */ 983 htab = hppa_link_hash_table (info); 984 if (htab == NULL) 985 return FALSE; 986 if (htab->etab.splt != NULL) 987 return TRUE; 988 989 /* Call the generic code to do most of the work. */ 990 if (! _bfd_elf_create_dynamic_sections (abfd, info)) 991 return FALSE; 992 993 /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main 994 application, because __canonicalize_funcptr_for_compare needs it. */ 995 eh = elf_hash_table (info)->hgot; 996 eh->forced_local = 0; 997 eh->other = STV_DEFAULT; 998 return bfd_elf_link_record_dynamic_symbol (info, eh); 999 } 1000 1001 /* Copy the extra info we tack onto an elf_link_hash_entry. */ 1002 1003 static void 1004 elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info, 1005 struct elf_link_hash_entry *eh_dir, 1006 struct elf_link_hash_entry *eh_ind) 1007 { 1008 struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind; 1009 1010 hh_dir = hppa_elf_hash_entry (eh_dir); 1011 hh_ind = hppa_elf_hash_entry (eh_ind); 1012 1013 if (hh_ind->dyn_relocs != NULL 1014 && eh_ind->root.type == bfd_link_hash_indirect) 1015 { 1016 if (hh_dir->dyn_relocs != NULL) 1017 { 1018 struct elf_dyn_relocs **hdh_pp; 1019 struct elf_dyn_relocs *hdh_p; 1020 1021 /* Add reloc counts against the indirect sym to the direct sym 1022 list. Merge any entries against the same section. */ 1023 for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; ) 1024 { 1025 struct elf_dyn_relocs *hdh_q; 1026 1027 for (hdh_q = hh_dir->dyn_relocs; 1028 hdh_q != NULL; 1029 hdh_q = hdh_q->next) 1030 if (hdh_q->sec == hdh_p->sec) 1031 { 1032 #if RELATIVE_DYNRELOCS 1033 hdh_q->pc_count += hdh_p->pc_count; 1034 #endif 1035 hdh_q->count += hdh_p->count; 1036 *hdh_pp = hdh_p->next; 1037 break; 1038 } 1039 if (hdh_q == NULL) 1040 hdh_pp = &hdh_p->next; 1041 } 1042 *hdh_pp = hh_dir->dyn_relocs; 1043 } 1044 1045 hh_dir->dyn_relocs = hh_ind->dyn_relocs; 1046 hh_ind->dyn_relocs = NULL; 1047 } 1048 1049 if (eh_ind->root.type == bfd_link_hash_indirect) 1050 { 1051 hh_dir->plabel |= hh_ind->plabel; 1052 hh_dir->tls_type |= hh_ind->tls_type; 1053 hh_ind->tls_type = GOT_UNKNOWN; 1054 } 1055 1056 _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind); 1057 } 1058 1059 static int 1060 elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED, 1061 int r_type, int is_local ATTRIBUTE_UNUSED) 1062 { 1063 /* For now we don't support linker optimizations. */ 1064 return r_type; 1065 } 1066 1067 /* Return a pointer to the local GOT, PLT and TLS reference counts 1068 for ABFD. Returns NULL if the storage allocation fails. */ 1069 1070 static bfd_signed_vma * 1071 hppa32_elf_local_refcounts (bfd *abfd) 1072 { 1073 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1074 bfd_signed_vma *local_refcounts; 1075 1076 local_refcounts = elf_local_got_refcounts (abfd); 1077 if (local_refcounts == NULL) 1078 { 1079 bfd_size_type size; 1080 1081 /* Allocate space for local GOT and PLT reference 1082 counts. Done this way to save polluting elf_obj_tdata 1083 with another target specific pointer. */ 1084 size = symtab_hdr->sh_info; 1085 size *= 2 * sizeof (bfd_signed_vma); 1086 /* Add in space to store the local GOT TLS types. */ 1087 size += symtab_hdr->sh_info; 1088 local_refcounts = bfd_zalloc (abfd, size); 1089 if (local_refcounts == NULL) 1090 return NULL; 1091 elf_local_got_refcounts (abfd) = local_refcounts; 1092 memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN, 1093 symtab_hdr->sh_info); 1094 } 1095 return local_refcounts; 1096 } 1097 1098 1099 /* Look through the relocs for a section during the first phase, and 1100 calculate needed space in the global offset table, procedure linkage 1101 table, and dynamic reloc sections. At this point we haven't 1102 necessarily read all the input files. */ 1103 1104 static bfd_boolean 1105 elf32_hppa_check_relocs (bfd *abfd, 1106 struct bfd_link_info *info, 1107 asection *sec, 1108 const Elf_Internal_Rela *relocs) 1109 { 1110 Elf_Internal_Shdr *symtab_hdr; 1111 struct elf_link_hash_entry **eh_syms; 1112 const Elf_Internal_Rela *rela; 1113 const Elf_Internal_Rela *rela_end; 1114 struct elf32_hppa_link_hash_table *htab; 1115 asection *sreloc; 1116 1117 if (bfd_link_relocatable (info)) 1118 return TRUE; 1119 1120 htab = hppa_link_hash_table (info); 1121 if (htab == NULL) 1122 return FALSE; 1123 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1124 eh_syms = elf_sym_hashes (abfd); 1125 sreloc = NULL; 1126 1127 rela_end = relocs + sec->reloc_count; 1128 for (rela = relocs; rela < rela_end; rela++) 1129 { 1130 enum { 1131 NEED_GOT = 1, 1132 NEED_PLT = 2, 1133 NEED_DYNREL = 4, 1134 PLT_PLABEL = 8 1135 }; 1136 1137 unsigned int r_symndx, r_type; 1138 struct elf32_hppa_link_hash_entry *hh; 1139 int need_entry = 0; 1140 1141 r_symndx = ELF32_R_SYM (rela->r_info); 1142 1143 if (r_symndx < symtab_hdr->sh_info) 1144 hh = NULL; 1145 else 1146 { 1147 hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]); 1148 while (hh->eh.root.type == bfd_link_hash_indirect 1149 || hh->eh.root.type == bfd_link_hash_warning) 1150 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); 1151 } 1152 1153 r_type = ELF32_R_TYPE (rela->r_info); 1154 r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL); 1155 1156 switch (r_type) 1157 { 1158 case R_PARISC_DLTIND14F: 1159 case R_PARISC_DLTIND14R: 1160 case R_PARISC_DLTIND21L: 1161 /* This symbol requires a global offset table entry. */ 1162 need_entry = NEED_GOT; 1163 break; 1164 1165 case R_PARISC_PLABEL14R: /* "Official" procedure labels. */ 1166 case R_PARISC_PLABEL21L: 1167 case R_PARISC_PLABEL32: 1168 /* If the addend is non-zero, we break badly. */ 1169 if (rela->r_addend != 0) 1170 abort (); 1171 1172 /* If we are creating a shared library, then we need to 1173 create a PLT entry for all PLABELs, because PLABELs with 1174 local symbols may be passed via a pointer to another 1175 object. Additionally, output a dynamic relocation 1176 pointing to the PLT entry. 1177 1178 For executables, the original 32-bit ABI allowed two 1179 different styles of PLABELs (function pointers): For 1180 global functions, the PLABEL word points into the .plt 1181 two bytes past a (function address, gp) pair, and for 1182 local functions the PLABEL points directly at the 1183 function. The magic +2 for the first type allows us to 1184 differentiate between the two. As you can imagine, this 1185 is a real pain when it comes to generating code to call 1186 functions indirectly or to compare function pointers. 1187 We avoid the mess by always pointing a PLABEL into the 1188 .plt, even for local functions. */ 1189 need_entry = PLT_PLABEL | NEED_PLT; 1190 if (bfd_link_pic (info)) 1191 need_entry |= NEED_DYNREL; 1192 break; 1193 1194 case R_PARISC_PCREL12F: 1195 htab->has_12bit_branch = 1; 1196 goto branch_common; 1197 1198 case R_PARISC_PCREL17C: 1199 case R_PARISC_PCREL17F: 1200 htab->has_17bit_branch = 1; 1201 goto branch_common; 1202 1203 case R_PARISC_PCREL22F: 1204 htab->has_22bit_branch = 1; 1205 branch_common: 1206 /* Function calls might need to go through the .plt, and 1207 might require long branch stubs. */ 1208 if (hh == NULL) 1209 { 1210 /* We know local syms won't need a .plt entry, and if 1211 they need a long branch stub we can't guarantee that 1212 we can reach the stub. So just flag an error later 1213 if we're doing a shared link and find we need a long 1214 branch stub. */ 1215 continue; 1216 } 1217 else 1218 { 1219 /* Global symbols will need a .plt entry if they remain 1220 global, and in most cases won't need a long branch 1221 stub. Unfortunately, we have to cater for the case 1222 where a symbol is forced local by versioning, or due 1223 to symbolic linking, and we lose the .plt entry. */ 1224 need_entry = NEED_PLT; 1225 if (hh->eh.type == STT_PARISC_MILLI) 1226 need_entry = 0; 1227 } 1228 break; 1229 1230 case R_PARISC_SEGBASE: /* Used to set segment base. */ 1231 case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */ 1232 case R_PARISC_PCREL14F: /* PC relative load/store. */ 1233 case R_PARISC_PCREL14R: 1234 case R_PARISC_PCREL17R: /* External branches. */ 1235 case R_PARISC_PCREL21L: /* As above, and for load/store too. */ 1236 case R_PARISC_PCREL32: 1237 /* We don't need to propagate the relocation if linking a 1238 shared object since these are section relative. */ 1239 continue; 1240 1241 case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */ 1242 case R_PARISC_DPREL14R: 1243 case R_PARISC_DPREL21L: 1244 if (bfd_link_pic (info)) 1245 { 1246 _bfd_error_handler 1247 /* xgettext:c-format */ 1248 (_("%pB: relocation %s can not be used when making a shared object; recompile with -fPIC"), 1249 abfd, 1250 elf_hppa_howto_table[r_type].name); 1251 bfd_set_error (bfd_error_bad_value); 1252 return FALSE; 1253 } 1254 /* Fall through. */ 1255 1256 case R_PARISC_DIR17F: /* Used for external branches. */ 1257 case R_PARISC_DIR17R: 1258 case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */ 1259 case R_PARISC_DIR14R: 1260 case R_PARISC_DIR21L: /* As above, and for ext branches too. */ 1261 case R_PARISC_DIR32: /* .word relocs. */ 1262 /* We may want to output a dynamic relocation later. */ 1263 need_entry = NEED_DYNREL; 1264 break; 1265 1266 /* This relocation describes the C++ object vtable hierarchy. 1267 Reconstruct it for later use during GC. */ 1268 case R_PARISC_GNU_VTINHERIT: 1269 if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset)) 1270 return FALSE; 1271 continue; 1272 1273 /* This relocation describes which C++ vtable entries are actually 1274 used. Record for later use during GC. */ 1275 case R_PARISC_GNU_VTENTRY: 1276 BFD_ASSERT (hh != NULL); 1277 if (hh != NULL 1278 && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend)) 1279 return FALSE; 1280 continue; 1281 1282 case R_PARISC_TLS_GD21L: 1283 case R_PARISC_TLS_GD14R: 1284 case R_PARISC_TLS_LDM21L: 1285 case R_PARISC_TLS_LDM14R: 1286 need_entry = NEED_GOT; 1287 break; 1288 1289 case R_PARISC_TLS_IE21L: 1290 case R_PARISC_TLS_IE14R: 1291 if (bfd_link_dll (info)) 1292 info->flags |= DF_STATIC_TLS; 1293 need_entry = NEED_GOT; 1294 break; 1295 1296 default: 1297 continue; 1298 } 1299 1300 /* Now carry out our orders. */ 1301 if (need_entry & NEED_GOT) 1302 { 1303 int tls_type = GOT_NORMAL; 1304 1305 switch (r_type) 1306 { 1307 default: 1308 break; 1309 case R_PARISC_TLS_GD21L: 1310 case R_PARISC_TLS_GD14R: 1311 tls_type = GOT_TLS_GD; 1312 break; 1313 case R_PARISC_TLS_LDM21L: 1314 case R_PARISC_TLS_LDM14R: 1315 tls_type = GOT_TLS_LDM; 1316 break; 1317 case R_PARISC_TLS_IE21L: 1318 case R_PARISC_TLS_IE14R: 1319 tls_type = GOT_TLS_IE; 1320 break; 1321 } 1322 1323 /* Allocate space for a GOT entry, as well as a dynamic 1324 relocation for this entry. */ 1325 if (htab->etab.sgot == NULL) 1326 { 1327 if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info)) 1328 return FALSE; 1329 } 1330 1331 if (hh != NULL) 1332 { 1333 if (tls_type == GOT_TLS_LDM) 1334 htab->tls_ldm_got.refcount += 1; 1335 else 1336 hh->eh.got.refcount += 1; 1337 hh->tls_type |= tls_type; 1338 } 1339 else 1340 { 1341 bfd_signed_vma *local_got_refcounts; 1342 1343 /* This is a global offset table entry for a local symbol. */ 1344 local_got_refcounts = hppa32_elf_local_refcounts (abfd); 1345 if (local_got_refcounts == NULL) 1346 return FALSE; 1347 if (tls_type == GOT_TLS_LDM) 1348 htab->tls_ldm_got.refcount += 1; 1349 else 1350 local_got_refcounts[r_symndx] += 1; 1351 1352 hppa_elf_local_got_tls_type (abfd) [r_symndx] |= tls_type; 1353 } 1354 } 1355 1356 if (need_entry & NEED_PLT) 1357 { 1358 /* If we are creating a shared library, and this is a reloc 1359 against a weak symbol or a global symbol in a dynamic 1360 object, then we will be creating an import stub and a 1361 .plt entry for the symbol. Similarly, on a normal link 1362 to symbols defined in a dynamic object we'll need the 1363 import stub and a .plt entry. We don't know yet whether 1364 the symbol is defined or not, so make an entry anyway and 1365 clean up later in adjust_dynamic_symbol. */ 1366 if ((sec->flags & SEC_ALLOC) != 0) 1367 { 1368 if (hh != NULL) 1369 { 1370 hh->eh.needs_plt = 1; 1371 hh->eh.plt.refcount += 1; 1372 1373 /* If this .plt entry is for a plabel, mark it so 1374 that adjust_dynamic_symbol will keep the entry 1375 even if it appears to be local. */ 1376 if (need_entry & PLT_PLABEL) 1377 hh->plabel = 1; 1378 } 1379 else if (need_entry & PLT_PLABEL) 1380 { 1381 bfd_signed_vma *local_got_refcounts; 1382 bfd_signed_vma *local_plt_refcounts; 1383 1384 local_got_refcounts = hppa32_elf_local_refcounts (abfd); 1385 if (local_got_refcounts == NULL) 1386 return FALSE; 1387 local_plt_refcounts = (local_got_refcounts 1388 + symtab_hdr->sh_info); 1389 local_plt_refcounts[r_symndx] += 1; 1390 } 1391 } 1392 } 1393 1394 if ((need_entry & NEED_DYNREL) != 0 1395 && (sec->flags & SEC_ALLOC) != 0) 1396 { 1397 /* Flag this symbol as having a non-got, non-plt reference 1398 so that we generate copy relocs if it turns out to be 1399 dynamic. */ 1400 if (hh != NULL) 1401 hh->eh.non_got_ref = 1; 1402 1403 /* If we are creating a shared library then we need to copy 1404 the reloc into the shared library. However, if we are 1405 linking with -Bsymbolic, we need only copy absolute 1406 relocs or relocs against symbols that are not defined in 1407 an object we are including in the link. PC- or DP- or 1408 DLT-relative relocs against any local sym or global sym 1409 with DEF_REGULAR set, can be discarded. At this point we 1410 have not seen all the input files, so it is possible that 1411 DEF_REGULAR is not set now but will be set later (it is 1412 never cleared). We account for that possibility below by 1413 storing information in the dyn_relocs field of the 1414 hash table entry. 1415 1416 A similar situation to the -Bsymbolic case occurs when 1417 creating shared libraries and symbol visibility changes 1418 render the symbol local. 1419 1420 As it turns out, all the relocs we will be creating here 1421 are absolute, so we cannot remove them on -Bsymbolic 1422 links or visibility changes anyway. A STUB_REL reloc 1423 is absolute too, as in that case it is the reloc in the 1424 stub we will be creating, rather than copying the PCREL 1425 reloc in the branch. 1426 1427 If on the other hand, we are creating an executable, we 1428 may need to keep relocations for symbols satisfied by a 1429 dynamic library if we manage to avoid copy relocs for the 1430 symbol. */ 1431 if ((bfd_link_pic (info) 1432 && (IS_ABSOLUTE_RELOC (r_type) 1433 || (hh != NULL 1434 && (!SYMBOLIC_BIND (info, &hh->eh) 1435 || hh->eh.root.type == bfd_link_hash_defweak 1436 || !hh->eh.def_regular)))) 1437 || (ELIMINATE_COPY_RELOCS 1438 && !bfd_link_pic (info) 1439 && hh != NULL 1440 && (hh->eh.root.type == bfd_link_hash_defweak 1441 || !hh->eh.def_regular))) 1442 { 1443 struct elf_dyn_relocs *hdh_p; 1444 struct elf_dyn_relocs **hdh_head; 1445 1446 /* Create a reloc section in dynobj and make room for 1447 this reloc. */ 1448 if (sreloc == NULL) 1449 { 1450 sreloc = _bfd_elf_make_dynamic_reloc_section 1451 (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE); 1452 1453 if (sreloc == NULL) 1454 { 1455 bfd_set_error (bfd_error_bad_value); 1456 return FALSE; 1457 } 1458 } 1459 1460 /* If this is a global symbol, we count the number of 1461 relocations we need for this symbol. */ 1462 if (hh != NULL) 1463 { 1464 hdh_head = &hh->dyn_relocs; 1465 } 1466 else 1467 { 1468 /* Track dynamic relocs needed for local syms too. 1469 We really need local syms available to do this 1470 easily. Oh well. */ 1471 asection *sr; 1472 void *vpp; 1473 Elf_Internal_Sym *isym; 1474 1475 isym = bfd_sym_from_r_symndx (&htab->sym_cache, 1476 abfd, r_symndx); 1477 if (isym == NULL) 1478 return FALSE; 1479 1480 sr = bfd_section_from_elf_index (abfd, isym->st_shndx); 1481 if (sr == NULL) 1482 sr = sec; 1483 1484 vpp = &elf_section_data (sr)->local_dynrel; 1485 hdh_head = (struct elf_dyn_relocs **) vpp; 1486 } 1487 1488 hdh_p = *hdh_head; 1489 if (hdh_p == NULL || hdh_p->sec != sec) 1490 { 1491 hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p); 1492 if (hdh_p == NULL) 1493 return FALSE; 1494 hdh_p->next = *hdh_head; 1495 *hdh_head = hdh_p; 1496 hdh_p->sec = sec; 1497 hdh_p->count = 0; 1498 #if RELATIVE_DYNRELOCS 1499 hdh_p->pc_count = 0; 1500 #endif 1501 } 1502 1503 hdh_p->count += 1; 1504 #if RELATIVE_DYNRELOCS 1505 if (!IS_ABSOLUTE_RELOC (rtype)) 1506 hdh_p->pc_count += 1; 1507 #endif 1508 } 1509 } 1510 } 1511 1512 return TRUE; 1513 } 1514 1515 /* Return the section that should be marked against garbage collection 1516 for a given relocation. */ 1517 1518 static asection * 1519 elf32_hppa_gc_mark_hook (asection *sec, 1520 struct bfd_link_info *info, 1521 Elf_Internal_Rela *rela, 1522 struct elf_link_hash_entry *hh, 1523 Elf_Internal_Sym *sym) 1524 { 1525 if (hh != NULL) 1526 switch ((unsigned int) ELF32_R_TYPE (rela->r_info)) 1527 { 1528 case R_PARISC_GNU_VTINHERIT: 1529 case R_PARISC_GNU_VTENTRY: 1530 return NULL; 1531 } 1532 1533 return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym); 1534 } 1535 1536 /* Support for core dump NOTE sections. */ 1537 1538 static bfd_boolean 1539 elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 1540 { 1541 int offset; 1542 size_t size; 1543 1544 switch (note->descsz) 1545 { 1546 default: 1547 return FALSE; 1548 1549 case 396: /* Linux/hppa */ 1550 /* pr_cursig */ 1551 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); 1552 1553 /* pr_pid */ 1554 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); 1555 1556 /* pr_reg */ 1557 offset = 72; 1558 size = 320; 1559 1560 break; 1561 } 1562 1563 /* Make a ".reg/999" section. */ 1564 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 1565 size, note->descpos + offset); 1566 } 1567 1568 static bfd_boolean 1569 elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 1570 { 1571 switch (note->descsz) 1572 { 1573 default: 1574 return FALSE; 1575 1576 case 124: /* Linux/hppa elf_prpsinfo. */ 1577 elf_tdata (abfd)->core->program 1578 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); 1579 elf_tdata (abfd)->core->command 1580 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); 1581 } 1582 1583 /* Note that for some reason, a spurious space is tacked 1584 onto the end of the args in some (at least one anyway) 1585 implementations, so strip it off if it exists. */ 1586 { 1587 char *command = elf_tdata (abfd)->core->command; 1588 int n = strlen (command); 1589 1590 if (0 < n && command[n - 1] == ' ') 1591 command[n - 1] = '\0'; 1592 } 1593 1594 return TRUE; 1595 } 1596 1597 /* Our own version of hide_symbol, so that we can keep plt entries for 1598 plabels. */ 1599 1600 static void 1601 elf32_hppa_hide_symbol (struct bfd_link_info *info, 1602 struct elf_link_hash_entry *eh, 1603 bfd_boolean force_local) 1604 { 1605 if (force_local) 1606 { 1607 eh->forced_local = 1; 1608 if (eh->dynindx != -1) 1609 { 1610 eh->dynindx = -1; 1611 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, 1612 eh->dynstr_index); 1613 } 1614 1615 /* PR 16082: Remove version information from hidden symbol. */ 1616 eh->verinfo.verdef = NULL; 1617 eh->verinfo.vertree = NULL; 1618 } 1619 1620 /* STT_GNU_IFUNC symbol must go through PLT. */ 1621 if (! hppa_elf_hash_entry (eh)->plabel 1622 && eh->type != STT_GNU_IFUNC) 1623 { 1624 eh->needs_plt = 0; 1625 eh->plt = elf_hash_table (info)->init_plt_offset; 1626 } 1627 } 1628 1629 /* Find any dynamic relocs that apply to read-only sections. */ 1630 1631 static asection * 1632 readonly_dynrelocs (struct elf_link_hash_entry *eh) 1633 { 1634 struct elf32_hppa_link_hash_entry *hh; 1635 struct elf_dyn_relocs *hdh_p; 1636 1637 hh = hppa_elf_hash_entry (eh); 1638 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next) 1639 { 1640 asection *sec = hdh_p->sec->output_section; 1641 1642 if (sec != NULL && (sec->flags & SEC_READONLY) != 0) 1643 return hdh_p->sec; 1644 } 1645 return NULL; 1646 } 1647 1648 /* Return true if we have dynamic relocs against H or any of its weak 1649 aliases, that apply to read-only sections. Cannot be used after 1650 size_dynamic_sections. */ 1651 1652 static bfd_boolean 1653 alias_readonly_dynrelocs (struct elf_link_hash_entry *eh) 1654 { 1655 struct elf32_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh); 1656 do 1657 { 1658 if (readonly_dynrelocs (&hh->eh)) 1659 return TRUE; 1660 hh = hppa_elf_hash_entry (hh->eh.u.alias); 1661 } while (hh != NULL && &hh->eh != eh); 1662 1663 return FALSE; 1664 } 1665 1666 /* Adjust a symbol defined by a dynamic object and referenced by a 1667 regular object. The current definition is in some section of the 1668 dynamic object, but we're not including those sections. We have to 1669 change the definition to something the rest of the link can 1670 understand. */ 1671 1672 static bfd_boolean 1673 elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info, 1674 struct elf_link_hash_entry *eh) 1675 { 1676 struct elf32_hppa_link_hash_table *htab; 1677 asection *sec, *srel; 1678 1679 /* If this is a function, put it in the procedure linkage table. We 1680 will fill in the contents of the procedure linkage table later. */ 1681 if (eh->type == STT_FUNC 1682 || eh->needs_plt) 1683 { 1684 bfd_boolean local = (SYMBOL_CALLS_LOCAL (info, eh) 1685 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)); 1686 /* Discard dyn_relocs when non-pic if we've decided that a 1687 function symbol is local. */ 1688 if (!bfd_link_pic (info) && local) 1689 hppa_elf_hash_entry (eh)->dyn_relocs = NULL; 1690 1691 /* If the symbol is used by a plabel, we must allocate a PLT slot. 1692 The refcounts are not reliable when it has been hidden since 1693 hide_symbol can be called before the plabel flag is set. */ 1694 if (hppa_elf_hash_entry (eh)->plabel) 1695 eh->plt.refcount = 1; 1696 1697 /* Note that unlike some other backends, the refcount is not 1698 incremented for a non-call (and non-plabel) function reference. */ 1699 else if (eh->plt.refcount <= 0 1700 || local) 1701 { 1702 /* The .plt entry is not needed when: 1703 a) Garbage collection has removed all references to the 1704 symbol, or 1705 b) We know for certain the symbol is defined in this 1706 object, and it's not a weak definition, nor is the symbol 1707 used by a plabel relocation. Either this object is the 1708 application or we are doing a shared symbolic link. */ 1709 eh->plt.offset = (bfd_vma) -1; 1710 eh->needs_plt = 0; 1711 } 1712 1713 /* Unlike other targets, elf32-hppa.c does not define a function 1714 symbol in a non-pic executable on PLT stub code, so we don't 1715 have a local definition in that case. ie. dyn_relocs can't 1716 be discarded. */ 1717 1718 /* Function symbols can't have copy relocs. */ 1719 return TRUE; 1720 } 1721 else 1722 eh->plt.offset = (bfd_vma) -1; 1723 1724 htab = hppa_link_hash_table (info); 1725 if (htab == NULL) 1726 return FALSE; 1727 1728 /* If this is a weak symbol, and there is a real definition, the 1729 processor independent code will have arranged for us to see the 1730 real definition first, and we can just use the same value. */ 1731 if (eh->is_weakalias) 1732 { 1733 struct elf_link_hash_entry *def = weakdef (eh); 1734 BFD_ASSERT (def->root.type == bfd_link_hash_defined); 1735 eh->root.u.def.section = def->root.u.def.section; 1736 eh->root.u.def.value = def->root.u.def.value; 1737 if (def->root.u.def.section == htab->etab.sdynbss 1738 || def->root.u.def.section == htab->etab.sdynrelro) 1739 hppa_elf_hash_entry (eh)->dyn_relocs = NULL; 1740 return TRUE; 1741 } 1742 1743 /* This is a reference to a symbol defined by a dynamic object which 1744 is not a function. */ 1745 1746 /* If we are creating a shared library, we must presume that the 1747 only references to the symbol are via the global offset table. 1748 For such cases we need not do anything here; the relocations will 1749 be handled correctly by relocate_section. */ 1750 if (bfd_link_pic (info)) 1751 return TRUE; 1752 1753 /* If there are no references to this symbol that do not use the 1754 GOT, we don't need to generate a copy reloc. */ 1755 if (!eh->non_got_ref) 1756 return TRUE; 1757 1758 /* If -z nocopyreloc was given, we won't generate them either. */ 1759 if (info->nocopyreloc) 1760 return TRUE; 1761 1762 /* If we don't find any dynamic relocs in read-only sections, then 1763 we'll be keeping the dynamic relocs and avoiding the copy reloc. */ 1764 if (ELIMINATE_COPY_RELOCS 1765 && !alias_readonly_dynrelocs (eh)) 1766 return TRUE; 1767 1768 /* We must allocate the symbol in our .dynbss section, which will 1769 become part of the .bss section of the executable. There will be 1770 an entry for this symbol in the .dynsym section. The dynamic 1771 object will contain position independent code, so all references 1772 from the dynamic object to this symbol will go through the global 1773 offset table. The dynamic linker will use the .dynsym entry to 1774 determine the address it must put in the global offset table, so 1775 both the dynamic object and the regular object will refer to the 1776 same memory location for the variable. */ 1777 if ((eh->root.u.def.section->flags & SEC_READONLY) != 0) 1778 { 1779 sec = htab->etab.sdynrelro; 1780 srel = htab->etab.sreldynrelro; 1781 } 1782 else 1783 { 1784 sec = htab->etab.sdynbss; 1785 srel = htab->etab.srelbss; 1786 } 1787 if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0) 1788 { 1789 /* We must generate a COPY reloc to tell the dynamic linker to 1790 copy the initial value out of the dynamic object and into the 1791 runtime process image. */ 1792 srel->size += sizeof (Elf32_External_Rela); 1793 eh->needs_copy = 1; 1794 } 1795 1796 /* We no longer want dyn_relocs. */ 1797 hppa_elf_hash_entry (eh)->dyn_relocs = NULL; 1798 return _bfd_elf_adjust_dynamic_copy (info, eh, sec); 1799 } 1800 1801 /* If EH is undefined, make it dynamic if that makes sense. */ 1802 1803 static bfd_boolean 1804 ensure_undef_dynamic (struct bfd_link_info *info, 1805 struct elf_link_hash_entry *eh) 1806 { 1807 struct elf_link_hash_table *htab = elf_hash_table (info); 1808 1809 if (htab->dynamic_sections_created 1810 && (eh->root.type == bfd_link_hash_undefweak 1811 || eh->root.type == bfd_link_hash_undefined) 1812 && eh->dynindx == -1 1813 && !eh->forced_local 1814 && eh->type != STT_PARISC_MILLI 1815 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh) 1816 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT) 1817 return bfd_elf_link_record_dynamic_symbol (info, eh); 1818 return TRUE; 1819 } 1820 1821 /* Allocate space in the .plt for entries that won't have relocations. 1822 ie. plabel entries. */ 1823 1824 static bfd_boolean 1825 allocate_plt_static (struct elf_link_hash_entry *eh, void *inf) 1826 { 1827 struct bfd_link_info *info; 1828 struct elf32_hppa_link_hash_table *htab; 1829 struct elf32_hppa_link_hash_entry *hh; 1830 asection *sec; 1831 1832 if (eh->root.type == bfd_link_hash_indirect) 1833 return TRUE; 1834 1835 info = (struct bfd_link_info *) inf; 1836 hh = hppa_elf_hash_entry (eh); 1837 htab = hppa_link_hash_table (info); 1838 if (htab == NULL) 1839 return FALSE; 1840 1841 if (htab->etab.dynamic_sections_created 1842 && eh->plt.refcount > 0) 1843 { 1844 if (!ensure_undef_dynamic (info, eh)) 1845 return FALSE; 1846 1847 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, bfd_link_pic (info), eh)) 1848 { 1849 /* Allocate these later. From this point on, h->plabel 1850 means that the plt entry is only used by a plabel. 1851 We'll be using a normal plt entry for this symbol, so 1852 clear the plabel indicator. */ 1853 1854 hh->plabel = 0; 1855 } 1856 else if (hh->plabel) 1857 { 1858 /* Make an entry in the .plt section for plabel references 1859 that won't have a .plt entry for other reasons. */ 1860 sec = htab->etab.splt; 1861 eh->plt.offset = sec->size; 1862 sec->size += PLT_ENTRY_SIZE; 1863 if (bfd_link_pic (info)) 1864 htab->etab.srelplt->size += sizeof (Elf32_External_Rela); 1865 } 1866 else 1867 { 1868 /* No .plt entry needed. */ 1869 eh->plt.offset = (bfd_vma) -1; 1870 eh->needs_plt = 0; 1871 } 1872 } 1873 else 1874 { 1875 eh->plt.offset = (bfd_vma) -1; 1876 eh->needs_plt = 0; 1877 } 1878 1879 return TRUE; 1880 } 1881 1882 /* Calculate size of GOT entries for symbol given its TLS_TYPE. */ 1883 1884 static inline unsigned int 1885 got_entries_needed (int tls_type) 1886 { 1887 unsigned int need = 0; 1888 1889 if ((tls_type & GOT_NORMAL) != 0) 1890 need += GOT_ENTRY_SIZE; 1891 if ((tls_type & GOT_TLS_GD) != 0) 1892 need += GOT_ENTRY_SIZE * 2; 1893 if ((tls_type & GOT_TLS_IE) != 0) 1894 need += GOT_ENTRY_SIZE; 1895 return need; 1896 } 1897 1898 /* Calculate size of relocs needed for symbol given its TLS_TYPE and 1899 NEEDed GOT entries. TPREL_KNOWN says a TPREL offset can be 1900 calculated at link time. DTPREL_KNOWN says the same for a DTPREL 1901 offset. */ 1902 1903 static inline unsigned int 1904 got_relocs_needed (int tls_type, unsigned int need, 1905 bfd_boolean dtprel_known, bfd_boolean tprel_known) 1906 { 1907 /* All the entries we allocated need relocs. 1908 Except for GD and IE with local symbols. */ 1909 if ((tls_type & GOT_TLS_GD) != 0 && dtprel_known) 1910 need -= GOT_ENTRY_SIZE; 1911 if ((tls_type & GOT_TLS_IE) != 0 && tprel_known) 1912 need -= GOT_ENTRY_SIZE; 1913 return need * sizeof (Elf32_External_Rela) / GOT_ENTRY_SIZE; 1914 } 1915 1916 /* Allocate space in .plt, .got and associated reloc sections for 1917 global syms. */ 1918 1919 static bfd_boolean 1920 allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf) 1921 { 1922 struct bfd_link_info *info; 1923 struct elf32_hppa_link_hash_table *htab; 1924 asection *sec; 1925 struct elf32_hppa_link_hash_entry *hh; 1926 struct elf_dyn_relocs *hdh_p; 1927 1928 if (eh->root.type == bfd_link_hash_indirect) 1929 return TRUE; 1930 1931 info = inf; 1932 htab = hppa_link_hash_table (info); 1933 if (htab == NULL) 1934 return FALSE; 1935 1936 hh = hppa_elf_hash_entry (eh); 1937 1938 if (htab->etab.dynamic_sections_created 1939 && eh->plt.offset != (bfd_vma) -1 1940 && !hh->plabel 1941 && eh->plt.refcount > 0) 1942 { 1943 /* Make an entry in the .plt section. */ 1944 sec = htab->etab.splt; 1945 eh->plt.offset = sec->size; 1946 sec->size += PLT_ENTRY_SIZE; 1947 1948 /* We also need to make an entry in the .rela.plt section. */ 1949 htab->etab.srelplt->size += sizeof (Elf32_External_Rela); 1950 htab->need_plt_stub = 1; 1951 } 1952 1953 if (eh->got.refcount > 0) 1954 { 1955 unsigned int need; 1956 1957 if (!ensure_undef_dynamic (info, eh)) 1958 return FALSE; 1959 1960 sec = htab->etab.sgot; 1961 eh->got.offset = sec->size; 1962 need = got_entries_needed (hh->tls_type); 1963 sec->size += need; 1964 if (htab->etab.dynamic_sections_created 1965 && (bfd_link_dll (info) 1966 || (bfd_link_pic (info) && (hh->tls_type & GOT_NORMAL) != 0) 1967 || (eh->dynindx != -1 1968 && !SYMBOL_REFERENCES_LOCAL (info, eh))) 1969 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)) 1970 { 1971 bfd_boolean local = SYMBOL_REFERENCES_LOCAL (info, eh); 1972 htab->etab.srelgot->size 1973 += got_relocs_needed (hh->tls_type, need, local, 1974 local && bfd_link_executable (info)); 1975 } 1976 } 1977 else 1978 eh->got.offset = (bfd_vma) -1; 1979 1980 /* If no dynamic sections we can't have dynamic relocs. */ 1981 if (!htab->etab.dynamic_sections_created) 1982 hh->dyn_relocs = NULL; 1983 1984 /* Discard relocs on undefined syms with non-default visibility. */ 1985 else if ((eh->root.type == bfd_link_hash_undefined 1986 && ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT) 1987 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)) 1988 hh->dyn_relocs = NULL; 1989 1990 if (hh->dyn_relocs == NULL) 1991 return TRUE; 1992 1993 /* If this is a -Bsymbolic shared link, then we need to discard all 1994 space allocated for dynamic pc-relative relocs against symbols 1995 defined in a regular object. For the normal shared case, discard 1996 space for relocs that have become local due to symbol visibility 1997 changes. */ 1998 if (bfd_link_pic (info)) 1999 { 2000 #if RELATIVE_DYNRELOCS 2001 if (SYMBOL_CALLS_LOCAL (info, eh)) 2002 { 2003 struct elf_dyn_relocs **hdh_pp; 2004 2005 for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; ) 2006 { 2007 hdh_p->count -= hdh_p->pc_count; 2008 hdh_p->pc_count = 0; 2009 if (hdh_p->count == 0) 2010 *hdh_pp = hdh_p->next; 2011 else 2012 hdh_pp = &hdh_p->next; 2013 } 2014 } 2015 #endif 2016 2017 if (hh->dyn_relocs != NULL) 2018 { 2019 if (!ensure_undef_dynamic (info, eh)) 2020 return FALSE; 2021 } 2022 } 2023 else if (ELIMINATE_COPY_RELOCS) 2024 { 2025 /* For the non-shared case, discard space for relocs against 2026 symbols which turn out to need copy relocs or are not 2027 dynamic. */ 2028 2029 if (eh->dynamic_adjusted 2030 && !eh->def_regular 2031 && !ELF_COMMON_DEF_P (eh)) 2032 { 2033 if (!ensure_undef_dynamic (info, eh)) 2034 return FALSE; 2035 2036 if (eh->dynindx == -1) 2037 hh->dyn_relocs = NULL; 2038 } 2039 else 2040 hh->dyn_relocs = NULL; 2041 } 2042 2043 /* Finally, allocate space. */ 2044 for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->next) 2045 { 2046 asection *sreloc = elf_section_data (hdh_p->sec)->sreloc; 2047 sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela); 2048 } 2049 2050 return TRUE; 2051 } 2052 2053 /* This function is called via elf_link_hash_traverse to force 2054 millicode symbols local so they do not end up as globals in the 2055 dynamic symbol table. We ought to be able to do this in 2056 adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called 2057 for all dynamic symbols. Arguably, this is a bug in 2058 elf_adjust_dynamic_symbol. */ 2059 2060 static bfd_boolean 2061 clobber_millicode_symbols (struct elf_link_hash_entry *eh, 2062 struct bfd_link_info *info) 2063 { 2064 if (eh->type == STT_PARISC_MILLI 2065 && !eh->forced_local) 2066 { 2067 elf32_hppa_hide_symbol (info, eh, TRUE); 2068 } 2069 return TRUE; 2070 } 2071 2072 /* Set DF_TEXTREL if we find any dynamic relocs that apply to 2073 read-only sections. */ 2074 2075 static bfd_boolean 2076 maybe_set_textrel (struct elf_link_hash_entry *eh, void *inf) 2077 { 2078 asection *sec; 2079 2080 if (eh->root.type == bfd_link_hash_indirect) 2081 return TRUE; 2082 2083 sec = readonly_dynrelocs (eh); 2084 if (sec != NULL) 2085 { 2086 struct bfd_link_info *info = (struct bfd_link_info *) inf; 2087 2088 info->flags |= DF_TEXTREL; 2089 info->callbacks->minfo 2090 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"), 2091 sec->owner, eh->root.root.string, sec); 2092 2093 /* Not an error, just cut short the traversal. */ 2094 return FALSE; 2095 } 2096 return TRUE; 2097 } 2098 2099 /* Set the sizes of the dynamic sections. */ 2100 2101 static bfd_boolean 2102 elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, 2103 struct bfd_link_info *info) 2104 { 2105 struct elf32_hppa_link_hash_table *htab; 2106 bfd *dynobj; 2107 bfd *ibfd; 2108 asection *sec; 2109 bfd_boolean relocs; 2110 2111 htab = hppa_link_hash_table (info); 2112 if (htab == NULL) 2113 return FALSE; 2114 2115 dynobj = htab->etab.dynobj; 2116 if (dynobj == NULL) 2117 abort (); 2118 2119 if (htab->etab.dynamic_sections_created) 2120 { 2121 /* Set the contents of the .interp section to the interpreter. */ 2122 if (bfd_link_executable (info) && !info->nointerp) 2123 { 2124 sec = bfd_get_linker_section (dynobj, ".interp"); 2125 if (sec == NULL) 2126 abort (); 2127 sec->size = sizeof ELF_DYNAMIC_INTERPRETER; 2128 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 2129 } 2130 2131 /* Force millicode symbols local. */ 2132 elf_link_hash_traverse (&htab->etab, 2133 clobber_millicode_symbols, 2134 info); 2135 } 2136 2137 /* Set up .got and .plt offsets for local syms, and space for local 2138 dynamic relocs. */ 2139 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 2140 { 2141 bfd_signed_vma *local_got; 2142 bfd_signed_vma *end_local_got; 2143 bfd_signed_vma *local_plt; 2144 bfd_signed_vma *end_local_plt; 2145 bfd_size_type locsymcount; 2146 Elf_Internal_Shdr *symtab_hdr; 2147 asection *srel; 2148 char *local_tls_type; 2149 2150 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) 2151 continue; 2152 2153 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 2154 { 2155 struct elf_dyn_relocs *hdh_p; 2156 2157 for (hdh_p = ((struct elf_dyn_relocs *) 2158 elf_section_data (sec)->local_dynrel); 2159 hdh_p != NULL; 2160 hdh_p = hdh_p->next) 2161 { 2162 if (!bfd_is_abs_section (hdh_p->sec) 2163 && bfd_is_abs_section (hdh_p->sec->output_section)) 2164 { 2165 /* Input section has been discarded, either because 2166 it is a copy of a linkonce section or due to 2167 linker script /DISCARD/, so we'll be discarding 2168 the relocs too. */ 2169 } 2170 else if (hdh_p->count != 0) 2171 { 2172 srel = elf_section_data (hdh_p->sec)->sreloc; 2173 srel->size += hdh_p->count * sizeof (Elf32_External_Rela); 2174 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0) 2175 info->flags |= DF_TEXTREL; 2176 } 2177 } 2178 } 2179 2180 local_got = elf_local_got_refcounts (ibfd); 2181 if (!local_got) 2182 continue; 2183 2184 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr; 2185 locsymcount = symtab_hdr->sh_info; 2186 end_local_got = local_got + locsymcount; 2187 local_tls_type = hppa_elf_local_got_tls_type (ibfd); 2188 sec = htab->etab.sgot; 2189 srel = htab->etab.srelgot; 2190 for (; local_got < end_local_got; ++local_got) 2191 { 2192 if (*local_got > 0) 2193 { 2194 unsigned int need; 2195 2196 *local_got = sec->size; 2197 need = got_entries_needed (*local_tls_type); 2198 sec->size += need; 2199 if (bfd_link_dll (info) 2200 || (bfd_link_pic (info) 2201 && (*local_tls_type & GOT_NORMAL) != 0)) 2202 htab->etab.srelgot->size 2203 += got_relocs_needed (*local_tls_type, need, TRUE, 2204 bfd_link_executable (info)); 2205 } 2206 else 2207 *local_got = (bfd_vma) -1; 2208 2209 ++local_tls_type; 2210 } 2211 2212 local_plt = end_local_got; 2213 end_local_plt = local_plt + locsymcount; 2214 if (! htab->etab.dynamic_sections_created) 2215 { 2216 /* Won't be used, but be safe. */ 2217 for (; local_plt < end_local_plt; ++local_plt) 2218 *local_plt = (bfd_vma) -1; 2219 } 2220 else 2221 { 2222 sec = htab->etab.splt; 2223 srel = htab->etab.srelplt; 2224 for (; local_plt < end_local_plt; ++local_plt) 2225 { 2226 if (*local_plt > 0) 2227 { 2228 *local_plt = sec->size; 2229 sec->size += PLT_ENTRY_SIZE; 2230 if (bfd_link_pic (info)) 2231 srel->size += sizeof (Elf32_External_Rela); 2232 } 2233 else 2234 *local_plt = (bfd_vma) -1; 2235 } 2236 } 2237 } 2238 2239 if (htab->tls_ldm_got.refcount > 0) 2240 { 2241 /* Allocate 2 got entries and 1 dynamic reloc for 2242 R_PARISC_TLS_DTPMOD32 relocs. */ 2243 htab->tls_ldm_got.offset = htab->etab.sgot->size; 2244 htab->etab.sgot->size += (GOT_ENTRY_SIZE * 2); 2245 htab->etab.srelgot->size += sizeof (Elf32_External_Rela); 2246 } 2247 else 2248 htab->tls_ldm_got.offset = -1; 2249 2250 /* Do all the .plt entries without relocs first. The dynamic linker 2251 uses the last .plt reloc to find the end of the .plt (and hence 2252 the start of the .got) for lazy linking. */ 2253 elf_link_hash_traverse (&htab->etab, allocate_plt_static, info); 2254 2255 /* Allocate global sym .plt and .got entries, and space for global 2256 sym dynamic relocs. */ 2257 elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info); 2258 2259 /* The check_relocs and adjust_dynamic_symbol entry points have 2260 determined the sizes of the various dynamic sections. Allocate 2261 memory for them. */ 2262 relocs = FALSE; 2263 for (sec = dynobj->sections; sec != NULL; sec = sec->next) 2264 { 2265 if ((sec->flags & SEC_LINKER_CREATED) == 0) 2266 continue; 2267 2268 if (sec == htab->etab.splt) 2269 { 2270 if (htab->need_plt_stub) 2271 { 2272 /* Make space for the plt stub at the end of the .plt 2273 section. We want this stub right at the end, up 2274 against the .got section. */ 2275 int gotalign = bfd_section_alignment (dynobj, htab->etab.sgot); 2276 int pltalign = bfd_section_alignment (dynobj, sec); 2277 bfd_size_type mask; 2278 2279 if (gotalign > pltalign) 2280 (void) bfd_set_section_alignment (dynobj, sec, gotalign); 2281 mask = ((bfd_size_type) 1 << gotalign) - 1; 2282 sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask; 2283 } 2284 } 2285 else if (sec == htab->etab.sgot 2286 || sec == htab->etab.sdynbss 2287 || sec == htab->etab.sdynrelro) 2288 ; 2289 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela")) 2290 { 2291 if (sec->size != 0) 2292 { 2293 /* Remember whether there are any reloc sections other 2294 than .rela.plt. */ 2295 if (sec != htab->etab.srelplt) 2296 relocs = TRUE; 2297 2298 /* We use the reloc_count field as a counter if we need 2299 to copy relocs into the output file. */ 2300 sec->reloc_count = 0; 2301 } 2302 } 2303 else 2304 { 2305 /* It's not one of our sections, so don't allocate space. */ 2306 continue; 2307 } 2308 2309 if (sec->size == 0) 2310 { 2311 /* If we don't need this section, strip it from the 2312 output file. This is mostly to handle .rela.bss and 2313 .rela.plt. We must create both sections in 2314 create_dynamic_sections, because they must be created 2315 before the linker maps input sections to output 2316 sections. The linker does that before 2317 adjust_dynamic_symbol is called, and it is that 2318 function which decides whether anything needs to go 2319 into these sections. */ 2320 sec->flags |= SEC_EXCLUDE; 2321 continue; 2322 } 2323 2324 if ((sec->flags & SEC_HAS_CONTENTS) == 0) 2325 continue; 2326 2327 /* Allocate memory for the section contents. Zero it, because 2328 we may not fill in all the reloc sections. */ 2329 sec->contents = bfd_zalloc (dynobj, sec->size); 2330 if (sec->contents == NULL) 2331 return FALSE; 2332 } 2333 2334 if (htab->etab.dynamic_sections_created) 2335 { 2336 /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It 2337 actually has nothing to do with the PLT, it is how we 2338 communicate the LTP value of a load module to the dynamic 2339 linker. */ 2340 #define add_dynamic_entry(TAG, VAL) \ 2341 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 2342 2343 if (!add_dynamic_entry (DT_PLTGOT, 0)) 2344 return FALSE; 2345 2346 /* Add some entries to the .dynamic section. We fill in the 2347 values later, in elf32_hppa_finish_dynamic_sections, but we 2348 must add the entries now so that we get the correct size for 2349 the .dynamic section. The DT_DEBUG entry is filled in by the 2350 dynamic linker and used by the debugger. */ 2351 if (bfd_link_executable (info)) 2352 { 2353 if (!add_dynamic_entry (DT_DEBUG, 0)) 2354 return FALSE; 2355 } 2356 2357 if (htab->etab.srelplt->size != 0) 2358 { 2359 if (!add_dynamic_entry (DT_PLTRELSZ, 0) 2360 || !add_dynamic_entry (DT_PLTREL, DT_RELA) 2361 || !add_dynamic_entry (DT_JMPREL, 0)) 2362 return FALSE; 2363 } 2364 2365 if (relocs) 2366 { 2367 if (!add_dynamic_entry (DT_RELA, 0) 2368 || !add_dynamic_entry (DT_RELASZ, 0) 2369 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) 2370 return FALSE; 2371 2372 /* If any dynamic relocs apply to a read-only section, 2373 then we need a DT_TEXTREL entry. */ 2374 if ((info->flags & DF_TEXTREL) == 0) 2375 elf_link_hash_traverse (&htab->etab, maybe_set_textrel, info); 2376 2377 if ((info->flags & DF_TEXTREL) != 0) 2378 { 2379 if (!add_dynamic_entry (DT_TEXTREL, 0)) 2380 return FALSE; 2381 } 2382 } 2383 } 2384 #undef add_dynamic_entry 2385 2386 return TRUE; 2387 } 2388 2389 /* External entry points for sizing and building linker stubs. */ 2390 2391 /* Set up various things so that we can make a list of input sections 2392 for each output section included in the link. Returns -1 on error, 2393 0 when no stubs will be needed, and 1 on success. */ 2394 2395 int 2396 elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info) 2397 { 2398 bfd *input_bfd; 2399 unsigned int bfd_count; 2400 unsigned int top_id, top_index; 2401 asection *section; 2402 asection **input_list, **list; 2403 bfd_size_type amt; 2404 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); 2405 2406 if (htab == NULL) 2407 return -1; 2408 2409 /* Count the number of input BFDs and find the top input section id. */ 2410 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; 2411 input_bfd != NULL; 2412 input_bfd = input_bfd->link.next) 2413 { 2414 bfd_count += 1; 2415 for (section = input_bfd->sections; 2416 section != NULL; 2417 section = section->next) 2418 { 2419 if (top_id < section->id) 2420 top_id = section->id; 2421 } 2422 } 2423 htab->bfd_count = bfd_count; 2424 2425 amt = sizeof (struct map_stub) * (top_id + 1); 2426 htab->stub_group = bfd_zmalloc (amt); 2427 if (htab->stub_group == NULL) 2428 return -1; 2429 2430 /* We can't use output_bfd->section_count here to find the top output 2431 section index as some sections may have been removed, and 2432 strip_excluded_output_sections doesn't renumber the indices. */ 2433 for (section = output_bfd->sections, top_index = 0; 2434 section != NULL; 2435 section = section->next) 2436 { 2437 if (top_index < section->index) 2438 top_index = section->index; 2439 } 2440 2441 htab->top_index = top_index; 2442 amt = sizeof (asection *) * (top_index + 1); 2443 input_list = bfd_malloc (amt); 2444 htab->input_list = input_list; 2445 if (input_list == NULL) 2446 return -1; 2447 2448 /* For sections we aren't interested in, mark their entries with a 2449 value we can check later. */ 2450 list = input_list + top_index; 2451 do 2452 *list = bfd_abs_section_ptr; 2453 while (list-- != input_list); 2454 2455 for (section = output_bfd->sections; 2456 section != NULL; 2457 section = section->next) 2458 { 2459 if ((section->flags & SEC_CODE) != 0) 2460 input_list[section->index] = NULL; 2461 } 2462 2463 return 1; 2464 } 2465 2466 /* The linker repeatedly calls this function for each input section, 2467 in the order that input sections are linked into output sections. 2468 Build lists of input sections to determine groupings between which 2469 we may insert linker stubs. */ 2470 2471 void 2472 elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec) 2473 { 2474 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); 2475 2476 if (htab == NULL) 2477 return; 2478 2479 if (isec->output_section->index <= htab->top_index) 2480 { 2481 asection **list = htab->input_list + isec->output_section->index; 2482 if (*list != bfd_abs_section_ptr) 2483 { 2484 /* Steal the link_sec pointer for our list. */ 2485 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) 2486 /* This happens to make the list in reverse order, 2487 which is what we want. */ 2488 PREV_SEC (isec) = *list; 2489 *list = isec; 2490 } 2491 } 2492 } 2493 2494 /* See whether we can group stub sections together. Grouping stub 2495 sections may result in fewer stubs. More importantly, we need to 2496 put all .init* and .fini* stubs at the beginning of the .init or 2497 .fini output sections respectively, because glibc splits the 2498 _init and _fini functions into multiple parts. Putting a stub in 2499 the middle of a function is not a good idea. */ 2500 2501 static void 2502 group_sections (struct elf32_hppa_link_hash_table *htab, 2503 bfd_size_type stub_group_size, 2504 bfd_boolean stubs_always_before_branch) 2505 { 2506 asection **list = htab->input_list + htab->top_index; 2507 do 2508 { 2509 asection *tail = *list; 2510 if (tail == bfd_abs_section_ptr) 2511 continue; 2512 while (tail != NULL) 2513 { 2514 asection *curr; 2515 asection *prev; 2516 bfd_size_type total; 2517 bfd_boolean big_sec; 2518 2519 curr = tail; 2520 total = tail->size; 2521 big_sec = total >= stub_group_size; 2522 2523 while ((prev = PREV_SEC (curr)) != NULL 2524 && ((total += curr->output_offset - prev->output_offset) 2525 < stub_group_size)) 2526 curr = prev; 2527 2528 /* OK, the size from the start of CURR to the end is less 2529 than 240000 bytes and thus can be handled by one stub 2530 section. (or the tail section is itself larger than 2531 240000 bytes, in which case we may be toast.) 2532 We should really be keeping track of the total size of 2533 stubs added here, as stubs contribute to the final output 2534 section size. That's a little tricky, and this way will 2535 only break if stubs added total more than 22144 bytes, or 2536 2768 long branch stubs. It seems unlikely for more than 2537 2768 different functions to be called, especially from 2538 code only 240000 bytes long. This limit used to be 2539 250000, but c++ code tends to generate lots of little 2540 functions, and sometimes violated the assumption. */ 2541 do 2542 { 2543 prev = PREV_SEC (tail); 2544 /* Set up this stub group. */ 2545 htab->stub_group[tail->id].link_sec = curr; 2546 } 2547 while (tail != curr && (tail = prev) != NULL); 2548 2549 /* But wait, there's more! Input sections up to 240000 2550 bytes before the stub section can be handled by it too. 2551 Don't do this if we have a really large section after the 2552 stubs, as adding more stubs increases the chance that 2553 branches may not reach into the stub section. */ 2554 if (!stubs_always_before_branch && !big_sec) 2555 { 2556 total = 0; 2557 while (prev != NULL 2558 && ((total += tail->output_offset - prev->output_offset) 2559 < stub_group_size)) 2560 { 2561 tail = prev; 2562 prev = PREV_SEC (tail); 2563 htab->stub_group[tail->id].link_sec = curr; 2564 } 2565 } 2566 tail = prev; 2567 } 2568 } 2569 while (list-- != htab->input_list); 2570 free (htab->input_list); 2571 #undef PREV_SEC 2572 } 2573 2574 /* Read in all local syms for all input bfds, and create hash entries 2575 for export stubs if we are building a multi-subspace shared lib. 2576 Returns -1 on error, 1 if export stubs created, 0 otherwise. */ 2577 2578 static int 2579 get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info) 2580 { 2581 unsigned int bfd_indx; 2582 Elf_Internal_Sym *local_syms, **all_local_syms; 2583 int stub_changed = 0; 2584 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); 2585 2586 if (htab == NULL) 2587 return -1; 2588 2589 /* We want to read in symbol extension records only once. To do this 2590 we need to read in the local symbols in parallel and save them for 2591 later use; so hold pointers to the local symbols in an array. */ 2592 bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count; 2593 all_local_syms = bfd_zmalloc (amt); 2594 htab->all_local_syms = all_local_syms; 2595 if (all_local_syms == NULL) 2596 return -1; 2597 2598 /* Walk over all the input BFDs, swapping in local symbols. 2599 If we are creating a shared library, create hash entries for the 2600 export stubs. */ 2601 for (bfd_indx = 0; 2602 input_bfd != NULL; 2603 input_bfd = input_bfd->link.next, bfd_indx++) 2604 { 2605 Elf_Internal_Shdr *symtab_hdr; 2606 2607 /* We'll need the symbol table in a second. */ 2608 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 2609 if (symtab_hdr->sh_info == 0) 2610 continue; 2611 2612 /* We need an array of the local symbols attached to the input bfd. */ 2613 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; 2614 if (local_syms == NULL) 2615 { 2616 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, 2617 symtab_hdr->sh_info, 0, 2618 NULL, NULL, NULL); 2619 /* Cache them for elf_link_input_bfd. */ 2620 symtab_hdr->contents = (unsigned char *) local_syms; 2621 } 2622 if (local_syms == NULL) 2623 return -1; 2624 2625 all_local_syms[bfd_indx] = local_syms; 2626 2627 if (bfd_link_pic (info) && htab->multi_subspace) 2628 { 2629 struct elf_link_hash_entry **eh_syms; 2630 struct elf_link_hash_entry **eh_symend; 2631 unsigned int symcount; 2632 2633 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) 2634 - symtab_hdr->sh_info); 2635 eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd); 2636 eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount); 2637 2638 /* Look through the global syms for functions; We need to 2639 build export stubs for all globally visible functions. */ 2640 for (; eh_syms < eh_symend; eh_syms++) 2641 { 2642 struct elf32_hppa_link_hash_entry *hh; 2643 2644 hh = hppa_elf_hash_entry (*eh_syms); 2645 2646 while (hh->eh.root.type == bfd_link_hash_indirect 2647 || hh->eh.root.type == bfd_link_hash_warning) 2648 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); 2649 2650 /* At this point in the link, undefined syms have been 2651 resolved, so we need to check that the symbol was 2652 defined in this BFD. */ 2653 if ((hh->eh.root.type == bfd_link_hash_defined 2654 || hh->eh.root.type == bfd_link_hash_defweak) 2655 && hh->eh.type == STT_FUNC 2656 && hh->eh.root.u.def.section->output_section != NULL 2657 && (hh->eh.root.u.def.section->output_section->owner 2658 == output_bfd) 2659 && hh->eh.root.u.def.section->owner == input_bfd 2660 && hh->eh.def_regular 2661 && !hh->eh.forced_local 2662 && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT) 2663 { 2664 asection *sec; 2665 const char *stub_name; 2666 struct elf32_hppa_stub_hash_entry *hsh; 2667 2668 sec = hh->eh.root.u.def.section; 2669 stub_name = hh_name (hh); 2670 hsh = hppa_stub_hash_lookup (&htab->bstab, 2671 stub_name, 2672 FALSE, FALSE); 2673 if (hsh == NULL) 2674 { 2675 hsh = hppa_add_stub (stub_name, sec, htab); 2676 if (!hsh) 2677 return -1; 2678 2679 hsh->target_value = hh->eh.root.u.def.value; 2680 hsh->target_section = hh->eh.root.u.def.section; 2681 hsh->stub_type = hppa_stub_export; 2682 hsh->hh = hh; 2683 stub_changed = 1; 2684 } 2685 else 2686 { 2687 /* xgettext:c-format */ 2688 _bfd_error_handler (_("%pB: duplicate export stub %s"), 2689 input_bfd, stub_name); 2690 } 2691 } 2692 } 2693 } 2694 } 2695 2696 return stub_changed; 2697 } 2698 2699 /* Determine and set the size of the stub section for a final link. 2700 2701 The basic idea here is to examine all the relocations looking for 2702 PC-relative calls to a target that is unreachable with a "bl" 2703 instruction. */ 2704 2705 bfd_boolean 2706 elf32_hppa_size_stubs 2707 (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info, 2708 bfd_boolean multi_subspace, bfd_signed_vma group_size, 2709 asection * (*add_stub_section) (const char *, asection *), 2710 void (*layout_sections_again) (void)) 2711 { 2712 bfd_size_type stub_group_size; 2713 bfd_boolean stubs_always_before_branch; 2714 bfd_boolean stub_changed; 2715 struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info); 2716 2717 if (htab == NULL) 2718 return FALSE; 2719 2720 /* Stash our params away. */ 2721 htab->stub_bfd = stub_bfd; 2722 htab->multi_subspace = multi_subspace; 2723 htab->add_stub_section = add_stub_section; 2724 htab->layout_sections_again = layout_sections_again; 2725 stubs_always_before_branch = group_size < 0; 2726 if (group_size < 0) 2727 stub_group_size = -group_size; 2728 else 2729 stub_group_size = group_size; 2730 if (stub_group_size == 1) 2731 { 2732 /* Default values. */ 2733 if (stubs_always_before_branch) 2734 { 2735 stub_group_size = 7680000; 2736 if (htab->has_17bit_branch || htab->multi_subspace) 2737 stub_group_size = 240000; 2738 if (htab->has_12bit_branch) 2739 stub_group_size = 7500; 2740 } 2741 else 2742 { 2743 stub_group_size = 6971392; 2744 if (htab->has_17bit_branch || htab->multi_subspace) 2745 stub_group_size = 217856; 2746 if (htab->has_12bit_branch) 2747 stub_group_size = 6808; 2748 } 2749 } 2750 2751 group_sections (htab, stub_group_size, stubs_always_before_branch); 2752 2753 switch (get_local_syms (output_bfd, info->input_bfds, info)) 2754 { 2755 default: 2756 if (htab->all_local_syms) 2757 goto error_ret_free_local; 2758 return FALSE; 2759 2760 case 0: 2761 stub_changed = FALSE; 2762 break; 2763 2764 case 1: 2765 stub_changed = TRUE; 2766 break; 2767 } 2768 2769 while (1) 2770 { 2771 bfd *input_bfd; 2772 unsigned int bfd_indx; 2773 asection *stub_sec; 2774 2775 for (input_bfd = info->input_bfds, bfd_indx = 0; 2776 input_bfd != NULL; 2777 input_bfd = input_bfd->link.next, bfd_indx++) 2778 { 2779 Elf_Internal_Shdr *symtab_hdr; 2780 asection *section; 2781 Elf_Internal_Sym *local_syms; 2782 2783 /* We'll need the symbol table in a second. */ 2784 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 2785 if (symtab_hdr->sh_info == 0) 2786 continue; 2787 2788 local_syms = htab->all_local_syms[bfd_indx]; 2789 2790 /* Walk over each section attached to the input bfd. */ 2791 for (section = input_bfd->sections; 2792 section != NULL; 2793 section = section->next) 2794 { 2795 Elf_Internal_Rela *internal_relocs, *irelaend, *irela; 2796 2797 /* If there aren't any relocs, then there's nothing more 2798 to do. */ 2799 if ((section->flags & SEC_RELOC) == 0 2800 || (section->flags & SEC_ALLOC) == 0 2801 || (section->flags & SEC_LOAD) == 0 2802 || (section->flags & SEC_CODE) == 0 2803 || section->reloc_count == 0) 2804 continue; 2805 2806 /* If this section is a link-once section that will be 2807 discarded, then don't create any stubs. */ 2808 if (section->output_section == NULL 2809 || section->output_section->owner != output_bfd) 2810 continue; 2811 2812 /* Get the relocs. */ 2813 internal_relocs 2814 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL, 2815 info->keep_memory); 2816 if (internal_relocs == NULL) 2817 goto error_ret_free_local; 2818 2819 /* Now examine each relocation. */ 2820 irela = internal_relocs; 2821 irelaend = irela + section->reloc_count; 2822 for (; irela < irelaend; irela++) 2823 { 2824 unsigned int r_type, r_indx; 2825 enum elf32_hppa_stub_type stub_type; 2826 struct elf32_hppa_stub_hash_entry *hsh; 2827 asection *sym_sec; 2828 bfd_vma sym_value; 2829 bfd_vma destination; 2830 struct elf32_hppa_link_hash_entry *hh; 2831 char *stub_name; 2832 const asection *id_sec; 2833 2834 r_type = ELF32_R_TYPE (irela->r_info); 2835 r_indx = ELF32_R_SYM (irela->r_info); 2836 2837 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED) 2838 { 2839 bfd_set_error (bfd_error_bad_value); 2840 error_ret_free_internal: 2841 if (elf_section_data (section)->relocs == NULL) 2842 free (internal_relocs); 2843 goto error_ret_free_local; 2844 } 2845 2846 /* Only look for stubs on call instructions. */ 2847 if (r_type != (unsigned int) R_PARISC_PCREL12F 2848 && r_type != (unsigned int) R_PARISC_PCREL17F 2849 && r_type != (unsigned int) R_PARISC_PCREL22F) 2850 continue; 2851 2852 /* Now determine the call target, its name, value, 2853 section. */ 2854 sym_sec = NULL; 2855 sym_value = 0; 2856 destination = -1; 2857 hh = NULL; 2858 if (r_indx < symtab_hdr->sh_info) 2859 { 2860 /* It's a local symbol. */ 2861 Elf_Internal_Sym *sym; 2862 Elf_Internal_Shdr *hdr; 2863 unsigned int shndx; 2864 2865 sym = local_syms + r_indx; 2866 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) 2867 sym_value = sym->st_value; 2868 shndx = sym->st_shndx; 2869 if (shndx < elf_numsections (input_bfd)) 2870 { 2871 hdr = elf_elfsections (input_bfd)[shndx]; 2872 sym_sec = hdr->bfd_section; 2873 destination = (sym_value + irela->r_addend 2874 + sym_sec->output_offset 2875 + sym_sec->output_section->vma); 2876 } 2877 } 2878 else 2879 { 2880 /* It's an external symbol. */ 2881 int e_indx; 2882 2883 e_indx = r_indx - symtab_hdr->sh_info; 2884 hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]); 2885 2886 while (hh->eh.root.type == bfd_link_hash_indirect 2887 || hh->eh.root.type == bfd_link_hash_warning) 2888 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link); 2889 2890 if (hh->eh.root.type == bfd_link_hash_defined 2891 || hh->eh.root.type == bfd_link_hash_defweak) 2892 { 2893 sym_sec = hh->eh.root.u.def.section; 2894 sym_value = hh->eh.root.u.def.value; 2895 if (sym_sec->output_section != NULL) 2896 destination = (sym_value + irela->r_addend 2897 + sym_sec->output_offset 2898 + sym_sec->output_section->vma); 2899 } 2900 else if (hh->eh.root.type == bfd_link_hash_undefweak) 2901 { 2902 if (! bfd_link_pic (info)) 2903 continue; 2904 } 2905 else if (hh->eh.root.type == bfd_link_hash_undefined) 2906 { 2907 if (! (info->unresolved_syms_in_objects == RM_IGNORE 2908 && (ELF_ST_VISIBILITY (hh->eh.other) 2909 == STV_DEFAULT) 2910 && hh->eh.type != STT_PARISC_MILLI)) 2911 continue; 2912 } 2913 else 2914 { 2915 bfd_set_error (bfd_error_bad_value); 2916 goto error_ret_free_internal; 2917 } 2918 } 2919 2920 /* Determine what (if any) linker stub is needed. */ 2921 stub_type = hppa_type_of_stub (section, irela, hh, 2922 destination, info); 2923 if (stub_type == hppa_stub_none) 2924 continue; 2925 2926 /* Support for grouping stub sections. */ 2927 id_sec = htab->stub_group[section->id].link_sec; 2928 2929 /* Get the name of this stub. */ 2930 stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela); 2931 if (!stub_name) 2932 goto error_ret_free_internal; 2933 2934 hsh = hppa_stub_hash_lookup (&htab->bstab, 2935 stub_name, 2936 FALSE, FALSE); 2937 if (hsh != NULL) 2938 { 2939 /* The proper stub has already been created. */ 2940 free (stub_name); 2941 continue; 2942 } 2943 2944 hsh = hppa_add_stub (stub_name, section, htab); 2945 if (hsh == NULL) 2946 { 2947 free (stub_name); 2948 goto error_ret_free_internal; 2949 } 2950 2951 hsh->target_value = sym_value; 2952 hsh->target_section = sym_sec; 2953 hsh->stub_type = stub_type; 2954 if (bfd_link_pic (info)) 2955 { 2956 if (stub_type == hppa_stub_import) 2957 hsh->stub_type = hppa_stub_import_shared; 2958 else if (stub_type == hppa_stub_long_branch) 2959 hsh->stub_type = hppa_stub_long_branch_shared; 2960 } 2961 hsh->hh = hh; 2962 stub_changed = TRUE; 2963 } 2964 2965 /* We're done with the internal relocs, free them. */ 2966 if (elf_section_data (section)->relocs == NULL) 2967 free (internal_relocs); 2968 } 2969 } 2970 2971 if (!stub_changed) 2972 break; 2973 2974 /* OK, we've added some stubs. Find out the new size of the 2975 stub sections. */ 2976 for (stub_sec = htab->stub_bfd->sections; 2977 stub_sec != NULL; 2978 stub_sec = stub_sec->next) 2979 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0) 2980 stub_sec->size = 0; 2981 2982 bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab); 2983 2984 /* Ask the linker to do its stuff. */ 2985 (*htab->layout_sections_again) (); 2986 stub_changed = FALSE; 2987 } 2988 2989 free (htab->all_local_syms); 2990 return TRUE; 2991 2992 error_ret_free_local: 2993 free (htab->all_local_syms); 2994 return FALSE; 2995 } 2996 2997 /* For a final link, this function is called after we have sized the 2998 stubs to provide a value for __gp. */ 2999 3000 bfd_boolean 3001 elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info) 3002 { 3003 struct bfd_link_hash_entry *h; 3004 asection *sec = NULL; 3005 bfd_vma gp_val = 0; 3006 3007 h = bfd_link_hash_lookup (info->hash, "$global$", FALSE, FALSE, FALSE); 3008 3009 if (h != NULL 3010 && (h->type == bfd_link_hash_defined 3011 || h->type == bfd_link_hash_defweak)) 3012 { 3013 gp_val = h->u.def.value; 3014 sec = h->u.def.section; 3015 } 3016 else 3017 { 3018 asection *splt = bfd_get_section_by_name (abfd, ".plt"); 3019 asection *sgot = bfd_get_section_by_name (abfd, ".got"); 3020 3021 /* Choose to point our LTP at, in this order, one of .plt, .got, 3022 or .data, if these sections exist. In the case of choosing 3023 .plt try to make the LTP ideal for addressing anywhere in the 3024 .plt or .got with a 14 bit signed offset. Typically, the end 3025 of the .plt is the start of the .got, so choose .plt + 0x2000 3026 if either the .plt or .got is larger than 0x2000. If both 3027 the .plt and .got are smaller than 0x2000, choose the end of 3028 the .plt section. */ 3029 sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0 3030 ? NULL : splt; 3031 if (sec != NULL) 3032 { 3033 gp_val = sec->size; 3034 if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000)) 3035 { 3036 gp_val = 0x2000; 3037 } 3038 } 3039 else 3040 { 3041 sec = sgot; 3042 if (sec != NULL) 3043 { 3044 if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0) 3045 { 3046 /* We know we don't have a .plt. If .got is large, 3047 offset our LTP. */ 3048 if (sec->size > 0x2000) 3049 gp_val = 0x2000; 3050 } 3051 } 3052 else 3053 { 3054 /* No .plt or .got. Who cares what the LTP is? */ 3055 sec = bfd_get_section_by_name (abfd, ".data"); 3056 } 3057 } 3058 3059 if (h != NULL) 3060 { 3061 h->type = bfd_link_hash_defined; 3062 h->u.def.value = gp_val; 3063 if (sec != NULL) 3064 h->u.def.section = sec; 3065 else 3066 h->u.def.section = bfd_abs_section_ptr; 3067 } 3068 } 3069 3070 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour) 3071 { 3072 if (sec != NULL && sec->output_section != NULL) 3073 gp_val += sec->output_section->vma + sec->output_offset; 3074 3075 elf_gp (abfd) = gp_val; 3076 } 3077 return TRUE; 3078 } 3079 3080 /* Build all the stubs associated with the current output file. The 3081 stubs are kept in a hash table attached to the main linker hash 3082 table. We also set up the .plt entries for statically linked PIC 3083 functions here. This function is called via hppaelf_finish in the 3084 linker. */ 3085 3086 bfd_boolean 3087 elf32_hppa_build_stubs (struct bfd_link_info *info) 3088 { 3089 asection *stub_sec; 3090 struct bfd_hash_table *table; 3091 struct elf32_hppa_link_hash_table *htab; 3092 3093 htab = hppa_link_hash_table (info); 3094 if (htab == NULL) 3095 return FALSE; 3096 3097 for (stub_sec = htab->stub_bfd->sections; 3098 stub_sec != NULL; 3099 stub_sec = stub_sec->next) 3100 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0 3101 && stub_sec->size != 0) 3102 { 3103 /* Allocate memory to hold the linker stubs. */ 3104 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size); 3105 if (stub_sec->contents == NULL) 3106 return FALSE; 3107 stub_sec->size = 0; 3108 } 3109 3110 /* Build the stubs as directed by the stub hash table. */ 3111 table = &htab->bstab; 3112 bfd_hash_traverse (table, hppa_build_one_stub, info); 3113 3114 return TRUE; 3115 } 3116 3117 /* Return the base vma address which should be subtracted from the real 3118 address when resolving a dtpoff relocation. 3119 This is PT_TLS segment p_vaddr. */ 3120 3121 static bfd_vma 3122 dtpoff_base (struct bfd_link_info *info) 3123 { 3124 /* If tls_sec is NULL, we should have signalled an error already. */ 3125 if (elf_hash_table (info)->tls_sec == NULL) 3126 return 0; 3127 return elf_hash_table (info)->tls_sec->vma; 3128 } 3129 3130 /* Return the relocation value for R_PARISC_TLS_TPOFF*.. */ 3131 3132 static bfd_vma 3133 tpoff (struct bfd_link_info *info, bfd_vma address) 3134 { 3135 struct elf_link_hash_table *htab = elf_hash_table (info); 3136 3137 /* If tls_sec is NULL, we should have signalled an error already. */ 3138 if (htab->tls_sec == NULL) 3139 return 0; 3140 /* hppa TLS ABI is variant I and static TLS block start just after 3141 tcbhead structure which has 2 pointer fields. */ 3142 return (address - htab->tls_sec->vma 3143 + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power)); 3144 } 3145 3146 /* Perform a final link. */ 3147 3148 static bfd_boolean 3149 elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info) 3150 { 3151 struct stat buf; 3152 3153 /* Invoke the regular ELF linker to do all the work. */ 3154 if (!bfd_elf_final_link (abfd, info)) 3155 return FALSE; 3156 3157 /* If we're producing a final executable, sort the contents of the 3158 unwind section. */ 3159 if (bfd_link_relocatable (info)) 3160 return TRUE; 3161 3162 /* Do not attempt to sort non-regular files. This is here 3163 especially for configure scripts and kernel builds which run 3164 tests with "ld [...] -o /dev/null". */ 3165 if (stat (abfd->filename, &buf) != 0 3166 || !S_ISREG(buf.st_mode)) 3167 return TRUE; 3168 3169 return elf_hppa_sort_unwind (abfd); 3170 } 3171 3172 /* Record the lowest address for the data and text segments. */ 3173 3174 static void 3175 hppa_record_segment_addr (bfd *abfd, asection *section, void *data) 3176 { 3177 struct elf32_hppa_link_hash_table *htab; 3178 3179 htab = (struct elf32_hppa_link_hash_table*) data; 3180 if (htab == NULL) 3181 return; 3182 3183 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD)) 3184 { 3185 bfd_vma value; 3186 Elf_Internal_Phdr *p; 3187 3188 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section); 3189 BFD_ASSERT (p != NULL); 3190 value = p->p_vaddr; 3191 3192 if ((section->flags & SEC_READONLY) != 0) 3193 { 3194 if (value < htab->text_segment_base) 3195 htab->text_segment_base = value; 3196 } 3197 else 3198 { 3199 if (value < htab->data_segment_base) 3200 htab->data_segment_base = value; 3201 } 3202 } 3203 } 3204 3205 /* Perform a relocation as part of a final link. */ 3206 3207 static bfd_reloc_status_type 3208 final_link_relocate (asection *input_section, 3209 bfd_byte *contents, 3210 const Elf_Internal_Rela *rela, 3211 bfd_vma value, 3212 struct elf32_hppa_link_hash_table *htab, 3213 asection *sym_sec, 3214 struct elf32_hppa_link_hash_entry *hh, 3215 struct bfd_link_info *info) 3216 { 3217 int insn; 3218 unsigned int r_type = ELF32_R_TYPE (rela->r_info); 3219 unsigned int orig_r_type = r_type; 3220 reloc_howto_type *howto = elf_hppa_howto_table + r_type; 3221 int r_format = howto->bitsize; 3222 enum hppa_reloc_field_selector_type_alt r_field; 3223 bfd *input_bfd = input_section->owner; 3224 bfd_vma offset = rela->r_offset; 3225 bfd_vma max_branch_offset = 0; 3226 bfd_byte *hit_data = contents + offset; 3227 bfd_signed_vma addend = rela->r_addend; 3228 bfd_vma location; 3229 struct elf32_hppa_stub_hash_entry *hsh = NULL; 3230 int val; 3231 3232 if (r_type == R_PARISC_NONE) 3233 return bfd_reloc_ok; 3234 3235 insn = bfd_get_32 (input_bfd, hit_data); 3236 3237 /* Find out where we are and where we're going. */ 3238 location = (offset + 3239 input_section->output_offset + 3240 input_section->output_section->vma); 3241 3242 /* If we are not building a shared library, convert DLTIND relocs to 3243 DPREL relocs. */ 3244 if (!bfd_link_pic (info)) 3245 { 3246 switch (r_type) 3247 { 3248 case R_PARISC_DLTIND21L: 3249 case R_PARISC_TLS_GD21L: 3250 case R_PARISC_TLS_LDM21L: 3251 case R_PARISC_TLS_IE21L: 3252 r_type = R_PARISC_DPREL21L; 3253 break; 3254 3255 case R_PARISC_DLTIND14R: 3256 case R_PARISC_TLS_GD14R: 3257 case R_PARISC_TLS_LDM14R: 3258 case R_PARISC_TLS_IE14R: 3259 r_type = R_PARISC_DPREL14R; 3260 break; 3261 3262 case R_PARISC_DLTIND14F: 3263 r_type = R_PARISC_DPREL14F; 3264 break; 3265 } 3266 } 3267 3268 switch (r_type) 3269 { 3270 case R_PARISC_PCREL12F: 3271 case R_PARISC_PCREL17F: 3272 case R_PARISC_PCREL22F: 3273 /* If this call should go via the plt, find the import stub in 3274 the stub hash. */ 3275 if (sym_sec == NULL 3276 || sym_sec->output_section == NULL 3277 || (hh != NULL 3278 && hh->eh.plt.offset != (bfd_vma) -1 3279 && hh->eh.dynindx != -1 3280 && !hh->plabel 3281 && (bfd_link_pic (info) 3282 || !hh->eh.def_regular 3283 || hh->eh.root.type == bfd_link_hash_defweak))) 3284 { 3285 hsh = hppa_get_stub_entry (input_section, sym_sec, 3286 hh, rela, htab); 3287 if (hsh != NULL) 3288 { 3289 value = (hsh->stub_offset 3290 + hsh->stub_sec->output_offset 3291 + hsh->stub_sec->output_section->vma); 3292 addend = 0; 3293 } 3294 else if (sym_sec == NULL && hh != NULL 3295 && hh->eh.root.type == bfd_link_hash_undefweak) 3296 { 3297 /* It's OK if undefined weak. Calls to undefined weak 3298 symbols behave as if the "called" function 3299 immediately returns. We can thus call to a weak 3300 function without first checking whether the function 3301 is defined. */ 3302 value = location; 3303 addend = 8; 3304 } 3305 else 3306 return bfd_reloc_undefined; 3307 } 3308 /* Fall thru. */ 3309 3310 case R_PARISC_PCREL21L: 3311 case R_PARISC_PCREL17C: 3312 case R_PARISC_PCREL17R: 3313 case R_PARISC_PCREL14R: 3314 case R_PARISC_PCREL14F: 3315 case R_PARISC_PCREL32: 3316 /* Make it a pc relative offset. */ 3317 value -= location; 3318 addend -= 8; 3319 break; 3320 3321 case R_PARISC_DPREL21L: 3322 case R_PARISC_DPREL14R: 3323 case R_PARISC_DPREL14F: 3324 /* Convert instructions that use the linkage table pointer (r19) to 3325 instructions that use the global data pointer (dp). This is the 3326 most efficient way of using PIC code in an incomplete executable, 3327 but the user must follow the standard runtime conventions for 3328 accessing data for this to work. */ 3329 if (orig_r_type != r_type) 3330 { 3331 if (r_type == R_PARISC_DPREL21L) 3332 { 3333 /* GCC sometimes uses a register other than r19 for the 3334 operation, so we must convert any addil instruction 3335 that uses this relocation. */ 3336 if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26)) 3337 insn = ADDIL_DP; 3338 else 3339 /* We must have a ldil instruction. It's too hard to find 3340 and convert the associated add instruction, so issue an 3341 error. */ 3342 _bfd_error_handler 3343 /* xgettext:c-format */ 3344 (_("%pB(%pA+%#" PRIx64 "): %s fixup for insn %#x " 3345 "is not supported in a non-shared link"), 3346 input_bfd, 3347 input_section, 3348 (uint64_t) offset, 3349 howto->name, 3350 insn); 3351 } 3352 else if (r_type == R_PARISC_DPREL14F) 3353 { 3354 /* This must be a format 1 load/store. Change the base 3355 register to dp. */ 3356 insn = (insn & 0xfc1ffff) | (27 << 21); 3357 } 3358 } 3359 3360 /* For all the DP relative relocations, we need to examine the symbol's 3361 section. If it has no section or if it's a code section, then 3362 "data pointer relative" makes no sense. In that case we don't 3363 adjust the "value", and for 21 bit addil instructions, we change the 3364 source addend register from %dp to %r0. This situation commonly 3365 arises for undefined weak symbols and when a variable's "constness" 3366 is declared differently from the way the variable is defined. For 3367 instance: "extern int foo" with foo defined as "const int foo". */ 3368 if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0) 3369 { 3370 if ((insn & ((0x3f << 26) | (0x1f << 21))) 3371 == (((int) OP_ADDIL << 26) | (27 << 21))) 3372 { 3373 insn &= ~ (0x1f << 21); 3374 } 3375 /* Now try to make things easy for the dynamic linker. */ 3376 3377 break; 3378 } 3379 /* Fall thru. */ 3380 3381 case R_PARISC_DLTIND21L: 3382 case R_PARISC_DLTIND14R: 3383 case R_PARISC_DLTIND14F: 3384 case R_PARISC_TLS_GD21L: 3385 case R_PARISC_TLS_LDM21L: 3386 case R_PARISC_TLS_IE21L: 3387 case R_PARISC_TLS_GD14R: 3388 case R_PARISC_TLS_LDM14R: 3389 case R_PARISC_TLS_IE14R: 3390 value -= elf_gp (input_section->output_section->owner); 3391 break; 3392 3393 case R_PARISC_SEGREL32: 3394 if ((sym_sec->flags & SEC_CODE) != 0) 3395 value -= htab->text_segment_base; 3396 else 3397 value -= htab->data_segment_base; 3398 break; 3399 3400 default: 3401 break; 3402 } 3403 3404 switch (r_type) 3405 { 3406 case R_PARISC_DIR32: 3407 case R_PARISC_DIR14F: 3408 case R_PARISC_DIR17F: 3409 case R_PARISC_PCREL17C: 3410 case R_PARISC_PCREL14F: 3411 case R_PARISC_PCREL32: 3412 case R_PARISC_DPREL14F: 3413 case R_PARISC_PLABEL32: 3414 case R_PARISC_DLTIND14F: 3415 case R_PARISC_SEGBASE: 3416 case R_PARISC_SEGREL32: 3417 case R_PARISC_TLS_DTPMOD32: 3418 case R_PARISC_TLS_DTPOFF32: 3419 case R_PARISC_TLS_TPREL32: 3420 r_field = e_fsel; 3421 break; 3422 3423 case R_PARISC_DLTIND21L: 3424 case R_PARISC_PCREL21L: 3425 case R_PARISC_PLABEL21L: 3426 r_field = e_lsel; 3427 break; 3428 3429 case R_PARISC_DIR21L: 3430 case R_PARISC_DPREL21L: 3431 case R_PARISC_TLS_GD21L: 3432 case R_PARISC_TLS_LDM21L: 3433 case R_PARISC_TLS_LDO21L: 3434 case R_PARISC_TLS_IE21L: 3435 case R_PARISC_TLS_LE21L: 3436 r_field = e_lrsel; 3437 break; 3438 3439 case R_PARISC_PCREL17R: 3440 case R_PARISC_PCREL14R: 3441 case R_PARISC_PLABEL14R: 3442 case R_PARISC_DLTIND14R: 3443 r_field = e_rsel; 3444 break; 3445 3446 case R_PARISC_DIR17R: 3447 case R_PARISC_DIR14R: 3448 case R_PARISC_DPREL14R: 3449 case R_PARISC_TLS_GD14R: 3450 case R_PARISC_TLS_LDM14R: 3451 case R_PARISC_TLS_LDO14R: 3452 case R_PARISC_TLS_IE14R: 3453 case R_PARISC_TLS_LE14R: 3454 r_field = e_rrsel; 3455 break; 3456 3457 case R_PARISC_PCREL12F: 3458 case R_PARISC_PCREL17F: 3459 case R_PARISC_PCREL22F: 3460 r_field = e_fsel; 3461 3462 if (r_type == (unsigned int) R_PARISC_PCREL17F) 3463 { 3464 max_branch_offset = (1 << (17-1)) << 2; 3465 } 3466 else if (r_type == (unsigned int) R_PARISC_PCREL12F) 3467 { 3468 max_branch_offset = (1 << (12-1)) << 2; 3469 } 3470 else 3471 { 3472 max_branch_offset = (1 << (22-1)) << 2; 3473 } 3474 3475 /* sym_sec is NULL on undefined weak syms or when shared on 3476 undefined syms. We've already checked for a stub for the 3477 shared undefined case. */ 3478 if (sym_sec == NULL) 3479 break; 3480 3481 /* If the branch is out of reach, then redirect the 3482 call to the local stub for this function. */ 3483 if (value + addend + max_branch_offset >= 2*max_branch_offset) 3484 { 3485 hsh = hppa_get_stub_entry (input_section, sym_sec, 3486 hh, rela, htab); 3487 if (hsh == NULL) 3488 return bfd_reloc_undefined; 3489 3490 /* Munge up the value and addend so that we call the stub 3491 rather than the procedure directly. */ 3492 value = (hsh->stub_offset 3493 + hsh->stub_sec->output_offset 3494 + hsh->stub_sec->output_section->vma 3495 - location); 3496 addend = -8; 3497 } 3498 break; 3499 3500 /* Something we don't know how to handle. */ 3501 default: 3502 return bfd_reloc_notsupported; 3503 } 3504 3505 /* Make sure we can reach the stub. */ 3506 if (max_branch_offset != 0 3507 && value + addend + max_branch_offset >= 2*max_branch_offset) 3508 { 3509 _bfd_error_handler 3510 /* xgettext:c-format */ 3511 (_("%pB(%pA+%#" PRIx64 "): cannot reach %s, " 3512 "recompile with -ffunction-sections"), 3513 input_bfd, 3514 input_section, 3515 (uint64_t) offset, 3516 hsh->bh_root.string); 3517 bfd_set_error (bfd_error_bad_value); 3518 return bfd_reloc_notsupported; 3519 } 3520 3521 val = hppa_field_adjust (value, addend, r_field); 3522 3523 switch (r_type) 3524 { 3525 case R_PARISC_PCREL12F: 3526 case R_PARISC_PCREL17C: 3527 case R_PARISC_PCREL17F: 3528 case R_PARISC_PCREL17R: 3529 case R_PARISC_PCREL22F: 3530 case R_PARISC_DIR17F: 3531 case R_PARISC_DIR17R: 3532 /* This is a branch. Divide the offset by four. 3533 Note that we need to decide whether it's a branch or 3534 otherwise by inspecting the reloc. Inspecting insn won't 3535 work as insn might be from a .word directive. */ 3536 val >>= 2; 3537 break; 3538 3539 default: 3540 break; 3541 } 3542 3543 insn = hppa_rebuild_insn (insn, val, r_format); 3544 3545 /* Update the instruction word. */ 3546 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data); 3547 return bfd_reloc_ok; 3548 } 3549 3550 /* Relocate an HPPA ELF section. */ 3551 3552 static bfd_boolean 3553 elf32_hppa_relocate_section (bfd *output_bfd, 3554 struct bfd_link_info *info, 3555 bfd *input_bfd, 3556 asection *input_section, 3557 bfd_byte *contents, 3558 Elf_Internal_Rela *relocs, 3559 Elf_Internal_Sym *local_syms, 3560 asection **local_sections) 3561 { 3562 bfd_vma *local_got_offsets; 3563 struct elf32_hppa_link_hash_table *htab; 3564 Elf_Internal_Shdr *symtab_hdr; 3565 Elf_Internal_Rela *rela; 3566 Elf_Internal_Rela *relend; 3567 3568 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 3569 3570 htab = hppa_link_hash_table (info); 3571 if (htab == NULL) 3572 return FALSE; 3573 3574 local_got_offsets = elf_local_got_offsets (input_bfd); 3575 3576 rela = relocs; 3577 relend = relocs + input_section->reloc_count; 3578 for (; rela < relend; rela++) 3579 { 3580 unsigned int r_type; 3581 reloc_howto_type *howto; 3582 unsigned int r_symndx; 3583 struct elf32_hppa_link_hash_entry *hh; 3584 Elf_Internal_Sym *sym; 3585 asection *sym_sec; 3586 bfd_vma relocation; 3587 bfd_reloc_status_type rstatus; 3588 const char *sym_name; 3589 bfd_boolean plabel; 3590 bfd_boolean warned_undef; 3591 3592 r_type = ELF32_R_TYPE (rela->r_info); 3593 if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED) 3594 { 3595 bfd_set_error (bfd_error_bad_value); 3596 return FALSE; 3597 } 3598 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY 3599 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT) 3600 continue; 3601 3602 r_symndx = ELF32_R_SYM (rela->r_info); 3603 hh = NULL; 3604 sym = NULL; 3605 sym_sec = NULL; 3606 warned_undef = FALSE; 3607 if (r_symndx < symtab_hdr->sh_info) 3608 { 3609 /* This is a local symbol, h defaults to NULL. */ 3610 sym = local_syms + r_symndx; 3611 sym_sec = local_sections[r_symndx]; 3612 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela); 3613 } 3614 else 3615 { 3616 struct elf_link_hash_entry *eh; 3617 bfd_boolean unresolved_reloc, ignored; 3618 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd); 3619 3620 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela, 3621 r_symndx, symtab_hdr, sym_hashes, 3622 eh, sym_sec, relocation, 3623 unresolved_reloc, warned_undef, 3624 ignored); 3625 3626 if (!bfd_link_relocatable (info) 3627 && relocation == 0 3628 && eh->root.type != bfd_link_hash_defined 3629 && eh->root.type != bfd_link_hash_defweak 3630 && eh->root.type != bfd_link_hash_undefweak) 3631 { 3632 if (info->unresolved_syms_in_objects == RM_IGNORE 3633 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT 3634 && eh->type == STT_PARISC_MILLI) 3635 { 3636 (*info->callbacks->undefined_symbol) 3637 (info, eh_name (eh), input_bfd, 3638 input_section, rela->r_offset, FALSE); 3639 warned_undef = TRUE; 3640 } 3641 } 3642 hh = hppa_elf_hash_entry (eh); 3643 } 3644 3645 if (sym_sec != NULL && discarded_section (sym_sec)) 3646 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 3647 rela, 1, relend, 3648 elf_hppa_howto_table + r_type, 0, 3649 contents); 3650 3651 if (bfd_link_relocatable (info)) 3652 continue; 3653 3654 /* Do any required modifications to the relocation value, and 3655 determine what types of dynamic info we need to output, if 3656 any. */ 3657 plabel = 0; 3658 switch (r_type) 3659 { 3660 case R_PARISC_DLTIND14F: 3661 case R_PARISC_DLTIND14R: 3662 case R_PARISC_DLTIND21L: 3663 { 3664 bfd_vma off; 3665 bfd_boolean do_got = FALSE; 3666 bfd_boolean reloc = bfd_link_pic (info); 3667 3668 /* Relocation is to the entry for this symbol in the 3669 global offset table. */ 3670 if (hh != NULL) 3671 { 3672 bfd_boolean dyn; 3673 3674 off = hh->eh.got.offset; 3675 dyn = htab->etab.dynamic_sections_created; 3676 reloc = (!UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh) 3677 && (reloc 3678 || (hh->eh.dynindx != -1 3679 && !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))); 3680 if (!reloc 3681 || !WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 3682 bfd_link_pic (info), 3683 &hh->eh)) 3684 { 3685 /* If we aren't going to call finish_dynamic_symbol, 3686 then we need to handle initialisation of the .got 3687 entry and create needed relocs here. Since the 3688 offset must always be a multiple of 4, we use the 3689 least significant bit to record whether we have 3690 initialised it already. */ 3691 if ((off & 1) != 0) 3692 off &= ~1; 3693 else 3694 { 3695 hh->eh.got.offset |= 1; 3696 do_got = TRUE; 3697 } 3698 } 3699 } 3700 else 3701 { 3702 /* Local symbol case. */ 3703 if (local_got_offsets == NULL) 3704 abort (); 3705 3706 off = local_got_offsets[r_symndx]; 3707 3708 /* The offset must always be a multiple of 4. We use 3709 the least significant bit to record whether we have 3710 already generated the necessary reloc. */ 3711 if ((off & 1) != 0) 3712 off &= ~1; 3713 else 3714 { 3715 local_got_offsets[r_symndx] |= 1; 3716 do_got = TRUE; 3717 } 3718 } 3719 3720 if (do_got) 3721 { 3722 if (reloc) 3723 { 3724 /* Output a dynamic relocation for this GOT entry. 3725 In this case it is relative to the base of the 3726 object because the symbol index is zero. */ 3727 Elf_Internal_Rela outrel; 3728 bfd_byte *loc; 3729 asection *sec = htab->etab.srelgot; 3730 3731 outrel.r_offset = (off 3732 + htab->etab.sgot->output_offset 3733 + htab->etab.sgot->output_section->vma); 3734 outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32); 3735 outrel.r_addend = relocation; 3736 loc = sec->contents; 3737 loc += sec->reloc_count++ * sizeof (Elf32_External_Rela); 3738 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 3739 } 3740 else 3741 bfd_put_32 (output_bfd, relocation, 3742 htab->etab.sgot->contents + off); 3743 } 3744 3745 if (off >= (bfd_vma) -2) 3746 abort (); 3747 3748 /* Add the base of the GOT to the relocation value. */ 3749 relocation = (off 3750 + htab->etab.sgot->output_offset 3751 + htab->etab.sgot->output_section->vma); 3752 } 3753 break; 3754 3755 case R_PARISC_SEGREL32: 3756 /* If this is the first SEGREL relocation, then initialize 3757 the segment base values. */ 3758 if (htab->text_segment_base == (bfd_vma) -1) 3759 bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab); 3760 break; 3761 3762 case R_PARISC_PLABEL14R: 3763 case R_PARISC_PLABEL21L: 3764 case R_PARISC_PLABEL32: 3765 if (htab->etab.dynamic_sections_created) 3766 { 3767 bfd_vma off; 3768 bfd_boolean do_plt = 0; 3769 /* If we have a global symbol with a PLT slot, then 3770 redirect this relocation to it. */ 3771 if (hh != NULL) 3772 { 3773 off = hh->eh.plt.offset; 3774 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 3775 bfd_link_pic (info), 3776 &hh->eh)) 3777 { 3778 /* In a non-shared link, adjust_dynamic_symbol 3779 isn't called for symbols forced local. We 3780 need to write out the plt entry here. */ 3781 if ((off & 1) != 0) 3782 off &= ~1; 3783 else 3784 { 3785 hh->eh.plt.offset |= 1; 3786 do_plt = 1; 3787 } 3788 } 3789 } 3790 else 3791 { 3792 bfd_vma *local_plt_offsets; 3793 3794 if (local_got_offsets == NULL) 3795 abort (); 3796 3797 local_plt_offsets = local_got_offsets + symtab_hdr->sh_info; 3798 off = local_plt_offsets[r_symndx]; 3799 3800 /* As for the local .got entry case, we use the last 3801 bit to record whether we've already initialised 3802 this local .plt entry. */ 3803 if ((off & 1) != 0) 3804 off &= ~1; 3805 else 3806 { 3807 local_plt_offsets[r_symndx] |= 1; 3808 do_plt = 1; 3809 } 3810 } 3811 3812 if (do_plt) 3813 { 3814 if (bfd_link_pic (info)) 3815 { 3816 /* Output a dynamic IPLT relocation for this 3817 PLT entry. */ 3818 Elf_Internal_Rela outrel; 3819 bfd_byte *loc; 3820 asection *s = htab->etab.srelplt; 3821 3822 outrel.r_offset = (off 3823 + htab->etab.splt->output_offset 3824 + htab->etab.splt->output_section->vma); 3825 outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT); 3826 outrel.r_addend = relocation; 3827 loc = s->contents; 3828 loc += s->reloc_count++ * sizeof (Elf32_External_Rela); 3829 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 3830 } 3831 else 3832 { 3833 bfd_put_32 (output_bfd, 3834 relocation, 3835 htab->etab.splt->contents + off); 3836 bfd_put_32 (output_bfd, 3837 elf_gp (htab->etab.splt->output_section->owner), 3838 htab->etab.splt->contents + off + 4); 3839 } 3840 } 3841 3842 if (off >= (bfd_vma) -2) 3843 abort (); 3844 3845 /* PLABELs contain function pointers. Relocation is to 3846 the entry for the function in the .plt. The magic +2 3847 offset signals to $$dyncall that the function pointer 3848 is in the .plt and thus has a gp pointer too. 3849 Exception: Undefined PLABELs should have a value of 3850 zero. */ 3851 if (hh == NULL 3852 || (hh->eh.root.type != bfd_link_hash_undefweak 3853 && hh->eh.root.type != bfd_link_hash_undefined)) 3854 { 3855 relocation = (off 3856 + htab->etab.splt->output_offset 3857 + htab->etab.splt->output_section->vma 3858 + 2); 3859 } 3860 plabel = 1; 3861 } 3862 /* Fall through. */ 3863 3864 case R_PARISC_DIR17F: 3865 case R_PARISC_DIR17R: 3866 case R_PARISC_DIR14F: 3867 case R_PARISC_DIR14R: 3868 case R_PARISC_DIR21L: 3869 case R_PARISC_DPREL14F: 3870 case R_PARISC_DPREL14R: 3871 case R_PARISC_DPREL21L: 3872 case R_PARISC_DIR32: 3873 if ((input_section->flags & SEC_ALLOC) == 0) 3874 break; 3875 3876 if (bfd_link_pic (info) 3877 ? ((hh == NULL 3878 || hh->dyn_relocs != NULL) 3879 && ((hh != NULL && pc_dynrelocs (hh)) 3880 || IS_ABSOLUTE_RELOC (r_type))) 3881 : (hh != NULL 3882 && hh->dyn_relocs != NULL)) 3883 { 3884 Elf_Internal_Rela outrel; 3885 bfd_boolean skip; 3886 asection *sreloc; 3887 bfd_byte *loc; 3888 3889 /* When generating a shared object, these relocations 3890 are copied into the output file to be resolved at run 3891 time. */ 3892 3893 outrel.r_addend = rela->r_addend; 3894 outrel.r_offset = 3895 _bfd_elf_section_offset (output_bfd, info, input_section, 3896 rela->r_offset); 3897 skip = (outrel.r_offset == (bfd_vma) -1 3898 || outrel.r_offset == (bfd_vma) -2); 3899 outrel.r_offset += (input_section->output_offset 3900 + input_section->output_section->vma); 3901 3902 if (skip) 3903 { 3904 memset (&outrel, 0, sizeof (outrel)); 3905 } 3906 else if (hh != NULL 3907 && hh->eh.dynindx != -1 3908 && (plabel 3909 || !IS_ABSOLUTE_RELOC (r_type) 3910 || !bfd_link_pic (info) 3911 || !SYMBOLIC_BIND (info, &hh->eh) 3912 || !hh->eh.def_regular)) 3913 { 3914 outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type); 3915 } 3916 else /* It's a local symbol, or one marked to become local. */ 3917 { 3918 int indx = 0; 3919 3920 /* Add the absolute offset of the symbol. */ 3921 outrel.r_addend += relocation; 3922 3923 /* Global plabels need to be processed by the 3924 dynamic linker so that functions have at most one 3925 fptr. For this reason, we need to differentiate 3926 between global and local plabels, which we do by 3927 providing the function symbol for a global plabel 3928 reloc, and no symbol for local plabels. */ 3929 if (! plabel 3930 && sym_sec != NULL 3931 && sym_sec->output_section != NULL 3932 && ! bfd_is_abs_section (sym_sec)) 3933 { 3934 asection *osec; 3935 3936 osec = sym_sec->output_section; 3937 indx = elf_section_data (osec)->dynindx; 3938 if (indx == 0) 3939 { 3940 osec = htab->etab.text_index_section; 3941 indx = elf_section_data (osec)->dynindx; 3942 } 3943 BFD_ASSERT (indx != 0); 3944 3945 /* We are turning this relocation into one 3946 against a section symbol, so subtract out the 3947 output section's address but not the offset 3948 of the input section in the output section. */ 3949 outrel.r_addend -= osec->vma; 3950 } 3951 3952 outrel.r_info = ELF32_R_INFO (indx, r_type); 3953 } 3954 sreloc = elf_section_data (input_section)->sreloc; 3955 if (sreloc == NULL) 3956 abort (); 3957 3958 loc = sreloc->contents; 3959 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela); 3960 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 3961 } 3962 break; 3963 3964 case R_PARISC_TLS_LDM21L: 3965 case R_PARISC_TLS_LDM14R: 3966 { 3967 bfd_vma off; 3968 3969 off = htab->tls_ldm_got.offset; 3970 if (off & 1) 3971 off &= ~1; 3972 else 3973 { 3974 Elf_Internal_Rela outrel; 3975 bfd_byte *loc; 3976 3977 outrel.r_offset = (off 3978 + htab->etab.sgot->output_section->vma 3979 + htab->etab.sgot->output_offset); 3980 outrel.r_addend = 0; 3981 outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32); 3982 loc = htab->etab.srelgot->contents; 3983 loc += htab->etab.srelgot->reloc_count++ * sizeof (Elf32_External_Rela); 3984 3985 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 3986 htab->tls_ldm_got.offset |= 1; 3987 } 3988 3989 /* Add the base of the GOT to the relocation value. */ 3990 relocation = (off 3991 + htab->etab.sgot->output_offset 3992 + htab->etab.sgot->output_section->vma); 3993 3994 break; 3995 } 3996 3997 case R_PARISC_TLS_LDO21L: 3998 case R_PARISC_TLS_LDO14R: 3999 relocation -= dtpoff_base (info); 4000 break; 4001 4002 case R_PARISC_TLS_GD21L: 4003 case R_PARISC_TLS_GD14R: 4004 case R_PARISC_TLS_IE21L: 4005 case R_PARISC_TLS_IE14R: 4006 { 4007 bfd_vma off; 4008 int indx; 4009 char tls_type; 4010 4011 indx = 0; 4012 if (hh != NULL) 4013 { 4014 if (!htab->etab.dynamic_sections_created 4015 || hh->eh.dynindx == -1 4016 || SYMBOL_REFERENCES_LOCAL (info, &hh->eh) 4017 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)) 4018 /* This is actually a static link, or it is a 4019 -Bsymbolic link and the symbol is defined 4020 locally, or the symbol was forced to be local 4021 because of a version file. */ 4022 ; 4023 else 4024 indx = hh->eh.dynindx; 4025 off = hh->eh.got.offset; 4026 tls_type = hh->tls_type; 4027 } 4028 else 4029 { 4030 off = local_got_offsets[r_symndx]; 4031 tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx]; 4032 } 4033 4034 if (tls_type == GOT_UNKNOWN) 4035 abort (); 4036 4037 if ((off & 1) != 0) 4038 off &= ~1; 4039 else 4040 { 4041 bfd_boolean need_relocs = FALSE; 4042 Elf_Internal_Rela outrel; 4043 bfd_byte *loc = NULL; 4044 int cur_off = off; 4045 4046 /* The GOT entries have not been initialized yet. Do it 4047 now, and emit any relocations. If both an IE GOT and a 4048 GD GOT are necessary, we emit the GD first. */ 4049 4050 if (indx != 0 4051 || (bfd_link_dll (info) 4052 && (hh == NULL 4053 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &hh->eh)))) 4054 { 4055 need_relocs = TRUE; 4056 loc = htab->etab.srelgot->contents; 4057 loc += (htab->etab.srelgot->reloc_count 4058 * sizeof (Elf32_External_Rela)); 4059 } 4060 4061 if (tls_type & GOT_TLS_GD) 4062 { 4063 if (need_relocs) 4064 { 4065 outrel.r_offset 4066 = (cur_off 4067 + htab->etab.sgot->output_section->vma 4068 + htab->etab.sgot->output_offset); 4069 outrel.r_info 4070 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPMOD32); 4071 outrel.r_addend = 0; 4072 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 4073 htab->etab.srelgot->reloc_count++; 4074 loc += sizeof (Elf32_External_Rela); 4075 bfd_put_32 (output_bfd, 0, 4076 htab->etab.sgot->contents + cur_off); 4077 } 4078 else 4079 /* If we are not emitting relocations for a 4080 general dynamic reference, then we must be in a 4081 static link or an executable link with the 4082 symbol binding locally. Mark it as belonging 4083 to module 1, the executable. */ 4084 bfd_put_32 (output_bfd, 1, 4085 htab->etab.sgot->contents + cur_off); 4086 4087 if (indx != 0) 4088 { 4089 outrel.r_info 4090 = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32); 4091 outrel.r_offset += 4; 4092 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 4093 htab->etab.srelgot->reloc_count++; 4094 loc += sizeof (Elf32_External_Rela); 4095 bfd_put_32 (output_bfd, 0, 4096 htab->etab.sgot->contents + cur_off + 4); 4097 } 4098 else 4099 bfd_put_32 (output_bfd, relocation - dtpoff_base (info), 4100 htab->etab.sgot->contents + cur_off + 4); 4101 cur_off += 8; 4102 } 4103 4104 if (tls_type & GOT_TLS_IE) 4105 { 4106 if (need_relocs 4107 && !(bfd_link_executable (info) 4108 && SYMBOL_REFERENCES_LOCAL (info, &hh->eh))) 4109 { 4110 outrel.r_offset 4111 = (cur_off 4112 + htab->etab.sgot->output_section->vma 4113 + htab->etab.sgot->output_offset); 4114 outrel.r_info = ELF32_R_INFO (indx, 4115 R_PARISC_TLS_TPREL32); 4116 if (indx == 0) 4117 outrel.r_addend = relocation - dtpoff_base (info); 4118 else 4119 outrel.r_addend = 0; 4120 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 4121 htab->etab.srelgot->reloc_count++; 4122 loc += sizeof (Elf32_External_Rela); 4123 } 4124 else 4125 bfd_put_32 (output_bfd, tpoff (info, relocation), 4126 htab->etab.sgot->contents + cur_off); 4127 cur_off += 4; 4128 } 4129 4130 if (hh != NULL) 4131 hh->eh.got.offset |= 1; 4132 else 4133 local_got_offsets[r_symndx] |= 1; 4134 } 4135 4136 if ((tls_type & GOT_NORMAL) != 0 4137 && (tls_type & (GOT_TLS_GD | GOT_TLS_LDM | GOT_TLS_IE)) != 0) 4138 { 4139 if (hh != NULL) 4140 _bfd_error_handler (_("%s has both normal and TLS relocs"), 4141 hh_name (hh)); 4142 else 4143 { 4144 Elf_Internal_Sym *isym 4145 = bfd_sym_from_r_symndx (&htab->sym_cache, 4146 input_bfd, r_symndx); 4147 if (isym == NULL) 4148 return FALSE; 4149 sym_name 4150 = bfd_elf_string_from_elf_section (input_bfd, 4151 symtab_hdr->sh_link, 4152 isym->st_name); 4153 if (sym_name == NULL) 4154 return FALSE; 4155 if (*sym_name == '\0') 4156 sym_name = bfd_section_name (input_bfd, sym_sec); 4157 _bfd_error_handler 4158 (_("%pB:%s has both normal and TLS relocs"), 4159 input_bfd, sym_name); 4160 } 4161 bfd_set_error (bfd_error_bad_value); 4162 return FALSE; 4163 } 4164 4165 if ((tls_type & GOT_TLS_GD) 4166 && r_type != R_PARISC_TLS_GD21L 4167 && r_type != R_PARISC_TLS_GD14R) 4168 off += 2 * GOT_ENTRY_SIZE; 4169 4170 /* Add the base of the GOT to the relocation value. */ 4171 relocation = (off 4172 + htab->etab.sgot->output_offset 4173 + htab->etab.sgot->output_section->vma); 4174 4175 break; 4176 } 4177 4178 case R_PARISC_TLS_LE21L: 4179 case R_PARISC_TLS_LE14R: 4180 { 4181 relocation = tpoff (info, relocation); 4182 break; 4183 } 4184 break; 4185 4186 default: 4187 break; 4188 } 4189 4190 rstatus = final_link_relocate (input_section, contents, rela, relocation, 4191 htab, sym_sec, hh, info); 4192 4193 if (rstatus == bfd_reloc_ok) 4194 continue; 4195 4196 if (hh != NULL) 4197 sym_name = hh_name (hh); 4198 else 4199 { 4200 sym_name = bfd_elf_string_from_elf_section (input_bfd, 4201 symtab_hdr->sh_link, 4202 sym->st_name); 4203 if (sym_name == NULL) 4204 return FALSE; 4205 if (*sym_name == '\0') 4206 sym_name = bfd_section_name (input_bfd, sym_sec); 4207 } 4208 4209 howto = elf_hppa_howto_table + r_type; 4210 4211 if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported) 4212 { 4213 if (rstatus == bfd_reloc_notsupported || !warned_undef) 4214 { 4215 _bfd_error_handler 4216 /* xgettext:c-format */ 4217 (_("%pB(%pA+%#" PRIx64 "): cannot handle %s for %s"), 4218 input_bfd, 4219 input_section, 4220 (uint64_t) rela->r_offset, 4221 howto->name, 4222 sym_name); 4223 bfd_set_error (bfd_error_bad_value); 4224 return FALSE; 4225 } 4226 } 4227 else 4228 (*info->callbacks->reloc_overflow) 4229 (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name, 4230 (bfd_vma) 0, input_bfd, input_section, rela->r_offset); 4231 } 4232 4233 return TRUE; 4234 } 4235 4236 /* Finish up dynamic symbol handling. We set the contents of various 4237 dynamic sections here. */ 4238 4239 static bfd_boolean 4240 elf32_hppa_finish_dynamic_symbol (bfd *output_bfd, 4241 struct bfd_link_info *info, 4242 struct elf_link_hash_entry *eh, 4243 Elf_Internal_Sym *sym) 4244 { 4245 struct elf32_hppa_link_hash_table *htab; 4246 Elf_Internal_Rela rela; 4247 bfd_byte *loc; 4248 4249 htab = hppa_link_hash_table (info); 4250 if (htab == NULL) 4251 return FALSE; 4252 4253 if (eh->plt.offset != (bfd_vma) -1) 4254 { 4255 bfd_vma value; 4256 4257 if (eh->plt.offset & 1) 4258 abort (); 4259 4260 /* This symbol has an entry in the procedure linkage table. Set 4261 it up. 4262 4263 The format of a plt entry is 4264 <funcaddr> 4265 <__gp> 4266 */ 4267 value = 0; 4268 if (eh->root.type == bfd_link_hash_defined 4269 || eh->root.type == bfd_link_hash_defweak) 4270 { 4271 value = eh->root.u.def.value; 4272 if (eh->root.u.def.section->output_section != NULL) 4273 value += (eh->root.u.def.section->output_offset 4274 + eh->root.u.def.section->output_section->vma); 4275 } 4276 4277 /* Create a dynamic IPLT relocation for this entry. */ 4278 rela.r_offset = (eh->plt.offset 4279 + htab->etab.splt->output_offset 4280 + htab->etab.splt->output_section->vma); 4281 if (eh->dynindx != -1) 4282 { 4283 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT); 4284 rela.r_addend = 0; 4285 } 4286 else 4287 { 4288 /* This symbol has been marked to become local, and is 4289 used by a plabel so must be kept in the .plt. */ 4290 rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT); 4291 rela.r_addend = value; 4292 } 4293 4294 loc = htab->etab.srelplt->contents; 4295 loc += htab->etab.srelplt->reloc_count++ * sizeof (Elf32_External_Rela); 4296 bfd_elf32_swap_reloca_out (htab->etab.splt->output_section->owner, &rela, loc); 4297 4298 if (!eh->def_regular) 4299 { 4300 /* Mark the symbol as undefined, rather than as defined in 4301 the .plt section. Leave the value alone. */ 4302 sym->st_shndx = SHN_UNDEF; 4303 } 4304 } 4305 4306 if (eh->got.offset != (bfd_vma) -1 4307 && (hppa_elf_hash_entry (eh)->tls_type & GOT_NORMAL) != 0 4308 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, eh)) 4309 { 4310 bfd_boolean is_dyn = (eh->dynindx != -1 4311 && !SYMBOL_REFERENCES_LOCAL (info, eh)); 4312 4313 if (is_dyn || bfd_link_pic (info)) 4314 { 4315 /* This symbol has an entry in the global offset table. Set 4316 it up. */ 4317 4318 rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1) 4319 + htab->etab.sgot->output_offset 4320 + htab->etab.sgot->output_section->vma); 4321 4322 /* If this is a -Bsymbolic link and the symbol is defined 4323 locally or was forced to be local because of a version 4324 file, we just want to emit a RELATIVE reloc. The entry 4325 in the global offset table will already have been 4326 initialized in the relocate_section function. */ 4327 if (!is_dyn) 4328 { 4329 rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32); 4330 rela.r_addend = (eh->root.u.def.value 4331 + eh->root.u.def.section->output_offset 4332 + eh->root.u.def.section->output_section->vma); 4333 } 4334 else 4335 { 4336 if ((eh->got.offset & 1) != 0) 4337 abort (); 4338 4339 bfd_put_32 (output_bfd, 0, 4340 htab->etab.sgot->contents + (eh->got.offset & ~1)); 4341 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32); 4342 rela.r_addend = 0; 4343 } 4344 4345 loc = htab->etab.srelgot->contents; 4346 loc += (htab->etab.srelgot->reloc_count++ 4347 * sizeof (Elf32_External_Rela)); 4348 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 4349 } 4350 } 4351 4352 if (eh->needs_copy) 4353 { 4354 asection *sec; 4355 4356 /* This symbol needs a copy reloc. Set it up. */ 4357 4358 if (! (eh->dynindx != -1 4359 && (eh->root.type == bfd_link_hash_defined 4360 || eh->root.type == bfd_link_hash_defweak))) 4361 abort (); 4362 4363 rela.r_offset = (eh->root.u.def.value 4364 + eh->root.u.def.section->output_offset 4365 + eh->root.u.def.section->output_section->vma); 4366 rela.r_addend = 0; 4367 rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY); 4368 if (eh->root.u.def.section == htab->etab.sdynrelro) 4369 sec = htab->etab.sreldynrelro; 4370 else 4371 sec = htab->etab.srelbss; 4372 loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela); 4373 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 4374 } 4375 4376 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ 4377 if (eh == htab->etab.hdynamic || eh == htab->etab.hgot) 4378 { 4379 sym->st_shndx = SHN_ABS; 4380 } 4381 4382 return TRUE; 4383 } 4384 4385 /* Used to decide how to sort relocs in an optimal manner for the 4386 dynamic linker, before writing them out. */ 4387 4388 static enum elf_reloc_type_class 4389 elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 4390 const asection *rel_sec ATTRIBUTE_UNUSED, 4391 const Elf_Internal_Rela *rela) 4392 { 4393 /* Handle TLS relocs first; we don't want them to be marked 4394 relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)" 4395 check below. */ 4396 switch ((int) ELF32_R_TYPE (rela->r_info)) 4397 { 4398 case R_PARISC_TLS_DTPMOD32: 4399 case R_PARISC_TLS_DTPOFF32: 4400 case R_PARISC_TLS_TPREL32: 4401 return reloc_class_normal; 4402 } 4403 4404 if (ELF32_R_SYM (rela->r_info) == STN_UNDEF) 4405 return reloc_class_relative; 4406 4407 switch ((int) ELF32_R_TYPE (rela->r_info)) 4408 { 4409 case R_PARISC_IPLT: 4410 return reloc_class_plt; 4411 case R_PARISC_COPY: 4412 return reloc_class_copy; 4413 default: 4414 return reloc_class_normal; 4415 } 4416 } 4417 4418 /* Finish up the dynamic sections. */ 4419 4420 static bfd_boolean 4421 elf32_hppa_finish_dynamic_sections (bfd *output_bfd, 4422 struct bfd_link_info *info) 4423 { 4424 bfd *dynobj; 4425 struct elf32_hppa_link_hash_table *htab; 4426 asection *sdyn; 4427 asection * sgot; 4428 4429 htab = hppa_link_hash_table (info); 4430 if (htab == NULL) 4431 return FALSE; 4432 4433 dynobj = htab->etab.dynobj; 4434 4435 sgot = htab->etab.sgot; 4436 /* A broken linker script might have discarded the dynamic sections. 4437 Catch this here so that we do not seg-fault later on. */ 4438 if (sgot != NULL && bfd_is_abs_section (sgot->output_section)) 4439 return FALSE; 4440 4441 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 4442 4443 if (htab->etab.dynamic_sections_created) 4444 { 4445 Elf32_External_Dyn *dyncon, *dynconend; 4446 4447 if (sdyn == NULL) 4448 abort (); 4449 4450 dyncon = (Elf32_External_Dyn *) sdyn->contents; 4451 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); 4452 for (; dyncon < dynconend; dyncon++) 4453 { 4454 Elf_Internal_Dyn dyn; 4455 asection *s; 4456 4457 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); 4458 4459 switch (dyn.d_tag) 4460 { 4461 default: 4462 continue; 4463 4464 case DT_PLTGOT: 4465 /* Use PLTGOT to set the GOT register. */ 4466 dyn.d_un.d_ptr = elf_gp (output_bfd); 4467 break; 4468 4469 case DT_JMPREL: 4470 s = htab->etab.srelplt; 4471 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 4472 break; 4473 4474 case DT_PLTRELSZ: 4475 s = htab->etab.srelplt; 4476 dyn.d_un.d_val = s->size; 4477 break; 4478 } 4479 4480 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 4481 } 4482 } 4483 4484 if (sgot != NULL && sgot->size != 0) 4485 { 4486 /* Fill in the first entry in the global offset table. 4487 We use it to point to our dynamic section, if we have one. */ 4488 bfd_put_32 (output_bfd, 4489 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0, 4490 sgot->contents); 4491 4492 /* The second entry is reserved for use by the dynamic linker. */ 4493 memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE); 4494 4495 /* Set .got entry size. */ 4496 elf_section_data (sgot->output_section) 4497 ->this_hdr.sh_entsize = GOT_ENTRY_SIZE; 4498 } 4499 4500 if (htab->etab.splt != NULL && htab->etab.splt->size != 0) 4501 { 4502 /* Set plt entry size to 0 instead of PLT_ENTRY_SIZE, since we add the 4503 plt stubs and as such the section does not hold a table of fixed-size 4504 entries. */ 4505 elf_section_data (htab->etab.splt->output_section)->this_hdr.sh_entsize = 0; 4506 4507 if (htab->need_plt_stub) 4508 { 4509 /* Set up the .plt stub. */ 4510 memcpy (htab->etab.splt->contents 4511 + htab->etab.splt->size - sizeof (plt_stub), 4512 plt_stub, sizeof (plt_stub)); 4513 4514 if ((htab->etab.splt->output_offset 4515 + htab->etab.splt->output_section->vma 4516 + htab->etab.splt->size) 4517 != (sgot->output_offset 4518 + sgot->output_section->vma)) 4519 { 4520 _bfd_error_handler 4521 (_(".got section not immediately after .plt section")); 4522 return FALSE; 4523 } 4524 } 4525 } 4526 4527 return TRUE; 4528 } 4529 4530 /* Called when writing out an object file to decide the type of a 4531 symbol. */ 4532 static int 4533 elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type) 4534 { 4535 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI) 4536 return STT_PARISC_MILLI; 4537 else 4538 return type; 4539 } 4540 4541 /* Misc BFD support code. */ 4542 #define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name 4543 #define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup 4544 #define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup 4545 #define elf_info_to_howto elf_hppa_info_to_howto 4546 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel 4547 4548 /* Stuff for the BFD linker. */ 4549 #define bfd_elf32_bfd_final_link elf32_hppa_final_link 4550 #define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create 4551 #define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol 4552 #define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol 4553 #define elf_backend_check_relocs elf32_hppa_check_relocs 4554 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible 4555 #define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections 4556 #define elf_backend_fake_sections elf_hppa_fake_sections 4557 #define elf_backend_relocate_section elf32_hppa_relocate_section 4558 #define elf_backend_hide_symbol elf32_hppa_hide_symbol 4559 #define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol 4560 #define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections 4561 #define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections 4562 #define elf_backend_init_index_section _bfd_elf_init_1_index_section 4563 #define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook 4564 #define elf_backend_grok_prstatus elf32_hppa_grok_prstatus 4565 #define elf_backend_grok_psinfo elf32_hppa_grok_psinfo 4566 #define elf_backend_object_p elf32_hppa_object_p 4567 #define elf_backend_final_write_processing elf_hppa_final_write_processing 4568 #define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type 4569 #define elf_backend_reloc_type_class elf32_hppa_reloc_type_class 4570 #define elf_backend_action_discarded elf_hppa_action_discarded 4571 4572 #define elf_backend_can_gc_sections 1 4573 #define elf_backend_can_refcount 1 4574 #define elf_backend_plt_alignment 2 4575 #define elf_backend_want_got_plt 0 4576 #define elf_backend_plt_readonly 0 4577 #define elf_backend_want_plt_sym 0 4578 #define elf_backend_got_header_size 8 4579 #define elf_backend_want_dynrelro 1 4580 #define elf_backend_rela_normal 1 4581 #define elf_backend_dtrel_excludes_plt 1 4582 #define elf_backend_no_page_alias 1 4583 4584 #define TARGET_BIG_SYM hppa_elf32_vec 4585 #define TARGET_BIG_NAME "elf32-hppa" 4586 #define ELF_ARCH bfd_arch_hppa 4587 #define ELF_TARGET_ID HPPA32_ELF_DATA 4588 #define ELF_MACHINE_CODE EM_PARISC 4589 #define ELF_MAXPAGESIZE 0x1000 4590 #define ELF_OSABI ELFOSABI_HPUX 4591 #define elf32_bed elf32_hppa_hpux_bed 4592 4593 #include "elf32-target.h" 4594 4595 #undef TARGET_BIG_SYM 4596 #define TARGET_BIG_SYM hppa_elf32_linux_vec 4597 #undef TARGET_BIG_NAME 4598 #define TARGET_BIG_NAME "elf32-hppa-linux" 4599 #undef ELF_OSABI 4600 #define ELF_OSABI ELFOSABI_GNU 4601 #undef elf32_bed 4602 #define elf32_bed elf32_hppa_linux_bed 4603 4604 #include "elf32-target.h" 4605 4606 #undef TARGET_BIG_SYM 4607 #define TARGET_BIG_SYM hppa_elf32_nbsd_vec 4608 #undef TARGET_BIG_NAME 4609 #define TARGET_BIG_NAME "elf32-hppa-netbsd" 4610 #undef ELF_OSABI 4611 #define ELF_OSABI ELFOSABI_NETBSD 4612 #undef elf32_bed 4613 #define elf32_bed elf32_hppa_netbsd_bed 4614 4615 #include "elf32-target.h" 4616