1 /* 32-bit ELF support for ARM 2 Copyright (C) 1998-2020 Free Software Foundation, Inc. 3 4 This file is part of BFD, the Binary File Descriptor library. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 19 MA 02110-1301, USA. */ 20 21 #include "sysdep.h" 22 #include <limits.h> 23 24 #include "bfd.h" 25 #include "libiberty.h" 26 #include "libbfd.h" 27 #include "elf-bfd.h" 28 #include "elf-nacl.h" 29 #include "elf-vxworks.h" 30 #include "elf/arm.h" 31 #include "elf32-arm.h" 32 #include "cpu-arm.h" 33 34 /* Return the relocation section associated with NAME. HTAB is the 35 bfd's elf32_arm_link_hash_entry. */ 36 #define RELOC_SECTION(HTAB, NAME) \ 37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME) 38 39 /* Return size of a relocation entry. HTAB is the bfd's 40 elf32_arm_link_hash_entry. */ 41 #define RELOC_SIZE(HTAB) \ 42 ((HTAB)->use_rel \ 43 ? sizeof (Elf32_External_Rel) \ 44 : sizeof (Elf32_External_Rela)) 45 46 /* Return function to swap relocations in. HTAB is the bfd's 47 elf32_arm_link_hash_entry. */ 48 #define SWAP_RELOC_IN(HTAB) \ 49 ((HTAB)->use_rel \ 50 ? bfd_elf32_swap_reloc_in \ 51 : bfd_elf32_swap_reloca_in) 52 53 /* Return function to swap relocations out. HTAB is the bfd's 54 elf32_arm_link_hash_entry. */ 55 #define SWAP_RELOC_OUT(HTAB) \ 56 ((HTAB)->use_rel \ 57 ? bfd_elf32_swap_reloc_out \ 58 : bfd_elf32_swap_reloca_out) 59 60 #define elf_info_to_howto NULL 61 #define elf_info_to_howto_rel elf32_arm_info_to_howto 62 63 #define ARM_ELF_ABI_VERSION 0 64 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM 65 66 /* The Adjusted Place, as defined by AAELF. */ 67 #define Pa(X) ((X) & 0xfffffffc) 68 69 static bfd_boolean elf32_arm_write_section (bfd *output_bfd, 70 struct bfd_link_info *link_info, 71 asection *sec, 72 bfd_byte *contents); 73 74 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g. 75 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO 76 in that slot. */ 77 78 static reloc_howto_type elf32_arm_howto_table_1[] = 79 { 80 /* No relocation. */ 81 HOWTO (R_ARM_NONE, /* type */ 82 0, /* rightshift */ 83 3, /* size (0 = byte, 1 = short, 2 = long) */ 84 0, /* bitsize */ 85 FALSE, /* pc_relative */ 86 0, /* bitpos */ 87 complain_overflow_dont,/* complain_on_overflow */ 88 bfd_elf_generic_reloc, /* special_function */ 89 "R_ARM_NONE", /* name */ 90 FALSE, /* partial_inplace */ 91 0, /* src_mask */ 92 0, /* dst_mask */ 93 FALSE), /* pcrel_offset */ 94 95 HOWTO (R_ARM_PC24, /* type */ 96 2, /* rightshift */ 97 2, /* size (0 = byte, 1 = short, 2 = long) */ 98 24, /* bitsize */ 99 TRUE, /* pc_relative */ 100 0, /* bitpos */ 101 complain_overflow_signed,/* complain_on_overflow */ 102 bfd_elf_generic_reloc, /* special_function */ 103 "R_ARM_PC24", /* name */ 104 FALSE, /* partial_inplace */ 105 0x00ffffff, /* src_mask */ 106 0x00ffffff, /* dst_mask */ 107 TRUE), /* pcrel_offset */ 108 109 /* 32 bit absolute */ 110 HOWTO (R_ARM_ABS32, /* type */ 111 0, /* rightshift */ 112 2, /* size (0 = byte, 1 = short, 2 = long) */ 113 32, /* bitsize */ 114 FALSE, /* pc_relative */ 115 0, /* bitpos */ 116 complain_overflow_bitfield,/* complain_on_overflow */ 117 bfd_elf_generic_reloc, /* special_function */ 118 "R_ARM_ABS32", /* name */ 119 FALSE, /* partial_inplace */ 120 0xffffffff, /* src_mask */ 121 0xffffffff, /* dst_mask */ 122 FALSE), /* pcrel_offset */ 123 124 /* standard 32bit pc-relative reloc */ 125 HOWTO (R_ARM_REL32, /* type */ 126 0, /* rightshift */ 127 2, /* size (0 = byte, 1 = short, 2 = long) */ 128 32, /* bitsize */ 129 TRUE, /* pc_relative */ 130 0, /* bitpos */ 131 complain_overflow_bitfield,/* complain_on_overflow */ 132 bfd_elf_generic_reloc, /* special_function */ 133 "R_ARM_REL32", /* name */ 134 FALSE, /* partial_inplace */ 135 0xffffffff, /* src_mask */ 136 0xffffffff, /* dst_mask */ 137 TRUE), /* pcrel_offset */ 138 139 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */ 140 HOWTO (R_ARM_LDR_PC_G0, /* type */ 141 0, /* rightshift */ 142 0, /* size (0 = byte, 1 = short, 2 = long) */ 143 32, /* bitsize */ 144 TRUE, /* pc_relative */ 145 0, /* bitpos */ 146 complain_overflow_dont,/* complain_on_overflow */ 147 bfd_elf_generic_reloc, /* special_function */ 148 "R_ARM_LDR_PC_G0", /* name */ 149 FALSE, /* partial_inplace */ 150 0xffffffff, /* src_mask */ 151 0xffffffff, /* dst_mask */ 152 TRUE), /* pcrel_offset */ 153 154 /* 16 bit absolute */ 155 HOWTO (R_ARM_ABS16, /* type */ 156 0, /* rightshift */ 157 1, /* size (0 = byte, 1 = short, 2 = long) */ 158 16, /* bitsize */ 159 FALSE, /* pc_relative */ 160 0, /* bitpos */ 161 complain_overflow_bitfield,/* complain_on_overflow */ 162 bfd_elf_generic_reloc, /* special_function */ 163 "R_ARM_ABS16", /* name */ 164 FALSE, /* partial_inplace */ 165 0x0000ffff, /* src_mask */ 166 0x0000ffff, /* dst_mask */ 167 FALSE), /* pcrel_offset */ 168 169 /* 12 bit absolute */ 170 HOWTO (R_ARM_ABS12, /* type */ 171 0, /* rightshift */ 172 2, /* size (0 = byte, 1 = short, 2 = long) */ 173 12, /* bitsize */ 174 FALSE, /* pc_relative */ 175 0, /* bitpos */ 176 complain_overflow_bitfield,/* complain_on_overflow */ 177 bfd_elf_generic_reloc, /* special_function */ 178 "R_ARM_ABS12", /* name */ 179 FALSE, /* partial_inplace */ 180 0x00000fff, /* src_mask */ 181 0x00000fff, /* dst_mask */ 182 FALSE), /* pcrel_offset */ 183 184 HOWTO (R_ARM_THM_ABS5, /* type */ 185 6, /* rightshift */ 186 1, /* size (0 = byte, 1 = short, 2 = long) */ 187 5, /* bitsize */ 188 FALSE, /* pc_relative */ 189 0, /* bitpos */ 190 complain_overflow_bitfield,/* complain_on_overflow */ 191 bfd_elf_generic_reloc, /* special_function */ 192 "R_ARM_THM_ABS5", /* name */ 193 FALSE, /* partial_inplace */ 194 0x000007e0, /* src_mask */ 195 0x000007e0, /* dst_mask */ 196 FALSE), /* pcrel_offset */ 197 198 /* 8 bit absolute */ 199 HOWTO (R_ARM_ABS8, /* type */ 200 0, /* rightshift */ 201 0, /* size (0 = byte, 1 = short, 2 = long) */ 202 8, /* bitsize */ 203 FALSE, /* pc_relative */ 204 0, /* bitpos */ 205 complain_overflow_bitfield,/* complain_on_overflow */ 206 bfd_elf_generic_reloc, /* special_function */ 207 "R_ARM_ABS8", /* name */ 208 FALSE, /* partial_inplace */ 209 0x000000ff, /* src_mask */ 210 0x000000ff, /* dst_mask */ 211 FALSE), /* pcrel_offset */ 212 213 HOWTO (R_ARM_SBREL32, /* type */ 214 0, /* rightshift */ 215 2, /* size (0 = byte, 1 = short, 2 = long) */ 216 32, /* bitsize */ 217 FALSE, /* pc_relative */ 218 0, /* bitpos */ 219 complain_overflow_dont,/* complain_on_overflow */ 220 bfd_elf_generic_reloc, /* special_function */ 221 "R_ARM_SBREL32", /* name */ 222 FALSE, /* partial_inplace */ 223 0xffffffff, /* src_mask */ 224 0xffffffff, /* dst_mask */ 225 FALSE), /* pcrel_offset */ 226 227 HOWTO (R_ARM_THM_CALL, /* type */ 228 1, /* rightshift */ 229 2, /* size (0 = byte, 1 = short, 2 = long) */ 230 24, /* bitsize */ 231 TRUE, /* pc_relative */ 232 0, /* bitpos */ 233 complain_overflow_signed,/* complain_on_overflow */ 234 bfd_elf_generic_reloc, /* special_function */ 235 "R_ARM_THM_CALL", /* name */ 236 FALSE, /* partial_inplace */ 237 0x07ff2fff, /* src_mask */ 238 0x07ff2fff, /* dst_mask */ 239 TRUE), /* pcrel_offset */ 240 241 HOWTO (R_ARM_THM_PC8, /* type */ 242 1, /* rightshift */ 243 1, /* size (0 = byte, 1 = short, 2 = long) */ 244 8, /* bitsize */ 245 TRUE, /* pc_relative */ 246 0, /* bitpos */ 247 complain_overflow_signed,/* complain_on_overflow */ 248 bfd_elf_generic_reloc, /* special_function */ 249 "R_ARM_THM_PC8", /* name */ 250 FALSE, /* partial_inplace */ 251 0x000000ff, /* src_mask */ 252 0x000000ff, /* dst_mask */ 253 TRUE), /* pcrel_offset */ 254 255 HOWTO (R_ARM_BREL_ADJ, /* type */ 256 1, /* rightshift */ 257 1, /* size (0 = byte, 1 = short, 2 = long) */ 258 32, /* bitsize */ 259 FALSE, /* pc_relative */ 260 0, /* bitpos */ 261 complain_overflow_signed,/* complain_on_overflow */ 262 bfd_elf_generic_reloc, /* special_function */ 263 "R_ARM_BREL_ADJ", /* name */ 264 FALSE, /* partial_inplace */ 265 0xffffffff, /* src_mask */ 266 0xffffffff, /* dst_mask */ 267 FALSE), /* pcrel_offset */ 268 269 HOWTO (R_ARM_TLS_DESC, /* type */ 270 0, /* rightshift */ 271 2, /* size (0 = byte, 1 = short, 2 = long) */ 272 32, /* bitsize */ 273 FALSE, /* pc_relative */ 274 0, /* bitpos */ 275 complain_overflow_bitfield,/* complain_on_overflow */ 276 bfd_elf_generic_reloc, /* special_function */ 277 "R_ARM_TLS_DESC", /* name */ 278 FALSE, /* partial_inplace */ 279 0xffffffff, /* src_mask */ 280 0xffffffff, /* dst_mask */ 281 FALSE), /* pcrel_offset */ 282 283 HOWTO (R_ARM_THM_SWI8, /* type */ 284 0, /* rightshift */ 285 0, /* size (0 = byte, 1 = short, 2 = long) */ 286 0, /* bitsize */ 287 FALSE, /* pc_relative */ 288 0, /* bitpos */ 289 complain_overflow_signed,/* complain_on_overflow */ 290 bfd_elf_generic_reloc, /* special_function */ 291 "R_ARM_SWI8", /* name */ 292 FALSE, /* partial_inplace */ 293 0x00000000, /* src_mask */ 294 0x00000000, /* dst_mask */ 295 FALSE), /* pcrel_offset */ 296 297 /* BLX instruction for the ARM. */ 298 HOWTO (R_ARM_XPC25, /* type */ 299 2, /* rightshift */ 300 2, /* size (0 = byte, 1 = short, 2 = long) */ 301 24, /* bitsize */ 302 TRUE, /* pc_relative */ 303 0, /* bitpos */ 304 complain_overflow_signed,/* complain_on_overflow */ 305 bfd_elf_generic_reloc, /* special_function */ 306 "R_ARM_XPC25", /* name */ 307 FALSE, /* partial_inplace */ 308 0x00ffffff, /* src_mask */ 309 0x00ffffff, /* dst_mask */ 310 TRUE), /* pcrel_offset */ 311 312 /* BLX instruction for the Thumb. */ 313 HOWTO (R_ARM_THM_XPC22, /* type */ 314 2, /* rightshift */ 315 2, /* size (0 = byte, 1 = short, 2 = long) */ 316 24, /* bitsize */ 317 TRUE, /* pc_relative */ 318 0, /* bitpos */ 319 complain_overflow_signed,/* complain_on_overflow */ 320 bfd_elf_generic_reloc, /* special_function */ 321 "R_ARM_THM_XPC22", /* name */ 322 FALSE, /* partial_inplace */ 323 0x07ff2fff, /* src_mask */ 324 0x07ff2fff, /* dst_mask */ 325 TRUE), /* pcrel_offset */ 326 327 /* Dynamic TLS relocations. */ 328 329 HOWTO (R_ARM_TLS_DTPMOD32, /* type */ 330 0, /* rightshift */ 331 2, /* size (0 = byte, 1 = short, 2 = long) */ 332 32, /* bitsize */ 333 FALSE, /* pc_relative */ 334 0, /* bitpos */ 335 complain_overflow_bitfield,/* complain_on_overflow */ 336 bfd_elf_generic_reloc, /* special_function */ 337 "R_ARM_TLS_DTPMOD32", /* name */ 338 TRUE, /* partial_inplace */ 339 0xffffffff, /* src_mask */ 340 0xffffffff, /* dst_mask */ 341 FALSE), /* pcrel_offset */ 342 343 HOWTO (R_ARM_TLS_DTPOFF32, /* type */ 344 0, /* rightshift */ 345 2, /* size (0 = byte, 1 = short, 2 = long) */ 346 32, /* bitsize */ 347 FALSE, /* pc_relative */ 348 0, /* bitpos */ 349 complain_overflow_bitfield,/* complain_on_overflow */ 350 bfd_elf_generic_reloc, /* special_function */ 351 "R_ARM_TLS_DTPOFF32", /* name */ 352 TRUE, /* partial_inplace */ 353 0xffffffff, /* src_mask */ 354 0xffffffff, /* dst_mask */ 355 FALSE), /* pcrel_offset */ 356 357 HOWTO (R_ARM_TLS_TPOFF32, /* type */ 358 0, /* rightshift */ 359 2, /* size (0 = byte, 1 = short, 2 = long) */ 360 32, /* bitsize */ 361 FALSE, /* pc_relative */ 362 0, /* bitpos */ 363 complain_overflow_bitfield,/* complain_on_overflow */ 364 bfd_elf_generic_reloc, /* special_function */ 365 "R_ARM_TLS_TPOFF32", /* name */ 366 TRUE, /* partial_inplace */ 367 0xffffffff, /* src_mask */ 368 0xffffffff, /* dst_mask */ 369 FALSE), /* pcrel_offset */ 370 371 /* Relocs used in ARM Linux */ 372 373 HOWTO (R_ARM_COPY, /* type */ 374 0, /* rightshift */ 375 2, /* size (0 = byte, 1 = short, 2 = long) */ 376 32, /* bitsize */ 377 FALSE, /* pc_relative */ 378 0, /* bitpos */ 379 complain_overflow_bitfield,/* complain_on_overflow */ 380 bfd_elf_generic_reloc, /* special_function */ 381 "R_ARM_COPY", /* name */ 382 TRUE, /* partial_inplace */ 383 0xffffffff, /* src_mask */ 384 0xffffffff, /* dst_mask */ 385 FALSE), /* pcrel_offset */ 386 387 HOWTO (R_ARM_GLOB_DAT, /* type */ 388 0, /* rightshift */ 389 2, /* size (0 = byte, 1 = short, 2 = long) */ 390 32, /* bitsize */ 391 FALSE, /* pc_relative */ 392 0, /* bitpos */ 393 complain_overflow_bitfield,/* complain_on_overflow */ 394 bfd_elf_generic_reloc, /* special_function */ 395 "R_ARM_GLOB_DAT", /* name */ 396 TRUE, /* partial_inplace */ 397 0xffffffff, /* src_mask */ 398 0xffffffff, /* dst_mask */ 399 FALSE), /* pcrel_offset */ 400 401 HOWTO (R_ARM_JUMP_SLOT, /* type */ 402 0, /* rightshift */ 403 2, /* size (0 = byte, 1 = short, 2 = long) */ 404 32, /* bitsize */ 405 FALSE, /* pc_relative */ 406 0, /* bitpos */ 407 complain_overflow_bitfield,/* complain_on_overflow */ 408 bfd_elf_generic_reloc, /* special_function */ 409 "R_ARM_JUMP_SLOT", /* name */ 410 TRUE, /* partial_inplace */ 411 0xffffffff, /* src_mask */ 412 0xffffffff, /* dst_mask */ 413 FALSE), /* pcrel_offset */ 414 415 HOWTO (R_ARM_RELATIVE, /* type */ 416 0, /* rightshift */ 417 2, /* size (0 = byte, 1 = short, 2 = long) */ 418 32, /* bitsize */ 419 FALSE, /* pc_relative */ 420 0, /* bitpos */ 421 complain_overflow_bitfield,/* complain_on_overflow */ 422 bfd_elf_generic_reloc, /* special_function */ 423 "R_ARM_RELATIVE", /* name */ 424 TRUE, /* partial_inplace */ 425 0xffffffff, /* src_mask */ 426 0xffffffff, /* dst_mask */ 427 FALSE), /* pcrel_offset */ 428 429 HOWTO (R_ARM_GOTOFF32, /* type */ 430 0, /* rightshift */ 431 2, /* size (0 = byte, 1 = short, 2 = long) */ 432 32, /* bitsize */ 433 FALSE, /* pc_relative */ 434 0, /* bitpos */ 435 complain_overflow_bitfield,/* complain_on_overflow */ 436 bfd_elf_generic_reloc, /* special_function */ 437 "R_ARM_GOTOFF32", /* name */ 438 TRUE, /* partial_inplace */ 439 0xffffffff, /* src_mask */ 440 0xffffffff, /* dst_mask */ 441 FALSE), /* pcrel_offset */ 442 443 HOWTO (R_ARM_GOTPC, /* type */ 444 0, /* rightshift */ 445 2, /* size (0 = byte, 1 = short, 2 = long) */ 446 32, /* bitsize */ 447 TRUE, /* pc_relative */ 448 0, /* bitpos */ 449 complain_overflow_bitfield,/* complain_on_overflow */ 450 bfd_elf_generic_reloc, /* special_function */ 451 "R_ARM_GOTPC", /* name */ 452 TRUE, /* partial_inplace */ 453 0xffffffff, /* src_mask */ 454 0xffffffff, /* dst_mask */ 455 TRUE), /* pcrel_offset */ 456 457 HOWTO (R_ARM_GOT32, /* type */ 458 0, /* rightshift */ 459 2, /* size (0 = byte, 1 = short, 2 = long) */ 460 32, /* bitsize */ 461 FALSE, /* pc_relative */ 462 0, /* bitpos */ 463 complain_overflow_bitfield,/* complain_on_overflow */ 464 bfd_elf_generic_reloc, /* special_function */ 465 "R_ARM_GOT32", /* name */ 466 TRUE, /* partial_inplace */ 467 0xffffffff, /* src_mask */ 468 0xffffffff, /* dst_mask */ 469 FALSE), /* pcrel_offset */ 470 471 HOWTO (R_ARM_PLT32, /* type */ 472 2, /* rightshift */ 473 2, /* size (0 = byte, 1 = short, 2 = long) */ 474 24, /* bitsize */ 475 TRUE, /* pc_relative */ 476 0, /* bitpos */ 477 complain_overflow_bitfield,/* complain_on_overflow */ 478 bfd_elf_generic_reloc, /* special_function */ 479 "R_ARM_PLT32", /* name */ 480 FALSE, /* partial_inplace */ 481 0x00ffffff, /* src_mask */ 482 0x00ffffff, /* dst_mask */ 483 TRUE), /* pcrel_offset */ 484 485 HOWTO (R_ARM_CALL, /* type */ 486 2, /* rightshift */ 487 2, /* size (0 = byte, 1 = short, 2 = long) */ 488 24, /* bitsize */ 489 TRUE, /* pc_relative */ 490 0, /* bitpos */ 491 complain_overflow_signed,/* complain_on_overflow */ 492 bfd_elf_generic_reloc, /* special_function */ 493 "R_ARM_CALL", /* name */ 494 FALSE, /* partial_inplace */ 495 0x00ffffff, /* src_mask */ 496 0x00ffffff, /* dst_mask */ 497 TRUE), /* pcrel_offset */ 498 499 HOWTO (R_ARM_JUMP24, /* type */ 500 2, /* rightshift */ 501 2, /* size (0 = byte, 1 = short, 2 = long) */ 502 24, /* bitsize */ 503 TRUE, /* pc_relative */ 504 0, /* bitpos */ 505 complain_overflow_signed,/* complain_on_overflow */ 506 bfd_elf_generic_reloc, /* special_function */ 507 "R_ARM_JUMP24", /* name */ 508 FALSE, /* partial_inplace */ 509 0x00ffffff, /* src_mask */ 510 0x00ffffff, /* dst_mask */ 511 TRUE), /* pcrel_offset */ 512 513 HOWTO (R_ARM_THM_JUMP24, /* type */ 514 1, /* rightshift */ 515 2, /* size (0 = byte, 1 = short, 2 = long) */ 516 24, /* bitsize */ 517 TRUE, /* pc_relative */ 518 0, /* bitpos */ 519 complain_overflow_signed,/* complain_on_overflow */ 520 bfd_elf_generic_reloc, /* special_function */ 521 "R_ARM_THM_JUMP24", /* name */ 522 FALSE, /* partial_inplace */ 523 0x07ff2fff, /* src_mask */ 524 0x07ff2fff, /* dst_mask */ 525 TRUE), /* pcrel_offset */ 526 527 HOWTO (R_ARM_BASE_ABS, /* type */ 528 0, /* rightshift */ 529 2, /* size (0 = byte, 1 = short, 2 = long) */ 530 32, /* bitsize */ 531 FALSE, /* pc_relative */ 532 0, /* bitpos */ 533 complain_overflow_dont,/* complain_on_overflow */ 534 bfd_elf_generic_reloc, /* special_function */ 535 "R_ARM_BASE_ABS", /* name */ 536 FALSE, /* partial_inplace */ 537 0xffffffff, /* src_mask */ 538 0xffffffff, /* dst_mask */ 539 FALSE), /* pcrel_offset */ 540 541 HOWTO (R_ARM_ALU_PCREL7_0, /* type */ 542 0, /* rightshift */ 543 2, /* size (0 = byte, 1 = short, 2 = long) */ 544 12, /* bitsize */ 545 TRUE, /* pc_relative */ 546 0, /* bitpos */ 547 complain_overflow_dont,/* complain_on_overflow */ 548 bfd_elf_generic_reloc, /* special_function */ 549 "R_ARM_ALU_PCREL_7_0", /* name */ 550 FALSE, /* partial_inplace */ 551 0x00000fff, /* src_mask */ 552 0x00000fff, /* dst_mask */ 553 TRUE), /* pcrel_offset */ 554 555 HOWTO (R_ARM_ALU_PCREL15_8, /* type */ 556 0, /* rightshift */ 557 2, /* size (0 = byte, 1 = short, 2 = long) */ 558 12, /* bitsize */ 559 TRUE, /* pc_relative */ 560 8, /* bitpos */ 561 complain_overflow_dont,/* complain_on_overflow */ 562 bfd_elf_generic_reloc, /* special_function */ 563 "R_ARM_ALU_PCREL_15_8",/* name */ 564 FALSE, /* partial_inplace */ 565 0x00000fff, /* src_mask */ 566 0x00000fff, /* dst_mask */ 567 TRUE), /* pcrel_offset */ 568 569 HOWTO (R_ARM_ALU_PCREL23_15, /* type */ 570 0, /* rightshift */ 571 2, /* size (0 = byte, 1 = short, 2 = long) */ 572 12, /* bitsize */ 573 TRUE, /* pc_relative */ 574 16, /* bitpos */ 575 complain_overflow_dont,/* complain_on_overflow */ 576 bfd_elf_generic_reloc, /* special_function */ 577 "R_ARM_ALU_PCREL_23_15",/* name */ 578 FALSE, /* partial_inplace */ 579 0x00000fff, /* src_mask */ 580 0x00000fff, /* dst_mask */ 581 TRUE), /* pcrel_offset */ 582 583 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */ 584 0, /* rightshift */ 585 2, /* size (0 = byte, 1 = short, 2 = long) */ 586 12, /* bitsize */ 587 FALSE, /* pc_relative */ 588 0, /* bitpos */ 589 complain_overflow_dont,/* complain_on_overflow */ 590 bfd_elf_generic_reloc, /* special_function */ 591 "R_ARM_LDR_SBREL_11_0",/* name */ 592 FALSE, /* partial_inplace */ 593 0x00000fff, /* src_mask */ 594 0x00000fff, /* dst_mask */ 595 FALSE), /* pcrel_offset */ 596 597 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */ 598 0, /* rightshift */ 599 2, /* size (0 = byte, 1 = short, 2 = long) */ 600 8, /* bitsize */ 601 FALSE, /* pc_relative */ 602 12, /* bitpos */ 603 complain_overflow_dont,/* complain_on_overflow */ 604 bfd_elf_generic_reloc, /* special_function */ 605 "R_ARM_ALU_SBREL_19_12",/* name */ 606 FALSE, /* partial_inplace */ 607 0x000ff000, /* src_mask */ 608 0x000ff000, /* dst_mask */ 609 FALSE), /* pcrel_offset */ 610 611 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */ 612 0, /* rightshift */ 613 2, /* size (0 = byte, 1 = short, 2 = long) */ 614 8, /* bitsize */ 615 FALSE, /* pc_relative */ 616 20, /* bitpos */ 617 complain_overflow_dont,/* complain_on_overflow */ 618 bfd_elf_generic_reloc, /* special_function */ 619 "R_ARM_ALU_SBREL_27_20",/* name */ 620 FALSE, /* partial_inplace */ 621 0x0ff00000, /* src_mask */ 622 0x0ff00000, /* dst_mask */ 623 FALSE), /* pcrel_offset */ 624 625 HOWTO (R_ARM_TARGET1, /* type */ 626 0, /* rightshift */ 627 2, /* size (0 = byte, 1 = short, 2 = long) */ 628 32, /* bitsize */ 629 FALSE, /* pc_relative */ 630 0, /* bitpos */ 631 complain_overflow_dont,/* complain_on_overflow */ 632 bfd_elf_generic_reloc, /* special_function */ 633 "R_ARM_TARGET1", /* name */ 634 FALSE, /* partial_inplace */ 635 0xffffffff, /* src_mask */ 636 0xffffffff, /* dst_mask */ 637 FALSE), /* pcrel_offset */ 638 639 HOWTO (R_ARM_ROSEGREL32, /* type */ 640 0, /* rightshift */ 641 2, /* size (0 = byte, 1 = short, 2 = long) */ 642 32, /* bitsize */ 643 FALSE, /* pc_relative */ 644 0, /* bitpos */ 645 complain_overflow_dont,/* complain_on_overflow */ 646 bfd_elf_generic_reloc, /* special_function */ 647 "R_ARM_ROSEGREL32", /* name */ 648 FALSE, /* partial_inplace */ 649 0xffffffff, /* src_mask */ 650 0xffffffff, /* dst_mask */ 651 FALSE), /* pcrel_offset */ 652 653 HOWTO (R_ARM_V4BX, /* type */ 654 0, /* rightshift */ 655 2, /* size (0 = byte, 1 = short, 2 = long) */ 656 32, /* bitsize */ 657 FALSE, /* pc_relative */ 658 0, /* bitpos */ 659 complain_overflow_dont,/* complain_on_overflow */ 660 bfd_elf_generic_reloc, /* special_function */ 661 "R_ARM_V4BX", /* name */ 662 FALSE, /* partial_inplace */ 663 0xffffffff, /* src_mask */ 664 0xffffffff, /* dst_mask */ 665 FALSE), /* pcrel_offset */ 666 667 HOWTO (R_ARM_TARGET2, /* type */ 668 0, /* rightshift */ 669 2, /* size (0 = byte, 1 = short, 2 = long) */ 670 32, /* bitsize */ 671 FALSE, /* pc_relative */ 672 0, /* bitpos */ 673 complain_overflow_signed,/* complain_on_overflow */ 674 bfd_elf_generic_reloc, /* special_function */ 675 "R_ARM_TARGET2", /* name */ 676 FALSE, /* partial_inplace */ 677 0xffffffff, /* src_mask */ 678 0xffffffff, /* dst_mask */ 679 TRUE), /* pcrel_offset */ 680 681 HOWTO (R_ARM_PREL31, /* type */ 682 0, /* rightshift */ 683 2, /* size (0 = byte, 1 = short, 2 = long) */ 684 31, /* bitsize */ 685 TRUE, /* pc_relative */ 686 0, /* bitpos */ 687 complain_overflow_signed,/* complain_on_overflow */ 688 bfd_elf_generic_reloc, /* special_function */ 689 "R_ARM_PREL31", /* name */ 690 FALSE, /* partial_inplace */ 691 0x7fffffff, /* src_mask */ 692 0x7fffffff, /* dst_mask */ 693 TRUE), /* pcrel_offset */ 694 695 HOWTO (R_ARM_MOVW_ABS_NC, /* type */ 696 0, /* rightshift */ 697 2, /* size (0 = byte, 1 = short, 2 = long) */ 698 16, /* bitsize */ 699 FALSE, /* pc_relative */ 700 0, /* bitpos */ 701 complain_overflow_dont,/* complain_on_overflow */ 702 bfd_elf_generic_reloc, /* special_function */ 703 "R_ARM_MOVW_ABS_NC", /* name */ 704 FALSE, /* partial_inplace */ 705 0x000f0fff, /* src_mask */ 706 0x000f0fff, /* dst_mask */ 707 FALSE), /* pcrel_offset */ 708 709 HOWTO (R_ARM_MOVT_ABS, /* type */ 710 0, /* rightshift */ 711 2, /* size (0 = byte, 1 = short, 2 = long) */ 712 16, /* bitsize */ 713 FALSE, /* pc_relative */ 714 0, /* bitpos */ 715 complain_overflow_bitfield,/* complain_on_overflow */ 716 bfd_elf_generic_reloc, /* special_function */ 717 "R_ARM_MOVT_ABS", /* name */ 718 FALSE, /* partial_inplace */ 719 0x000f0fff, /* src_mask */ 720 0x000f0fff, /* dst_mask */ 721 FALSE), /* pcrel_offset */ 722 723 HOWTO (R_ARM_MOVW_PREL_NC, /* type */ 724 0, /* rightshift */ 725 2, /* size (0 = byte, 1 = short, 2 = long) */ 726 16, /* bitsize */ 727 TRUE, /* pc_relative */ 728 0, /* bitpos */ 729 complain_overflow_dont,/* complain_on_overflow */ 730 bfd_elf_generic_reloc, /* special_function */ 731 "R_ARM_MOVW_PREL_NC", /* name */ 732 FALSE, /* partial_inplace */ 733 0x000f0fff, /* src_mask */ 734 0x000f0fff, /* dst_mask */ 735 TRUE), /* pcrel_offset */ 736 737 HOWTO (R_ARM_MOVT_PREL, /* type */ 738 0, /* rightshift */ 739 2, /* size (0 = byte, 1 = short, 2 = long) */ 740 16, /* bitsize */ 741 TRUE, /* pc_relative */ 742 0, /* bitpos */ 743 complain_overflow_bitfield,/* complain_on_overflow */ 744 bfd_elf_generic_reloc, /* special_function */ 745 "R_ARM_MOVT_PREL", /* name */ 746 FALSE, /* partial_inplace */ 747 0x000f0fff, /* src_mask */ 748 0x000f0fff, /* dst_mask */ 749 TRUE), /* pcrel_offset */ 750 751 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */ 752 0, /* rightshift */ 753 2, /* size (0 = byte, 1 = short, 2 = long) */ 754 16, /* bitsize */ 755 FALSE, /* pc_relative */ 756 0, /* bitpos */ 757 complain_overflow_dont,/* complain_on_overflow */ 758 bfd_elf_generic_reloc, /* special_function */ 759 "R_ARM_THM_MOVW_ABS_NC",/* name */ 760 FALSE, /* partial_inplace */ 761 0x040f70ff, /* src_mask */ 762 0x040f70ff, /* dst_mask */ 763 FALSE), /* pcrel_offset */ 764 765 HOWTO (R_ARM_THM_MOVT_ABS, /* type */ 766 0, /* rightshift */ 767 2, /* size (0 = byte, 1 = short, 2 = long) */ 768 16, /* bitsize */ 769 FALSE, /* pc_relative */ 770 0, /* bitpos */ 771 complain_overflow_bitfield,/* complain_on_overflow */ 772 bfd_elf_generic_reloc, /* special_function */ 773 "R_ARM_THM_MOVT_ABS", /* name */ 774 FALSE, /* partial_inplace */ 775 0x040f70ff, /* src_mask */ 776 0x040f70ff, /* dst_mask */ 777 FALSE), /* pcrel_offset */ 778 779 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */ 780 0, /* rightshift */ 781 2, /* size (0 = byte, 1 = short, 2 = long) */ 782 16, /* bitsize */ 783 TRUE, /* pc_relative */ 784 0, /* bitpos */ 785 complain_overflow_dont,/* complain_on_overflow */ 786 bfd_elf_generic_reloc, /* special_function */ 787 "R_ARM_THM_MOVW_PREL_NC",/* name */ 788 FALSE, /* partial_inplace */ 789 0x040f70ff, /* src_mask */ 790 0x040f70ff, /* dst_mask */ 791 TRUE), /* pcrel_offset */ 792 793 HOWTO (R_ARM_THM_MOVT_PREL, /* type */ 794 0, /* rightshift */ 795 2, /* size (0 = byte, 1 = short, 2 = long) */ 796 16, /* bitsize */ 797 TRUE, /* pc_relative */ 798 0, /* bitpos */ 799 complain_overflow_bitfield,/* complain_on_overflow */ 800 bfd_elf_generic_reloc, /* special_function */ 801 "R_ARM_THM_MOVT_PREL", /* name */ 802 FALSE, /* partial_inplace */ 803 0x040f70ff, /* src_mask */ 804 0x040f70ff, /* dst_mask */ 805 TRUE), /* pcrel_offset */ 806 807 HOWTO (R_ARM_THM_JUMP19, /* type */ 808 1, /* rightshift */ 809 2, /* size (0 = byte, 1 = short, 2 = long) */ 810 19, /* bitsize */ 811 TRUE, /* pc_relative */ 812 0, /* bitpos */ 813 complain_overflow_signed,/* complain_on_overflow */ 814 bfd_elf_generic_reloc, /* special_function */ 815 "R_ARM_THM_JUMP19", /* name */ 816 FALSE, /* partial_inplace */ 817 0x043f2fff, /* src_mask */ 818 0x043f2fff, /* dst_mask */ 819 TRUE), /* pcrel_offset */ 820 821 HOWTO (R_ARM_THM_JUMP6, /* type */ 822 1, /* rightshift */ 823 1, /* size (0 = byte, 1 = short, 2 = long) */ 824 6, /* bitsize */ 825 TRUE, /* pc_relative */ 826 0, /* bitpos */ 827 complain_overflow_unsigned,/* complain_on_overflow */ 828 bfd_elf_generic_reloc, /* special_function */ 829 "R_ARM_THM_JUMP6", /* name */ 830 FALSE, /* partial_inplace */ 831 0x02f8, /* src_mask */ 832 0x02f8, /* dst_mask */ 833 TRUE), /* pcrel_offset */ 834 835 /* These are declared as 13-bit signed relocations because we can 836 address -4095 .. 4095(base) by altering ADDW to SUBW or vice 837 versa. */ 838 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */ 839 0, /* rightshift */ 840 2, /* size (0 = byte, 1 = short, 2 = long) */ 841 13, /* bitsize */ 842 TRUE, /* pc_relative */ 843 0, /* bitpos */ 844 complain_overflow_dont,/* complain_on_overflow */ 845 bfd_elf_generic_reloc, /* special_function */ 846 "R_ARM_THM_ALU_PREL_11_0",/* name */ 847 FALSE, /* partial_inplace */ 848 0xffffffff, /* src_mask */ 849 0xffffffff, /* dst_mask */ 850 TRUE), /* pcrel_offset */ 851 852 HOWTO (R_ARM_THM_PC12, /* type */ 853 0, /* rightshift */ 854 2, /* size (0 = byte, 1 = short, 2 = long) */ 855 13, /* bitsize */ 856 TRUE, /* pc_relative */ 857 0, /* bitpos */ 858 complain_overflow_dont,/* complain_on_overflow */ 859 bfd_elf_generic_reloc, /* special_function */ 860 "R_ARM_THM_PC12", /* name */ 861 FALSE, /* partial_inplace */ 862 0xffffffff, /* src_mask */ 863 0xffffffff, /* dst_mask */ 864 TRUE), /* pcrel_offset */ 865 866 HOWTO (R_ARM_ABS32_NOI, /* type */ 867 0, /* rightshift */ 868 2, /* size (0 = byte, 1 = short, 2 = long) */ 869 32, /* bitsize */ 870 FALSE, /* pc_relative */ 871 0, /* bitpos */ 872 complain_overflow_dont,/* complain_on_overflow */ 873 bfd_elf_generic_reloc, /* special_function */ 874 "R_ARM_ABS32_NOI", /* name */ 875 FALSE, /* partial_inplace */ 876 0xffffffff, /* src_mask */ 877 0xffffffff, /* dst_mask */ 878 FALSE), /* pcrel_offset */ 879 880 HOWTO (R_ARM_REL32_NOI, /* type */ 881 0, /* rightshift */ 882 2, /* size (0 = byte, 1 = short, 2 = long) */ 883 32, /* bitsize */ 884 TRUE, /* pc_relative */ 885 0, /* bitpos */ 886 complain_overflow_dont,/* complain_on_overflow */ 887 bfd_elf_generic_reloc, /* special_function */ 888 "R_ARM_REL32_NOI", /* name */ 889 FALSE, /* partial_inplace */ 890 0xffffffff, /* src_mask */ 891 0xffffffff, /* dst_mask */ 892 FALSE), /* pcrel_offset */ 893 894 /* Group relocations. */ 895 896 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */ 897 0, /* rightshift */ 898 2, /* size (0 = byte, 1 = short, 2 = long) */ 899 32, /* bitsize */ 900 TRUE, /* pc_relative */ 901 0, /* bitpos */ 902 complain_overflow_dont,/* complain_on_overflow */ 903 bfd_elf_generic_reloc, /* special_function */ 904 "R_ARM_ALU_PC_G0_NC", /* name */ 905 FALSE, /* partial_inplace */ 906 0xffffffff, /* src_mask */ 907 0xffffffff, /* dst_mask */ 908 TRUE), /* pcrel_offset */ 909 910 HOWTO (R_ARM_ALU_PC_G0, /* type */ 911 0, /* rightshift */ 912 2, /* size (0 = byte, 1 = short, 2 = long) */ 913 32, /* bitsize */ 914 TRUE, /* pc_relative */ 915 0, /* bitpos */ 916 complain_overflow_dont,/* complain_on_overflow */ 917 bfd_elf_generic_reloc, /* special_function */ 918 "R_ARM_ALU_PC_G0", /* name */ 919 FALSE, /* partial_inplace */ 920 0xffffffff, /* src_mask */ 921 0xffffffff, /* dst_mask */ 922 TRUE), /* pcrel_offset */ 923 924 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */ 925 0, /* rightshift */ 926 2, /* size (0 = byte, 1 = short, 2 = long) */ 927 32, /* bitsize */ 928 TRUE, /* pc_relative */ 929 0, /* bitpos */ 930 complain_overflow_dont,/* complain_on_overflow */ 931 bfd_elf_generic_reloc, /* special_function */ 932 "R_ARM_ALU_PC_G1_NC", /* name */ 933 FALSE, /* partial_inplace */ 934 0xffffffff, /* src_mask */ 935 0xffffffff, /* dst_mask */ 936 TRUE), /* pcrel_offset */ 937 938 HOWTO (R_ARM_ALU_PC_G1, /* type */ 939 0, /* rightshift */ 940 2, /* size (0 = byte, 1 = short, 2 = long) */ 941 32, /* bitsize */ 942 TRUE, /* pc_relative */ 943 0, /* bitpos */ 944 complain_overflow_dont,/* complain_on_overflow */ 945 bfd_elf_generic_reloc, /* special_function */ 946 "R_ARM_ALU_PC_G1", /* name */ 947 FALSE, /* partial_inplace */ 948 0xffffffff, /* src_mask */ 949 0xffffffff, /* dst_mask */ 950 TRUE), /* pcrel_offset */ 951 952 HOWTO (R_ARM_ALU_PC_G2, /* type */ 953 0, /* rightshift */ 954 2, /* size (0 = byte, 1 = short, 2 = long) */ 955 32, /* bitsize */ 956 TRUE, /* pc_relative */ 957 0, /* bitpos */ 958 complain_overflow_dont,/* complain_on_overflow */ 959 bfd_elf_generic_reloc, /* special_function */ 960 "R_ARM_ALU_PC_G2", /* name */ 961 FALSE, /* partial_inplace */ 962 0xffffffff, /* src_mask */ 963 0xffffffff, /* dst_mask */ 964 TRUE), /* pcrel_offset */ 965 966 HOWTO (R_ARM_LDR_PC_G1, /* type */ 967 0, /* rightshift */ 968 2, /* size (0 = byte, 1 = short, 2 = long) */ 969 32, /* bitsize */ 970 TRUE, /* pc_relative */ 971 0, /* bitpos */ 972 complain_overflow_dont,/* complain_on_overflow */ 973 bfd_elf_generic_reloc, /* special_function */ 974 "R_ARM_LDR_PC_G1", /* name */ 975 FALSE, /* partial_inplace */ 976 0xffffffff, /* src_mask */ 977 0xffffffff, /* dst_mask */ 978 TRUE), /* pcrel_offset */ 979 980 HOWTO (R_ARM_LDR_PC_G2, /* type */ 981 0, /* rightshift */ 982 2, /* size (0 = byte, 1 = short, 2 = long) */ 983 32, /* bitsize */ 984 TRUE, /* pc_relative */ 985 0, /* bitpos */ 986 complain_overflow_dont,/* complain_on_overflow */ 987 bfd_elf_generic_reloc, /* special_function */ 988 "R_ARM_LDR_PC_G2", /* name */ 989 FALSE, /* partial_inplace */ 990 0xffffffff, /* src_mask */ 991 0xffffffff, /* dst_mask */ 992 TRUE), /* pcrel_offset */ 993 994 HOWTO (R_ARM_LDRS_PC_G0, /* type */ 995 0, /* rightshift */ 996 2, /* size (0 = byte, 1 = short, 2 = long) */ 997 32, /* bitsize */ 998 TRUE, /* pc_relative */ 999 0, /* bitpos */ 1000 complain_overflow_dont,/* complain_on_overflow */ 1001 bfd_elf_generic_reloc, /* special_function */ 1002 "R_ARM_LDRS_PC_G0", /* name */ 1003 FALSE, /* partial_inplace */ 1004 0xffffffff, /* src_mask */ 1005 0xffffffff, /* dst_mask */ 1006 TRUE), /* pcrel_offset */ 1007 1008 HOWTO (R_ARM_LDRS_PC_G1, /* type */ 1009 0, /* rightshift */ 1010 2, /* size (0 = byte, 1 = short, 2 = long) */ 1011 32, /* bitsize */ 1012 TRUE, /* pc_relative */ 1013 0, /* bitpos */ 1014 complain_overflow_dont,/* complain_on_overflow */ 1015 bfd_elf_generic_reloc, /* special_function */ 1016 "R_ARM_LDRS_PC_G1", /* name */ 1017 FALSE, /* partial_inplace */ 1018 0xffffffff, /* src_mask */ 1019 0xffffffff, /* dst_mask */ 1020 TRUE), /* pcrel_offset */ 1021 1022 HOWTO (R_ARM_LDRS_PC_G2, /* type */ 1023 0, /* rightshift */ 1024 2, /* size (0 = byte, 1 = short, 2 = long) */ 1025 32, /* bitsize */ 1026 TRUE, /* pc_relative */ 1027 0, /* bitpos */ 1028 complain_overflow_dont,/* complain_on_overflow */ 1029 bfd_elf_generic_reloc, /* special_function */ 1030 "R_ARM_LDRS_PC_G2", /* name */ 1031 FALSE, /* partial_inplace */ 1032 0xffffffff, /* src_mask */ 1033 0xffffffff, /* dst_mask */ 1034 TRUE), /* pcrel_offset */ 1035 1036 HOWTO (R_ARM_LDC_PC_G0, /* type */ 1037 0, /* rightshift */ 1038 2, /* size (0 = byte, 1 = short, 2 = long) */ 1039 32, /* bitsize */ 1040 TRUE, /* pc_relative */ 1041 0, /* bitpos */ 1042 complain_overflow_dont,/* complain_on_overflow */ 1043 bfd_elf_generic_reloc, /* special_function */ 1044 "R_ARM_LDC_PC_G0", /* name */ 1045 FALSE, /* partial_inplace */ 1046 0xffffffff, /* src_mask */ 1047 0xffffffff, /* dst_mask */ 1048 TRUE), /* pcrel_offset */ 1049 1050 HOWTO (R_ARM_LDC_PC_G1, /* type */ 1051 0, /* rightshift */ 1052 2, /* size (0 = byte, 1 = short, 2 = long) */ 1053 32, /* bitsize */ 1054 TRUE, /* pc_relative */ 1055 0, /* bitpos */ 1056 complain_overflow_dont,/* complain_on_overflow */ 1057 bfd_elf_generic_reloc, /* special_function */ 1058 "R_ARM_LDC_PC_G1", /* name */ 1059 FALSE, /* partial_inplace */ 1060 0xffffffff, /* src_mask */ 1061 0xffffffff, /* dst_mask */ 1062 TRUE), /* pcrel_offset */ 1063 1064 HOWTO (R_ARM_LDC_PC_G2, /* type */ 1065 0, /* rightshift */ 1066 2, /* size (0 = byte, 1 = short, 2 = long) */ 1067 32, /* bitsize */ 1068 TRUE, /* pc_relative */ 1069 0, /* bitpos */ 1070 complain_overflow_dont,/* complain_on_overflow */ 1071 bfd_elf_generic_reloc, /* special_function */ 1072 "R_ARM_LDC_PC_G2", /* name */ 1073 FALSE, /* partial_inplace */ 1074 0xffffffff, /* src_mask */ 1075 0xffffffff, /* dst_mask */ 1076 TRUE), /* pcrel_offset */ 1077 1078 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */ 1079 0, /* rightshift */ 1080 2, /* size (0 = byte, 1 = short, 2 = long) */ 1081 32, /* bitsize */ 1082 TRUE, /* pc_relative */ 1083 0, /* bitpos */ 1084 complain_overflow_dont,/* complain_on_overflow */ 1085 bfd_elf_generic_reloc, /* special_function */ 1086 "R_ARM_ALU_SB_G0_NC", /* name */ 1087 FALSE, /* partial_inplace */ 1088 0xffffffff, /* src_mask */ 1089 0xffffffff, /* dst_mask */ 1090 TRUE), /* pcrel_offset */ 1091 1092 HOWTO (R_ARM_ALU_SB_G0, /* type */ 1093 0, /* rightshift */ 1094 2, /* size (0 = byte, 1 = short, 2 = long) */ 1095 32, /* bitsize */ 1096 TRUE, /* pc_relative */ 1097 0, /* bitpos */ 1098 complain_overflow_dont,/* complain_on_overflow */ 1099 bfd_elf_generic_reloc, /* special_function */ 1100 "R_ARM_ALU_SB_G0", /* name */ 1101 FALSE, /* partial_inplace */ 1102 0xffffffff, /* src_mask */ 1103 0xffffffff, /* dst_mask */ 1104 TRUE), /* pcrel_offset */ 1105 1106 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */ 1107 0, /* rightshift */ 1108 2, /* size (0 = byte, 1 = short, 2 = long) */ 1109 32, /* bitsize */ 1110 TRUE, /* pc_relative */ 1111 0, /* bitpos */ 1112 complain_overflow_dont,/* complain_on_overflow */ 1113 bfd_elf_generic_reloc, /* special_function */ 1114 "R_ARM_ALU_SB_G1_NC", /* name */ 1115 FALSE, /* partial_inplace */ 1116 0xffffffff, /* src_mask */ 1117 0xffffffff, /* dst_mask */ 1118 TRUE), /* pcrel_offset */ 1119 1120 HOWTO (R_ARM_ALU_SB_G1, /* type */ 1121 0, /* rightshift */ 1122 2, /* size (0 = byte, 1 = short, 2 = long) */ 1123 32, /* bitsize */ 1124 TRUE, /* pc_relative */ 1125 0, /* bitpos */ 1126 complain_overflow_dont,/* complain_on_overflow */ 1127 bfd_elf_generic_reloc, /* special_function */ 1128 "R_ARM_ALU_SB_G1", /* name */ 1129 FALSE, /* partial_inplace */ 1130 0xffffffff, /* src_mask */ 1131 0xffffffff, /* dst_mask */ 1132 TRUE), /* pcrel_offset */ 1133 1134 HOWTO (R_ARM_ALU_SB_G2, /* type */ 1135 0, /* rightshift */ 1136 2, /* size (0 = byte, 1 = short, 2 = long) */ 1137 32, /* bitsize */ 1138 TRUE, /* pc_relative */ 1139 0, /* bitpos */ 1140 complain_overflow_dont,/* complain_on_overflow */ 1141 bfd_elf_generic_reloc, /* special_function */ 1142 "R_ARM_ALU_SB_G2", /* name */ 1143 FALSE, /* partial_inplace */ 1144 0xffffffff, /* src_mask */ 1145 0xffffffff, /* dst_mask */ 1146 TRUE), /* pcrel_offset */ 1147 1148 HOWTO (R_ARM_LDR_SB_G0, /* type */ 1149 0, /* rightshift */ 1150 2, /* size (0 = byte, 1 = short, 2 = long) */ 1151 32, /* bitsize */ 1152 TRUE, /* pc_relative */ 1153 0, /* bitpos */ 1154 complain_overflow_dont,/* complain_on_overflow */ 1155 bfd_elf_generic_reloc, /* special_function */ 1156 "R_ARM_LDR_SB_G0", /* name */ 1157 FALSE, /* partial_inplace */ 1158 0xffffffff, /* src_mask */ 1159 0xffffffff, /* dst_mask */ 1160 TRUE), /* pcrel_offset */ 1161 1162 HOWTO (R_ARM_LDR_SB_G1, /* type */ 1163 0, /* rightshift */ 1164 2, /* size (0 = byte, 1 = short, 2 = long) */ 1165 32, /* bitsize */ 1166 TRUE, /* pc_relative */ 1167 0, /* bitpos */ 1168 complain_overflow_dont,/* complain_on_overflow */ 1169 bfd_elf_generic_reloc, /* special_function */ 1170 "R_ARM_LDR_SB_G1", /* name */ 1171 FALSE, /* partial_inplace */ 1172 0xffffffff, /* src_mask */ 1173 0xffffffff, /* dst_mask */ 1174 TRUE), /* pcrel_offset */ 1175 1176 HOWTO (R_ARM_LDR_SB_G2, /* type */ 1177 0, /* rightshift */ 1178 2, /* size (0 = byte, 1 = short, 2 = long) */ 1179 32, /* bitsize */ 1180 TRUE, /* pc_relative */ 1181 0, /* bitpos */ 1182 complain_overflow_dont,/* complain_on_overflow */ 1183 bfd_elf_generic_reloc, /* special_function */ 1184 "R_ARM_LDR_SB_G2", /* name */ 1185 FALSE, /* partial_inplace */ 1186 0xffffffff, /* src_mask */ 1187 0xffffffff, /* dst_mask */ 1188 TRUE), /* pcrel_offset */ 1189 1190 HOWTO (R_ARM_LDRS_SB_G0, /* type */ 1191 0, /* rightshift */ 1192 2, /* size (0 = byte, 1 = short, 2 = long) */ 1193 32, /* bitsize */ 1194 TRUE, /* pc_relative */ 1195 0, /* bitpos */ 1196 complain_overflow_dont,/* complain_on_overflow */ 1197 bfd_elf_generic_reloc, /* special_function */ 1198 "R_ARM_LDRS_SB_G0", /* name */ 1199 FALSE, /* partial_inplace */ 1200 0xffffffff, /* src_mask */ 1201 0xffffffff, /* dst_mask */ 1202 TRUE), /* pcrel_offset */ 1203 1204 HOWTO (R_ARM_LDRS_SB_G1, /* type */ 1205 0, /* rightshift */ 1206 2, /* size (0 = byte, 1 = short, 2 = long) */ 1207 32, /* bitsize */ 1208 TRUE, /* pc_relative */ 1209 0, /* bitpos */ 1210 complain_overflow_dont,/* complain_on_overflow */ 1211 bfd_elf_generic_reloc, /* special_function */ 1212 "R_ARM_LDRS_SB_G1", /* name */ 1213 FALSE, /* partial_inplace */ 1214 0xffffffff, /* src_mask */ 1215 0xffffffff, /* dst_mask */ 1216 TRUE), /* pcrel_offset */ 1217 1218 HOWTO (R_ARM_LDRS_SB_G2, /* type */ 1219 0, /* rightshift */ 1220 2, /* size (0 = byte, 1 = short, 2 = long) */ 1221 32, /* bitsize */ 1222 TRUE, /* pc_relative */ 1223 0, /* bitpos */ 1224 complain_overflow_dont,/* complain_on_overflow */ 1225 bfd_elf_generic_reloc, /* special_function */ 1226 "R_ARM_LDRS_SB_G2", /* name */ 1227 FALSE, /* partial_inplace */ 1228 0xffffffff, /* src_mask */ 1229 0xffffffff, /* dst_mask */ 1230 TRUE), /* pcrel_offset */ 1231 1232 HOWTO (R_ARM_LDC_SB_G0, /* type */ 1233 0, /* rightshift */ 1234 2, /* size (0 = byte, 1 = short, 2 = long) */ 1235 32, /* bitsize */ 1236 TRUE, /* pc_relative */ 1237 0, /* bitpos */ 1238 complain_overflow_dont,/* complain_on_overflow */ 1239 bfd_elf_generic_reloc, /* special_function */ 1240 "R_ARM_LDC_SB_G0", /* name */ 1241 FALSE, /* partial_inplace */ 1242 0xffffffff, /* src_mask */ 1243 0xffffffff, /* dst_mask */ 1244 TRUE), /* pcrel_offset */ 1245 1246 HOWTO (R_ARM_LDC_SB_G1, /* type */ 1247 0, /* rightshift */ 1248 2, /* size (0 = byte, 1 = short, 2 = long) */ 1249 32, /* bitsize */ 1250 TRUE, /* pc_relative */ 1251 0, /* bitpos */ 1252 complain_overflow_dont,/* complain_on_overflow */ 1253 bfd_elf_generic_reloc, /* special_function */ 1254 "R_ARM_LDC_SB_G1", /* name */ 1255 FALSE, /* partial_inplace */ 1256 0xffffffff, /* src_mask */ 1257 0xffffffff, /* dst_mask */ 1258 TRUE), /* pcrel_offset */ 1259 1260 HOWTO (R_ARM_LDC_SB_G2, /* type */ 1261 0, /* rightshift */ 1262 2, /* size (0 = byte, 1 = short, 2 = long) */ 1263 32, /* bitsize */ 1264 TRUE, /* pc_relative */ 1265 0, /* bitpos */ 1266 complain_overflow_dont,/* complain_on_overflow */ 1267 bfd_elf_generic_reloc, /* special_function */ 1268 "R_ARM_LDC_SB_G2", /* name */ 1269 FALSE, /* partial_inplace */ 1270 0xffffffff, /* src_mask */ 1271 0xffffffff, /* dst_mask */ 1272 TRUE), /* pcrel_offset */ 1273 1274 /* End of group relocations. */ 1275 1276 HOWTO (R_ARM_MOVW_BREL_NC, /* type */ 1277 0, /* rightshift */ 1278 2, /* size (0 = byte, 1 = short, 2 = long) */ 1279 16, /* bitsize */ 1280 FALSE, /* pc_relative */ 1281 0, /* bitpos */ 1282 complain_overflow_dont,/* complain_on_overflow */ 1283 bfd_elf_generic_reloc, /* special_function */ 1284 "R_ARM_MOVW_BREL_NC", /* name */ 1285 FALSE, /* partial_inplace */ 1286 0x0000ffff, /* src_mask */ 1287 0x0000ffff, /* dst_mask */ 1288 FALSE), /* pcrel_offset */ 1289 1290 HOWTO (R_ARM_MOVT_BREL, /* type */ 1291 0, /* rightshift */ 1292 2, /* size (0 = byte, 1 = short, 2 = long) */ 1293 16, /* bitsize */ 1294 FALSE, /* pc_relative */ 1295 0, /* bitpos */ 1296 complain_overflow_bitfield,/* complain_on_overflow */ 1297 bfd_elf_generic_reloc, /* special_function */ 1298 "R_ARM_MOVT_BREL", /* name */ 1299 FALSE, /* partial_inplace */ 1300 0x0000ffff, /* src_mask */ 1301 0x0000ffff, /* dst_mask */ 1302 FALSE), /* pcrel_offset */ 1303 1304 HOWTO (R_ARM_MOVW_BREL, /* type */ 1305 0, /* rightshift */ 1306 2, /* size (0 = byte, 1 = short, 2 = long) */ 1307 16, /* bitsize */ 1308 FALSE, /* pc_relative */ 1309 0, /* bitpos */ 1310 complain_overflow_dont,/* complain_on_overflow */ 1311 bfd_elf_generic_reloc, /* special_function */ 1312 "R_ARM_MOVW_BREL", /* name */ 1313 FALSE, /* partial_inplace */ 1314 0x0000ffff, /* src_mask */ 1315 0x0000ffff, /* dst_mask */ 1316 FALSE), /* pcrel_offset */ 1317 1318 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */ 1319 0, /* rightshift */ 1320 2, /* size (0 = byte, 1 = short, 2 = long) */ 1321 16, /* bitsize */ 1322 FALSE, /* pc_relative */ 1323 0, /* bitpos */ 1324 complain_overflow_dont,/* complain_on_overflow */ 1325 bfd_elf_generic_reloc, /* special_function */ 1326 "R_ARM_THM_MOVW_BREL_NC",/* name */ 1327 FALSE, /* partial_inplace */ 1328 0x040f70ff, /* src_mask */ 1329 0x040f70ff, /* dst_mask */ 1330 FALSE), /* pcrel_offset */ 1331 1332 HOWTO (R_ARM_THM_MOVT_BREL, /* type */ 1333 0, /* rightshift */ 1334 2, /* size (0 = byte, 1 = short, 2 = long) */ 1335 16, /* bitsize */ 1336 FALSE, /* pc_relative */ 1337 0, /* bitpos */ 1338 complain_overflow_bitfield,/* complain_on_overflow */ 1339 bfd_elf_generic_reloc, /* special_function */ 1340 "R_ARM_THM_MOVT_BREL", /* name */ 1341 FALSE, /* partial_inplace */ 1342 0x040f70ff, /* src_mask */ 1343 0x040f70ff, /* dst_mask */ 1344 FALSE), /* pcrel_offset */ 1345 1346 HOWTO (R_ARM_THM_MOVW_BREL, /* type */ 1347 0, /* rightshift */ 1348 2, /* size (0 = byte, 1 = short, 2 = long) */ 1349 16, /* bitsize */ 1350 FALSE, /* pc_relative */ 1351 0, /* bitpos */ 1352 complain_overflow_dont,/* complain_on_overflow */ 1353 bfd_elf_generic_reloc, /* special_function */ 1354 "R_ARM_THM_MOVW_BREL", /* name */ 1355 FALSE, /* partial_inplace */ 1356 0x040f70ff, /* src_mask */ 1357 0x040f70ff, /* dst_mask */ 1358 FALSE), /* pcrel_offset */ 1359 1360 HOWTO (R_ARM_TLS_GOTDESC, /* type */ 1361 0, /* rightshift */ 1362 2, /* size (0 = byte, 1 = short, 2 = long) */ 1363 32, /* bitsize */ 1364 FALSE, /* pc_relative */ 1365 0, /* bitpos */ 1366 complain_overflow_bitfield,/* complain_on_overflow */ 1367 NULL, /* special_function */ 1368 "R_ARM_TLS_GOTDESC", /* name */ 1369 TRUE, /* partial_inplace */ 1370 0xffffffff, /* src_mask */ 1371 0xffffffff, /* dst_mask */ 1372 FALSE), /* pcrel_offset */ 1373 1374 HOWTO (R_ARM_TLS_CALL, /* type */ 1375 0, /* rightshift */ 1376 2, /* size (0 = byte, 1 = short, 2 = long) */ 1377 24, /* bitsize */ 1378 FALSE, /* pc_relative */ 1379 0, /* bitpos */ 1380 complain_overflow_dont,/* complain_on_overflow */ 1381 bfd_elf_generic_reloc, /* special_function */ 1382 "R_ARM_TLS_CALL", /* name */ 1383 FALSE, /* partial_inplace */ 1384 0x00ffffff, /* src_mask */ 1385 0x00ffffff, /* dst_mask */ 1386 FALSE), /* pcrel_offset */ 1387 1388 HOWTO (R_ARM_TLS_DESCSEQ, /* type */ 1389 0, /* rightshift */ 1390 2, /* size (0 = byte, 1 = short, 2 = long) */ 1391 0, /* bitsize */ 1392 FALSE, /* pc_relative */ 1393 0, /* bitpos */ 1394 complain_overflow_dont,/* complain_on_overflow */ 1395 bfd_elf_generic_reloc, /* special_function */ 1396 "R_ARM_TLS_DESCSEQ", /* name */ 1397 FALSE, /* partial_inplace */ 1398 0x00000000, /* src_mask */ 1399 0x00000000, /* dst_mask */ 1400 FALSE), /* pcrel_offset */ 1401 1402 HOWTO (R_ARM_THM_TLS_CALL, /* type */ 1403 0, /* rightshift */ 1404 2, /* size (0 = byte, 1 = short, 2 = long) */ 1405 24, /* bitsize */ 1406 FALSE, /* pc_relative */ 1407 0, /* bitpos */ 1408 complain_overflow_dont,/* complain_on_overflow */ 1409 bfd_elf_generic_reloc, /* special_function */ 1410 "R_ARM_THM_TLS_CALL", /* name */ 1411 FALSE, /* partial_inplace */ 1412 0x07ff07ff, /* src_mask */ 1413 0x07ff07ff, /* dst_mask */ 1414 FALSE), /* pcrel_offset */ 1415 1416 HOWTO (R_ARM_PLT32_ABS, /* type */ 1417 0, /* rightshift */ 1418 2, /* size (0 = byte, 1 = short, 2 = long) */ 1419 32, /* bitsize */ 1420 FALSE, /* pc_relative */ 1421 0, /* bitpos */ 1422 complain_overflow_dont,/* complain_on_overflow */ 1423 bfd_elf_generic_reloc, /* special_function */ 1424 "R_ARM_PLT32_ABS", /* name */ 1425 FALSE, /* partial_inplace */ 1426 0xffffffff, /* src_mask */ 1427 0xffffffff, /* dst_mask */ 1428 FALSE), /* pcrel_offset */ 1429 1430 HOWTO (R_ARM_GOT_ABS, /* type */ 1431 0, /* rightshift */ 1432 2, /* size (0 = byte, 1 = short, 2 = long) */ 1433 32, /* bitsize */ 1434 FALSE, /* pc_relative */ 1435 0, /* bitpos */ 1436 complain_overflow_dont,/* complain_on_overflow */ 1437 bfd_elf_generic_reloc, /* special_function */ 1438 "R_ARM_GOT_ABS", /* name */ 1439 FALSE, /* partial_inplace */ 1440 0xffffffff, /* src_mask */ 1441 0xffffffff, /* dst_mask */ 1442 FALSE), /* pcrel_offset */ 1443 1444 HOWTO (R_ARM_GOT_PREL, /* type */ 1445 0, /* rightshift */ 1446 2, /* size (0 = byte, 1 = short, 2 = long) */ 1447 32, /* bitsize */ 1448 TRUE, /* pc_relative */ 1449 0, /* bitpos */ 1450 complain_overflow_dont, /* complain_on_overflow */ 1451 bfd_elf_generic_reloc, /* special_function */ 1452 "R_ARM_GOT_PREL", /* name */ 1453 FALSE, /* partial_inplace */ 1454 0xffffffff, /* src_mask */ 1455 0xffffffff, /* dst_mask */ 1456 TRUE), /* pcrel_offset */ 1457 1458 HOWTO (R_ARM_GOT_BREL12, /* type */ 1459 0, /* rightshift */ 1460 2, /* size (0 = byte, 1 = short, 2 = long) */ 1461 12, /* bitsize */ 1462 FALSE, /* pc_relative */ 1463 0, /* bitpos */ 1464 complain_overflow_bitfield,/* complain_on_overflow */ 1465 bfd_elf_generic_reloc, /* special_function */ 1466 "R_ARM_GOT_BREL12", /* name */ 1467 FALSE, /* partial_inplace */ 1468 0x00000fff, /* src_mask */ 1469 0x00000fff, /* dst_mask */ 1470 FALSE), /* pcrel_offset */ 1471 1472 HOWTO (R_ARM_GOTOFF12, /* type */ 1473 0, /* rightshift */ 1474 2, /* size (0 = byte, 1 = short, 2 = long) */ 1475 12, /* bitsize */ 1476 FALSE, /* pc_relative */ 1477 0, /* bitpos */ 1478 complain_overflow_bitfield,/* complain_on_overflow */ 1479 bfd_elf_generic_reloc, /* special_function */ 1480 "R_ARM_GOTOFF12", /* name */ 1481 FALSE, /* partial_inplace */ 1482 0x00000fff, /* src_mask */ 1483 0x00000fff, /* dst_mask */ 1484 FALSE), /* pcrel_offset */ 1485 1486 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */ 1487 1488 /* GNU extension to record C++ vtable member usage */ 1489 HOWTO (R_ARM_GNU_VTENTRY, /* type */ 1490 0, /* rightshift */ 1491 2, /* size (0 = byte, 1 = short, 2 = long) */ 1492 0, /* bitsize */ 1493 FALSE, /* pc_relative */ 1494 0, /* bitpos */ 1495 complain_overflow_dont, /* complain_on_overflow */ 1496 _bfd_elf_rel_vtable_reloc_fn, /* special_function */ 1497 "R_ARM_GNU_VTENTRY", /* name */ 1498 FALSE, /* partial_inplace */ 1499 0, /* src_mask */ 1500 0, /* dst_mask */ 1501 FALSE), /* pcrel_offset */ 1502 1503 /* GNU extension to record C++ vtable hierarchy */ 1504 HOWTO (R_ARM_GNU_VTINHERIT, /* type */ 1505 0, /* rightshift */ 1506 2, /* size (0 = byte, 1 = short, 2 = long) */ 1507 0, /* bitsize */ 1508 FALSE, /* pc_relative */ 1509 0, /* bitpos */ 1510 complain_overflow_dont, /* complain_on_overflow */ 1511 NULL, /* special_function */ 1512 "R_ARM_GNU_VTINHERIT", /* name */ 1513 FALSE, /* partial_inplace */ 1514 0, /* src_mask */ 1515 0, /* dst_mask */ 1516 FALSE), /* pcrel_offset */ 1517 1518 HOWTO (R_ARM_THM_JUMP11, /* type */ 1519 1, /* rightshift */ 1520 1, /* size (0 = byte, 1 = short, 2 = long) */ 1521 11, /* bitsize */ 1522 TRUE, /* pc_relative */ 1523 0, /* bitpos */ 1524 complain_overflow_signed, /* complain_on_overflow */ 1525 bfd_elf_generic_reloc, /* special_function */ 1526 "R_ARM_THM_JUMP11", /* name */ 1527 FALSE, /* partial_inplace */ 1528 0x000007ff, /* src_mask */ 1529 0x000007ff, /* dst_mask */ 1530 TRUE), /* pcrel_offset */ 1531 1532 HOWTO (R_ARM_THM_JUMP8, /* type */ 1533 1, /* rightshift */ 1534 1, /* size (0 = byte, 1 = short, 2 = long) */ 1535 8, /* bitsize */ 1536 TRUE, /* pc_relative */ 1537 0, /* bitpos */ 1538 complain_overflow_signed, /* complain_on_overflow */ 1539 bfd_elf_generic_reloc, /* special_function */ 1540 "R_ARM_THM_JUMP8", /* name */ 1541 FALSE, /* partial_inplace */ 1542 0x000000ff, /* src_mask */ 1543 0x000000ff, /* dst_mask */ 1544 TRUE), /* pcrel_offset */ 1545 1546 /* TLS relocations */ 1547 HOWTO (R_ARM_TLS_GD32, /* type */ 1548 0, /* rightshift */ 1549 2, /* size (0 = byte, 1 = short, 2 = long) */ 1550 32, /* bitsize */ 1551 FALSE, /* pc_relative */ 1552 0, /* bitpos */ 1553 complain_overflow_bitfield,/* complain_on_overflow */ 1554 NULL, /* special_function */ 1555 "R_ARM_TLS_GD32", /* name */ 1556 TRUE, /* partial_inplace */ 1557 0xffffffff, /* src_mask */ 1558 0xffffffff, /* dst_mask */ 1559 FALSE), /* pcrel_offset */ 1560 1561 HOWTO (R_ARM_TLS_LDM32, /* type */ 1562 0, /* rightshift */ 1563 2, /* size (0 = byte, 1 = short, 2 = long) */ 1564 32, /* bitsize */ 1565 FALSE, /* pc_relative */ 1566 0, /* bitpos */ 1567 complain_overflow_bitfield,/* complain_on_overflow */ 1568 bfd_elf_generic_reloc, /* special_function */ 1569 "R_ARM_TLS_LDM32", /* name */ 1570 TRUE, /* partial_inplace */ 1571 0xffffffff, /* src_mask */ 1572 0xffffffff, /* dst_mask */ 1573 FALSE), /* pcrel_offset */ 1574 1575 HOWTO (R_ARM_TLS_LDO32, /* type */ 1576 0, /* rightshift */ 1577 2, /* size (0 = byte, 1 = short, 2 = long) */ 1578 32, /* bitsize */ 1579 FALSE, /* pc_relative */ 1580 0, /* bitpos */ 1581 complain_overflow_bitfield,/* complain_on_overflow */ 1582 bfd_elf_generic_reloc, /* special_function */ 1583 "R_ARM_TLS_LDO32", /* name */ 1584 TRUE, /* partial_inplace */ 1585 0xffffffff, /* src_mask */ 1586 0xffffffff, /* dst_mask */ 1587 FALSE), /* pcrel_offset */ 1588 1589 HOWTO (R_ARM_TLS_IE32, /* type */ 1590 0, /* rightshift */ 1591 2, /* size (0 = byte, 1 = short, 2 = long) */ 1592 32, /* bitsize */ 1593 FALSE, /* pc_relative */ 1594 0, /* bitpos */ 1595 complain_overflow_bitfield,/* complain_on_overflow */ 1596 NULL, /* special_function */ 1597 "R_ARM_TLS_IE32", /* name */ 1598 TRUE, /* partial_inplace */ 1599 0xffffffff, /* src_mask */ 1600 0xffffffff, /* dst_mask */ 1601 FALSE), /* pcrel_offset */ 1602 1603 HOWTO (R_ARM_TLS_LE32, /* type */ 1604 0, /* rightshift */ 1605 2, /* size (0 = byte, 1 = short, 2 = long) */ 1606 32, /* bitsize */ 1607 FALSE, /* pc_relative */ 1608 0, /* bitpos */ 1609 complain_overflow_bitfield,/* complain_on_overflow */ 1610 NULL, /* special_function */ 1611 "R_ARM_TLS_LE32", /* name */ 1612 TRUE, /* partial_inplace */ 1613 0xffffffff, /* src_mask */ 1614 0xffffffff, /* dst_mask */ 1615 FALSE), /* pcrel_offset */ 1616 1617 HOWTO (R_ARM_TLS_LDO12, /* type */ 1618 0, /* rightshift */ 1619 2, /* size (0 = byte, 1 = short, 2 = long) */ 1620 12, /* bitsize */ 1621 FALSE, /* pc_relative */ 1622 0, /* bitpos */ 1623 complain_overflow_bitfield,/* complain_on_overflow */ 1624 bfd_elf_generic_reloc, /* special_function */ 1625 "R_ARM_TLS_LDO12", /* name */ 1626 FALSE, /* partial_inplace */ 1627 0x00000fff, /* src_mask */ 1628 0x00000fff, /* dst_mask */ 1629 FALSE), /* pcrel_offset */ 1630 1631 HOWTO (R_ARM_TLS_LE12, /* type */ 1632 0, /* rightshift */ 1633 2, /* size (0 = byte, 1 = short, 2 = long) */ 1634 12, /* bitsize */ 1635 FALSE, /* pc_relative */ 1636 0, /* bitpos */ 1637 complain_overflow_bitfield,/* complain_on_overflow */ 1638 bfd_elf_generic_reloc, /* special_function */ 1639 "R_ARM_TLS_LE12", /* name */ 1640 FALSE, /* partial_inplace */ 1641 0x00000fff, /* src_mask */ 1642 0x00000fff, /* dst_mask */ 1643 FALSE), /* pcrel_offset */ 1644 1645 HOWTO (R_ARM_TLS_IE12GP, /* type */ 1646 0, /* rightshift */ 1647 2, /* size (0 = byte, 1 = short, 2 = long) */ 1648 12, /* bitsize */ 1649 FALSE, /* pc_relative */ 1650 0, /* bitpos */ 1651 complain_overflow_bitfield,/* complain_on_overflow */ 1652 bfd_elf_generic_reloc, /* special_function */ 1653 "R_ARM_TLS_IE12GP", /* name */ 1654 FALSE, /* partial_inplace */ 1655 0x00000fff, /* src_mask */ 1656 0x00000fff, /* dst_mask */ 1657 FALSE), /* pcrel_offset */ 1658 1659 /* 112-127 private relocations. */ 1660 EMPTY_HOWTO (112), 1661 EMPTY_HOWTO (113), 1662 EMPTY_HOWTO (114), 1663 EMPTY_HOWTO (115), 1664 EMPTY_HOWTO (116), 1665 EMPTY_HOWTO (117), 1666 EMPTY_HOWTO (118), 1667 EMPTY_HOWTO (119), 1668 EMPTY_HOWTO (120), 1669 EMPTY_HOWTO (121), 1670 EMPTY_HOWTO (122), 1671 EMPTY_HOWTO (123), 1672 EMPTY_HOWTO (124), 1673 EMPTY_HOWTO (125), 1674 EMPTY_HOWTO (126), 1675 EMPTY_HOWTO (127), 1676 1677 /* R_ARM_ME_TOO, obsolete. */ 1678 EMPTY_HOWTO (128), 1679 1680 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */ 1681 0, /* rightshift */ 1682 1, /* size (0 = byte, 1 = short, 2 = long) */ 1683 0, /* bitsize */ 1684 FALSE, /* pc_relative */ 1685 0, /* bitpos */ 1686 complain_overflow_dont,/* complain_on_overflow */ 1687 bfd_elf_generic_reloc, /* special_function */ 1688 "R_ARM_THM_TLS_DESCSEQ",/* name */ 1689 FALSE, /* partial_inplace */ 1690 0x00000000, /* src_mask */ 1691 0x00000000, /* dst_mask */ 1692 FALSE), /* pcrel_offset */ 1693 EMPTY_HOWTO (130), 1694 EMPTY_HOWTO (131), 1695 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */ 1696 0, /* rightshift. */ 1697 1, /* size (0 = byte, 1 = short, 2 = long). */ 1698 16, /* bitsize. */ 1699 FALSE, /* pc_relative. */ 1700 0, /* bitpos. */ 1701 complain_overflow_bitfield,/* complain_on_overflow. */ 1702 bfd_elf_generic_reloc, /* special_function. */ 1703 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */ 1704 FALSE, /* partial_inplace. */ 1705 0x00000000, /* src_mask. */ 1706 0x00000000, /* dst_mask. */ 1707 FALSE), /* pcrel_offset. */ 1708 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */ 1709 0, /* rightshift. */ 1710 1, /* size (0 = byte, 1 = short, 2 = long). */ 1711 16, /* bitsize. */ 1712 FALSE, /* pc_relative. */ 1713 0, /* bitpos. */ 1714 complain_overflow_bitfield,/* complain_on_overflow. */ 1715 bfd_elf_generic_reloc, /* special_function. */ 1716 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */ 1717 FALSE, /* partial_inplace. */ 1718 0x00000000, /* src_mask. */ 1719 0x00000000, /* dst_mask. */ 1720 FALSE), /* pcrel_offset. */ 1721 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */ 1722 0, /* rightshift. */ 1723 1, /* size (0 = byte, 1 = short, 2 = long). */ 1724 16, /* bitsize. */ 1725 FALSE, /* pc_relative. */ 1726 0, /* bitpos. */ 1727 complain_overflow_bitfield,/* complain_on_overflow. */ 1728 bfd_elf_generic_reloc, /* special_function. */ 1729 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */ 1730 FALSE, /* partial_inplace. */ 1731 0x00000000, /* src_mask. */ 1732 0x00000000, /* dst_mask. */ 1733 FALSE), /* pcrel_offset. */ 1734 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */ 1735 0, /* rightshift. */ 1736 1, /* size (0 = byte, 1 = short, 2 = long). */ 1737 16, /* bitsize. */ 1738 FALSE, /* pc_relative. */ 1739 0, /* bitpos. */ 1740 complain_overflow_bitfield,/* complain_on_overflow. */ 1741 bfd_elf_generic_reloc, /* special_function. */ 1742 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */ 1743 FALSE, /* partial_inplace. */ 1744 0x00000000, /* src_mask. */ 1745 0x00000000, /* dst_mask. */ 1746 FALSE), /* pcrel_offset. */ 1747 /* Relocations for Armv8.1-M Mainline. */ 1748 HOWTO (R_ARM_THM_BF16, /* type. */ 1749 0, /* rightshift. */ 1750 1, /* size (0 = byte, 1 = short, 2 = long). */ 1751 16, /* bitsize. */ 1752 TRUE, /* pc_relative. */ 1753 0, /* bitpos. */ 1754 complain_overflow_dont,/* do not complain_on_overflow. */ 1755 bfd_elf_generic_reloc, /* special_function. */ 1756 "R_ARM_THM_BF16", /* name. */ 1757 FALSE, /* partial_inplace. */ 1758 0x001f0ffe, /* src_mask. */ 1759 0x001f0ffe, /* dst_mask. */ 1760 TRUE), /* pcrel_offset. */ 1761 HOWTO (R_ARM_THM_BF12, /* type. */ 1762 0, /* rightshift. */ 1763 1, /* size (0 = byte, 1 = short, 2 = long). */ 1764 12, /* bitsize. */ 1765 TRUE, /* pc_relative. */ 1766 0, /* bitpos. */ 1767 complain_overflow_dont,/* do not complain_on_overflow. */ 1768 bfd_elf_generic_reloc, /* special_function. */ 1769 "R_ARM_THM_BF12", /* name. */ 1770 FALSE, /* partial_inplace. */ 1771 0x00010ffe, /* src_mask. */ 1772 0x00010ffe, /* dst_mask. */ 1773 TRUE), /* pcrel_offset. */ 1774 HOWTO (R_ARM_THM_BF18, /* type. */ 1775 0, /* rightshift. */ 1776 1, /* size (0 = byte, 1 = short, 2 = long). */ 1777 18, /* bitsize. */ 1778 TRUE, /* pc_relative. */ 1779 0, /* bitpos. */ 1780 complain_overflow_dont,/* do not complain_on_overflow. */ 1781 bfd_elf_generic_reloc, /* special_function. */ 1782 "R_ARM_THM_BF18", /* name. */ 1783 FALSE, /* partial_inplace. */ 1784 0x007f0ffe, /* src_mask. */ 1785 0x007f0ffe, /* dst_mask. */ 1786 TRUE), /* pcrel_offset. */ 1787 }; 1788 1789 /* 160 onwards: */ 1790 static reloc_howto_type elf32_arm_howto_table_2[8] = 1791 { 1792 HOWTO (R_ARM_IRELATIVE, /* type */ 1793 0, /* rightshift */ 1794 2, /* size (0 = byte, 1 = short, 2 = long) */ 1795 32, /* bitsize */ 1796 FALSE, /* pc_relative */ 1797 0, /* bitpos */ 1798 complain_overflow_bitfield,/* complain_on_overflow */ 1799 bfd_elf_generic_reloc, /* special_function */ 1800 "R_ARM_IRELATIVE", /* name */ 1801 TRUE, /* partial_inplace */ 1802 0xffffffff, /* src_mask */ 1803 0xffffffff, /* dst_mask */ 1804 FALSE), /* pcrel_offset */ 1805 HOWTO (R_ARM_GOTFUNCDESC, /* type */ 1806 0, /* rightshift */ 1807 2, /* size (0 = byte, 1 = short, 2 = long) */ 1808 32, /* bitsize */ 1809 FALSE, /* pc_relative */ 1810 0, /* bitpos */ 1811 complain_overflow_bitfield,/* complain_on_overflow */ 1812 bfd_elf_generic_reloc, /* special_function */ 1813 "R_ARM_GOTFUNCDESC", /* name */ 1814 FALSE, /* partial_inplace */ 1815 0, /* src_mask */ 1816 0xffffffff, /* dst_mask */ 1817 FALSE), /* pcrel_offset */ 1818 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */ 1819 0, /* rightshift */ 1820 2, /* size (0 = byte, 1 = short, 2 = long) */ 1821 32, /* bitsize */ 1822 FALSE, /* pc_relative */ 1823 0, /* bitpos */ 1824 complain_overflow_bitfield,/* complain_on_overflow */ 1825 bfd_elf_generic_reloc, /* special_function */ 1826 "R_ARM_GOTOFFFUNCDESC",/* name */ 1827 FALSE, /* partial_inplace */ 1828 0, /* src_mask */ 1829 0xffffffff, /* dst_mask */ 1830 FALSE), /* pcrel_offset */ 1831 HOWTO (R_ARM_FUNCDESC, /* type */ 1832 0, /* rightshift */ 1833 2, /* size (0 = byte, 1 = short, 2 = long) */ 1834 32, /* bitsize */ 1835 FALSE, /* pc_relative */ 1836 0, /* bitpos */ 1837 complain_overflow_bitfield,/* complain_on_overflow */ 1838 bfd_elf_generic_reloc, /* special_function */ 1839 "R_ARM_FUNCDESC", /* name */ 1840 FALSE, /* partial_inplace */ 1841 0, /* src_mask */ 1842 0xffffffff, /* dst_mask */ 1843 FALSE), /* pcrel_offset */ 1844 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */ 1845 0, /* rightshift */ 1846 2, /* size (0 = byte, 1 = short, 2 = long) */ 1847 64, /* bitsize */ 1848 FALSE, /* pc_relative */ 1849 0, /* bitpos */ 1850 complain_overflow_bitfield,/* complain_on_overflow */ 1851 bfd_elf_generic_reloc, /* special_function */ 1852 "R_ARM_FUNCDESC_VALUE",/* name */ 1853 FALSE, /* partial_inplace */ 1854 0, /* src_mask */ 1855 0xffffffff, /* dst_mask */ 1856 FALSE), /* pcrel_offset */ 1857 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */ 1858 0, /* rightshift */ 1859 2, /* size (0 = byte, 1 = short, 2 = long) */ 1860 32, /* bitsize */ 1861 FALSE, /* pc_relative */ 1862 0, /* bitpos */ 1863 complain_overflow_bitfield,/* complain_on_overflow */ 1864 bfd_elf_generic_reloc, /* special_function */ 1865 "R_ARM_TLS_GD32_FDPIC",/* name */ 1866 FALSE, /* partial_inplace */ 1867 0, /* src_mask */ 1868 0xffffffff, /* dst_mask */ 1869 FALSE), /* pcrel_offset */ 1870 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */ 1871 0, /* rightshift */ 1872 2, /* size (0 = byte, 1 = short, 2 = long) */ 1873 32, /* bitsize */ 1874 FALSE, /* pc_relative */ 1875 0, /* bitpos */ 1876 complain_overflow_bitfield,/* complain_on_overflow */ 1877 bfd_elf_generic_reloc, /* special_function */ 1878 "R_ARM_TLS_LDM32_FDPIC",/* name */ 1879 FALSE, /* partial_inplace */ 1880 0, /* src_mask */ 1881 0xffffffff, /* dst_mask */ 1882 FALSE), /* pcrel_offset */ 1883 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */ 1884 0, /* rightshift */ 1885 2, /* size (0 = byte, 1 = short, 2 = long) */ 1886 32, /* bitsize */ 1887 FALSE, /* pc_relative */ 1888 0, /* bitpos */ 1889 complain_overflow_bitfield,/* complain_on_overflow */ 1890 bfd_elf_generic_reloc, /* special_function */ 1891 "R_ARM_TLS_IE32_FDPIC",/* name */ 1892 FALSE, /* partial_inplace */ 1893 0, /* src_mask */ 1894 0xffffffff, /* dst_mask */ 1895 FALSE), /* pcrel_offset */ 1896 }; 1897 1898 /* 249-255 extended, currently unused, relocations: */ 1899 static reloc_howto_type elf32_arm_howto_table_3[4] = 1900 { 1901 HOWTO (R_ARM_RREL32, /* type */ 1902 0, /* rightshift */ 1903 0, /* size (0 = byte, 1 = short, 2 = long) */ 1904 0, /* bitsize */ 1905 FALSE, /* pc_relative */ 1906 0, /* bitpos */ 1907 complain_overflow_dont,/* complain_on_overflow */ 1908 bfd_elf_generic_reloc, /* special_function */ 1909 "R_ARM_RREL32", /* name */ 1910 FALSE, /* partial_inplace */ 1911 0, /* src_mask */ 1912 0, /* dst_mask */ 1913 FALSE), /* pcrel_offset */ 1914 1915 HOWTO (R_ARM_RABS32, /* type */ 1916 0, /* rightshift */ 1917 0, /* size (0 = byte, 1 = short, 2 = long) */ 1918 0, /* bitsize */ 1919 FALSE, /* pc_relative */ 1920 0, /* bitpos */ 1921 complain_overflow_dont,/* complain_on_overflow */ 1922 bfd_elf_generic_reloc, /* special_function */ 1923 "R_ARM_RABS32", /* name */ 1924 FALSE, /* partial_inplace */ 1925 0, /* src_mask */ 1926 0, /* dst_mask */ 1927 FALSE), /* pcrel_offset */ 1928 1929 HOWTO (R_ARM_RPC24, /* type */ 1930 0, /* rightshift */ 1931 0, /* size (0 = byte, 1 = short, 2 = long) */ 1932 0, /* bitsize */ 1933 FALSE, /* pc_relative */ 1934 0, /* bitpos */ 1935 complain_overflow_dont,/* complain_on_overflow */ 1936 bfd_elf_generic_reloc, /* special_function */ 1937 "R_ARM_RPC24", /* name */ 1938 FALSE, /* partial_inplace */ 1939 0, /* src_mask */ 1940 0, /* dst_mask */ 1941 FALSE), /* pcrel_offset */ 1942 1943 HOWTO (R_ARM_RBASE, /* type */ 1944 0, /* rightshift */ 1945 0, /* size (0 = byte, 1 = short, 2 = long) */ 1946 0, /* bitsize */ 1947 FALSE, /* pc_relative */ 1948 0, /* bitpos */ 1949 complain_overflow_dont,/* complain_on_overflow */ 1950 bfd_elf_generic_reloc, /* special_function */ 1951 "R_ARM_RBASE", /* name */ 1952 FALSE, /* partial_inplace */ 1953 0, /* src_mask */ 1954 0, /* dst_mask */ 1955 FALSE) /* pcrel_offset */ 1956 }; 1957 1958 static reloc_howto_type * 1959 elf32_arm_howto_from_type (unsigned int r_type) 1960 { 1961 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1)) 1962 return &elf32_arm_howto_table_1[r_type]; 1963 1964 if (r_type >= R_ARM_IRELATIVE 1965 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2)) 1966 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE]; 1967 1968 if (r_type >= R_ARM_RREL32 1969 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3)) 1970 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32]; 1971 1972 return NULL; 1973 } 1974 1975 static bfd_boolean 1976 elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc, 1977 Elf_Internal_Rela * elf_reloc) 1978 { 1979 unsigned int r_type; 1980 1981 r_type = ELF32_R_TYPE (elf_reloc->r_info); 1982 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL) 1983 { 1984 /* xgettext:c-format */ 1985 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), 1986 abfd, r_type); 1987 bfd_set_error (bfd_error_bad_value); 1988 return FALSE; 1989 } 1990 return TRUE; 1991 } 1992 1993 struct elf32_arm_reloc_map 1994 { 1995 bfd_reloc_code_real_type bfd_reloc_val; 1996 unsigned char elf_reloc_val; 1997 }; 1998 1999 /* All entries in this list must also be present in elf32_arm_howto_table. */ 2000 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] = 2001 { 2002 {BFD_RELOC_NONE, R_ARM_NONE}, 2003 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24}, 2004 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL}, 2005 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24}, 2006 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25}, 2007 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22}, 2008 {BFD_RELOC_32, R_ARM_ABS32}, 2009 {BFD_RELOC_32_PCREL, R_ARM_REL32}, 2010 {BFD_RELOC_8, R_ARM_ABS8}, 2011 {BFD_RELOC_16, R_ARM_ABS16}, 2012 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12}, 2013 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5}, 2014 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24}, 2015 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL}, 2016 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11}, 2017 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19}, 2018 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8}, 2019 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6}, 2020 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT}, 2021 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT}, 2022 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE}, 2023 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32}, 2024 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC}, 2025 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL}, 2026 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32}, 2027 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32}, 2028 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1}, 2029 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32}, 2030 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32}, 2031 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31}, 2032 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2}, 2033 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32}, 2034 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC}, 2035 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL}, 2036 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL}, 2037 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ}, 2038 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ}, 2039 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC}, 2040 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32}, 2041 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32}, 2042 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32}, 2043 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32}, 2044 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32}, 2045 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32}, 2046 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32}, 2047 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32}, 2048 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE}, 2049 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC}, 2050 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC}, 2051 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC}, 2052 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE}, 2053 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC}, 2054 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC}, 2055 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC}, 2056 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT}, 2057 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY}, 2058 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC}, 2059 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS}, 2060 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC}, 2061 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL}, 2062 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC}, 2063 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS}, 2064 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC}, 2065 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL}, 2066 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC}, 2067 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0}, 2068 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC}, 2069 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1}, 2070 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2}, 2071 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0}, 2072 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1}, 2073 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2}, 2074 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0}, 2075 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1}, 2076 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2}, 2077 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0}, 2078 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1}, 2079 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2}, 2080 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC}, 2081 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0}, 2082 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC}, 2083 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1}, 2084 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2}, 2085 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0}, 2086 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1}, 2087 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2}, 2088 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0}, 2089 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1}, 2090 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2}, 2091 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0}, 2092 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1}, 2093 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2}, 2094 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}, 2095 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC}, 2096 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC}, 2097 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC}, 2098 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}, 2099 {BFD_RELOC_ARM_THUMB_BF17, R_ARM_THM_BF16}, 2100 {BFD_RELOC_ARM_THUMB_BF13, R_ARM_THM_BF12}, 2101 {BFD_RELOC_ARM_THUMB_BF19, R_ARM_THM_BF18} 2102 }; 2103 2104 static reloc_howto_type * 2105 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 2106 bfd_reloc_code_real_type code) 2107 { 2108 unsigned int i; 2109 2110 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++) 2111 if (elf32_arm_reloc_map[i].bfd_reloc_val == code) 2112 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val); 2113 2114 return NULL; 2115 } 2116 2117 static reloc_howto_type * 2118 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 2119 const char *r_name) 2120 { 2121 unsigned int i; 2122 2123 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++) 2124 if (elf32_arm_howto_table_1[i].name != NULL 2125 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0) 2126 return &elf32_arm_howto_table_1[i]; 2127 2128 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++) 2129 if (elf32_arm_howto_table_2[i].name != NULL 2130 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0) 2131 return &elf32_arm_howto_table_2[i]; 2132 2133 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++) 2134 if (elf32_arm_howto_table_3[i].name != NULL 2135 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0) 2136 return &elf32_arm_howto_table_3[i]; 2137 2138 return NULL; 2139 } 2140 2141 /* Support for core dump NOTE sections. */ 2142 2143 static bfd_boolean 2144 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 2145 { 2146 int offset; 2147 size_t size; 2148 2149 switch (note->descsz) 2150 { 2151 default: 2152 return FALSE; 2153 2154 case 148: /* Linux/ARM 32-bit. */ 2155 /* pr_cursig */ 2156 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); 2157 2158 /* pr_pid */ 2159 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24); 2160 2161 /* pr_reg */ 2162 offset = 72; 2163 size = 72; 2164 2165 break; 2166 } 2167 2168 /* Make a ".reg/999" section. */ 2169 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 2170 size, note->descpos + offset); 2171 } 2172 2173 static bfd_boolean 2174 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 2175 { 2176 switch (note->descsz) 2177 { 2178 default: 2179 return FALSE; 2180 2181 case 124: /* Linux/ARM elf_prpsinfo. */ 2182 elf_tdata (abfd)->core->pid 2183 = bfd_get_32 (abfd, note->descdata + 12); 2184 elf_tdata (abfd)->core->program 2185 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); 2186 elf_tdata (abfd)->core->command 2187 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); 2188 } 2189 2190 /* Note that for some reason, a spurious space is tacked 2191 onto the end of the args in some (at least one anyway) 2192 implementations, so strip it off if it exists. */ 2193 { 2194 char *command = elf_tdata (abfd)->core->command; 2195 int n = strlen (command); 2196 2197 if (0 < n && command[n - 1] == ' ') 2198 command[n - 1] = '\0'; 2199 } 2200 2201 return TRUE; 2202 } 2203 2204 static char * 2205 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz, 2206 int note_type, ...) 2207 { 2208 switch (note_type) 2209 { 2210 default: 2211 return NULL; 2212 2213 case NT_PRPSINFO: 2214 { 2215 char data[124] ATTRIBUTE_NONSTRING; 2216 va_list ap; 2217 2218 va_start (ap, note_type); 2219 memset (data, 0, sizeof (data)); 2220 strncpy (data + 28, va_arg (ap, const char *), 16); 2221 #if GCC_VERSION == 8000 || GCC_VERSION == 8001 2222 DIAGNOSTIC_PUSH; 2223 /* GCC 8.0 and 8.1 warn about 80 equals destination size with 2224 -Wstringop-truncation: 2225 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643 2226 */ 2227 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION; 2228 #endif 2229 strncpy (data + 44, va_arg (ap, const char *), 80); 2230 #if GCC_VERSION == 8000 || GCC_VERSION == 8001 2231 DIAGNOSTIC_POP; 2232 #endif 2233 va_end (ap); 2234 2235 return elfcore_write_note (abfd, buf, bufsiz, 2236 "CORE", note_type, data, sizeof (data)); 2237 } 2238 2239 case NT_PRSTATUS: 2240 { 2241 char data[148]; 2242 va_list ap; 2243 long pid; 2244 int cursig; 2245 const void *greg; 2246 2247 va_start (ap, note_type); 2248 memset (data, 0, sizeof (data)); 2249 pid = va_arg (ap, long); 2250 bfd_put_32 (abfd, pid, data + 24); 2251 cursig = va_arg (ap, int); 2252 bfd_put_16 (abfd, cursig, data + 12); 2253 greg = va_arg (ap, const void *); 2254 memcpy (data + 72, greg, 72); 2255 va_end (ap); 2256 2257 return elfcore_write_note (abfd, buf, bufsiz, 2258 "CORE", note_type, data, sizeof (data)); 2259 } 2260 } 2261 } 2262 2263 #define TARGET_LITTLE_SYM arm_elf32_le_vec 2264 #define TARGET_LITTLE_NAME "elf32-littlearm" 2265 #define TARGET_BIG_SYM arm_elf32_be_vec 2266 #define TARGET_BIG_NAME "elf32-bigarm" 2267 2268 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus 2269 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo 2270 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note 2271 2272 typedef unsigned long int insn32; 2273 typedef unsigned short int insn16; 2274 2275 /* In lieu of proper flags, assume all EABIv4 or later objects are 2276 interworkable. */ 2277 #define INTERWORK_FLAG(abfd) \ 2278 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \ 2279 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \ 2280 || ((abfd)->flags & BFD_LINKER_CREATED)) 2281 2282 /* The linker script knows the section names for placement. 2283 The entry_names are used to do simple name mangling on the stubs. 2284 Given a function name, and its type, the stub can be found. The 2285 name can be changed. The only requirement is the %s be present. */ 2286 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t" 2287 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb" 2288 2289 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7" 2290 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm" 2291 2292 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer" 2293 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x" 2294 2295 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer" 2296 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x" 2297 2298 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx" 2299 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d" 2300 2301 #define STUB_ENTRY_NAME "__%s_veneer" 2302 2303 #define CMSE_PREFIX "__acle_se_" 2304 2305 #define CMSE_STUB_NAME ".gnu.sgstubs" 2306 2307 /* The name of the dynamic interpreter. This is put in the .interp 2308 section. */ 2309 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1" 2310 2311 /* FDPIC default stack size. */ 2312 #define DEFAULT_STACK_SIZE 0x8000 2313 2314 static const unsigned long tls_trampoline [] = 2315 { 2316 0xe08e0000, /* add r0, lr, r0 */ 2317 0xe5901004, /* ldr r1, [r0,#4] */ 2318 0xe12fff11, /* bx r1 */ 2319 }; 2320 2321 static const unsigned long dl_tlsdesc_lazy_trampoline [] = 2322 { 2323 0xe52d2004, /* push {r2} */ 2324 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */ 2325 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */ 2326 0xe79f2002, /* 1: ldr r2, [pc, r2] */ 2327 0xe081100f, /* 2: add r1, pc */ 2328 0xe12fff12, /* bx r2 */ 2329 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8 2330 + dl_tlsdesc_lazy_resolver(GOT) */ 2331 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */ 2332 }; 2333 2334 /* NOTE: [Thumb nop sequence] 2335 When adding code that transitions from Thumb to Arm the instruction that 2336 should be used for the alignment padding should be 0xe7fd (b .-2) instead of 2337 a nop for performance reasons. */ 2338 2339 /* ARM FDPIC PLT entry. */ 2340 /* The last 5 words contain PLT lazy fragment code and data. */ 2341 static const bfd_vma elf32_arm_fdpic_plt_entry [] = 2342 { 2343 0xe59fc008, /* ldr r12, .L1 */ 2344 0xe08cc009, /* add r12, r12, r9 */ 2345 0xe59c9004, /* ldr r9, [r12, #4] */ 2346 0xe59cf000, /* ldr pc, [r12] */ 2347 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */ 2348 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */ 2349 0xe51fc00c, /* ldr r12, [pc, #-12] */ 2350 0xe92d1000, /* push {r12} */ 2351 0xe599c004, /* ldr r12, [r9, #4] */ 2352 0xe599f000, /* ldr pc, [r9] */ 2353 }; 2354 2355 /* Thumb FDPIC PLT entry. */ 2356 /* The last 5 words contain PLT lazy fragment code and data. */ 2357 static const bfd_vma elf32_arm_fdpic_thumb_plt_entry [] = 2358 { 2359 0xc00cf8df, /* ldr.w r12, .L1 */ 2360 0x0c09eb0c, /* add.w r12, r12, r9 */ 2361 0x9004f8dc, /* ldr.w r9, [r12, #4] */ 2362 0xf000f8dc, /* ldr.w pc, [r12] */ 2363 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */ 2364 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */ 2365 0xc008f85f, /* ldr.w r12, .L2 */ 2366 0xcd04f84d, /* push {r12} */ 2367 0xc004f8d9, /* ldr.w r12, [r9, #4] */ 2368 0xf000f8d9, /* ldr.w pc, [r9] */ 2369 }; 2370 2371 #ifdef FOUR_WORD_PLT 2372 2373 /* The first entry in a procedure linkage table looks like 2374 this. It is set up so that any shared library function that is 2375 called before the relocation has been set up calls the dynamic 2376 linker first. */ 2377 static const bfd_vma elf32_arm_plt0_entry [] = 2378 { 2379 0xe52de004, /* str lr, [sp, #-4]! */ 2380 0xe59fe010, /* ldr lr, [pc, #16] */ 2381 0xe08fe00e, /* add lr, pc, lr */ 2382 0xe5bef008, /* ldr pc, [lr, #8]! */ 2383 }; 2384 2385 /* Subsequent entries in a procedure linkage table look like 2386 this. */ 2387 static const bfd_vma elf32_arm_plt_entry [] = 2388 { 2389 0xe28fc600, /* add ip, pc, #NN */ 2390 0xe28cca00, /* add ip, ip, #NN */ 2391 0xe5bcf000, /* ldr pc, [ip, #NN]! */ 2392 0x00000000, /* unused */ 2393 }; 2394 2395 #else /* not FOUR_WORD_PLT */ 2396 2397 /* The first entry in a procedure linkage table looks like 2398 this. It is set up so that any shared library function that is 2399 called before the relocation has been set up calls the dynamic 2400 linker first. */ 2401 static const bfd_vma elf32_arm_plt0_entry [] = 2402 { 2403 0xe52de004, /* str lr, [sp, #-4]! */ 2404 0xe59fe004, /* ldr lr, [pc, #4] */ 2405 0xe08fe00e, /* add lr, pc, lr */ 2406 0xe5bef008, /* ldr pc, [lr, #8]! */ 2407 0x00000000, /* &GOT[0] - . */ 2408 }; 2409 2410 /* By default subsequent entries in a procedure linkage table look like 2411 this. Offsets that don't fit into 28 bits will cause link error. */ 2412 static const bfd_vma elf32_arm_plt_entry_short [] = 2413 { 2414 0xe28fc600, /* add ip, pc, #0xNN00000 */ 2415 0xe28cca00, /* add ip, ip, #0xNN000 */ 2416 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */ 2417 }; 2418 2419 /* When explicitly asked, we'll use this "long" entry format 2420 which can cope with arbitrary displacements. */ 2421 static const bfd_vma elf32_arm_plt_entry_long [] = 2422 { 2423 0xe28fc200, /* add ip, pc, #0xN0000000 */ 2424 0xe28cc600, /* add ip, ip, #0xNN00000 */ 2425 0xe28cca00, /* add ip, ip, #0xNN000 */ 2426 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */ 2427 }; 2428 2429 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE; 2430 2431 #endif /* not FOUR_WORD_PLT */ 2432 2433 /* The first entry in a procedure linkage table looks like this. 2434 It is set up so that any shared library function that is called before the 2435 relocation has been set up calls the dynamic linker first. */ 2436 static const bfd_vma elf32_thumb2_plt0_entry [] = 2437 { 2438 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions, 2439 an instruction maybe encoded to one or two array elements. */ 2440 0xf8dfb500, /* push {lr} */ 2441 0x44fee008, /* ldr.w lr, [pc, #8] */ 2442 /* add lr, pc */ 2443 0xff08f85e, /* ldr.w pc, [lr, #8]! */ 2444 0x00000000, /* &GOT[0] - . */ 2445 }; 2446 2447 /* Subsequent entries in a procedure linkage table for thumb only target 2448 look like this. */ 2449 static const bfd_vma elf32_thumb2_plt_entry [] = 2450 { 2451 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions, 2452 an instruction maybe encoded to one or two array elements. */ 2453 0x0c00f240, /* movw ip, #0xNNNN */ 2454 0x0c00f2c0, /* movt ip, #0xNNNN */ 2455 0xf8dc44fc, /* add ip, pc */ 2456 0xe7fcf000 /* ldr.w pc, [ip] */ 2457 /* b .-4 */ 2458 }; 2459 2460 /* The format of the first entry in the procedure linkage table 2461 for a VxWorks executable. */ 2462 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] = 2463 { 2464 0xe52dc008, /* str ip,[sp,#-8]! */ 2465 0xe59fc000, /* ldr ip,[pc] */ 2466 0xe59cf008, /* ldr pc,[ip,#8] */ 2467 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */ 2468 }; 2469 2470 /* The format of subsequent entries in a VxWorks executable. */ 2471 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] = 2472 { 2473 0xe59fc000, /* ldr ip,[pc] */ 2474 0xe59cf000, /* ldr pc,[ip] */ 2475 0x00000000, /* .long @got */ 2476 0xe59fc000, /* ldr ip,[pc] */ 2477 0xea000000, /* b _PLT */ 2478 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */ 2479 }; 2480 2481 /* The format of entries in a VxWorks shared library. */ 2482 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] = 2483 { 2484 0xe59fc000, /* ldr ip,[pc] */ 2485 0xe79cf009, /* ldr pc,[ip,r9] */ 2486 0x00000000, /* .long @got */ 2487 0xe59fc000, /* ldr ip,[pc] */ 2488 0xe599f008, /* ldr pc,[r9,#8] */ 2489 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */ 2490 }; 2491 2492 /* An initial stub used if the PLT entry is referenced from Thumb code. */ 2493 #define PLT_THUMB_STUB_SIZE 4 2494 static const bfd_vma elf32_arm_plt_thumb_stub [] = 2495 { 2496 0x4778, /* bx pc */ 2497 0xe7fd /* b .-2 */ 2498 }; 2499 2500 /* The entries in a PLT when using a DLL-based target with multiple 2501 address spaces. */ 2502 static const bfd_vma elf32_arm_symbian_plt_entry [] = 2503 { 2504 0xe51ff004, /* ldr pc, [pc, #-4] */ 2505 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */ 2506 }; 2507 2508 /* The first entry in a procedure linkage table looks like 2509 this. It is set up so that any shared library function that is 2510 called before the relocation has been set up calls the dynamic 2511 linker first. */ 2512 static const bfd_vma elf32_arm_nacl_plt0_entry [] = 2513 { 2514 /* First bundle: */ 2515 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */ 2516 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */ 2517 0xe08cc00f, /* add ip, ip, pc */ 2518 0xe52dc008, /* str ip, [sp, #-8]! */ 2519 /* Second bundle: */ 2520 0xe3ccc103, /* bic ip, ip, #0xc0000000 */ 2521 0xe59cc000, /* ldr ip, [ip] */ 2522 0xe3ccc13f, /* bic ip, ip, #0xc000000f */ 2523 0xe12fff1c, /* bx ip */ 2524 /* Third bundle: */ 2525 0xe320f000, /* nop */ 2526 0xe320f000, /* nop */ 2527 0xe320f000, /* nop */ 2528 /* .Lplt_tail: */ 2529 0xe50dc004, /* str ip, [sp, #-4] */ 2530 /* Fourth bundle: */ 2531 0xe3ccc103, /* bic ip, ip, #0xc0000000 */ 2532 0xe59cc000, /* ldr ip, [ip] */ 2533 0xe3ccc13f, /* bic ip, ip, #0xc000000f */ 2534 0xe12fff1c, /* bx ip */ 2535 }; 2536 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4) 2537 2538 /* Subsequent entries in a procedure linkage table look like this. */ 2539 static const bfd_vma elf32_arm_nacl_plt_entry [] = 2540 { 2541 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */ 2542 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */ 2543 0xe08cc00f, /* add ip, ip, pc */ 2544 0xea000000, /* b .Lplt_tail */ 2545 }; 2546 2547 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8) 2548 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8) 2549 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4) 2550 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4) 2551 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4) 2552 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4) 2553 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4) 2554 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4) 2555 2556 enum stub_insn_type 2557 { 2558 THUMB16_TYPE = 1, 2559 THUMB32_TYPE, 2560 ARM_TYPE, 2561 DATA_TYPE 2562 }; 2563 2564 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0} 2565 /* A bit of a hack. A Thumb conditional branch, in which the proper condition 2566 is inserted in arm_build_one_stub(). */ 2567 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1} 2568 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0} 2569 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0} 2570 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0} 2571 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)} 2572 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0} 2573 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)} 2574 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)} 2575 2576 typedef struct 2577 { 2578 bfd_vma data; 2579 enum stub_insn_type type; 2580 unsigned int r_type; 2581 int reloc_addend; 2582 } insn_sequence; 2583 2584 /* See note [Thumb nop sequence] when adding a veneer. */ 2585 2586 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx 2587 to reach the stub if necessary. */ 2588 static const insn_sequence elf32_arm_stub_long_branch_any_any[] = 2589 { 2590 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */ 2591 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2592 }; 2593 2594 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not 2595 available. */ 2596 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] = 2597 { 2598 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */ 2599 ARM_INSN (0xe12fff1c), /* bx ip */ 2600 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2601 }; 2602 2603 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */ 2604 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] = 2605 { 2606 THUMB16_INSN (0xb401), /* push {r0} */ 2607 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */ 2608 THUMB16_INSN (0x4684), /* mov ip, r0 */ 2609 THUMB16_INSN (0xbc01), /* pop {r0} */ 2610 THUMB16_INSN (0x4760), /* bx ip */ 2611 THUMB16_INSN (0xbf00), /* nop */ 2612 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2613 }; 2614 2615 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */ 2616 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] = 2617 { 2618 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */ 2619 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */ 2620 }; 2621 2622 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2 2623 M-profile architectures. */ 2624 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] = 2625 { 2626 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */ 2627 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */ 2628 THUMB16_INSN (0x4760), /* bx ip */ 2629 }; 2630 2631 /* V4T Thumb -> Thumb long branch stub. Using the stack is not 2632 allowed. */ 2633 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] = 2634 { 2635 THUMB16_INSN (0x4778), /* bx pc */ 2636 THUMB16_INSN (0xe7fd), /* b .-2 */ 2637 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */ 2638 ARM_INSN (0xe12fff1c), /* bx ip */ 2639 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2640 }; 2641 2642 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not 2643 available. */ 2644 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] = 2645 { 2646 THUMB16_INSN (0x4778), /* bx pc */ 2647 THUMB16_INSN (0xe7fd), /* b .-2 */ 2648 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */ 2649 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2650 }; 2651 2652 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above 2653 one, when the destination is close enough. */ 2654 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] = 2655 { 2656 THUMB16_INSN (0x4778), /* bx pc */ 2657 THUMB16_INSN (0xe7fd), /* b .-2 */ 2658 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */ 2659 }; 2660 2661 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use 2662 blx to reach the stub if necessary. */ 2663 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] = 2664 { 2665 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */ 2666 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */ 2667 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */ 2668 }; 2669 2670 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use 2671 blx to reach the stub if necessary. We can not add into pc; 2672 it is not guaranteed to mode switch (different in ARMv6 and 2673 ARMv7). */ 2674 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] = 2675 { 2676 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */ 2677 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */ 2678 ARM_INSN (0xe12fff1c), /* bx ip */ 2679 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */ 2680 }; 2681 2682 /* V4T ARM -> ARM long branch stub, PIC. */ 2683 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] = 2684 { 2685 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */ 2686 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */ 2687 ARM_INSN (0xe12fff1c), /* bx ip */ 2688 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */ 2689 }; 2690 2691 /* V4T Thumb -> ARM long branch stub, PIC. */ 2692 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] = 2693 { 2694 THUMB16_INSN (0x4778), /* bx pc */ 2695 THUMB16_INSN (0xe7fd), /* b .-2 */ 2696 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */ 2697 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */ 2698 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */ 2699 }; 2700 2701 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile 2702 architectures. */ 2703 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] = 2704 { 2705 THUMB16_INSN (0xb401), /* push {r0} */ 2706 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */ 2707 THUMB16_INSN (0x46fc), /* mov ip, pc */ 2708 THUMB16_INSN (0x4484), /* add ip, r0 */ 2709 THUMB16_INSN (0xbc01), /* pop {r0} */ 2710 THUMB16_INSN (0x4760), /* bx ip */ 2711 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */ 2712 }; 2713 2714 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not 2715 allowed. */ 2716 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] = 2717 { 2718 THUMB16_INSN (0x4778), /* bx pc */ 2719 THUMB16_INSN (0xe7fd), /* b .-2 */ 2720 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */ 2721 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */ 2722 ARM_INSN (0xe12fff1c), /* bx ip */ 2723 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */ 2724 }; 2725 2726 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a 2727 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */ 2728 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] = 2729 { 2730 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */ 2731 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */ 2732 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */ 2733 }; 2734 2735 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a 2736 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */ 2737 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] = 2738 { 2739 THUMB16_INSN (0x4778), /* bx pc */ 2740 THUMB16_INSN (0xe7fd), /* b .-2 */ 2741 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */ 2742 ARM_INSN (0xe081f00f), /* add pc, r1, pc */ 2743 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */ 2744 }; 2745 2746 /* NaCl ARM -> ARM long branch stub. */ 2747 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] = 2748 { 2749 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */ 2750 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */ 2751 ARM_INSN (0xe12fff1c), /* bx ip */ 2752 ARM_INSN (0xe320f000), /* nop */ 2753 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */ 2754 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */ 2755 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ 2756 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ 2757 }; 2758 2759 /* NaCl ARM -> ARM long branch stub, PIC. */ 2760 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] = 2761 { 2762 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */ 2763 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */ 2764 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */ 2765 ARM_INSN (0xe12fff1c), /* bx ip */ 2766 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */ 2767 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */ 2768 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ 2769 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */ 2770 }; 2771 2772 /* Stub used for transition to secure state (aka SG veneer). */ 2773 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] = 2774 { 2775 THUMB32_INSN (0xe97fe97f), /* sg. */ 2776 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */ 2777 }; 2778 2779 2780 /* Cortex-A8 erratum-workaround stubs. */ 2781 2782 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we 2783 can't use a conditional branch to reach this stub). */ 2784 2785 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] = 2786 { 2787 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */ 2788 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */ 2789 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */ 2790 }; 2791 2792 /* Stub used for b.w and bl.w instructions. */ 2793 2794 static const insn_sequence elf32_arm_stub_a8_veneer_b[] = 2795 { 2796 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */ 2797 }; 2798 2799 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] = 2800 { 2801 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */ 2802 }; 2803 2804 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w 2805 instruction (which switches to ARM mode) to point to this stub. Jump to the 2806 real destination using an ARM-mode branch. */ 2807 2808 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] = 2809 { 2810 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */ 2811 }; 2812 2813 /* For each section group there can be a specially created linker section 2814 to hold the stubs for that group. The name of the stub section is based 2815 upon the name of another section within that group with the suffix below 2816 applied. 2817 2818 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to 2819 create what appeared to be a linker stub section when it actually 2820 contained user code/data. For example, consider this fragment: 2821 2822 const char * stubborn_problems[] = { "np" }; 2823 2824 If this is compiled with "-fPIC -fdata-sections" then gcc produces a 2825 section called: 2826 2827 .data.rel.local.stubborn_problems 2828 2829 This then causes problems in arm32_arm_build_stubs() as it triggers: 2830 2831 // Ignore non-stub sections. 2832 if (!strstr (stub_sec->name, STUB_SUFFIX)) 2833 continue; 2834 2835 And so the section would be ignored instead of being processed. Hence 2836 the change in definition of STUB_SUFFIX to a name that cannot be a valid 2837 C identifier. */ 2838 #define STUB_SUFFIX ".__stub" 2839 2840 /* One entry per long/short branch stub defined above. */ 2841 #define DEF_STUBS \ 2842 DEF_STUB(long_branch_any_any) \ 2843 DEF_STUB(long_branch_v4t_arm_thumb) \ 2844 DEF_STUB(long_branch_thumb_only) \ 2845 DEF_STUB(long_branch_v4t_thumb_thumb) \ 2846 DEF_STUB(long_branch_v4t_thumb_arm) \ 2847 DEF_STUB(short_branch_v4t_thumb_arm) \ 2848 DEF_STUB(long_branch_any_arm_pic) \ 2849 DEF_STUB(long_branch_any_thumb_pic) \ 2850 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \ 2851 DEF_STUB(long_branch_v4t_arm_thumb_pic) \ 2852 DEF_STUB(long_branch_v4t_thumb_arm_pic) \ 2853 DEF_STUB(long_branch_thumb_only_pic) \ 2854 DEF_STUB(long_branch_any_tls_pic) \ 2855 DEF_STUB(long_branch_v4t_thumb_tls_pic) \ 2856 DEF_STUB(long_branch_arm_nacl) \ 2857 DEF_STUB(long_branch_arm_nacl_pic) \ 2858 DEF_STUB(cmse_branch_thumb_only) \ 2859 DEF_STUB(a8_veneer_b_cond) \ 2860 DEF_STUB(a8_veneer_b) \ 2861 DEF_STUB(a8_veneer_bl) \ 2862 DEF_STUB(a8_veneer_blx) \ 2863 DEF_STUB(long_branch_thumb2_only) \ 2864 DEF_STUB(long_branch_thumb2_only_pure) 2865 2866 #define DEF_STUB(x) arm_stub_##x, 2867 enum elf32_arm_stub_type 2868 { 2869 arm_stub_none, 2870 DEF_STUBS 2871 max_stub_type 2872 }; 2873 #undef DEF_STUB 2874 2875 /* Note the first a8_veneer type. */ 2876 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond; 2877 2878 typedef struct 2879 { 2880 const insn_sequence* template_sequence; 2881 int template_size; 2882 } stub_def; 2883 2884 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)}, 2885 static const stub_def stub_definitions[] = 2886 { 2887 {NULL, 0}, 2888 DEF_STUBS 2889 }; 2890 2891 struct elf32_arm_stub_hash_entry 2892 { 2893 /* Base hash table entry structure. */ 2894 struct bfd_hash_entry root; 2895 2896 /* The stub section. */ 2897 asection *stub_sec; 2898 2899 /* Offset within stub_sec of the beginning of this stub. */ 2900 bfd_vma stub_offset; 2901 2902 /* Given the symbol's value and its section we can determine its final 2903 value when building the stubs (so the stub knows where to jump). */ 2904 bfd_vma target_value; 2905 asection *target_section; 2906 2907 /* Same as above but for the source of the branch to the stub. Used for 2908 Cortex-A8 erratum workaround to patch it to branch to the stub. As 2909 such, source section does not need to be recorded since Cortex-A8 erratum 2910 workaround stubs are only generated when both source and target are in the 2911 same section. */ 2912 bfd_vma source_value; 2913 2914 /* The instruction which caused this stub to be generated (only valid for 2915 Cortex-A8 erratum workaround stubs at present). */ 2916 unsigned long orig_insn; 2917 2918 /* The stub type. */ 2919 enum elf32_arm_stub_type stub_type; 2920 /* Its encoding size in bytes. */ 2921 int stub_size; 2922 /* Its template. */ 2923 const insn_sequence *stub_template; 2924 /* The size of the template (number of entries). */ 2925 int stub_template_size; 2926 2927 /* The symbol table entry, if any, that this was derived from. */ 2928 struct elf32_arm_link_hash_entry *h; 2929 2930 /* Type of branch. */ 2931 enum arm_st_branch_type branch_type; 2932 2933 /* Where this stub is being called from, or, in the case of combined 2934 stub sections, the first input section in the group. */ 2935 asection *id_sec; 2936 2937 /* The name for the local symbol at the start of this stub. The 2938 stub name in the hash table has to be unique; this does not, so 2939 it can be friendlier. */ 2940 char *output_name; 2941 }; 2942 2943 /* Used to build a map of a section. This is required for mixed-endian 2944 code/data. */ 2945 2946 typedef struct elf32_elf_section_map 2947 { 2948 bfd_vma vma; 2949 char type; 2950 } 2951 elf32_arm_section_map; 2952 2953 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */ 2954 2955 typedef enum 2956 { 2957 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER, 2958 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER, 2959 VFP11_ERRATUM_ARM_VENEER, 2960 VFP11_ERRATUM_THUMB_VENEER 2961 } 2962 elf32_vfp11_erratum_type; 2963 2964 typedef struct elf32_vfp11_erratum_list 2965 { 2966 struct elf32_vfp11_erratum_list *next; 2967 bfd_vma vma; 2968 union 2969 { 2970 struct 2971 { 2972 struct elf32_vfp11_erratum_list *veneer; 2973 unsigned int vfp_insn; 2974 } b; 2975 struct 2976 { 2977 struct elf32_vfp11_erratum_list *branch; 2978 unsigned int id; 2979 } v; 2980 } u; 2981 elf32_vfp11_erratum_type type; 2982 } 2983 elf32_vfp11_erratum_list; 2984 2985 /* Information about a STM32L4XX erratum veneer, or a branch to such a 2986 veneer. */ 2987 typedef enum 2988 { 2989 STM32L4XX_ERRATUM_BRANCH_TO_VENEER, 2990 STM32L4XX_ERRATUM_VENEER 2991 } 2992 elf32_stm32l4xx_erratum_type; 2993 2994 typedef struct elf32_stm32l4xx_erratum_list 2995 { 2996 struct elf32_stm32l4xx_erratum_list *next; 2997 bfd_vma vma; 2998 union 2999 { 3000 struct 3001 { 3002 struct elf32_stm32l4xx_erratum_list *veneer; 3003 unsigned int insn; 3004 } b; 3005 struct 3006 { 3007 struct elf32_stm32l4xx_erratum_list *branch; 3008 unsigned int id; 3009 } v; 3010 } u; 3011 elf32_stm32l4xx_erratum_type type; 3012 } 3013 elf32_stm32l4xx_erratum_list; 3014 3015 typedef enum 3016 { 3017 DELETE_EXIDX_ENTRY, 3018 INSERT_EXIDX_CANTUNWIND_AT_END 3019 } 3020 arm_unwind_edit_type; 3021 3022 /* A (sorted) list of edits to apply to an unwind table. */ 3023 typedef struct arm_unwind_table_edit 3024 { 3025 arm_unwind_edit_type type; 3026 /* Note: we sometimes want to insert an unwind entry corresponding to a 3027 section different from the one we're currently writing out, so record the 3028 (text) section this edit relates to here. */ 3029 asection *linked_section; 3030 unsigned int index; 3031 struct arm_unwind_table_edit *next; 3032 } 3033 arm_unwind_table_edit; 3034 3035 typedef struct _arm_elf_section_data 3036 { 3037 /* Information about mapping symbols. */ 3038 struct bfd_elf_section_data elf; 3039 unsigned int mapcount; 3040 unsigned int mapsize; 3041 elf32_arm_section_map *map; 3042 /* Information about CPU errata. */ 3043 unsigned int erratumcount; 3044 elf32_vfp11_erratum_list *erratumlist; 3045 unsigned int stm32l4xx_erratumcount; 3046 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist; 3047 unsigned int additional_reloc_count; 3048 /* Information about unwind tables. */ 3049 union 3050 { 3051 /* Unwind info attached to a text section. */ 3052 struct 3053 { 3054 asection *arm_exidx_sec; 3055 } text; 3056 3057 /* Unwind info attached to an .ARM.exidx section. */ 3058 struct 3059 { 3060 arm_unwind_table_edit *unwind_edit_list; 3061 arm_unwind_table_edit *unwind_edit_tail; 3062 } exidx; 3063 } u; 3064 } 3065 _arm_elf_section_data; 3066 3067 #define elf32_arm_section_data(sec) \ 3068 ((_arm_elf_section_data *) elf_section_data (sec)) 3069 3070 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum. 3071 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs), 3072 so may be created multiple times: we use an array of these entries whilst 3073 relaxing which we can refresh easily, then create stubs for each potentially 3074 erratum-triggering instruction once we've settled on a solution. */ 3075 3076 struct a8_erratum_fix 3077 { 3078 bfd *input_bfd; 3079 asection *section; 3080 bfd_vma offset; 3081 bfd_vma target_offset; 3082 unsigned long orig_insn; 3083 char *stub_name; 3084 enum elf32_arm_stub_type stub_type; 3085 enum arm_st_branch_type branch_type; 3086 }; 3087 3088 /* A table of relocs applied to branches which might trigger Cortex-A8 3089 erratum. */ 3090 3091 struct a8_erratum_reloc 3092 { 3093 bfd_vma from; 3094 bfd_vma destination; 3095 struct elf32_arm_link_hash_entry *hash; 3096 const char *sym_name; 3097 unsigned int r_type; 3098 enum arm_st_branch_type branch_type; 3099 bfd_boolean non_a8_stub; 3100 }; 3101 3102 /* The size of the thread control block. */ 3103 #define TCB_SIZE 8 3104 3105 /* ARM-specific information about a PLT entry, over and above the usual 3106 gotplt_union. */ 3107 struct arm_plt_info 3108 { 3109 /* We reference count Thumb references to a PLT entry separately, 3110 so that we can emit the Thumb trampoline only if needed. */ 3111 bfd_signed_vma thumb_refcount; 3112 3113 /* Some references from Thumb code may be eliminated by BL->BLX 3114 conversion, so record them separately. */ 3115 bfd_signed_vma maybe_thumb_refcount; 3116 3117 /* How many of the recorded PLT accesses were from non-call relocations. 3118 This information is useful when deciding whether anything takes the 3119 address of an STT_GNU_IFUNC PLT. A value of 0 means that all 3120 non-call references to the function should resolve directly to the 3121 real runtime target. */ 3122 unsigned int noncall_refcount; 3123 3124 /* Since PLT entries have variable size if the Thumb prologue is 3125 used, we need to record the index into .got.plt instead of 3126 recomputing it from the PLT offset. */ 3127 bfd_signed_vma got_offset; 3128 }; 3129 3130 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */ 3131 struct arm_local_iplt_info 3132 { 3133 /* The information that is usually found in the generic ELF part of 3134 the hash table entry. */ 3135 union gotplt_union root; 3136 3137 /* The information that is usually found in the ARM-specific part of 3138 the hash table entry. */ 3139 struct arm_plt_info arm; 3140 3141 /* A list of all potential dynamic relocations against this symbol. */ 3142 struct elf_dyn_relocs *dyn_relocs; 3143 }; 3144 3145 /* Structure to handle FDPIC support for local functions. */ 3146 struct fdpic_local { 3147 unsigned int funcdesc_cnt; 3148 unsigned int gotofffuncdesc_cnt; 3149 int funcdesc_offset; 3150 }; 3151 3152 struct elf_arm_obj_tdata 3153 { 3154 struct elf_obj_tdata root; 3155 3156 /* tls_type for each local got entry. */ 3157 char *local_got_tls_type; 3158 3159 /* GOTPLT entries for TLS descriptors. */ 3160 bfd_vma *local_tlsdesc_gotent; 3161 3162 /* Information for local symbols that need entries in .iplt. */ 3163 struct arm_local_iplt_info **local_iplt; 3164 3165 /* Zero to warn when linking objects with incompatible enum sizes. */ 3166 int no_enum_size_warning; 3167 3168 /* Zero to warn when linking objects with incompatible wchar_t sizes. */ 3169 int no_wchar_size_warning; 3170 3171 /* Maintains FDPIC counters and funcdesc info. */ 3172 struct fdpic_local *local_fdpic_cnts; 3173 }; 3174 3175 #define elf_arm_tdata(bfd) \ 3176 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any) 3177 3178 #define elf32_arm_local_got_tls_type(bfd) \ 3179 (elf_arm_tdata (bfd)->local_got_tls_type) 3180 3181 #define elf32_arm_local_tlsdesc_gotent(bfd) \ 3182 (elf_arm_tdata (bfd)->local_tlsdesc_gotent) 3183 3184 #define elf32_arm_local_iplt(bfd) \ 3185 (elf_arm_tdata (bfd)->local_iplt) 3186 3187 #define elf32_arm_local_fdpic_cnts(bfd) \ 3188 (elf_arm_tdata (bfd)->local_fdpic_cnts) 3189 3190 #define is_arm_elf(bfd) \ 3191 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ 3192 && elf_tdata (bfd) != NULL \ 3193 && elf_object_id (bfd) == ARM_ELF_DATA) 3194 3195 static bfd_boolean 3196 elf32_arm_mkobject (bfd *abfd) 3197 { 3198 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata), 3199 ARM_ELF_DATA); 3200 } 3201 3202 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent)) 3203 3204 /* Structure to handle FDPIC support for extern functions. */ 3205 struct fdpic_global { 3206 unsigned int gotofffuncdesc_cnt; 3207 unsigned int gotfuncdesc_cnt; 3208 unsigned int funcdesc_cnt; 3209 int funcdesc_offset; 3210 int gotfuncdesc_offset; 3211 }; 3212 3213 /* Arm ELF linker hash entry. */ 3214 struct elf32_arm_link_hash_entry 3215 { 3216 struct elf_link_hash_entry root; 3217 3218 /* ARM-specific PLT information. */ 3219 struct arm_plt_info plt; 3220 3221 #define GOT_UNKNOWN 0 3222 #define GOT_NORMAL 1 3223 #define GOT_TLS_GD 2 3224 #define GOT_TLS_IE 4 3225 #define GOT_TLS_GDESC 8 3226 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC)) 3227 unsigned int tls_type : 8; 3228 3229 /* True if the symbol's PLT entry is in .iplt rather than .plt. */ 3230 unsigned int is_iplt : 1; 3231 3232 unsigned int unused : 23; 3233 3234 /* Offset of the GOTPLT entry reserved for the TLS descriptor, 3235 starting at the end of the jump table. */ 3236 bfd_vma tlsdesc_got; 3237 3238 /* The symbol marking the real symbol location for exported thumb 3239 symbols with Arm stubs. */ 3240 struct elf_link_hash_entry *export_glue; 3241 3242 /* A pointer to the most recently used stub hash entry against this 3243 symbol. */ 3244 struct elf32_arm_stub_hash_entry *stub_cache; 3245 3246 /* Counter for FDPIC relocations against this symbol. */ 3247 struct fdpic_global fdpic_cnts; 3248 }; 3249 3250 /* Traverse an arm ELF linker hash table. */ 3251 #define elf32_arm_link_hash_traverse(table, func, info) \ 3252 (elf_link_hash_traverse \ 3253 (&(table)->root, \ 3254 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ 3255 (info))) 3256 3257 /* Get the ARM elf linker hash table from a link_info structure. */ 3258 #define elf32_arm_hash_table(p) \ 3259 ((is_elf_hash_table ((p)->hash) \ 3260 && elf_hash_table_id (elf_hash_table (p)) == ARM_ELF_DATA) \ 3261 ? (struct elf32_arm_link_hash_table *) (p)->hash : NULL) 3262 3263 #define arm_stub_hash_lookup(table, string, create, copy) \ 3264 ((struct elf32_arm_stub_hash_entry *) \ 3265 bfd_hash_lookup ((table), (string), (create), (copy))) 3266 3267 /* Array to keep track of which stub sections have been created, and 3268 information on stub grouping. */ 3269 struct map_stub 3270 { 3271 /* This is the section to which stubs in the group will be 3272 attached. */ 3273 asection *link_sec; 3274 /* The stub section. */ 3275 asection *stub_sec; 3276 }; 3277 3278 #define elf32_arm_compute_jump_table_size(htab) \ 3279 ((htab)->next_tls_desc_index * 4) 3280 3281 /* ARM ELF linker hash table. */ 3282 struct elf32_arm_link_hash_table 3283 { 3284 /* The main hash table. */ 3285 struct elf_link_hash_table root; 3286 3287 /* The size in bytes of the section containing the Thumb-to-ARM glue. */ 3288 bfd_size_type thumb_glue_size; 3289 3290 /* The size in bytes of the section containing the ARM-to-Thumb glue. */ 3291 bfd_size_type arm_glue_size; 3292 3293 /* The size in bytes of section containing the ARMv4 BX veneers. */ 3294 bfd_size_type bx_glue_size; 3295 3296 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when 3297 veneer has been populated. */ 3298 bfd_vma bx_glue_offset[15]; 3299 3300 /* The size in bytes of the section containing glue for VFP11 erratum 3301 veneers. */ 3302 bfd_size_type vfp11_erratum_glue_size; 3303 3304 /* The size in bytes of the section containing glue for STM32L4XX erratum 3305 veneers. */ 3306 bfd_size_type stm32l4xx_erratum_glue_size; 3307 3308 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This 3309 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and 3310 elf32_arm_write_section(). */ 3311 struct a8_erratum_fix *a8_erratum_fixes; 3312 unsigned int num_a8_erratum_fixes; 3313 3314 /* An arbitrary input BFD chosen to hold the glue sections. */ 3315 bfd * bfd_of_glue_owner; 3316 3317 /* Nonzero to output a BE8 image. */ 3318 int byteswap_code; 3319 3320 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32. 3321 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */ 3322 int target1_is_rel; 3323 3324 /* The relocation to use for R_ARM_TARGET2 relocations. */ 3325 int target2_reloc; 3326 3327 /* 0 = Ignore R_ARM_V4BX. 3328 1 = Convert BX to MOV PC. 3329 2 = Generate v4 interworing stubs. */ 3330 int fix_v4bx; 3331 3332 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */ 3333 int fix_cortex_a8; 3334 3335 /* Whether we should fix the ARM1176 BLX immediate issue. */ 3336 int fix_arm1176; 3337 3338 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */ 3339 int use_blx; 3340 3341 /* What sort of code sequences we should look for which may trigger the 3342 VFP11 denorm erratum. */ 3343 bfd_arm_vfp11_fix vfp11_fix; 3344 3345 /* Global counter for the number of fixes we have emitted. */ 3346 int num_vfp11_fixes; 3347 3348 /* What sort of code sequences we should look for which may trigger the 3349 STM32L4XX erratum. */ 3350 bfd_arm_stm32l4xx_fix stm32l4xx_fix; 3351 3352 /* Global counter for the number of fixes we have emitted. */ 3353 int num_stm32l4xx_fixes; 3354 3355 /* Nonzero to force PIC branch veneers. */ 3356 int pic_veneer; 3357 3358 /* The number of bytes in the initial entry in the PLT. */ 3359 bfd_size_type plt_header_size; 3360 3361 /* The number of bytes in the subsequent PLT etries. */ 3362 bfd_size_type plt_entry_size; 3363 3364 /* True if the target uses REL relocations. */ 3365 bfd_boolean use_rel; 3366 3367 /* Nonzero if import library must be a secure gateway import library 3368 as per ARMv8-M Security Extensions. */ 3369 int cmse_implib; 3370 3371 /* The import library whose symbols' address must remain stable in 3372 the import library generated. */ 3373 bfd *in_implib_bfd; 3374 3375 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */ 3376 bfd_vma next_tls_desc_index; 3377 3378 /* How many R_ARM_TLS_DESC relocations were generated so far. */ 3379 bfd_vma num_tls_desc; 3380 3381 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */ 3382 asection *srelplt2; 3383 3384 /* Offset in .plt section of tls_arm_trampoline. */ 3385 bfd_vma tls_trampoline; 3386 3387 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */ 3388 union 3389 { 3390 bfd_signed_vma refcount; 3391 bfd_vma offset; 3392 } tls_ldm_got; 3393 3394 /* For convenience in allocate_dynrelocs. */ 3395 bfd * obfd; 3396 3397 /* The amount of space used by the reserved portion of the sgotplt 3398 section, plus whatever space is used by the jump slots. */ 3399 bfd_vma sgotplt_jump_table_size; 3400 3401 /* The stub hash table. */ 3402 struct bfd_hash_table stub_hash_table; 3403 3404 /* Linker stub bfd. */ 3405 bfd *stub_bfd; 3406 3407 /* Linker call-backs. */ 3408 asection * (*add_stub_section) (const char *, asection *, asection *, 3409 unsigned int); 3410 void (*layout_sections_again) (void); 3411 3412 /* Array to keep track of which stub sections have been created, and 3413 information on stub grouping. */ 3414 struct map_stub *stub_group; 3415 3416 /* Input stub section holding secure gateway veneers. */ 3417 asection *cmse_stub_sec; 3418 3419 /* Offset in cmse_stub_sec where new SG veneers (not in input import library) 3420 start to be allocated. */ 3421 bfd_vma new_cmse_stub_offset; 3422 3423 /* Number of elements in stub_group. */ 3424 unsigned int top_id; 3425 3426 /* Assorted information used by elf32_arm_size_stubs. */ 3427 unsigned int bfd_count; 3428 unsigned int top_index; 3429 asection **input_list; 3430 3431 /* True if the target system uses FDPIC. */ 3432 int fdpic_p; 3433 3434 /* Fixup section. Used for FDPIC. */ 3435 asection *srofixup; 3436 }; 3437 3438 /* Add an FDPIC read-only fixup. */ 3439 static void 3440 arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset) 3441 { 3442 bfd_vma fixup_offset; 3443 3444 fixup_offset = srofixup->reloc_count++ * 4; 3445 BFD_ASSERT (fixup_offset < srofixup->size); 3446 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset); 3447 } 3448 3449 static inline int 3450 ctz (unsigned int mask) 3451 { 3452 #if GCC_VERSION >= 3004 3453 return __builtin_ctz (mask); 3454 #else 3455 unsigned int i; 3456 3457 for (i = 0; i < 8 * sizeof (mask); i++) 3458 { 3459 if (mask & 0x1) 3460 break; 3461 mask = (mask >> 1); 3462 } 3463 return i; 3464 #endif 3465 } 3466 3467 static inline int 3468 elf32_arm_popcount (unsigned int mask) 3469 { 3470 #if GCC_VERSION >= 3004 3471 return __builtin_popcount (mask); 3472 #else 3473 unsigned int i; 3474 int sum = 0; 3475 3476 for (i = 0; i < 8 * sizeof (mask); i++) 3477 { 3478 if (mask & 0x1) 3479 sum++; 3480 mask = (mask >> 1); 3481 } 3482 return sum; 3483 #endif 3484 } 3485 3486 static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info, 3487 asection *sreloc, Elf_Internal_Rela *rel); 3488 3489 static void 3490 arm_elf_fill_funcdesc(bfd *output_bfd, 3491 struct bfd_link_info *info, 3492 int *funcdesc_offset, 3493 int dynindx, 3494 int offset, 3495 bfd_vma addr, 3496 bfd_vma dynreloc_value, 3497 bfd_vma seg) 3498 { 3499 if ((*funcdesc_offset & 1) == 0) 3500 { 3501 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info); 3502 asection *sgot = globals->root.sgot; 3503 3504 if (bfd_link_pic(info)) 3505 { 3506 asection *srelgot = globals->root.srelgot; 3507 Elf_Internal_Rela outrel; 3508 3509 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE); 3510 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset; 3511 outrel.r_addend = 0; 3512 3513 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 3514 bfd_put_32 (output_bfd, addr, sgot->contents + offset); 3515 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4); 3516 } 3517 else 3518 { 3519 struct elf_link_hash_entry *hgot = globals->root.hgot; 3520 bfd_vma got_value = hgot->root.u.def.value 3521 + hgot->root.u.def.section->output_section->vma 3522 + hgot->root.u.def.section->output_offset; 3523 3524 arm_elf_add_rofixup(output_bfd, globals->srofixup, 3525 sgot->output_section->vma + sgot->output_offset 3526 + offset); 3527 arm_elf_add_rofixup(output_bfd, globals->srofixup, 3528 sgot->output_section->vma + sgot->output_offset 3529 + offset + 4); 3530 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset); 3531 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4); 3532 } 3533 *funcdesc_offset |= 1; 3534 } 3535 } 3536 3537 /* Create an entry in an ARM ELF linker hash table. */ 3538 3539 static struct bfd_hash_entry * 3540 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry, 3541 struct bfd_hash_table * table, 3542 const char * string) 3543 { 3544 struct elf32_arm_link_hash_entry * ret = 3545 (struct elf32_arm_link_hash_entry *) entry; 3546 3547 /* Allocate the structure if it has not already been allocated by a 3548 subclass. */ 3549 if (ret == NULL) 3550 ret = (struct elf32_arm_link_hash_entry *) 3551 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry)); 3552 if (ret == NULL) 3553 return (struct bfd_hash_entry *) ret; 3554 3555 /* Call the allocation method of the superclass. */ 3556 ret = ((struct elf32_arm_link_hash_entry *) 3557 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, 3558 table, string)); 3559 if (ret != NULL) 3560 { 3561 ret->tls_type = GOT_UNKNOWN; 3562 ret->tlsdesc_got = (bfd_vma) -1; 3563 ret->plt.thumb_refcount = 0; 3564 ret->plt.maybe_thumb_refcount = 0; 3565 ret->plt.noncall_refcount = 0; 3566 ret->plt.got_offset = -1; 3567 ret->is_iplt = FALSE; 3568 ret->export_glue = NULL; 3569 3570 ret->stub_cache = NULL; 3571 3572 ret->fdpic_cnts.gotofffuncdesc_cnt = 0; 3573 ret->fdpic_cnts.gotfuncdesc_cnt = 0; 3574 ret->fdpic_cnts.funcdesc_cnt = 0; 3575 ret->fdpic_cnts.funcdesc_offset = -1; 3576 ret->fdpic_cnts.gotfuncdesc_offset = -1; 3577 } 3578 3579 return (struct bfd_hash_entry *) ret; 3580 } 3581 3582 /* Ensure that we have allocated bookkeeping structures for ABFD's local 3583 symbols. */ 3584 3585 static bfd_boolean 3586 elf32_arm_allocate_local_sym_info (bfd *abfd) 3587 { 3588 if (elf_local_got_refcounts (abfd) == NULL) 3589 { 3590 bfd_size_type num_syms; 3591 bfd_size_type size; 3592 char *data; 3593 3594 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info; 3595 size = num_syms * (sizeof (bfd_signed_vma) 3596 + sizeof (bfd_vma) 3597 + sizeof (struct arm_local_iplt_info *) 3598 + sizeof (struct fdpic_local) 3599 + sizeof (char)); 3600 data = bfd_zalloc (abfd, size); 3601 if (data == NULL) 3602 return FALSE; 3603 3604 /* It is important that these all be allocated in descending 3605 order of required alignment, so that arrays allocated later 3606 will be sufficiently aligned. */ 3607 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data; 3608 data += num_syms * sizeof (bfd_signed_vma); 3609 3610 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data; 3611 data += num_syms * sizeof (bfd_vma); 3612 3613 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data; 3614 data += num_syms * sizeof (struct arm_local_iplt_info *); 3615 3616 elf32_arm_local_fdpic_cnts (abfd) = (struct fdpic_local *) data; 3617 data += num_syms * sizeof (struct fdpic_local); 3618 3619 elf32_arm_local_got_tls_type (abfd) = data; 3620 #if GCC_VERSION >= 3000 3621 BFD_ASSERT (__alignof__ (*elf32_arm_local_tlsdesc_gotent (abfd)) 3622 <= __alignof__ (*elf_local_got_refcounts (abfd))); 3623 BFD_ASSERT (__alignof__ (*elf32_arm_local_iplt (abfd)) 3624 <= __alignof__ (*elf32_arm_local_tlsdesc_gotent (abfd))); 3625 BFD_ASSERT (__alignof__ (*elf32_arm_local_fdpic_cnts (abfd)) 3626 <= __alignof__ (*elf32_arm_local_iplt (abfd))); 3627 BFD_ASSERT (__alignof__ (*elf32_arm_local_got_tls_type (abfd)) 3628 <= __alignof__ (*elf32_arm_local_fdpic_cnts (abfd))); 3629 #endif 3630 } 3631 return TRUE; 3632 } 3633 3634 /* Return the .iplt information for local symbol R_SYMNDX, which belongs 3635 to input bfd ABFD. Create the information if it doesn't already exist. 3636 Return null if an allocation fails. */ 3637 3638 static struct arm_local_iplt_info * 3639 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx) 3640 { 3641 struct arm_local_iplt_info **ptr; 3642 3643 if (!elf32_arm_allocate_local_sym_info (abfd)) 3644 return NULL; 3645 3646 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info); 3647 ptr = &elf32_arm_local_iplt (abfd)[r_symndx]; 3648 if (*ptr == NULL) 3649 *ptr = bfd_zalloc (abfd, sizeof (**ptr)); 3650 return *ptr; 3651 } 3652 3653 /* Try to obtain PLT information for the symbol with index R_SYMNDX 3654 in ABFD's symbol table. If the symbol is global, H points to its 3655 hash table entry, otherwise H is null. 3656 3657 Return true if the symbol does have PLT information. When returning 3658 true, point *ROOT_PLT at the target-independent reference count/offset 3659 union and *ARM_PLT at the ARM-specific information. */ 3660 3661 static bfd_boolean 3662 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals, 3663 struct elf32_arm_link_hash_entry *h, 3664 unsigned long r_symndx, union gotplt_union **root_plt, 3665 struct arm_plt_info **arm_plt) 3666 { 3667 struct arm_local_iplt_info *local_iplt; 3668 3669 if (globals->root.splt == NULL && globals->root.iplt == NULL) 3670 return FALSE; 3671 3672 if (h != NULL) 3673 { 3674 *root_plt = &h->root.plt; 3675 *arm_plt = &h->plt; 3676 return TRUE; 3677 } 3678 3679 if (elf32_arm_local_iplt (abfd) == NULL) 3680 return FALSE; 3681 3682 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx]; 3683 if (local_iplt == NULL) 3684 return FALSE; 3685 3686 *root_plt = &local_iplt->root; 3687 *arm_plt = &local_iplt->arm; 3688 return TRUE; 3689 } 3690 3691 static bfd_boolean using_thumb_only (struct elf32_arm_link_hash_table *globals); 3692 3693 /* Return true if the PLT described by ARM_PLT requires a Thumb stub 3694 before it. */ 3695 3696 static bfd_boolean 3697 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info, 3698 struct arm_plt_info *arm_plt) 3699 { 3700 struct elf32_arm_link_hash_table *htab; 3701 3702 htab = elf32_arm_hash_table (info); 3703 3704 return (!using_thumb_only(htab) && (arm_plt->thumb_refcount != 0 3705 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0))); 3706 } 3707 3708 /* Return a pointer to the head of the dynamic reloc list that should 3709 be used for local symbol ISYM, which is symbol number R_SYMNDX in 3710 ABFD's symbol table. Return null if an error occurs. */ 3711 3712 static struct elf_dyn_relocs ** 3713 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx, 3714 Elf_Internal_Sym *isym) 3715 { 3716 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) 3717 { 3718 struct arm_local_iplt_info *local_iplt; 3719 3720 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx); 3721 if (local_iplt == NULL) 3722 return NULL; 3723 return &local_iplt->dyn_relocs; 3724 } 3725 else 3726 { 3727 /* Track dynamic relocs needed for local syms too. 3728 We really need local syms available to do this 3729 easily. Oh well. */ 3730 asection *s; 3731 void *vpp; 3732 3733 s = bfd_section_from_elf_index (abfd, isym->st_shndx); 3734 if (s == NULL) 3735 abort (); 3736 3737 vpp = &elf_section_data (s)->local_dynrel; 3738 return (struct elf_dyn_relocs **) vpp; 3739 } 3740 } 3741 3742 /* Initialize an entry in the stub hash table. */ 3743 3744 static struct bfd_hash_entry * 3745 stub_hash_newfunc (struct bfd_hash_entry *entry, 3746 struct bfd_hash_table *table, 3747 const char *string) 3748 { 3749 /* Allocate the structure if it has not already been allocated by a 3750 subclass. */ 3751 if (entry == NULL) 3752 { 3753 entry = (struct bfd_hash_entry *) 3754 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry)); 3755 if (entry == NULL) 3756 return entry; 3757 } 3758 3759 /* Call the allocation method of the superclass. */ 3760 entry = bfd_hash_newfunc (entry, table, string); 3761 if (entry != NULL) 3762 { 3763 struct elf32_arm_stub_hash_entry *eh; 3764 3765 /* Initialize the local fields. */ 3766 eh = (struct elf32_arm_stub_hash_entry *) entry; 3767 eh->stub_sec = NULL; 3768 eh->stub_offset = (bfd_vma) -1; 3769 eh->source_value = 0; 3770 eh->target_value = 0; 3771 eh->target_section = NULL; 3772 eh->orig_insn = 0; 3773 eh->stub_type = arm_stub_none; 3774 eh->stub_size = 0; 3775 eh->stub_template = NULL; 3776 eh->stub_template_size = -1; 3777 eh->h = NULL; 3778 eh->id_sec = NULL; 3779 eh->output_name = NULL; 3780 } 3781 3782 return entry; 3783 } 3784 3785 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up 3786 shortcuts to them in our hash table. */ 3787 3788 static bfd_boolean 3789 create_got_section (bfd *dynobj, struct bfd_link_info *info) 3790 { 3791 struct elf32_arm_link_hash_table *htab; 3792 3793 htab = elf32_arm_hash_table (info); 3794 if (htab == NULL) 3795 return FALSE; 3796 3797 /* BPABI objects never have a GOT, or associated sections. */ 3798 if (htab->root.target_os == is_symbian) 3799 return TRUE; 3800 3801 if (! _bfd_elf_create_got_section (dynobj, info)) 3802 return FALSE; 3803 3804 /* Also create .rofixup. */ 3805 if (htab->fdpic_p) 3806 { 3807 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup", 3808 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS 3809 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY)); 3810 if (htab->srofixup == NULL 3811 || !bfd_set_section_alignment (htab->srofixup, 2)) 3812 return FALSE; 3813 } 3814 3815 return TRUE; 3816 } 3817 3818 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */ 3819 3820 static bfd_boolean 3821 create_ifunc_sections (struct bfd_link_info *info) 3822 { 3823 struct elf32_arm_link_hash_table *htab; 3824 const struct elf_backend_data *bed; 3825 bfd *dynobj; 3826 asection *s; 3827 flagword flags; 3828 3829 htab = elf32_arm_hash_table (info); 3830 dynobj = htab->root.dynobj; 3831 bed = get_elf_backend_data (dynobj); 3832 flags = bed->dynamic_sec_flags; 3833 3834 if (htab->root.iplt == NULL) 3835 { 3836 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt", 3837 flags | SEC_READONLY | SEC_CODE); 3838 if (s == NULL 3839 || !bfd_set_section_alignment (s, bed->plt_alignment)) 3840 return FALSE; 3841 htab->root.iplt = s; 3842 } 3843 3844 if (htab->root.irelplt == NULL) 3845 { 3846 s = bfd_make_section_anyway_with_flags (dynobj, 3847 RELOC_SECTION (htab, ".iplt"), 3848 flags | SEC_READONLY); 3849 if (s == NULL 3850 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 3851 return FALSE; 3852 htab->root.irelplt = s; 3853 } 3854 3855 if (htab->root.igotplt == NULL) 3856 { 3857 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags); 3858 if (s == NULL 3859 || !bfd_set_section_alignment (s, bed->s->log_file_align)) 3860 return FALSE; 3861 htab->root.igotplt = s; 3862 } 3863 return TRUE; 3864 } 3865 3866 /* Determine if we're dealing with a Thumb only architecture. */ 3867 3868 static bfd_boolean 3869 using_thumb_only (struct elf32_arm_link_hash_table *globals) 3870 { 3871 int arch; 3872 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, 3873 Tag_CPU_arch_profile); 3874 3875 if (profile) 3876 return profile == 'M'; 3877 3878 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch); 3879 3880 /* Force return logic to be reviewed for each new architecture. */ 3881 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN); 3882 3883 if (arch == TAG_CPU_ARCH_V6_M 3884 || arch == TAG_CPU_ARCH_V6S_M 3885 || arch == TAG_CPU_ARCH_V7E_M 3886 || arch == TAG_CPU_ARCH_V8M_BASE 3887 || arch == TAG_CPU_ARCH_V8M_MAIN 3888 || arch == TAG_CPU_ARCH_V8_1M_MAIN) 3889 return TRUE; 3890 3891 return FALSE; 3892 } 3893 3894 /* Determine if we're dealing with a Thumb-2 object. */ 3895 3896 static bfd_boolean 3897 using_thumb2 (struct elf32_arm_link_hash_table *globals) 3898 { 3899 int arch; 3900 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, 3901 Tag_THUMB_ISA_use); 3902 3903 if (thumb_isa) 3904 return thumb_isa == 2; 3905 3906 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch); 3907 3908 /* Force return logic to be reviewed for each new architecture. */ 3909 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN); 3910 3911 return (arch == TAG_CPU_ARCH_V6T2 3912 || arch == TAG_CPU_ARCH_V7 3913 || arch == TAG_CPU_ARCH_V7E_M 3914 || arch == TAG_CPU_ARCH_V8 3915 || arch == TAG_CPU_ARCH_V8R 3916 || arch == TAG_CPU_ARCH_V8M_MAIN 3917 || arch == TAG_CPU_ARCH_V8_1M_MAIN); 3918 } 3919 3920 /* Determine whether Thumb-2 BL instruction is available. */ 3921 3922 static bfd_boolean 3923 using_thumb2_bl (struct elf32_arm_link_hash_table *globals) 3924 { 3925 int arch = 3926 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch); 3927 3928 /* Force return logic to be reviewed for each new architecture. */ 3929 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN); 3930 3931 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */ 3932 return (arch == TAG_CPU_ARCH_V6T2 3933 || arch >= TAG_CPU_ARCH_V7); 3934 } 3935 3936 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and 3937 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our 3938 hash table. */ 3939 3940 static bfd_boolean 3941 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info) 3942 { 3943 struct elf32_arm_link_hash_table *htab; 3944 3945 htab = elf32_arm_hash_table (info); 3946 if (htab == NULL) 3947 return FALSE; 3948 3949 if (!htab->root.sgot && !create_got_section (dynobj, info)) 3950 return FALSE; 3951 3952 if (!_bfd_elf_create_dynamic_sections (dynobj, info)) 3953 return FALSE; 3954 3955 if (htab->root.target_os == is_vxworks) 3956 { 3957 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2)) 3958 return FALSE; 3959 3960 if (bfd_link_pic (info)) 3961 { 3962 htab->plt_header_size = 0; 3963 htab->plt_entry_size 3964 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry); 3965 } 3966 else 3967 { 3968 htab->plt_header_size 3969 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry); 3970 htab->plt_entry_size 3971 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry); 3972 } 3973 3974 if (elf_elfheader (dynobj)) 3975 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32; 3976 } 3977 else 3978 { 3979 /* PR ld/16017 3980 Test for thumb only architectures. Note - we cannot just call 3981 using_thumb_only() as the attributes in the output bfd have not been 3982 initialised at this point, so instead we use the input bfd. */ 3983 bfd * saved_obfd = htab->obfd; 3984 3985 htab->obfd = dynobj; 3986 if (using_thumb_only (htab)) 3987 { 3988 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry); 3989 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry); 3990 } 3991 htab->obfd = saved_obfd; 3992 } 3993 3994 if (htab->fdpic_p) { 3995 htab->plt_header_size = 0; 3996 if (info->flags & DF_BIND_NOW) 3997 htab->plt_entry_size = 4 * (ARRAY_SIZE(elf32_arm_fdpic_plt_entry) - 5); 3998 else 3999 htab->plt_entry_size = 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry); 4000 } 4001 4002 if (!htab->root.splt 4003 || !htab->root.srelplt 4004 || !htab->root.sdynbss 4005 || (!bfd_link_pic (info) && !htab->root.srelbss)) 4006 abort (); 4007 4008 return TRUE; 4009 } 4010 4011 /* Copy the extra info we tack onto an elf_link_hash_entry. */ 4012 4013 static void 4014 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info, 4015 struct elf_link_hash_entry *dir, 4016 struct elf_link_hash_entry *ind) 4017 { 4018 struct elf32_arm_link_hash_entry *edir, *eind; 4019 4020 edir = (struct elf32_arm_link_hash_entry *) dir; 4021 eind = (struct elf32_arm_link_hash_entry *) ind; 4022 4023 if (ind->root.type == bfd_link_hash_indirect) 4024 { 4025 /* Copy over PLT info. */ 4026 edir->plt.thumb_refcount += eind->plt.thumb_refcount; 4027 eind->plt.thumb_refcount = 0; 4028 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount; 4029 eind->plt.maybe_thumb_refcount = 0; 4030 edir->plt.noncall_refcount += eind->plt.noncall_refcount; 4031 eind->plt.noncall_refcount = 0; 4032 4033 /* Copy FDPIC counters. */ 4034 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt; 4035 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt; 4036 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt; 4037 4038 /* We should only allocate a function to .iplt once the final 4039 symbol information is known. */ 4040 BFD_ASSERT (!eind->is_iplt); 4041 4042 if (dir->got.refcount <= 0) 4043 { 4044 edir->tls_type = eind->tls_type; 4045 eind->tls_type = GOT_UNKNOWN; 4046 } 4047 } 4048 4049 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 4050 } 4051 4052 /* Destroy an ARM elf linker hash table. */ 4053 4054 static void 4055 elf32_arm_link_hash_table_free (bfd *obfd) 4056 { 4057 struct elf32_arm_link_hash_table *ret 4058 = (struct elf32_arm_link_hash_table *) obfd->link.hash; 4059 4060 bfd_hash_table_free (&ret->stub_hash_table); 4061 _bfd_elf_link_hash_table_free (obfd); 4062 } 4063 4064 /* Create an ARM elf linker hash table. */ 4065 4066 static struct bfd_link_hash_table * 4067 elf32_arm_link_hash_table_create (bfd *abfd) 4068 { 4069 struct elf32_arm_link_hash_table *ret; 4070 size_t amt = sizeof (struct elf32_arm_link_hash_table); 4071 4072 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt); 4073 if (ret == NULL) 4074 return NULL; 4075 4076 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd, 4077 elf32_arm_link_hash_newfunc, 4078 sizeof (struct elf32_arm_link_hash_entry), 4079 ARM_ELF_DATA)) 4080 { 4081 free (ret); 4082 return NULL; 4083 } 4084 4085 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE; 4086 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE; 4087 #ifdef FOUR_WORD_PLT 4088 ret->plt_header_size = 16; 4089 ret->plt_entry_size = 16; 4090 #else 4091 ret->plt_header_size = 20; 4092 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12; 4093 #endif 4094 ret->use_rel = TRUE; 4095 ret->obfd = abfd; 4096 ret->fdpic_p = 0; 4097 4098 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc, 4099 sizeof (struct elf32_arm_stub_hash_entry))) 4100 { 4101 _bfd_elf_link_hash_table_free (abfd); 4102 return NULL; 4103 } 4104 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free; 4105 4106 return &ret->root.root; 4107 } 4108 4109 /* Determine what kind of NOPs are available. */ 4110 4111 static bfd_boolean 4112 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals) 4113 { 4114 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, 4115 Tag_CPU_arch); 4116 4117 /* Force return logic to be reviewed for each new architecture. */ 4118 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN); 4119 4120 return (arch == TAG_CPU_ARCH_V6T2 4121 || arch == TAG_CPU_ARCH_V6K 4122 || arch == TAG_CPU_ARCH_V7 4123 || arch == TAG_CPU_ARCH_V8 4124 || arch == TAG_CPU_ARCH_V8R); 4125 } 4126 4127 static bfd_boolean 4128 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type) 4129 { 4130 switch (stub_type) 4131 { 4132 case arm_stub_long_branch_thumb_only: 4133 case arm_stub_long_branch_thumb2_only: 4134 case arm_stub_long_branch_thumb2_only_pure: 4135 case arm_stub_long_branch_v4t_thumb_arm: 4136 case arm_stub_short_branch_v4t_thumb_arm: 4137 case arm_stub_long_branch_v4t_thumb_arm_pic: 4138 case arm_stub_long_branch_v4t_thumb_tls_pic: 4139 case arm_stub_long_branch_thumb_only_pic: 4140 case arm_stub_cmse_branch_thumb_only: 4141 return TRUE; 4142 case arm_stub_none: 4143 BFD_FAIL (); 4144 return FALSE; 4145 break; 4146 default: 4147 return FALSE; 4148 } 4149 } 4150 4151 /* Determine the type of stub needed, if any, for a call. */ 4152 4153 static enum elf32_arm_stub_type 4154 arm_type_of_stub (struct bfd_link_info *info, 4155 asection *input_sec, 4156 const Elf_Internal_Rela *rel, 4157 unsigned char st_type, 4158 enum arm_st_branch_type *actual_branch_type, 4159 struct elf32_arm_link_hash_entry *hash, 4160 bfd_vma destination, 4161 asection *sym_sec, 4162 bfd *input_bfd, 4163 const char *name) 4164 { 4165 bfd_vma location; 4166 bfd_signed_vma branch_offset; 4167 unsigned int r_type; 4168 struct elf32_arm_link_hash_table * globals; 4169 bfd_boolean thumb2, thumb2_bl, thumb_only; 4170 enum elf32_arm_stub_type stub_type = arm_stub_none; 4171 int use_plt = 0; 4172 enum arm_st_branch_type branch_type = *actual_branch_type; 4173 union gotplt_union *root_plt; 4174 struct arm_plt_info *arm_plt; 4175 int arch; 4176 int thumb2_movw; 4177 4178 if (branch_type == ST_BRANCH_LONG) 4179 return stub_type; 4180 4181 globals = elf32_arm_hash_table (info); 4182 if (globals == NULL) 4183 return stub_type; 4184 4185 thumb_only = using_thumb_only (globals); 4186 thumb2 = using_thumb2 (globals); 4187 thumb2_bl = using_thumb2_bl (globals); 4188 4189 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch); 4190 4191 /* True for architectures that implement the thumb2 movw instruction. */ 4192 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE); 4193 4194 /* Determine where the call point is. */ 4195 location = (input_sec->output_offset 4196 + input_sec->output_section->vma 4197 + rel->r_offset); 4198 4199 r_type = ELF32_R_TYPE (rel->r_info); 4200 4201 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we 4202 are considering a function call relocation. */ 4203 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24 4204 || r_type == R_ARM_THM_JUMP19) 4205 && branch_type == ST_BRANCH_TO_ARM) 4206 branch_type = ST_BRANCH_TO_THUMB; 4207 4208 /* For TLS call relocs, it is the caller's responsibility to provide 4209 the address of the appropriate trampoline. */ 4210 if (r_type != R_ARM_TLS_CALL 4211 && r_type != R_ARM_THM_TLS_CALL 4212 && elf32_arm_get_plt_info (input_bfd, globals, hash, 4213 ELF32_R_SYM (rel->r_info), &root_plt, 4214 &arm_plt) 4215 && root_plt->offset != (bfd_vma) -1) 4216 { 4217 asection *splt; 4218 4219 if (hash == NULL || hash->is_iplt) 4220 splt = globals->root.iplt; 4221 else 4222 splt = globals->root.splt; 4223 if (splt != NULL) 4224 { 4225 use_plt = 1; 4226 4227 /* Note when dealing with PLT entries: the main PLT stub is in 4228 ARM mode, so if the branch is in Thumb mode, another 4229 Thumb->ARM stub will be inserted later just before the ARM 4230 PLT stub. If a long branch stub is needed, we'll add a 4231 Thumb->Arm one and branch directly to the ARM PLT entry. 4232 Here, we have to check if a pre-PLT Thumb->ARM stub 4233 is needed and if it will be close enough. */ 4234 4235 destination = (splt->output_section->vma 4236 + splt->output_offset 4237 + root_plt->offset); 4238 st_type = STT_FUNC; 4239 4240 /* Thumb branch/call to PLT: it can become a branch to ARM 4241 or to Thumb. We must perform the same checks and 4242 corrections as in elf32_arm_final_link_relocate. */ 4243 if ((r_type == R_ARM_THM_CALL) 4244 || (r_type == R_ARM_THM_JUMP24)) 4245 { 4246 if (globals->use_blx 4247 && r_type == R_ARM_THM_CALL 4248 && !thumb_only) 4249 { 4250 /* If the Thumb BLX instruction is available, convert 4251 the BL to a BLX instruction to call the ARM-mode 4252 PLT entry. */ 4253 branch_type = ST_BRANCH_TO_ARM; 4254 } 4255 else 4256 { 4257 if (!thumb_only) 4258 /* Target the Thumb stub before the ARM PLT entry. */ 4259 destination -= PLT_THUMB_STUB_SIZE; 4260 branch_type = ST_BRANCH_TO_THUMB; 4261 } 4262 } 4263 else 4264 { 4265 branch_type = ST_BRANCH_TO_ARM; 4266 } 4267 } 4268 } 4269 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */ 4270 BFD_ASSERT (st_type != STT_GNU_IFUNC); 4271 4272 branch_offset = (bfd_signed_vma)(destination - location); 4273 4274 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24 4275 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19) 4276 { 4277 /* Handle cases where: 4278 - this call goes too far (different Thumb/Thumb2 max 4279 distance) 4280 - it's a Thumb->Arm call and blx is not available, or it's a 4281 Thumb->Arm branch (not bl). A stub is needed in this case, 4282 but only if this call is not through a PLT entry. Indeed, 4283 PLT stubs handle mode switching already. */ 4284 if ((!thumb2_bl 4285 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET 4286 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET))) 4287 || (thumb2_bl 4288 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET 4289 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET))) 4290 || (thumb2 4291 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET 4292 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET)) 4293 && (r_type == R_ARM_THM_JUMP19)) 4294 || (branch_type == ST_BRANCH_TO_ARM 4295 && (((r_type == R_ARM_THM_CALL 4296 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx) 4297 || (r_type == R_ARM_THM_JUMP24) 4298 || (r_type == R_ARM_THM_JUMP19)) 4299 && !use_plt)) 4300 { 4301 /* If we need to insert a Thumb-Thumb long branch stub to a 4302 PLT, use one that branches directly to the ARM PLT 4303 stub. If we pretended we'd use the pre-PLT Thumb->ARM 4304 stub, undo this now. */ 4305 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only) 4306 { 4307 branch_type = ST_BRANCH_TO_ARM; 4308 branch_offset += PLT_THUMB_STUB_SIZE; 4309 } 4310 4311 if (branch_type == ST_BRANCH_TO_THUMB) 4312 { 4313 /* Thumb to thumb. */ 4314 if (!thumb_only) 4315 { 4316 if (input_sec->flags & SEC_ELF_PURECODE) 4317 _bfd_error_handler 4318 (_("%pB(%pA): warning: long branch veneers used in" 4319 " section with SHF_ARM_PURECODE section" 4320 " attribute is only supported for M-profile" 4321 " targets that implement the movw instruction"), 4322 input_bfd, input_sec); 4323 4324 stub_type = (bfd_link_pic (info) | globals->pic_veneer) 4325 /* PIC stubs. */ 4326 ? ((globals->use_blx 4327 && (r_type == R_ARM_THM_CALL)) 4328 /* V5T and above. Stub starts with ARM code, so 4329 we must be able to switch mode before 4330 reaching it, which is only possible for 'bl' 4331 (ie R_ARM_THM_CALL relocation). */ 4332 ? arm_stub_long_branch_any_thumb_pic 4333 /* On V4T, use Thumb code only. */ 4334 : arm_stub_long_branch_v4t_thumb_thumb_pic) 4335 4336 /* non-PIC stubs. */ 4337 : ((globals->use_blx 4338 && (r_type == R_ARM_THM_CALL)) 4339 /* V5T and above. */ 4340 ? arm_stub_long_branch_any_any 4341 /* V4T. */ 4342 : arm_stub_long_branch_v4t_thumb_thumb); 4343 } 4344 else 4345 { 4346 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE)) 4347 stub_type = arm_stub_long_branch_thumb2_only_pure; 4348 else 4349 { 4350 if (input_sec->flags & SEC_ELF_PURECODE) 4351 _bfd_error_handler 4352 (_("%pB(%pA): warning: long branch veneers used in" 4353 " section with SHF_ARM_PURECODE section" 4354 " attribute is only supported for M-profile" 4355 " targets that implement the movw instruction"), 4356 input_bfd, input_sec); 4357 4358 stub_type = (bfd_link_pic (info) | globals->pic_veneer) 4359 /* PIC stub. */ 4360 ? arm_stub_long_branch_thumb_only_pic 4361 /* non-PIC stub. */ 4362 : (thumb2 ? arm_stub_long_branch_thumb2_only 4363 : arm_stub_long_branch_thumb_only); 4364 } 4365 } 4366 } 4367 else 4368 { 4369 if (input_sec->flags & SEC_ELF_PURECODE) 4370 _bfd_error_handler 4371 (_("%pB(%pA): warning: long branch veneers used in" 4372 " section with SHF_ARM_PURECODE section" 4373 " attribute is only supported" " for M-profile" 4374 " targets that implement the movw instruction"), 4375 input_bfd, input_sec); 4376 4377 /* Thumb to arm. */ 4378 if (sym_sec != NULL 4379 && sym_sec->owner != NULL 4380 && !INTERWORK_FLAG (sym_sec->owner)) 4381 { 4382 _bfd_error_handler 4383 (_("%pB(%s): warning: interworking not enabled;" 4384 " first occurrence: %pB: %s call to %s"), 4385 sym_sec->owner, name, input_bfd, "Thumb", "ARM"); 4386 } 4387 4388 stub_type = 4389 (bfd_link_pic (info) | globals->pic_veneer) 4390 /* PIC stubs. */ 4391 ? (r_type == R_ARM_THM_TLS_CALL 4392 /* TLS PIC stubs. */ 4393 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic 4394 : arm_stub_long_branch_v4t_thumb_tls_pic) 4395 : ((globals->use_blx && r_type == R_ARM_THM_CALL) 4396 /* V5T PIC and above. */ 4397 ? arm_stub_long_branch_any_arm_pic 4398 /* V4T PIC stub. */ 4399 : arm_stub_long_branch_v4t_thumb_arm_pic)) 4400 4401 /* non-PIC stubs. */ 4402 : ((globals->use_blx && r_type == R_ARM_THM_CALL) 4403 /* V5T and above. */ 4404 ? arm_stub_long_branch_any_any 4405 /* V4T. */ 4406 : arm_stub_long_branch_v4t_thumb_arm); 4407 4408 /* Handle v4t short branches. */ 4409 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm) 4410 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET) 4411 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET)) 4412 stub_type = arm_stub_short_branch_v4t_thumb_arm; 4413 } 4414 } 4415 } 4416 else if (r_type == R_ARM_CALL 4417 || r_type == R_ARM_JUMP24 4418 || r_type == R_ARM_PLT32 4419 || r_type == R_ARM_TLS_CALL) 4420 { 4421 if (input_sec->flags & SEC_ELF_PURECODE) 4422 _bfd_error_handler 4423 (_("%pB(%pA): warning: long branch veneers used in" 4424 " section with SHF_ARM_PURECODE section" 4425 " attribute is only supported for M-profile" 4426 " targets that implement the movw instruction"), 4427 input_bfd, input_sec); 4428 if (branch_type == ST_BRANCH_TO_THUMB) 4429 { 4430 /* Arm to thumb. */ 4431 4432 if (sym_sec != NULL 4433 && sym_sec->owner != NULL 4434 && !INTERWORK_FLAG (sym_sec->owner)) 4435 { 4436 _bfd_error_handler 4437 (_("%pB(%s): warning: interworking not enabled;" 4438 " first occurrence: %pB: %s call to %s"), 4439 sym_sec->owner, name, input_bfd, "ARM", "Thumb"); 4440 } 4441 4442 /* We have an extra 2-bytes reach because of 4443 the mode change (bit 24 (H) of BLX encoding). */ 4444 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2) 4445 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET) 4446 || (r_type == R_ARM_CALL && !globals->use_blx) 4447 || (r_type == R_ARM_JUMP24) 4448 || (r_type == R_ARM_PLT32)) 4449 { 4450 stub_type = (bfd_link_pic (info) | globals->pic_veneer) 4451 /* PIC stubs. */ 4452 ? ((globals->use_blx) 4453 /* V5T and above. */ 4454 ? arm_stub_long_branch_any_thumb_pic 4455 /* V4T stub. */ 4456 : arm_stub_long_branch_v4t_arm_thumb_pic) 4457 4458 /* non-PIC stubs. */ 4459 : ((globals->use_blx) 4460 /* V5T and above. */ 4461 ? arm_stub_long_branch_any_any 4462 /* V4T. */ 4463 : arm_stub_long_branch_v4t_arm_thumb); 4464 } 4465 } 4466 else 4467 { 4468 /* Arm to arm. */ 4469 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET 4470 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)) 4471 { 4472 stub_type = 4473 (bfd_link_pic (info) | globals->pic_veneer) 4474 /* PIC stubs. */ 4475 ? (r_type == R_ARM_TLS_CALL 4476 /* TLS PIC Stub. */ 4477 ? arm_stub_long_branch_any_tls_pic 4478 : (globals->root.target_os == is_nacl 4479 ? arm_stub_long_branch_arm_nacl_pic 4480 : arm_stub_long_branch_any_arm_pic)) 4481 /* non-PIC stubs. */ 4482 : (globals->root.target_os == is_nacl 4483 ? arm_stub_long_branch_arm_nacl 4484 : arm_stub_long_branch_any_any); 4485 } 4486 } 4487 } 4488 4489 /* If a stub is needed, record the actual destination type. */ 4490 if (stub_type != arm_stub_none) 4491 *actual_branch_type = branch_type; 4492 4493 return stub_type; 4494 } 4495 4496 /* Build a name for an entry in the stub hash table. */ 4497 4498 static char * 4499 elf32_arm_stub_name (const asection *input_section, 4500 const asection *sym_sec, 4501 const struct elf32_arm_link_hash_entry *hash, 4502 const Elf_Internal_Rela *rel, 4503 enum elf32_arm_stub_type stub_type) 4504 { 4505 char *stub_name; 4506 bfd_size_type len; 4507 4508 if (hash) 4509 { 4510 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1; 4511 stub_name = (char *) bfd_malloc (len); 4512 if (stub_name != NULL) 4513 sprintf (stub_name, "%08x_%s+%x_%d", 4514 input_section->id & 0xffffffff, 4515 hash->root.root.root.string, 4516 (int) rel->r_addend & 0xffffffff, 4517 (int) stub_type); 4518 } 4519 else 4520 { 4521 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1; 4522 stub_name = (char *) bfd_malloc (len); 4523 if (stub_name != NULL) 4524 sprintf (stub_name, "%08x_%x:%x+%x_%d", 4525 input_section->id & 0xffffffff, 4526 sym_sec->id & 0xffffffff, 4527 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL 4528 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL 4529 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff, 4530 (int) rel->r_addend & 0xffffffff, 4531 (int) stub_type); 4532 } 4533 4534 return stub_name; 4535 } 4536 4537 /* Look up an entry in the stub hash. Stub entries are cached because 4538 creating the stub name takes a bit of time. */ 4539 4540 static struct elf32_arm_stub_hash_entry * 4541 elf32_arm_get_stub_entry (const asection *input_section, 4542 const asection *sym_sec, 4543 struct elf_link_hash_entry *hash, 4544 const Elf_Internal_Rela *rel, 4545 struct elf32_arm_link_hash_table *htab, 4546 enum elf32_arm_stub_type stub_type) 4547 { 4548 struct elf32_arm_stub_hash_entry *stub_entry; 4549 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash; 4550 const asection *id_sec; 4551 4552 if ((input_section->flags & SEC_CODE) == 0) 4553 return NULL; 4554 4555 /* If the input section is the CMSE stubs one and it needs a long 4556 branch stub to reach it's final destination, give up with an 4557 error message: this is not supported. See PR ld/24709. */ 4558 if (!strncmp (input_section->name, CMSE_STUB_NAME, strlen(CMSE_STUB_NAME))) 4559 { 4560 bfd *output_bfd = htab->obfd; 4561 asection *out_sec = bfd_get_section_by_name (output_bfd, CMSE_STUB_NAME); 4562 4563 _bfd_error_handler (_("ERROR: CMSE stub (%s section) too far " 4564 "(%#" PRIx64 ") from destination (%#" PRIx64 ")"), 4565 CMSE_STUB_NAME, 4566 (uint64_t)out_sec->output_section->vma 4567 + out_sec->output_offset, 4568 (uint64_t)sym_sec->output_section->vma 4569 + sym_sec->output_offset 4570 + h->root.root.u.def.value); 4571 /* Exit, rather than leave incompletely processed 4572 relocations. */ 4573 xexit(1); 4574 } 4575 4576 /* If this input section is part of a group of sections sharing one 4577 stub section, then use the id of the first section in the group. 4578 Stub names need to include a section id, as there may well be 4579 more than one stub used to reach say, printf, and we need to 4580 distinguish between them. */ 4581 BFD_ASSERT (input_section->id <= htab->top_id); 4582 id_sec = htab->stub_group[input_section->id].link_sec; 4583 4584 if (h != NULL && h->stub_cache != NULL 4585 && h->stub_cache->h == h 4586 && h->stub_cache->id_sec == id_sec 4587 && h->stub_cache->stub_type == stub_type) 4588 { 4589 stub_entry = h->stub_cache; 4590 } 4591 else 4592 { 4593 char *stub_name; 4594 4595 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type); 4596 if (stub_name == NULL) 4597 return NULL; 4598 4599 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, 4600 stub_name, FALSE, FALSE); 4601 if (h != NULL) 4602 h->stub_cache = stub_entry; 4603 4604 free (stub_name); 4605 } 4606 4607 return stub_entry; 4608 } 4609 4610 /* Whether veneers of type STUB_TYPE require to be in a dedicated output 4611 section. */ 4612 4613 static bfd_boolean 4614 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type) 4615 { 4616 if (stub_type >= max_stub_type) 4617 abort (); /* Should be unreachable. */ 4618 4619 switch (stub_type) 4620 { 4621 case arm_stub_cmse_branch_thumb_only: 4622 return TRUE; 4623 4624 default: 4625 return FALSE; 4626 } 4627 4628 abort (); /* Should be unreachable. */ 4629 } 4630 4631 /* Required alignment (as a power of 2) for the dedicated section holding 4632 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed 4633 with input sections. */ 4634 4635 static int 4636 arm_dedicated_stub_output_section_required_alignment 4637 (enum elf32_arm_stub_type stub_type) 4638 { 4639 if (stub_type >= max_stub_type) 4640 abort (); /* Should be unreachable. */ 4641 4642 switch (stub_type) 4643 { 4644 /* Vectors of Secure Gateway veneers must be aligned on 32byte 4645 boundary. */ 4646 case arm_stub_cmse_branch_thumb_only: 4647 return 5; 4648 4649 default: 4650 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type)); 4651 return 0; 4652 } 4653 4654 abort (); /* Should be unreachable. */ 4655 } 4656 4657 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or 4658 NULL if veneers of this type are interspersed with input sections. */ 4659 4660 static const char * 4661 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type) 4662 { 4663 if (stub_type >= max_stub_type) 4664 abort (); /* Should be unreachable. */ 4665 4666 switch (stub_type) 4667 { 4668 case arm_stub_cmse_branch_thumb_only: 4669 return CMSE_STUB_NAME; 4670 4671 default: 4672 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type)); 4673 return NULL; 4674 } 4675 4676 abort (); /* Should be unreachable. */ 4677 } 4678 4679 /* If veneers of type STUB_TYPE should go in a dedicated output section, 4680 returns the address of the hash table field in HTAB holding a pointer to the 4681 corresponding input section. Otherwise, returns NULL. */ 4682 4683 static asection ** 4684 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab, 4685 enum elf32_arm_stub_type stub_type) 4686 { 4687 if (stub_type >= max_stub_type) 4688 abort (); /* Should be unreachable. */ 4689 4690 switch (stub_type) 4691 { 4692 case arm_stub_cmse_branch_thumb_only: 4693 return &htab->cmse_stub_sec; 4694 4695 default: 4696 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type)); 4697 return NULL; 4698 } 4699 4700 abort (); /* Should be unreachable. */ 4701 } 4702 4703 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION 4704 is the section that branch into veneer and can be NULL if stub should go in 4705 a dedicated output section. Returns a pointer to the stub section, and the 4706 section to which the stub section will be attached (in *LINK_SEC_P). 4707 LINK_SEC_P may be NULL. */ 4708 4709 static asection * 4710 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section, 4711 struct elf32_arm_link_hash_table *htab, 4712 enum elf32_arm_stub_type stub_type) 4713 { 4714 asection *link_sec, *out_sec, **stub_sec_p; 4715 const char *stub_sec_prefix; 4716 bfd_boolean dedicated_output_section = 4717 arm_dedicated_stub_output_section_required (stub_type); 4718 int align; 4719 4720 if (dedicated_output_section) 4721 { 4722 bfd *output_bfd = htab->obfd; 4723 const char *out_sec_name = 4724 arm_dedicated_stub_output_section_name (stub_type); 4725 link_sec = NULL; 4726 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type); 4727 stub_sec_prefix = out_sec_name; 4728 align = arm_dedicated_stub_output_section_required_alignment (stub_type); 4729 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name); 4730 if (out_sec == NULL) 4731 { 4732 _bfd_error_handler (_("no address assigned to the veneers output " 4733 "section %s"), out_sec_name); 4734 return NULL; 4735 } 4736 } 4737 else 4738 { 4739 BFD_ASSERT (section->id <= htab->top_id); 4740 link_sec = htab->stub_group[section->id].link_sec; 4741 BFD_ASSERT (link_sec != NULL); 4742 stub_sec_p = &htab->stub_group[section->id].stub_sec; 4743 if (*stub_sec_p == NULL) 4744 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec; 4745 stub_sec_prefix = link_sec->name; 4746 out_sec = link_sec->output_section; 4747 align = htab->root.target_os == is_nacl ? 4 : 3; 4748 } 4749 4750 if (*stub_sec_p == NULL) 4751 { 4752 size_t namelen; 4753 bfd_size_type len; 4754 char *s_name; 4755 4756 namelen = strlen (stub_sec_prefix); 4757 len = namelen + sizeof (STUB_SUFFIX); 4758 s_name = (char *) bfd_alloc (htab->stub_bfd, len); 4759 if (s_name == NULL) 4760 return NULL; 4761 4762 memcpy (s_name, stub_sec_prefix, namelen); 4763 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX)); 4764 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec, 4765 align); 4766 if (*stub_sec_p == NULL) 4767 return NULL; 4768 4769 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE 4770 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY 4771 | SEC_KEEP; 4772 } 4773 4774 if (!dedicated_output_section) 4775 htab->stub_group[section->id].stub_sec = *stub_sec_p; 4776 4777 if (link_sec_p) 4778 *link_sec_p = link_sec; 4779 4780 return *stub_sec_p; 4781 } 4782 4783 /* Add a new stub entry to the stub hash. Not all fields of the new 4784 stub entry are initialised. */ 4785 4786 static struct elf32_arm_stub_hash_entry * 4787 elf32_arm_add_stub (const char *stub_name, asection *section, 4788 struct elf32_arm_link_hash_table *htab, 4789 enum elf32_arm_stub_type stub_type) 4790 { 4791 asection *link_sec; 4792 asection *stub_sec; 4793 struct elf32_arm_stub_hash_entry *stub_entry; 4794 4795 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab, 4796 stub_type); 4797 if (stub_sec == NULL) 4798 return NULL; 4799 4800 /* Enter this entry into the linker stub hash table. */ 4801 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, 4802 TRUE, FALSE); 4803 if (stub_entry == NULL) 4804 { 4805 if (section == NULL) 4806 section = stub_sec; 4807 _bfd_error_handler (_("%pB: cannot create stub entry %s"), 4808 section->owner, stub_name); 4809 return NULL; 4810 } 4811 4812 stub_entry->stub_sec = stub_sec; 4813 stub_entry->stub_offset = (bfd_vma) -1; 4814 stub_entry->id_sec = link_sec; 4815 4816 return stub_entry; 4817 } 4818 4819 /* Store an Arm insn into an output section not processed by 4820 elf32_arm_write_section. */ 4821 4822 static void 4823 put_arm_insn (struct elf32_arm_link_hash_table * htab, 4824 bfd * output_bfd, bfd_vma val, void * ptr) 4825 { 4826 if (htab->byteswap_code != bfd_little_endian (output_bfd)) 4827 bfd_putl32 (val, ptr); 4828 else 4829 bfd_putb32 (val, ptr); 4830 } 4831 4832 /* Store a 16-bit Thumb insn into an output section not processed by 4833 elf32_arm_write_section. */ 4834 4835 static void 4836 put_thumb_insn (struct elf32_arm_link_hash_table * htab, 4837 bfd * output_bfd, bfd_vma val, void * ptr) 4838 { 4839 if (htab->byteswap_code != bfd_little_endian (output_bfd)) 4840 bfd_putl16 (val, ptr); 4841 else 4842 bfd_putb16 (val, ptr); 4843 } 4844 4845 /* Store a Thumb2 insn into an output section not processed by 4846 elf32_arm_write_section. */ 4847 4848 static void 4849 put_thumb2_insn (struct elf32_arm_link_hash_table * htab, 4850 bfd * output_bfd, bfd_vma val, bfd_byte * ptr) 4851 { 4852 /* T2 instructions are 16-bit streamed. */ 4853 if (htab->byteswap_code != bfd_little_endian (output_bfd)) 4854 { 4855 bfd_putl16 ((val >> 16) & 0xffff, ptr); 4856 bfd_putl16 ((val & 0xffff), ptr + 2); 4857 } 4858 else 4859 { 4860 bfd_putb16 ((val >> 16) & 0xffff, ptr); 4861 bfd_putb16 ((val & 0xffff), ptr + 2); 4862 } 4863 } 4864 4865 /* If it's possible to change R_TYPE to a more efficient access 4866 model, return the new reloc type. */ 4867 4868 static unsigned 4869 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type, 4870 struct elf_link_hash_entry *h) 4871 { 4872 int is_local = (h == NULL); 4873 4874 if (bfd_link_dll (info) 4875 || (h && h->root.type == bfd_link_hash_undefweak)) 4876 return r_type; 4877 4878 /* We do not support relaxations for Old TLS models. */ 4879 switch (r_type) 4880 { 4881 case R_ARM_TLS_GOTDESC: 4882 case R_ARM_TLS_CALL: 4883 case R_ARM_THM_TLS_CALL: 4884 case R_ARM_TLS_DESCSEQ: 4885 case R_ARM_THM_TLS_DESCSEQ: 4886 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32; 4887 } 4888 4889 return r_type; 4890 } 4891 4892 static bfd_reloc_status_type elf32_arm_final_link_relocate 4893 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *, 4894 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *, 4895 const char *, unsigned char, enum arm_st_branch_type, 4896 struct elf_link_hash_entry *, bfd_boolean *, char **); 4897 4898 static unsigned int 4899 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type) 4900 { 4901 switch (stub_type) 4902 { 4903 case arm_stub_a8_veneer_b_cond: 4904 case arm_stub_a8_veneer_b: 4905 case arm_stub_a8_veneer_bl: 4906 return 2; 4907 4908 case arm_stub_long_branch_any_any: 4909 case arm_stub_long_branch_v4t_arm_thumb: 4910 case arm_stub_long_branch_thumb_only: 4911 case arm_stub_long_branch_thumb2_only: 4912 case arm_stub_long_branch_thumb2_only_pure: 4913 case arm_stub_long_branch_v4t_thumb_thumb: 4914 case arm_stub_long_branch_v4t_thumb_arm: 4915 case arm_stub_short_branch_v4t_thumb_arm: 4916 case arm_stub_long_branch_any_arm_pic: 4917 case arm_stub_long_branch_any_thumb_pic: 4918 case arm_stub_long_branch_v4t_thumb_thumb_pic: 4919 case arm_stub_long_branch_v4t_arm_thumb_pic: 4920 case arm_stub_long_branch_v4t_thumb_arm_pic: 4921 case arm_stub_long_branch_thumb_only_pic: 4922 case arm_stub_long_branch_any_tls_pic: 4923 case arm_stub_long_branch_v4t_thumb_tls_pic: 4924 case arm_stub_cmse_branch_thumb_only: 4925 case arm_stub_a8_veneer_blx: 4926 return 4; 4927 4928 case arm_stub_long_branch_arm_nacl: 4929 case arm_stub_long_branch_arm_nacl_pic: 4930 return 16; 4931 4932 default: 4933 abort (); /* Should be unreachable. */ 4934 } 4935 } 4936 4937 /* Returns whether stubs of type STUB_TYPE take over the symbol they are 4938 veneering (TRUE) or have their own symbol (FALSE). */ 4939 4940 static bfd_boolean 4941 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type) 4942 { 4943 if (stub_type >= max_stub_type) 4944 abort (); /* Should be unreachable. */ 4945 4946 switch (stub_type) 4947 { 4948 case arm_stub_cmse_branch_thumb_only: 4949 return TRUE; 4950 4951 default: 4952 return FALSE; 4953 } 4954 4955 abort (); /* Should be unreachable. */ 4956 } 4957 4958 /* Returns the padding needed for the dedicated section used stubs of type 4959 STUB_TYPE. */ 4960 4961 static int 4962 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type) 4963 { 4964 if (stub_type >= max_stub_type) 4965 abort (); /* Should be unreachable. */ 4966 4967 switch (stub_type) 4968 { 4969 case arm_stub_cmse_branch_thumb_only: 4970 return 32; 4971 4972 default: 4973 return 0; 4974 } 4975 4976 abort (); /* Should be unreachable. */ 4977 } 4978 4979 /* If veneers of type STUB_TYPE should go in a dedicated output section, 4980 returns the address of the hash table field in HTAB holding the offset at 4981 which new veneers should be layed out in the stub section. */ 4982 4983 static bfd_vma* 4984 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab, 4985 enum elf32_arm_stub_type stub_type) 4986 { 4987 switch (stub_type) 4988 { 4989 case arm_stub_cmse_branch_thumb_only: 4990 return &htab->new_cmse_stub_offset; 4991 4992 default: 4993 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type)); 4994 return NULL; 4995 } 4996 } 4997 4998 static bfd_boolean 4999 arm_build_one_stub (struct bfd_hash_entry *gen_entry, 5000 void * in_arg) 5001 { 5002 #define MAXRELOCS 3 5003 bfd_boolean removed_sg_veneer; 5004 struct elf32_arm_stub_hash_entry *stub_entry; 5005 struct elf32_arm_link_hash_table *globals; 5006 struct bfd_link_info *info; 5007 asection *stub_sec; 5008 bfd *stub_bfd; 5009 bfd_byte *loc; 5010 bfd_vma sym_value; 5011 int template_size; 5012 int size; 5013 const insn_sequence *template_sequence; 5014 int i; 5015 int stub_reloc_idx[MAXRELOCS] = {-1, -1}; 5016 int stub_reloc_offset[MAXRELOCS] = {0, 0}; 5017 int nrelocs = 0; 5018 int just_allocated = 0; 5019 5020 /* Massage our args to the form they really have. */ 5021 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 5022 info = (struct bfd_link_info *) in_arg; 5023 5024 /* Fail if the target section could not be assigned to an output 5025 section. The user should fix his linker script. */ 5026 if (stub_entry->target_section->output_section == NULL 5027 && info->non_contiguous_regions) 5028 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. " 5029 "Retry without --enable-non-contiguous-regions.\n"), 5030 stub_entry->target_section); 5031 5032 globals = elf32_arm_hash_table (info); 5033 if (globals == NULL) 5034 return FALSE; 5035 5036 stub_sec = stub_entry->stub_sec; 5037 5038 if ((globals->fix_cortex_a8 < 0) 5039 != (arm_stub_required_alignment (stub_entry->stub_type) == 2)) 5040 /* We have to do less-strictly-aligned fixes last. */ 5041 return TRUE; 5042 5043 /* Assign a slot at the end of section if none assigned yet. */ 5044 if (stub_entry->stub_offset == (bfd_vma) -1) 5045 { 5046 stub_entry->stub_offset = stub_sec->size; 5047 just_allocated = 1; 5048 } 5049 loc = stub_sec->contents + stub_entry->stub_offset; 5050 5051 stub_bfd = stub_sec->owner; 5052 5053 /* This is the address of the stub destination. */ 5054 sym_value = (stub_entry->target_value 5055 + stub_entry->target_section->output_offset 5056 + stub_entry->target_section->output_section->vma); 5057 5058 template_sequence = stub_entry->stub_template; 5059 template_size = stub_entry->stub_template_size; 5060 5061 size = 0; 5062 for (i = 0; i < template_size; i++) 5063 { 5064 switch (template_sequence[i].type) 5065 { 5066 case THUMB16_TYPE: 5067 { 5068 bfd_vma data = (bfd_vma) template_sequence[i].data; 5069 if (template_sequence[i].reloc_addend != 0) 5070 { 5071 /* We've borrowed the reloc_addend field to mean we should 5072 insert a condition code into this (Thumb-1 branch) 5073 instruction. See THUMB16_BCOND_INSN. */ 5074 BFD_ASSERT ((data & 0xff00) == 0xd000); 5075 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8; 5076 } 5077 bfd_put_16 (stub_bfd, data, loc + size); 5078 size += 2; 5079 } 5080 break; 5081 5082 case THUMB32_TYPE: 5083 bfd_put_16 (stub_bfd, 5084 (template_sequence[i].data >> 16) & 0xffff, 5085 loc + size); 5086 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff, 5087 loc + size + 2); 5088 if (template_sequence[i].r_type != R_ARM_NONE) 5089 { 5090 stub_reloc_idx[nrelocs] = i; 5091 stub_reloc_offset[nrelocs++] = size; 5092 } 5093 size += 4; 5094 break; 5095 5096 case ARM_TYPE: 5097 bfd_put_32 (stub_bfd, template_sequence[i].data, 5098 loc + size); 5099 /* Handle cases where the target is encoded within the 5100 instruction. */ 5101 if (template_sequence[i].r_type == R_ARM_JUMP24) 5102 { 5103 stub_reloc_idx[nrelocs] = i; 5104 stub_reloc_offset[nrelocs++] = size; 5105 } 5106 size += 4; 5107 break; 5108 5109 case DATA_TYPE: 5110 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size); 5111 stub_reloc_idx[nrelocs] = i; 5112 stub_reloc_offset[nrelocs++] = size; 5113 size += 4; 5114 break; 5115 5116 default: 5117 BFD_FAIL (); 5118 return FALSE; 5119 } 5120 } 5121 5122 if (just_allocated) 5123 stub_sec->size += size; 5124 5125 /* Stub size has already been computed in arm_size_one_stub. Check 5126 consistency. */ 5127 BFD_ASSERT (size == stub_entry->stub_size); 5128 5129 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */ 5130 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB) 5131 sym_value |= 1; 5132 5133 /* Assume non empty slots have at least one and at most MAXRELOCS entries 5134 to relocate in each stub. */ 5135 removed_sg_veneer = 5136 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only); 5137 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS)); 5138 5139 for (i = 0; i < nrelocs; i++) 5140 { 5141 Elf_Internal_Rela rel; 5142 bfd_boolean unresolved_reloc; 5143 char *error_message; 5144 bfd_vma points_to = 5145 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend; 5146 5147 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i]; 5148 rel.r_info = ELF32_R_INFO (0, 5149 template_sequence[stub_reloc_idx[i]].r_type); 5150 rel.r_addend = 0; 5151 5152 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0) 5153 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[] 5154 template should refer back to the instruction after the original 5155 branch. We use target_section as Cortex-A8 erratum workaround stubs 5156 are only generated when both source and target are in the same 5157 section. */ 5158 points_to = stub_entry->target_section->output_section->vma 5159 + stub_entry->target_section->output_offset 5160 + stub_entry->source_value; 5161 5162 elf32_arm_final_link_relocate (elf32_arm_howto_from_type 5163 (template_sequence[stub_reloc_idx[i]].r_type), 5164 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel, 5165 points_to, info, stub_entry->target_section, "", STT_FUNC, 5166 stub_entry->branch_type, 5167 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc, 5168 &error_message); 5169 } 5170 5171 return TRUE; 5172 #undef MAXRELOCS 5173 } 5174 5175 /* Calculate the template, template size and instruction size for a stub. 5176 Return value is the instruction size. */ 5177 5178 static unsigned int 5179 find_stub_size_and_template (enum elf32_arm_stub_type stub_type, 5180 const insn_sequence **stub_template, 5181 int *stub_template_size) 5182 { 5183 const insn_sequence *template_sequence = NULL; 5184 int template_size = 0, i; 5185 unsigned int size; 5186 5187 template_sequence = stub_definitions[stub_type].template_sequence; 5188 if (stub_template) 5189 *stub_template = template_sequence; 5190 5191 template_size = stub_definitions[stub_type].template_size; 5192 if (stub_template_size) 5193 *stub_template_size = template_size; 5194 5195 size = 0; 5196 for (i = 0; i < template_size; i++) 5197 { 5198 switch (template_sequence[i].type) 5199 { 5200 case THUMB16_TYPE: 5201 size += 2; 5202 break; 5203 5204 case ARM_TYPE: 5205 case THUMB32_TYPE: 5206 case DATA_TYPE: 5207 size += 4; 5208 break; 5209 5210 default: 5211 BFD_FAIL (); 5212 return 0; 5213 } 5214 } 5215 5216 return size; 5217 } 5218 5219 /* As above, but don't actually build the stub. Just bump offset so 5220 we know stub section sizes. */ 5221 5222 static bfd_boolean 5223 arm_size_one_stub (struct bfd_hash_entry *gen_entry, 5224 void *in_arg ATTRIBUTE_UNUSED) 5225 { 5226 struct elf32_arm_stub_hash_entry *stub_entry; 5227 const insn_sequence *template_sequence; 5228 int template_size, size; 5229 5230 /* Massage our args to the form they really have. */ 5231 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 5232 5233 BFD_ASSERT((stub_entry->stub_type > arm_stub_none) 5234 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions)); 5235 5236 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence, 5237 &template_size); 5238 5239 /* Initialized to -1. Null size indicates an empty slot full of zeros. */ 5240 if (stub_entry->stub_template_size) 5241 { 5242 stub_entry->stub_size = size; 5243 stub_entry->stub_template = template_sequence; 5244 stub_entry->stub_template_size = template_size; 5245 } 5246 5247 /* Already accounted for. */ 5248 if (stub_entry->stub_offset != (bfd_vma) -1) 5249 return TRUE; 5250 5251 size = (size + 7) & ~7; 5252 stub_entry->stub_sec->size += size; 5253 5254 return TRUE; 5255 } 5256 5257 /* External entry points for sizing and building linker stubs. */ 5258 5259 /* Set up various things so that we can make a list of input sections 5260 for each output section included in the link. Returns -1 on error, 5261 0 when no stubs will be needed, and 1 on success. */ 5262 5263 int 5264 elf32_arm_setup_section_lists (bfd *output_bfd, 5265 struct bfd_link_info *info) 5266 { 5267 bfd *input_bfd; 5268 unsigned int bfd_count; 5269 unsigned int top_id, top_index; 5270 asection *section; 5271 asection **input_list, **list; 5272 size_t amt; 5273 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 5274 5275 if (htab == NULL) 5276 return 0; 5277 if (! is_elf_hash_table (htab)) 5278 return 0; 5279 5280 /* Count the number of input BFDs and find the top input section id. */ 5281 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; 5282 input_bfd != NULL; 5283 input_bfd = input_bfd->link.next) 5284 { 5285 bfd_count += 1; 5286 for (section = input_bfd->sections; 5287 section != NULL; 5288 section = section->next) 5289 { 5290 if (top_id < section->id) 5291 top_id = section->id; 5292 } 5293 } 5294 htab->bfd_count = bfd_count; 5295 5296 amt = sizeof (struct map_stub) * (top_id + 1); 5297 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt); 5298 if (htab->stub_group == NULL) 5299 return -1; 5300 htab->top_id = top_id; 5301 5302 /* We can't use output_bfd->section_count here to find the top output 5303 section index as some sections may have been removed, and 5304 _bfd_strip_section_from_output doesn't renumber the indices. */ 5305 for (section = output_bfd->sections, top_index = 0; 5306 section != NULL; 5307 section = section->next) 5308 { 5309 if (top_index < section->index) 5310 top_index = section->index; 5311 } 5312 5313 htab->top_index = top_index; 5314 amt = sizeof (asection *) * (top_index + 1); 5315 input_list = (asection **) bfd_malloc (amt); 5316 htab->input_list = input_list; 5317 if (input_list == NULL) 5318 return -1; 5319 5320 /* For sections we aren't interested in, mark their entries with a 5321 value we can check later. */ 5322 list = input_list + top_index; 5323 do 5324 *list = bfd_abs_section_ptr; 5325 while (list-- != input_list); 5326 5327 for (section = output_bfd->sections; 5328 section != NULL; 5329 section = section->next) 5330 { 5331 if ((section->flags & SEC_CODE) != 0) 5332 input_list[section->index] = NULL; 5333 } 5334 5335 return 1; 5336 } 5337 5338 /* The linker repeatedly calls this function for each input section, 5339 in the order that input sections are linked into output sections. 5340 Build lists of input sections to determine groupings between which 5341 we may insert linker stubs. */ 5342 5343 void 5344 elf32_arm_next_input_section (struct bfd_link_info *info, 5345 asection *isec) 5346 { 5347 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 5348 5349 if (htab == NULL) 5350 return; 5351 5352 if (isec->output_section->index <= htab->top_index) 5353 { 5354 asection **list = htab->input_list + isec->output_section->index; 5355 5356 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0) 5357 { 5358 /* Steal the link_sec pointer for our list. */ 5359 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) 5360 /* This happens to make the list in reverse order, 5361 which we reverse later. */ 5362 PREV_SEC (isec) = *list; 5363 *list = isec; 5364 } 5365 } 5366 } 5367 5368 /* See whether we can group stub sections together. Grouping stub 5369 sections may result in fewer stubs. More importantly, we need to 5370 put all .init* and .fini* stubs at the end of the .init or 5371 .fini output sections respectively, because glibc splits the 5372 _init and _fini functions into multiple parts. Putting a stub in 5373 the middle of a function is not a good idea. */ 5374 5375 static void 5376 group_sections (struct elf32_arm_link_hash_table *htab, 5377 bfd_size_type stub_group_size, 5378 bfd_boolean stubs_always_after_branch) 5379 { 5380 asection **list = htab->input_list; 5381 5382 do 5383 { 5384 asection *tail = *list; 5385 asection *head; 5386 5387 if (tail == bfd_abs_section_ptr) 5388 continue; 5389 5390 /* Reverse the list: we must avoid placing stubs at the 5391 beginning of the section because the beginning of the text 5392 section may be required for an interrupt vector in bare metal 5393 code. */ 5394 #define NEXT_SEC PREV_SEC 5395 head = NULL; 5396 while (tail != NULL) 5397 { 5398 /* Pop from tail. */ 5399 asection *item = tail; 5400 tail = PREV_SEC (item); 5401 5402 /* Push on head. */ 5403 NEXT_SEC (item) = head; 5404 head = item; 5405 } 5406 5407 while (head != NULL) 5408 { 5409 asection *curr; 5410 asection *next; 5411 bfd_vma stub_group_start = head->output_offset; 5412 bfd_vma end_of_next; 5413 5414 curr = head; 5415 while (NEXT_SEC (curr) != NULL) 5416 { 5417 next = NEXT_SEC (curr); 5418 end_of_next = next->output_offset + next->size; 5419 if (end_of_next - stub_group_start >= stub_group_size) 5420 /* End of NEXT is too far from start, so stop. */ 5421 break; 5422 /* Add NEXT to the group. */ 5423 curr = next; 5424 } 5425 5426 /* OK, the size from the start to the start of CURR is less 5427 than stub_group_size and thus can be handled by one stub 5428 section. (Or the head section is itself larger than 5429 stub_group_size, in which case we may be toast.) 5430 We should really be keeping track of the total size of 5431 stubs added here, as stubs contribute to the final output 5432 section size. */ 5433 do 5434 { 5435 next = NEXT_SEC (head); 5436 /* Set up this stub group. */ 5437 htab->stub_group[head->id].link_sec = curr; 5438 } 5439 while (head != curr && (head = next) != NULL); 5440 5441 /* But wait, there's more! Input sections up to stub_group_size 5442 bytes after the stub section can be handled by it too. */ 5443 if (!stubs_always_after_branch) 5444 { 5445 stub_group_start = curr->output_offset + curr->size; 5446 5447 while (next != NULL) 5448 { 5449 end_of_next = next->output_offset + next->size; 5450 if (end_of_next - stub_group_start >= stub_group_size) 5451 /* End of NEXT is too far from stubs, so stop. */ 5452 break; 5453 /* Add NEXT to the stub group. */ 5454 head = next; 5455 next = NEXT_SEC (head); 5456 htab->stub_group[head->id].link_sec = curr; 5457 } 5458 } 5459 head = next; 5460 } 5461 } 5462 while (list++ != htab->input_list + htab->top_index); 5463 5464 free (htab->input_list); 5465 #undef PREV_SEC 5466 #undef NEXT_SEC 5467 } 5468 5469 /* Comparison function for sorting/searching relocations relating to Cortex-A8 5470 erratum fix. */ 5471 5472 static int 5473 a8_reloc_compare (const void *a, const void *b) 5474 { 5475 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a; 5476 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b; 5477 5478 if (ra->from < rb->from) 5479 return -1; 5480 else if (ra->from > rb->from) 5481 return 1; 5482 else 5483 return 0; 5484 } 5485 5486 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *, 5487 const char *, char **); 5488 5489 /* Helper function to scan code for sequences which might trigger the Cortex-A8 5490 branch/TLB erratum. Fill in the table described by A8_FIXES_P, 5491 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false 5492 otherwise. */ 5493 5494 static bfd_boolean 5495 cortex_a8_erratum_scan (bfd *input_bfd, 5496 struct bfd_link_info *info, 5497 struct a8_erratum_fix **a8_fixes_p, 5498 unsigned int *num_a8_fixes_p, 5499 unsigned int *a8_fix_table_size_p, 5500 struct a8_erratum_reloc *a8_relocs, 5501 unsigned int num_a8_relocs, 5502 unsigned prev_num_a8_fixes, 5503 bfd_boolean *stub_changed_p) 5504 { 5505 asection *section; 5506 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 5507 struct a8_erratum_fix *a8_fixes = *a8_fixes_p; 5508 unsigned int num_a8_fixes = *num_a8_fixes_p; 5509 unsigned int a8_fix_table_size = *a8_fix_table_size_p; 5510 5511 if (htab == NULL) 5512 return FALSE; 5513 5514 for (section = input_bfd->sections; 5515 section != NULL; 5516 section = section->next) 5517 { 5518 bfd_byte *contents = NULL; 5519 struct _arm_elf_section_data *sec_data; 5520 unsigned int span; 5521 bfd_vma base_vma; 5522 5523 if (elf_section_type (section) != SHT_PROGBITS 5524 || (elf_section_flags (section) & SHF_EXECINSTR) == 0 5525 || (section->flags & SEC_EXCLUDE) != 0 5526 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 5527 || (section->output_section == bfd_abs_section_ptr)) 5528 continue; 5529 5530 base_vma = section->output_section->vma + section->output_offset; 5531 5532 if (elf_section_data (section)->this_hdr.contents != NULL) 5533 contents = elf_section_data (section)->this_hdr.contents; 5534 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents)) 5535 return TRUE; 5536 5537 sec_data = elf32_arm_section_data (section); 5538 5539 for (span = 0; span < sec_data->mapcount; span++) 5540 { 5541 unsigned int span_start = sec_data->map[span].vma; 5542 unsigned int span_end = (span == sec_data->mapcount - 1) 5543 ? section->size : sec_data->map[span + 1].vma; 5544 unsigned int i; 5545 char span_type = sec_data->map[span].type; 5546 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE; 5547 5548 if (span_type != 't') 5549 continue; 5550 5551 /* Span is entirely within a single 4KB region: skip scanning. */ 5552 if (((base_vma + span_start) & ~0xfff) 5553 == ((base_vma + span_end) & ~0xfff)) 5554 continue; 5555 5556 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where: 5557 5558 * The opcode is BLX.W, BL.W, B.W, Bcc.W 5559 * The branch target is in the same 4KB region as the 5560 first half of the branch. 5561 * The instruction before the branch is a 32-bit 5562 length non-branch instruction. */ 5563 for (i = span_start; i < span_end;) 5564 { 5565 unsigned int insn = bfd_getl16 (&contents[i]); 5566 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE; 5567 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch; 5568 5569 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000) 5570 insn_32bit = TRUE; 5571 5572 if (insn_32bit) 5573 { 5574 /* Load the rest of the insn (in manual-friendly order). */ 5575 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]); 5576 5577 /* Encoding T4: B<c>.W. */ 5578 is_b = (insn & 0xf800d000) == 0xf0009000; 5579 /* Encoding T1: BL<c>.W. */ 5580 is_bl = (insn & 0xf800d000) == 0xf000d000; 5581 /* Encoding T2: BLX<c>.W. */ 5582 is_blx = (insn & 0xf800d000) == 0xf000c000; 5583 /* Encoding T3: B<c>.W (not permitted in IT block). */ 5584 is_bcc = (insn & 0xf800d000) == 0xf0008000 5585 && (insn & 0x07f00000) != 0x03800000; 5586 } 5587 5588 is_32bit_branch = is_b || is_bl || is_blx || is_bcc; 5589 5590 if (((base_vma + i) & 0xfff) == 0xffe 5591 && insn_32bit 5592 && is_32bit_branch 5593 && last_was_32bit 5594 && ! last_was_branch) 5595 { 5596 bfd_signed_vma offset = 0; 5597 bfd_boolean force_target_arm = FALSE; 5598 bfd_boolean force_target_thumb = FALSE; 5599 bfd_vma target; 5600 enum elf32_arm_stub_type stub_type = arm_stub_none; 5601 struct a8_erratum_reloc key, *found; 5602 bfd_boolean use_plt = FALSE; 5603 5604 key.from = base_vma + i; 5605 found = (struct a8_erratum_reloc *) 5606 bsearch (&key, a8_relocs, num_a8_relocs, 5607 sizeof (struct a8_erratum_reloc), 5608 &a8_reloc_compare); 5609 5610 if (found) 5611 { 5612 char *error_message = NULL; 5613 struct elf_link_hash_entry *entry; 5614 5615 /* We don't care about the error returned from this 5616 function, only if there is glue or not. */ 5617 entry = find_thumb_glue (info, found->sym_name, 5618 &error_message); 5619 5620 if (entry) 5621 found->non_a8_stub = TRUE; 5622 5623 /* Keep a simpler condition, for the sake of clarity. */ 5624 if (htab->root.splt != NULL && found->hash != NULL 5625 && found->hash->root.plt.offset != (bfd_vma) -1) 5626 use_plt = TRUE; 5627 5628 if (found->r_type == R_ARM_THM_CALL) 5629 { 5630 if (found->branch_type == ST_BRANCH_TO_ARM 5631 || use_plt) 5632 force_target_arm = TRUE; 5633 else 5634 force_target_thumb = TRUE; 5635 } 5636 } 5637 5638 /* Check if we have an offending branch instruction. */ 5639 5640 if (found && found->non_a8_stub) 5641 /* We've already made a stub for this instruction, e.g. 5642 it's a long branch or a Thumb->ARM stub. Assume that 5643 stub will suffice to work around the A8 erratum (see 5644 setting of always_after_branch above). */ 5645 ; 5646 else if (is_bcc) 5647 { 5648 offset = (insn & 0x7ff) << 1; 5649 offset |= (insn & 0x3f0000) >> 4; 5650 offset |= (insn & 0x2000) ? 0x40000 : 0; 5651 offset |= (insn & 0x800) ? 0x80000 : 0; 5652 offset |= (insn & 0x4000000) ? 0x100000 : 0; 5653 if (offset & 0x100000) 5654 offset |= ~ ((bfd_signed_vma) 0xfffff); 5655 stub_type = arm_stub_a8_veneer_b_cond; 5656 } 5657 else if (is_b || is_bl || is_blx) 5658 { 5659 int s = (insn & 0x4000000) != 0; 5660 int j1 = (insn & 0x2000) != 0; 5661 int j2 = (insn & 0x800) != 0; 5662 int i1 = !(j1 ^ s); 5663 int i2 = !(j2 ^ s); 5664 5665 offset = (insn & 0x7ff) << 1; 5666 offset |= (insn & 0x3ff0000) >> 4; 5667 offset |= i2 << 22; 5668 offset |= i1 << 23; 5669 offset |= s << 24; 5670 if (offset & 0x1000000) 5671 offset |= ~ ((bfd_signed_vma) 0xffffff); 5672 5673 if (is_blx) 5674 offset &= ~ ((bfd_signed_vma) 3); 5675 5676 stub_type = is_blx ? arm_stub_a8_veneer_blx : 5677 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b; 5678 } 5679 5680 if (stub_type != arm_stub_none) 5681 { 5682 bfd_vma pc_for_insn = base_vma + i + 4; 5683 5684 /* The original instruction is a BL, but the target is 5685 an ARM instruction. If we were not making a stub, 5686 the BL would have been converted to a BLX. Use the 5687 BLX stub instead in that case. */ 5688 if (htab->use_blx && force_target_arm 5689 && stub_type == arm_stub_a8_veneer_bl) 5690 { 5691 stub_type = arm_stub_a8_veneer_blx; 5692 is_blx = TRUE; 5693 is_bl = FALSE; 5694 } 5695 /* Conversely, if the original instruction was 5696 BLX but the target is Thumb mode, use the BL 5697 stub. */ 5698 else if (force_target_thumb 5699 && stub_type == arm_stub_a8_veneer_blx) 5700 { 5701 stub_type = arm_stub_a8_veneer_bl; 5702 is_blx = FALSE; 5703 is_bl = TRUE; 5704 } 5705 5706 if (is_blx) 5707 pc_for_insn &= ~ ((bfd_vma) 3); 5708 5709 /* If we found a relocation, use the proper destination, 5710 not the offset in the (unrelocated) instruction. 5711 Note this is always done if we switched the stub type 5712 above. */ 5713 if (found) 5714 offset = 5715 (bfd_signed_vma) (found->destination - pc_for_insn); 5716 5717 /* If the stub will use a Thumb-mode branch to a 5718 PLT target, redirect it to the preceding Thumb 5719 entry point. */ 5720 if (stub_type != arm_stub_a8_veneer_blx && use_plt) 5721 offset -= PLT_THUMB_STUB_SIZE; 5722 5723 target = pc_for_insn + offset; 5724 5725 /* The BLX stub is ARM-mode code. Adjust the offset to 5726 take the different PC value (+8 instead of +4) into 5727 account. */ 5728 if (stub_type == arm_stub_a8_veneer_blx) 5729 offset += 4; 5730 5731 if (((base_vma + i) & ~0xfff) == (target & ~0xfff)) 5732 { 5733 char *stub_name = NULL; 5734 5735 if (num_a8_fixes == a8_fix_table_size) 5736 { 5737 a8_fix_table_size *= 2; 5738 a8_fixes = (struct a8_erratum_fix *) 5739 bfd_realloc (a8_fixes, 5740 sizeof (struct a8_erratum_fix) 5741 * a8_fix_table_size); 5742 } 5743 5744 if (num_a8_fixes < prev_num_a8_fixes) 5745 { 5746 /* If we're doing a subsequent scan, 5747 check if we've found the same fix as 5748 before, and try and reuse the stub 5749 name. */ 5750 stub_name = a8_fixes[num_a8_fixes].stub_name; 5751 if ((a8_fixes[num_a8_fixes].section != section) 5752 || (a8_fixes[num_a8_fixes].offset != i)) 5753 { 5754 free (stub_name); 5755 stub_name = NULL; 5756 *stub_changed_p = TRUE; 5757 } 5758 } 5759 5760 if (!stub_name) 5761 { 5762 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1); 5763 if (stub_name != NULL) 5764 sprintf (stub_name, "%x:%x", section->id, i); 5765 } 5766 5767 a8_fixes[num_a8_fixes].input_bfd = input_bfd; 5768 a8_fixes[num_a8_fixes].section = section; 5769 a8_fixes[num_a8_fixes].offset = i; 5770 a8_fixes[num_a8_fixes].target_offset = 5771 target - base_vma; 5772 a8_fixes[num_a8_fixes].orig_insn = insn; 5773 a8_fixes[num_a8_fixes].stub_name = stub_name; 5774 a8_fixes[num_a8_fixes].stub_type = stub_type; 5775 a8_fixes[num_a8_fixes].branch_type = 5776 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB; 5777 5778 num_a8_fixes++; 5779 } 5780 } 5781 } 5782 5783 i += insn_32bit ? 4 : 2; 5784 last_was_32bit = insn_32bit; 5785 last_was_branch = is_32bit_branch; 5786 } 5787 } 5788 5789 if (elf_section_data (section)->this_hdr.contents == NULL) 5790 free (contents); 5791 } 5792 5793 *a8_fixes_p = a8_fixes; 5794 *num_a8_fixes_p = num_a8_fixes; 5795 *a8_fix_table_size_p = a8_fix_table_size; 5796 5797 return FALSE; 5798 } 5799 5800 /* Create or update a stub entry depending on whether the stub can already be 5801 found in HTAB. The stub is identified by: 5802 - its type STUB_TYPE 5803 - its source branch (note that several can share the same stub) whose 5804 section and relocation (if any) are given by SECTION and IRELA 5805 respectively 5806 - its target symbol whose input section, hash, name, value and branch type 5807 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE 5808 respectively 5809 5810 If found, the value of the stub's target symbol is updated from SYM_VALUE 5811 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to 5812 TRUE and the stub entry is initialized. 5813 5814 Returns the stub that was created or updated, or NULL if an error 5815 occurred. */ 5816 5817 static struct elf32_arm_stub_hash_entry * 5818 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab, 5819 enum elf32_arm_stub_type stub_type, asection *section, 5820 Elf_Internal_Rela *irela, asection *sym_sec, 5821 struct elf32_arm_link_hash_entry *hash, char *sym_name, 5822 bfd_vma sym_value, enum arm_st_branch_type branch_type, 5823 bfd_boolean *new_stub) 5824 { 5825 const asection *id_sec; 5826 char *stub_name; 5827 struct elf32_arm_stub_hash_entry *stub_entry; 5828 unsigned int r_type; 5829 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type); 5830 5831 BFD_ASSERT (stub_type != arm_stub_none); 5832 *new_stub = FALSE; 5833 5834 if (sym_claimed) 5835 stub_name = sym_name; 5836 else 5837 { 5838 BFD_ASSERT (irela); 5839 BFD_ASSERT (section); 5840 BFD_ASSERT (section->id <= htab->top_id); 5841 5842 /* Support for grouping stub sections. */ 5843 id_sec = htab->stub_group[section->id].link_sec; 5844 5845 /* Get the name of this stub. */ 5846 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela, 5847 stub_type); 5848 if (!stub_name) 5849 return NULL; 5850 } 5851 5852 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE, 5853 FALSE); 5854 /* The proper stub has already been created, just update its value. */ 5855 if (stub_entry != NULL) 5856 { 5857 if (!sym_claimed) 5858 free (stub_name); 5859 stub_entry->target_value = sym_value; 5860 return stub_entry; 5861 } 5862 5863 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type); 5864 if (stub_entry == NULL) 5865 { 5866 if (!sym_claimed) 5867 free (stub_name); 5868 return NULL; 5869 } 5870 5871 stub_entry->target_value = sym_value; 5872 stub_entry->target_section = sym_sec; 5873 stub_entry->stub_type = stub_type; 5874 stub_entry->h = hash; 5875 stub_entry->branch_type = branch_type; 5876 5877 if (sym_claimed) 5878 stub_entry->output_name = sym_name; 5879 else 5880 { 5881 if (sym_name == NULL) 5882 sym_name = "unnamed"; 5883 stub_entry->output_name = (char *) 5884 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME) 5885 + strlen (sym_name)); 5886 if (stub_entry->output_name == NULL) 5887 { 5888 free (stub_name); 5889 return NULL; 5890 } 5891 5892 /* For historical reasons, use the existing names for ARM-to-Thumb and 5893 Thumb-to-ARM stubs. */ 5894 r_type = ELF32_R_TYPE (irela->r_info); 5895 if ((r_type == (unsigned int) R_ARM_THM_CALL 5896 || r_type == (unsigned int) R_ARM_THM_JUMP24 5897 || r_type == (unsigned int) R_ARM_THM_JUMP19) 5898 && branch_type == ST_BRANCH_TO_ARM) 5899 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name); 5900 else if ((r_type == (unsigned int) R_ARM_CALL 5901 || r_type == (unsigned int) R_ARM_JUMP24) 5902 && branch_type == ST_BRANCH_TO_THUMB) 5903 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name); 5904 else 5905 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name); 5906 } 5907 5908 *new_stub = TRUE; 5909 return stub_entry; 5910 } 5911 5912 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a 5913 gateway veneer to transition from non secure to secure state and create them 5914 accordingly. 5915 5916 "ARMv8-M Security Extensions: Requirements on Development Tools" document 5917 defines the conditions that govern Secure Gateway veneer creation for a 5918 given symbol <SYM> as follows: 5919 - it has function type 5920 - it has non local binding 5921 - a symbol named __acle_se_<SYM> (called special symbol) exists with the 5922 same type, binding and value as <SYM> (called normal symbol). 5923 An entry function can handle secure state transition itself in which case 5924 its special symbol would have a different value from the normal symbol. 5925 5926 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash 5927 entry mapping while HTAB gives the name to hash entry mapping. 5928 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer 5929 created. 5930 5931 The return value gives whether a stub failed to be allocated. */ 5932 5933 static bfd_boolean 5934 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab, 5935 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes, 5936 int *cmse_stub_created) 5937 { 5938 const struct elf_backend_data *bed; 5939 Elf_Internal_Shdr *symtab_hdr; 5940 unsigned i, j, sym_count, ext_start; 5941 Elf_Internal_Sym *cmse_sym, *local_syms; 5942 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL; 5943 enum arm_st_branch_type branch_type; 5944 char *sym_name, *lsym_name; 5945 bfd_vma sym_value; 5946 asection *section; 5947 struct elf32_arm_stub_hash_entry *stub_entry; 5948 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE; 5949 5950 bed = get_elf_backend_data (input_bfd); 5951 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 5952 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym; 5953 ext_start = symtab_hdr->sh_info; 5954 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE 5955 && out_attr[Tag_CPU_arch_profile].i == 'M'); 5956 5957 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; 5958 if (local_syms == NULL) 5959 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, 5960 symtab_hdr->sh_info, 0, NULL, NULL, 5961 NULL); 5962 if (symtab_hdr->sh_info && local_syms == NULL) 5963 return FALSE; 5964 5965 /* Scan symbols. */ 5966 for (i = 0; i < sym_count; i++) 5967 { 5968 cmse_invalid = FALSE; 5969 5970 if (i < ext_start) 5971 { 5972 cmse_sym = &local_syms[i]; 5973 sym_name = bfd_elf_string_from_elf_section (input_bfd, 5974 symtab_hdr->sh_link, 5975 cmse_sym->st_name); 5976 if (!sym_name || !CONST_STRNEQ (sym_name, CMSE_PREFIX)) 5977 continue; 5978 5979 /* Special symbol with local binding. */ 5980 cmse_invalid = TRUE; 5981 } 5982 else 5983 { 5984 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]); 5985 sym_name = (char *) cmse_hash->root.root.root.string; 5986 if (!CONST_STRNEQ (sym_name, CMSE_PREFIX)) 5987 continue; 5988 5989 /* Special symbol has incorrect binding or type. */ 5990 if ((cmse_hash->root.root.type != bfd_link_hash_defined 5991 && cmse_hash->root.root.type != bfd_link_hash_defweak) 5992 || cmse_hash->root.type != STT_FUNC) 5993 cmse_invalid = TRUE; 5994 } 5995 5996 if (!is_v8m) 5997 { 5998 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for " 5999 "ARMv8-M architecture or later"), 6000 input_bfd, sym_name); 6001 is_v8m = TRUE; /* Avoid multiple warning. */ 6002 ret = FALSE; 6003 } 6004 6005 if (cmse_invalid) 6006 { 6007 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be" 6008 " a global or weak function symbol"), 6009 input_bfd, sym_name); 6010 ret = FALSE; 6011 if (i < ext_start) 6012 continue; 6013 } 6014 6015 sym_name += strlen (CMSE_PREFIX); 6016 hash = (struct elf32_arm_link_hash_entry *) 6017 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE); 6018 6019 /* No associated normal symbol or it is neither global nor weak. */ 6020 if (!hash 6021 || (hash->root.root.type != bfd_link_hash_defined 6022 && hash->root.root.type != bfd_link_hash_defweak) 6023 || hash->root.type != STT_FUNC) 6024 { 6025 /* Initialize here to avoid warning about use of possibly 6026 uninitialized variable. */ 6027 j = 0; 6028 6029 if (!hash) 6030 { 6031 /* Searching for a normal symbol with local binding. */ 6032 for (; j < ext_start; j++) 6033 { 6034 lsym_name = 6035 bfd_elf_string_from_elf_section (input_bfd, 6036 symtab_hdr->sh_link, 6037 local_syms[j].st_name); 6038 if (!strcmp (sym_name, lsym_name)) 6039 break; 6040 } 6041 } 6042 6043 if (hash || j < ext_start) 6044 { 6045 _bfd_error_handler 6046 (_("%pB: invalid standard symbol `%s'; it must be " 6047 "a global or weak function symbol"), 6048 input_bfd, sym_name); 6049 } 6050 else 6051 _bfd_error_handler 6052 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name); 6053 ret = FALSE; 6054 if (!hash) 6055 continue; 6056 } 6057 6058 sym_value = hash->root.root.u.def.value; 6059 section = hash->root.root.u.def.section; 6060 6061 if (cmse_hash->root.root.u.def.section != section) 6062 { 6063 _bfd_error_handler 6064 (_("%pB: `%s' and its special symbol are in different sections"), 6065 input_bfd, sym_name); 6066 ret = FALSE; 6067 } 6068 if (cmse_hash->root.root.u.def.value != sym_value) 6069 continue; /* Ignore: could be an entry function starting with SG. */ 6070 6071 /* If this section is a link-once section that will be discarded, then 6072 don't create any stubs. */ 6073 if (section->output_section == NULL) 6074 { 6075 _bfd_error_handler 6076 (_("%pB: entry function `%s' not output"), input_bfd, sym_name); 6077 continue; 6078 } 6079 6080 if (hash->root.size == 0) 6081 { 6082 _bfd_error_handler 6083 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name); 6084 ret = FALSE; 6085 } 6086 6087 if (!ret) 6088 continue; 6089 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal); 6090 stub_entry 6091 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only, 6092 NULL, NULL, section, hash, sym_name, 6093 sym_value, branch_type, &new_stub); 6094 6095 if (stub_entry == NULL) 6096 ret = FALSE; 6097 else 6098 { 6099 BFD_ASSERT (new_stub); 6100 (*cmse_stub_created)++; 6101 } 6102 } 6103 6104 if (!symtab_hdr->contents) 6105 free (local_syms); 6106 return ret; 6107 } 6108 6109 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure 6110 code entry function, ie can be called from non secure code without using a 6111 veneer. */ 6112 6113 static bfd_boolean 6114 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash) 6115 { 6116 bfd_byte contents[4]; 6117 uint32_t first_insn; 6118 asection *section; 6119 file_ptr offset; 6120 bfd *abfd; 6121 6122 /* Defined symbol of function type. */ 6123 if (hash->root.root.type != bfd_link_hash_defined 6124 && hash->root.root.type != bfd_link_hash_defweak) 6125 return FALSE; 6126 if (hash->root.type != STT_FUNC) 6127 return FALSE; 6128 6129 /* Read first instruction. */ 6130 section = hash->root.root.u.def.section; 6131 abfd = section->owner; 6132 offset = hash->root.root.u.def.value - section->vma; 6133 if (!bfd_get_section_contents (abfd, section, contents, offset, 6134 sizeof (contents))) 6135 return FALSE; 6136 6137 first_insn = bfd_get_32 (abfd, contents); 6138 6139 /* Starts by SG instruction. */ 6140 return first_insn == 0xe97fe97f; 6141 } 6142 6143 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new 6144 secure gateway veneers (ie. the veneers was not in the input import library) 6145 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */ 6146 6147 static bfd_boolean 6148 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info) 6149 { 6150 struct elf32_arm_stub_hash_entry *stub_entry; 6151 struct bfd_link_info *info; 6152 6153 /* Massage our args to the form they really have. */ 6154 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 6155 info = (struct bfd_link_info *) gen_info; 6156 6157 if (info->out_implib_bfd) 6158 return TRUE; 6159 6160 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only) 6161 return TRUE; 6162 6163 if (stub_entry->stub_offset == (bfd_vma) -1) 6164 _bfd_error_handler (" %s", stub_entry->output_name); 6165 6166 return TRUE; 6167 } 6168 6169 /* Set offset of each secure gateway veneers so that its address remain 6170 identical to the one in the input import library referred by 6171 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared 6172 (present in input import library but absent from the executable being 6173 linked) or if new veneers appeared and there is no output import library 6174 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the 6175 number of secure gateway veneers found in the input import library. 6176 6177 The function returns whether an error occurred. If no error occurred, 6178 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan 6179 and this function and HTAB->new_cmse_stub_offset is set to the biggest 6180 veneer observed set for new veneers to be layed out after. */ 6181 6182 static bfd_boolean 6183 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info, 6184 struct elf32_arm_link_hash_table *htab, 6185 int *cmse_stub_created) 6186 { 6187 long symsize; 6188 char *sym_name; 6189 flagword flags; 6190 long i, symcount; 6191 bfd *in_implib_bfd; 6192 asection *stub_out_sec; 6193 bfd_boolean ret = TRUE; 6194 Elf_Internal_Sym *intsym; 6195 const char *out_sec_name; 6196 bfd_size_type cmse_stub_size; 6197 asymbol **sympp = NULL, *sym; 6198 struct elf32_arm_link_hash_entry *hash; 6199 const insn_sequence *cmse_stub_template; 6200 struct elf32_arm_stub_hash_entry *stub_entry; 6201 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created; 6202 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset; 6203 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0; 6204 6205 /* No input secure gateway import library. */ 6206 if (!htab->in_implib_bfd) 6207 return TRUE; 6208 6209 in_implib_bfd = htab->in_implib_bfd; 6210 if (!htab->cmse_implib) 6211 { 6212 _bfd_error_handler (_("%pB: --in-implib only supported for Secure " 6213 "Gateway import libraries"), in_implib_bfd); 6214 return FALSE; 6215 } 6216 6217 /* Get symbol table size. */ 6218 symsize = bfd_get_symtab_upper_bound (in_implib_bfd); 6219 if (symsize < 0) 6220 return FALSE; 6221 6222 /* Read in the input secure gateway import library's symbol table. */ 6223 sympp = (asymbol **) bfd_malloc (symsize); 6224 if (sympp == NULL) 6225 return FALSE; 6226 6227 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp); 6228 if (symcount < 0) 6229 { 6230 ret = FALSE; 6231 goto free_sym_buf; 6232 } 6233 6234 htab->new_cmse_stub_offset = 0; 6235 cmse_stub_size = 6236 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only, 6237 &cmse_stub_template, 6238 &cmse_stub_template_size); 6239 out_sec_name = 6240 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only); 6241 stub_out_sec = 6242 bfd_get_section_by_name (htab->obfd, out_sec_name); 6243 if (stub_out_sec != NULL) 6244 cmse_stub_sec_vma = stub_out_sec->vma; 6245 6246 /* Set addresses of veneers mentionned in input secure gateway import 6247 library's symbol table. */ 6248 for (i = 0; i < symcount; i++) 6249 { 6250 sym = sympp[i]; 6251 flags = sym->flags; 6252 sym_name = (char *) bfd_asymbol_name (sym); 6253 intsym = &((elf_symbol_type *) sym)->internal_elf_sym; 6254 6255 if (sym->section != bfd_abs_section_ptr 6256 || !(flags & (BSF_GLOBAL | BSF_WEAK)) 6257 || (flags & BSF_FUNCTION) != BSF_FUNCTION 6258 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal) 6259 != ST_BRANCH_TO_THUMB)) 6260 { 6261 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; " 6262 "symbol should be absolute, global and " 6263 "refer to Thumb functions"), 6264 in_implib_bfd, sym_name); 6265 ret = FALSE; 6266 continue; 6267 } 6268 6269 veneer_value = bfd_asymbol_value (sym); 6270 stub_offset = veneer_value - cmse_stub_sec_vma; 6271 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name, 6272 FALSE, FALSE); 6273 hash = (struct elf32_arm_link_hash_entry *) 6274 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE); 6275 6276 /* Stub entry should have been created by cmse_scan or the symbol be of 6277 a secure function callable from non secure code. */ 6278 if (!stub_entry && !hash) 6279 { 6280 bfd_boolean new_stub; 6281 6282 _bfd_error_handler 6283 (_("entry function `%s' disappeared from secure code"), sym_name); 6284 hash = (struct elf32_arm_link_hash_entry *) 6285 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE); 6286 stub_entry 6287 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only, 6288 NULL, NULL, bfd_abs_section_ptr, hash, 6289 sym_name, veneer_value, 6290 ST_BRANCH_TO_THUMB, &new_stub); 6291 if (stub_entry == NULL) 6292 ret = FALSE; 6293 else 6294 { 6295 BFD_ASSERT (new_stub); 6296 new_cmse_stubs_created++; 6297 (*cmse_stub_created)++; 6298 } 6299 stub_entry->stub_template_size = stub_entry->stub_size = 0; 6300 stub_entry->stub_offset = stub_offset; 6301 } 6302 /* Symbol found is not callable from non secure code. */ 6303 else if (!stub_entry) 6304 { 6305 if (!cmse_entry_fct_p (hash)) 6306 { 6307 _bfd_error_handler (_("`%s' refers to a non entry function"), 6308 sym_name); 6309 ret = FALSE; 6310 } 6311 continue; 6312 } 6313 else 6314 { 6315 /* Only stubs for SG veneers should have been created. */ 6316 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only); 6317 6318 /* Check visibility hasn't changed. */ 6319 if (!!(flags & BSF_GLOBAL) 6320 != (hash->root.root.type == bfd_link_hash_defined)) 6321 _bfd_error_handler 6322 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd, 6323 sym_name); 6324 6325 stub_entry->stub_offset = stub_offset; 6326 } 6327 6328 /* Size should match that of a SG veneer. */ 6329 if (intsym->st_size != cmse_stub_size) 6330 { 6331 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"), 6332 in_implib_bfd, sym_name); 6333 ret = FALSE; 6334 } 6335 6336 /* Previous veneer address is before current SG veneer section. */ 6337 if (veneer_value < cmse_stub_sec_vma) 6338 { 6339 /* Avoid offset underflow. */ 6340 if (stub_entry) 6341 stub_entry->stub_offset = 0; 6342 stub_offset = 0; 6343 ret = FALSE; 6344 } 6345 6346 /* Complain if stub offset not a multiple of stub size. */ 6347 if (stub_offset % cmse_stub_size) 6348 { 6349 _bfd_error_handler 6350 (_("offset of veneer for entry function `%s' not a multiple of " 6351 "its size"), sym_name); 6352 ret = FALSE; 6353 } 6354 6355 if (!ret) 6356 continue; 6357 6358 new_cmse_stubs_created--; 6359 if (veneer_value < cmse_stub_array_start) 6360 cmse_stub_array_start = veneer_value; 6361 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7); 6362 if (next_cmse_stub_offset > htab->new_cmse_stub_offset) 6363 htab->new_cmse_stub_offset = next_cmse_stub_offset; 6364 } 6365 6366 if (!info->out_implib_bfd && new_cmse_stubs_created != 0) 6367 { 6368 BFD_ASSERT (new_cmse_stubs_created > 0); 6369 _bfd_error_handler 6370 (_("new entry function(s) introduced but no output import library " 6371 "specified:")); 6372 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info); 6373 } 6374 6375 if (cmse_stub_array_start != cmse_stub_sec_vma) 6376 { 6377 _bfd_error_handler 6378 (_("start address of `%s' is different from previous link"), 6379 out_sec_name); 6380 ret = FALSE; 6381 } 6382 6383 free_sym_buf: 6384 free (sympp); 6385 return ret; 6386 } 6387 6388 /* Determine and set the size of the stub section for a final link. 6389 6390 The basic idea here is to examine all the relocations looking for 6391 PC-relative calls to a target that is unreachable with a "bl" 6392 instruction. */ 6393 6394 bfd_boolean 6395 elf32_arm_size_stubs (bfd *output_bfd, 6396 bfd *stub_bfd, 6397 struct bfd_link_info *info, 6398 bfd_signed_vma group_size, 6399 asection * (*add_stub_section) (const char *, asection *, 6400 asection *, 6401 unsigned int), 6402 void (*layout_sections_again) (void)) 6403 { 6404 bfd_boolean ret = TRUE; 6405 obj_attribute *out_attr; 6406 int cmse_stub_created = 0; 6407 bfd_size_type stub_group_size; 6408 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE; 6409 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 6410 struct a8_erratum_fix *a8_fixes = NULL; 6411 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10; 6412 struct a8_erratum_reloc *a8_relocs = NULL; 6413 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i; 6414 6415 if (htab == NULL) 6416 return FALSE; 6417 6418 if (htab->fix_cortex_a8) 6419 { 6420 a8_fixes = (struct a8_erratum_fix *) 6421 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size); 6422 a8_relocs = (struct a8_erratum_reloc *) 6423 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size); 6424 } 6425 6426 /* Propagate mach to stub bfd, because it may not have been 6427 finalized when we created stub_bfd. */ 6428 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd), 6429 bfd_get_mach (output_bfd)); 6430 6431 /* Stash our params away. */ 6432 htab->stub_bfd = stub_bfd; 6433 htab->add_stub_section = add_stub_section; 6434 htab->layout_sections_again = layout_sections_again; 6435 stubs_always_after_branch = group_size < 0; 6436 6437 out_attr = elf_known_obj_attributes_proc (output_bfd); 6438 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M'; 6439 6440 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page 6441 as the first half of a 32-bit branch straddling two 4K pages. This is a 6442 crude way of enforcing that. */ 6443 if (htab->fix_cortex_a8) 6444 stubs_always_after_branch = 1; 6445 6446 if (group_size < 0) 6447 stub_group_size = -group_size; 6448 else 6449 stub_group_size = group_size; 6450 6451 if (stub_group_size == 1) 6452 { 6453 /* Default values. */ 6454 /* Thumb branch range is +-4MB has to be used as the default 6455 maximum size (a given section can contain both ARM and Thumb 6456 code, so the worst case has to be taken into account). 6457 6458 This value is 24K less than that, which allows for 2025 6459 12-byte stubs. If we exceed that, then we will fail to link. 6460 The user will have to relink with an explicit group size 6461 option. */ 6462 stub_group_size = 4170000; 6463 } 6464 6465 group_sections (htab, stub_group_size, stubs_always_after_branch); 6466 6467 /* If we're applying the cortex A8 fix, we need to determine the 6468 program header size now, because we cannot change it later -- 6469 that could alter section placements. Notice the A8 erratum fix 6470 ends up requiring the section addresses to remain unchanged 6471 modulo the page size. That's something we cannot represent 6472 inside BFD, and we don't want to force the section alignment to 6473 be the page size. */ 6474 if (htab->fix_cortex_a8) 6475 (*htab->layout_sections_again) (); 6476 6477 while (1) 6478 { 6479 bfd *input_bfd; 6480 unsigned int bfd_indx; 6481 asection *stub_sec; 6482 enum elf32_arm_stub_type stub_type; 6483 bfd_boolean stub_changed = FALSE; 6484 unsigned prev_num_a8_fixes = num_a8_fixes; 6485 6486 num_a8_fixes = 0; 6487 for (input_bfd = info->input_bfds, bfd_indx = 0; 6488 input_bfd != NULL; 6489 input_bfd = input_bfd->link.next, bfd_indx++) 6490 { 6491 Elf_Internal_Shdr *symtab_hdr; 6492 asection *section; 6493 Elf_Internal_Sym *local_syms = NULL; 6494 6495 if (!is_arm_elf (input_bfd)) 6496 continue; 6497 if ((input_bfd->flags & DYNAMIC) != 0 6498 && (elf_sym_hashes (input_bfd) == NULL 6499 || (elf_dyn_lib_class (input_bfd) & DYN_AS_NEEDED) != 0)) 6500 continue; 6501 6502 num_a8_relocs = 0; 6503 6504 /* We'll need the symbol table in a second. */ 6505 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 6506 if (symtab_hdr->sh_info == 0) 6507 continue; 6508 6509 /* Limit scan of symbols to object file whose profile is 6510 Microcontroller to not hinder performance in the general case. */ 6511 if (m_profile && first_veneer_scan) 6512 { 6513 struct elf_link_hash_entry **sym_hashes; 6514 6515 sym_hashes = elf_sym_hashes (input_bfd); 6516 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes, 6517 &cmse_stub_created)) 6518 goto error_ret_free_local; 6519 6520 if (cmse_stub_created != 0) 6521 stub_changed = TRUE; 6522 } 6523 6524 /* Walk over each section attached to the input bfd. */ 6525 for (section = input_bfd->sections; 6526 section != NULL; 6527 section = section->next) 6528 { 6529 Elf_Internal_Rela *internal_relocs, *irelaend, *irela; 6530 6531 /* If there aren't any relocs, then there's nothing more 6532 to do. */ 6533 if ((section->flags & SEC_RELOC) == 0 6534 || section->reloc_count == 0 6535 || (section->flags & SEC_CODE) == 0) 6536 continue; 6537 6538 /* If this section is a link-once section that will be 6539 discarded, then don't create any stubs. */ 6540 if (section->output_section == NULL 6541 || section->output_section->owner != output_bfd) 6542 continue; 6543 6544 /* Get the relocs. */ 6545 internal_relocs 6546 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, 6547 NULL, info->keep_memory); 6548 if (internal_relocs == NULL) 6549 goto error_ret_free_local; 6550 6551 /* Now examine each relocation. */ 6552 irela = internal_relocs; 6553 irelaend = irela + section->reloc_count; 6554 for (; irela < irelaend; irela++) 6555 { 6556 unsigned int r_type, r_indx; 6557 asection *sym_sec; 6558 bfd_vma sym_value; 6559 bfd_vma destination; 6560 struct elf32_arm_link_hash_entry *hash; 6561 const char *sym_name; 6562 unsigned char st_type; 6563 enum arm_st_branch_type branch_type; 6564 bfd_boolean created_stub = FALSE; 6565 6566 r_type = ELF32_R_TYPE (irela->r_info); 6567 r_indx = ELF32_R_SYM (irela->r_info); 6568 6569 if (r_type >= (unsigned int) R_ARM_max) 6570 { 6571 bfd_set_error (bfd_error_bad_value); 6572 error_ret_free_internal: 6573 if (elf_section_data (section)->relocs == NULL) 6574 free (internal_relocs); 6575 /* Fall through. */ 6576 error_ret_free_local: 6577 if (symtab_hdr->contents != (unsigned char *) local_syms) 6578 free (local_syms); 6579 return FALSE; 6580 } 6581 6582 hash = NULL; 6583 if (r_indx >= symtab_hdr->sh_info) 6584 hash = elf32_arm_hash_entry 6585 (elf_sym_hashes (input_bfd) 6586 [r_indx - symtab_hdr->sh_info]); 6587 6588 /* Only look for stubs on branch instructions, or 6589 non-relaxed TLSCALL */ 6590 if ((r_type != (unsigned int) R_ARM_CALL) 6591 && (r_type != (unsigned int) R_ARM_THM_CALL) 6592 && (r_type != (unsigned int) R_ARM_JUMP24) 6593 && (r_type != (unsigned int) R_ARM_THM_JUMP19) 6594 && (r_type != (unsigned int) R_ARM_THM_XPC22) 6595 && (r_type != (unsigned int) R_ARM_THM_JUMP24) 6596 && (r_type != (unsigned int) R_ARM_PLT32) 6597 && !((r_type == (unsigned int) R_ARM_TLS_CALL 6598 || r_type == (unsigned int) R_ARM_THM_TLS_CALL) 6599 && r_type == elf32_arm_tls_transition 6600 (info, r_type, &hash->root) 6601 && ((hash ? hash->tls_type 6602 : (elf32_arm_local_got_tls_type 6603 (input_bfd)[r_indx])) 6604 & GOT_TLS_GDESC) != 0)) 6605 continue; 6606 6607 /* Now determine the call target, its name, value, 6608 section. */ 6609 sym_sec = NULL; 6610 sym_value = 0; 6611 destination = 0; 6612 sym_name = NULL; 6613 6614 if (r_type == (unsigned int) R_ARM_TLS_CALL 6615 || r_type == (unsigned int) R_ARM_THM_TLS_CALL) 6616 { 6617 /* A non-relaxed TLS call. The target is the 6618 plt-resident trampoline and nothing to do 6619 with the symbol. */ 6620 BFD_ASSERT (htab->tls_trampoline > 0); 6621 sym_sec = htab->root.splt; 6622 sym_value = htab->tls_trampoline; 6623 hash = 0; 6624 st_type = STT_FUNC; 6625 branch_type = ST_BRANCH_TO_ARM; 6626 } 6627 else if (!hash) 6628 { 6629 /* It's a local symbol. */ 6630 Elf_Internal_Sym *sym; 6631 6632 if (local_syms == NULL) 6633 { 6634 local_syms 6635 = (Elf_Internal_Sym *) symtab_hdr->contents; 6636 if (local_syms == NULL) 6637 local_syms 6638 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, 6639 symtab_hdr->sh_info, 0, 6640 NULL, NULL, NULL); 6641 if (local_syms == NULL) 6642 goto error_ret_free_internal; 6643 } 6644 6645 sym = local_syms + r_indx; 6646 if (sym->st_shndx == SHN_UNDEF) 6647 sym_sec = bfd_und_section_ptr; 6648 else if (sym->st_shndx == SHN_ABS) 6649 sym_sec = bfd_abs_section_ptr; 6650 else if (sym->st_shndx == SHN_COMMON) 6651 sym_sec = bfd_com_section_ptr; 6652 else 6653 sym_sec = 6654 bfd_section_from_elf_index (input_bfd, sym->st_shndx); 6655 6656 if (!sym_sec) 6657 /* This is an undefined symbol. It can never 6658 be resolved. */ 6659 continue; 6660 6661 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) 6662 sym_value = sym->st_value; 6663 destination = (sym_value + irela->r_addend 6664 + sym_sec->output_offset 6665 + sym_sec->output_section->vma); 6666 st_type = ELF_ST_TYPE (sym->st_info); 6667 branch_type = 6668 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal); 6669 sym_name 6670 = bfd_elf_string_from_elf_section (input_bfd, 6671 symtab_hdr->sh_link, 6672 sym->st_name); 6673 } 6674 else 6675 { 6676 /* It's an external symbol. */ 6677 while (hash->root.root.type == bfd_link_hash_indirect 6678 || hash->root.root.type == bfd_link_hash_warning) 6679 hash = ((struct elf32_arm_link_hash_entry *) 6680 hash->root.root.u.i.link); 6681 6682 if (hash->root.root.type == bfd_link_hash_defined 6683 || hash->root.root.type == bfd_link_hash_defweak) 6684 { 6685 sym_sec = hash->root.root.u.def.section; 6686 sym_value = hash->root.root.u.def.value; 6687 6688 struct elf32_arm_link_hash_table *globals = 6689 elf32_arm_hash_table (info); 6690 6691 /* For a destination in a shared library, 6692 use the PLT stub as target address to 6693 decide whether a branch stub is 6694 needed. */ 6695 if (globals != NULL 6696 && globals->root.splt != NULL 6697 && hash != NULL 6698 && hash->root.plt.offset != (bfd_vma) -1) 6699 { 6700 sym_sec = globals->root.splt; 6701 sym_value = hash->root.plt.offset; 6702 if (sym_sec->output_section != NULL) 6703 destination = (sym_value 6704 + sym_sec->output_offset 6705 + sym_sec->output_section->vma); 6706 } 6707 else if (sym_sec->output_section != NULL) 6708 destination = (sym_value + irela->r_addend 6709 + sym_sec->output_offset 6710 + sym_sec->output_section->vma); 6711 } 6712 else if ((hash->root.root.type == bfd_link_hash_undefined) 6713 || (hash->root.root.type == bfd_link_hash_undefweak)) 6714 { 6715 /* For a shared library, use the PLT stub as 6716 target address to decide whether a long 6717 branch stub is needed. 6718 For absolute code, they cannot be handled. */ 6719 struct elf32_arm_link_hash_table *globals = 6720 elf32_arm_hash_table (info); 6721 6722 if (globals != NULL 6723 && globals->root.splt != NULL 6724 && hash != NULL 6725 && hash->root.plt.offset != (bfd_vma) -1) 6726 { 6727 sym_sec = globals->root.splt; 6728 sym_value = hash->root.plt.offset; 6729 if (sym_sec->output_section != NULL) 6730 destination = (sym_value 6731 + sym_sec->output_offset 6732 + sym_sec->output_section->vma); 6733 } 6734 else 6735 continue; 6736 } 6737 else 6738 { 6739 bfd_set_error (bfd_error_bad_value); 6740 goto error_ret_free_internal; 6741 } 6742 st_type = hash->root.type; 6743 branch_type = 6744 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal); 6745 sym_name = hash->root.root.root.string; 6746 } 6747 6748 do 6749 { 6750 bfd_boolean new_stub; 6751 struct elf32_arm_stub_hash_entry *stub_entry; 6752 6753 /* Determine what (if any) linker stub is needed. */ 6754 stub_type = arm_type_of_stub (info, section, irela, 6755 st_type, &branch_type, 6756 hash, destination, sym_sec, 6757 input_bfd, sym_name); 6758 if (stub_type == arm_stub_none) 6759 break; 6760 6761 /* We've either created a stub for this reloc already, 6762 or we are about to. */ 6763 stub_entry = 6764 elf32_arm_create_stub (htab, stub_type, section, irela, 6765 sym_sec, hash, 6766 (char *) sym_name, sym_value, 6767 branch_type, &new_stub); 6768 6769 created_stub = stub_entry != NULL; 6770 if (!created_stub) 6771 goto error_ret_free_internal; 6772 else if (!new_stub) 6773 break; 6774 else 6775 stub_changed = TRUE; 6776 } 6777 while (0); 6778 6779 /* Look for relocations which might trigger Cortex-A8 6780 erratum. */ 6781 if (htab->fix_cortex_a8 6782 && (r_type == (unsigned int) R_ARM_THM_JUMP24 6783 || r_type == (unsigned int) R_ARM_THM_JUMP19 6784 || r_type == (unsigned int) R_ARM_THM_CALL 6785 || r_type == (unsigned int) R_ARM_THM_XPC22)) 6786 { 6787 bfd_vma from = section->output_section->vma 6788 + section->output_offset 6789 + irela->r_offset; 6790 6791 if ((from & 0xfff) == 0xffe) 6792 { 6793 /* Found a candidate. Note we haven't checked the 6794 destination is within 4K here: if we do so (and 6795 don't create an entry in a8_relocs) we can't tell 6796 that a branch should have been relocated when 6797 scanning later. */ 6798 if (num_a8_relocs == a8_reloc_table_size) 6799 { 6800 a8_reloc_table_size *= 2; 6801 a8_relocs = (struct a8_erratum_reloc *) 6802 bfd_realloc (a8_relocs, 6803 sizeof (struct a8_erratum_reloc) 6804 * a8_reloc_table_size); 6805 } 6806 6807 a8_relocs[num_a8_relocs].from = from; 6808 a8_relocs[num_a8_relocs].destination = destination; 6809 a8_relocs[num_a8_relocs].r_type = r_type; 6810 a8_relocs[num_a8_relocs].branch_type = branch_type; 6811 a8_relocs[num_a8_relocs].sym_name = sym_name; 6812 a8_relocs[num_a8_relocs].non_a8_stub = created_stub; 6813 a8_relocs[num_a8_relocs].hash = hash; 6814 6815 num_a8_relocs++; 6816 } 6817 } 6818 } 6819 6820 /* We're done with the internal relocs, free them. */ 6821 if (elf_section_data (section)->relocs == NULL) 6822 free (internal_relocs); 6823 } 6824 6825 if (htab->fix_cortex_a8) 6826 { 6827 /* Sort relocs which might apply to Cortex-A8 erratum. */ 6828 qsort (a8_relocs, num_a8_relocs, 6829 sizeof (struct a8_erratum_reloc), 6830 &a8_reloc_compare); 6831 6832 /* Scan for branches which might trigger Cortex-A8 erratum. */ 6833 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes, 6834 &num_a8_fixes, &a8_fix_table_size, 6835 a8_relocs, num_a8_relocs, 6836 prev_num_a8_fixes, &stub_changed) 6837 != 0) 6838 goto error_ret_free_local; 6839 } 6840 6841 if (local_syms != NULL 6842 && symtab_hdr->contents != (unsigned char *) local_syms) 6843 { 6844 if (!info->keep_memory) 6845 free (local_syms); 6846 else 6847 symtab_hdr->contents = (unsigned char *) local_syms; 6848 } 6849 } 6850 6851 if (first_veneer_scan 6852 && !set_cmse_veneer_addr_from_implib (info, htab, 6853 &cmse_stub_created)) 6854 ret = FALSE; 6855 6856 if (prev_num_a8_fixes != num_a8_fixes) 6857 stub_changed = TRUE; 6858 6859 if (!stub_changed) 6860 break; 6861 6862 /* OK, we've added some stubs. Find out the new size of the 6863 stub sections. */ 6864 for (stub_sec = htab->stub_bfd->sections; 6865 stub_sec != NULL; 6866 stub_sec = stub_sec->next) 6867 { 6868 /* Ignore non-stub sections. */ 6869 if (!strstr (stub_sec->name, STUB_SUFFIX)) 6870 continue; 6871 6872 stub_sec->size = 0; 6873 } 6874 6875 /* Add new SG veneers after those already in the input import 6876 library. */ 6877 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; 6878 stub_type++) 6879 { 6880 bfd_vma *start_offset_p; 6881 asection **stub_sec_p; 6882 6883 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type); 6884 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type); 6885 if (start_offset_p == NULL) 6886 continue; 6887 6888 BFD_ASSERT (stub_sec_p != NULL); 6889 if (*stub_sec_p != NULL) 6890 (*stub_sec_p)->size = *start_offset_p; 6891 } 6892 6893 /* Compute stub section size, considering padding. */ 6894 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab); 6895 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; 6896 stub_type++) 6897 { 6898 int size, padding; 6899 asection **stub_sec_p; 6900 6901 padding = arm_dedicated_stub_section_padding (stub_type); 6902 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type); 6903 /* Skip if no stub input section or no stub section padding 6904 required. */ 6905 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0) 6906 continue; 6907 /* Stub section padding required but no dedicated section. */ 6908 BFD_ASSERT (stub_sec_p); 6909 6910 size = (*stub_sec_p)->size; 6911 size = (size + padding - 1) & ~(padding - 1); 6912 (*stub_sec_p)->size = size; 6913 } 6914 6915 /* Add Cortex-A8 erratum veneers to stub section sizes too. */ 6916 if (htab->fix_cortex_a8) 6917 for (i = 0; i < num_a8_fixes; i++) 6918 { 6919 stub_sec = elf32_arm_create_or_find_stub_sec (NULL, 6920 a8_fixes[i].section, htab, a8_fixes[i].stub_type); 6921 6922 if (stub_sec == NULL) 6923 return FALSE; 6924 6925 stub_sec->size 6926 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL, 6927 NULL); 6928 } 6929 6930 6931 /* Ask the linker to do its stuff. */ 6932 (*htab->layout_sections_again) (); 6933 first_veneer_scan = FALSE; 6934 } 6935 6936 /* Add stubs for Cortex-A8 erratum fixes now. */ 6937 if (htab->fix_cortex_a8) 6938 { 6939 for (i = 0; i < num_a8_fixes; i++) 6940 { 6941 struct elf32_arm_stub_hash_entry *stub_entry; 6942 char *stub_name = a8_fixes[i].stub_name; 6943 asection *section = a8_fixes[i].section; 6944 unsigned int section_id = a8_fixes[i].section->id; 6945 asection *link_sec = htab->stub_group[section_id].link_sec; 6946 asection *stub_sec = htab->stub_group[section_id].stub_sec; 6947 const insn_sequence *template_sequence; 6948 int template_size, size = 0; 6949 6950 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, 6951 TRUE, FALSE); 6952 if (stub_entry == NULL) 6953 { 6954 _bfd_error_handler (_("%pB: cannot create stub entry %s"), 6955 section->owner, stub_name); 6956 return FALSE; 6957 } 6958 6959 stub_entry->stub_sec = stub_sec; 6960 stub_entry->stub_offset = (bfd_vma) -1; 6961 stub_entry->id_sec = link_sec; 6962 stub_entry->stub_type = a8_fixes[i].stub_type; 6963 stub_entry->source_value = a8_fixes[i].offset; 6964 stub_entry->target_section = a8_fixes[i].section; 6965 stub_entry->target_value = a8_fixes[i].target_offset; 6966 stub_entry->orig_insn = a8_fixes[i].orig_insn; 6967 stub_entry->branch_type = a8_fixes[i].branch_type; 6968 6969 size = find_stub_size_and_template (a8_fixes[i].stub_type, 6970 &template_sequence, 6971 &template_size); 6972 6973 stub_entry->stub_size = size; 6974 stub_entry->stub_template = template_sequence; 6975 stub_entry->stub_template_size = template_size; 6976 } 6977 6978 /* Stash the Cortex-A8 erratum fix array for use later in 6979 elf32_arm_write_section(). */ 6980 htab->a8_erratum_fixes = a8_fixes; 6981 htab->num_a8_erratum_fixes = num_a8_fixes; 6982 } 6983 else 6984 { 6985 htab->a8_erratum_fixes = NULL; 6986 htab->num_a8_erratum_fixes = 0; 6987 } 6988 return ret; 6989 } 6990 6991 /* Build all the stubs associated with the current output file. The 6992 stubs are kept in a hash table attached to the main linker hash 6993 table. We also set up the .plt entries for statically linked PIC 6994 functions here. This function is called via arm_elf_finish in the 6995 linker. */ 6996 6997 bfd_boolean 6998 elf32_arm_build_stubs (struct bfd_link_info *info) 6999 { 7000 asection *stub_sec; 7001 struct bfd_hash_table *table; 7002 enum elf32_arm_stub_type stub_type; 7003 struct elf32_arm_link_hash_table *htab; 7004 7005 htab = elf32_arm_hash_table (info); 7006 if (htab == NULL) 7007 return FALSE; 7008 7009 for (stub_sec = htab->stub_bfd->sections; 7010 stub_sec != NULL; 7011 stub_sec = stub_sec->next) 7012 { 7013 bfd_size_type size; 7014 7015 /* Ignore non-stub sections. */ 7016 if (!strstr (stub_sec->name, STUB_SUFFIX)) 7017 continue; 7018 7019 /* Allocate memory to hold the linker stubs. Zeroing the stub sections 7020 must at least be done for stub section requiring padding and for SG 7021 veneers to ensure that a non secure code branching to a removed SG 7022 veneer causes an error. */ 7023 size = stub_sec->size; 7024 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size); 7025 if (stub_sec->contents == NULL && size != 0) 7026 return FALSE; 7027 7028 stub_sec->size = 0; 7029 } 7030 7031 /* Add new SG veneers after those already in the input import library. */ 7032 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++) 7033 { 7034 bfd_vma *start_offset_p; 7035 asection **stub_sec_p; 7036 7037 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type); 7038 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type); 7039 if (start_offset_p == NULL) 7040 continue; 7041 7042 BFD_ASSERT (stub_sec_p != NULL); 7043 if (*stub_sec_p != NULL) 7044 (*stub_sec_p)->size = *start_offset_p; 7045 } 7046 7047 /* Build the stubs as directed by the stub hash table. */ 7048 table = &htab->stub_hash_table; 7049 bfd_hash_traverse (table, arm_build_one_stub, info); 7050 if (htab->fix_cortex_a8) 7051 { 7052 /* Place the cortex a8 stubs last. */ 7053 htab->fix_cortex_a8 = -1; 7054 bfd_hash_traverse (table, arm_build_one_stub, info); 7055 } 7056 7057 return TRUE; 7058 } 7059 7060 /* Locate the Thumb encoded calling stub for NAME. */ 7061 7062 static struct elf_link_hash_entry * 7063 find_thumb_glue (struct bfd_link_info *link_info, 7064 const char *name, 7065 char **error_message) 7066 { 7067 char *tmp_name; 7068 struct elf_link_hash_entry *hash; 7069 struct elf32_arm_link_hash_table *hash_table; 7070 7071 /* We need a pointer to the armelf specific hash table. */ 7072 hash_table = elf32_arm_hash_table (link_info); 7073 if (hash_table == NULL) 7074 return NULL; 7075 7076 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name) 7077 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1); 7078 7079 BFD_ASSERT (tmp_name); 7080 7081 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name); 7082 7083 hash = elf_link_hash_lookup 7084 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE); 7085 7086 if (hash == NULL 7087 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"), 7088 "Thumb", tmp_name, name) == -1) 7089 *error_message = (char *) bfd_errmsg (bfd_error_system_call); 7090 7091 free (tmp_name); 7092 7093 return hash; 7094 } 7095 7096 /* Locate the ARM encoded calling stub for NAME. */ 7097 7098 static struct elf_link_hash_entry * 7099 find_arm_glue (struct bfd_link_info *link_info, 7100 const char *name, 7101 char **error_message) 7102 { 7103 char *tmp_name; 7104 struct elf_link_hash_entry *myh; 7105 struct elf32_arm_link_hash_table *hash_table; 7106 7107 /* We need a pointer to the elfarm specific hash table. */ 7108 hash_table = elf32_arm_hash_table (link_info); 7109 if (hash_table == NULL) 7110 return NULL; 7111 7112 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name) 7113 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1); 7114 BFD_ASSERT (tmp_name); 7115 7116 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name); 7117 7118 myh = elf_link_hash_lookup 7119 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE); 7120 7121 if (myh == NULL 7122 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"), 7123 "ARM", tmp_name, name) == -1) 7124 *error_message = (char *) bfd_errmsg (bfd_error_system_call); 7125 7126 free (tmp_name); 7127 7128 return myh; 7129 } 7130 7131 /* ARM->Thumb glue (static images): 7132 7133 .arm 7134 __func_from_arm: 7135 ldr r12, __func_addr 7136 bx r12 7137 __func_addr: 7138 .word func @ behave as if you saw a ARM_32 reloc. 7139 7140 (v5t static images) 7141 .arm 7142 __func_from_arm: 7143 ldr pc, __func_addr 7144 __func_addr: 7145 .word func @ behave as if you saw a ARM_32 reloc. 7146 7147 (relocatable images) 7148 .arm 7149 __func_from_arm: 7150 ldr r12, __func_offset 7151 add r12, r12, pc 7152 bx r12 7153 __func_offset: 7154 .word func - . */ 7155 7156 #define ARM2THUMB_STATIC_GLUE_SIZE 12 7157 static const insn32 a2t1_ldr_insn = 0xe59fc000; 7158 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c; 7159 static const insn32 a2t3_func_addr_insn = 0x00000001; 7160 7161 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8 7162 static const insn32 a2t1v5_ldr_insn = 0xe51ff004; 7163 static const insn32 a2t2v5_func_addr_insn = 0x00000001; 7164 7165 #define ARM2THUMB_PIC_GLUE_SIZE 16 7166 static const insn32 a2t1p_ldr_insn = 0xe59fc004; 7167 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f; 7168 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c; 7169 7170 /* Thumb->ARM: Thumb->(non-interworking aware) ARM 7171 7172 .thumb .thumb 7173 .align 2 .align 2 7174 __func_from_thumb: __func_from_thumb: 7175 bx pc push {r6, lr} 7176 nop ldr r6, __func_addr 7177 .arm mov lr, pc 7178 b func bx r6 7179 .arm 7180 ;; back_to_thumb 7181 ldmia r13! {r6, lr} 7182 bx lr 7183 __func_addr: 7184 .word func */ 7185 7186 #define THUMB2ARM_GLUE_SIZE 8 7187 static const insn16 t2a1_bx_pc_insn = 0x4778; 7188 static const insn16 t2a2_noop_insn = 0x46c0; 7189 static const insn32 t2a3_b_insn = 0xea000000; 7190 7191 #define VFP11_ERRATUM_VENEER_SIZE 8 7192 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16 7193 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24 7194 7195 #define ARM_BX_VENEER_SIZE 12 7196 static const insn32 armbx1_tst_insn = 0xe3100001; 7197 static const insn32 armbx2_moveq_insn = 0x01a0f000; 7198 static const insn32 armbx3_bx_insn = 0xe12fff10; 7199 7200 #ifndef ELFARM_NABI_C_INCLUDED 7201 static void 7202 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name) 7203 { 7204 asection * s; 7205 bfd_byte * contents; 7206 7207 if (size == 0) 7208 { 7209 /* Do not include empty glue sections in the output. */ 7210 if (abfd != NULL) 7211 { 7212 s = bfd_get_linker_section (abfd, name); 7213 if (s != NULL) 7214 s->flags |= SEC_EXCLUDE; 7215 } 7216 return; 7217 } 7218 7219 BFD_ASSERT (abfd != NULL); 7220 7221 s = bfd_get_linker_section (abfd, name); 7222 BFD_ASSERT (s != NULL); 7223 7224 contents = (bfd_byte *) bfd_zalloc (abfd, size); 7225 7226 BFD_ASSERT (s->size == size); 7227 s->contents = contents; 7228 } 7229 7230 bfd_boolean 7231 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info) 7232 { 7233 struct elf32_arm_link_hash_table * globals; 7234 7235 globals = elf32_arm_hash_table (info); 7236 BFD_ASSERT (globals != NULL); 7237 7238 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 7239 globals->arm_glue_size, 7240 ARM2THUMB_GLUE_SECTION_NAME); 7241 7242 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 7243 globals->thumb_glue_size, 7244 THUMB2ARM_GLUE_SECTION_NAME); 7245 7246 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 7247 globals->vfp11_erratum_glue_size, 7248 VFP11_ERRATUM_VENEER_SECTION_NAME); 7249 7250 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 7251 globals->stm32l4xx_erratum_glue_size, 7252 STM32L4XX_ERRATUM_VENEER_SECTION_NAME); 7253 7254 arm_allocate_glue_section_space (globals->bfd_of_glue_owner, 7255 globals->bx_glue_size, 7256 ARM_BX_GLUE_SECTION_NAME); 7257 7258 return TRUE; 7259 } 7260 7261 /* Allocate space and symbols for calling a Thumb function from Arm mode. 7262 returns the symbol identifying the stub. */ 7263 7264 static struct elf_link_hash_entry * 7265 record_arm_to_thumb_glue (struct bfd_link_info * link_info, 7266 struct elf_link_hash_entry * h) 7267 { 7268 const char * name = h->root.root.string; 7269 asection * s; 7270 char * tmp_name; 7271 struct elf_link_hash_entry * myh; 7272 struct bfd_link_hash_entry * bh; 7273 struct elf32_arm_link_hash_table * globals; 7274 bfd_vma val; 7275 bfd_size_type size; 7276 7277 globals = elf32_arm_hash_table (link_info); 7278 BFD_ASSERT (globals != NULL); 7279 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 7280 7281 s = bfd_get_linker_section 7282 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME); 7283 7284 BFD_ASSERT (s != NULL); 7285 7286 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name) 7287 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1); 7288 BFD_ASSERT (tmp_name); 7289 7290 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name); 7291 7292 myh = elf_link_hash_lookup 7293 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); 7294 7295 if (myh != NULL) 7296 { 7297 /* We've already seen this guy. */ 7298 free (tmp_name); 7299 return myh; 7300 } 7301 7302 /* The only trick here is using hash_table->arm_glue_size as the value. 7303 Even though the section isn't allocated yet, this is where we will be 7304 putting it. The +1 on the value marks that the stub has not been 7305 output yet - not that it is a Thumb function. */ 7306 bh = NULL; 7307 val = globals->arm_glue_size + 1; 7308 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, 7309 tmp_name, BSF_GLOBAL, s, val, 7310 NULL, TRUE, FALSE, &bh); 7311 7312 myh = (struct elf_link_hash_entry *) bh; 7313 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 7314 myh->forced_local = 1; 7315 7316 free (tmp_name); 7317 7318 if (bfd_link_pic (link_info) 7319 || globals->root.is_relocatable_executable 7320 || globals->pic_veneer) 7321 size = ARM2THUMB_PIC_GLUE_SIZE; 7322 else if (globals->use_blx) 7323 size = ARM2THUMB_V5_STATIC_GLUE_SIZE; 7324 else 7325 size = ARM2THUMB_STATIC_GLUE_SIZE; 7326 7327 s->size += size; 7328 globals->arm_glue_size += size; 7329 7330 return myh; 7331 } 7332 7333 /* Allocate space for ARMv4 BX veneers. */ 7334 7335 static void 7336 record_arm_bx_glue (struct bfd_link_info * link_info, int reg) 7337 { 7338 asection * s; 7339 struct elf32_arm_link_hash_table *globals; 7340 char *tmp_name; 7341 struct elf_link_hash_entry *myh; 7342 struct bfd_link_hash_entry *bh; 7343 bfd_vma val; 7344 7345 /* BX PC does not need a veneer. */ 7346 if (reg == 15) 7347 return; 7348 7349 globals = elf32_arm_hash_table (link_info); 7350 BFD_ASSERT (globals != NULL); 7351 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 7352 7353 /* Check if this veneer has already been allocated. */ 7354 if (globals->bx_glue_offset[reg]) 7355 return; 7356 7357 s = bfd_get_linker_section 7358 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME); 7359 7360 BFD_ASSERT (s != NULL); 7361 7362 /* Add symbol for veneer. */ 7363 tmp_name = (char *) 7364 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1); 7365 BFD_ASSERT (tmp_name); 7366 7367 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg); 7368 7369 myh = elf_link_hash_lookup 7370 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE); 7371 7372 BFD_ASSERT (myh == NULL); 7373 7374 bh = NULL; 7375 val = globals->bx_glue_size; 7376 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner, 7377 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val, 7378 NULL, TRUE, FALSE, &bh); 7379 7380 myh = (struct elf_link_hash_entry *) bh; 7381 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 7382 myh->forced_local = 1; 7383 7384 s->size += ARM_BX_VENEER_SIZE; 7385 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2; 7386 globals->bx_glue_size += ARM_BX_VENEER_SIZE; 7387 } 7388 7389 7390 /* Add an entry to the code/data map for section SEC. */ 7391 7392 static void 7393 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma) 7394 { 7395 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec); 7396 unsigned int newidx; 7397 7398 if (sec_data->map == NULL) 7399 { 7400 sec_data->map = (elf32_arm_section_map *) 7401 bfd_malloc (sizeof (elf32_arm_section_map)); 7402 sec_data->mapcount = 0; 7403 sec_data->mapsize = 1; 7404 } 7405 7406 newidx = sec_data->mapcount++; 7407 7408 if (sec_data->mapcount > sec_data->mapsize) 7409 { 7410 sec_data->mapsize *= 2; 7411 sec_data->map = (elf32_arm_section_map *) 7412 bfd_realloc_or_free (sec_data->map, sec_data->mapsize 7413 * sizeof (elf32_arm_section_map)); 7414 } 7415 7416 if (sec_data->map) 7417 { 7418 sec_data->map[newidx].vma = vma; 7419 sec_data->map[newidx].type = type; 7420 } 7421 } 7422 7423 7424 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode 7425 veneers are handled for now. */ 7426 7427 static bfd_vma 7428 record_vfp11_erratum_veneer (struct bfd_link_info *link_info, 7429 elf32_vfp11_erratum_list *branch, 7430 bfd *branch_bfd, 7431 asection *branch_sec, 7432 unsigned int offset) 7433 { 7434 asection *s; 7435 struct elf32_arm_link_hash_table *hash_table; 7436 char *tmp_name; 7437 struct elf_link_hash_entry *myh; 7438 struct bfd_link_hash_entry *bh; 7439 bfd_vma val; 7440 struct _arm_elf_section_data *sec_data; 7441 elf32_vfp11_erratum_list *newerr; 7442 7443 hash_table = elf32_arm_hash_table (link_info); 7444 BFD_ASSERT (hash_table != NULL); 7445 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL); 7446 7447 s = bfd_get_linker_section 7448 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME); 7449 7450 sec_data = elf32_arm_section_data (s); 7451 7452 BFD_ASSERT (s != NULL); 7453 7454 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen 7455 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10); 7456 BFD_ASSERT (tmp_name); 7457 7458 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME, 7459 hash_table->num_vfp11_fixes); 7460 7461 myh = elf_link_hash_lookup 7462 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); 7463 7464 BFD_ASSERT (myh == NULL); 7465 7466 bh = NULL; 7467 val = hash_table->vfp11_erratum_glue_size; 7468 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, 7469 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val, 7470 NULL, TRUE, FALSE, &bh); 7471 7472 myh = (struct elf_link_hash_entry *) bh; 7473 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 7474 myh->forced_local = 1; 7475 7476 /* Link veneer back to calling location. */ 7477 sec_data->erratumcount += 1; 7478 newerr = (elf32_vfp11_erratum_list *) 7479 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list)); 7480 7481 newerr->type = VFP11_ERRATUM_ARM_VENEER; 7482 newerr->vma = -1; 7483 newerr->u.v.branch = branch; 7484 newerr->u.v.id = hash_table->num_vfp11_fixes; 7485 branch->u.b.veneer = newerr; 7486 7487 newerr->next = sec_data->erratumlist; 7488 sec_data->erratumlist = newerr; 7489 7490 /* A symbol for the return from the veneer. */ 7491 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r", 7492 hash_table->num_vfp11_fixes); 7493 7494 myh = elf_link_hash_lookup 7495 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); 7496 7497 if (myh != NULL) 7498 abort (); 7499 7500 bh = NULL; 7501 val = offset + 4; 7502 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL, 7503 branch_sec, val, NULL, TRUE, FALSE, &bh); 7504 7505 myh = (struct elf_link_hash_entry *) bh; 7506 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 7507 myh->forced_local = 1; 7508 7509 free (tmp_name); 7510 7511 /* Generate a mapping symbol for the veneer section, and explicitly add an 7512 entry for that symbol to the code/data map for the section. */ 7513 if (hash_table->vfp11_erratum_glue_size == 0) 7514 { 7515 bh = NULL; 7516 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it 7517 ever requires this erratum fix. */ 7518 _bfd_generic_link_add_one_symbol (link_info, 7519 hash_table->bfd_of_glue_owner, "$a", 7520 BSF_LOCAL, s, 0, NULL, 7521 TRUE, FALSE, &bh); 7522 7523 myh = (struct elf_link_hash_entry *) bh; 7524 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); 7525 myh->forced_local = 1; 7526 7527 /* The elf32_arm_init_maps function only cares about symbols from input 7528 BFDs. We must make a note of this generated mapping symbol 7529 ourselves so that code byteswapping works properly in 7530 elf32_arm_write_section. */ 7531 elf32_arm_section_map_add (s, 'a', 0); 7532 } 7533 7534 s->size += VFP11_ERRATUM_VENEER_SIZE; 7535 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE; 7536 hash_table->num_vfp11_fixes++; 7537 7538 /* The offset of the veneer. */ 7539 return val; 7540 } 7541 7542 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode 7543 veneers need to be handled because used only in Cortex-M. */ 7544 7545 static bfd_vma 7546 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info, 7547 elf32_stm32l4xx_erratum_list *branch, 7548 bfd *branch_bfd, 7549 asection *branch_sec, 7550 unsigned int offset, 7551 bfd_size_type veneer_size) 7552 { 7553 asection *s; 7554 struct elf32_arm_link_hash_table *hash_table; 7555 char *tmp_name; 7556 struct elf_link_hash_entry *myh; 7557 struct bfd_link_hash_entry *bh; 7558 bfd_vma val; 7559 struct _arm_elf_section_data *sec_data; 7560 elf32_stm32l4xx_erratum_list *newerr; 7561 7562 hash_table = elf32_arm_hash_table (link_info); 7563 BFD_ASSERT (hash_table != NULL); 7564 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL); 7565 7566 s = bfd_get_linker_section 7567 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME); 7568 7569 BFD_ASSERT (s != NULL); 7570 7571 sec_data = elf32_arm_section_data (s); 7572 7573 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen 7574 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10); 7575 BFD_ASSERT (tmp_name); 7576 7577 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME, 7578 hash_table->num_stm32l4xx_fixes); 7579 7580 myh = elf_link_hash_lookup 7581 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); 7582 7583 BFD_ASSERT (myh == NULL); 7584 7585 bh = NULL; 7586 val = hash_table->stm32l4xx_erratum_glue_size; 7587 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner, 7588 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val, 7589 NULL, TRUE, FALSE, &bh); 7590 7591 myh = (struct elf_link_hash_entry *) bh; 7592 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 7593 myh->forced_local = 1; 7594 7595 /* Link veneer back to calling location. */ 7596 sec_data->stm32l4xx_erratumcount += 1; 7597 newerr = (elf32_stm32l4xx_erratum_list *) 7598 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list)); 7599 7600 newerr->type = STM32L4XX_ERRATUM_VENEER; 7601 newerr->vma = -1; 7602 newerr->u.v.branch = branch; 7603 newerr->u.v.id = hash_table->num_stm32l4xx_fixes; 7604 branch->u.b.veneer = newerr; 7605 7606 newerr->next = sec_data->stm32l4xx_erratumlist; 7607 sec_data->stm32l4xx_erratumlist = newerr; 7608 7609 /* A symbol for the return from the veneer. */ 7610 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r", 7611 hash_table->num_stm32l4xx_fixes); 7612 7613 myh = elf_link_hash_lookup 7614 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE); 7615 7616 if (myh != NULL) 7617 abort (); 7618 7619 bh = NULL; 7620 val = offset + 4; 7621 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL, 7622 branch_sec, val, NULL, TRUE, FALSE, &bh); 7623 7624 myh = (struct elf_link_hash_entry *) bh; 7625 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 7626 myh->forced_local = 1; 7627 7628 free (tmp_name); 7629 7630 /* Generate a mapping symbol for the veneer section, and explicitly add an 7631 entry for that symbol to the code/data map for the section. */ 7632 if (hash_table->stm32l4xx_erratum_glue_size == 0) 7633 { 7634 bh = NULL; 7635 /* Creates a THUMB symbol since there is no other choice. */ 7636 _bfd_generic_link_add_one_symbol (link_info, 7637 hash_table->bfd_of_glue_owner, "$t", 7638 BSF_LOCAL, s, 0, NULL, 7639 TRUE, FALSE, &bh); 7640 7641 myh = (struct elf_link_hash_entry *) bh; 7642 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); 7643 myh->forced_local = 1; 7644 7645 /* The elf32_arm_init_maps function only cares about symbols from input 7646 BFDs. We must make a note of this generated mapping symbol 7647 ourselves so that code byteswapping works properly in 7648 elf32_arm_write_section. */ 7649 elf32_arm_section_map_add (s, 't', 0); 7650 } 7651 7652 s->size += veneer_size; 7653 hash_table->stm32l4xx_erratum_glue_size += veneer_size; 7654 hash_table->num_stm32l4xx_fixes++; 7655 7656 /* The offset of the veneer. */ 7657 return val; 7658 } 7659 7660 #define ARM_GLUE_SECTION_FLAGS \ 7661 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \ 7662 | SEC_READONLY | SEC_LINKER_CREATED) 7663 7664 /* Create a fake section for use by the ARM backend of the linker. */ 7665 7666 static bfd_boolean 7667 arm_make_glue_section (bfd * abfd, const char * name) 7668 { 7669 asection * sec; 7670 7671 sec = bfd_get_linker_section (abfd, name); 7672 if (sec != NULL) 7673 /* Already made. */ 7674 return TRUE; 7675 7676 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS); 7677 7678 if (sec == NULL 7679 || !bfd_set_section_alignment (sec, 2)) 7680 return FALSE; 7681 7682 /* Set the gc mark to prevent the section from being removed by garbage 7683 collection, despite the fact that no relocs refer to this section. */ 7684 sec->gc_mark = 1; 7685 7686 return TRUE; 7687 } 7688 7689 /* Set size of .plt entries. This function is called from the 7690 linker scripts in ld/emultempl/{armelf}.em. */ 7691 7692 void 7693 bfd_elf32_arm_use_long_plt (void) 7694 { 7695 elf32_arm_use_long_plt_entry = TRUE; 7696 } 7697 7698 /* Add the glue sections to ABFD. This function is called from the 7699 linker scripts in ld/emultempl/{armelf}.em. */ 7700 7701 bfd_boolean 7702 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd, 7703 struct bfd_link_info *info) 7704 { 7705 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info); 7706 bfd_boolean dostm32l4xx = globals 7707 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE; 7708 bfd_boolean addglue; 7709 7710 /* If we are only performing a partial 7711 link do not bother adding the glue. */ 7712 if (bfd_link_relocatable (info)) 7713 return TRUE; 7714 7715 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME) 7716 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME) 7717 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME) 7718 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME); 7719 7720 if (!dostm32l4xx) 7721 return addglue; 7722 7723 return addglue 7724 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME); 7725 } 7726 7727 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This 7728 ensures they are not marked for deletion by 7729 strip_excluded_output_sections () when veneers are going to be created 7730 later. Not doing so would trigger assert on empty section size in 7731 lang_size_sections_1 (). */ 7732 7733 void 7734 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info) 7735 { 7736 enum elf32_arm_stub_type stub_type; 7737 7738 /* If we are only performing a partial 7739 link do not bother adding the glue. */ 7740 if (bfd_link_relocatable (info)) 7741 return; 7742 7743 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++) 7744 { 7745 asection *out_sec; 7746 const char *out_sec_name; 7747 7748 if (!arm_dedicated_stub_output_section_required (stub_type)) 7749 continue; 7750 7751 out_sec_name = arm_dedicated_stub_output_section_name (stub_type); 7752 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name); 7753 if (out_sec != NULL) 7754 out_sec->flags |= SEC_KEEP; 7755 } 7756 } 7757 7758 /* Select a BFD to be used to hold the sections used by the glue code. 7759 This function is called from the linker scripts in ld/emultempl/ 7760 {armelf/pe}.em. */ 7761 7762 bfd_boolean 7763 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info) 7764 { 7765 struct elf32_arm_link_hash_table *globals; 7766 7767 /* If we are only performing a partial link 7768 do not bother getting a bfd to hold the glue. */ 7769 if (bfd_link_relocatable (info)) 7770 return TRUE; 7771 7772 /* Make sure we don't attach the glue sections to a dynamic object. */ 7773 BFD_ASSERT (!(abfd->flags & DYNAMIC)); 7774 7775 globals = elf32_arm_hash_table (info); 7776 BFD_ASSERT (globals != NULL); 7777 7778 if (globals->bfd_of_glue_owner != NULL) 7779 return TRUE; 7780 7781 /* Save the bfd for later use. */ 7782 globals->bfd_of_glue_owner = abfd; 7783 7784 return TRUE; 7785 } 7786 7787 static void 7788 check_use_blx (struct elf32_arm_link_hash_table *globals) 7789 { 7790 int cpu_arch; 7791 7792 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, 7793 Tag_CPU_arch); 7794 7795 if (globals->fix_arm1176) 7796 { 7797 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K) 7798 globals->use_blx = 1; 7799 } 7800 else 7801 { 7802 if (cpu_arch > TAG_CPU_ARCH_V4T) 7803 globals->use_blx = 1; 7804 } 7805 } 7806 7807 bfd_boolean 7808 bfd_elf32_arm_process_before_allocation (bfd *abfd, 7809 struct bfd_link_info *link_info) 7810 { 7811 Elf_Internal_Shdr *symtab_hdr; 7812 Elf_Internal_Rela *internal_relocs = NULL; 7813 Elf_Internal_Rela *irel, *irelend; 7814 bfd_byte *contents = NULL; 7815 7816 asection *sec; 7817 struct elf32_arm_link_hash_table *globals; 7818 7819 /* If we are only performing a partial link do not bother 7820 to construct any glue. */ 7821 if (bfd_link_relocatable (link_info)) 7822 return TRUE; 7823 7824 /* Here we have a bfd that is to be included on the link. We have a 7825 hook to do reloc rummaging, before section sizes are nailed down. */ 7826 globals = elf32_arm_hash_table (link_info); 7827 BFD_ASSERT (globals != NULL); 7828 7829 check_use_blx (globals); 7830 7831 if (globals->byteswap_code && !bfd_big_endian (abfd)) 7832 { 7833 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"), 7834 abfd); 7835 return FALSE; 7836 } 7837 7838 /* PR 5398: If we have not decided to include any loadable sections in 7839 the output then we will not have a glue owner bfd. This is OK, it 7840 just means that there is nothing else for us to do here. */ 7841 if (globals->bfd_of_glue_owner == NULL) 7842 return TRUE; 7843 7844 /* Rummage around all the relocs and map the glue vectors. */ 7845 sec = abfd->sections; 7846 7847 if (sec == NULL) 7848 return TRUE; 7849 7850 for (; sec != NULL; sec = sec->next) 7851 { 7852 if (sec->reloc_count == 0) 7853 continue; 7854 7855 if ((sec->flags & SEC_EXCLUDE) != 0) 7856 continue; 7857 7858 symtab_hdr = & elf_symtab_hdr (abfd); 7859 7860 /* Load the relocs. */ 7861 internal_relocs 7862 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE); 7863 7864 if (internal_relocs == NULL) 7865 goto error_return; 7866 7867 irelend = internal_relocs + sec->reloc_count; 7868 for (irel = internal_relocs; irel < irelend; irel++) 7869 { 7870 long r_type; 7871 unsigned long r_index; 7872 7873 struct elf_link_hash_entry *h; 7874 7875 r_type = ELF32_R_TYPE (irel->r_info); 7876 r_index = ELF32_R_SYM (irel->r_info); 7877 7878 /* These are the only relocation types we care about. */ 7879 if ( r_type != R_ARM_PC24 7880 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2)) 7881 continue; 7882 7883 /* Get the section contents if we haven't done so already. */ 7884 if (contents == NULL) 7885 { 7886 /* Get cached copy if it exists. */ 7887 if (elf_section_data (sec)->this_hdr.contents != NULL) 7888 contents = elf_section_data (sec)->this_hdr.contents; 7889 else 7890 { 7891 /* Go get them off disk. */ 7892 if (! bfd_malloc_and_get_section (abfd, sec, &contents)) 7893 goto error_return; 7894 } 7895 } 7896 7897 if (r_type == R_ARM_V4BX) 7898 { 7899 int reg; 7900 7901 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf; 7902 record_arm_bx_glue (link_info, reg); 7903 continue; 7904 } 7905 7906 /* If the relocation is not against a symbol it cannot concern us. */ 7907 h = NULL; 7908 7909 /* We don't care about local symbols. */ 7910 if (r_index < symtab_hdr->sh_info) 7911 continue; 7912 7913 /* This is an external symbol. */ 7914 r_index -= symtab_hdr->sh_info; 7915 h = (struct elf_link_hash_entry *) 7916 elf_sym_hashes (abfd)[r_index]; 7917 7918 /* If the relocation is against a static symbol it must be within 7919 the current section and so cannot be a cross ARM/Thumb relocation. */ 7920 if (h == NULL) 7921 continue; 7922 7923 /* If the call will go through a PLT entry then we do not need 7924 glue. */ 7925 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1) 7926 continue; 7927 7928 switch (r_type) 7929 { 7930 case R_ARM_PC24: 7931 /* This one is a call from arm code. We need to look up 7932 the target of the call. If it is a thumb target, we 7933 insert glue. */ 7934 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal) 7935 == ST_BRANCH_TO_THUMB) 7936 record_arm_to_thumb_glue (link_info, h); 7937 break; 7938 7939 default: 7940 abort (); 7941 } 7942 } 7943 7944 if (elf_section_data (sec)->this_hdr.contents != contents) 7945 free (contents); 7946 contents = NULL; 7947 7948 if (elf_section_data (sec)->relocs != internal_relocs) 7949 free (internal_relocs); 7950 internal_relocs = NULL; 7951 } 7952 7953 return TRUE; 7954 7955 error_return: 7956 if (elf_section_data (sec)->this_hdr.contents != contents) 7957 free (contents); 7958 if (elf_section_data (sec)->relocs != internal_relocs) 7959 free (internal_relocs); 7960 7961 return FALSE; 7962 } 7963 #endif 7964 7965 7966 /* Initialise maps of ARM/Thumb/data for input BFDs. */ 7967 7968 void 7969 bfd_elf32_arm_init_maps (bfd *abfd) 7970 { 7971 Elf_Internal_Sym *isymbuf; 7972 Elf_Internal_Shdr *hdr; 7973 unsigned int i, localsyms; 7974 7975 /* PR 7093: Make sure that we are dealing with an arm elf binary. */ 7976 if (! is_arm_elf (abfd)) 7977 return; 7978 7979 if ((abfd->flags & DYNAMIC) != 0) 7980 return; 7981 7982 hdr = & elf_symtab_hdr (abfd); 7983 localsyms = hdr->sh_info; 7984 7985 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field 7986 should contain the number of local symbols, which should come before any 7987 global symbols. Mapping symbols are always local. */ 7988 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, 7989 NULL); 7990 7991 /* No internal symbols read? Skip this BFD. */ 7992 if (isymbuf == NULL) 7993 return; 7994 7995 for (i = 0; i < localsyms; i++) 7996 { 7997 Elf_Internal_Sym *isym = &isymbuf[i]; 7998 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 7999 const char *name; 8000 8001 if (sec != NULL 8002 && ELF_ST_BIND (isym->st_info) == STB_LOCAL) 8003 { 8004 name = bfd_elf_string_from_elf_section (abfd, 8005 hdr->sh_link, isym->st_name); 8006 8007 if (bfd_is_arm_special_symbol_name (name, 8008 BFD_ARM_SPECIAL_SYM_TYPE_MAP)) 8009 elf32_arm_section_map_add (sec, name[1], isym->st_value); 8010 } 8011 } 8012 } 8013 8014 8015 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly 8016 say what they wanted. */ 8017 8018 void 8019 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info) 8020 { 8021 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 8022 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd); 8023 8024 if (globals == NULL) 8025 return; 8026 8027 if (globals->fix_cortex_a8 == -1) 8028 { 8029 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */ 8030 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7 8031 && (out_attr[Tag_CPU_arch_profile].i == 'A' 8032 || out_attr[Tag_CPU_arch_profile].i == 0)) 8033 globals->fix_cortex_a8 = 1; 8034 else 8035 globals->fix_cortex_a8 = 0; 8036 } 8037 } 8038 8039 8040 void 8041 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info) 8042 { 8043 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 8044 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd); 8045 8046 if (globals == NULL) 8047 return; 8048 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */ 8049 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7) 8050 { 8051 switch (globals->vfp11_fix) 8052 { 8053 case BFD_ARM_VFP11_FIX_DEFAULT: 8054 case BFD_ARM_VFP11_FIX_NONE: 8055 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE; 8056 break; 8057 8058 default: 8059 /* Give a warning, but do as the user requests anyway. */ 8060 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum " 8061 "workaround is not necessary for target architecture"), obfd); 8062 } 8063 } 8064 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT) 8065 /* For earlier architectures, we might need the workaround, but do not 8066 enable it by default. If users is running with broken hardware, they 8067 must enable the erratum fix explicitly. */ 8068 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE; 8069 } 8070 8071 void 8072 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info) 8073 { 8074 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 8075 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd); 8076 8077 if (globals == NULL) 8078 return; 8079 8080 /* We assume only Cortex-M4 may require the fix. */ 8081 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M 8082 || out_attr[Tag_CPU_arch_profile].i != 'M') 8083 { 8084 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE) 8085 /* Give a warning, but do as the user requests anyway. */ 8086 _bfd_error_handler 8087 (_("%pB: warning: selected STM32L4XX erratum " 8088 "workaround is not necessary for target architecture"), obfd); 8089 } 8090 } 8091 8092 enum bfd_arm_vfp11_pipe 8093 { 8094 VFP11_FMAC, 8095 VFP11_LS, 8096 VFP11_DS, 8097 VFP11_BAD 8098 }; 8099 8100 /* Return a VFP register number. This is encoded as RX:X for single-precision 8101 registers, or X:RX for double-precision registers, where RX is the group of 8102 four bits in the instruction encoding and X is the single extension bit. 8103 RX and X fields are specified using their lowest (starting) bit. The return 8104 value is: 8105 8106 0...31: single-precision registers s0...s31 8107 32...63: double-precision registers d0...d31. 8108 8109 Although X should be zero for VFP11 (encoding d0...d15 only), we might 8110 encounter VFP3 instructions, so we allow the full range for DP registers. */ 8111 8112 static unsigned int 8113 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx, 8114 unsigned int x) 8115 { 8116 if (is_double) 8117 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32; 8118 else 8119 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1); 8120 } 8121 8122 /* Set bits in *WMASK according to a register number REG as encoded by 8123 bfd_arm_vfp11_regno(). Ignore d16-d31. */ 8124 8125 static void 8126 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg) 8127 { 8128 if (reg < 32) 8129 *wmask |= 1 << reg; 8130 else if (reg < 48) 8131 *wmask |= 3 << ((reg - 32) * 2); 8132 } 8133 8134 /* Return TRUE if WMASK overwrites anything in REGS. */ 8135 8136 static bfd_boolean 8137 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs) 8138 { 8139 int i; 8140 8141 for (i = 0; i < numregs; i++) 8142 { 8143 unsigned int reg = regs[i]; 8144 8145 if (reg < 32 && (wmask & (1 << reg)) != 0) 8146 return TRUE; 8147 8148 reg -= 32; 8149 8150 if (reg >= 16) 8151 continue; 8152 8153 if ((wmask & (3 << (reg * 2))) != 0) 8154 return TRUE; 8155 } 8156 8157 return FALSE; 8158 } 8159 8160 /* In this function, we're interested in two things: finding input registers 8161 for VFP data-processing instructions, and finding the set of registers which 8162 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to 8163 hold the written set, so FLDM etc. are easy to deal with (we're only 8164 interested in 32 SP registers or 16 dp registers, due to the VFP version 8165 implemented by the chip in question). DP registers are marked by setting 8166 both SP registers in the write mask). */ 8167 8168 static enum bfd_arm_vfp11_pipe 8169 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs, 8170 int *numregs) 8171 { 8172 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD; 8173 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0; 8174 8175 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */ 8176 { 8177 unsigned int pqrs; 8178 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22); 8179 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5); 8180 8181 pqrs = ((insn & 0x00800000) >> 20) 8182 | ((insn & 0x00300000) >> 19) 8183 | ((insn & 0x00000040) >> 6); 8184 8185 switch (pqrs) 8186 { 8187 case 0: /* fmac[sd]. */ 8188 case 1: /* fnmac[sd]. */ 8189 case 2: /* fmsc[sd]. */ 8190 case 3: /* fnmsc[sd]. */ 8191 vpipe = VFP11_FMAC; 8192 bfd_arm_vfp11_write_mask (destmask, fd); 8193 regs[0] = fd; 8194 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */ 8195 regs[2] = fm; 8196 *numregs = 3; 8197 break; 8198 8199 case 4: /* fmul[sd]. */ 8200 case 5: /* fnmul[sd]. */ 8201 case 6: /* fadd[sd]. */ 8202 case 7: /* fsub[sd]. */ 8203 vpipe = VFP11_FMAC; 8204 goto vfp_binop; 8205 8206 case 8: /* fdiv[sd]. */ 8207 vpipe = VFP11_DS; 8208 vfp_binop: 8209 bfd_arm_vfp11_write_mask (destmask, fd); 8210 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */ 8211 regs[1] = fm; 8212 *numregs = 2; 8213 break; 8214 8215 case 15: /* extended opcode. */ 8216 { 8217 unsigned int extn = ((insn >> 15) & 0x1e) 8218 | ((insn >> 7) & 1); 8219 8220 switch (extn) 8221 { 8222 case 0: /* fcpy[sd]. */ 8223 case 1: /* fabs[sd]. */ 8224 case 2: /* fneg[sd]. */ 8225 case 8: /* fcmp[sd]. */ 8226 case 9: /* fcmpe[sd]. */ 8227 case 10: /* fcmpz[sd]. */ 8228 case 11: /* fcmpez[sd]. */ 8229 case 16: /* fuito[sd]. */ 8230 case 17: /* fsito[sd]. */ 8231 case 24: /* ftoui[sd]. */ 8232 case 25: /* ftouiz[sd]. */ 8233 case 26: /* ftosi[sd]. */ 8234 case 27: /* ftosiz[sd]. */ 8235 /* These instructions will not bounce due to underflow. */ 8236 *numregs = 0; 8237 vpipe = VFP11_FMAC; 8238 break; 8239 8240 case 3: /* fsqrt[sd]. */ 8241 /* fsqrt cannot underflow, but it can (perhaps) overwrite 8242 registers to cause the erratum in previous instructions. */ 8243 bfd_arm_vfp11_write_mask (destmask, fd); 8244 vpipe = VFP11_DS; 8245 break; 8246 8247 case 15: /* fcvt{ds,sd}. */ 8248 { 8249 int rnum = 0; 8250 8251 bfd_arm_vfp11_write_mask (destmask, fd); 8252 8253 /* Only FCVTSD can underflow. */ 8254 if ((insn & 0x100) != 0) 8255 regs[rnum++] = fm; 8256 8257 *numregs = rnum; 8258 8259 vpipe = VFP11_FMAC; 8260 } 8261 break; 8262 8263 default: 8264 return VFP11_BAD; 8265 } 8266 } 8267 break; 8268 8269 default: 8270 return VFP11_BAD; 8271 } 8272 } 8273 /* Two-register transfer. */ 8274 else if ((insn & 0x0fe00ed0) == 0x0c400a10) 8275 { 8276 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5); 8277 8278 if ((insn & 0x100000) == 0) 8279 { 8280 if (is_double) 8281 bfd_arm_vfp11_write_mask (destmask, fm); 8282 else 8283 { 8284 bfd_arm_vfp11_write_mask (destmask, fm); 8285 bfd_arm_vfp11_write_mask (destmask, fm + 1); 8286 } 8287 } 8288 8289 vpipe = VFP11_LS; 8290 } 8291 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */ 8292 { 8293 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22); 8294 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1); 8295 8296 switch (puw) 8297 { 8298 case 0: /* Two-reg transfer. We should catch these above. */ 8299 abort (); 8300 8301 case 2: /* fldm[sdx]. */ 8302 case 3: 8303 case 5: 8304 { 8305 unsigned int i, offset = insn & 0xff; 8306 8307 if (is_double) 8308 offset >>= 1; 8309 8310 for (i = fd; i < fd + offset; i++) 8311 bfd_arm_vfp11_write_mask (destmask, i); 8312 } 8313 break; 8314 8315 case 4: /* fld[sd]. */ 8316 case 6: 8317 bfd_arm_vfp11_write_mask (destmask, fd); 8318 break; 8319 8320 default: 8321 return VFP11_BAD; 8322 } 8323 8324 vpipe = VFP11_LS; 8325 } 8326 /* Single-register transfer. Note L==0. */ 8327 else if ((insn & 0x0f100e10) == 0x0e000a10) 8328 { 8329 unsigned int opcode = (insn >> 21) & 7; 8330 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7); 8331 8332 switch (opcode) 8333 { 8334 case 0: /* fmsr/fmdlr. */ 8335 case 1: /* fmdhr. */ 8336 /* Mark fmdhr and fmdlr as writing to the whole of the DP 8337 destination register. I don't know if this is exactly right, 8338 but it is the conservative choice. */ 8339 bfd_arm_vfp11_write_mask (destmask, fn); 8340 break; 8341 8342 case 7: /* fmxr. */ 8343 break; 8344 } 8345 8346 vpipe = VFP11_LS; 8347 } 8348 8349 return vpipe; 8350 } 8351 8352 8353 static int elf32_arm_compare_mapping (const void * a, const void * b); 8354 8355 8356 /* Look for potentially-troublesome code sequences which might trigger the 8357 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet 8358 (available from ARM) for details of the erratum. A short version is 8359 described in ld.texinfo. */ 8360 8361 bfd_boolean 8362 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info) 8363 { 8364 asection *sec; 8365 bfd_byte *contents = NULL; 8366 int state = 0; 8367 int regs[3], numregs = 0; 8368 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 8369 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR); 8370 8371 if (globals == NULL) 8372 return FALSE; 8373 8374 /* We use a simple FSM to match troublesome VFP11 instruction sequences. 8375 The states transition as follows: 8376 8377 0 -> 1 (vector) or 0 -> 2 (scalar) 8378 A VFP FMAC-pipeline instruction has been seen. Fill 8379 regs[0]..regs[numregs-1] with its input operands. Remember this 8380 instruction in 'first_fmac'. 8381 8382 1 -> 2 8383 Any instruction, except for a VFP instruction which overwrites 8384 regs[*]. 8385 8386 1 -> 3 [ -> 0 ] or 8387 2 -> 3 [ -> 0 ] 8388 A VFP instruction has been seen which overwrites any of regs[*]. 8389 We must make a veneer! Reset state to 0 before examining next 8390 instruction. 8391 8392 2 -> 0 8393 If we fail to match anything in state 2, reset to state 0 and reset 8394 the instruction pointer to the instruction after 'first_fmac'. 8395 8396 If the VFP11 vector mode is in use, there must be at least two unrelated 8397 instructions between anti-dependent VFP11 instructions to properly avoid 8398 triggering the erratum, hence the use of the extra state 1. */ 8399 8400 /* If we are only performing a partial link do not bother 8401 to construct any glue. */ 8402 if (bfd_link_relocatable (link_info)) 8403 return TRUE; 8404 8405 /* Skip if this bfd does not correspond to an ELF image. */ 8406 if (! is_arm_elf (abfd)) 8407 return TRUE; 8408 8409 /* We should have chosen a fix type by the time we get here. */ 8410 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT); 8411 8412 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE) 8413 return TRUE; 8414 8415 /* Skip this BFD if it corresponds to an executable or dynamic object. */ 8416 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) 8417 return TRUE; 8418 8419 for (sec = abfd->sections; sec != NULL; sec = sec->next) 8420 { 8421 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0; 8422 struct _arm_elf_section_data *sec_data; 8423 8424 /* If we don't have executable progbits, we're not interested in this 8425 section. Also skip if section is to be excluded. */ 8426 if (elf_section_type (sec) != SHT_PROGBITS 8427 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0 8428 || (sec->flags & SEC_EXCLUDE) != 0 8429 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS 8430 || sec->output_section == bfd_abs_section_ptr 8431 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0) 8432 continue; 8433 8434 sec_data = elf32_arm_section_data (sec); 8435 8436 if (sec_data->mapcount == 0) 8437 continue; 8438 8439 if (elf_section_data (sec)->this_hdr.contents != NULL) 8440 contents = elf_section_data (sec)->this_hdr.contents; 8441 else if (! bfd_malloc_and_get_section (abfd, sec, &contents)) 8442 goto error_return; 8443 8444 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map), 8445 elf32_arm_compare_mapping); 8446 8447 for (span = 0; span < sec_data->mapcount; span++) 8448 { 8449 unsigned int span_start = sec_data->map[span].vma; 8450 unsigned int span_end = (span == sec_data->mapcount - 1) 8451 ? sec->size : sec_data->map[span + 1].vma; 8452 char span_type = sec_data->map[span].type; 8453 8454 /* FIXME: Only ARM mode is supported at present. We may need to 8455 support Thumb-2 mode also at some point. */ 8456 if (span_type != 'a') 8457 continue; 8458 8459 for (i = span_start; i < span_end;) 8460 { 8461 unsigned int next_i = i + 4; 8462 unsigned int insn = bfd_big_endian (abfd) 8463 ? (((unsigned) contents[i] << 24) 8464 | (contents[i + 1] << 16) 8465 | (contents[i + 2] << 8) 8466 | contents[i + 3]) 8467 : (((unsigned) contents[i + 3] << 24) 8468 | (contents[i + 2] << 16) 8469 | (contents[i + 1] << 8) 8470 | contents[i]); 8471 unsigned int writemask = 0; 8472 enum bfd_arm_vfp11_pipe vpipe; 8473 8474 switch (state) 8475 { 8476 case 0: 8477 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs, 8478 &numregs); 8479 /* I'm assuming the VFP11 erratum can trigger with denorm 8480 operands on either the FMAC or the DS pipeline. This might 8481 lead to slightly overenthusiastic veneer insertion. */ 8482 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS) 8483 { 8484 state = use_vector ? 1 : 2; 8485 first_fmac = i; 8486 veneer_of_insn = insn; 8487 } 8488 break; 8489 8490 case 1: 8491 { 8492 int other_regs[3], other_numregs; 8493 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, 8494 other_regs, 8495 &other_numregs); 8496 if (vpipe != VFP11_BAD 8497 && bfd_arm_vfp11_antidependency (writemask, regs, 8498 numregs)) 8499 state = 3; 8500 else 8501 state = 2; 8502 } 8503 break; 8504 8505 case 2: 8506 { 8507 int other_regs[3], other_numregs; 8508 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, 8509 other_regs, 8510 &other_numregs); 8511 if (vpipe != VFP11_BAD 8512 && bfd_arm_vfp11_antidependency (writemask, regs, 8513 numregs)) 8514 state = 3; 8515 else 8516 { 8517 state = 0; 8518 next_i = first_fmac + 4; 8519 } 8520 } 8521 break; 8522 8523 case 3: 8524 abort (); /* Should be unreachable. */ 8525 } 8526 8527 if (state == 3) 8528 { 8529 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *) 8530 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list)); 8531 8532 elf32_arm_section_data (sec)->erratumcount += 1; 8533 8534 newerr->u.b.vfp_insn = veneer_of_insn; 8535 8536 switch (span_type) 8537 { 8538 case 'a': 8539 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER; 8540 break; 8541 8542 default: 8543 abort (); 8544 } 8545 8546 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec, 8547 first_fmac); 8548 8549 newerr->vma = -1; 8550 8551 newerr->next = sec_data->erratumlist; 8552 sec_data->erratumlist = newerr; 8553 8554 state = 0; 8555 } 8556 8557 i = next_i; 8558 } 8559 } 8560 8561 if (elf_section_data (sec)->this_hdr.contents != contents) 8562 free (contents); 8563 contents = NULL; 8564 } 8565 8566 return TRUE; 8567 8568 error_return: 8569 if (elf_section_data (sec)->this_hdr.contents != contents) 8570 free (contents); 8571 8572 return FALSE; 8573 } 8574 8575 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations 8576 after sections have been laid out, using specially-named symbols. */ 8577 8578 void 8579 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd, 8580 struct bfd_link_info *link_info) 8581 { 8582 asection *sec; 8583 struct elf32_arm_link_hash_table *globals; 8584 char *tmp_name; 8585 8586 if (bfd_link_relocatable (link_info)) 8587 return; 8588 8589 /* Skip if this bfd does not correspond to an ELF image. */ 8590 if (! is_arm_elf (abfd)) 8591 return; 8592 8593 globals = elf32_arm_hash_table (link_info); 8594 if (globals == NULL) 8595 return; 8596 8597 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen 8598 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10); 8599 BFD_ASSERT (tmp_name); 8600 8601 for (sec = abfd->sections; sec != NULL; sec = sec->next) 8602 { 8603 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec); 8604 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist; 8605 8606 for (; errnode != NULL; errnode = errnode->next) 8607 { 8608 struct elf_link_hash_entry *myh; 8609 bfd_vma vma; 8610 8611 switch (errnode->type) 8612 { 8613 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER: 8614 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER: 8615 /* Find veneer symbol. */ 8616 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME, 8617 errnode->u.b.veneer->u.v.id); 8618 8619 myh = elf_link_hash_lookup 8620 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); 8621 8622 if (myh == NULL) 8623 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"), 8624 abfd, "VFP11", tmp_name); 8625 8626 vma = myh->root.u.def.section->output_section->vma 8627 + myh->root.u.def.section->output_offset 8628 + myh->root.u.def.value; 8629 8630 errnode->u.b.veneer->vma = vma; 8631 break; 8632 8633 case VFP11_ERRATUM_ARM_VENEER: 8634 case VFP11_ERRATUM_THUMB_VENEER: 8635 /* Find return location. */ 8636 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r", 8637 errnode->u.v.id); 8638 8639 myh = elf_link_hash_lookup 8640 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); 8641 8642 if (myh == NULL) 8643 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"), 8644 abfd, "VFP11", tmp_name); 8645 8646 vma = myh->root.u.def.section->output_section->vma 8647 + myh->root.u.def.section->output_offset 8648 + myh->root.u.def.value; 8649 8650 errnode->u.v.branch->vma = vma; 8651 break; 8652 8653 default: 8654 abort (); 8655 } 8656 } 8657 } 8658 8659 free (tmp_name); 8660 } 8661 8662 /* Find virtual-memory addresses for STM32L4XX erratum veneers and 8663 return locations after sections have been laid out, using 8664 specially-named symbols. */ 8665 8666 void 8667 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd, 8668 struct bfd_link_info *link_info) 8669 { 8670 asection *sec; 8671 struct elf32_arm_link_hash_table *globals; 8672 char *tmp_name; 8673 8674 if (bfd_link_relocatable (link_info)) 8675 return; 8676 8677 /* Skip if this bfd does not correspond to an ELF image. */ 8678 if (! is_arm_elf (abfd)) 8679 return; 8680 8681 globals = elf32_arm_hash_table (link_info); 8682 if (globals == NULL) 8683 return; 8684 8685 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen 8686 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10); 8687 BFD_ASSERT (tmp_name); 8688 8689 for (sec = abfd->sections; sec != NULL; sec = sec->next) 8690 { 8691 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec); 8692 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist; 8693 8694 for (; errnode != NULL; errnode = errnode->next) 8695 { 8696 struct elf_link_hash_entry *myh; 8697 bfd_vma vma; 8698 8699 switch (errnode->type) 8700 { 8701 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER: 8702 /* Find veneer symbol. */ 8703 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME, 8704 errnode->u.b.veneer->u.v.id); 8705 8706 myh = elf_link_hash_lookup 8707 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); 8708 8709 if (myh == NULL) 8710 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"), 8711 abfd, "STM32L4XX", tmp_name); 8712 8713 vma = myh->root.u.def.section->output_section->vma 8714 + myh->root.u.def.section->output_offset 8715 + myh->root.u.def.value; 8716 8717 errnode->u.b.veneer->vma = vma; 8718 break; 8719 8720 case STM32L4XX_ERRATUM_VENEER: 8721 /* Find return location. */ 8722 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r", 8723 errnode->u.v.id); 8724 8725 myh = elf_link_hash_lookup 8726 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE); 8727 8728 if (myh == NULL) 8729 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"), 8730 abfd, "STM32L4XX", tmp_name); 8731 8732 vma = myh->root.u.def.section->output_section->vma 8733 + myh->root.u.def.section->output_offset 8734 + myh->root.u.def.value; 8735 8736 errnode->u.v.branch->vma = vma; 8737 break; 8738 8739 default: 8740 abort (); 8741 } 8742 } 8743 } 8744 8745 free (tmp_name); 8746 } 8747 8748 static inline bfd_boolean 8749 is_thumb2_ldmia (const insn32 insn) 8750 { 8751 /* Encoding T2: LDM<c>.W <Rn>{!},<registers> 8752 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */ 8753 return (insn & 0xffd02000) == 0xe8900000; 8754 } 8755 8756 static inline bfd_boolean 8757 is_thumb2_ldmdb (const insn32 insn) 8758 { 8759 /* Encoding T1: LDMDB<c> <Rn>{!},<registers> 8760 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */ 8761 return (insn & 0xffd02000) == 0xe9100000; 8762 } 8763 8764 static inline bfd_boolean 8765 is_thumb2_vldm (const insn32 insn) 8766 { 8767 /* A6.5 Extension register load or store instruction 8768 A7.7.229 8769 We look for SP 32-bit and DP 64-bit registers. 8770 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list> 8771 <list> is consecutive 64-bit registers 8772 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii 8773 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list> 8774 <list> is consecutive 32-bit registers 8775 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii 8776 if P==0 && U==1 && W==1 && Rn=1101 VPOP 8777 if PUW=010 || PUW=011 || PUW=101 VLDM. */ 8778 return 8779 (((insn & 0xfe100f00) == 0xec100b00) || 8780 ((insn & 0xfe100f00) == 0xec100a00)) 8781 && /* (IA without !). */ 8782 (((((insn << 7) >> 28) & 0xd) == 0x4) 8783 /* (IA with !), includes VPOP (when reg number is SP). */ 8784 || ((((insn << 7) >> 28) & 0xd) == 0x5) 8785 /* (DB with !). */ 8786 || ((((insn << 7) >> 28) & 0xd) == 0x9)); 8787 } 8788 8789 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or 8790 VLDM opcode and: 8791 - computes the number and the mode of memory accesses 8792 - decides if the replacement should be done: 8793 . replaces only if > 8-word accesses 8794 . or (testing purposes only) replaces all accesses. */ 8795 8796 static bfd_boolean 8797 stm32l4xx_need_create_replacing_stub (const insn32 insn, 8798 bfd_arm_stm32l4xx_fix stm32l4xx_fix) 8799 { 8800 int nb_words = 0; 8801 8802 /* The field encoding the register list is the same for both LDMIA 8803 and LDMDB encodings. */ 8804 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn)) 8805 nb_words = elf32_arm_popcount (insn & 0x0000ffff); 8806 else if (is_thumb2_vldm (insn)) 8807 nb_words = (insn & 0xff); 8808 8809 /* DEFAULT mode accounts for the real bug condition situation, 8810 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */ 8811 return 8812 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 : 8813 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE; 8814 } 8815 8816 /* Look for potentially-troublesome code sequences which might trigger 8817 the STM STM32L4XX erratum. */ 8818 8819 bfd_boolean 8820 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd, 8821 struct bfd_link_info *link_info) 8822 { 8823 asection *sec; 8824 bfd_byte *contents = NULL; 8825 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 8826 8827 if (globals == NULL) 8828 return FALSE; 8829 8830 /* If we are only performing a partial link do not bother 8831 to construct any glue. */ 8832 if (bfd_link_relocatable (link_info)) 8833 return TRUE; 8834 8835 /* Skip if this bfd does not correspond to an ELF image. */ 8836 if (! is_arm_elf (abfd)) 8837 return TRUE; 8838 8839 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE) 8840 return TRUE; 8841 8842 /* Skip this BFD if it corresponds to an executable or dynamic object. */ 8843 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) 8844 return TRUE; 8845 8846 for (sec = abfd->sections; sec != NULL; sec = sec->next) 8847 { 8848 unsigned int i, span; 8849 struct _arm_elf_section_data *sec_data; 8850 8851 /* If we don't have executable progbits, we're not interested in this 8852 section. Also skip if section is to be excluded. */ 8853 if (elf_section_type (sec) != SHT_PROGBITS 8854 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0 8855 || (sec->flags & SEC_EXCLUDE) != 0 8856 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS 8857 || sec->output_section == bfd_abs_section_ptr 8858 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0) 8859 continue; 8860 8861 sec_data = elf32_arm_section_data (sec); 8862 8863 if (sec_data->mapcount == 0) 8864 continue; 8865 8866 if (elf_section_data (sec)->this_hdr.contents != NULL) 8867 contents = elf_section_data (sec)->this_hdr.contents; 8868 else if (! bfd_malloc_and_get_section (abfd, sec, &contents)) 8869 goto error_return; 8870 8871 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map), 8872 elf32_arm_compare_mapping); 8873 8874 for (span = 0; span < sec_data->mapcount; span++) 8875 { 8876 unsigned int span_start = sec_data->map[span].vma; 8877 unsigned int span_end = (span == sec_data->mapcount - 1) 8878 ? sec->size : sec_data->map[span + 1].vma; 8879 char span_type = sec_data->map[span].type; 8880 int itblock_current_pos = 0; 8881 8882 /* Only Thumb2 mode need be supported with this CM4 specific 8883 code, we should not encounter any arm mode eg span_type 8884 != 'a'. */ 8885 if (span_type != 't') 8886 continue; 8887 8888 for (i = span_start; i < span_end;) 8889 { 8890 unsigned int insn = bfd_get_16 (abfd, &contents[i]); 8891 bfd_boolean insn_32bit = FALSE; 8892 bfd_boolean is_ldm = FALSE; 8893 bfd_boolean is_vldm = FALSE; 8894 bfd_boolean is_not_last_in_it_block = FALSE; 8895 8896 /* The first 16-bits of all 32-bit thumb2 instructions start 8897 with opcode[15..13]=0b111 and the encoded op1 can be anything 8898 except opcode[12..11]!=0b00. 8899 See 32-bit Thumb instruction encoding. */ 8900 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000) 8901 insn_32bit = TRUE; 8902 8903 /* Compute the predicate that tells if the instruction 8904 is concerned by the IT block 8905 - Creates an error if there is a ldm that is not 8906 last in the IT block thus cannot be replaced 8907 - Otherwise we can create a branch at the end of the 8908 IT block, it will be controlled naturally by IT 8909 with the proper pseudo-predicate 8910 - So the only interesting predicate is the one that 8911 tells that we are not on the last item of an IT 8912 block. */ 8913 if (itblock_current_pos != 0) 8914 is_not_last_in_it_block = !!--itblock_current_pos; 8915 8916 if (insn_32bit) 8917 { 8918 /* Load the rest of the insn (in manual-friendly order). */ 8919 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]); 8920 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn); 8921 is_vldm = is_thumb2_vldm (insn); 8922 8923 /* Veneers are created for (v)ldm depending on 8924 option flags and memory accesses conditions; but 8925 if the instruction is not the last instruction of 8926 an IT block, we cannot create a jump there, so we 8927 bail out. */ 8928 if ((is_ldm || is_vldm) 8929 && stm32l4xx_need_create_replacing_stub 8930 (insn, globals->stm32l4xx_fix)) 8931 { 8932 if (is_not_last_in_it_block) 8933 { 8934 _bfd_error_handler 8935 /* xgettext:c-format */ 8936 (_("%pB(%pA+%#x): error: multiple load detected" 8937 " in non-last IT block instruction:" 8938 " STM32L4XX veneer cannot be generated; " 8939 "use gcc option -mrestrict-it to generate" 8940 " only one instruction per IT block"), 8941 abfd, sec, i); 8942 } 8943 else 8944 { 8945 elf32_stm32l4xx_erratum_list *newerr = 8946 (elf32_stm32l4xx_erratum_list *) 8947 bfd_zmalloc 8948 (sizeof (elf32_stm32l4xx_erratum_list)); 8949 8950 elf32_arm_section_data (sec) 8951 ->stm32l4xx_erratumcount += 1; 8952 newerr->u.b.insn = insn; 8953 /* We create only thumb branches. */ 8954 newerr->type = 8955 STM32L4XX_ERRATUM_BRANCH_TO_VENEER; 8956 record_stm32l4xx_erratum_veneer 8957 (link_info, newerr, abfd, sec, 8958 i, 8959 is_ldm ? 8960 STM32L4XX_ERRATUM_LDM_VENEER_SIZE: 8961 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE); 8962 newerr->vma = -1; 8963 newerr->next = sec_data->stm32l4xx_erratumlist; 8964 sec_data->stm32l4xx_erratumlist = newerr; 8965 } 8966 } 8967 } 8968 else 8969 { 8970 /* A7.7.37 IT p208 8971 IT blocks are only encoded in T1 8972 Encoding T1: IT{x{y{z}}} <firstcond> 8973 1 0 1 1 - 1 1 1 1 - firstcond - mask 8974 if mask = '0000' then see 'related encodings' 8975 We don't deal with UNPREDICTABLE, just ignore these. 8976 There can be no nested IT blocks so an IT block 8977 is naturally a new one for which it is worth 8978 computing its size. */ 8979 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00) 8980 && ((insn & 0x000f) != 0x0000); 8981 /* If we have a new IT block we compute its size. */ 8982 if (is_newitblock) 8983 { 8984 /* Compute the number of instructions controlled 8985 by the IT block, it will be used to decide 8986 whether we are inside an IT block or not. */ 8987 unsigned int mask = insn & 0x000f; 8988 itblock_current_pos = 4 - ctz (mask); 8989 } 8990 } 8991 8992 i += insn_32bit ? 4 : 2; 8993 } 8994 } 8995 8996 if (elf_section_data (sec)->this_hdr.contents != contents) 8997 free (contents); 8998 contents = NULL; 8999 } 9000 9001 return TRUE; 9002 9003 error_return: 9004 if (elf_section_data (sec)->this_hdr.contents != contents) 9005 free (contents); 9006 9007 return FALSE; 9008 } 9009 9010 /* Set target relocation values needed during linking. */ 9011 9012 void 9013 bfd_elf32_arm_set_target_params (struct bfd *output_bfd, 9014 struct bfd_link_info *link_info, 9015 struct elf32_arm_params *params) 9016 { 9017 struct elf32_arm_link_hash_table *globals; 9018 9019 globals = elf32_arm_hash_table (link_info); 9020 if (globals == NULL) 9021 return; 9022 9023 globals->target1_is_rel = params->target1_is_rel; 9024 if (globals->fdpic_p) 9025 globals->target2_reloc = R_ARM_GOT32; 9026 else if (strcmp (params->target2_type, "rel") == 0) 9027 globals->target2_reloc = R_ARM_REL32; 9028 else if (strcmp (params->target2_type, "abs") == 0) 9029 globals->target2_reloc = R_ARM_ABS32; 9030 else if (strcmp (params->target2_type, "got-rel") == 0) 9031 globals->target2_reloc = R_ARM_GOT_PREL; 9032 else 9033 { 9034 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"), 9035 params->target2_type); 9036 } 9037 globals->fix_v4bx = params->fix_v4bx; 9038 globals->use_blx |= params->use_blx; 9039 globals->vfp11_fix = params->vfp11_denorm_fix; 9040 globals->stm32l4xx_fix = params->stm32l4xx_fix; 9041 if (globals->fdpic_p) 9042 globals->pic_veneer = 1; 9043 else 9044 globals->pic_veneer = params->pic_veneer; 9045 globals->fix_cortex_a8 = params->fix_cortex_a8; 9046 globals->fix_arm1176 = params->fix_arm1176; 9047 globals->cmse_implib = params->cmse_implib; 9048 globals->in_implib_bfd = params->in_implib_bfd; 9049 9050 BFD_ASSERT (is_arm_elf (output_bfd)); 9051 elf_arm_tdata (output_bfd)->no_enum_size_warning 9052 = params->no_enum_size_warning; 9053 elf_arm_tdata (output_bfd)->no_wchar_size_warning 9054 = params->no_wchar_size_warning; 9055 } 9056 9057 /* Replace the target offset of a Thumb bl or b.w instruction. */ 9058 9059 static void 9060 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn) 9061 { 9062 bfd_vma upper; 9063 bfd_vma lower; 9064 int reloc_sign; 9065 9066 BFD_ASSERT ((offset & 1) == 0); 9067 9068 upper = bfd_get_16 (abfd, insn); 9069 lower = bfd_get_16 (abfd, insn + 2); 9070 reloc_sign = (offset < 0) ? 1 : 0; 9071 upper = (upper & ~(bfd_vma) 0x7ff) 9072 | ((offset >> 12) & 0x3ff) 9073 | (reloc_sign << 10); 9074 lower = (lower & ~(bfd_vma) 0x2fff) 9075 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13) 9076 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11) 9077 | ((offset >> 1) & 0x7ff); 9078 bfd_put_16 (abfd, upper, insn); 9079 bfd_put_16 (abfd, lower, insn + 2); 9080 } 9081 9082 /* Thumb code calling an ARM function. */ 9083 9084 static int 9085 elf32_thumb_to_arm_stub (struct bfd_link_info * info, 9086 const char * name, 9087 bfd * input_bfd, 9088 bfd * output_bfd, 9089 asection * input_section, 9090 bfd_byte * hit_data, 9091 asection * sym_sec, 9092 bfd_vma offset, 9093 bfd_signed_vma addend, 9094 bfd_vma val, 9095 char **error_message) 9096 { 9097 asection * s = 0; 9098 bfd_vma my_offset; 9099 long int ret_offset; 9100 struct elf_link_hash_entry * myh; 9101 struct elf32_arm_link_hash_table * globals; 9102 9103 myh = find_thumb_glue (info, name, error_message); 9104 if (myh == NULL) 9105 return FALSE; 9106 9107 globals = elf32_arm_hash_table (info); 9108 BFD_ASSERT (globals != NULL); 9109 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 9110 9111 my_offset = myh->root.u.def.value; 9112 9113 s = bfd_get_linker_section (globals->bfd_of_glue_owner, 9114 THUMB2ARM_GLUE_SECTION_NAME); 9115 9116 BFD_ASSERT (s != NULL); 9117 BFD_ASSERT (s->contents != NULL); 9118 BFD_ASSERT (s->output_section != NULL); 9119 9120 if ((my_offset & 0x01) == 0x01) 9121 { 9122 if (sym_sec != NULL 9123 && sym_sec->owner != NULL 9124 && !INTERWORK_FLAG (sym_sec->owner)) 9125 { 9126 _bfd_error_handler 9127 (_("%pB(%s): warning: interworking not enabled;" 9128 " first occurrence: %pB: %s call to %s"), 9129 sym_sec->owner, name, input_bfd, "Thumb", "ARM"); 9130 9131 return FALSE; 9132 } 9133 9134 --my_offset; 9135 myh->root.u.def.value = my_offset; 9136 9137 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn, 9138 s->contents + my_offset); 9139 9140 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn, 9141 s->contents + my_offset + 2); 9142 9143 ret_offset = 9144 /* Address of destination of the stub. */ 9145 ((bfd_signed_vma) val) 9146 - ((bfd_signed_vma) 9147 /* Offset from the start of the current section 9148 to the start of the stubs. */ 9149 (s->output_offset 9150 /* Offset of the start of this stub from the start of the stubs. */ 9151 + my_offset 9152 /* Address of the start of the current section. */ 9153 + s->output_section->vma) 9154 /* The branch instruction is 4 bytes into the stub. */ 9155 + 4 9156 /* ARM branches work from the pc of the instruction + 8. */ 9157 + 8); 9158 9159 put_arm_insn (globals, output_bfd, 9160 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF), 9161 s->contents + my_offset + 4); 9162 } 9163 9164 BFD_ASSERT (my_offset <= globals->thumb_glue_size); 9165 9166 /* Now go back and fix up the original BL insn to point to here. */ 9167 ret_offset = 9168 /* Address of where the stub is located. */ 9169 (s->output_section->vma + s->output_offset + my_offset) 9170 /* Address of where the BL is located. */ 9171 - (input_section->output_section->vma + input_section->output_offset 9172 + offset) 9173 /* Addend in the relocation. */ 9174 - addend 9175 /* Biassing for PC-relative addressing. */ 9176 - 8; 9177 9178 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma); 9179 9180 return TRUE; 9181 } 9182 9183 /* Populate an Arm to Thumb stub. Returns the stub symbol. */ 9184 9185 static struct elf_link_hash_entry * 9186 elf32_arm_create_thumb_stub (struct bfd_link_info * info, 9187 const char * name, 9188 bfd * input_bfd, 9189 bfd * output_bfd, 9190 asection * sym_sec, 9191 bfd_vma val, 9192 asection * s, 9193 char ** error_message) 9194 { 9195 bfd_vma my_offset; 9196 long int ret_offset; 9197 struct elf_link_hash_entry * myh; 9198 struct elf32_arm_link_hash_table * globals; 9199 9200 myh = find_arm_glue (info, name, error_message); 9201 if (myh == NULL) 9202 return NULL; 9203 9204 globals = elf32_arm_hash_table (info); 9205 BFD_ASSERT (globals != NULL); 9206 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 9207 9208 my_offset = myh->root.u.def.value; 9209 9210 if ((my_offset & 0x01) == 0x01) 9211 { 9212 if (sym_sec != NULL 9213 && sym_sec->owner != NULL 9214 && !INTERWORK_FLAG (sym_sec->owner)) 9215 { 9216 _bfd_error_handler 9217 (_("%pB(%s): warning: interworking not enabled;" 9218 " first occurrence: %pB: %s call to %s"), 9219 sym_sec->owner, name, input_bfd, "ARM", "Thumb"); 9220 } 9221 9222 --my_offset; 9223 myh->root.u.def.value = my_offset; 9224 9225 if (bfd_link_pic (info) 9226 || globals->root.is_relocatable_executable 9227 || globals->pic_veneer) 9228 { 9229 /* For relocatable objects we can't use absolute addresses, 9230 so construct the address from a relative offset. */ 9231 /* TODO: If the offset is small it's probably worth 9232 constructing the address with adds. */ 9233 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn, 9234 s->contents + my_offset); 9235 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn, 9236 s->contents + my_offset + 4); 9237 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn, 9238 s->contents + my_offset + 8); 9239 /* Adjust the offset by 4 for the position of the add, 9240 and 8 for the pipeline offset. */ 9241 ret_offset = (val - (s->output_offset 9242 + s->output_section->vma 9243 + my_offset + 12)) 9244 | 1; 9245 bfd_put_32 (output_bfd, ret_offset, 9246 s->contents + my_offset + 12); 9247 } 9248 else if (globals->use_blx) 9249 { 9250 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn, 9251 s->contents + my_offset); 9252 9253 /* It's a thumb address. Add the low order bit. */ 9254 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn, 9255 s->contents + my_offset + 4); 9256 } 9257 else 9258 { 9259 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn, 9260 s->contents + my_offset); 9261 9262 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn, 9263 s->contents + my_offset + 4); 9264 9265 /* It's a thumb address. Add the low order bit. */ 9266 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn, 9267 s->contents + my_offset + 8); 9268 9269 my_offset += 12; 9270 } 9271 } 9272 9273 BFD_ASSERT (my_offset <= globals->arm_glue_size); 9274 9275 return myh; 9276 } 9277 9278 /* Arm code calling a Thumb function. */ 9279 9280 static int 9281 elf32_arm_to_thumb_stub (struct bfd_link_info * info, 9282 const char * name, 9283 bfd * input_bfd, 9284 bfd * output_bfd, 9285 asection * input_section, 9286 bfd_byte * hit_data, 9287 asection * sym_sec, 9288 bfd_vma offset, 9289 bfd_signed_vma addend, 9290 bfd_vma val, 9291 char **error_message) 9292 { 9293 unsigned long int tmp; 9294 bfd_vma my_offset; 9295 asection * s; 9296 long int ret_offset; 9297 struct elf_link_hash_entry * myh; 9298 struct elf32_arm_link_hash_table * globals; 9299 9300 globals = elf32_arm_hash_table (info); 9301 BFD_ASSERT (globals != NULL); 9302 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 9303 9304 s = bfd_get_linker_section (globals->bfd_of_glue_owner, 9305 ARM2THUMB_GLUE_SECTION_NAME); 9306 BFD_ASSERT (s != NULL); 9307 BFD_ASSERT (s->contents != NULL); 9308 BFD_ASSERT (s->output_section != NULL); 9309 9310 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd, 9311 sym_sec, val, s, error_message); 9312 if (!myh) 9313 return FALSE; 9314 9315 my_offset = myh->root.u.def.value; 9316 tmp = bfd_get_32 (input_bfd, hit_data); 9317 tmp = tmp & 0xFF000000; 9318 9319 /* Somehow these are both 4 too far, so subtract 8. */ 9320 ret_offset = (s->output_offset 9321 + my_offset 9322 + s->output_section->vma 9323 - (input_section->output_offset 9324 + input_section->output_section->vma 9325 + offset + addend) 9326 - 8); 9327 9328 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF); 9329 9330 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma); 9331 9332 return TRUE; 9333 } 9334 9335 /* Populate Arm stub for an exported Thumb function. */ 9336 9337 static bfd_boolean 9338 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf) 9339 { 9340 struct bfd_link_info * info = (struct bfd_link_info *) inf; 9341 asection * s; 9342 struct elf_link_hash_entry * myh; 9343 struct elf32_arm_link_hash_entry *eh; 9344 struct elf32_arm_link_hash_table * globals; 9345 asection *sec; 9346 bfd_vma val; 9347 char *error_message; 9348 9349 eh = elf32_arm_hash_entry (h); 9350 /* Allocate stubs for exported Thumb functions on v4t. */ 9351 if (eh->export_glue == NULL) 9352 return TRUE; 9353 9354 globals = elf32_arm_hash_table (info); 9355 BFD_ASSERT (globals != NULL); 9356 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 9357 9358 s = bfd_get_linker_section (globals->bfd_of_glue_owner, 9359 ARM2THUMB_GLUE_SECTION_NAME); 9360 BFD_ASSERT (s != NULL); 9361 BFD_ASSERT (s->contents != NULL); 9362 BFD_ASSERT (s->output_section != NULL); 9363 9364 sec = eh->export_glue->root.u.def.section; 9365 9366 BFD_ASSERT (sec->output_section != NULL); 9367 9368 val = eh->export_glue->root.u.def.value + sec->output_offset 9369 + sec->output_section->vma; 9370 9371 myh = elf32_arm_create_thumb_stub (info, h->root.root.string, 9372 h->root.u.def.section->owner, 9373 globals->obfd, sec, val, s, 9374 &error_message); 9375 BFD_ASSERT (myh); 9376 return TRUE; 9377 } 9378 9379 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */ 9380 9381 static bfd_vma 9382 elf32_arm_bx_glue (struct bfd_link_info * info, int reg) 9383 { 9384 bfd_byte *p; 9385 bfd_vma glue_addr; 9386 asection *s; 9387 struct elf32_arm_link_hash_table *globals; 9388 9389 globals = elf32_arm_hash_table (info); 9390 BFD_ASSERT (globals != NULL); 9391 BFD_ASSERT (globals->bfd_of_glue_owner != NULL); 9392 9393 s = bfd_get_linker_section (globals->bfd_of_glue_owner, 9394 ARM_BX_GLUE_SECTION_NAME); 9395 BFD_ASSERT (s != NULL); 9396 BFD_ASSERT (s->contents != NULL); 9397 BFD_ASSERT (s->output_section != NULL); 9398 9399 BFD_ASSERT (globals->bx_glue_offset[reg] & 2); 9400 9401 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3; 9402 9403 if ((globals->bx_glue_offset[reg] & 1) == 0) 9404 { 9405 p = s->contents + glue_addr; 9406 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p); 9407 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4); 9408 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8); 9409 globals->bx_glue_offset[reg] |= 1; 9410 } 9411 9412 return glue_addr + s->output_section->vma + s->output_offset; 9413 } 9414 9415 /* Generate Arm stubs for exported Thumb symbols. */ 9416 static void 9417 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED, 9418 struct bfd_link_info *link_info) 9419 { 9420 struct elf32_arm_link_hash_table * globals; 9421 9422 if (link_info == NULL) 9423 /* Ignore this if we are not called by the ELF backend linker. */ 9424 return; 9425 9426 globals = elf32_arm_hash_table (link_info); 9427 if (globals == NULL) 9428 return; 9429 9430 /* If blx is available then exported Thumb symbols are OK and there is 9431 nothing to do. */ 9432 if (globals->use_blx) 9433 return; 9434 9435 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub, 9436 link_info); 9437 } 9438 9439 /* Reserve space for COUNT dynamic relocations in relocation selection 9440 SRELOC. */ 9441 9442 static void 9443 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc, 9444 bfd_size_type count) 9445 { 9446 struct elf32_arm_link_hash_table *htab; 9447 9448 htab = elf32_arm_hash_table (info); 9449 BFD_ASSERT (htab->root.dynamic_sections_created); 9450 if (sreloc == NULL) 9451 abort (); 9452 sreloc->size += RELOC_SIZE (htab) * count; 9453 } 9454 9455 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is 9456 dynamic, the relocations should go in SRELOC, otherwise they should 9457 go in the special .rel.iplt section. */ 9458 9459 static void 9460 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc, 9461 bfd_size_type count) 9462 { 9463 struct elf32_arm_link_hash_table *htab; 9464 9465 htab = elf32_arm_hash_table (info); 9466 if (!htab->root.dynamic_sections_created) 9467 htab->root.irelplt->size += RELOC_SIZE (htab) * count; 9468 else 9469 { 9470 BFD_ASSERT (sreloc != NULL); 9471 sreloc->size += RELOC_SIZE (htab) * count; 9472 } 9473 } 9474 9475 /* Add relocation REL to the end of relocation section SRELOC. */ 9476 9477 static void 9478 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info, 9479 asection *sreloc, Elf_Internal_Rela *rel) 9480 { 9481 bfd_byte *loc; 9482 struct elf32_arm_link_hash_table *htab; 9483 9484 htab = elf32_arm_hash_table (info); 9485 if (!htab->root.dynamic_sections_created 9486 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE) 9487 sreloc = htab->root.irelplt; 9488 if (sreloc == NULL) 9489 abort (); 9490 loc = sreloc->contents; 9491 loc += sreloc->reloc_count++ * RELOC_SIZE (htab); 9492 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size) 9493 abort (); 9494 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc); 9495 } 9496 9497 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT. 9498 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than 9499 to .plt. */ 9500 9501 static void 9502 elf32_arm_allocate_plt_entry (struct bfd_link_info *info, 9503 bfd_boolean is_iplt_entry, 9504 union gotplt_union *root_plt, 9505 struct arm_plt_info *arm_plt) 9506 { 9507 struct elf32_arm_link_hash_table *htab; 9508 asection *splt; 9509 asection *sgotplt; 9510 9511 htab = elf32_arm_hash_table (info); 9512 9513 if (is_iplt_entry) 9514 { 9515 splt = htab->root.iplt; 9516 sgotplt = htab->root.igotplt; 9517 9518 /* NaCl uses a special first entry in .iplt too. */ 9519 if (htab->root.target_os == is_nacl && splt->size == 0) 9520 splt->size += htab->plt_header_size; 9521 9522 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */ 9523 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1); 9524 } 9525 else 9526 { 9527 splt = htab->root.splt; 9528 sgotplt = htab->root.sgotplt; 9529 9530 if (htab->fdpic_p) 9531 { 9532 /* Allocate room for R_ARM_FUNCDESC_VALUE. */ 9533 /* For lazy binding, relocations will be put into .rel.plt, in 9534 .rel.got otherwise. */ 9535 /* FIXME: today we don't support lazy binding so put it in .rel.got */ 9536 if (info->flags & DF_BIND_NOW) 9537 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 9538 else 9539 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1); 9540 } 9541 else 9542 { 9543 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */ 9544 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1); 9545 } 9546 9547 /* If this is the first .plt entry, make room for the special 9548 first entry. */ 9549 if (splt->size == 0) 9550 splt->size += htab->plt_header_size; 9551 9552 htab->next_tls_desc_index++; 9553 } 9554 9555 /* Allocate the PLT entry itself, including any leading Thumb stub. */ 9556 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt)) 9557 splt->size += PLT_THUMB_STUB_SIZE; 9558 root_plt->offset = splt->size; 9559 splt->size += htab->plt_entry_size; 9560 9561 if (htab->root.target_os != is_symbian) 9562 { 9563 /* We also need to make an entry in the .got.plt section, which 9564 will be placed in the .got section by the linker script. */ 9565 if (is_iplt_entry) 9566 arm_plt->got_offset = sgotplt->size; 9567 else 9568 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc; 9569 if (htab->fdpic_p) 9570 /* Function descriptor takes 64 bits in GOT. */ 9571 sgotplt->size += 8; 9572 else 9573 sgotplt->size += 4; 9574 } 9575 } 9576 9577 static bfd_vma 9578 arm_movw_immediate (bfd_vma value) 9579 { 9580 return (value & 0x00000fff) | ((value & 0x0000f000) << 4); 9581 } 9582 9583 static bfd_vma 9584 arm_movt_immediate (bfd_vma value) 9585 { 9586 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12); 9587 } 9588 9589 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1, 9590 the entry lives in .iplt and resolves to (*SYM_VALUE)(). 9591 Otherwise, DYNINDX is the index of the symbol in the dynamic 9592 symbol table and SYM_VALUE is undefined. 9593 9594 ROOT_PLT points to the offset of the PLT entry from the start of its 9595 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific 9596 bookkeeping information. 9597 9598 Returns FALSE if there was a problem. */ 9599 9600 static bfd_boolean 9601 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info, 9602 union gotplt_union *root_plt, 9603 struct arm_plt_info *arm_plt, 9604 int dynindx, bfd_vma sym_value) 9605 { 9606 struct elf32_arm_link_hash_table *htab; 9607 asection *sgot; 9608 asection *splt; 9609 asection *srel; 9610 bfd_byte *loc; 9611 bfd_vma plt_index; 9612 Elf_Internal_Rela rel; 9613 bfd_vma plt_header_size; 9614 bfd_vma got_header_size; 9615 9616 htab = elf32_arm_hash_table (info); 9617 9618 /* Pick the appropriate sections and sizes. */ 9619 if (dynindx == -1) 9620 { 9621 splt = htab->root.iplt; 9622 sgot = htab->root.igotplt; 9623 srel = htab->root.irelplt; 9624 9625 /* There are no reserved entries in .igot.plt, and no special 9626 first entry in .iplt. */ 9627 got_header_size = 0; 9628 plt_header_size = 0; 9629 } 9630 else 9631 { 9632 splt = htab->root.splt; 9633 sgot = htab->root.sgotplt; 9634 srel = htab->root.srelplt; 9635 9636 got_header_size = get_elf_backend_data (output_bfd)->got_header_size; 9637 plt_header_size = htab->plt_header_size; 9638 } 9639 BFD_ASSERT (splt != NULL && srel != NULL); 9640 9641 /* Fill in the entry in the procedure linkage table. */ 9642 if (htab->root.target_os == is_symbian) 9643 { 9644 BFD_ASSERT (dynindx >= 0); 9645 put_arm_insn (htab, output_bfd, 9646 elf32_arm_symbian_plt_entry[0], 9647 splt->contents + root_plt->offset); 9648 bfd_put_32 (output_bfd, 9649 elf32_arm_symbian_plt_entry[1], 9650 splt->contents + root_plt->offset + 4); 9651 9652 /* Fill in the entry in the .rel.plt section. */ 9653 rel.r_offset = (splt->output_section->vma 9654 + splt->output_offset 9655 + root_plt->offset + 4); 9656 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT); 9657 9658 /* Get the index in the procedure linkage table which 9659 corresponds to this symbol. This is the index of this symbol 9660 in all the symbols for which we are making plt entries. The 9661 first entry in the procedure linkage table is reserved. */ 9662 plt_index = ((root_plt->offset - plt_header_size) 9663 / htab->plt_entry_size); 9664 } 9665 else 9666 { 9667 bfd_vma got_offset, got_address, plt_address; 9668 bfd_vma got_displacement, initial_got_entry; 9669 bfd_byte * ptr; 9670 9671 BFD_ASSERT (sgot != NULL); 9672 9673 /* Get the offset into the .(i)got.plt table of the entry that 9674 corresponds to this function. */ 9675 got_offset = (arm_plt->got_offset & -2); 9676 9677 /* Get the index in the procedure linkage table which 9678 corresponds to this symbol. This is the index of this symbol 9679 in all the symbols for which we are making plt entries. 9680 After the reserved .got.plt entries, all symbols appear in 9681 the same order as in .plt. */ 9682 if (htab->fdpic_p) 9683 /* Function descriptor takes 8 bytes. */ 9684 plt_index = (got_offset - got_header_size) / 8; 9685 else 9686 plt_index = (got_offset - got_header_size) / 4; 9687 9688 /* Calculate the address of the GOT entry. */ 9689 got_address = (sgot->output_section->vma 9690 + sgot->output_offset 9691 + got_offset); 9692 9693 /* ...and the address of the PLT entry. */ 9694 plt_address = (splt->output_section->vma 9695 + splt->output_offset 9696 + root_plt->offset); 9697 9698 ptr = splt->contents + root_plt->offset; 9699 if (htab->root.target_os == is_vxworks && bfd_link_pic (info)) 9700 { 9701 unsigned int i; 9702 bfd_vma val; 9703 9704 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4) 9705 { 9706 val = elf32_arm_vxworks_shared_plt_entry[i]; 9707 if (i == 2) 9708 val |= got_address - sgot->output_section->vma; 9709 if (i == 5) 9710 val |= plt_index * RELOC_SIZE (htab); 9711 if (i == 2 || i == 5) 9712 bfd_put_32 (output_bfd, val, ptr); 9713 else 9714 put_arm_insn (htab, output_bfd, val, ptr); 9715 } 9716 } 9717 else if (htab->root.target_os == is_vxworks) 9718 { 9719 unsigned int i; 9720 bfd_vma val; 9721 9722 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4) 9723 { 9724 val = elf32_arm_vxworks_exec_plt_entry[i]; 9725 if (i == 2) 9726 val |= got_address; 9727 if (i == 4) 9728 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2); 9729 if (i == 5) 9730 val |= plt_index * RELOC_SIZE (htab); 9731 if (i == 2 || i == 5) 9732 bfd_put_32 (output_bfd, val, ptr); 9733 else 9734 put_arm_insn (htab, output_bfd, val, ptr); 9735 } 9736 9737 loc = (htab->srelplt2->contents 9738 + (plt_index * 2 + 1) * RELOC_SIZE (htab)); 9739 9740 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation 9741 referencing the GOT for this PLT entry. */ 9742 rel.r_offset = plt_address + 8; 9743 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32); 9744 rel.r_addend = got_offset; 9745 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); 9746 loc += RELOC_SIZE (htab); 9747 9748 /* Create the R_ARM_ABS32 relocation referencing the 9749 beginning of the PLT for this GOT entry. */ 9750 rel.r_offset = got_address; 9751 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32); 9752 rel.r_addend = 0; 9753 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); 9754 } 9755 else if (htab->root.target_os == is_nacl) 9756 { 9757 /* Calculate the displacement between the PLT slot and the 9758 common tail that's part of the special initial PLT slot. */ 9759 int32_t tail_displacement 9760 = ((splt->output_section->vma + splt->output_offset 9761 + ARM_NACL_PLT_TAIL_OFFSET) 9762 - (plt_address + htab->plt_entry_size + 4)); 9763 BFD_ASSERT ((tail_displacement & 3) == 0); 9764 tail_displacement >>= 2; 9765 9766 BFD_ASSERT ((tail_displacement & 0xff000000) == 0 9767 || (-tail_displacement & 0xff000000) == 0); 9768 9769 /* Calculate the displacement between the PLT slot and the entry 9770 in the GOT. The offset accounts for the value produced by 9771 adding to pc in the penultimate instruction of the PLT stub. */ 9772 got_displacement = (got_address 9773 - (plt_address + htab->plt_entry_size)); 9774 9775 /* NaCl does not support interworking at all. */ 9776 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt)); 9777 9778 put_arm_insn (htab, output_bfd, 9779 elf32_arm_nacl_plt_entry[0] 9780 | arm_movw_immediate (got_displacement), 9781 ptr + 0); 9782 put_arm_insn (htab, output_bfd, 9783 elf32_arm_nacl_plt_entry[1] 9784 | arm_movt_immediate (got_displacement), 9785 ptr + 4); 9786 put_arm_insn (htab, output_bfd, 9787 elf32_arm_nacl_plt_entry[2], 9788 ptr + 8); 9789 put_arm_insn (htab, output_bfd, 9790 elf32_arm_nacl_plt_entry[3] 9791 | (tail_displacement & 0x00ffffff), 9792 ptr + 12); 9793 } 9794 else if (htab->fdpic_p) 9795 { 9796 const bfd_vma *plt_entry = using_thumb_only(htab) 9797 ? elf32_arm_fdpic_thumb_plt_entry 9798 : elf32_arm_fdpic_plt_entry; 9799 9800 /* Fill-up Thumb stub if needed. */ 9801 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt)) 9802 { 9803 put_thumb_insn (htab, output_bfd, 9804 elf32_arm_plt_thumb_stub[0], ptr - 4); 9805 put_thumb_insn (htab, output_bfd, 9806 elf32_arm_plt_thumb_stub[1], ptr - 2); 9807 } 9808 /* As we are using 32 bit instructions even for the Thumb 9809 version, we have to use 'put_arm_insn' instead of 9810 'put_thumb_insn'. */ 9811 put_arm_insn(htab, output_bfd, plt_entry[0], ptr + 0); 9812 put_arm_insn(htab, output_bfd, plt_entry[1], ptr + 4); 9813 put_arm_insn(htab, output_bfd, plt_entry[2], ptr + 8); 9814 put_arm_insn(htab, output_bfd, plt_entry[3], ptr + 12); 9815 bfd_put_32 (output_bfd, got_offset, ptr + 16); 9816 9817 if (!(info->flags & DF_BIND_NOW)) 9818 { 9819 /* funcdesc_value_reloc_offset. */ 9820 bfd_put_32 (output_bfd, 9821 htab->root.srelplt->reloc_count * RELOC_SIZE (htab), 9822 ptr + 20); 9823 put_arm_insn(htab, output_bfd, plt_entry[6], ptr + 24); 9824 put_arm_insn(htab, output_bfd, plt_entry[7], ptr + 28); 9825 put_arm_insn(htab, output_bfd, plt_entry[8], ptr + 32); 9826 put_arm_insn(htab, output_bfd, plt_entry[9], ptr + 36); 9827 } 9828 } 9829 else if (using_thumb_only (htab)) 9830 { 9831 /* PR ld/16017: Generate thumb only PLT entries. */ 9832 if (!using_thumb2 (htab)) 9833 { 9834 /* FIXME: We ought to be able to generate thumb-1 PLT 9835 instructions... */ 9836 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"), 9837 output_bfd); 9838 return FALSE; 9839 } 9840 9841 /* Calculate the displacement between the PLT slot and the entry in 9842 the GOT. The 12-byte offset accounts for the value produced by 9843 adding to pc in the 3rd instruction of the PLT stub. */ 9844 got_displacement = got_address - (plt_address + 12); 9845 9846 /* As we are using 32 bit instructions we have to use 'put_arm_insn' 9847 instead of 'put_thumb_insn'. */ 9848 put_arm_insn (htab, output_bfd, 9849 elf32_thumb2_plt_entry[0] 9850 | ((got_displacement & 0x000000ff) << 16) 9851 | ((got_displacement & 0x00000700) << 20) 9852 | ((got_displacement & 0x00000800) >> 1) 9853 | ((got_displacement & 0x0000f000) >> 12), 9854 ptr + 0); 9855 put_arm_insn (htab, output_bfd, 9856 elf32_thumb2_plt_entry[1] 9857 | ((got_displacement & 0x00ff0000) ) 9858 | ((got_displacement & 0x07000000) << 4) 9859 | ((got_displacement & 0x08000000) >> 17) 9860 | ((got_displacement & 0xf0000000) >> 28), 9861 ptr + 4); 9862 put_arm_insn (htab, output_bfd, 9863 elf32_thumb2_plt_entry[2], 9864 ptr + 8); 9865 put_arm_insn (htab, output_bfd, 9866 elf32_thumb2_plt_entry[3], 9867 ptr + 12); 9868 } 9869 else 9870 { 9871 /* Calculate the displacement between the PLT slot and the 9872 entry in the GOT. The eight-byte offset accounts for the 9873 value produced by adding to pc in the first instruction 9874 of the PLT stub. */ 9875 got_displacement = got_address - (plt_address + 8); 9876 9877 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt)) 9878 { 9879 put_thumb_insn (htab, output_bfd, 9880 elf32_arm_plt_thumb_stub[0], ptr - 4); 9881 put_thumb_insn (htab, output_bfd, 9882 elf32_arm_plt_thumb_stub[1], ptr - 2); 9883 } 9884 9885 if (!elf32_arm_use_long_plt_entry) 9886 { 9887 BFD_ASSERT ((got_displacement & 0xf0000000) == 0); 9888 9889 put_arm_insn (htab, output_bfd, 9890 elf32_arm_plt_entry_short[0] 9891 | ((got_displacement & 0x0ff00000) >> 20), 9892 ptr + 0); 9893 put_arm_insn (htab, output_bfd, 9894 elf32_arm_plt_entry_short[1] 9895 | ((got_displacement & 0x000ff000) >> 12), 9896 ptr+ 4); 9897 put_arm_insn (htab, output_bfd, 9898 elf32_arm_plt_entry_short[2] 9899 | (got_displacement & 0x00000fff), 9900 ptr + 8); 9901 #ifdef FOUR_WORD_PLT 9902 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12); 9903 #endif 9904 } 9905 else 9906 { 9907 put_arm_insn (htab, output_bfd, 9908 elf32_arm_plt_entry_long[0] 9909 | ((got_displacement & 0xf0000000) >> 28), 9910 ptr + 0); 9911 put_arm_insn (htab, output_bfd, 9912 elf32_arm_plt_entry_long[1] 9913 | ((got_displacement & 0x0ff00000) >> 20), 9914 ptr + 4); 9915 put_arm_insn (htab, output_bfd, 9916 elf32_arm_plt_entry_long[2] 9917 | ((got_displacement & 0x000ff000) >> 12), 9918 ptr+ 8); 9919 put_arm_insn (htab, output_bfd, 9920 elf32_arm_plt_entry_long[3] 9921 | (got_displacement & 0x00000fff), 9922 ptr + 12); 9923 } 9924 } 9925 9926 /* Fill in the entry in the .rel(a).(i)plt section. */ 9927 rel.r_offset = got_address; 9928 rel.r_addend = 0; 9929 if (dynindx == -1) 9930 { 9931 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE. 9932 The dynamic linker or static executable then calls SYM_VALUE 9933 to determine the correct run-time value of the .igot.plt entry. */ 9934 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE); 9935 initial_got_entry = sym_value; 9936 } 9937 else 9938 { 9939 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE 9940 used by PLT entry. */ 9941 if (htab->fdpic_p) 9942 { 9943 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE); 9944 initial_got_entry = 0; 9945 } 9946 else 9947 { 9948 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT); 9949 initial_got_entry = (splt->output_section->vma 9950 + splt->output_offset); 9951 9952 /* PR ld/16017 9953 When thumb only we need to set the LSB for any address that 9954 will be used with an interworking branch instruction. */ 9955 if (using_thumb_only (htab)) 9956 initial_got_entry |= 1; 9957 } 9958 } 9959 9960 /* Fill in the entry in the global offset table. */ 9961 bfd_put_32 (output_bfd, initial_got_entry, 9962 sgot->contents + got_offset); 9963 9964 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW)) 9965 { 9966 /* Setup initial funcdesc value. */ 9967 /* FIXME: we don't support lazy binding because there is a 9968 race condition between both words getting written and 9969 some other thread attempting to read them. The ARM 9970 architecture does not have an atomic 64 bit load/store 9971 instruction that could be used to prevent it; it is 9972 recommended that threaded FDPIC applications run with the 9973 LD_BIND_NOW environment variable set. */ 9974 bfd_put_32(output_bfd, plt_address + 0x18, 9975 sgot->contents + got_offset); 9976 bfd_put_32(output_bfd, -1 /*TODO*/, 9977 sgot->contents + got_offset + 4); 9978 } 9979 } 9980 9981 if (dynindx == -1) 9982 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel); 9983 else 9984 { 9985 if (htab->fdpic_p) 9986 { 9987 /* For FDPIC we put PLT relocationss into .rel.got when not 9988 lazy binding otherwise we put them in .rel.plt. For now, 9989 we don't support lazy binding so put it in .rel.got. */ 9990 if (info->flags & DF_BIND_NOW) 9991 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelgot, &rel); 9992 else 9993 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelplt, &rel); 9994 } 9995 else 9996 { 9997 loc = srel->contents + plt_index * RELOC_SIZE (htab); 9998 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc); 9999 } 10000 } 10001 10002 return TRUE; 10003 } 10004 10005 /* Some relocations map to different relocations depending on the 10006 target. Return the real relocation. */ 10007 10008 static int 10009 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals, 10010 int r_type) 10011 { 10012 switch (r_type) 10013 { 10014 case R_ARM_TARGET1: 10015 if (globals->target1_is_rel) 10016 return R_ARM_REL32; 10017 else 10018 return R_ARM_ABS32; 10019 10020 case R_ARM_TARGET2: 10021 return globals->target2_reloc; 10022 10023 default: 10024 return r_type; 10025 } 10026 } 10027 10028 /* Return the base VMA address which should be subtracted from real addresses 10029 when resolving @dtpoff relocation. 10030 This is PT_TLS segment p_vaddr. */ 10031 10032 static bfd_vma 10033 dtpoff_base (struct bfd_link_info *info) 10034 { 10035 /* If tls_sec is NULL, we should have signalled an error already. */ 10036 if (elf_hash_table (info)->tls_sec == NULL) 10037 return 0; 10038 return elf_hash_table (info)->tls_sec->vma; 10039 } 10040 10041 /* Return the relocation value for @tpoff relocation 10042 if STT_TLS virtual address is ADDRESS. */ 10043 10044 static bfd_vma 10045 tpoff (struct bfd_link_info *info, bfd_vma address) 10046 { 10047 struct elf_link_hash_table *htab = elf_hash_table (info); 10048 bfd_vma base; 10049 10050 /* If tls_sec is NULL, we should have signalled an error already. */ 10051 if (htab->tls_sec == NULL) 10052 return 0; 10053 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power); 10054 return address - htab->tls_sec->vma + base; 10055 } 10056 10057 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA. 10058 VALUE is the relocation value. */ 10059 10060 static bfd_reloc_status_type 10061 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value) 10062 { 10063 if (value > 0xfff) 10064 return bfd_reloc_overflow; 10065 10066 value |= bfd_get_32 (abfd, data) & 0xfffff000; 10067 bfd_put_32 (abfd, value, data); 10068 return bfd_reloc_ok; 10069 } 10070 10071 /* Handle TLS relaxations. Relaxing is possible for symbols that use 10072 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or 10073 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link. 10074 10075 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller 10076 is to then call final_link_relocate. Return other values in the 10077 case of error. 10078 10079 FIXME:When --emit-relocs is in effect, we'll emit relocs describing 10080 the pre-relaxed code. It would be nice if the relocs were updated 10081 to match the optimization. */ 10082 10083 static bfd_reloc_status_type 10084 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals, 10085 bfd *input_bfd, asection *input_sec, bfd_byte *contents, 10086 Elf_Internal_Rela *rel, unsigned long is_local) 10087 { 10088 unsigned long insn; 10089 10090 switch (ELF32_R_TYPE (rel->r_info)) 10091 { 10092 default: 10093 return bfd_reloc_notsupported; 10094 10095 case R_ARM_TLS_GOTDESC: 10096 if (is_local) 10097 insn = 0; 10098 else 10099 { 10100 insn = bfd_get_32 (input_bfd, contents + rel->r_offset); 10101 if (insn & 1) 10102 insn -= 5; /* THUMB */ 10103 else 10104 insn -= 8; /* ARM */ 10105 } 10106 bfd_put_32 (input_bfd, insn, contents + rel->r_offset); 10107 return bfd_reloc_continue; 10108 10109 case R_ARM_THM_TLS_DESCSEQ: 10110 /* Thumb insn. */ 10111 insn = bfd_get_16 (input_bfd, contents + rel->r_offset); 10112 if ((insn & 0xff78) == 0x4478) /* add rx, pc */ 10113 { 10114 if (is_local) 10115 /* nop */ 10116 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset); 10117 } 10118 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */ 10119 { 10120 if (is_local) 10121 /* nop */ 10122 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset); 10123 else 10124 /* ldr rx,[ry] */ 10125 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset); 10126 } 10127 else if ((insn & 0xff87) == 0x4780) /* blx rx */ 10128 { 10129 if (is_local) 10130 /* nop */ 10131 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset); 10132 else 10133 /* mov r0, rx */ 10134 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78), 10135 contents + rel->r_offset); 10136 } 10137 else 10138 { 10139 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800) 10140 /* It's a 32 bit instruction, fetch the rest of it for 10141 error generation. */ 10142 insn = (insn << 16) 10143 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2); 10144 _bfd_error_handler 10145 /* xgettext:c-format */ 10146 (_("%pB(%pA+%#" PRIx64 "): " 10147 "unexpected %s instruction '%#lx' in TLS trampoline"), 10148 input_bfd, input_sec, (uint64_t) rel->r_offset, 10149 "Thumb", insn); 10150 return bfd_reloc_notsupported; 10151 } 10152 break; 10153 10154 case R_ARM_TLS_DESCSEQ: 10155 /* arm insn. */ 10156 insn = bfd_get_32 (input_bfd, contents + rel->r_offset); 10157 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */ 10158 { 10159 if (is_local) 10160 /* mov rx, ry */ 10161 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff), 10162 contents + rel->r_offset); 10163 } 10164 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/ 10165 { 10166 if (is_local) 10167 /* nop */ 10168 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset); 10169 else 10170 /* ldr rx,[ry] */ 10171 bfd_put_32 (input_bfd, insn & 0xfffff000, 10172 contents + rel->r_offset); 10173 } 10174 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */ 10175 { 10176 if (is_local) 10177 /* nop */ 10178 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset); 10179 else 10180 /* mov r0, rx */ 10181 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf), 10182 contents + rel->r_offset); 10183 } 10184 else 10185 { 10186 _bfd_error_handler 10187 /* xgettext:c-format */ 10188 (_("%pB(%pA+%#" PRIx64 "): " 10189 "unexpected %s instruction '%#lx' in TLS trampoline"), 10190 input_bfd, input_sec, (uint64_t) rel->r_offset, 10191 "ARM", insn); 10192 return bfd_reloc_notsupported; 10193 } 10194 break; 10195 10196 case R_ARM_TLS_CALL: 10197 /* GD->IE relaxation, turn the instruction into 'nop' or 10198 'ldr r0, [pc,r0]' */ 10199 insn = is_local ? 0xe1a00000 : 0xe79f0000; 10200 bfd_put_32 (input_bfd, insn, contents + rel->r_offset); 10201 break; 10202 10203 case R_ARM_THM_TLS_CALL: 10204 /* GD->IE relaxation. */ 10205 if (!is_local) 10206 /* add r0,pc; ldr r0, [r0] */ 10207 insn = 0x44786800; 10208 else if (using_thumb2 (globals)) 10209 /* nop.w */ 10210 insn = 0xf3af8000; 10211 else 10212 /* nop; nop */ 10213 insn = 0xbf00bf00; 10214 10215 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset); 10216 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2); 10217 break; 10218 } 10219 return bfd_reloc_ok; 10220 } 10221 10222 /* For a given value of n, calculate the value of G_n as required to 10223 deal with group relocations. We return it in the form of an 10224 encoded constant-and-rotation, together with the final residual. If n is 10225 specified as less than zero, then final_residual is filled with the 10226 input value and no further action is performed. */ 10227 10228 static bfd_vma 10229 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual) 10230 { 10231 int current_n; 10232 bfd_vma g_n; 10233 bfd_vma encoded_g_n = 0; 10234 bfd_vma residual = value; /* Also known as Y_n. */ 10235 10236 for (current_n = 0; current_n <= n; current_n++) 10237 { 10238 int shift; 10239 10240 /* Calculate which part of the value to mask. */ 10241 if (residual == 0) 10242 shift = 0; 10243 else 10244 { 10245 int msb; 10246 10247 /* Determine the most significant bit in the residual and 10248 align the resulting value to a 2-bit boundary. */ 10249 for (msb = 30; msb >= 0; msb -= 2) 10250 if (residual & (3u << msb)) 10251 break; 10252 10253 /* The desired shift is now (msb - 6), or zero, whichever 10254 is the greater. */ 10255 shift = msb - 6; 10256 if (shift < 0) 10257 shift = 0; 10258 } 10259 10260 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */ 10261 g_n = residual & (0xff << shift); 10262 encoded_g_n = (g_n >> shift) 10263 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8); 10264 10265 /* Calculate the residual for the next time around. */ 10266 residual &= ~g_n; 10267 } 10268 10269 *final_residual = residual; 10270 10271 return encoded_g_n; 10272 } 10273 10274 /* Given an ARM instruction, determine whether it is an ADD or a SUB. 10275 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */ 10276 10277 static int 10278 identify_add_or_sub (bfd_vma insn) 10279 { 10280 int opcode = insn & 0x1e00000; 10281 10282 if (opcode == 1 << 23) /* ADD */ 10283 return 1; 10284 10285 if (opcode == 1 << 22) /* SUB */ 10286 return -1; 10287 10288 return 0; 10289 } 10290 10291 /* Perform a relocation as part of a final link. */ 10292 10293 static bfd_reloc_status_type 10294 elf32_arm_final_link_relocate (reloc_howto_type * howto, 10295 bfd * input_bfd, 10296 bfd * output_bfd, 10297 asection * input_section, 10298 bfd_byte * contents, 10299 Elf_Internal_Rela * rel, 10300 bfd_vma value, 10301 struct bfd_link_info * info, 10302 asection * sym_sec, 10303 const char * sym_name, 10304 unsigned char st_type, 10305 enum arm_st_branch_type branch_type, 10306 struct elf_link_hash_entry * h, 10307 bfd_boolean * unresolved_reloc_p, 10308 char ** error_message) 10309 { 10310 unsigned long r_type = howto->type; 10311 unsigned long r_symndx; 10312 bfd_byte * hit_data = contents + rel->r_offset; 10313 bfd_vma * local_got_offsets; 10314 bfd_vma * local_tlsdesc_gotents; 10315 asection * sgot; 10316 asection * splt; 10317 asection * sreloc = NULL; 10318 asection * srelgot; 10319 bfd_vma addend; 10320 bfd_signed_vma signed_addend; 10321 unsigned char dynreloc_st_type; 10322 bfd_vma dynreloc_value; 10323 struct elf32_arm_link_hash_table * globals; 10324 struct elf32_arm_link_hash_entry *eh; 10325 union gotplt_union *root_plt; 10326 struct arm_plt_info *arm_plt; 10327 bfd_vma plt_offset; 10328 bfd_vma gotplt_offset; 10329 bfd_boolean has_iplt_entry; 10330 bfd_boolean resolved_to_zero; 10331 10332 globals = elf32_arm_hash_table (info); 10333 if (globals == NULL) 10334 return bfd_reloc_notsupported; 10335 10336 BFD_ASSERT (is_arm_elf (input_bfd)); 10337 BFD_ASSERT (howto != NULL); 10338 10339 /* Some relocation types map to different relocations depending on the 10340 target. We pick the right one here. */ 10341 r_type = arm_real_reloc_type (globals, r_type); 10342 10343 /* It is possible to have linker relaxations on some TLS access 10344 models. Update our information here. */ 10345 r_type = elf32_arm_tls_transition (info, r_type, h); 10346 10347 if (r_type != howto->type) 10348 howto = elf32_arm_howto_from_type (r_type); 10349 10350 eh = (struct elf32_arm_link_hash_entry *) h; 10351 sgot = globals->root.sgot; 10352 local_got_offsets = elf_local_got_offsets (input_bfd); 10353 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd); 10354 10355 if (globals->root.dynamic_sections_created) 10356 srelgot = globals->root.srelgot; 10357 else 10358 srelgot = NULL; 10359 10360 r_symndx = ELF32_R_SYM (rel->r_info); 10361 10362 if (globals->use_rel) 10363 { 10364 bfd_vma sign; 10365 10366 switch (howto->size) 10367 { 10368 case 0: addend = bfd_get_8 (input_bfd, hit_data); break; 10369 case 1: addend = bfd_get_16 (input_bfd, hit_data); break; 10370 case 2: addend = bfd_get_32 (input_bfd, hit_data); break; 10371 default: addend = 0; break; 10372 } 10373 /* Note: the addend and signed_addend calculated here are 10374 incorrect for any split field. */ 10375 addend &= howto->src_mask; 10376 sign = howto->src_mask & ~(howto->src_mask >> 1); 10377 signed_addend = (addend ^ sign) - sign; 10378 signed_addend = (bfd_vma) signed_addend << howto->rightshift; 10379 addend <<= howto->rightshift; 10380 } 10381 else 10382 addend = signed_addend = rel->r_addend; 10383 10384 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we 10385 are resolving a function call relocation. */ 10386 if (using_thumb_only (globals) 10387 && (r_type == R_ARM_THM_CALL 10388 || r_type == R_ARM_THM_JUMP24) 10389 && branch_type == ST_BRANCH_TO_ARM) 10390 branch_type = ST_BRANCH_TO_THUMB; 10391 10392 /* Record the symbol information that should be used in dynamic 10393 relocations. */ 10394 dynreloc_st_type = st_type; 10395 dynreloc_value = value; 10396 if (branch_type == ST_BRANCH_TO_THUMB) 10397 dynreloc_value |= 1; 10398 10399 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and 10400 VALUE appropriately for relocations that we resolve at link time. */ 10401 has_iplt_entry = FALSE; 10402 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt, 10403 &arm_plt) 10404 && root_plt->offset != (bfd_vma) -1) 10405 { 10406 plt_offset = root_plt->offset; 10407 gotplt_offset = arm_plt->got_offset; 10408 10409 if (h == NULL || eh->is_iplt) 10410 { 10411 has_iplt_entry = TRUE; 10412 splt = globals->root.iplt; 10413 10414 /* Populate .iplt entries here, because not all of them will 10415 be seen by finish_dynamic_symbol. The lower bit is set if 10416 we have already populated the entry. */ 10417 if (plt_offset & 1) 10418 plt_offset--; 10419 else 10420 { 10421 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt, 10422 -1, dynreloc_value)) 10423 root_plt->offset |= 1; 10424 else 10425 return bfd_reloc_notsupported; 10426 } 10427 10428 /* Static relocations always resolve to the .iplt entry. */ 10429 st_type = STT_FUNC; 10430 value = (splt->output_section->vma 10431 + splt->output_offset 10432 + plt_offset); 10433 branch_type = ST_BRANCH_TO_ARM; 10434 10435 /* If there are non-call relocations that resolve to the .iplt 10436 entry, then all dynamic ones must too. */ 10437 if (arm_plt->noncall_refcount != 0) 10438 { 10439 dynreloc_st_type = st_type; 10440 dynreloc_value = value; 10441 } 10442 } 10443 else 10444 /* We populate the .plt entry in finish_dynamic_symbol. */ 10445 splt = globals->root.splt; 10446 } 10447 else 10448 { 10449 splt = NULL; 10450 plt_offset = (bfd_vma) -1; 10451 gotplt_offset = (bfd_vma) -1; 10452 } 10453 10454 resolved_to_zero = (h != NULL 10455 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)); 10456 10457 switch (r_type) 10458 { 10459 case R_ARM_NONE: 10460 /* We don't need to find a value for this symbol. It's just a 10461 marker. */ 10462 *unresolved_reloc_p = FALSE; 10463 return bfd_reloc_ok; 10464 10465 case R_ARM_ABS12: 10466 if (globals->root.target_os != is_vxworks) 10467 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend); 10468 /* Fall through. */ 10469 10470 case R_ARM_PC24: 10471 case R_ARM_ABS32: 10472 case R_ARM_ABS32_NOI: 10473 case R_ARM_REL32: 10474 case R_ARM_REL32_NOI: 10475 case R_ARM_CALL: 10476 case R_ARM_JUMP24: 10477 case R_ARM_XPC25: 10478 case R_ARM_PREL31: 10479 case R_ARM_PLT32: 10480 /* Handle relocations which should use the PLT entry. ABS32/REL32 10481 will use the symbol's value, which may point to a PLT entry, but we 10482 don't need to handle that here. If we created a PLT entry, all 10483 branches in this object should go to it, except if the PLT is too 10484 far away, in which case a long branch stub should be inserted. */ 10485 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32 10486 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI 10487 && r_type != R_ARM_CALL 10488 && r_type != R_ARM_JUMP24 10489 && r_type != R_ARM_PLT32) 10490 && plt_offset != (bfd_vma) -1) 10491 { 10492 /* If we've created a .plt section, and assigned a PLT entry 10493 to this function, it must either be a STT_GNU_IFUNC reference 10494 or not be known to bind locally. In other cases, we should 10495 have cleared the PLT entry by now. */ 10496 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h)); 10497 10498 value = (splt->output_section->vma 10499 + splt->output_offset 10500 + plt_offset); 10501 *unresolved_reloc_p = FALSE; 10502 return _bfd_final_link_relocate (howto, input_bfd, input_section, 10503 contents, rel->r_offset, value, 10504 rel->r_addend); 10505 } 10506 10507 /* When generating a shared object or relocatable executable, these 10508 relocations are copied into the output file to be resolved at 10509 run time. */ 10510 if ((bfd_link_pic (info) 10511 || globals->root.is_relocatable_executable 10512 || globals->fdpic_p) 10513 && (input_section->flags & SEC_ALLOC) 10514 && !(globals->root.target_os == is_vxworks 10515 && strcmp (input_section->output_section->name, 10516 ".tls_vars") == 0) 10517 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI) 10518 || !SYMBOL_CALLS_LOCAL (info, h)) 10519 && !(input_bfd == globals->stub_bfd 10520 && strstr (input_section->name, STUB_SUFFIX)) 10521 && (h == NULL 10522 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 10523 && !resolved_to_zero) 10524 || h->root.type != bfd_link_hash_undefweak) 10525 && r_type != R_ARM_PC24 10526 && r_type != R_ARM_CALL 10527 && r_type != R_ARM_JUMP24 10528 && r_type != R_ARM_PREL31 10529 && r_type != R_ARM_PLT32) 10530 { 10531 Elf_Internal_Rela outrel; 10532 bfd_boolean skip, relocate; 10533 int isrofixup = 0; 10534 10535 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI) 10536 && !h->def_regular) 10537 { 10538 char *v = _("shared object"); 10539 10540 if (bfd_link_executable (info)) 10541 v = _("PIE executable"); 10542 10543 _bfd_error_handler 10544 (_("%pB: relocation %s against external or undefined symbol `%s'" 10545 " can not be used when making a %s; recompile with -fPIC"), input_bfd, 10546 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v); 10547 return bfd_reloc_notsupported; 10548 } 10549 10550 *unresolved_reloc_p = FALSE; 10551 10552 if (sreloc == NULL && globals->root.dynamic_sections_created) 10553 { 10554 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section, 10555 ! globals->use_rel); 10556 10557 if (sreloc == NULL) 10558 return bfd_reloc_notsupported; 10559 } 10560 10561 skip = FALSE; 10562 relocate = FALSE; 10563 10564 outrel.r_addend = addend; 10565 outrel.r_offset = 10566 _bfd_elf_section_offset (output_bfd, info, input_section, 10567 rel->r_offset); 10568 if (outrel.r_offset == (bfd_vma) -1) 10569 skip = TRUE; 10570 else if (outrel.r_offset == (bfd_vma) -2) 10571 skip = TRUE, relocate = TRUE; 10572 outrel.r_offset += (input_section->output_section->vma 10573 + input_section->output_offset); 10574 10575 if (skip) 10576 memset (&outrel, 0, sizeof outrel); 10577 else if (h != NULL 10578 && h->dynindx != -1 10579 && (!bfd_link_pic (info) 10580 || !(bfd_link_pie (info) 10581 || SYMBOLIC_BIND (info, h)) 10582 || !h->def_regular)) 10583 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); 10584 else 10585 { 10586 int symbol; 10587 10588 /* This symbol is local, or marked to become local. */ 10589 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI 10590 || (globals->fdpic_p && !bfd_link_pic(info))); 10591 if (globals->root.target_os == is_symbian) 10592 { 10593 asection *osec; 10594 10595 /* On Symbian OS, the data segment and text segement 10596 can be relocated independently. Therefore, we 10597 must indicate the segment to which this 10598 relocation is relative. The BPABI allows us to 10599 use any symbol in the right segment; we just use 10600 the section symbol as it is convenient. (We 10601 cannot use the symbol given by "h" directly as it 10602 will not appear in the dynamic symbol table.) 10603 10604 Note that the dynamic linker ignores the section 10605 symbol value, so we don't subtract osec->vma 10606 from the emitted reloc addend. */ 10607 if (sym_sec) 10608 osec = sym_sec->output_section; 10609 else 10610 osec = input_section->output_section; 10611 symbol = 0; 10612 if (osec && elf_section_data (osec)) 10613 symbol = elf_section_data (osec)->dynindx; 10614 if (symbol == 0) 10615 { 10616 struct elf_link_hash_table *htab = elf_hash_table (info); 10617 10618 if ((osec->flags & SEC_READONLY) == 0 10619 && htab->data_index_section != NULL) 10620 osec = htab->data_index_section; 10621 else 10622 osec = htab->text_index_section; 10623 symbol = elf_section_data (osec)->dynindx; 10624 } 10625 BFD_ASSERT (symbol != 0); 10626 } 10627 else 10628 /* On SVR4-ish systems, the dynamic loader cannot 10629 relocate the text and data segments independently, 10630 so the symbol does not matter. */ 10631 symbol = 0; 10632 if (dynreloc_st_type == STT_GNU_IFUNC) 10633 /* We have an STT_GNU_IFUNC symbol that doesn't resolve 10634 to the .iplt entry. Instead, every non-call reference 10635 must use an R_ARM_IRELATIVE relocation to obtain the 10636 correct run-time address. */ 10637 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE); 10638 else if (globals->fdpic_p && !bfd_link_pic(info)) 10639 isrofixup = 1; 10640 else 10641 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE); 10642 if (globals->use_rel) 10643 relocate = TRUE; 10644 else 10645 outrel.r_addend += dynreloc_value; 10646 } 10647 10648 if (isrofixup) 10649 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset); 10650 else 10651 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel); 10652 10653 /* If this reloc is against an external symbol, we do not want to 10654 fiddle with the addend. Otherwise, we need to include the symbol 10655 value so that it becomes an addend for the dynamic reloc. */ 10656 if (! relocate) 10657 return bfd_reloc_ok; 10658 10659 return _bfd_final_link_relocate (howto, input_bfd, input_section, 10660 contents, rel->r_offset, 10661 dynreloc_value, (bfd_vma) 0); 10662 } 10663 else switch (r_type) 10664 { 10665 case R_ARM_ABS12: 10666 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend); 10667 10668 case R_ARM_XPC25: /* Arm BLX instruction. */ 10669 case R_ARM_CALL: 10670 case R_ARM_JUMP24: 10671 case R_ARM_PC24: /* Arm B/BL instruction. */ 10672 case R_ARM_PLT32: 10673 { 10674 struct elf32_arm_stub_hash_entry *stub_entry = NULL; 10675 10676 if (r_type == R_ARM_XPC25) 10677 { 10678 /* Check for Arm calling Arm function. */ 10679 /* FIXME: Should we translate the instruction into a BL 10680 instruction instead ? */ 10681 if (branch_type != ST_BRANCH_TO_THUMB) 10682 _bfd_error_handler 10683 (_("\%pB: warning: %s BLX instruction targets" 10684 " %s function '%s'"), 10685 input_bfd, "ARM", 10686 "ARM", h ? h->root.root.string : "(local)"); 10687 } 10688 else if (r_type == R_ARM_PC24) 10689 { 10690 /* Check for Arm calling Thumb function. */ 10691 if (branch_type == ST_BRANCH_TO_THUMB) 10692 { 10693 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd, 10694 output_bfd, input_section, 10695 hit_data, sym_sec, rel->r_offset, 10696 signed_addend, value, 10697 error_message)) 10698 return bfd_reloc_ok; 10699 else 10700 return bfd_reloc_dangerous; 10701 } 10702 } 10703 10704 /* Check if a stub has to be inserted because the 10705 destination is too far or we are changing mode. */ 10706 if ( r_type == R_ARM_CALL 10707 || r_type == R_ARM_JUMP24 10708 || r_type == R_ARM_PLT32) 10709 { 10710 enum elf32_arm_stub_type stub_type = arm_stub_none; 10711 struct elf32_arm_link_hash_entry *hash; 10712 10713 hash = (struct elf32_arm_link_hash_entry *) h; 10714 stub_type = arm_type_of_stub (info, input_section, rel, 10715 st_type, &branch_type, 10716 hash, value, sym_sec, 10717 input_bfd, sym_name); 10718 10719 if (stub_type != arm_stub_none) 10720 { 10721 /* The target is out of reach, so redirect the 10722 branch to the local stub for this function. */ 10723 stub_entry = elf32_arm_get_stub_entry (input_section, 10724 sym_sec, h, 10725 rel, globals, 10726 stub_type); 10727 { 10728 if (stub_entry != NULL) 10729 value = (stub_entry->stub_offset 10730 + stub_entry->stub_sec->output_offset 10731 + stub_entry->stub_sec->output_section->vma); 10732 10733 if (plt_offset != (bfd_vma) -1) 10734 *unresolved_reloc_p = FALSE; 10735 } 10736 } 10737 else 10738 { 10739 /* If the call goes through a PLT entry, make sure to 10740 check distance to the right destination address. */ 10741 if (plt_offset != (bfd_vma) -1) 10742 { 10743 value = (splt->output_section->vma 10744 + splt->output_offset 10745 + plt_offset); 10746 *unresolved_reloc_p = FALSE; 10747 /* The PLT entry is in ARM mode, regardless of the 10748 target function. */ 10749 branch_type = ST_BRANCH_TO_ARM; 10750 } 10751 } 10752 } 10753 10754 /* The ARM ELF ABI says that this reloc is computed as: S - P + A 10755 where: 10756 S is the address of the symbol in the relocation. 10757 P is address of the instruction being relocated. 10758 A is the addend (extracted from the instruction) in bytes. 10759 10760 S is held in 'value'. 10761 P is the base address of the section containing the 10762 instruction plus the offset of the reloc into that 10763 section, ie: 10764 (input_section->output_section->vma + 10765 input_section->output_offset + 10766 rel->r_offset). 10767 A is the addend, converted into bytes, ie: 10768 (signed_addend * 4) 10769 10770 Note: None of these operations have knowledge of the pipeline 10771 size of the processor, thus it is up to the assembler to 10772 encode this information into the addend. */ 10773 value -= (input_section->output_section->vma 10774 + input_section->output_offset); 10775 value -= rel->r_offset; 10776 value += signed_addend; 10777 10778 signed_addend = value; 10779 signed_addend >>= howto->rightshift; 10780 10781 /* A branch to an undefined weak symbol is turned into a jump to 10782 the next instruction unless a PLT entry will be created. 10783 Do the same for local undefined symbols (but not for STN_UNDEF). 10784 The jump to the next instruction is optimized as a NOP depending 10785 on the architecture. */ 10786 if (h ? (h->root.type == bfd_link_hash_undefweak 10787 && plt_offset == (bfd_vma) -1) 10788 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec)) 10789 { 10790 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000); 10791 10792 if (arch_has_arm_nop (globals)) 10793 value |= 0x0320f000; 10794 else 10795 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */ 10796 } 10797 else 10798 { 10799 /* Perform a signed range check. */ 10800 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1)) 10801 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1))) 10802 return bfd_reloc_overflow; 10803 10804 addend = (value & 2); 10805 10806 value = (signed_addend & howto->dst_mask) 10807 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask)); 10808 10809 if (r_type == R_ARM_CALL) 10810 { 10811 /* Set the H bit in the BLX instruction. */ 10812 if (branch_type == ST_BRANCH_TO_THUMB) 10813 { 10814 if (addend) 10815 value |= (1 << 24); 10816 else 10817 value &= ~(bfd_vma)(1 << 24); 10818 } 10819 10820 /* Select the correct instruction (BL or BLX). */ 10821 /* Only if we are not handling a BL to a stub. In this 10822 case, mode switching is performed by the stub. */ 10823 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry) 10824 value |= (1 << 28); 10825 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN) 10826 { 10827 value &= ~(bfd_vma)(1 << 28); 10828 value |= (1 << 24); 10829 } 10830 } 10831 } 10832 } 10833 break; 10834 10835 case R_ARM_ABS32: 10836 value += addend; 10837 if (branch_type == ST_BRANCH_TO_THUMB) 10838 value |= 1; 10839 break; 10840 10841 case R_ARM_ABS32_NOI: 10842 value += addend; 10843 break; 10844 10845 case R_ARM_REL32: 10846 value += addend; 10847 if (branch_type == ST_BRANCH_TO_THUMB) 10848 value |= 1; 10849 value -= (input_section->output_section->vma 10850 + input_section->output_offset + rel->r_offset); 10851 break; 10852 10853 case R_ARM_REL32_NOI: 10854 value += addend; 10855 value -= (input_section->output_section->vma 10856 + input_section->output_offset + rel->r_offset); 10857 break; 10858 10859 case R_ARM_PREL31: 10860 value -= (input_section->output_section->vma 10861 + input_section->output_offset + rel->r_offset); 10862 value += signed_addend; 10863 if (! h || h->root.type != bfd_link_hash_undefweak) 10864 { 10865 /* Check for overflow. */ 10866 if ((value ^ (value >> 1)) & (1 << 30)) 10867 return bfd_reloc_overflow; 10868 } 10869 value &= 0x7fffffff; 10870 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000); 10871 if (branch_type == ST_BRANCH_TO_THUMB) 10872 value |= 1; 10873 break; 10874 } 10875 10876 bfd_put_32 (input_bfd, value, hit_data); 10877 return bfd_reloc_ok; 10878 10879 case R_ARM_ABS8: 10880 value += addend; 10881 10882 /* There is no way to tell whether the user intended to use a signed or 10883 unsigned addend. When checking for overflow we accept either, 10884 as specified by the AAELF. */ 10885 if ((long) value > 0xff || (long) value < -0x80) 10886 return bfd_reloc_overflow; 10887 10888 bfd_put_8 (input_bfd, value, hit_data); 10889 return bfd_reloc_ok; 10890 10891 case R_ARM_ABS16: 10892 value += addend; 10893 10894 /* See comment for R_ARM_ABS8. */ 10895 if ((long) value > 0xffff || (long) value < -0x8000) 10896 return bfd_reloc_overflow; 10897 10898 bfd_put_16 (input_bfd, value, hit_data); 10899 return bfd_reloc_ok; 10900 10901 case R_ARM_THM_ABS5: 10902 /* Support ldr and str instructions for the thumb. */ 10903 if (globals->use_rel) 10904 { 10905 /* Need to refetch addend. */ 10906 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask; 10907 /* ??? Need to determine shift amount from operand size. */ 10908 addend >>= howto->rightshift; 10909 } 10910 value += addend; 10911 10912 /* ??? Isn't value unsigned? */ 10913 if ((long) value > 0x1f || (long) value < -0x10) 10914 return bfd_reloc_overflow; 10915 10916 /* ??? Value needs to be properly shifted into place first. */ 10917 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f; 10918 bfd_put_16 (input_bfd, value, hit_data); 10919 return bfd_reloc_ok; 10920 10921 case R_ARM_THM_ALU_PREL_11_0: 10922 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */ 10923 { 10924 bfd_vma insn; 10925 bfd_signed_vma relocation; 10926 10927 insn = (bfd_get_16 (input_bfd, hit_data) << 16) 10928 | bfd_get_16 (input_bfd, hit_data + 2); 10929 10930 if (globals->use_rel) 10931 { 10932 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4) 10933 | ((insn & (1 << 26)) >> 15); 10934 if (insn & 0xf00000) 10935 signed_addend = -signed_addend; 10936 } 10937 10938 relocation = value + signed_addend; 10939 relocation -= Pa (input_section->output_section->vma 10940 + input_section->output_offset 10941 + rel->r_offset); 10942 10943 /* PR 21523: Use an absolute value. The user of this reloc will 10944 have already selected an ADD or SUB insn appropriately. */ 10945 value = llabs (relocation); 10946 10947 if (value >= 0x1000) 10948 return bfd_reloc_overflow; 10949 10950 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */ 10951 if (branch_type == ST_BRANCH_TO_THUMB) 10952 value |= 1; 10953 10954 insn = (insn & 0xfb0f8f00) | (value & 0xff) 10955 | ((value & 0x700) << 4) 10956 | ((value & 0x800) << 15); 10957 if (relocation < 0) 10958 insn |= 0xa00000; 10959 10960 bfd_put_16 (input_bfd, insn >> 16, hit_data); 10961 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2); 10962 10963 return bfd_reloc_ok; 10964 } 10965 10966 case R_ARM_THM_PC8: 10967 /* PR 10073: This reloc is not generated by the GNU toolchain, 10968 but it is supported for compatibility with third party libraries 10969 generated by other compilers, specifically the ARM/IAR. */ 10970 { 10971 bfd_vma insn; 10972 bfd_signed_vma relocation; 10973 10974 insn = bfd_get_16 (input_bfd, hit_data); 10975 10976 if (globals->use_rel) 10977 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4; 10978 10979 relocation = value + addend; 10980 relocation -= Pa (input_section->output_section->vma 10981 + input_section->output_offset 10982 + rel->r_offset); 10983 10984 value = relocation; 10985 10986 /* We do not check for overflow of this reloc. Although strictly 10987 speaking this is incorrect, it appears to be necessary in order 10988 to work with IAR generated relocs. Since GCC and GAS do not 10989 generate R_ARM_THM_PC8 relocs, the lack of a check should not be 10990 a problem for them. */ 10991 value &= 0x3fc; 10992 10993 insn = (insn & 0xff00) | (value >> 2); 10994 10995 bfd_put_16 (input_bfd, insn, hit_data); 10996 10997 return bfd_reloc_ok; 10998 } 10999 11000 case R_ARM_THM_PC12: 11001 /* Corresponds to: ldr.w reg, [pc, #offset]. */ 11002 { 11003 bfd_vma insn; 11004 bfd_signed_vma relocation; 11005 11006 insn = (bfd_get_16 (input_bfd, hit_data) << 16) 11007 | bfd_get_16 (input_bfd, hit_data + 2); 11008 11009 if (globals->use_rel) 11010 { 11011 signed_addend = insn & 0xfff; 11012 if (!(insn & (1 << 23))) 11013 signed_addend = -signed_addend; 11014 } 11015 11016 relocation = value + signed_addend; 11017 relocation -= Pa (input_section->output_section->vma 11018 + input_section->output_offset 11019 + rel->r_offset); 11020 11021 value = relocation; 11022 11023 if (value >= 0x1000) 11024 return bfd_reloc_overflow; 11025 11026 insn = (insn & 0xff7ff000) | value; 11027 if (relocation >= 0) 11028 insn |= (1 << 23); 11029 11030 bfd_put_16 (input_bfd, insn >> 16, hit_data); 11031 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2); 11032 11033 return bfd_reloc_ok; 11034 } 11035 11036 case R_ARM_THM_XPC22: 11037 case R_ARM_THM_CALL: 11038 case R_ARM_THM_JUMP24: 11039 /* Thumb BL (branch long instruction). */ 11040 { 11041 bfd_vma relocation; 11042 bfd_vma reloc_sign; 11043 bfd_boolean overflow = FALSE; 11044 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data); 11045 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2); 11046 bfd_signed_vma reloc_signed_max; 11047 bfd_signed_vma reloc_signed_min; 11048 bfd_vma check; 11049 bfd_signed_vma signed_check; 11050 int bitsize; 11051 const int thumb2 = using_thumb2 (globals); 11052 const int thumb2_bl = using_thumb2_bl (globals); 11053 11054 /* A branch to an undefined weak symbol is turned into a jump to 11055 the next instruction unless a PLT entry will be created. 11056 The jump to the next instruction is optimized as a NOP.W for 11057 Thumb-2 enabled architectures. */ 11058 if (h && h->root.type == bfd_link_hash_undefweak 11059 && plt_offset == (bfd_vma) -1) 11060 { 11061 if (thumb2) 11062 { 11063 bfd_put_16 (input_bfd, 0xf3af, hit_data); 11064 bfd_put_16 (input_bfd, 0x8000, hit_data + 2); 11065 } 11066 else 11067 { 11068 bfd_put_16 (input_bfd, 0xe000, hit_data); 11069 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2); 11070 } 11071 return bfd_reloc_ok; 11072 } 11073 11074 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible 11075 with Thumb-1) involving the J1 and J2 bits. */ 11076 if (globals->use_rel) 11077 { 11078 bfd_vma s = (upper_insn & (1 << 10)) >> 10; 11079 bfd_vma upper = upper_insn & 0x3ff; 11080 bfd_vma lower = lower_insn & 0x7ff; 11081 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13; 11082 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11; 11083 bfd_vma i1 = j1 ^ s ? 0 : 1; 11084 bfd_vma i2 = j2 ^ s ? 0 : 1; 11085 11086 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1); 11087 /* Sign extend. */ 11088 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24); 11089 11090 signed_addend = addend; 11091 } 11092 11093 if (r_type == R_ARM_THM_XPC22) 11094 { 11095 /* Check for Thumb to Thumb call. */ 11096 /* FIXME: Should we translate the instruction into a BL 11097 instruction instead ? */ 11098 if (branch_type == ST_BRANCH_TO_THUMB) 11099 _bfd_error_handler 11100 (_("%pB: warning: %s BLX instruction targets" 11101 " %s function '%s'"), 11102 input_bfd, "Thumb", 11103 "Thumb", h ? h->root.root.string : "(local)"); 11104 } 11105 else 11106 { 11107 /* If it is not a call to Thumb, assume call to Arm. 11108 If it is a call relative to a section name, then it is not a 11109 function call at all, but rather a long jump. Calls through 11110 the PLT do not require stubs. */ 11111 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1) 11112 { 11113 if (globals->use_blx && r_type == R_ARM_THM_CALL) 11114 { 11115 /* Convert BL to BLX. */ 11116 lower_insn = (lower_insn & ~0x1000) | 0x0800; 11117 } 11118 else if (( r_type != R_ARM_THM_CALL) 11119 && (r_type != R_ARM_THM_JUMP24)) 11120 { 11121 if (elf32_thumb_to_arm_stub 11122 (info, sym_name, input_bfd, output_bfd, input_section, 11123 hit_data, sym_sec, rel->r_offset, signed_addend, value, 11124 error_message)) 11125 return bfd_reloc_ok; 11126 else 11127 return bfd_reloc_dangerous; 11128 } 11129 } 11130 else if (branch_type == ST_BRANCH_TO_THUMB 11131 && globals->use_blx 11132 && r_type == R_ARM_THM_CALL) 11133 { 11134 /* Make sure this is a BL. */ 11135 lower_insn |= 0x1800; 11136 } 11137 } 11138 11139 enum elf32_arm_stub_type stub_type = arm_stub_none; 11140 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24) 11141 { 11142 /* Check if a stub has to be inserted because the destination 11143 is too far. */ 11144 struct elf32_arm_stub_hash_entry *stub_entry; 11145 struct elf32_arm_link_hash_entry *hash; 11146 11147 hash = (struct elf32_arm_link_hash_entry *) h; 11148 11149 stub_type = arm_type_of_stub (info, input_section, rel, 11150 st_type, &branch_type, 11151 hash, value, sym_sec, 11152 input_bfd, sym_name); 11153 11154 if (stub_type != arm_stub_none) 11155 { 11156 /* The target is out of reach or we are changing modes, so 11157 redirect the branch to the local stub for this 11158 function. */ 11159 stub_entry = elf32_arm_get_stub_entry (input_section, 11160 sym_sec, h, 11161 rel, globals, 11162 stub_type); 11163 if (stub_entry != NULL) 11164 { 11165 value = (stub_entry->stub_offset 11166 + stub_entry->stub_sec->output_offset 11167 + stub_entry->stub_sec->output_section->vma); 11168 11169 if (plt_offset != (bfd_vma) -1) 11170 *unresolved_reloc_p = FALSE; 11171 } 11172 11173 /* If this call becomes a call to Arm, force BLX. */ 11174 if (globals->use_blx && (r_type == R_ARM_THM_CALL)) 11175 { 11176 if ((stub_entry 11177 && !arm_stub_is_thumb (stub_entry->stub_type)) 11178 || branch_type != ST_BRANCH_TO_THUMB) 11179 lower_insn = (lower_insn & ~0x1000) | 0x0800; 11180 } 11181 } 11182 } 11183 11184 /* Handle calls via the PLT. */ 11185 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1) 11186 { 11187 value = (splt->output_section->vma 11188 + splt->output_offset 11189 + plt_offset); 11190 11191 if (globals->use_blx 11192 && r_type == R_ARM_THM_CALL 11193 && ! using_thumb_only (globals)) 11194 { 11195 /* If the Thumb BLX instruction is available, convert 11196 the BL to a BLX instruction to call the ARM-mode 11197 PLT entry. */ 11198 lower_insn = (lower_insn & ~0x1000) | 0x0800; 11199 branch_type = ST_BRANCH_TO_ARM; 11200 } 11201 else 11202 { 11203 if (! using_thumb_only (globals)) 11204 /* Target the Thumb stub before the ARM PLT entry. */ 11205 value -= PLT_THUMB_STUB_SIZE; 11206 branch_type = ST_BRANCH_TO_THUMB; 11207 } 11208 *unresolved_reloc_p = FALSE; 11209 } 11210 11211 relocation = value + signed_addend; 11212 11213 relocation -= (input_section->output_section->vma 11214 + input_section->output_offset 11215 + rel->r_offset); 11216 11217 check = relocation >> howto->rightshift; 11218 11219 /* If this is a signed value, the rightshift just dropped 11220 leading 1 bits (assuming twos complement). */ 11221 if ((bfd_signed_vma) relocation >= 0) 11222 signed_check = check; 11223 else 11224 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift); 11225 11226 /* Calculate the permissable maximum and minimum values for 11227 this relocation according to whether we're relocating for 11228 Thumb-2 or not. */ 11229 bitsize = howto->bitsize; 11230 if (!thumb2_bl) 11231 bitsize -= 2; 11232 reloc_signed_max = (1 << (bitsize - 1)) - 1; 11233 reloc_signed_min = ~reloc_signed_max; 11234 11235 /* Assumes two's complement. */ 11236 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) 11237 overflow = TRUE; 11238 11239 if ((lower_insn & 0x5000) == 0x4000) 11240 /* For a BLX instruction, make sure that the relocation is rounded up 11241 to a word boundary. This follows the semantics of the instruction 11242 which specifies that bit 1 of the target address will come from bit 11243 1 of the base address. */ 11244 relocation = (relocation + 2) & ~ 3; 11245 11246 /* Put RELOCATION back into the insn. Assumes two's complement. 11247 We use the Thumb-2 encoding, which is safe even if dealing with 11248 a Thumb-1 instruction by virtue of our overflow check above. */ 11249 reloc_sign = (signed_check < 0) ? 1 : 0; 11250 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff) 11251 | ((relocation >> 12) & 0x3ff) 11252 | (reloc_sign << 10); 11253 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff) 11254 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13) 11255 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11) 11256 | ((relocation >> 1) & 0x7ff); 11257 11258 /* Put the relocated value back in the object file: */ 11259 bfd_put_16 (input_bfd, upper_insn, hit_data); 11260 bfd_put_16 (input_bfd, lower_insn, hit_data + 2); 11261 11262 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok); 11263 } 11264 break; 11265 11266 case R_ARM_THM_JUMP19: 11267 /* Thumb32 conditional branch instruction. */ 11268 { 11269 bfd_vma relocation; 11270 bfd_boolean overflow = FALSE; 11271 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data); 11272 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2); 11273 bfd_signed_vma reloc_signed_max = 0xffffe; 11274 bfd_signed_vma reloc_signed_min = -0x100000; 11275 bfd_signed_vma signed_check; 11276 enum elf32_arm_stub_type stub_type = arm_stub_none; 11277 struct elf32_arm_stub_hash_entry *stub_entry; 11278 struct elf32_arm_link_hash_entry *hash; 11279 11280 /* Need to refetch the addend, reconstruct the top three bits, 11281 and squish the two 11 bit pieces together. */ 11282 if (globals->use_rel) 11283 { 11284 bfd_vma S = (upper_insn & 0x0400) >> 10; 11285 bfd_vma upper = (upper_insn & 0x003f); 11286 bfd_vma J1 = (lower_insn & 0x2000) >> 13; 11287 bfd_vma J2 = (lower_insn & 0x0800) >> 11; 11288 bfd_vma lower = (lower_insn & 0x07ff); 11289 11290 upper |= J1 << 6; 11291 upper |= J2 << 7; 11292 upper |= (!S) << 8; 11293 upper -= 0x0100; /* Sign extend. */ 11294 11295 addend = (upper << 12) | (lower << 1); 11296 signed_addend = addend; 11297 } 11298 11299 /* Handle calls via the PLT. */ 11300 if (plt_offset != (bfd_vma) -1) 11301 { 11302 value = (splt->output_section->vma 11303 + splt->output_offset 11304 + plt_offset); 11305 /* Target the Thumb stub before the ARM PLT entry. */ 11306 value -= PLT_THUMB_STUB_SIZE; 11307 *unresolved_reloc_p = FALSE; 11308 } 11309 11310 hash = (struct elf32_arm_link_hash_entry *)h; 11311 11312 stub_type = arm_type_of_stub (info, input_section, rel, 11313 st_type, &branch_type, 11314 hash, value, sym_sec, 11315 input_bfd, sym_name); 11316 if (stub_type != arm_stub_none) 11317 { 11318 stub_entry = elf32_arm_get_stub_entry (input_section, 11319 sym_sec, h, 11320 rel, globals, 11321 stub_type); 11322 if (stub_entry != NULL) 11323 { 11324 value = (stub_entry->stub_offset 11325 + stub_entry->stub_sec->output_offset 11326 + stub_entry->stub_sec->output_section->vma); 11327 } 11328 } 11329 11330 relocation = value + signed_addend; 11331 relocation -= (input_section->output_section->vma 11332 + input_section->output_offset 11333 + rel->r_offset); 11334 signed_check = (bfd_signed_vma) relocation; 11335 11336 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) 11337 overflow = TRUE; 11338 11339 /* Put RELOCATION back into the insn. */ 11340 { 11341 bfd_vma S = (relocation & 0x00100000) >> 20; 11342 bfd_vma J2 = (relocation & 0x00080000) >> 19; 11343 bfd_vma J1 = (relocation & 0x00040000) >> 18; 11344 bfd_vma hi = (relocation & 0x0003f000) >> 12; 11345 bfd_vma lo = (relocation & 0x00000ffe) >> 1; 11346 11347 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi; 11348 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo; 11349 } 11350 11351 /* Put the relocated value back in the object file: */ 11352 bfd_put_16 (input_bfd, upper_insn, hit_data); 11353 bfd_put_16 (input_bfd, lower_insn, hit_data + 2); 11354 11355 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok); 11356 } 11357 11358 case R_ARM_THM_JUMP11: 11359 case R_ARM_THM_JUMP8: 11360 case R_ARM_THM_JUMP6: 11361 /* Thumb B (branch) instruction). */ 11362 { 11363 bfd_signed_vma relocation; 11364 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1; 11365 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max; 11366 bfd_signed_vma signed_check; 11367 11368 /* CZB cannot jump backward. */ 11369 if (r_type == R_ARM_THM_JUMP6) 11370 { 11371 reloc_signed_min = 0; 11372 if (globals->use_rel) 11373 signed_addend = ((addend & 0x200) >> 3) | ((addend & 0xf8) >> 2); 11374 } 11375 11376 relocation = value + signed_addend; 11377 11378 relocation -= (input_section->output_section->vma 11379 + input_section->output_offset 11380 + rel->r_offset); 11381 11382 relocation >>= howto->rightshift; 11383 signed_check = relocation; 11384 11385 if (r_type == R_ARM_THM_JUMP6) 11386 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3); 11387 else 11388 relocation &= howto->dst_mask; 11389 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask)); 11390 11391 bfd_put_16 (input_bfd, relocation, hit_data); 11392 11393 /* Assumes two's complement. */ 11394 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min) 11395 return bfd_reloc_overflow; 11396 11397 return bfd_reloc_ok; 11398 } 11399 11400 case R_ARM_ALU_PCREL7_0: 11401 case R_ARM_ALU_PCREL15_8: 11402 case R_ARM_ALU_PCREL23_15: 11403 { 11404 bfd_vma insn; 11405 bfd_vma relocation; 11406 11407 insn = bfd_get_32 (input_bfd, hit_data); 11408 if (globals->use_rel) 11409 { 11410 /* Extract the addend. */ 11411 addend = (insn & 0xff) << ((insn & 0xf00) >> 7); 11412 signed_addend = addend; 11413 } 11414 relocation = value + signed_addend; 11415 11416 relocation -= (input_section->output_section->vma 11417 + input_section->output_offset 11418 + rel->r_offset); 11419 insn = (insn & ~0xfff) 11420 | ((howto->bitpos << 7) & 0xf00) 11421 | ((relocation >> howto->bitpos) & 0xff); 11422 bfd_put_32 (input_bfd, value, hit_data); 11423 } 11424 return bfd_reloc_ok; 11425 11426 case R_ARM_GNU_VTINHERIT: 11427 case R_ARM_GNU_VTENTRY: 11428 return bfd_reloc_ok; 11429 11430 case R_ARM_GOTOFF32: 11431 /* Relocation is relative to the start of the 11432 global offset table. */ 11433 11434 BFD_ASSERT (sgot != NULL); 11435 if (sgot == NULL) 11436 return bfd_reloc_notsupported; 11437 11438 /* If we are addressing a Thumb function, we need to adjust the 11439 address by one, so that attempts to call the function pointer will 11440 correctly interpret it as Thumb code. */ 11441 if (branch_type == ST_BRANCH_TO_THUMB) 11442 value += 1; 11443 11444 /* Note that sgot->output_offset is not involved in this 11445 calculation. We always want the start of .got. If we 11446 define _GLOBAL_OFFSET_TABLE in a different way, as is 11447 permitted by the ABI, we might have to change this 11448 calculation. */ 11449 value -= sgot->output_section->vma; 11450 return _bfd_final_link_relocate (howto, input_bfd, input_section, 11451 contents, rel->r_offset, value, 11452 rel->r_addend); 11453 11454 case R_ARM_GOTPC: 11455 /* Use global offset table as symbol value. */ 11456 BFD_ASSERT (sgot != NULL); 11457 11458 if (sgot == NULL) 11459 return bfd_reloc_notsupported; 11460 11461 *unresolved_reloc_p = FALSE; 11462 value = sgot->output_section->vma; 11463 return _bfd_final_link_relocate (howto, input_bfd, input_section, 11464 contents, rel->r_offset, value, 11465 rel->r_addend); 11466 11467 case R_ARM_GOT32: 11468 case R_ARM_GOT_PREL: 11469 /* Relocation is to the entry for this symbol in the 11470 global offset table. */ 11471 if (sgot == NULL) 11472 return bfd_reloc_notsupported; 11473 11474 if (dynreloc_st_type == STT_GNU_IFUNC 11475 && plt_offset != (bfd_vma) -1 11476 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h))) 11477 { 11478 /* We have a relocation against a locally-binding STT_GNU_IFUNC 11479 symbol, and the relocation resolves directly to the runtime 11480 target rather than to the .iplt entry. This means that any 11481 .got entry would be the same value as the .igot.plt entry, 11482 so there's no point creating both. */ 11483 sgot = globals->root.igotplt; 11484 value = sgot->output_offset + gotplt_offset; 11485 } 11486 else if (h != NULL) 11487 { 11488 bfd_vma off; 11489 11490 off = h->got.offset; 11491 BFD_ASSERT (off != (bfd_vma) -1); 11492 if ((off & 1) != 0) 11493 { 11494 /* We have already processsed one GOT relocation against 11495 this symbol. */ 11496 off &= ~1; 11497 if (globals->root.dynamic_sections_created 11498 && !SYMBOL_REFERENCES_LOCAL (info, h)) 11499 *unresolved_reloc_p = FALSE; 11500 } 11501 else 11502 { 11503 Elf_Internal_Rela outrel; 11504 int isrofixup = 0; 11505 11506 if (((h->dynindx != -1) || globals->fdpic_p) 11507 && !SYMBOL_REFERENCES_LOCAL (info, h)) 11508 { 11509 /* If the symbol doesn't resolve locally in a static 11510 object, we have an undefined reference. If the 11511 symbol doesn't resolve locally in a dynamic object, 11512 it should be resolved by the dynamic linker. */ 11513 if (globals->root.dynamic_sections_created) 11514 { 11515 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT); 11516 *unresolved_reloc_p = FALSE; 11517 } 11518 else 11519 outrel.r_info = 0; 11520 outrel.r_addend = 0; 11521 } 11522 else 11523 { 11524 if (dynreloc_st_type == STT_GNU_IFUNC) 11525 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE); 11526 else if (bfd_link_pic (info) 11527 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) 11528 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE); 11529 else 11530 { 11531 outrel.r_info = 0; 11532 if (globals->fdpic_p) 11533 isrofixup = 1; 11534 } 11535 outrel.r_addend = dynreloc_value; 11536 } 11537 11538 /* The GOT entry is initialized to zero by default. 11539 See if we should install a different value. */ 11540 if (outrel.r_addend != 0 11541 && (globals->use_rel || outrel.r_info == 0)) 11542 { 11543 bfd_put_32 (output_bfd, outrel.r_addend, 11544 sgot->contents + off); 11545 outrel.r_addend = 0; 11546 } 11547 11548 if (isrofixup) 11549 arm_elf_add_rofixup (output_bfd, 11550 elf32_arm_hash_table(info)->srofixup, 11551 sgot->output_section->vma 11552 + sgot->output_offset + off); 11553 11554 else if (outrel.r_info != 0) 11555 { 11556 outrel.r_offset = (sgot->output_section->vma 11557 + sgot->output_offset 11558 + off); 11559 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 11560 } 11561 11562 h->got.offset |= 1; 11563 } 11564 value = sgot->output_offset + off; 11565 } 11566 else 11567 { 11568 bfd_vma off; 11569 11570 BFD_ASSERT (local_got_offsets != NULL 11571 && local_got_offsets[r_symndx] != (bfd_vma) -1); 11572 11573 off = local_got_offsets[r_symndx]; 11574 11575 /* The offset must always be a multiple of 4. We use the 11576 least significant bit to record whether we have already 11577 generated the necessary reloc. */ 11578 if ((off & 1) != 0) 11579 off &= ~1; 11580 else 11581 { 11582 Elf_Internal_Rela outrel; 11583 int isrofixup = 0; 11584 11585 if (dynreloc_st_type == STT_GNU_IFUNC) 11586 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE); 11587 else if (bfd_link_pic (info)) 11588 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE); 11589 else 11590 { 11591 outrel.r_info = 0; 11592 if (globals->fdpic_p) 11593 isrofixup = 1; 11594 } 11595 11596 /* The GOT entry is initialized to zero by default. 11597 See if we should install a different value. */ 11598 if (globals->use_rel || outrel.r_info == 0) 11599 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off); 11600 11601 if (isrofixup) 11602 arm_elf_add_rofixup (output_bfd, 11603 globals->srofixup, 11604 sgot->output_section->vma 11605 + sgot->output_offset + off); 11606 11607 else if (outrel.r_info != 0) 11608 { 11609 outrel.r_addend = addend + dynreloc_value; 11610 outrel.r_offset = (sgot->output_section->vma 11611 + sgot->output_offset 11612 + off); 11613 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 11614 } 11615 11616 local_got_offsets[r_symndx] |= 1; 11617 } 11618 11619 value = sgot->output_offset + off; 11620 } 11621 if (r_type != R_ARM_GOT32) 11622 value += sgot->output_section->vma; 11623 11624 return _bfd_final_link_relocate (howto, input_bfd, input_section, 11625 contents, rel->r_offset, value, 11626 rel->r_addend); 11627 11628 case R_ARM_TLS_LDO32: 11629 value = value - dtpoff_base (info); 11630 11631 return _bfd_final_link_relocate (howto, input_bfd, input_section, 11632 contents, rel->r_offset, value, 11633 rel->r_addend); 11634 11635 case R_ARM_TLS_LDM32: 11636 case R_ARM_TLS_LDM32_FDPIC: 11637 { 11638 bfd_vma off; 11639 11640 if (sgot == NULL) 11641 abort (); 11642 11643 off = globals->tls_ldm_got.offset; 11644 11645 if ((off & 1) != 0) 11646 off &= ~1; 11647 else 11648 { 11649 /* If we don't know the module number, create a relocation 11650 for it. */ 11651 if (bfd_link_dll (info)) 11652 { 11653 Elf_Internal_Rela outrel; 11654 11655 if (srelgot == NULL) 11656 abort (); 11657 11658 outrel.r_addend = 0; 11659 outrel.r_offset = (sgot->output_section->vma 11660 + sgot->output_offset + off); 11661 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32); 11662 11663 if (globals->use_rel) 11664 bfd_put_32 (output_bfd, outrel.r_addend, 11665 sgot->contents + off); 11666 11667 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 11668 } 11669 else 11670 bfd_put_32 (output_bfd, 1, sgot->contents + off); 11671 11672 globals->tls_ldm_got.offset |= 1; 11673 } 11674 11675 if (r_type == R_ARM_TLS_LDM32_FDPIC) 11676 { 11677 bfd_put_32(output_bfd, 11678 globals->root.sgot->output_offset + off, 11679 contents + rel->r_offset); 11680 11681 return bfd_reloc_ok; 11682 } 11683 else 11684 { 11685 value = sgot->output_section->vma + sgot->output_offset + off 11686 - (input_section->output_section->vma 11687 + input_section->output_offset + rel->r_offset); 11688 11689 return _bfd_final_link_relocate (howto, input_bfd, input_section, 11690 contents, rel->r_offset, value, 11691 rel->r_addend); 11692 } 11693 } 11694 11695 case R_ARM_TLS_CALL: 11696 case R_ARM_THM_TLS_CALL: 11697 case R_ARM_TLS_GD32: 11698 case R_ARM_TLS_GD32_FDPIC: 11699 case R_ARM_TLS_IE32: 11700 case R_ARM_TLS_IE32_FDPIC: 11701 case R_ARM_TLS_GOTDESC: 11702 case R_ARM_TLS_DESCSEQ: 11703 case R_ARM_THM_TLS_DESCSEQ: 11704 { 11705 bfd_vma off, offplt; 11706 int indx = 0; 11707 char tls_type; 11708 11709 BFD_ASSERT (sgot != NULL); 11710 11711 if (h != NULL) 11712 { 11713 bfd_boolean dyn; 11714 dyn = globals->root.dynamic_sections_created; 11715 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 11716 bfd_link_pic (info), 11717 h) 11718 && (!bfd_link_pic (info) 11719 || !SYMBOL_REFERENCES_LOCAL (info, h))) 11720 { 11721 *unresolved_reloc_p = FALSE; 11722 indx = h->dynindx; 11723 } 11724 off = h->got.offset; 11725 offplt = elf32_arm_hash_entry (h)->tlsdesc_got; 11726 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type; 11727 } 11728 else 11729 { 11730 BFD_ASSERT (local_got_offsets != NULL); 11731 off = local_got_offsets[r_symndx]; 11732 offplt = local_tlsdesc_gotents[r_symndx]; 11733 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx]; 11734 } 11735 11736 /* Linker relaxations happens from one of the 11737 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */ 11738 if (ELF32_R_TYPE(rel->r_info) != r_type) 11739 tls_type = GOT_TLS_IE; 11740 11741 BFD_ASSERT (tls_type != GOT_UNKNOWN); 11742 11743 if ((off & 1) != 0) 11744 off &= ~1; 11745 else 11746 { 11747 bfd_boolean need_relocs = FALSE; 11748 Elf_Internal_Rela outrel; 11749 int cur_off = off; 11750 11751 /* The GOT entries have not been initialized yet. Do it 11752 now, and emit any relocations. If both an IE GOT and a 11753 GD GOT are necessary, we emit the GD first. */ 11754 11755 if ((bfd_link_dll (info) || indx != 0) 11756 && (h == NULL 11757 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 11758 && !resolved_to_zero) 11759 || h->root.type != bfd_link_hash_undefweak)) 11760 { 11761 need_relocs = TRUE; 11762 BFD_ASSERT (srelgot != NULL); 11763 } 11764 11765 if (tls_type & GOT_TLS_GDESC) 11766 { 11767 bfd_byte *loc; 11768 11769 /* We should have relaxed, unless this is an undefined 11770 weak symbol. */ 11771 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak)) 11772 || bfd_link_dll (info)); 11773 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8 11774 <= globals->root.sgotplt->size); 11775 11776 outrel.r_addend = 0; 11777 outrel.r_offset = (globals->root.sgotplt->output_section->vma 11778 + globals->root.sgotplt->output_offset 11779 + offplt 11780 + globals->sgotplt_jump_table_size); 11781 11782 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC); 11783 sreloc = globals->root.srelplt; 11784 loc = sreloc->contents; 11785 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals); 11786 BFD_ASSERT (loc + RELOC_SIZE (globals) 11787 <= sreloc->contents + sreloc->size); 11788 11789 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc); 11790 11791 /* For globals, the first word in the relocation gets 11792 the relocation index and the top bit set, or zero, 11793 if we're binding now. For locals, it gets the 11794 symbol's offset in the tls section. */ 11795 bfd_put_32 (output_bfd, 11796 !h ? value - elf_hash_table (info)->tls_sec->vma 11797 : info->flags & DF_BIND_NOW ? 0 11798 : 0x80000000 | ELF32_R_SYM (outrel.r_info), 11799 globals->root.sgotplt->contents + offplt 11800 + globals->sgotplt_jump_table_size); 11801 11802 /* Second word in the relocation is always zero. */ 11803 bfd_put_32 (output_bfd, 0, 11804 globals->root.sgotplt->contents + offplt 11805 + globals->sgotplt_jump_table_size + 4); 11806 } 11807 if (tls_type & GOT_TLS_GD) 11808 { 11809 if (need_relocs) 11810 { 11811 outrel.r_addend = 0; 11812 outrel.r_offset = (sgot->output_section->vma 11813 + sgot->output_offset 11814 + cur_off); 11815 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32); 11816 11817 if (globals->use_rel) 11818 bfd_put_32 (output_bfd, outrel.r_addend, 11819 sgot->contents + cur_off); 11820 11821 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 11822 11823 if (indx == 0) 11824 bfd_put_32 (output_bfd, value - dtpoff_base (info), 11825 sgot->contents + cur_off + 4); 11826 else 11827 { 11828 outrel.r_addend = 0; 11829 outrel.r_info = ELF32_R_INFO (indx, 11830 R_ARM_TLS_DTPOFF32); 11831 outrel.r_offset += 4; 11832 11833 if (globals->use_rel) 11834 bfd_put_32 (output_bfd, outrel.r_addend, 11835 sgot->contents + cur_off + 4); 11836 11837 elf32_arm_add_dynreloc (output_bfd, info, 11838 srelgot, &outrel); 11839 } 11840 } 11841 else 11842 { 11843 /* If we are not emitting relocations for a 11844 general dynamic reference, then we must be in a 11845 static link or an executable link with the 11846 symbol binding locally. Mark it as belonging 11847 to module 1, the executable. */ 11848 bfd_put_32 (output_bfd, 1, 11849 sgot->contents + cur_off); 11850 bfd_put_32 (output_bfd, value - dtpoff_base (info), 11851 sgot->contents + cur_off + 4); 11852 } 11853 11854 cur_off += 8; 11855 } 11856 11857 if (tls_type & GOT_TLS_IE) 11858 { 11859 if (need_relocs) 11860 { 11861 if (indx == 0) 11862 outrel.r_addend = value - dtpoff_base (info); 11863 else 11864 outrel.r_addend = 0; 11865 outrel.r_offset = (sgot->output_section->vma 11866 + sgot->output_offset 11867 + cur_off); 11868 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32); 11869 11870 if (globals->use_rel) 11871 bfd_put_32 (output_bfd, outrel.r_addend, 11872 sgot->contents + cur_off); 11873 11874 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 11875 } 11876 else 11877 bfd_put_32 (output_bfd, tpoff (info, value), 11878 sgot->contents + cur_off); 11879 cur_off += 4; 11880 } 11881 11882 if (h != NULL) 11883 h->got.offset |= 1; 11884 else 11885 local_got_offsets[r_symndx] |= 1; 11886 } 11887 11888 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC) 11889 off += 8; 11890 else if (tls_type & GOT_TLS_GDESC) 11891 off = offplt; 11892 11893 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL 11894 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL) 11895 { 11896 bfd_signed_vma offset; 11897 /* TLS stubs are arm mode. The original symbol is a 11898 data object, so branch_type is bogus. */ 11899 branch_type = ST_BRANCH_TO_ARM; 11900 enum elf32_arm_stub_type stub_type 11901 = arm_type_of_stub (info, input_section, rel, 11902 st_type, &branch_type, 11903 (struct elf32_arm_link_hash_entry *)h, 11904 globals->tls_trampoline, globals->root.splt, 11905 input_bfd, sym_name); 11906 11907 if (stub_type != arm_stub_none) 11908 { 11909 struct elf32_arm_stub_hash_entry *stub_entry 11910 = elf32_arm_get_stub_entry 11911 (input_section, globals->root.splt, 0, rel, 11912 globals, stub_type); 11913 offset = (stub_entry->stub_offset 11914 + stub_entry->stub_sec->output_offset 11915 + stub_entry->stub_sec->output_section->vma); 11916 } 11917 else 11918 offset = (globals->root.splt->output_section->vma 11919 + globals->root.splt->output_offset 11920 + globals->tls_trampoline); 11921 11922 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL) 11923 { 11924 unsigned long inst; 11925 11926 offset -= (input_section->output_section->vma 11927 + input_section->output_offset 11928 + rel->r_offset + 8); 11929 11930 inst = offset >> 2; 11931 inst &= 0x00ffffff; 11932 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000); 11933 } 11934 else 11935 { 11936 /* Thumb blx encodes the offset in a complicated 11937 fashion. */ 11938 unsigned upper_insn, lower_insn; 11939 unsigned neg; 11940 11941 offset -= (input_section->output_section->vma 11942 + input_section->output_offset 11943 + rel->r_offset + 4); 11944 11945 if (stub_type != arm_stub_none 11946 && arm_stub_is_thumb (stub_type)) 11947 { 11948 lower_insn = 0xd000; 11949 } 11950 else 11951 { 11952 lower_insn = 0xc000; 11953 /* Round up the offset to a word boundary. */ 11954 offset = (offset + 2) & ~2; 11955 } 11956 11957 neg = offset < 0; 11958 upper_insn = (0xf000 11959 | ((offset >> 12) & 0x3ff) 11960 | (neg << 10)); 11961 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13) 11962 | (((!((offset >> 22) & 1)) ^ neg) << 11) 11963 | ((offset >> 1) & 0x7ff); 11964 bfd_put_16 (input_bfd, upper_insn, hit_data); 11965 bfd_put_16 (input_bfd, lower_insn, hit_data + 2); 11966 return bfd_reloc_ok; 11967 } 11968 } 11969 /* These relocations needs special care, as besides the fact 11970 they point somewhere in .gotplt, the addend must be 11971 adjusted accordingly depending on the type of instruction 11972 we refer to. */ 11973 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC)) 11974 { 11975 unsigned long data, insn; 11976 unsigned thumb; 11977 11978 data = bfd_get_signed_32 (input_bfd, hit_data); 11979 thumb = data & 1; 11980 data &= ~1ul; 11981 11982 if (thumb) 11983 { 11984 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data); 11985 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800) 11986 insn = (insn << 16) 11987 | bfd_get_16 (input_bfd, 11988 contents + rel->r_offset - data + 2); 11989 if ((insn & 0xf800c000) == 0xf000c000) 11990 /* bl/blx */ 11991 value = -6; 11992 else if ((insn & 0xffffff00) == 0x4400) 11993 /* add */ 11994 value = -5; 11995 else 11996 { 11997 _bfd_error_handler 11998 /* xgettext:c-format */ 11999 (_("%pB(%pA+%#" PRIx64 "): " 12000 "unexpected %s instruction '%#lx' " 12001 "referenced by TLS_GOTDESC"), 12002 input_bfd, input_section, (uint64_t) rel->r_offset, 12003 "Thumb", insn); 12004 return bfd_reloc_notsupported; 12005 } 12006 } 12007 else 12008 { 12009 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data); 12010 12011 switch (insn >> 24) 12012 { 12013 case 0xeb: /* bl */ 12014 case 0xfa: /* blx */ 12015 value = -4; 12016 break; 12017 12018 case 0xe0: /* add */ 12019 value = -8; 12020 break; 12021 12022 default: 12023 _bfd_error_handler 12024 /* xgettext:c-format */ 12025 (_("%pB(%pA+%#" PRIx64 "): " 12026 "unexpected %s instruction '%#lx' " 12027 "referenced by TLS_GOTDESC"), 12028 input_bfd, input_section, (uint64_t) rel->r_offset, 12029 "ARM", insn); 12030 return bfd_reloc_notsupported; 12031 } 12032 } 12033 12034 value += ((globals->root.sgotplt->output_section->vma 12035 + globals->root.sgotplt->output_offset + off) 12036 - (input_section->output_section->vma 12037 + input_section->output_offset 12038 + rel->r_offset) 12039 + globals->sgotplt_jump_table_size); 12040 } 12041 else 12042 value = ((globals->root.sgot->output_section->vma 12043 + globals->root.sgot->output_offset + off) 12044 - (input_section->output_section->vma 12045 + input_section->output_offset + rel->r_offset)); 12046 12047 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC || 12048 r_type == R_ARM_TLS_IE32_FDPIC)) 12049 { 12050 /* For FDPIC relocations, resolve to the offset of the GOT 12051 entry from the start of GOT. */ 12052 bfd_put_32(output_bfd, 12053 globals->root.sgot->output_offset + off, 12054 contents + rel->r_offset); 12055 12056 return bfd_reloc_ok; 12057 } 12058 else 12059 { 12060 return _bfd_final_link_relocate (howto, input_bfd, input_section, 12061 contents, rel->r_offset, value, 12062 rel->r_addend); 12063 } 12064 } 12065 12066 case R_ARM_TLS_LE32: 12067 if (bfd_link_dll (info)) 12068 { 12069 _bfd_error_handler 12070 /* xgettext:c-format */ 12071 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted " 12072 "in shared object"), 12073 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name); 12074 return bfd_reloc_notsupported; 12075 } 12076 else 12077 value = tpoff (info, value); 12078 12079 return _bfd_final_link_relocate (howto, input_bfd, input_section, 12080 contents, rel->r_offset, value, 12081 rel->r_addend); 12082 12083 case R_ARM_V4BX: 12084 if (globals->fix_v4bx) 12085 { 12086 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 12087 12088 /* Ensure that we have a BX instruction. */ 12089 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10); 12090 12091 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf) 12092 { 12093 /* Branch to veneer. */ 12094 bfd_vma glue_addr; 12095 glue_addr = elf32_arm_bx_glue (info, insn & 0xf); 12096 glue_addr -= input_section->output_section->vma 12097 + input_section->output_offset 12098 + rel->r_offset + 8; 12099 insn = (insn & 0xf0000000) | 0x0a000000 12100 | ((glue_addr >> 2) & 0x00ffffff); 12101 } 12102 else 12103 { 12104 /* Preserve Rm (lowest four bits) and the condition code 12105 (highest four bits). Other bits encode MOV PC,Rm. */ 12106 insn = (insn & 0xf000000f) | 0x01a0f000; 12107 } 12108 12109 bfd_put_32 (input_bfd, insn, hit_data); 12110 } 12111 return bfd_reloc_ok; 12112 12113 case R_ARM_MOVW_ABS_NC: 12114 case R_ARM_MOVT_ABS: 12115 case R_ARM_MOVW_PREL_NC: 12116 case R_ARM_MOVT_PREL: 12117 /* Until we properly support segment-base-relative addressing then 12118 we assume the segment base to be zero, as for the group relocations. 12119 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC 12120 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */ 12121 case R_ARM_MOVW_BREL_NC: 12122 case R_ARM_MOVW_BREL: 12123 case R_ARM_MOVT_BREL: 12124 { 12125 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 12126 12127 if (globals->use_rel) 12128 { 12129 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff); 12130 signed_addend = (addend ^ 0x8000) - 0x8000; 12131 } 12132 12133 value += signed_addend; 12134 12135 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL) 12136 value -= (input_section->output_section->vma 12137 + input_section->output_offset + rel->r_offset); 12138 12139 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000) 12140 return bfd_reloc_overflow; 12141 12142 if (branch_type == ST_BRANCH_TO_THUMB) 12143 value |= 1; 12144 12145 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL 12146 || r_type == R_ARM_MOVT_BREL) 12147 value >>= 16; 12148 12149 insn &= 0xfff0f000; 12150 insn |= value & 0xfff; 12151 insn |= (value & 0xf000) << 4; 12152 bfd_put_32 (input_bfd, insn, hit_data); 12153 } 12154 return bfd_reloc_ok; 12155 12156 case R_ARM_THM_MOVW_ABS_NC: 12157 case R_ARM_THM_MOVT_ABS: 12158 case R_ARM_THM_MOVW_PREL_NC: 12159 case R_ARM_THM_MOVT_PREL: 12160 /* Until we properly support segment-base-relative addressing then 12161 we assume the segment base to be zero, as for the above relocations. 12162 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as 12163 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics 12164 as R_ARM_THM_MOVT_ABS. */ 12165 case R_ARM_THM_MOVW_BREL_NC: 12166 case R_ARM_THM_MOVW_BREL: 12167 case R_ARM_THM_MOVT_BREL: 12168 { 12169 bfd_vma insn; 12170 12171 insn = bfd_get_16 (input_bfd, hit_data) << 16; 12172 insn |= bfd_get_16 (input_bfd, hit_data + 2); 12173 12174 if (globals->use_rel) 12175 { 12176 addend = ((insn >> 4) & 0xf000) 12177 | ((insn >> 15) & 0x0800) 12178 | ((insn >> 4) & 0x0700) 12179 | (insn & 0x00ff); 12180 signed_addend = (addend ^ 0x8000) - 0x8000; 12181 } 12182 12183 value += signed_addend; 12184 12185 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL) 12186 value -= (input_section->output_section->vma 12187 + input_section->output_offset + rel->r_offset); 12188 12189 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000) 12190 return bfd_reloc_overflow; 12191 12192 if (branch_type == ST_BRANCH_TO_THUMB) 12193 value |= 1; 12194 12195 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL 12196 || r_type == R_ARM_THM_MOVT_BREL) 12197 value >>= 16; 12198 12199 insn &= 0xfbf08f00; 12200 insn |= (value & 0xf000) << 4; 12201 insn |= (value & 0x0800) << 15; 12202 insn |= (value & 0x0700) << 4; 12203 insn |= (value & 0x00ff); 12204 12205 bfd_put_16 (input_bfd, insn >> 16, hit_data); 12206 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2); 12207 } 12208 return bfd_reloc_ok; 12209 12210 case R_ARM_ALU_PC_G0_NC: 12211 case R_ARM_ALU_PC_G1_NC: 12212 case R_ARM_ALU_PC_G0: 12213 case R_ARM_ALU_PC_G1: 12214 case R_ARM_ALU_PC_G2: 12215 case R_ARM_ALU_SB_G0_NC: 12216 case R_ARM_ALU_SB_G1_NC: 12217 case R_ARM_ALU_SB_G0: 12218 case R_ARM_ALU_SB_G1: 12219 case R_ARM_ALU_SB_G2: 12220 { 12221 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 12222 bfd_vma pc = input_section->output_section->vma 12223 + input_section->output_offset + rel->r_offset; 12224 /* sb is the origin of the *segment* containing the symbol. */ 12225 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; 12226 bfd_vma residual; 12227 bfd_vma g_n; 12228 bfd_signed_vma signed_value; 12229 int group = 0; 12230 12231 /* Determine which group of bits to select. */ 12232 switch (r_type) 12233 { 12234 case R_ARM_ALU_PC_G0_NC: 12235 case R_ARM_ALU_PC_G0: 12236 case R_ARM_ALU_SB_G0_NC: 12237 case R_ARM_ALU_SB_G0: 12238 group = 0; 12239 break; 12240 12241 case R_ARM_ALU_PC_G1_NC: 12242 case R_ARM_ALU_PC_G1: 12243 case R_ARM_ALU_SB_G1_NC: 12244 case R_ARM_ALU_SB_G1: 12245 group = 1; 12246 break; 12247 12248 case R_ARM_ALU_PC_G2: 12249 case R_ARM_ALU_SB_G2: 12250 group = 2; 12251 break; 12252 12253 default: 12254 abort (); 12255 } 12256 12257 /* If REL, extract the addend from the insn. If RELA, it will 12258 have already been fetched for us. */ 12259 if (globals->use_rel) 12260 { 12261 int negative; 12262 bfd_vma constant = insn & 0xff; 12263 bfd_vma rotation = (insn & 0xf00) >> 8; 12264 12265 if (rotation == 0) 12266 signed_addend = constant; 12267 else 12268 { 12269 /* Compensate for the fact that in the instruction, the 12270 rotation is stored in multiples of 2 bits. */ 12271 rotation *= 2; 12272 12273 /* Rotate "constant" right by "rotation" bits. */ 12274 signed_addend = (constant >> rotation) | 12275 (constant << (8 * sizeof (bfd_vma) - rotation)); 12276 } 12277 12278 /* Determine if the instruction is an ADD or a SUB. 12279 (For REL, this determines the sign of the addend.) */ 12280 negative = identify_add_or_sub (insn); 12281 if (negative == 0) 12282 { 12283 _bfd_error_handler 12284 /* xgettext:c-format */ 12285 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions " 12286 "are allowed for ALU group relocations"), 12287 input_bfd, input_section, (uint64_t) rel->r_offset); 12288 return bfd_reloc_overflow; 12289 } 12290 12291 signed_addend *= negative; 12292 } 12293 12294 /* Compute the value (X) to go in the place. */ 12295 if (r_type == R_ARM_ALU_PC_G0_NC 12296 || r_type == R_ARM_ALU_PC_G1_NC 12297 || r_type == R_ARM_ALU_PC_G0 12298 || r_type == R_ARM_ALU_PC_G1 12299 || r_type == R_ARM_ALU_PC_G2) 12300 /* PC relative. */ 12301 signed_value = value - pc + signed_addend; 12302 else 12303 /* Section base relative. */ 12304 signed_value = value - sb + signed_addend; 12305 12306 /* If the target symbol is a Thumb function, then set the 12307 Thumb bit in the address. */ 12308 if (branch_type == ST_BRANCH_TO_THUMB) 12309 signed_value |= 1; 12310 12311 /* Calculate the value of the relevant G_n, in encoded 12312 constant-with-rotation format. */ 12313 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value, 12314 group, &residual); 12315 12316 /* Check for overflow if required. */ 12317 if ((r_type == R_ARM_ALU_PC_G0 12318 || r_type == R_ARM_ALU_PC_G1 12319 || r_type == R_ARM_ALU_PC_G2 12320 || r_type == R_ARM_ALU_SB_G0 12321 || r_type == R_ARM_ALU_SB_G1 12322 || r_type == R_ARM_ALU_SB_G2) && residual != 0) 12323 { 12324 _bfd_error_handler 12325 /* xgettext:c-format */ 12326 (_("%pB(%pA+%#" PRIx64 "): overflow whilst " 12327 "splitting %#" PRIx64 " for group relocation %s"), 12328 input_bfd, input_section, (uint64_t) rel->r_offset, 12329 (uint64_t) (signed_value < 0 ? -signed_value : signed_value), 12330 howto->name); 12331 return bfd_reloc_overflow; 12332 } 12333 12334 /* Mask out the value and the ADD/SUB part of the opcode; take care 12335 not to destroy the S bit. */ 12336 insn &= 0xff1ff000; 12337 12338 /* Set the opcode according to whether the value to go in the 12339 place is negative. */ 12340 if (signed_value < 0) 12341 insn |= 1 << 22; 12342 else 12343 insn |= 1 << 23; 12344 12345 /* Encode the offset. */ 12346 insn |= g_n; 12347 12348 bfd_put_32 (input_bfd, insn, hit_data); 12349 } 12350 return bfd_reloc_ok; 12351 12352 case R_ARM_LDR_PC_G0: 12353 case R_ARM_LDR_PC_G1: 12354 case R_ARM_LDR_PC_G2: 12355 case R_ARM_LDR_SB_G0: 12356 case R_ARM_LDR_SB_G1: 12357 case R_ARM_LDR_SB_G2: 12358 { 12359 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 12360 bfd_vma pc = input_section->output_section->vma 12361 + input_section->output_offset + rel->r_offset; 12362 /* sb is the origin of the *segment* containing the symbol. */ 12363 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; 12364 bfd_vma residual; 12365 bfd_signed_vma signed_value; 12366 int group = 0; 12367 12368 /* Determine which groups of bits to calculate. */ 12369 switch (r_type) 12370 { 12371 case R_ARM_LDR_PC_G0: 12372 case R_ARM_LDR_SB_G0: 12373 group = 0; 12374 break; 12375 12376 case R_ARM_LDR_PC_G1: 12377 case R_ARM_LDR_SB_G1: 12378 group = 1; 12379 break; 12380 12381 case R_ARM_LDR_PC_G2: 12382 case R_ARM_LDR_SB_G2: 12383 group = 2; 12384 break; 12385 12386 default: 12387 abort (); 12388 } 12389 12390 /* If REL, extract the addend from the insn. If RELA, it will 12391 have already been fetched for us. */ 12392 if (globals->use_rel) 12393 { 12394 int negative = (insn & (1 << 23)) ? 1 : -1; 12395 signed_addend = negative * (insn & 0xfff); 12396 } 12397 12398 /* Compute the value (X) to go in the place. */ 12399 if (r_type == R_ARM_LDR_PC_G0 12400 || r_type == R_ARM_LDR_PC_G1 12401 || r_type == R_ARM_LDR_PC_G2) 12402 /* PC relative. */ 12403 signed_value = value - pc + signed_addend; 12404 else 12405 /* Section base relative. */ 12406 signed_value = value - sb + signed_addend; 12407 12408 /* Calculate the value of the relevant G_{n-1} to obtain 12409 the residual at that stage. */ 12410 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value, 12411 group - 1, &residual); 12412 12413 /* Check for overflow. */ 12414 if (residual >= 0x1000) 12415 { 12416 _bfd_error_handler 12417 /* xgettext:c-format */ 12418 (_("%pB(%pA+%#" PRIx64 "): overflow whilst " 12419 "splitting %#" PRIx64 " for group relocation %s"), 12420 input_bfd, input_section, (uint64_t) rel->r_offset, 12421 (uint64_t) (signed_value < 0 ? -signed_value : signed_value), 12422 howto->name); 12423 return bfd_reloc_overflow; 12424 } 12425 12426 /* Mask out the value and U bit. */ 12427 insn &= 0xff7ff000; 12428 12429 /* Set the U bit if the value to go in the place is non-negative. */ 12430 if (signed_value >= 0) 12431 insn |= 1 << 23; 12432 12433 /* Encode the offset. */ 12434 insn |= residual; 12435 12436 bfd_put_32 (input_bfd, insn, hit_data); 12437 } 12438 return bfd_reloc_ok; 12439 12440 case R_ARM_LDRS_PC_G0: 12441 case R_ARM_LDRS_PC_G1: 12442 case R_ARM_LDRS_PC_G2: 12443 case R_ARM_LDRS_SB_G0: 12444 case R_ARM_LDRS_SB_G1: 12445 case R_ARM_LDRS_SB_G2: 12446 { 12447 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 12448 bfd_vma pc = input_section->output_section->vma 12449 + input_section->output_offset + rel->r_offset; 12450 /* sb is the origin of the *segment* containing the symbol. */ 12451 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; 12452 bfd_vma residual; 12453 bfd_signed_vma signed_value; 12454 int group = 0; 12455 12456 /* Determine which groups of bits to calculate. */ 12457 switch (r_type) 12458 { 12459 case R_ARM_LDRS_PC_G0: 12460 case R_ARM_LDRS_SB_G0: 12461 group = 0; 12462 break; 12463 12464 case R_ARM_LDRS_PC_G1: 12465 case R_ARM_LDRS_SB_G1: 12466 group = 1; 12467 break; 12468 12469 case R_ARM_LDRS_PC_G2: 12470 case R_ARM_LDRS_SB_G2: 12471 group = 2; 12472 break; 12473 12474 default: 12475 abort (); 12476 } 12477 12478 /* If REL, extract the addend from the insn. If RELA, it will 12479 have already been fetched for us. */ 12480 if (globals->use_rel) 12481 { 12482 int negative = (insn & (1 << 23)) ? 1 : -1; 12483 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf)); 12484 } 12485 12486 /* Compute the value (X) to go in the place. */ 12487 if (r_type == R_ARM_LDRS_PC_G0 12488 || r_type == R_ARM_LDRS_PC_G1 12489 || r_type == R_ARM_LDRS_PC_G2) 12490 /* PC relative. */ 12491 signed_value = value - pc + signed_addend; 12492 else 12493 /* Section base relative. */ 12494 signed_value = value - sb + signed_addend; 12495 12496 /* Calculate the value of the relevant G_{n-1} to obtain 12497 the residual at that stage. */ 12498 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value, 12499 group - 1, &residual); 12500 12501 /* Check for overflow. */ 12502 if (residual >= 0x100) 12503 { 12504 _bfd_error_handler 12505 /* xgettext:c-format */ 12506 (_("%pB(%pA+%#" PRIx64 "): overflow whilst " 12507 "splitting %#" PRIx64 " for group relocation %s"), 12508 input_bfd, input_section, (uint64_t) rel->r_offset, 12509 (uint64_t) (signed_value < 0 ? -signed_value : signed_value), 12510 howto->name); 12511 return bfd_reloc_overflow; 12512 } 12513 12514 /* Mask out the value and U bit. */ 12515 insn &= 0xff7ff0f0; 12516 12517 /* Set the U bit if the value to go in the place is non-negative. */ 12518 if (signed_value >= 0) 12519 insn |= 1 << 23; 12520 12521 /* Encode the offset. */ 12522 insn |= ((residual & 0xf0) << 4) | (residual & 0xf); 12523 12524 bfd_put_32 (input_bfd, insn, hit_data); 12525 } 12526 return bfd_reloc_ok; 12527 12528 case R_ARM_LDC_PC_G0: 12529 case R_ARM_LDC_PC_G1: 12530 case R_ARM_LDC_PC_G2: 12531 case R_ARM_LDC_SB_G0: 12532 case R_ARM_LDC_SB_G1: 12533 case R_ARM_LDC_SB_G2: 12534 { 12535 bfd_vma insn = bfd_get_32 (input_bfd, hit_data); 12536 bfd_vma pc = input_section->output_section->vma 12537 + input_section->output_offset + rel->r_offset; 12538 /* sb is the origin of the *segment* containing the symbol. */ 12539 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0; 12540 bfd_vma residual; 12541 bfd_signed_vma signed_value; 12542 int group = 0; 12543 12544 /* Determine which groups of bits to calculate. */ 12545 switch (r_type) 12546 { 12547 case R_ARM_LDC_PC_G0: 12548 case R_ARM_LDC_SB_G0: 12549 group = 0; 12550 break; 12551 12552 case R_ARM_LDC_PC_G1: 12553 case R_ARM_LDC_SB_G1: 12554 group = 1; 12555 break; 12556 12557 case R_ARM_LDC_PC_G2: 12558 case R_ARM_LDC_SB_G2: 12559 group = 2; 12560 break; 12561 12562 default: 12563 abort (); 12564 } 12565 12566 /* If REL, extract the addend from the insn. If RELA, it will 12567 have already been fetched for us. */ 12568 if (globals->use_rel) 12569 { 12570 int negative = (insn & (1 << 23)) ? 1 : -1; 12571 signed_addend = negative * ((insn & 0xff) << 2); 12572 } 12573 12574 /* Compute the value (X) to go in the place. */ 12575 if (r_type == R_ARM_LDC_PC_G0 12576 || r_type == R_ARM_LDC_PC_G1 12577 || r_type == R_ARM_LDC_PC_G2) 12578 /* PC relative. */ 12579 signed_value = value - pc + signed_addend; 12580 else 12581 /* Section base relative. */ 12582 signed_value = value - sb + signed_addend; 12583 12584 /* Calculate the value of the relevant G_{n-1} to obtain 12585 the residual at that stage. */ 12586 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value, 12587 group - 1, &residual); 12588 12589 /* Check for overflow. (The absolute value to go in the place must be 12590 divisible by four and, after having been divided by four, must 12591 fit in eight bits.) */ 12592 if ((residual & 0x3) != 0 || residual >= 0x400) 12593 { 12594 _bfd_error_handler 12595 /* xgettext:c-format */ 12596 (_("%pB(%pA+%#" PRIx64 "): overflow whilst " 12597 "splitting %#" PRIx64 " for group relocation %s"), 12598 input_bfd, input_section, (uint64_t) rel->r_offset, 12599 (uint64_t) (signed_value < 0 ? -signed_value : signed_value), 12600 howto->name); 12601 return bfd_reloc_overflow; 12602 } 12603 12604 /* Mask out the value and U bit. */ 12605 insn &= 0xff7fff00; 12606 12607 /* Set the U bit if the value to go in the place is non-negative. */ 12608 if (signed_value >= 0) 12609 insn |= 1 << 23; 12610 12611 /* Encode the offset. */ 12612 insn |= residual >> 2; 12613 12614 bfd_put_32 (input_bfd, insn, hit_data); 12615 } 12616 return bfd_reloc_ok; 12617 12618 case R_ARM_THM_ALU_ABS_G0_NC: 12619 case R_ARM_THM_ALU_ABS_G1_NC: 12620 case R_ARM_THM_ALU_ABS_G2_NC: 12621 case R_ARM_THM_ALU_ABS_G3_NC: 12622 { 12623 const int shift_array[4] = {0, 8, 16, 24}; 12624 bfd_vma insn = bfd_get_16 (input_bfd, hit_data); 12625 bfd_vma addr = value; 12626 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC]; 12627 12628 /* Compute address. */ 12629 if (globals->use_rel) 12630 signed_addend = insn & 0xff; 12631 addr += signed_addend; 12632 if (branch_type == ST_BRANCH_TO_THUMB) 12633 addr |= 1; 12634 /* Clean imm8 insn. */ 12635 insn &= 0xff00; 12636 /* And update with correct part of address. */ 12637 insn |= (addr >> shift) & 0xff; 12638 /* Update insn. */ 12639 bfd_put_16 (input_bfd, insn, hit_data); 12640 } 12641 12642 *unresolved_reloc_p = FALSE; 12643 return bfd_reloc_ok; 12644 12645 case R_ARM_GOTOFFFUNCDESC: 12646 { 12647 if (h == NULL) 12648 { 12649 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd); 12650 int dynindx = elf_section_data (sym_sec->output_section)->dynindx; 12651 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1; 12652 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma; 12653 bfd_vma seg = -1; 12654 12655 if (bfd_link_pic(info) && dynindx == 0) 12656 abort(); 12657 12658 /* Resolve relocation. */ 12659 bfd_put_32(output_bfd, (offset + sgot->output_offset) 12660 , contents + rel->r_offset); 12661 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if 12662 not done yet. */ 12663 arm_elf_fill_funcdesc(output_bfd, info, 12664 &local_fdpic_cnts[r_symndx].funcdesc_offset, 12665 dynindx, offset, addr, dynreloc_value, seg); 12666 } 12667 else 12668 { 12669 int dynindx; 12670 int offset = eh->fdpic_cnts.funcdesc_offset & ~1; 12671 bfd_vma addr; 12672 bfd_vma seg = -1; 12673 12674 /* For static binaries, sym_sec can be null. */ 12675 if (sym_sec) 12676 { 12677 dynindx = elf_section_data (sym_sec->output_section)->dynindx; 12678 addr = dynreloc_value - sym_sec->output_section->vma; 12679 } 12680 else 12681 { 12682 dynindx = 0; 12683 addr = 0; 12684 } 12685 12686 if (bfd_link_pic(info) && dynindx == 0) 12687 abort(); 12688 12689 /* This case cannot occur since funcdesc is allocated by 12690 the dynamic loader so we cannot resolve the relocation. */ 12691 if (h->dynindx != -1) 12692 abort(); 12693 12694 /* Resolve relocation. */ 12695 bfd_put_32(output_bfd, (offset + sgot->output_offset), 12696 contents + rel->r_offset); 12697 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */ 12698 arm_elf_fill_funcdesc(output_bfd, info, 12699 &eh->fdpic_cnts.funcdesc_offset, 12700 dynindx, offset, addr, dynreloc_value, seg); 12701 } 12702 } 12703 *unresolved_reloc_p = FALSE; 12704 return bfd_reloc_ok; 12705 12706 case R_ARM_GOTFUNCDESC: 12707 { 12708 if (h != NULL) 12709 { 12710 Elf_Internal_Rela outrel; 12711 12712 /* Resolve relocation. */ 12713 bfd_put_32(output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1) 12714 + sgot->output_offset), 12715 contents + rel->r_offset); 12716 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */ 12717 if(h->dynindx == -1) 12718 { 12719 int dynindx; 12720 int offset = eh->fdpic_cnts.funcdesc_offset & ~1; 12721 bfd_vma addr; 12722 bfd_vma seg = -1; 12723 12724 /* For static binaries sym_sec can be null. */ 12725 if (sym_sec) 12726 { 12727 dynindx = elf_section_data (sym_sec->output_section)->dynindx; 12728 addr = dynreloc_value - sym_sec->output_section->vma; 12729 } 12730 else 12731 { 12732 dynindx = 0; 12733 addr = 0; 12734 } 12735 12736 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */ 12737 arm_elf_fill_funcdesc(output_bfd, info, 12738 &eh->fdpic_cnts.funcdesc_offset, 12739 dynindx, offset, addr, dynreloc_value, seg); 12740 } 12741 12742 /* Add a dynamic relocation on GOT entry if not already done. */ 12743 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0) 12744 { 12745 if (h->dynindx == -1) 12746 { 12747 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE); 12748 if (h->root.type == bfd_link_hash_undefweak) 12749 bfd_put_32(output_bfd, 0, sgot->contents 12750 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1)); 12751 else 12752 bfd_put_32(output_bfd, sgot->output_section->vma 12753 + sgot->output_offset 12754 + (eh->fdpic_cnts.funcdesc_offset & ~1), 12755 sgot->contents 12756 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1)); 12757 } 12758 else 12759 { 12760 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC); 12761 } 12762 outrel.r_offset = sgot->output_section->vma 12763 + sgot->output_offset 12764 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1); 12765 outrel.r_addend = 0; 12766 if (h->dynindx == -1 && !bfd_link_pic(info)) 12767 if (h->root.type == bfd_link_hash_undefweak) 12768 arm_elf_add_rofixup(output_bfd, globals->srofixup, -1); 12769 else 12770 arm_elf_add_rofixup(output_bfd, globals->srofixup, 12771 outrel.r_offset); 12772 else 12773 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 12774 eh->fdpic_cnts.gotfuncdesc_offset |= 1; 12775 } 12776 } 12777 else 12778 { 12779 /* Such relocation on static function should not have been 12780 emitted by the compiler. */ 12781 abort(); 12782 } 12783 } 12784 *unresolved_reloc_p = FALSE; 12785 return bfd_reloc_ok; 12786 12787 case R_ARM_FUNCDESC: 12788 { 12789 if (h == NULL) 12790 { 12791 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd); 12792 Elf_Internal_Rela outrel; 12793 int dynindx = elf_section_data (sym_sec->output_section)->dynindx; 12794 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1; 12795 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma; 12796 bfd_vma seg = -1; 12797 12798 if (bfd_link_pic(info) && dynindx == 0) 12799 abort(); 12800 12801 /* Replace static FUNCDESC relocation with a 12802 R_ARM_RELATIVE dynamic relocation or with a rofixup for 12803 executable. */ 12804 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE); 12805 outrel.r_offset = input_section->output_section->vma 12806 + input_section->output_offset + rel->r_offset; 12807 outrel.r_addend = 0; 12808 if (bfd_link_pic(info)) 12809 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 12810 else 12811 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset); 12812 12813 bfd_put_32 (input_bfd, sgot->output_section->vma 12814 + sgot->output_offset + offset, hit_data); 12815 12816 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */ 12817 arm_elf_fill_funcdesc(output_bfd, info, 12818 &local_fdpic_cnts[r_symndx].funcdesc_offset, 12819 dynindx, offset, addr, dynreloc_value, seg); 12820 } 12821 else 12822 { 12823 if (h->dynindx == -1) 12824 { 12825 int dynindx; 12826 int offset = eh->fdpic_cnts.funcdesc_offset & ~1; 12827 bfd_vma addr; 12828 bfd_vma seg = -1; 12829 Elf_Internal_Rela outrel; 12830 12831 /* For static binaries sym_sec can be null. */ 12832 if (sym_sec) 12833 { 12834 dynindx = elf_section_data (sym_sec->output_section)->dynindx; 12835 addr = dynreloc_value - sym_sec->output_section->vma; 12836 } 12837 else 12838 { 12839 dynindx = 0; 12840 addr = 0; 12841 } 12842 12843 if (bfd_link_pic(info) && dynindx == 0) 12844 abort(); 12845 12846 /* Replace static FUNCDESC relocation with a 12847 R_ARM_RELATIVE dynamic relocation. */ 12848 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE); 12849 outrel.r_offset = input_section->output_section->vma 12850 + input_section->output_offset + rel->r_offset; 12851 outrel.r_addend = 0; 12852 if (bfd_link_pic(info)) 12853 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 12854 else 12855 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset); 12856 12857 bfd_put_32 (input_bfd, sgot->output_section->vma 12858 + sgot->output_offset + offset, hit_data); 12859 12860 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */ 12861 arm_elf_fill_funcdesc(output_bfd, info, 12862 &eh->fdpic_cnts.funcdesc_offset, 12863 dynindx, offset, addr, dynreloc_value, seg); 12864 } 12865 else 12866 { 12867 Elf_Internal_Rela outrel; 12868 12869 /* Add a dynamic relocation. */ 12870 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC); 12871 outrel.r_offset = input_section->output_section->vma 12872 + input_section->output_offset + rel->r_offset; 12873 outrel.r_addend = 0; 12874 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel); 12875 } 12876 } 12877 } 12878 *unresolved_reloc_p = FALSE; 12879 return bfd_reloc_ok; 12880 12881 case R_ARM_THM_BF16: 12882 { 12883 bfd_vma relocation; 12884 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data); 12885 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2); 12886 12887 if (globals->use_rel) 12888 { 12889 bfd_vma immA = (upper_insn & 0x001f); 12890 bfd_vma immB = (lower_insn & 0x07fe) >> 1; 12891 bfd_vma immC = (lower_insn & 0x0800) >> 11; 12892 addend = (immA << 12); 12893 addend |= (immB << 2); 12894 addend |= (immC << 1); 12895 addend |= 1; 12896 /* Sign extend. */ 12897 signed_addend = (addend & 0x10000) ? addend - (1 << 17) : addend; 12898 } 12899 12900 relocation = value + signed_addend; 12901 relocation -= (input_section->output_section->vma 12902 + input_section->output_offset 12903 + rel->r_offset); 12904 12905 /* Put RELOCATION back into the insn. */ 12906 { 12907 bfd_vma immA = (relocation & 0x0001f000) >> 12; 12908 bfd_vma immB = (relocation & 0x00000ffc) >> 2; 12909 bfd_vma immC = (relocation & 0x00000002) >> 1; 12910 12911 upper_insn = (upper_insn & 0xffe0) | immA; 12912 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1); 12913 } 12914 12915 /* Put the relocated value back in the object file: */ 12916 bfd_put_16 (input_bfd, upper_insn, hit_data); 12917 bfd_put_16 (input_bfd, lower_insn, hit_data + 2); 12918 12919 return bfd_reloc_ok; 12920 } 12921 12922 case R_ARM_THM_BF12: 12923 { 12924 bfd_vma relocation; 12925 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data); 12926 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2); 12927 12928 if (globals->use_rel) 12929 { 12930 bfd_vma immA = (upper_insn & 0x0001); 12931 bfd_vma immB = (lower_insn & 0x07fe) >> 1; 12932 bfd_vma immC = (lower_insn & 0x0800) >> 11; 12933 addend = (immA << 12); 12934 addend |= (immB << 2); 12935 addend |= (immC << 1); 12936 addend |= 1; 12937 /* Sign extend. */ 12938 addend = (addend & 0x1000) ? addend - (1 << 13) : addend; 12939 signed_addend = addend; 12940 } 12941 12942 relocation = value + signed_addend; 12943 relocation -= (input_section->output_section->vma 12944 + input_section->output_offset 12945 + rel->r_offset); 12946 12947 /* Put RELOCATION back into the insn. */ 12948 { 12949 bfd_vma immA = (relocation & 0x00001000) >> 12; 12950 bfd_vma immB = (relocation & 0x00000ffc) >> 2; 12951 bfd_vma immC = (relocation & 0x00000002) >> 1; 12952 12953 upper_insn = (upper_insn & 0xfffe) | immA; 12954 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1); 12955 } 12956 12957 /* Put the relocated value back in the object file: */ 12958 bfd_put_16 (input_bfd, upper_insn, hit_data); 12959 bfd_put_16 (input_bfd, lower_insn, hit_data + 2); 12960 12961 return bfd_reloc_ok; 12962 } 12963 12964 case R_ARM_THM_BF18: 12965 { 12966 bfd_vma relocation; 12967 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data); 12968 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2); 12969 12970 if (globals->use_rel) 12971 { 12972 bfd_vma immA = (upper_insn & 0x007f); 12973 bfd_vma immB = (lower_insn & 0x07fe) >> 1; 12974 bfd_vma immC = (lower_insn & 0x0800) >> 11; 12975 addend = (immA << 12); 12976 addend |= (immB << 2); 12977 addend |= (immC << 1); 12978 addend |= 1; 12979 /* Sign extend. */ 12980 addend = (addend & 0x40000) ? addend - (1 << 19) : addend; 12981 signed_addend = addend; 12982 } 12983 12984 relocation = value + signed_addend; 12985 relocation -= (input_section->output_section->vma 12986 + input_section->output_offset 12987 + rel->r_offset); 12988 12989 /* Put RELOCATION back into the insn. */ 12990 { 12991 bfd_vma immA = (relocation & 0x0007f000) >> 12; 12992 bfd_vma immB = (relocation & 0x00000ffc) >> 2; 12993 bfd_vma immC = (relocation & 0x00000002) >> 1; 12994 12995 upper_insn = (upper_insn & 0xff80) | immA; 12996 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1); 12997 } 12998 12999 /* Put the relocated value back in the object file: */ 13000 bfd_put_16 (input_bfd, upper_insn, hit_data); 13001 bfd_put_16 (input_bfd, lower_insn, hit_data + 2); 13002 13003 return bfd_reloc_ok; 13004 } 13005 13006 default: 13007 return bfd_reloc_notsupported; 13008 } 13009 } 13010 13011 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */ 13012 static void 13013 arm_add_to_rel (bfd * abfd, 13014 bfd_byte * address, 13015 reloc_howto_type * howto, 13016 bfd_signed_vma increment) 13017 { 13018 bfd_signed_vma addend; 13019 13020 if (howto->type == R_ARM_THM_CALL 13021 || howto->type == R_ARM_THM_JUMP24) 13022 { 13023 int upper_insn, lower_insn; 13024 int upper, lower; 13025 13026 upper_insn = bfd_get_16 (abfd, address); 13027 lower_insn = bfd_get_16 (abfd, address + 2); 13028 upper = upper_insn & 0x7ff; 13029 lower = lower_insn & 0x7ff; 13030 13031 addend = (upper << 12) | (lower << 1); 13032 addend += increment; 13033 addend >>= 1; 13034 13035 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff); 13036 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff); 13037 13038 bfd_put_16 (abfd, (bfd_vma) upper_insn, address); 13039 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2); 13040 } 13041 else 13042 { 13043 bfd_vma contents; 13044 13045 contents = bfd_get_32 (abfd, address); 13046 13047 /* Get the (signed) value from the instruction. */ 13048 addend = contents & howto->src_mask; 13049 if (addend & ((howto->src_mask + 1) >> 1)) 13050 { 13051 bfd_signed_vma mask; 13052 13053 mask = -1; 13054 mask &= ~ howto->src_mask; 13055 addend |= mask; 13056 } 13057 13058 /* Add in the increment, (which is a byte value). */ 13059 switch (howto->type) 13060 { 13061 default: 13062 addend += increment; 13063 break; 13064 13065 case R_ARM_PC24: 13066 case R_ARM_PLT32: 13067 case R_ARM_CALL: 13068 case R_ARM_JUMP24: 13069 addend <<= howto->size; 13070 addend += increment; 13071 13072 /* Should we check for overflow here ? */ 13073 13074 /* Drop any undesired bits. */ 13075 addend >>= howto->rightshift; 13076 break; 13077 } 13078 13079 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask); 13080 13081 bfd_put_32 (abfd, contents, address); 13082 } 13083 } 13084 13085 #define IS_ARM_TLS_RELOC(R_TYPE) \ 13086 ((R_TYPE) == R_ARM_TLS_GD32 \ 13087 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \ 13088 || (R_TYPE) == R_ARM_TLS_LDO32 \ 13089 || (R_TYPE) == R_ARM_TLS_LDM32 \ 13090 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \ 13091 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \ 13092 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \ 13093 || (R_TYPE) == R_ARM_TLS_TPOFF32 \ 13094 || (R_TYPE) == R_ARM_TLS_LE32 \ 13095 || (R_TYPE) == R_ARM_TLS_IE32 \ 13096 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \ 13097 || IS_ARM_TLS_GNU_RELOC (R_TYPE)) 13098 13099 /* Specific set of relocations for the gnu tls dialect. */ 13100 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \ 13101 ((R_TYPE) == R_ARM_TLS_GOTDESC \ 13102 || (R_TYPE) == R_ARM_TLS_CALL \ 13103 || (R_TYPE) == R_ARM_THM_TLS_CALL \ 13104 || (R_TYPE) == R_ARM_TLS_DESCSEQ \ 13105 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ) 13106 13107 /* Relocate an ARM ELF section. */ 13108 13109 static bfd_boolean 13110 elf32_arm_relocate_section (bfd * output_bfd, 13111 struct bfd_link_info * info, 13112 bfd * input_bfd, 13113 asection * input_section, 13114 bfd_byte * contents, 13115 Elf_Internal_Rela * relocs, 13116 Elf_Internal_Sym * local_syms, 13117 asection ** local_sections) 13118 { 13119 Elf_Internal_Shdr *symtab_hdr; 13120 struct elf_link_hash_entry **sym_hashes; 13121 Elf_Internal_Rela *rel; 13122 Elf_Internal_Rela *relend; 13123 const char *name; 13124 struct elf32_arm_link_hash_table * globals; 13125 13126 globals = elf32_arm_hash_table (info); 13127 if (globals == NULL) 13128 return FALSE; 13129 13130 symtab_hdr = & elf_symtab_hdr (input_bfd); 13131 sym_hashes = elf_sym_hashes (input_bfd); 13132 13133 rel = relocs; 13134 relend = relocs + input_section->reloc_count; 13135 for (; rel < relend; rel++) 13136 { 13137 int r_type; 13138 reloc_howto_type * howto; 13139 unsigned long r_symndx; 13140 Elf_Internal_Sym * sym; 13141 asection * sec; 13142 struct elf_link_hash_entry * h; 13143 bfd_vma relocation; 13144 bfd_reloc_status_type r; 13145 arelent bfd_reloc; 13146 char sym_type; 13147 bfd_boolean unresolved_reloc = FALSE; 13148 char *error_message = NULL; 13149 13150 r_symndx = ELF32_R_SYM (rel->r_info); 13151 r_type = ELF32_R_TYPE (rel->r_info); 13152 r_type = arm_real_reloc_type (globals, r_type); 13153 13154 if ( r_type == R_ARM_GNU_VTENTRY 13155 || r_type == R_ARM_GNU_VTINHERIT) 13156 continue; 13157 13158 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type); 13159 13160 if (howto == NULL) 13161 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type); 13162 13163 h = NULL; 13164 sym = NULL; 13165 sec = NULL; 13166 13167 if (r_symndx < symtab_hdr->sh_info) 13168 { 13169 sym = local_syms + r_symndx; 13170 sym_type = ELF32_ST_TYPE (sym->st_info); 13171 sec = local_sections[r_symndx]; 13172 13173 /* An object file might have a reference to a local 13174 undefined symbol. This is a daft object file, but we 13175 should at least do something about it. V4BX & NONE 13176 relocations do not use the symbol and are explicitly 13177 allowed to use the undefined symbol, so allow those. 13178 Likewise for relocations against STN_UNDEF. */ 13179 if (r_type != R_ARM_V4BX 13180 && r_type != R_ARM_NONE 13181 && r_symndx != STN_UNDEF 13182 && bfd_is_und_section (sec) 13183 && ELF_ST_BIND (sym->st_info) != STB_WEAK) 13184 (*info->callbacks->undefined_symbol) 13185 (info, bfd_elf_string_from_elf_section 13186 (input_bfd, symtab_hdr->sh_link, sym->st_name), 13187 input_bfd, input_section, 13188 rel->r_offset, TRUE); 13189 13190 if (globals->use_rel) 13191 { 13192 relocation = (sec->output_section->vma 13193 + sec->output_offset 13194 + sym->st_value); 13195 if (!bfd_link_relocatable (info) 13196 && (sec->flags & SEC_MERGE) 13197 && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 13198 { 13199 asection *msec; 13200 bfd_vma addend, value; 13201 13202 switch (r_type) 13203 { 13204 case R_ARM_MOVW_ABS_NC: 13205 case R_ARM_MOVT_ABS: 13206 value = bfd_get_32 (input_bfd, contents + rel->r_offset); 13207 addend = ((value & 0xf0000) >> 4) | (value & 0xfff); 13208 addend = (addend ^ 0x8000) - 0x8000; 13209 break; 13210 13211 case R_ARM_THM_MOVW_ABS_NC: 13212 case R_ARM_THM_MOVT_ABS: 13213 value = bfd_get_16 (input_bfd, contents + rel->r_offset) 13214 << 16; 13215 value |= bfd_get_16 (input_bfd, 13216 contents + rel->r_offset + 2); 13217 addend = ((value & 0xf7000) >> 4) | (value & 0xff) 13218 | ((value & 0x04000000) >> 15); 13219 addend = (addend ^ 0x8000) - 0x8000; 13220 break; 13221 13222 default: 13223 if (howto->rightshift 13224 || (howto->src_mask & (howto->src_mask + 1))) 13225 { 13226 _bfd_error_handler 13227 /* xgettext:c-format */ 13228 (_("%pB(%pA+%#" PRIx64 "): " 13229 "%s relocation against SEC_MERGE section"), 13230 input_bfd, input_section, 13231 (uint64_t) rel->r_offset, howto->name); 13232 return FALSE; 13233 } 13234 13235 value = bfd_get_32 (input_bfd, contents + rel->r_offset); 13236 13237 /* Get the (signed) value from the instruction. */ 13238 addend = value & howto->src_mask; 13239 if (addend & ((howto->src_mask + 1) >> 1)) 13240 { 13241 bfd_signed_vma mask; 13242 13243 mask = -1; 13244 mask &= ~ howto->src_mask; 13245 addend |= mask; 13246 } 13247 break; 13248 } 13249 13250 msec = sec; 13251 addend = 13252 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend) 13253 - relocation; 13254 addend += msec->output_section->vma + msec->output_offset; 13255 13256 /* Cases here must match those in the preceding 13257 switch statement. */ 13258 switch (r_type) 13259 { 13260 case R_ARM_MOVW_ABS_NC: 13261 case R_ARM_MOVT_ABS: 13262 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4) 13263 | (addend & 0xfff); 13264 bfd_put_32 (input_bfd, value, contents + rel->r_offset); 13265 break; 13266 13267 case R_ARM_THM_MOVW_ABS_NC: 13268 case R_ARM_THM_MOVT_ABS: 13269 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4) 13270 | (addend & 0xff) | ((addend & 0x0800) << 15); 13271 bfd_put_16 (input_bfd, value >> 16, 13272 contents + rel->r_offset); 13273 bfd_put_16 (input_bfd, value, 13274 contents + rel->r_offset + 2); 13275 break; 13276 13277 default: 13278 value = (value & ~ howto->dst_mask) 13279 | (addend & howto->dst_mask); 13280 bfd_put_32 (input_bfd, value, contents + rel->r_offset); 13281 break; 13282 } 13283 } 13284 } 13285 else 13286 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 13287 } 13288 else 13289 { 13290 bfd_boolean warned, ignored; 13291 13292 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 13293 r_symndx, symtab_hdr, sym_hashes, 13294 h, sec, relocation, 13295 unresolved_reloc, warned, ignored); 13296 13297 sym_type = h->type; 13298 } 13299 13300 if (sec != NULL && discarded_section (sec)) 13301 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 13302 rel, 1, relend, howto, 0, contents); 13303 13304 if (bfd_link_relocatable (info)) 13305 { 13306 /* This is a relocatable link. We don't have to change 13307 anything, unless the reloc is against a section symbol, 13308 in which case we have to adjust according to where the 13309 section symbol winds up in the output section. */ 13310 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 13311 { 13312 if (globals->use_rel) 13313 arm_add_to_rel (input_bfd, contents + rel->r_offset, 13314 howto, (bfd_signed_vma) sec->output_offset); 13315 else 13316 rel->r_addend += sec->output_offset; 13317 } 13318 continue; 13319 } 13320 13321 if (h != NULL) 13322 name = h->root.root.string; 13323 else 13324 { 13325 name = (bfd_elf_string_from_elf_section 13326 (input_bfd, symtab_hdr->sh_link, sym->st_name)); 13327 if (name == NULL || *name == '\0') 13328 name = bfd_section_name (sec); 13329 } 13330 13331 if (r_symndx != STN_UNDEF 13332 && r_type != R_ARM_NONE 13333 && (h == NULL 13334 || h->root.type == bfd_link_hash_defined 13335 || h->root.type == bfd_link_hash_defweak) 13336 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS)) 13337 { 13338 _bfd_error_handler 13339 ((sym_type == STT_TLS 13340 /* xgettext:c-format */ 13341 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s") 13342 /* xgettext:c-format */ 13343 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")), 13344 input_bfd, 13345 input_section, 13346 (uint64_t) rel->r_offset, 13347 howto->name, 13348 name); 13349 } 13350 13351 /* We call elf32_arm_final_link_relocate unless we're completely 13352 done, i.e., the relaxation produced the final output we want, 13353 and we won't let anybody mess with it. Also, we have to do 13354 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation 13355 both in relaxed and non-relaxed cases. */ 13356 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type) 13357 || (IS_ARM_TLS_GNU_RELOC (r_type) 13358 && !((h ? elf32_arm_hash_entry (h)->tls_type : 13359 elf32_arm_local_got_tls_type (input_bfd)[r_symndx]) 13360 & GOT_TLS_GDESC))) 13361 { 13362 r = elf32_arm_tls_relax (globals, input_bfd, input_section, 13363 contents, rel, h == NULL); 13364 /* This may have been marked unresolved because it came from 13365 a shared library. But we've just dealt with that. */ 13366 unresolved_reloc = 0; 13367 } 13368 else 13369 r = bfd_reloc_continue; 13370 13371 if (r == bfd_reloc_continue) 13372 { 13373 unsigned char branch_type = 13374 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal) 13375 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal); 13376 13377 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd, 13378 input_section, contents, rel, 13379 relocation, info, sec, name, 13380 sym_type, branch_type, h, 13381 &unresolved_reloc, 13382 &error_message); 13383 } 13384 13385 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections 13386 because such sections are not SEC_ALLOC and thus ld.so will 13387 not process them. */ 13388 if (unresolved_reloc 13389 && !((input_section->flags & SEC_DEBUGGING) != 0 13390 && h->def_dynamic) 13391 && _bfd_elf_section_offset (output_bfd, info, input_section, 13392 rel->r_offset) != (bfd_vma) -1) 13393 { 13394 _bfd_error_handler 13395 /* xgettext:c-format */ 13396 (_("%pB(%pA+%#" PRIx64 "): " 13397 "unresolvable %s relocation against symbol `%s'"), 13398 input_bfd, 13399 input_section, 13400 (uint64_t) rel->r_offset, 13401 howto->name, 13402 h->root.root.string); 13403 return FALSE; 13404 } 13405 13406 if (r != bfd_reloc_ok) 13407 { 13408 switch (r) 13409 { 13410 case bfd_reloc_overflow: 13411 /* If the overflowing reloc was to an undefined symbol, 13412 we have already printed one error message and there 13413 is no point complaining again. */ 13414 if (!h || h->root.type != bfd_link_hash_undefined) 13415 (*info->callbacks->reloc_overflow) 13416 (info, (h ? &h->root : NULL), name, howto->name, 13417 (bfd_vma) 0, input_bfd, input_section, rel->r_offset); 13418 break; 13419 13420 case bfd_reloc_undefined: 13421 (*info->callbacks->undefined_symbol) 13422 (info, name, input_bfd, input_section, rel->r_offset, TRUE); 13423 break; 13424 13425 case bfd_reloc_outofrange: 13426 error_message = _("out of range"); 13427 goto common_error; 13428 13429 case bfd_reloc_notsupported: 13430 error_message = _("unsupported relocation"); 13431 goto common_error; 13432 13433 case bfd_reloc_dangerous: 13434 /* error_message should already be set. */ 13435 goto common_error; 13436 13437 default: 13438 error_message = _("unknown error"); 13439 /* Fall through. */ 13440 13441 common_error: 13442 BFD_ASSERT (error_message != NULL); 13443 (*info->callbacks->reloc_dangerous) 13444 (info, error_message, input_bfd, input_section, rel->r_offset); 13445 break; 13446 } 13447 } 13448 } 13449 13450 return TRUE; 13451 } 13452 13453 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero, 13454 adds the edit to the start of the list. (The list must be built in order of 13455 ascending TINDEX: the function's callers are primarily responsible for 13456 maintaining that condition). */ 13457 13458 static void 13459 add_unwind_table_edit (arm_unwind_table_edit **head, 13460 arm_unwind_table_edit **tail, 13461 arm_unwind_edit_type type, 13462 asection *linked_section, 13463 unsigned int tindex) 13464 { 13465 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *) 13466 xmalloc (sizeof (arm_unwind_table_edit)); 13467 13468 new_edit->type = type; 13469 new_edit->linked_section = linked_section; 13470 new_edit->index = tindex; 13471 13472 if (tindex > 0) 13473 { 13474 new_edit->next = NULL; 13475 13476 if (*tail) 13477 (*tail)->next = new_edit; 13478 13479 (*tail) = new_edit; 13480 13481 if (!*head) 13482 (*head) = new_edit; 13483 } 13484 else 13485 { 13486 new_edit->next = *head; 13487 13488 if (!*tail) 13489 *tail = new_edit; 13490 13491 *head = new_edit; 13492 } 13493 } 13494 13495 static _arm_elf_section_data *get_arm_elf_section_data (asection *); 13496 13497 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */ 13498 static void 13499 adjust_exidx_size(asection *exidx_sec, int adjust) 13500 { 13501 asection *out_sec; 13502 13503 if (!exidx_sec->rawsize) 13504 exidx_sec->rawsize = exidx_sec->size; 13505 13506 bfd_set_section_size (exidx_sec, exidx_sec->size + adjust); 13507 out_sec = exidx_sec->output_section; 13508 /* Adjust size of output section. */ 13509 bfd_set_section_size (out_sec, out_sec->size +adjust); 13510 } 13511 13512 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */ 13513 static void 13514 insert_cantunwind_after(asection *text_sec, asection *exidx_sec) 13515 { 13516 struct _arm_elf_section_data *exidx_arm_data; 13517 13518 exidx_arm_data = get_arm_elf_section_data (exidx_sec); 13519 add_unwind_table_edit ( 13520 &exidx_arm_data->u.exidx.unwind_edit_list, 13521 &exidx_arm_data->u.exidx.unwind_edit_tail, 13522 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX); 13523 13524 exidx_arm_data->additional_reloc_count++; 13525 13526 adjust_exidx_size(exidx_sec, 8); 13527 } 13528 13529 /* Scan .ARM.exidx tables, and create a list describing edits which should be 13530 made to those tables, such that: 13531 13532 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries. 13533 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind 13534 codes which have been inlined into the index). 13535 13536 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged. 13537 13538 The edits are applied when the tables are written 13539 (in elf32_arm_write_section). */ 13540 13541 bfd_boolean 13542 elf32_arm_fix_exidx_coverage (asection **text_section_order, 13543 unsigned int num_text_sections, 13544 struct bfd_link_info *info, 13545 bfd_boolean merge_exidx_entries) 13546 { 13547 bfd *inp; 13548 unsigned int last_second_word = 0, i; 13549 asection *last_exidx_sec = NULL; 13550 asection *last_text_sec = NULL; 13551 int last_unwind_type = -1; 13552 13553 /* Walk over all EXIDX sections, and create backlinks from the corrsponding 13554 text sections. */ 13555 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next) 13556 { 13557 asection *sec; 13558 13559 for (sec = inp->sections; sec != NULL; sec = sec->next) 13560 { 13561 struct bfd_elf_section_data *elf_sec = elf_section_data (sec); 13562 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr; 13563 13564 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX) 13565 continue; 13566 13567 if (elf_sec->linked_to) 13568 { 13569 Elf_Internal_Shdr *linked_hdr 13570 = &elf_section_data (elf_sec->linked_to)->this_hdr; 13571 struct _arm_elf_section_data *linked_sec_arm_data 13572 = get_arm_elf_section_data (linked_hdr->bfd_section); 13573 13574 if (linked_sec_arm_data == NULL) 13575 continue; 13576 13577 /* Link this .ARM.exidx section back from the text section it 13578 describes. */ 13579 linked_sec_arm_data->u.text.arm_exidx_sec = sec; 13580 } 13581 } 13582 } 13583 13584 /* Walk all text sections in order of increasing VMA. Eilminate duplicate 13585 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes), 13586 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */ 13587 13588 for (i = 0; i < num_text_sections; i++) 13589 { 13590 asection *sec = text_section_order[i]; 13591 asection *exidx_sec; 13592 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec); 13593 struct _arm_elf_section_data *exidx_arm_data; 13594 bfd_byte *contents = NULL; 13595 int deleted_exidx_bytes = 0; 13596 bfd_vma j; 13597 arm_unwind_table_edit *unwind_edit_head = NULL; 13598 arm_unwind_table_edit *unwind_edit_tail = NULL; 13599 Elf_Internal_Shdr *hdr; 13600 bfd *ibfd; 13601 13602 if (arm_data == NULL) 13603 continue; 13604 13605 exidx_sec = arm_data->u.text.arm_exidx_sec; 13606 if (exidx_sec == NULL) 13607 { 13608 /* Section has no unwind data. */ 13609 if (last_unwind_type == 0 || !last_exidx_sec) 13610 continue; 13611 13612 /* Ignore zero sized sections. */ 13613 if (sec->size == 0) 13614 continue; 13615 13616 insert_cantunwind_after(last_text_sec, last_exidx_sec); 13617 last_unwind_type = 0; 13618 continue; 13619 } 13620 13621 /* Skip /DISCARD/ sections. */ 13622 if (bfd_is_abs_section (exidx_sec->output_section)) 13623 continue; 13624 13625 hdr = &elf_section_data (exidx_sec)->this_hdr; 13626 if (hdr->sh_type != SHT_ARM_EXIDX) 13627 continue; 13628 13629 exidx_arm_data = get_arm_elf_section_data (exidx_sec); 13630 if (exidx_arm_data == NULL) 13631 continue; 13632 13633 ibfd = exidx_sec->owner; 13634 13635 if (hdr->contents != NULL) 13636 contents = hdr->contents; 13637 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents)) 13638 /* An error? */ 13639 continue; 13640 13641 if (last_unwind_type > 0) 13642 { 13643 unsigned int first_word = bfd_get_32 (ibfd, contents); 13644 /* Add cantunwind if first unwind item does not match section 13645 start. */ 13646 if (first_word != sec->vma) 13647 { 13648 insert_cantunwind_after (last_text_sec, last_exidx_sec); 13649 last_unwind_type = 0; 13650 } 13651 } 13652 13653 for (j = 0; j < hdr->sh_size; j += 8) 13654 { 13655 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4); 13656 int unwind_type; 13657 int elide = 0; 13658 13659 /* An EXIDX_CANTUNWIND entry. */ 13660 if (second_word == 1) 13661 { 13662 if (last_unwind_type == 0) 13663 elide = 1; 13664 unwind_type = 0; 13665 } 13666 /* Inlined unwinding data. Merge if equal to previous. */ 13667 else if ((second_word & 0x80000000) != 0) 13668 { 13669 if (merge_exidx_entries 13670 && last_second_word == second_word && last_unwind_type == 1) 13671 elide = 1; 13672 unwind_type = 1; 13673 last_second_word = second_word; 13674 } 13675 /* Normal table entry. In theory we could merge these too, 13676 but duplicate entries are likely to be much less common. */ 13677 else 13678 unwind_type = 2; 13679 13680 if (elide && !bfd_link_relocatable (info)) 13681 { 13682 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail, 13683 DELETE_EXIDX_ENTRY, NULL, j / 8); 13684 13685 deleted_exidx_bytes += 8; 13686 } 13687 13688 last_unwind_type = unwind_type; 13689 } 13690 13691 /* Free contents if we allocated it ourselves. */ 13692 if (contents != hdr->contents) 13693 free (contents); 13694 13695 /* Record edits to be applied later (in elf32_arm_write_section). */ 13696 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head; 13697 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail; 13698 13699 if (deleted_exidx_bytes > 0) 13700 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes); 13701 13702 last_exidx_sec = exidx_sec; 13703 last_text_sec = sec; 13704 } 13705 13706 /* Add terminating CANTUNWIND entry. */ 13707 if (!bfd_link_relocatable (info) && last_exidx_sec 13708 && last_unwind_type != 0) 13709 insert_cantunwind_after(last_text_sec, last_exidx_sec); 13710 13711 return TRUE; 13712 } 13713 13714 static bfd_boolean 13715 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd, 13716 bfd *ibfd, const char *name) 13717 { 13718 asection *sec, *osec; 13719 13720 sec = bfd_get_linker_section (ibfd, name); 13721 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0) 13722 return TRUE; 13723 13724 osec = sec->output_section; 13725 if (elf32_arm_write_section (obfd, info, sec, sec->contents)) 13726 return TRUE; 13727 13728 if (! bfd_set_section_contents (obfd, osec, sec->contents, 13729 sec->output_offset, sec->size)) 13730 return FALSE; 13731 13732 return TRUE; 13733 } 13734 13735 static bfd_boolean 13736 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info) 13737 { 13738 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info); 13739 asection *sec, *osec; 13740 13741 if (globals == NULL) 13742 return FALSE; 13743 13744 /* Invoke the regular ELF backend linker to do all the work. */ 13745 if (!bfd_elf_final_link (abfd, info)) 13746 return FALSE; 13747 13748 /* Process stub sections (eg BE8 encoding, ...). */ 13749 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info); 13750 unsigned int i; 13751 for (i=0; i<htab->top_id; i++) 13752 { 13753 sec = htab->stub_group[i].stub_sec; 13754 /* Only process it once, in its link_sec slot. */ 13755 if (sec && i == htab->stub_group[i].link_sec->id) 13756 { 13757 osec = sec->output_section; 13758 elf32_arm_write_section (abfd, info, sec, sec->contents); 13759 if (! bfd_set_section_contents (abfd, osec, sec->contents, 13760 sec->output_offset, sec->size)) 13761 return FALSE; 13762 } 13763 } 13764 13765 /* Write out any glue sections now that we have created all the 13766 stubs. */ 13767 if (globals->bfd_of_glue_owner != NULL) 13768 { 13769 if (! elf32_arm_output_glue_section (info, abfd, 13770 globals->bfd_of_glue_owner, 13771 ARM2THUMB_GLUE_SECTION_NAME)) 13772 return FALSE; 13773 13774 if (! elf32_arm_output_glue_section (info, abfd, 13775 globals->bfd_of_glue_owner, 13776 THUMB2ARM_GLUE_SECTION_NAME)) 13777 return FALSE; 13778 13779 if (! elf32_arm_output_glue_section (info, abfd, 13780 globals->bfd_of_glue_owner, 13781 VFP11_ERRATUM_VENEER_SECTION_NAME)) 13782 return FALSE; 13783 13784 if (! elf32_arm_output_glue_section (info, abfd, 13785 globals->bfd_of_glue_owner, 13786 STM32L4XX_ERRATUM_VENEER_SECTION_NAME)) 13787 return FALSE; 13788 13789 if (! elf32_arm_output_glue_section (info, abfd, 13790 globals->bfd_of_glue_owner, 13791 ARM_BX_GLUE_SECTION_NAME)) 13792 return FALSE; 13793 } 13794 13795 return TRUE; 13796 } 13797 13798 /* Return a best guess for the machine number based on the attributes. */ 13799 13800 static unsigned int 13801 bfd_arm_get_mach_from_attributes (bfd * abfd) 13802 { 13803 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch); 13804 13805 switch (arch) 13806 { 13807 case TAG_CPU_ARCH_PRE_V4: return bfd_mach_arm_3M; 13808 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4; 13809 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T; 13810 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T; 13811 13812 case TAG_CPU_ARCH_V5TE: 13813 { 13814 char * name; 13815 13816 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES); 13817 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s; 13818 13819 if (name) 13820 { 13821 if (strcmp (name, "IWMMXT2") == 0) 13822 return bfd_mach_arm_iWMMXt2; 13823 13824 if (strcmp (name, "IWMMXT") == 0) 13825 return bfd_mach_arm_iWMMXt; 13826 13827 if (strcmp (name, "XSCALE") == 0) 13828 { 13829 int wmmx; 13830 13831 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES); 13832 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i; 13833 switch (wmmx) 13834 { 13835 case 1: return bfd_mach_arm_iWMMXt; 13836 case 2: return bfd_mach_arm_iWMMXt2; 13837 default: return bfd_mach_arm_XScale; 13838 } 13839 } 13840 } 13841 13842 return bfd_mach_arm_5TE; 13843 } 13844 13845 case TAG_CPU_ARCH_V5TEJ: 13846 return bfd_mach_arm_5TEJ; 13847 case TAG_CPU_ARCH_V6: 13848 return bfd_mach_arm_6; 13849 case TAG_CPU_ARCH_V6KZ: 13850 return bfd_mach_arm_6KZ; 13851 case TAG_CPU_ARCH_V6T2: 13852 return bfd_mach_arm_6T2; 13853 case TAG_CPU_ARCH_V6K: 13854 return bfd_mach_arm_6K; 13855 case TAG_CPU_ARCH_V7: 13856 return bfd_mach_arm_7; 13857 case TAG_CPU_ARCH_V6_M: 13858 return bfd_mach_arm_6M; 13859 case TAG_CPU_ARCH_V6S_M: 13860 return bfd_mach_arm_6SM; 13861 case TAG_CPU_ARCH_V7E_M: 13862 return bfd_mach_arm_7EM; 13863 case TAG_CPU_ARCH_V8: 13864 return bfd_mach_arm_8; 13865 case TAG_CPU_ARCH_V8R: 13866 return bfd_mach_arm_8R; 13867 case TAG_CPU_ARCH_V8M_BASE: 13868 return bfd_mach_arm_8M_BASE; 13869 case TAG_CPU_ARCH_V8M_MAIN: 13870 return bfd_mach_arm_8M_MAIN; 13871 case TAG_CPU_ARCH_V8_1M_MAIN: 13872 return bfd_mach_arm_8_1M_MAIN; 13873 13874 default: 13875 /* Force entry to be added for any new known Tag_CPU_arch value. */ 13876 BFD_ASSERT (arch > MAX_TAG_CPU_ARCH); 13877 13878 /* Unknown Tag_CPU_arch value. */ 13879 return bfd_mach_arm_unknown; 13880 } 13881 } 13882 13883 /* Set the right machine number. */ 13884 13885 static bfd_boolean 13886 elf32_arm_object_p (bfd *abfd) 13887 { 13888 unsigned int mach; 13889 13890 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION); 13891 13892 if (mach == bfd_mach_arm_unknown) 13893 { 13894 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT) 13895 mach = bfd_mach_arm_ep9312; 13896 else 13897 mach = bfd_arm_get_mach_from_attributes (abfd); 13898 } 13899 13900 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach); 13901 return TRUE; 13902 } 13903 13904 /* Function to keep ARM specific flags in the ELF header. */ 13905 13906 static bfd_boolean 13907 elf32_arm_set_private_flags (bfd *abfd, flagword flags) 13908 { 13909 if (elf_flags_init (abfd) 13910 && elf_elfheader (abfd)->e_flags != flags) 13911 { 13912 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN) 13913 { 13914 if (flags & EF_ARM_INTERWORK) 13915 _bfd_error_handler 13916 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"), 13917 abfd); 13918 else 13919 _bfd_error_handler 13920 (_("warning: clearing the interworking flag of %pB due to outside request"), 13921 abfd); 13922 } 13923 } 13924 else 13925 { 13926 elf_elfheader (abfd)->e_flags = flags; 13927 elf_flags_init (abfd) = TRUE; 13928 } 13929 13930 return TRUE; 13931 } 13932 13933 /* Copy backend specific data from one object module to another. */ 13934 13935 static bfd_boolean 13936 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd) 13937 { 13938 flagword in_flags; 13939 flagword out_flags; 13940 13941 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd)) 13942 return TRUE; 13943 13944 in_flags = elf_elfheader (ibfd)->e_flags; 13945 out_flags = elf_elfheader (obfd)->e_flags; 13946 13947 if (elf_flags_init (obfd) 13948 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN 13949 && in_flags != out_flags) 13950 { 13951 /* Cannot mix APCS26 and APCS32 code. */ 13952 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26)) 13953 return FALSE; 13954 13955 /* Cannot mix float APCS and non-float APCS code. */ 13956 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT)) 13957 return FALSE; 13958 13959 /* If the src and dest have different interworking flags 13960 then turn off the interworking bit. */ 13961 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK)) 13962 { 13963 if (out_flags & EF_ARM_INTERWORK) 13964 _bfd_error_handler 13965 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"), 13966 obfd, ibfd); 13967 13968 in_flags &= ~EF_ARM_INTERWORK; 13969 } 13970 13971 /* Likewise for PIC, though don't warn for this case. */ 13972 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC)) 13973 in_flags &= ~EF_ARM_PIC; 13974 } 13975 13976 elf_elfheader (obfd)->e_flags = in_flags; 13977 elf_flags_init (obfd) = TRUE; 13978 13979 return _bfd_elf_copy_private_bfd_data (ibfd, obfd); 13980 } 13981 13982 /* Values for Tag_ABI_PCS_R9_use. */ 13983 enum 13984 { 13985 AEABI_R9_V6, 13986 AEABI_R9_SB, 13987 AEABI_R9_TLS, 13988 AEABI_R9_unused 13989 }; 13990 13991 /* Values for Tag_ABI_PCS_RW_data. */ 13992 enum 13993 { 13994 AEABI_PCS_RW_data_absolute, 13995 AEABI_PCS_RW_data_PCrel, 13996 AEABI_PCS_RW_data_SBrel, 13997 AEABI_PCS_RW_data_unused 13998 }; 13999 14000 /* Values for Tag_ABI_enum_size. */ 14001 enum 14002 { 14003 AEABI_enum_unused, 14004 AEABI_enum_short, 14005 AEABI_enum_wide, 14006 AEABI_enum_forced_wide 14007 }; 14008 14009 /* Determine whether an object attribute tag takes an integer, a 14010 string or both. */ 14011 14012 static int 14013 elf32_arm_obj_attrs_arg_type (int tag) 14014 { 14015 if (tag == Tag_compatibility) 14016 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL; 14017 else if (tag == Tag_nodefaults) 14018 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT; 14019 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name) 14020 return ATTR_TYPE_FLAG_STR_VAL; 14021 else if (tag < 32) 14022 return ATTR_TYPE_FLAG_INT_VAL; 14023 else 14024 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL; 14025 } 14026 14027 /* The ABI defines that Tag_conformance should be emitted first, and that 14028 Tag_nodefaults should be second (if either is defined). This sets those 14029 two positions, and bumps up the position of all the remaining tags to 14030 compensate. */ 14031 static int 14032 elf32_arm_obj_attrs_order (int num) 14033 { 14034 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE) 14035 return Tag_conformance; 14036 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1) 14037 return Tag_nodefaults; 14038 if ((num - 2) < Tag_nodefaults) 14039 return num - 2; 14040 if ((num - 1) < Tag_conformance) 14041 return num - 1; 14042 return num; 14043 } 14044 14045 /* Attribute numbers >=64 (mod 128) can be safely ignored. */ 14046 static bfd_boolean 14047 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag) 14048 { 14049 if ((tag & 127) < 64) 14050 { 14051 _bfd_error_handler 14052 (_("%pB: unknown mandatory EABI object attribute %d"), 14053 abfd, tag); 14054 bfd_set_error (bfd_error_bad_value); 14055 return FALSE; 14056 } 14057 else 14058 { 14059 _bfd_error_handler 14060 (_("warning: %pB: unknown EABI object attribute %d"), 14061 abfd, tag); 14062 return TRUE; 14063 } 14064 } 14065 14066 /* Read the architecture from the Tag_also_compatible_with attribute, if any. 14067 Returns -1 if no architecture could be read. */ 14068 14069 static int 14070 get_secondary_compatible_arch (bfd *abfd) 14071 { 14072 obj_attribute *attr = 14073 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with]; 14074 14075 /* Note: the tag and its argument below are uleb128 values, though 14076 currently-defined values fit in one byte for each. */ 14077 if (attr->s 14078 && attr->s[0] == Tag_CPU_arch 14079 && (attr->s[1] & 128) != 128 14080 && attr->s[2] == 0) 14081 return attr->s[1]; 14082 14083 /* This tag is "safely ignorable", so don't complain if it looks funny. */ 14084 return -1; 14085 } 14086 14087 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute. 14088 The tag is removed if ARCH is -1. */ 14089 14090 static void 14091 set_secondary_compatible_arch (bfd *abfd, int arch) 14092 { 14093 obj_attribute *attr = 14094 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with]; 14095 14096 if (arch == -1) 14097 { 14098 attr->s = NULL; 14099 return; 14100 } 14101 14102 /* Note: the tag and its argument below are uleb128 values, though 14103 currently-defined values fit in one byte for each. */ 14104 if (!attr->s) 14105 attr->s = (char *) bfd_alloc (abfd, 3); 14106 attr->s[0] = Tag_CPU_arch; 14107 attr->s[1] = arch; 14108 attr->s[2] = '\0'; 14109 } 14110 14111 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags 14112 into account. */ 14113 14114 static int 14115 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out, 14116 int newtag, int secondary_compat) 14117 { 14118 #define T(X) TAG_CPU_ARCH_##X 14119 int tagl, tagh, result; 14120 const int v6t2[] = 14121 { 14122 T(V6T2), /* PRE_V4. */ 14123 T(V6T2), /* V4. */ 14124 T(V6T2), /* V4T. */ 14125 T(V6T2), /* V5T. */ 14126 T(V6T2), /* V5TE. */ 14127 T(V6T2), /* V5TEJ. */ 14128 T(V6T2), /* V6. */ 14129 T(V7), /* V6KZ. */ 14130 T(V6T2) /* V6T2. */ 14131 }; 14132 const int v6k[] = 14133 { 14134 T(V6K), /* PRE_V4. */ 14135 T(V6K), /* V4. */ 14136 T(V6K), /* V4T. */ 14137 T(V6K), /* V5T. */ 14138 T(V6K), /* V5TE. */ 14139 T(V6K), /* V5TEJ. */ 14140 T(V6K), /* V6. */ 14141 T(V6KZ), /* V6KZ. */ 14142 T(V7), /* V6T2. */ 14143 T(V6K) /* V6K. */ 14144 }; 14145 const int v7[] = 14146 { 14147 T(V7), /* PRE_V4. */ 14148 T(V7), /* V4. */ 14149 T(V7), /* V4T. */ 14150 T(V7), /* V5T. */ 14151 T(V7), /* V5TE. */ 14152 T(V7), /* V5TEJ. */ 14153 T(V7), /* V6. */ 14154 T(V7), /* V6KZ. */ 14155 T(V7), /* V6T2. */ 14156 T(V7), /* V6K. */ 14157 T(V7) /* V7. */ 14158 }; 14159 const int v6_m[] = 14160 { 14161 -1, /* PRE_V4. */ 14162 -1, /* V4. */ 14163 T(V6K), /* V4T. */ 14164 T(V6K), /* V5T. */ 14165 T(V6K), /* V5TE. */ 14166 T(V6K), /* V5TEJ. */ 14167 T(V6K), /* V6. */ 14168 T(V6KZ), /* V6KZ. */ 14169 T(V7), /* V6T2. */ 14170 T(V6K), /* V6K. */ 14171 T(V7), /* V7. */ 14172 T(V6_M) /* V6_M. */ 14173 }; 14174 const int v6s_m[] = 14175 { 14176 -1, /* PRE_V4. */ 14177 -1, /* V4. */ 14178 T(V6K), /* V4T. */ 14179 T(V6K), /* V5T. */ 14180 T(V6K), /* V5TE. */ 14181 T(V6K), /* V5TEJ. */ 14182 T(V6K), /* V6. */ 14183 T(V6KZ), /* V6KZ. */ 14184 T(V7), /* V6T2. */ 14185 T(V6K), /* V6K. */ 14186 T(V7), /* V7. */ 14187 T(V6S_M), /* V6_M. */ 14188 T(V6S_M) /* V6S_M. */ 14189 }; 14190 const int v7e_m[] = 14191 { 14192 -1, /* PRE_V4. */ 14193 -1, /* V4. */ 14194 T(V7E_M), /* V4T. */ 14195 T(V7E_M), /* V5T. */ 14196 T(V7E_M), /* V5TE. */ 14197 T(V7E_M), /* V5TEJ. */ 14198 T(V7E_M), /* V6. */ 14199 T(V7E_M), /* V6KZ. */ 14200 T(V7E_M), /* V6T2. */ 14201 T(V7E_M), /* V6K. */ 14202 T(V7E_M), /* V7. */ 14203 T(V7E_M), /* V6_M. */ 14204 T(V7E_M), /* V6S_M. */ 14205 T(V7E_M) /* V7E_M. */ 14206 }; 14207 const int v8[] = 14208 { 14209 T(V8), /* PRE_V4. */ 14210 T(V8), /* V4. */ 14211 T(V8), /* V4T. */ 14212 T(V8), /* V5T. */ 14213 T(V8), /* V5TE. */ 14214 T(V8), /* V5TEJ. */ 14215 T(V8), /* V6. */ 14216 T(V8), /* V6KZ. */ 14217 T(V8), /* V6T2. */ 14218 T(V8), /* V6K. */ 14219 T(V8), /* V7. */ 14220 T(V8), /* V6_M. */ 14221 T(V8), /* V6S_M. */ 14222 T(V8), /* V7E_M. */ 14223 T(V8) /* V8. */ 14224 }; 14225 const int v8r[] = 14226 { 14227 T(V8R), /* PRE_V4. */ 14228 T(V8R), /* V4. */ 14229 T(V8R), /* V4T. */ 14230 T(V8R), /* V5T. */ 14231 T(V8R), /* V5TE. */ 14232 T(V8R), /* V5TEJ. */ 14233 T(V8R), /* V6. */ 14234 T(V8R), /* V6KZ. */ 14235 T(V8R), /* V6T2. */ 14236 T(V8R), /* V6K. */ 14237 T(V8R), /* V7. */ 14238 T(V8R), /* V6_M. */ 14239 T(V8R), /* V6S_M. */ 14240 T(V8R), /* V7E_M. */ 14241 T(V8), /* V8. */ 14242 T(V8R), /* V8R. */ 14243 }; 14244 const int v8m_baseline[] = 14245 { 14246 -1, /* PRE_V4. */ 14247 -1, /* V4. */ 14248 -1, /* V4T. */ 14249 -1, /* V5T. */ 14250 -1, /* V5TE. */ 14251 -1, /* V5TEJ. */ 14252 -1, /* V6. */ 14253 -1, /* V6KZ. */ 14254 -1, /* V6T2. */ 14255 -1, /* V6K. */ 14256 -1, /* V7. */ 14257 T(V8M_BASE), /* V6_M. */ 14258 T(V8M_BASE), /* V6S_M. */ 14259 -1, /* V7E_M. */ 14260 -1, /* V8. */ 14261 -1, /* V8R. */ 14262 T(V8M_BASE) /* V8-M BASELINE. */ 14263 }; 14264 const int v8m_mainline[] = 14265 { 14266 -1, /* PRE_V4. */ 14267 -1, /* V4. */ 14268 -1, /* V4T. */ 14269 -1, /* V5T. */ 14270 -1, /* V5TE. */ 14271 -1, /* V5TEJ. */ 14272 -1, /* V6. */ 14273 -1, /* V6KZ. */ 14274 -1, /* V6T2. */ 14275 -1, /* V6K. */ 14276 T(V8M_MAIN), /* V7. */ 14277 T(V8M_MAIN), /* V6_M. */ 14278 T(V8M_MAIN), /* V6S_M. */ 14279 T(V8M_MAIN), /* V7E_M. */ 14280 -1, /* V8. */ 14281 -1, /* V8R. */ 14282 T(V8M_MAIN), /* V8-M BASELINE. */ 14283 T(V8M_MAIN) /* V8-M MAINLINE. */ 14284 }; 14285 const int v8_1m_mainline[] = 14286 { 14287 -1, /* PRE_V4. */ 14288 -1, /* V4. */ 14289 -1, /* V4T. */ 14290 -1, /* V5T. */ 14291 -1, /* V5TE. */ 14292 -1, /* V5TEJ. */ 14293 -1, /* V6. */ 14294 -1, /* V6KZ. */ 14295 -1, /* V6T2. */ 14296 -1, /* V6K. */ 14297 T(V8_1M_MAIN), /* V7. */ 14298 T(V8_1M_MAIN), /* V6_M. */ 14299 T(V8_1M_MAIN), /* V6S_M. */ 14300 T(V8_1M_MAIN), /* V7E_M. */ 14301 -1, /* V8. */ 14302 -1, /* V8R. */ 14303 T(V8_1M_MAIN), /* V8-M BASELINE. */ 14304 T(V8_1M_MAIN), /* V8-M MAINLINE. */ 14305 -1, /* Unused (18). */ 14306 -1, /* Unused (19). */ 14307 -1, /* Unused (20). */ 14308 T(V8_1M_MAIN) /* V8.1-M MAINLINE. */ 14309 }; 14310 const int v4t_plus_v6_m[] = 14311 { 14312 -1, /* PRE_V4. */ 14313 -1, /* V4. */ 14314 T(V4T), /* V4T. */ 14315 T(V5T), /* V5T. */ 14316 T(V5TE), /* V5TE. */ 14317 T(V5TEJ), /* V5TEJ. */ 14318 T(V6), /* V6. */ 14319 T(V6KZ), /* V6KZ. */ 14320 T(V6T2), /* V6T2. */ 14321 T(V6K), /* V6K. */ 14322 T(V7), /* V7. */ 14323 T(V6_M), /* V6_M. */ 14324 T(V6S_M), /* V6S_M. */ 14325 T(V7E_M), /* V7E_M. */ 14326 T(V8), /* V8. */ 14327 -1, /* V8R. */ 14328 T(V8M_BASE), /* V8-M BASELINE. */ 14329 T(V8M_MAIN), /* V8-M MAINLINE. */ 14330 -1, /* Unused (18). */ 14331 -1, /* Unused (19). */ 14332 -1, /* Unused (20). */ 14333 T(V8_1M_MAIN), /* V8.1-M MAINLINE. */ 14334 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */ 14335 }; 14336 const int *comb[] = 14337 { 14338 v6t2, 14339 v6k, 14340 v7, 14341 v6_m, 14342 v6s_m, 14343 v7e_m, 14344 v8, 14345 v8r, 14346 v8m_baseline, 14347 v8m_mainline, 14348 NULL, 14349 NULL, 14350 NULL, 14351 v8_1m_mainline, 14352 /* Pseudo-architecture. */ 14353 v4t_plus_v6_m 14354 }; 14355 14356 /* Check we've not got a higher architecture than we know about. */ 14357 14358 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH) 14359 { 14360 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd); 14361 return -1; 14362 } 14363 14364 /* Override old tag if we have a Tag_also_compatible_with on the output. */ 14365 14366 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T)) 14367 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M))) 14368 oldtag = T(V4T_PLUS_V6_M); 14369 14370 /* And override the new tag if we have a Tag_also_compatible_with on the 14371 input. */ 14372 14373 if ((newtag == T(V6_M) && secondary_compat == T(V4T)) 14374 || (newtag == T(V4T) && secondary_compat == T(V6_M))) 14375 newtag = T(V4T_PLUS_V6_M); 14376 14377 tagl = (oldtag < newtag) ? oldtag : newtag; 14378 result = tagh = (oldtag > newtag) ? oldtag : newtag; 14379 14380 /* Architectures before V6KZ add features monotonically. */ 14381 if (tagh <= TAG_CPU_ARCH_V6KZ) 14382 return result; 14383 14384 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1; 14385 14386 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M) 14387 as the canonical version. */ 14388 if (result == T(V4T_PLUS_V6_M)) 14389 { 14390 result = T(V4T); 14391 *secondary_compat_out = T(V6_M); 14392 } 14393 else 14394 *secondary_compat_out = -1; 14395 14396 if (result == -1) 14397 { 14398 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"), 14399 ibfd, oldtag, newtag); 14400 return -1; 14401 } 14402 14403 return result; 14404 #undef T 14405 } 14406 14407 /* Query attributes object to see if integer divide instructions may be 14408 present in an object. */ 14409 static bfd_boolean 14410 elf32_arm_attributes_accept_div (const obj_attribute *attr) 14411 { 14412 int arch = attr[Tag_CPU_arch].i; 14413 int profile = attr[Tag_CPU_arch_profile].i; 14414 14415 switch (attr[Tag_DIV_use].i) 14416 { 14417 case 0: 14418 /* Integer divide allowed if instruction contained in archetecture. */ 14419 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M')) 14420 return TRUE; 14421 else if (arch >= TAG_CPU_ARCH_V7E_M) 14422 return TRUE; 14423 else 14424 return FALSE; 14425 14426 case 1: 14427 /* Integer divide explicitly prohibited. */ 14428 return FALSE; 14429 14430 default: 14431 /* Unrecognised case - treat as allowing divide everywhere. */ 14432 case 2: 14433 /* Integer divide allowed in ARM state. */ 14434 return TRUE; 14435 } 14436 } 14437 14438 /* Query attributes object to see if integer divide instructions are 14439 forbidden to be in the object. This is not the inverse of 14440 elf32_arm_attributes_accept_div. */ 14441 static bfd_boolean 14442 elf32_arm_attributes_forbid_div (const obj_attribute *attr) 14443 { 14444 return attr[Tag_DIV_use].i == 1; 14445 } 14446 14447 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there 14448 are conflicting attributes. */ 14449 14450 static bfd_boolean 14451 elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info) 14452 { 14453 bfd *obfd = info->output_bfd; 14454 obj_attribute *in_attr; 14455 obj_attribute *out_attr; 14456 /* Some tags have 0 = don't care, 1 = strong requirement, 14457 2 = weak requirement. */ 14458 static const int order_021[3] = {0, 2, 1}; 14459 int i; 14460 bfd_boolean result = TRUE; 14461 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section; 14462 14463 /* Skip the linker stubs file. This preserves previous behavior 14464 of accepting unknown attributes in the first input file - but 14465 is that a bug? */ 14466 if (ibfd->flags & BFD_LINKER_CREATED) 14467 return TRUE; 14468 14469 /* Skip any input that hasn't attribute section. 14470 This enables to link object files without attribute section with 14471 any others. */ 14472 if (bfd_get_section_by_name (ibfd, sec_name) == NULL) 14473 return TRUE; 14474 14475 if (!elf_known_obj_attributes_proc (obfd)[0].i) 14476 { 14477 /* This is the first object. Copy the attributes. */ 14478 _bfd_elf_copy_obj_attributes (ibfd, obfd); 14479 14480 out_attr = elf_known_obj_attributes_proc (obfd); 14481 14482 /* Use the Tag_null value to indicate the attributes have been 14483 initialized. */ 14484 out_attr[0].i = 1; 14485 14486 /* We do not output objects with Tag_MPextension_use_legacy - we move 14487 the attribute's value to Tag_MPextension_use. */ 14488 if (out_attr[Tag_MPextension_use_legacy].i != 0) 14489 { 14490 if (out_attr[Tag_MPextension_use].i != 0 14491 && out_attr[Tag_MPextension_use_legacy].i 14492 != out_attr[Tag_MPextension_use].i) 14493 { 14494 _bfd_error_handler 14495 (_("Error: %pB has both the current and legacy " 14496 "Tag_MPextension_use attributes"), ibfd); 14497 result = FALSE; 14498 } 14499 14500 out_attr[Tag_MPextension_use] = 14501 out_attr[Tag_MPextension_use_legacy]; 14502 out_attr[Tag_MPextension_use_legacy].type = 0; 14503 out_attr[Tag_MPextension_use_legacy].i = 0; 14504 } 14505 14506 return result; 14507 } 14508 14509 in_attr = elf_known_obj_attributes_proc (ibfd); 14510 out_attr = elf_known_obj_attributes_proc (obfd); 14511 /* This needs to happen before Tag_ABI_FP_number_model is merged. */ 14512 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i) 14513 { 14514 /* Ignore mismatches if the object doesn't use floating point or is 14515 floating point ABI independent. */ 14516 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none 14517 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none 14518 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible)) 14519 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i; 14520 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none 14521 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible) 14522 { 14523 _bfd_error_handler 14524 (_("error: %pB uses VFP register arguments, %pB does not"), 14525 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd, 14526 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd); 14527 result = FALSE; 14528 } 14529 } 14530 14531 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++) 14532 { 14533 /* Merge this attribute with existing attributes. */ 14534 switch (i) 14535 { 14536 case Tag_CPU_raw_name: 14537 case Tag_CPU_name: 14538 /* These are merged after Tag_CPU_arch. */ 14539 break; 14540 14541 case Tag_ABI_optimization_goals: 14542 case Tag_ABI_FP_optimization_goals: 14543 /* Use the first value seen. */ 14544 break; 14545 14546 case Tag_CPU_arch: 14547 { 14548 int secondary_compat = -1, secondary_compat_out = -1; 14549 unsigned int saved_out_attr = out_attr[i].i; 14550 int arch_attr; 14551 static const char *name_table[] = 14552 { 14553 /* These aren't real CPU names, but we can't guess 14554 that from the architecture version alone. */ 14555 "Pre v4", 14556 "ARM v4", 14557 "ARM v4T", 14558 "ARM v5T", 14559 "ARM v5TE", 14560 "ARM v5TEJ", 14561 "ARM v6", 14562 "ARM v6KZ", 14563 "ARM v6T2", 14564 "ARM v6K", 14565 "ARM v7", 14566 "ARM v6-M", 14567 "ARM v6S-M", 14568 "ARM v8", 14569 "", 14570 "ARM v8-M.baseline", 14571 "ARM v8-M.mainline", 14572 }; 14573 14574 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */ 14575 secondary_compat = get_secondary_compatible_arch (ibfd); 14576 secondary_compat_out = get_secondary_compatible_arch (obfd); 14577 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i, 14578 &secondary_compat_out, 14579 in_attr[i].i, 14580 secondary_compat); 14581 14582 /* Return with error if failed to merge. */ 14583 if (arch_attr == -1) 14584 return FALSE; 14585 14586 out_attr[i].i = arch_attr; 14587 14588 set_secondary_compatible_arch (obfd, secondary_compat_out); 14589 14590 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */ 14591 if (out_attr[i].i == saved_out_attr) 14592 ; /* Leave the names alone. */ 14593 else if (out_attr[i].i == in_attr[i].i) 14594 { 14595 /* The output architecture has been changed to match the 14596 input architecture. Use the input names. */ 14597 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s 14598 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s) 14599 : NULL; 14600 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s 14601 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s) 14602 : NULL; 14603 } 14604 else 14605 { 14606 out_attr[Tag_CPU_name].s = NULL; 14607 out_attr[Tag_CPU_raw_name].s = NULL; 14608 } 14609 14610 /* If we still don't have a value for Tag_CPU_name, 14611 make one up now. Tag_CPU_raw_name remains blank. */ 14612 if (out_attr[Tag_CPU_name].s == NULL 14613 && out_attr[i].i < ARRAY_SIZE (name_table)) 14614 out_attr[Tag_CPU_name].s = 14615 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]); 14616 } 14617 break; 14618 14619 case Tag_ARM_ISA_use: 14620 case Tag_THUMB_ISA_use: 14621 case Tag_WMMX_arch: 14622 case Tag_Advanced_SIMD_arch: 14623 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */ 14624 case Tag_ABI_FP_rounding: 14625 case Tag_ABI_FP_exceptions: 14626 case Tag_ABI_FP_user_exceptions: 14627 case Tag_ABI_FP_number_model: 14628 case Tag_FP_HP_extension: 14629 case Tag_CPU_unaligned_access: 14630 case Tag_T2EE_use: 14631 case Tag_MPextension_use: 14632 case Tag_MVE_arch: 14633 /* Use the largest value specified. */ 14634 if (in_attr[i].i > out_attr[i].i) 14635 out_attr[i].i = in_attr[i].i; 14636 break; 14637 14638 case Tag_ABI_align_preserved: 14639 case Tag_ABI_PCS_RO_data: 14640 /* Use the smallest value specified. */ 14641 if (in_attr[i].i < out_attr[i].i) 14642 out_attr[i].i = in_attr[i].i; 14643 break; 14644 14645 case Tag_ABI_align_needed: 14646 if ((in_attr[i].i > 0 || out_attr[i].i > 0) 14647 && (in_attr[Tag_ABI_align_preserved].i == 0 14648 || out_attr[Tag_ABI_align_preserved].i == 0)) 14649 { 14650 /* This error message should be enabled once all non-conformant 14651 binaries in the toolchain have had the attributes set 14652 properly. 14653 _bfd_error_handler 14654 (_("error: %pB: 8-byte data alignment conflicts with %pB"), 14655 obfd, ibfd); 14656 result = FALSE; */ 14657 } 14658 /* Fall through. */ 14659 case Tag_ABI_FP_denormal: 14660 case Tag_ABI_PCS_GOT_use: 14661 /* Use the "greatest" from the sequence 0, 2, 1, or the largest 14662 value if greater than 2 (for future-proofing). */ 14663 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i) 14664 || (in_attr[i].i <= 2 && out_attr[i].i <= 2 14665 && order_021[in_attr[i].i] > order_021[out_attr[i].i])) 14666 out_attr[i].i = in_attr[i].i; 14667 break; 14668 14669 case Tag_Virtualization_use: 14670 /* The virtualization tag effectively stores two bits of 14671 information: the intended use of TrustZone (in bit 0), and the 14672 intended use of Virtualization (in bit 1). */ 14673 if (out_attr[i].i == 0) 14674 out_attr[i].i = in_attr[i].i; 14675 else if (in_attr[i].i != 0 14676 && in_attr[i].i != out_attr[i].i) 14677 { 14678 if (in_attr[i].i <= 3 && out_attr[i].i <= 3) 14679 out_attr[i].i = 3; 14680 else 14681 { 14682 _bfd_error_handler 14683 (_("error: %pB: unable to merge virtualization attributes " 14684 "with %pB"), 14685 obfd, ibfd); 14686 result = FALSE; 14687 } 14688 } 14689 break; 14690 14691 case Tag_CPU_arch_profile: 14692 if (out_attr[i].i != in_attr[i].i) 14693 { 14694 /* 0 will merge with anything. 14695 'A' and 'S' merge to 'A'. 14696 'R' and 'S' merge to 'R'. 14697 'M' and 'A|R|S' is an error. */ 14698 if (out_attr[i].i == 0 14699 || (out_attr[i].i == 'S' 14700 && (in_attr[i].i == 'A' || in_attr[i].i == 'R'))) 14701 out_attr[i].i = in_attr[i].i; 14702 else if (in_attr[i].i == 0 14703 || (in_attr[i].i == 'S' 14704 && (out_attr[i].i == 'A' || out_attr[i].i == 'R'))) 14705 ; /* Do nothing. */ 14706 else 14707 { 14708 _bfd_error_handler 14709 (_("error: %pB: conflicting architecture profiles %c/%c"), 14710 ibfd, 14711 in_attr[i].i ? in_attr[i].i : '0', 14712 out_attr[i].i ? out_attr[i].i : '0'); 14713 result = FALSE; 14714 } 14715 } 14716 break; 14717 14718 case Tag_DSP_extension: 14719 /* No need to change output value if any of: 14720 - pre (<=) ARMv5T input architecture (do not have DSP) 14721 - M input profile not ARMv7E-M and do not have DSP. */ 14722 if (in_attr[Tag_CPU_arch].i <= 3 14723 || (in_attr[Tag_CPU_arch_profile].i == 'M' 14724 && in_attr[Tag_CPU_arch].i != 13 14725 && in_attr[i].i == 0)) 14726 ; /* Do nothing. */ 14727 /* Output value should be 0 if DSP part of architecture, ie. 14728 - post (>=) ARMv5te architecture output 14729 - A, R or S profile output or ARMv7E-M output architecture. */ 14730 else if (out_attr[Tag_CPU_arch].i >= 4 14731 && (out_attr[Tag_CPU_arch_profile].i == 'A' 14732 || out_attr[Tag_CPU_arch_profile].i == 'R' 14733 || out_attr[Tag_CPU_arch_profile].i == 'S' 14734 || out_attr[Tag_CPU_arch].i == 13)) 14735 out_attr[i].i = 0; 14736 /* Otherwise, DSP instructions are added and not part of output 14737 architecture. */ 14738 else 14739 out_attr[i].i = 1; 14740 break; 14741 14742 case Tag_FP_arch: 14743 { 14744 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since 14745 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch 14746 when it's 0. It might mean absence of FP hardware if 14747 Tag_FP_arch is zero. */ 14748 14749 #define VFP_VERSION_COUNT 9 14750 static const struct 14751 { 14752 int ver; 14753 int regs; 14754 } vfp_versions[VFP_VERSION_COUNT] = 14755 { 14756 {0, 0}, 14757 {1, 16}, 14758 {2, 16}, 14759 {3, 32}, 14760 {3, 16}, 14761 {4, 32}, 14762 {4, 16}, 14763 {8, 32}, 14764 {8, 16} 14765 }; 14766 int ver; 14767 int regs; 14768 int newval; 14769 14770 /* If the output has no requirement about FP hardware, 14771 follow the requirement of the input. */ 14772 if (out_attr[i].i == 0) 14773 { 14774 /* This assert is still reasonable, we shouldn't 14775 produce the suspicious build attribute 14776 combination (See below for in_attr). */ 14777 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0); 14778 out_attr[i].i = in_attr[i].i; 14779 out_attr[Tag_ABI_HardFP_use].i 14780 = in_attr[Tag_ABI_HardFP_use].i; 14781 break; 14782 } 14783 /* If the input has no requirement about FP hardware, do 14784 nothing. */ 14785 else if (in_attr[i].i == 0) 14786 { 14787 /* We used to assert that Tag_ABI_HardFP_use was 14788 zero here, but we should never assert when 14789 consuming an object file that has suspicious 14790 build attributes. The single precision variant 14791 of 'no FP architecture' is still 'no FP 14792 architecture', so we just ignore the tag in this 14793 case. */ 14794 break; 14795 } 14796 14797 /* Both the input and the output have nonzero Tag_FP_arch. 14798 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */ 14799 14800 /* If both the input and the output have zero Tag_ABI_HardFP_use, 14801 do nothing. */ 14802 if (in_attr[Tag_ABI_HardFP_use].i == 0 14803 && out_attr[Tag_ABI_HardFP_use].i == 0) 14804 ; 14805 /* If the input and the output have different Tag_ABI_HardFP_use, 14806 the combination of them is 0 (implied by Tag_FP_arch). */ 14807 else if (in_attr[Tag_ABI_HardFP_use].i 14808 != out_attr[Tag_ABI_HardFP_use].i) 14809 out_attr[Tag_ABI_HardFP_use].i = 0; 14810 14811 /* Now we can handle Tag_FP_arch. */ 14812 14813 /* Values of VFP_VERSION_COUNT or more aren't defined, so just 14814 pick the biggest. */ 14815 if (in_attr[i].i >= VFP_VERSION_COUNT 14816 && in_attr[i].i > out_attr[i].i) 14817 { 14818 out_attr[i] = in_attr[i]; 14819 break; 14820 } 14821 /* The output uses the superset of input features 14822 (ISA version) and registers. */ 14823 ver = vfp_versions[in_attr[i].i].ver; 14824 if (ver < vfp_versions[out_attr[i].i].ver) 14825 ver = vfp_versions[out_attr[i].i].ver; 14826 regs = vfp_versions[in_attr[i].i].regs; 14827 if (regs < vfp_versions[out_attr[i].i].regs) 14828 regs = vfp_versions[out_attr[i].i].regs; 14829 /* This assumes all possible supersets are also a valid 14830 options. */ 14831 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--) 14832 { 14833 if (regs == vfp_versions[newval].regs 14834 && ver == vfp_versions[newval].ver) 14835 break; 14836 } 14837 out_attr[i].i = newval; 14838 } 14839 break; 14840 case Tag_PCS_config: 14841 if (out_attr[i].i == 0) 14842 out_attr[i].i = in_attr[i].i; 14843 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i) 14844 { 14845 /* It's sometimes ok to mix different configs, so this is only 14846 a warning. */ 14847 _bfd_error_handler 14848 (_("warning: %pB: conflicting platform configuration"), ibfd); 14849 } 14850 break; 14851 case Tag_ABI_PCS_R9_use: 14852 if (in_attr[i].i != out_attr[i].i 14853 && out_attr[i].i != AEABI_R9_unused 14854 && in_attr[i].i != AEABI_R9_unused) 14855 { 14856 _bfd_error_handler 14857 (_("error: %pB: conflicting use of R9"), ibfd); 14858 result = FALSE; 14859 } 14860 if (out_attr[i].i == AEABI_R9_unused) 14861 out_attr[i].i = in_attr[i].i; 14862 break; 14863 case Tag_ABI_PCS_RW_data: 14864 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel 14865 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB 14866 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused) 14867 { 14868 _bfd_error_handler 14869 (_("error: %pB: SB relative addressing conflicts with use of R9"), 14870 ibfd); 14871 result = FALSE; 14872 } 14873 /* Use the smallest value specified. */ 14874 if (in_attr[i].i < out_attr[i].i) 14875 out_attr[i].i = in_attr[i].i; 14876 break; 14877 case Tag_ABI_PCS_wchar_t: 14878 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i 14879 && !elf_arm_tdata (obfd)->no_wchar_size_warning) 14880 { 14881 _bfd_error_handler 14882 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"), 14883 ibfd, in_attr[i].i, out_attr[i].i); 14884 } 14885 else if (in_attr[i].i && !out_attr[i].i) 14886 out_attr[i].i = in_attr[i].i; 14887 break; 14888 case Tag_ABI_enum_size: 14889 if (in_attr[i].i != AEABI_enum_unused) 14890 { 14891 if (out_attr[i].i == AEABI_enum_unused 14892 || out_attr[i].i == AEABI_enum_forced_wide) 14893 { 14894 /* The existing object is compatible with anything. 14895 Use whatever requirements the new object has. */ 14896 out_attr[i].i = in_attr[i].i; 14897 } 14898 else if (in_attr[i].i != AEABI_enum_forced_wide 14899 && out_attr[i].i != in_attr[i].i 14900 && !elf_arm_tdata (obfd)->no_enum_size_warning) 14901 { 14902 static const char *aeabi_enum_names[] = 14903 { "", "variable-size", "32-bit", "" }; 14904 const char *in_name = 14905 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names) 14906 ? aeabi_enum_names[in_attr[i].i] 14907 : "<unknown>"; 14908 const char *out_name = 14909 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names) 14910 ? aeabi_enum_names[out_attr[i].i] 14911 : "<unknown>"; 14912 _bfd_error_handler 14913 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"), 14914 ibfd, in_name, out_name); 14915 } 14916 } 14917 break; 14918 case Tag_ABI_VFP_args: 14919 /* Aready done. */ 14920 break; 14921 case Tag_ABI_WMMX_args: 14922 if (in_attr[i].i != out_attr[i].i) 14923 { 14924 _bfd_error_handler 14925 (_("error: %pB uses iWMMXt register arguments, %pB does not"), 14926 ibfd, obfd); 14927 result = FALSE; 14928 } 14929 break; 14930 case Tag_compatibility: 14931 /* Merged in target-independent code. */ 14932 break; 14933 case Tag_ABI_HardFP_use: 14934 /* This is handled along with Tag_FP_arch. */ 14935 break; 14936 case Tag_ABI_FP_16bit_format: 14937 if (in_attr[i].i != 0 && out_attr[i].i != 0) 14938 { 14939 if (in_attr[i].i != out_attr[i].i) 14940 { 14941 _bfd_error_handler 14942 (_("error: fp16 format mismatch between %pB and %pB"), 14943 ibfd, obfd); 14944 result = FALSE; 14945 } 14946 } 14947 if (in_attr[i].i != 0) 14948 out_attr[i].i = in_attr[i].i; 14949 break; 14950 14951 case Tag_DIV_use: 14952 /* A value of zero on input means that the divide instruction may 14953 be used if available in the base architecture as specified via 14954 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that 14955 the user did not want divide instructions. A value of 2 14956 explicitly means that divide instructions were allowed in ARM 14957 and Thumb state. */ 14958 if (in_attr[i].i == out_attr[i].i) 14959 /* Do nothing. */ ; 14960 else if (elf32_arm_attributes_forbid_div (in_attr) 14961 && !elf32_arm_attributes_accept_div (out_attr)) 14962 out_attr[i].i = 1; 14963 else if (elf32_arm_attributes_forbid_div (out_attr) 14964 && elf32_arm_attributes_accept_div (in_attr)) 14965 out_attr[i].i = in_attr[i].i; 14966 else if (in_attr[i].i == 2) 14967 out_attr[i].i = in_attr[i].i; 14968 break; 14969 14970 case Tag_MPextension_use_legacy: 14971 /* We don't output objects with Tag_MPextension_use_legacy - we 14972 move the value to Tag_MPextension_use. */ 14973 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0) 14974 { 14975 if (in_attr[Tag_MPextension_use].i != in_attr[i].i) 14976 { 14977 _bfd_error_handler 14978 (_("%pB has both the current and legacy " 14979 "Tag_MPextension_use attributes"), 14980 ibfd); 14981 result = FALSE; 14982 } 14983 } 14984 14985 if (in_attr[i].i > out_attr[Tag_MPextension_use].i) 14986 out_attr[Tag_MPextension_use] = in_attr[i]; 14987 14988 break; 14989 14990 case Tag_nodefaults: 14991 /* This tag is set if it exists, but the value is unused (and is 14992 typically zero). We don't actually need to do anything here - 14993 the merge happens automatically when the type flags are merged 14994 below. */ 14995 break; 14996 case Tag_also_compatible_with: 14997 /* Already done in Tag_CPU_arch. */ 14998 break; 14999 case Tag_conformance: 15000 /* Keep the attribute if it matches. Throw it away otherwise. 15001 No attribute means no claim to conform. */ 15002 if (!in_attr[i].s || !out_attr[i].s 15003 || strcmp (in_attr[i].s, out_attr[i].s) != 0) 15004 out_attr[i].s = NULL; 15005 break; 15006 15007 default: 15008 result 15009 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i); 15010 } 15011 15012 /* If out_attr was copied from in_attr then it won't have a type yet. */ 15013 if (in_attr[i].type && !out_attr[i].type) 15014 out_attr[i].type = in_attr[i].type; 15015 } 15016 15017 /* Merge Tag_compatibility attributes and any common GNU ones. */ 15018 if (!_bfd_elf_merge_object_attributes (ibfd, info)) 15019 return FALSE; 15020 15021 /* Check for any attributes not known on ARM. */ 15022 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd); 15023 15024 return result; 15025 } 15026 15027 15028 /* Return TRUE if the two EABI versions are incompatible. */ 15029 15030 static bfd_boolean 15031 elf32_arm_versions_compatible (unsigned iver, unsigned over) 15032 { 15033 /* v4 and v5 are the same spec before and after it was released, 15034 so allow mixing them. */ 15035 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5) 15036 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4)) 15037 return TRUE; 15038 15039 return (iver == over); 15040 } 15041 15042 /* Merge backend specific data from an object file to the output 15043 object file when linking. */ 15044 15045 static bfd_boolean 15046 elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *); 15047 15048 /* Display the flags field. */ 15049 15050 static bfd_boolean 15051 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr) 15052 { 15053 FILE * file = (FILE *) ptr; 15054 unsigned long flags; 15055 15056 BFD_ASSERT (abfd != NULL && ptr != NULL); 15057 15058 /* Print normal ELF private data. */ 15059 _bfd_elf_print_private_bfd_data (abfd, ptr); 15060 15061 flags = elf_elfheader (abfd)->e_flags; 15062 /* Ignore init flag - it may not be set, despite the flags field 15063 containing valid data. */ 15064 15065 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); 15066 15067 switch (EF_ARM_EABI_VERSION (flags)) 15068 { 15069 case EF_ARM_EABI_UNKNOWN: 15070 /* The following flag bits are GNU extensions and not part of the 15071 official ARM ELF extended ABI. Hence they are only decoded if 15072 the EABI version is not set. */ 15073 if (flags & EF_ARM_INTERWORK) 15074 fprintf (file, _(" [interworking enabled]")); 15075 15076 if (flags & EF_ARM_APCS_26) 15077 fprintf (file, " [APCS-26]"); 15078 else 15079 fprintf (file, " [APCS-32]"); 15080 15081 if (flags & EF_ARM_VFP_FLOAT) 15082 fprintf (file, _(" [VFP float format]")); 15083 else if (flags & EF_ARM_MAVERICK_FLOAT) 15084 fprintf (file, _(" [Maverick float format]")); 15085 else 15086 fprintf (file, _(" [FPA float format]")); 15087 15088 if (flags & EF_ARM_APCS_FLOAT) 15089 fprintf (file, _(" [floats passed in float registers]")); 15090 15091 if (flags & EF_ARM_PIC) 15092 fprintf (file, _(" [position independent]")); 15093 15094 if (flags & EF_ARM_NEW_ABI) 15095 fprintf (file, _(" [new ABI]")); 15096 15097 if (flags & EF_ARM_OLD_ABI) 15098 fprintf (file, _(" [old ABI]")); 15099 15100 if (flags & EF_ARM_SOFT_FLOAT) 15101 fprintf (file, _(" [software FP]")); 15102 15103 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT 15104 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI 15105 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT 15106 | EF_ARM_MAVERICK_FLOAT); 15107 break; 15108 15109 case EF_ARM_EABI_VER1: 15110 fprintf (file, _(" [Version1 EABI]")); 15111 15112 if (flags & EF_ARM_SYMSARESORTED) 15113 fprintf (file, _(" [sorted symbol table]")); 15114 else 15115 fprintf (file, _(" [unsorted symbol table]")); 15116 15117 flags &= ~ EF_ARM_SYMSARESORTED; 15118 break; 15119 15120 case EF_ARM_EABI_VER2: 15121 fprintf (file, _(" [Version2 EABI]")); 15122 15123 if (flags & EF_ARM_SYMSARESORTED) 15124 fprintf (file, _(" [sorted symbol table]")); 15125 else 15126 fprintf (file, _(" [unsorted symbol table]")); 15127 15128 if (flags & EF_ARM_DYNSYMSUSESEGIDX) 15129 fprintf (file, _(" [dynamic symbols use segment index]")); 15130 15131 if (flags & EF_ARM_MAPSYMSFIRST) 15132 fprintf (file, _(" [mapping symbols precede others]")); 15133 15134 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX 15135 | EF_ARM_MAPSYMSFIRST); 15136 break; 15137 15138 case EF_ARM_EABI_VER3: 15139 fprintf (file, _(" [Version3 EABI]")); 15140 break; 15141 15142 case EF_ARM_EABI_VER4: 15143 fprintf (file, _(" [Version4 EABI]")); 15144 goto eabi; 15145 15146 case EF_ARM_EABI_VER5: 15147 fprintf (file, _(" [Version5 EABI]")); 15148 15149 if (flags & EF_ARM_ABI_FLOAT_SOFT) 15150 fprintf (file, _(" [soft-float ABI]")); 15151 15152 if (flags & EF_ARM_ABI_FLOAT_HARD) 15153 fprintf (file, _(" [hard-float ABI]")); 15154 15155 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD); 15156 15157 eabi: 15158 if (flags & EF_ARM_BE8) 15159 fprintf (file, _(" [BE8]")); 15160 15161 if (flags & EF_ARM_LE8) 15162 fprintf (file, _(" [LE8]")); 15163 15164 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8); 15165 break; 15166 15167 default: 15168 fprintf (file, _(" <EABI version unrecognised>")); 15169 break; 15170 } 15171 15172 flags &= ~ EF_ARM_EABIMASK; 15173 15174 if (flags & EF_ARM_RELEXEC) 15175 fprintf (file, _(" [relocatable executable]")); 15176 15177 if (flags & EF_ARM_PIC) 15178 fprintf (file, _(" [position independent]")); 15179 15180 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC) 15181 fprintf (file, _(" [FDPIC ABI supplement]")); 15182 15183 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC); 15184 15185 if (flags) 15186 fprintf (file, _("<Unrecognised flag bits set>")); 15187 15188 fputc ('\n', file); 15189 15190 return TRUE; 15191 } 15192 15193 static int 15194 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type) 15195 { 15196 switch (ELF_ST_TYPE (elf_sym->st_info)) 15197 { 15198 case STT_ARM_TFUNC: 15199 return ELF_ST_TYPE (elf_sym->st_info); 15200 15201 case STT_ARM_16BIT: 15202 /* If the symbol is not an object, return the STT_ARM_16BIT flag. 15203 This allows us to distinguish between data used by Thumb instructions 15204 and non-data (which is probably code) inside Thumb regions of an 15205 executable. */ 15206 if (type != STT_OBJECT && type != STT_TLS) 15207 return ELF_ST_TYPE (elf_sym->st_info); 15208 break; 15209 15210 default: 15211 break; 15212 } 15213 15214 return type; 15215 } 15216 15217 static asection * 15218 elf32_arm_gc_mark_hook (asection *sec, 15219 struct bfd_link_info *info, 15220 Elf_Internal_Rela *rel, 15221 struct elf_link_hash_entry *h, 15222 Elf_Internal_Sym *sym) 15223 { 15224 if (h != NULL) 15225 switch (ELF32_R_TYPE (rel->r_info)) 15226 { 15227 case R_ARM_GNU_VTINHERIT: 15228 case R_ARM_GNU_VTENTRY: 15229 return NULL; 15230 } 15231 15232 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 15233 } 15234 15235 /* Look through the relocs for a section during the first phase. */ 15236 15237 static bfd_boolean 15238 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info, 15239 asection *sec, const Elf_Internal_Rela *relocs) 15240 { 15241 Elf_Internal_Shdr *symtab_hdr; 15242 struct elf_link_hash_entry **sym_hashes; 15243 const Elf_Internal_Rela *rel; 15244 const Elf_Internal_Rela *rel_end; 15245 bfd *dynobj; 15246 asection *sreloc; 15247 struct elf32_arm_link_hash_table *htab; 15248 bfd_boolean call_reloc_p; 15249 bfd_boolean may_become_dynamic_p; 15250 bfd_boolean may_need_local_target_p; 15251 unsigned long nsyms; 15252 15253 if (bfd_link_relocatable (info)) 15254 return TRUE; 15255 15256 BFD_ASSERT (is_arm_elf (abfd)); 15257 15258 htab = elf32_arm_hash_table (info); 15259 if (htab == NULL) 15260 return FALSE; 15261 15262 sreloc = NULL; 15263 15264 /* Create dynamic sections for relocatable executables so that we can 15265 copy relocations. */ 15266 if (htab->root.is_relocatable_executable 15267 && ! htab->root.dynamic_sections_created) 15268 { 15269 if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) 15270 return FALSE; 15271 } 15272 15273 if (htab->root.dynobj == NULL) 15274 htab->root.dynobj = abfd; 15275 if (!create_ifunc_sections (info)) 15276 return FALSE; 15277 15278 dynobj = htab->root.dynobj; 15279 15280 symtab_hdr = & elf_symtab_hdr (abfd); 15281 sym_hashes = elf_sym_hashes (abfd); 15282 nsyms = NUM_SHDR_ENTRIES (symtab_hdr); 15283 15284 rel_end = relocs + sec->reloc_count; 15285 for (rel = relocs; rel < rel_end; rel++) 15286 { 15287 Elf_Internal_Sym *isym; 15288 struct elf_link_hash_entry *h; 15289 struct elf32_arm_link_hash_entry *eh; 15290 unsigned int r_symndx; 15291 int r_type; 15292 15293 r_symndx = ELF32_R_SYM (rel->r_info); 15294 r_type = ELF32_R_TYPE (rel->r_info); 15295 r_type = arm_real_reloc_type (htab, r_type); 15296 15297 if (r_symndx >= nsyms 15298 /* PR 9934: It is possible to have relocations that do not 15299 refer to symbols, thus it is also possible to have an 15300 object file containing relocations but no symbol table. */ 15301 && (r_symndx > STN_UNDEF || nsyms > 0)) 15302 { 15303 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd, 15304 r_symndx); 15305 return FALSE; 15306 } 15307 15308 h = NULL; 15309 isym = NULL; 15310 if (nsyms > 0) 15311 { 15312 if (r_symndx < symtab_hdr->sh_info) 15313 { 15314 /* A local symbol. */ 15315 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, 15316 abfd, r_symndx); 15317 if (isym == NULL) 15318 return FALSE; 15319 } 15320 else 15321 { 15322 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 15323 while (h->root.type == bfd_link_hash_indirect 15324 || h->root.type == bfd_link_hash_warning) 15325 h = (struct elf_link_hash_entry *) h->root.u.i.link; 15326 } 15327 } 15328 15329 eh = (struct elf32_arm_link_hash_entry *) h; 15330 15331 call_reloc_p = FALSE; 15332 may_become_dynamic_p = FALSE; 15333 may_need_local_target_p = FALSE; 15334 15335 /* Could be done earlier, if h were already available. */ 15336 r_type = elf32_arm_tls_transition (info, r_type, h); 15337 switch (r_type) 15338 { 15339 case R_ARM_GOTOFFFUNCDESC: 15340 { 15341 if (h == NULL) 15342 { 15343 if (!elf32_arm_allocate_local_sym_info (abfd)) 15344 return FALSE; 15345 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].gotofffuncdesc_cnt += 1; 15346 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1; 15347 } 15348 else 15349 { 15350 eh->fdpic_cnts.gotofffuncdesc_cnt++; 15351 } 15352 } 15353 break; 15354 15355 case R_ARM_GOTFUNCDESC: 15356 { 15357 if (h == NULL) 15358 { 15359 /* Such a relocation is not supposed to be generated 15360 by gcc on a static function. */ 15361 /* Anyway if needed it could be handled. */ 15362 abort(); 15363 } 15364 else 15365 { 15366 eh->fdpic_cnts.gotfuncdesc_cnt++; 15367 } 15368 } 15369 break; 15370 15371 case R_ARM_FUNCDESC: 15372 { 15373 if (h == NULL) 15374 { 15375 if (!elf32_arm_allocate_local_sym_info (abfd)) 15376 return FALSE; 15377 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_cnt += 1; 15378 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1; 15379 } 15380 else 15381 { 15382 eh->fdpic_cnts.funcdesc_cnt++; 15383 } 15384 } 15385 break; 15386 15387 case R_ARM_GOT32: 15388 case R_ARM_GOT_PREL: 15389 case R_ARM_TLS_GD32: 15390 case R_ARM_TLS_GD32_FDPIC: 15391 case R_ARM_TLS_IE32: 15392 case R_ARM_TLS_IE32_FDPIC: 15393 case R_ARM_TLS_GOTDESC: 15394 case R_ARM_TLS_DESCSEQ: 15395 case R_ARM_THM_TLS_DESCSEQ: 15396 case R_ARM_TLS_CALL: 15397 case R_ARM_THM_TLS_CALL: 15398 /* This symbol requires a global offset table entry. */ 15399 { 15400 int tls_type, old_tls_type; 15401 15402 switch (r_type) 15403 { 15404 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break; 15405 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break; 15406 15407 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break; 15408 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break; 15409 15410 case R_ARM_TLS_GOTDESC: 15411 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL: 15412 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ: 15413 tls_type = GOT_TLS_GDESC; break; 15414 15415 default: tls_type = GOT_NORMAL; break; 15416 } 15417 15418 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE)) 15419 info->flags |= DF_STATIC_TLS; 15420 15421 if (h != NULL) 15422 { 15423 h->got.refcount++; 15424 old_tls_type = elf32_arm_hash_entry (h)->tls_type; 15425 } 15426 else 15427 { 15428 /* This is a global offset table entry for a local symbol. */ 15429 if (!elf32_arm_allocate_local_sym_info (abfd)) 15430 return FALSE; 15431 elf_local_got_refcounts (abfd)[r_symndx] += 1; 15432 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx]; 15433 } 15434 15435 /* If a variable is accessed with both tls methods, two 15436 slots may be created. */ 15437 if (GOT_TLS_GD_ANY_P (old_tls_type) 15438 && GOT_TLS_GD_ANY_P (tls_type)) 15439 tls_type |= old_tls_type; 15440 15441 /* We will already have issued an error message if there 15442 is a TLS/non-TLS mismatch, based on the symbol 15443 type. So just combine any TLS types needed. */ 15444 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL 15445 && tls_type != GOT_NORMAL) 15446 tls_type |= old_tls_type; 15447 15448 /* If the symbol is accessed in both IE and GDESC 15449 method, we're able to relax. Turn off the GDESC flag, 15450 without messing up with any other kind of tls types 15451 that may be involved. */ 15452 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC)) 15453 tls_type &= ~GOT_TLS_GDESC; 15454 15455 if (old_tls_type != tls_type) 15456 { 15457 if (h != NULL) 15458 elf32_arm_hash_entry (h)->tls_type = tls_type; 15459 else 15460 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type; 15461 } 15462 } 15463 /* Fall through. */ 15464 15465 case R_ARM_TLS_LDM32: 15466 case R_ARM_TLS_LDM32_FDPIC: 15467 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC) 15468 htab->tls_ldm_got.refcount++; 15469 /* Fall through. */ 15470 15471 case R_ARM_GOTOFF32: 15472 case R_ARM_GOTPC: 15473 if (htab->root.sgot == NULL 15474 && !create_got_section (htab->root.dynobj, info)) 15475 return FALSE; 15476 break; 15477 15478 case R_ARM_PC24: 15479 case R_ARM_PLT32: 15480 case R_ARM_CALL: 15481 case R_ARM_JUMP24: 15482 case R_ARM_PREL31: 15483 case R_ARM_THM_CALL: 15484 case R_ARM_THM_JUMP24: 15485 case R_ARM_THM_JUMP19: 15486 call_reloc_p = TRUE; 15487 may_need_local_target_p = TRUE; 15488 break; 15489 15490 case R_ARM_ABS12: 15491 /* VxWorks uses dynamic R_ARM_ABS12 relocations for 15492 ldr __GOTT_INDEX__ offsets. */ 15493 if (htab->root.target_os != is_vxworks) 15494 { 15495 may_need_local_target_p = TRUE; 15496 break; 15497 } 15498 else goto jump_over; 15499 15500 /* Fall through. */ 15501 15502 case R_ARM_MOVW_ABS_NC: 15503 case R_ARM_MOVT_ABS: 15504 case R_ARM_THM_MOVW_ABS_NC: 15505 case R_ARM_THM_MOVT_ABS: 15506 if (bfd_link_pic (info)) 15507 { 15508 _bfd_error_handler 15509 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), 15510 abfd, elf32_arm_howto_table_1[r_type].name, 15511 (h) ? h->root.root.string : "a local symbol"); 15512 bfd_set_error (bfd_error_bad_value); 15513 return FALSE; 15514 } 15515 15516 /* Fall through. */ 15517 case R_ARM_ABS32: 15518 case R_ARM_ABS32_NOI: 15519 jump_over: 15520 if (h != NULL && bfd_link_executable (info)) 15521 { 15522 h->pointer_equality_needed = 1; 15523 } 15524 /* Fall through. */ 15525 case R_ARM_REL32: 15526 case R_ARM_REL32_NOI: 15527 case R_ARM_MOVW_PREL_NC: 15528 case R_ARM_MOVT_PREL: 15529 case R_ARM_THM_MOVW_PREL_NC: 15530 case R_ARM_THM_MOVT_PREL: 15531 15532 /* Should the interworking branches be listed here? */ 15533 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable 15534 || htab->fdpic_p) 15535 && (sec->flags & SEC_ALLOC) != 0) 15536 { 15537 if (h == NULL 15538 && elf32_arm_howto_from_type (r_type)->pc_relative) 15539 { 15540 /* In shared libraries and relocatable executables, 15541 we treat local relative references as calls; 15542 see the related SYMBOL_CALLS_LOCAL code in 15543 allocate_dynrelocs. */ 15544 call_reloc_p = TRUE; 15545 may_need_local_target_p = TRUE; 15546 } 15547 else 15548 /* We are creating a shared library or relocatable 15549 executable, and this is a reloc against a global symbol, 15550 or a non-PC-relative reloc against a local symbol. 15551 We may need to copy the reloc into the output. */ 15552 may_become_dynamic_p = TRUE; 15553 } 15554 else 15555 may_need_local_target_p = TRUE; 15556 break; 15557 15558 /* This relocation describes the C++ object vtable hierarchy. 15559 Reconstruct it for later use during GC. */ 15560 case R_ARM_GNU_VTINHERIT: 15561 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 15562 return FALSE; 15563 break; 15564 15565 /* This relocation describes which C++ vtable entries are actually 15566 used. Record for later use during GC. */ 15567 case R_ARM_GNU_VTENTRY: 15568 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) 15569 return FALSE; 15570 break; 15571 } 15572 15573 if (h != NULL) 15574 { 15575 if (call_reloc_p) 15576 /* We may need a .plt entry if the function this reloc 15577 refers to is in a different object, regardless of the 15578 symbol's type. We can't tell for sure yet, because 15579 something later might force the symbol local. */ 15580 h->needs_plt = 1; 15581 else if (may_need_local_target_p) 15582 /* If this reloc is in a read-only section, we might 15583 need a copy reloc. We can't check reliably at this 15584 stage whether the section is read-only, as input 15585 sections have not yet been mapped to output sections. 15586 Tentatively set the flag for now, and correct in 15587 adjust_dynamic_symbol. */ 15588 h->non_got_ref = 1; 15589 } 15590 15591 if (may_need_local_target_p 15592 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)) 15593 { 15594 union gotplt_union *root_plt; 15595 struct arm_plt_info *arm_plt; 15596 struct arm_local_iplt_info *local_iplt; 15597 15598 if (h != NULL) 15599 { 15600 root_plt = &h->plt; 15601 arm_plt = &eh->plt; 15602 } 15603 else 15604 { 15605 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx); 15606 if (local_iplt == NULL) 15607 return FALSE; 15608 root_plt = &local_iplt->root; 15609 arm_plt = &local_iplt->arm; 15610 } 15611 15612 /* If the symbol is a function that doesn't bind locally, 15613 this relocation will need a PLT entry. */ 15614 if (root_plt->refcount != -1) 15615 root_plt->refcount += 1; 15616 15617 if (!call_reloc_p) 15618 arm_plt->noncall_refcount++; 15619 15620 /* It's too early to use htab->use_blx here, so we have to 15621 record possible blx references separately from 15622 relocs that definitely need a thumb stub. */ 15623 15624 if (r_type == R_ARM_THM_CALL) 15625 arm_plt->maybe_thumb_refcount += 1; 15626 15627 if (r_type == R_ARM_THM_JUMP24 15628 || r_type == R_ARM_THM_JUMP19) 15629 arm_plt->thumb_refcount += 1; 15630 } 15631 15632 if (may_become_dynamic_p) 15633 { 15634 struct elf_dyn_relocs *p, **head; 15635 15636 /* Create a reloc section in dynobj. */ 15637 if (sreloc == NULL) 15638 { 15639 sreloc = _bfd_elf_make_dynamic_reloc_section 15640 (sec, dynobj, 2, abfd, ! htab->use_rel); 15641 15642 if (sreloc == NULL) 15643 return FALSE; 15644 15645 /* BPABI objects never have dynamic relocations mapped. */ 15646 if (htab->root.target_os == is_symbian) 15647 { 15648 flagword flags; 15649 15650 flags = bfd_section_flags (sreloc); 15651 flags &= ~(SEC_LOAD | SEC_ALLOC); 15652 bfd_set_section_flags (sreloc, flags); 15653 } 15654 } 15655 15656 /* If this is a global symbol, count the number of 15657 relocations we need for this symbol. */ 15658 if (h != NULL) 15659 head = &h->dyn_relocs; 15660 else 15661 { 15662 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym); 15663 if (head == NULL) 15664 return FALSE; 15665 } 15666 15667 p = *head; 15668 if (p == NULL || p->sec != sec) 15669 { 15670 size_t amt = sizeof *p; 15671 15672 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt); 15673 if (p == NULL) 15674 return FALSE; 15675 p->next = *head; 15676 *head = p; 15677 p->sec = sec; 15678 p->count = 0; 15679 p->pc_count = 0; 15680 } 15681 15682 if (elf32_arm_howto_from_type (r_type)->pc_relative) 15683 p->pc_count += 1; 15684 p->count += 1; 15685 if (h == NULL && htab->fdpic_p && !bfd_link_pic(info) 15686 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI) { 15687 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI 15688 that will become rofixup. */ 15689 /* This is due to the fact that we suppose all will become rofixup. */ 15690 fprintf(stderr, "FDPIC does not yet support %d relocation to become dynamic for executable\n", r_type); 15691 _bfd_error_handler 15692 (_("FDPIC does not yet support %s relocation" 15693 " to become dynamic for executable"), 15694 elf32_arm_howto_table_1[r_type].name); 15695 abort(); 15696 } 15697 } 15698 } 15699 15700 return TRUE; 15701 } 15702 15703 static void 15704 elf32_arm_update_relocs (asection *o, 15705 struct bfd_elf_section_reloc_data *reldata) 15706 { 15707 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); 15708 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); 15709 const struct elf_backend_data *bed; 15710 _arm_elf_section_data *eado; 15711 struct bfd_link_order *p; 15712 bfd_byte *erela_head, *erela; 15713 Elf_Internal_Rela *irela_head, *irela; 15714 Elf_Internal_Shdr *rel_hdr; 15715 bfd *abfd; 15716 unsigned int count; 15717 15718 eado = get_arm_elf_section_data (o); 15719 15720 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX) 15721 return; 15722 15723 abfd = o->owner; 15724 bed = get_elf_backend_data (abfd); 15725 rel_hdr = reldata->hdr; 15726 15727 if (rel_hdr->sh_entsize == bed->s->sizeof_rel) 15728 { 15729 swap_in = bed->s->swap_reloc_in; 15730 swap_out = bed->s->swap_reloc_out; 15731 } 15732 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela) 15733 { 15734 swap_in = bed->s->swap_reloca_in; 15735 swap_out = bed->s->swap_reloca_out; 15736 } 15737 else 15738 abort (); 15739 15740 erela_head = rel_hdr->contents; 15741 irela_head = (Elf_Internal_Rela *) bfd_zmalloc 15742 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head)); 15743 15744 erela = erela_head; 15745 irela = irela_head; 15746 count = 0; 15747 15748 for (p = o->map_head.link_order; p; p = p->next) 15749 { 15750 if (p->type == bfd_section_reloc_link_order 15751 || p->type == bfd_symbol_reloc_link_order) 15752 { 15753 (*swap_in) (abfd, erela, irela); 15754 erela += rel_hdr->sh_entsize; 15755 irela++; 15756 count++; 15757 } 15758 else if (p->type == bfd_indirect_link_order) 15759 { 15760 struct bfd_elf_section_reloc_data *input_reldata; 15761 arm_unwind_table_edit *edit_list, *edit_tail; 15762 _arm_elf_section_data *eadi; 15763 bfd_size_type j; 15764 bfd_vma offset; 15765 asection *i; 15766 15767 i = p->u.indirect.section; 15768 15769 eadi = get_arm_elf_section_data (i); 15770 edit_list = eadi->u.exidx.unwind_edit_list; 15771 edit_tail = eadi->u.exidx.unwind_edit_tail; 15772 offset = i->output_offset; 15773 15774 if (eadi->elf.rel.hdr && 15775 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize) 15776 input_reldata = &eadi->elf.rel; 15777 else if (eadi->elf.rela.hdr && 15778 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize) 15779 input_reldata = &eadi->elf.rela; 15780 else 15781 abort (); 15782 15783 if (edit_list) 15784 { 15785 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++) 15786 { 15787 arm_unwind_table_edit *edit_node, *edit_next; 15788 bfd_vma bias; 15789 bfd_vma reloc_index; 15790 15791 (*swap_in) (abfd, erela, irela); 15792 reloc_index = (irela->r_offset - offset) / 8; 15793 15794 bias = 0; 15795 edit_node = edit_list; 15796 for (edit_next = edit_list; 15797 edit_next && edit_next->index <= reloc_index; 15798 edit_next = edit_node->next) 15799 { 15800 bias++; 15801 edit_node = edit_next; 15802 } 15803 15804 if (edit_node->type != DELETE_EXIDX_ENTRY 15805 || edit_node->index != reloc_index) 15806 { 15807 irela->r_offset -= bias * 8; 15808 irela++; 15809 count++; 15810 } 15811 15812 erela += rel_hdr->sh_entsize; 15813 } 15814 15815 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END) 15816 { 15817 /* New relocation entity. */ 15818 asection *text_sec = edit_tail->linked_section; 15819 asection *text_out = text_sec->output_section; 15820 bfd_vma exidx_offset = offset + i->size - 8; 15821 15822 irela->r_addend = 0; 15823 irela->r_offset = exidx_offset; 15824 irela->r_info = ELF32_R_INFO 15825 (text_out->target_index, R_ARM_PREL31); 15826 irela++; 15827 count++; 15828 } 15829 } 15830 else 15831 { 15832 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++) 15833 { 15834 (*swap_in) (abfd, erela, irela); 15835 erela += rel_hdr->sh_entsize; 15836 irela++; 15837 } 15838 15839 count += NUM_SHDR_ENTRIES (input_reldata->hdr); 15840 } 15841 } 15842 } 15843 15844 reldata->count = count; 15845 rel_hdr->sh_size = count * rel_hdr->sh_entsize; 15846 15847 erela = erela_head; 15848 irela = irela_head; 15849 while (count > 0) 15850 { 15851 (*swap_out) (abfd, irela, erela); 15852 erela += rel_hdr->sh_entsize; 15853 irela++; 15854 count--; 15855 } 15856 15857 free (irela_head); 15858 15859 /* Hashes are no longer valid. */ 15860 free (reldata->hashes); 15861 reldata->hashes = NULL; 15862 } 15863 15864 /* Unwinding tables are not referenced directly. This pass marks them as 15865 required if the corresponding code section is marked. Similarly, ARMv8-M 15866 secure entry functions can only be referenced by SG veneers which are 15867 created after the GC process. They need to be marked in case they reside in 15868 their own section (as would be the case if code was compiled with 15869 -ffunction-sections). */ 15870 15871 static bfd_boolean 15872 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info, 15873 elf_gc_mark_hook_fn gc_mark_hook) 15874 { 15875 bfd *sub; 15876 Elf_Internal_Shdr **elf_shdrp; 15877 asection *cmse_sec; 15878 obj_attribute *out_attr; 15879 Elf_Internal_Shdr *symtab_hdr; 15880 unsigned i, sym_count, ext_start; 15881 const struct elf_backend_data *bed; 15882 struct elf_link_hash_entry **sym_hashes; 15883 struct elf32_arm_link_hash_entry *cmse_hash; 15884 bfd_boolean again, is_v8m, first_bfd_browse = TRUE; 15885 bfd_boolean debug_sec_need_to_be_marked = FALSE; 15886 asection *isec; 15887 15888 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook); 15889 15890 out_attr = elf_known_obj_attributes_proc (info->output_bfd); 15891 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE 15892 && out_attr[Tag_CPU_arch_profile].i == 'M'; 15893 15894 /* Marking EH data may cause additional code sections to be marked, 15895 requiring multiple passes. */ 15896 again = TRUE; 15897 while (again) 15898 { 15899 again = FALSE; 15900 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 15901 { 15902 asection *o; 15903 15904 if (! is_arm_elf (sub)) 15905 continue; 15906 15907 elf_shdrp = elf_elfsections (sub); 15908 for (o = sub->sections; o != NULL; o = o->next) 15909 { 15910 Elf_Internal_Shdr *hdr; 15911 15912 hdr = &elf_section_data (o)->this_hdr; 15913 if (hdr->sh_type == SHT_ARM_EXIDX 15914 && hdr->sh_link 15915 && hdr->sh_link < elf_numsections (sub) 15916 && !o->gc_mark 15917 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark) 15918 { 15919 again = TRUE; 15920 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) 15921 return FALSE; 15922 } 15923 } 15924 15925 /* Mark section holding ARMv8-M secure entry functions. We mark all 15926 of them so no need for a second browsing. */ 15927 if (is_v8m && first_bfd_browse) 15928 { 15929 sym_hashes = elf_sym_hashes (sub); 15930 bed = get_elf_backend_data (sub); 15931 symtab_hdr = &elf_tdata (sub)->symtab_hdr; 15932 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym; 15933 ext_start = symtab_hdr->sh_info; 15934 15935 /* Scan symbols. */ 15936 for (i = ext_start; i < sym_count; i++) 15937 { 15938 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]); 15939 15940 /* Assume it is a special symbol. If not, cmse_scan will 15941 warn about it and user can do something about it. */ 15942 if (CONST_STRNEQ (cmse_hash->root.root.root.string, 15943 CMSE_PREFIX)) 15944 { 15945 cmse_sec = cmse_hash->root.root.u.def.section; 15946 if (!cmse_sec->gc_mark 15947 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook)) 15948 return FALSE; 15949 /* The debug sections related to these secure entry 15950 functions are marked on enabling below flag. */ 15951 debug_sec_need_to_be_marked = TRUE; 15952 } 15953 } 15954 15955 if (debug_sec_need_to_be_marked) 15956 { 15957 /* Looping over all the sections of the object file containing 15958 Armv8-M secure entry functions and marking all the debug 15959 sections. */ 15960 for (isec = sub->sections; isec != NULL; isec = isec->next) 15961 { 15962 /* If not a debug sections, skip it. */ 15963 if (!isec->gc_mark && (isec->flags & SEC_DEBUGGING)) 15964 isec->gc_mark = 1 ; 15965 } 15966 debug_sec_need_to_be_marked = FALSE; 15967 } 15968 } 15969 } 15970 first_bfd_browse = FALSE; 15971 } 15972 15973 return TRUE; 15974 } 15975 15976 /* Treat mapping symbols as special target symbols. */ 15977 15978 static bfd_boolean 15979 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym) 15980 { 15981 return bfd_is_arm_special_symbol_name (sym->name, 15982 BFD_ARM_SPECIAL_SYM_TYPE_ANY); 15983 } 15984 15985 /* If the ELF symbol SYM might be a function in SEC, return the 15986 function size and set *CODE_OFF to the function's entry point, 15987 otherwise return zero. */ 15988 15989 static bfd_size_type 15990 elf32_arm_maybe_function_sym (const asymbol *sym, asection *sec, 15991 bfd_vma *code_off) 15992 { 15993 bfd_size_type size; 15994 15995 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT 15996 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0 15997 || sym->section != sec) 15998 return 0; 15999 16000 if (!(sym->flags & BSF_SYNTHETIC)) 16001 switch (ELF_ST_TYPE (((elf_symbol_type *) sym)->internal_elf_sym.st_info)) 16002 { 16003 case STT_FUNC: 16004 case STT_ARM_TFUNC: 16005 case STT_NOTYPE: 16006 break; 16007 default: 16008 return 0; 16009 } 16010 16011 if ((sym->flags & BSF_LOCAL) 16012 && bfd_is_arm_special_symbol_name (sym->name, 16013 BFD_ARM_SPECIAL_SYM_TYPE_ANY)) 16014 return 0; 16015 16016 *code_off = sym->value; 16017 size = 0; 16018 if (!(sym->flags & BSF_SYNTHETIC)) 16019 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size; 16020 if (size == 0) 16021 size = 1; 16022 return size; 16023 } 16024 16025 static bfd_boolean 16026 elf32_arm_find_inliner_info (bfd * abfd, 16027 const char ** filename_ptr, 16028 const char ** functionname_ptr, 16029 unsigned int * line_ptr) 16030 { 16031 bfd_boolean found; 16032 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, 16033 functionname_ptr, line_ptr, 16034 & elf_tdata (abfd)->dwarf2_find_line_info); 16035 return found; 16036 } 16037 16038 /* Adjust a symbol defined by a dynamic object and referenced by a 16039 regular object. The current definition is in some section of the 16040 dynamic object, but we're not including those sections. We have to 16041 change the definition to something the rest of the link can 16042 understand. */ 16043 16044 static bfd_boolean 16045 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info, 16046 struct elf_link_hash_entry * h) 16047 { 16048 bfd * dynobj; 16049 asection *s, *srel; 16050 struct elf32_arm_link_hash_entry * eh; 16051 struct elf32_arm_link_hash_table *globals; 16052 16053 globals = elf32_arm_hash_table (info); 16054 if (globals == NULL) 16055 return FALSE; 16056 16057 dynobj = elf_hash_table (info)->dynobj; 16058 16059 /* Make sure we know what is going on here. */ 16060 BFD_ASSERT (dynobj != NULL 16061 && (h->needs_plt 16062 || h->type == STT_GNU_IFUNC 16063 || h->is_weakalias 16064 || (h->def_dynamic 16065 && h->ref_regular 16066 && !h->def_regular))); 16067 16068 eh = (struct elf32_arm_link_hash_entry *) h; 16069 16070 /* If this is a function, put it in the procedure linkage table. We 16071 will fill in the contents of the procedure linkage table later, 16072 when we know the address of the .got section. */ 16073 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt) 16074 { 16075 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the 16076 symbol binds locally. */ 16077 if (h->plt.refcount <= 0 16078 || (h->type != STT_GNU_IFUNC 16079 && (SYMBOL_CALLS_LOCAL (info, h) 16080 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 16081 && h->root.type == bfd_link_hash_undefweak)))) 16082 { 16083 /* This case can occur if we saw a PLT32 reloc in an input 16084 file, but the symbol was never referred to by a dynamic 16085 object, or if all references were garbage collected. In 16086 such a case, we don't actually need to build a procedure 16087 linkage table, and we can just do a PC24 reloc instead. */ 16088 h->plt.offset = (bfd_vma) -1; 16089 eh->plt.thumb_refcount = 0; 16090 eh->plt.maybe_thumb_refcount = 0; 16091 eh->plt.noncall_refcount = 0; 16092 h->needs_plt = 0; 16093 } 16094 16095 return TRUE; 16096 } 16097 else 16098 { 16099 /* It's possible that we incorrectly decided a .plt reloc was 16100 needed for an R_ARM_PC24 or similar reloc to a non-function sym 16101 in check_relocs. We can't decide accurately between function 16102 and non-function syms in check-relocs; Objects loaded later in 16103 the link may change h->type. So fix it now. */ 16104 h->plt.offset = (bfd_vma) -1; 16105 eh->plt.thumb_refcount = 0; 16106 eh->plt.maybe_thumb_refcount = 0; 16107 eh->plt.noncall_refcount = 0; 16108 } 16109 16110 /* If this is a weak symbol, and there is a real definition, the 16111 processor independent code will have arranged for us to see the 16112 real definition first, and we can just use the same value. */ 16113 if (h->is_weakalias) 16114 { 16115 struct elf_link_hash_entry *def = weakdef (h); 16116 BFD_ASSERT (def->root.type == bfd_link_hash_defined); 16117 h->root.u.def.section = def->root.u.def.section; 16118 h->root.u.def.value = def->root.u.def.value; 16119 return TRUE; 16120 } 16121 16122 /* If there are no non-GOT references, we do not need a copy 16123 relocation. */ 16124 if (!h->non_got_ref) 16125 return TRUE; 16126 16127 /* This is a reference to a symbol defined by a dynamic object which 16128 is not a function. */ 16129 16130 /* If we are creating a shared library, we must presume that the 16131 only references to the symbol are via the global offset table. 16132 For such cases we need not do anything here; the relocations will 16133 be handled correctly by relocate_section. Relocatable executables 16134 can reference data in shared objects directly, so we don't need to 16135 do anything here. */ 16136 if (bfd_link_pic (info) || globals->root.is_relocatable_executable) 16137 return TRUE; 16138 16139 /* We must allocate the symbol in our .dynbss section, which will 16140 become part of the .bss section of the executable. There will be 16141 an entry for this symbol in the .dynsym section. The dynamic 16142 object will contain position independent code, so all references 16143 from the dynamic object to this symbol will go through the global 16144 offset table. The dynamic linker will use the .dynsym entry to 16145 determine the address it must put in the global offset table, so 16146 both the dynamic object and the regular object will refer to the 16147 same memory location for the variable. */ 16148 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic 16149 linker to copy the initial value out of the dynamic object and into 16150 the runtime process image. We need to remember the offset into the 16151 .rel(a).bss section we are going to use. */ 16152 if ((h->root.u.def.section->flags & SEC_READONLY) != 0) 16153 { 16154 s = globals->root.sdynrelro; 16155 srel = globals->root.sreldynrelro; 16156 } 16157 else 16158 { 16159 s = globals->root.sdynbss; 16160 srel = globals->root.srelbss; 16161 } 16162 if (info->nocopyreloc == 0 16163 && (h->root.u.def.section->flags & SEC_ALLOC) != 0 16164 && h->size != 0) 16165 { 16166 elf32_arm_allocate_dynrelocs (info, srel, 1); 16167 h->needs_copy = 1; 16168 } 16169 16170 return _bfd_elf_adjust_dynamic_copy (info, h, s); 16171 } 16172 16173 /* Allocate space in .plt, .got and associated reloc sections for 16174 dynamic relocs. */ 16175 16176 static bfd_boolean 16177 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf) 16178 { 16179 struct bfd_link_info *info; 16180 struct elf32_arm_link_hash_table *htab; 16181 struct elf32_arm_link_hash_entry *eh; 16182 struct elf_dyn_relocs *p; 16183 16184 if (h->root.type == bfd_link_hash_indirect) 16185 return TRUE; 16186 16187 eh = (struct elf32_arm_link_hash_entry *) h; 16188 16189 info = (struct bfd_link_info *) inf; 16190 htab = elf32_arm_hash_table (info); 16191 if (htab == NULL) 16192 return FALSE; 16193 16194 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC) 16195 && h->plt.refcount > 0) 16196 { 16197 /* Make sure this symbol is output as a dynamic symbol. 16198 Undefined weak syms won't yet be marked as dynamic. */ 16199 if (h->dynindx == -1 && !h->forced_local 16200 && h->root.type == bfd_link_hash_undefweak) 16201 { 16202 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 16203 return FALSE; 16204 } 16205 16206 /* If the call in the PLT entry binds locally, the associated 16207 GOT entry should use an R_ARM_IRELATIVE relocation instead of 16208 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather 16209 than the .plt section. */ 16210 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h)) 16211 { 16212 eh->is_iplt = 1; 16213 if (eh->plt.noncall_refcount == 0 16214 && SYMBOL_REFERENCES_LOCAL (info, h)) 16215 /* All non-call references can be resolved directly. 16216 This means that they can (and in some cases, must) 16217 resolve directly to the run-time target, rather than 16218 to the PLT. That in turns means that any .got entry 16219 would be equal to the .igot.plt entry, so there's 16220 no point having both. */ 16221 h->got.refcount = 0; 16222 } 16223 16224 if (bfd_link_pic (info) 16225 || eh->is_iplt 16226 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) 16227 { 16228 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt); 16229 16230 /* If this symbol is not defined in a regular file, and we are 16231 not generating a shared library, then set the symbol to this 16232 location in the .plt. This is required to make function 16233 pointers compare as equal between the normal executable and 16234 the shared library. */ 16235 if (! bfd_link_pic (info) 16236 && !h->def_regular) 16237 { 16238 h->root.u.def.section = htab->root.splt; 16239 h->root.u.def.value = h->plt.offset; 16240 16241 /* Make sure the function is not marked as Thumb, in case 16242 it is the target of an ABS32 relocation, which will 16243 point to the PLT entry. */ 16244 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM); 16245 } 16246 16247 /* VxWorks executables have a second set of relocations for 16248 each PLT entry. They go in a separate relocation section, 16249 which is processed by the kernel loader. */ 16250 if (htab->root.target_os == is_vxworks && !bfd_link_pic (info)) 16251 { 16252 /* There is a relocation for the initial PLT entry: 16253 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */ 16254 if (h->plt.offset == htab->plt_header_size) 16255 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1); 16256 16257 /* There are two extra relocations for each subsequent 16258 PLT entry: an R_ARM_32 relocation for the GOT entry, 16259 and an R_ARM_32 relocation for the PLT entry. */ 16260 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2); 16261 } 16262 } 16263 else 16264 { 16265 h->plt.offset = (bfd_vma) -1; 16266 h->needs_plt = 0; 16267 } 16268 } 16269 else 16270 { 16271 h->plt.offset = (bfd_vma) -1; 16272 h->needs_plt = 0; 16273 } 16274 16275 eh = (struct elf32_arm_link_hash_entry *) h; 16276 eh->tlsdesc_got = (bfd_vma) -1; 16277 16278 if (h->got.refcount > 0) 16279 { 16280 asection *s; 16281 bfd_boolean dyn; 16282 int tls_type = elf32_arm_hash_entry (h)->tls_type; 16283 int indx; 16284 16285 /* Make sure this symbol is output as a dynamic symbol. 16286 Undefined weak syms won't yet be marked as dynamic. */ 16287 if (htab->root.dynamic_sections_created && h->dynindx == -1 && !h->forced_local 16288 && h->root.type == bfd_link_hash_undefweak) 16289 { 16290 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 16291 return FALSE; 16292 } 16293 16294 if (htab->root.target_os != is_symbian) 16295 { 16296 s = htab->root.sgot; 16297 h->got.offset = s->size; 16298 16299 if (tls_type == GOT_UNKNOWN) 16300 abort (); 16301 16302 if (tls_type == GOT_NORMAL) 16303 /* Non-TLS symbols need one GOT slot. */ 16304 s->size += 4; 16305 else 16306 { 16307 if (tls_type & GOT_TLS_GDESC) 16308 { 16309 /* R_ARM_TLS_DESC needs 2 GOT slots. */ 16310 eh->tlsdesc_got 16311 = (htab->root.sgotplt->size 16312 - elf32_arm_compute_jump_table_size (htab)); 16313 htab->root.sgotplt->size += 8; 16314 h->got.offset = (bfd_vma) -2; 16315 /* plt.got_offset needs to know there's a TLS_DESC 16316 reloc in the middle of .got.plt. */ 16317 htab->num_tls_desc++; 16318 } 16319 16320 if (tls_type & GOT_TLS_GD) 16321 { 16322 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two 16323 consecutive GOT slots. If the symbol is both GD 16324 and GDESC, got.offset may have been 16325 overwritten. */ 16326 h->got.offset = s->size; 16327 s->size += 8; 16328 } 16329 16330 if (tls_type & GOT_TLS_IE) 16331 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT 16332 slot. */ 16333 s->size += 4; 16334 } 16335 16336 dyn = htab->root.dynamic_sections_created; 16337 16338 indx = 0; 16339 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 16340 bfd_link_pic (info), 16341 h) 16342 && (!bfd_link_pic (info) 16343 || !SYMBOL_REFERENCES_LOCAL (info, h))) 16344 indx = h->dynindx; 16345 16346 if (tls_type != GOT_NORMAL 16347 && (bfd_link_dll (info) || indx != 0) 16348 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 16349 || h->root.type != bfd_link_hash_undefweak)) 16350 { 16351 if (tls_type & GOT_TLS_IE) 16352 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16353 16354 if (tls_type & GOT_TLS_GD) 16355 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16356 16357 if (tls_type & GOT_TLS_GDESC) 16358 { 16359 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1); 16360 /* GDESC needs a trampoline to jump to. */ 16361 htab->tls_trampoline = -1; 16362 } 16363 16364 /* Only GD needs it. GDESC just emits one relocation per 16365 2 entries. */ 16366 if ((tls_type & GOT_TLS_GD) && indx != 0) 16367 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16368 } 16369 else if (((indx != -1) || htab->fdpic_p) 16370 && !SYMBOL_REFERENCES_LOCAL (info, h)) 16371 { 16372 if (htab->root.dynamic_sections_created) 16373 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */ 16374 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16375 } 16376 else if (h->type == STT_GNU_IFUNC 16377 && eh->plt.noncall_refcount == 0) 16378 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry; 16379 they all resolve dynamically instead. Reserve room for the 16380 GOT entry's R_ARM_IRELATIVE relocation. */ 16381 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1); 16382 else if (bfd_link_pic (info) 16383 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) 16384 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */ 16385 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16386 else if (htab->fdpic_p && tls_type == GOT_NORMAL) 16387 /* Reserve room for rofixup for FDPIC executable. */ 16388 /* TLS relocs do not need space since they are completely 16389 resolved. */ 16390 htab->srofixup->size += 4; 16391 } 16392 } 16393 else 16394 h->got.offset = (bfd_vma) -1; 16395 16396 /* FDPIC support. */ 16397 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0) 16398 { 16399 /* Symbol musn't be exported. */ 16400 if (h->dynindx != -1) 16401 abort(); 16402 16403 /* We only allocate one function descriptor with its associated relocation. */ 16404 if (eh->fdpic_cnts.funcdesc_offset == -1) 16405 { 16406 asection *s = htab->root.sgot; 16407 16408 eh->fdpic_cnts.funcdesc_offset = s->size; 16409 s->size += 8; 16410 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */ 16411 if (bfd_link_pic(info)) 16412 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16413 else 16414 htab->srofixup->size += 8; 16415 } 16416 } 16417 16418 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0) 16419 { 16420 asection *s = htab->root.sgot; 16421 16422 if (htab->root.dynamic_sections_created && h->dynindx == -1 16423 && !h->forced_local) 16424 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 16425 return FALSE; 16426 16427 if (h->dynindx == -1) 16428 { 16429 /* We only allocate one function descriptor with its associated relocation. q */ 16430 if (eh->fdpic_cnts.funcdesc_offset == -1) 16431 { 16432 16433 eh->fdpic_cnts.funcdesc_offset = s->size; 16434 s->size += 8; 16435 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */ 16436 if (bfd_link_pic(info)) 16437 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16438 else 16439 htab->srofixup->size += 8; 16440 } 16441 } 16442 16443 /* Add one entry into the GOT and a R_ARM_FUNCDESC or 16444 R_ARM_RELATIVE/rofixup relocation on it. */ 16445 eh->fdpic_cnts.gotfuncdesc_offset = s->size; 16446 s->size += 4; 16447 if (h->dynindx == -1 && !bfd_link_pic(info)) 16448 htab->srofixup->size += 4; 16449 else 16450 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16451 } 16452 16453 if (eh->fdpic_cnts.funcdesc_cnt > 0) 16454 { 16455 if (htab->root.dynamic_sections_created && h->dynindx == -1 16456 && !h->forced_local) 16457 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 16458 return FALSE; 16459 16460 if (h->dynindx == -1) 16461 { 16462 /* We only allocate one function descriptor with its associated relocation. */ 16463 if (eh->fdpic_cnts.funcdesc_offset == -1) 16464 { 16465 asection *s = htab->root.sgot; 16466 16467 eh->fdpic_cnts.funcdesc_offset = s->size; 16468 s->size += 8; 16469 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */ 16470 if (bfd_link_pic(info)) 16471 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16472 else 16473 htab->srofixup->size += 8; 16474 } 16475 } 16476 if (h->dynindx == -1 && !bfd_link_pic(info)) 16477 { 16478 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */ 16479 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt; 16480 } 16481 else 16482 { 16483 /* Will need one dynamic reloc per reference. will be either 16484 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */ 16485 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 16486 eh->fdpic_cnts.funcdesc_cnt); 16487 } 16488 } 16489 16490 /* Allocate stubs for exported Thumb functions on v4t. */ 16491 if (!htab->use_blx && h->dynindx != -1 16492 && h->def_regular 16493 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB 16494 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) 16495 { 16496 struct elf_link_hash_entry * th; 16497 struct bfd_link_hash_entry * bh; 16498 struct elf_link_hash_entry * myh; 16499 char name[1024]; 16500 asection *s; 16501 bh = NULL; 16502 /* Create a new symbol to regist the real location of the function. */ 16503 s = h->root.u.def.section; 16504 sprintf (name, "__real_%s", h->root.root.string); 16505 _bfd_generic_link_add_one_symbol (info, s->owner, 16506 name, BSF_GLOBAL, s, 16507 h->root.u.def.value, 16508 NULL, TRUE, FALSE, &bh); 16509 16510 myh = (struct elf_link_hash_entry *) bh; 16511 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 16512 myh->forced_local = 1; 16513 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB); 16514 eh->export_glue = myh; 16515 th = record_arm_to_thumb_glue (info, h); 16516 /* Point the symbol at the stub. */ 16517 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC); 16518 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM); 16519 h->root.u.def.section = th->root.u.def.section; 16520 h->root.u.def.value = th->root.u.def.value & ~1; 16521 } 16522 16523 if (h->dyn_relocs == NULL) 16524 return TRUE; 16525 16526 /* In the shared -Bsymbolic case, discard space allocated for 16527 dynamic pc-relative relocs against symbols which turn out to be 16528 defined in regular objects. For the normal shared case, discard 16529 space for pc-relative relocs that have become local due to symbol 16530 visibility changes. */ 16531 16532 if (bfd_link_pic (info) || htab->root.is_relocatable_executable || htab->fdpic_p) 16533 { 16534 /* Relocs that use pc_count are PC-relative forms, which will appear 16535 on something like ".long foo - ." or "movw REG, foo - .". We want 16536 calls to protected symbols to resolve directly to the function 16537 rather than going via the plt. If people want function pointer 16538 comparisons to work as expected then they should avoid writing 16539 assembly like ".long foo - .". */ 16540 if (SYMBOL_CALLS_LOCAL (info, h)) 16541 { 16542 struct elf_dyn_relocs **pp; 16543 16544 for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) 16545 { 16546 p->count -= p->pc_count; 16547 p->pc_count = 0; 16548 if (p->count == 0) 16549 *pp = p->next; 16550 else 16551 pp = &p->next; 16552 } 16553 } 16554 16555 if (htab->root.target_os == is_vxworks) 16556 { 16557 struct elf_dyn_relocs **pp; 16558 16559 for (pp = &h->dyn_relocs; (p = *pp) != NULL; ) 16560 { 16561 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0) 16562 *pp = p->next; 16563 else 16564 pp = &p->next; 16565 } 16566 } 16567 16568 /* Also discard relocs on undefined weak syms with non-default 16569 visibility. */ 16570 if (h->dyn_relocs != NULL 16571 && h->root.type == bfd_link_hash_undefweak) 16572 { 16573 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 16574 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h)) 16575 h->dyn_relocs = NULL; 16576 16577 /* Make sure undefined weak symbols are output as a dynamic 16578 symbol in PIEs. */ 16579 else if (htab->root.dynamic_sections_created && h->dynindx == -1 16580 && !h->forced_local) 16581 { 16582 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 16583 return FALSE; 16584 } 16585 } 16586 16587 else if (htab->root.is_relocatable_executable && h->dynindx == -1 16588 && h->root.type == bfd_link_hash_new) 16589 { 16590 /* Output absolute symbols so that we can create relocations 16591 against them. For normal symbols we output a relocation 16592 against the section that contains them. */ 16593 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 16594 return FALSE; 16595 } 16596 16597 } 16598 else 16599 { 16600 /* For the non-shared case, discard space for relocs against 16601 symbols which turn out to need copy relocs or are not 16602 dynamic. */ 16603 16604 if (!h->non_got_ref 16605 && ((h->def_dynamic 16606 && !h->def_regular) 16607 || (htab->root.dynamic_sections_created 16608 && (h->root.type == bfd_link_hash_undefweak 16609 || h->root.type == bfd_link_hash_undefined)))) 16610 { 16611 /* Make sure this symbol is output as a dynamic symbol. 16612 Undefined weak syms won't yet be marked as dynamic. */ 16613 if (h->dynindx == -1 && !h->forced_local 16614 && h->root.type == bfd_link_hash_undefweak) 16615 { 16616 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 16617 return FALSE; 16618 } 16619 16620 /* If that succeeded, we know we'll be keeping all the 16621 relocs. */ 16622 if (h->dynindx != -1) 16623 goto keep; 16624 } 16625 16626 h->dyn_relocs = NULL; 16627 16628 keep: ; 16629 } 16630 16631 /* Finally, allocate space. */ 16632 for (p = h->dyn_relocs; p != NULL; p = p->next) 16633 { 16634 asection *sreloc = elf_section_data (p->sec)->sreloc; 16635 16636 if (h->type == STT_GNU_IFUNC 16637 && eh->plt.noncall_refcount == 0 16638 && SYMBOL_REFERENCES_LOCAL (info, h)) 16639 elf32_arm_allocate_irelocs (info, sreloc, p->count); 16640 else if (h->dynindx != -1 && (!bfd_link_pic(info) || !info->symbolic || !h->def_regular)) 16641 elf32_arm_allocate_dynrelocs (info, sreloc, p->count); 16642 else if (htab->fdpic_p && !bfd_link_pic(info)) 16643 htab->srofixup->size += 4 * p->count; 16644 else 16645 elf32_arm_allocate_dynrelocs (info, sreloc, p->count); 16646 } 16647 16648 return TRUE; 16649 } 16650 16651 void 16652 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info, 16653 int byteswap_code) 16654 { 16655 struct elf32_arm_link_hash_table *globals; 16656 16657 globals = elf32_arm_hash_table (info); 16658 if (globals == NULL) 16659 return; 16660 16661 globals->byteswap_code = byteswap_code; 16662 } 16663 16664 /* Set the sizes of the dynamic sections. */ 16665 16666 static bfd_boolean 16667 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED, 16668 struct bfd_link_info * info) 16669 { 16670 bfd * dynobj; 16671 asection * s; 16672 bfd_boolean relocs; 16673 bfd *ibfd; 16674 struct elf32_arm_link_hash_table *htab; 16675 16676 htab = elf32_arm_hash_table (info); 16677 if (htab == NULL) 16678 return FALSE; 16679 16680 dynobj = elf_hash_table (info)->dynobj; 16681 BFD_ASSERT (dynobj != NULL); 16682 check_use_blx (htab); 16683 16684 if (elf_hash_table (info)->dynamic_sections_created) 16685 { 16686 /* Set the contents of the .interp section to the interpreter. */ 16687 if (bfd_link_executable (info) && !info->nointerp) 16688 { 16689 s = bfd_get_linker_section (dynobj, ".interp"); 16690 BFD_ASSERT (s != NULL); 16691 s->size = sizeof ELF_DYNAMIC_INTERPRETER; 16692 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 16693 } 16694 } 16695 16696 /* Set up .got offsets for local syms, and space for local dynamic 16697 relocs. */ 16698 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 16699 { 16700 bfd_signed_vma *local_got; 16701 bfd_signed_vma *end_local_got; 16702 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt; 16703 char *local_tls_type; 16704 bfd_vma *local_tlsdesc_gotent; 16705 bfd_size_type locsymcount; 16706 Elf_Internal_Shdr *symtab_hdr; 16707 asection *srel; 16708 unsigned int symndx; 16709 struct fdpic_local *local_fdpic_cnts; 16710 16711 if (! is_arm_elf (ibfd)) 16712 continue; 16713 16714 for (s = ibfd->sections; s != NULL; s = s->next) 16715 { 16716 struct elf_dyn_relocs *p; 16717 16718 for (p = (struct elf_dyn_relocs *) 16719 elf_section_data (s)->local_dynrel; p != NULL; p = p->next) 16720 { 16721 if (!bfd_is_abs_section (p->sec) 16722 && bfd_is_abs_section (p->sec->output_section)) 16723 { 16724 /* Input section has been discarded, either because 16725 it is a copy of a linkonce section or due to 16726 linker script /DISCARD/, so we'll be discarding 16727 the relocs too. */ 16728 } 16729 else if (htab->root.target_os == is_vxworks 16730 && strcmp (p->sec->output_section->name, 16731 ".tls_vars") == 0) 16732 { 16733 /* Relocations in vxworks .tls_vars sections are 16734 handled specially by the loader. */ 16735 } 16736 else if (p->count != 0) 16737 { 16738 srel = elf_section_data (p->sec)->sreloc; 16739 if (htab->fdpic_p && !bfd_link_pic(info)) 16740 htab->srofixup->size += 4 * p->count; 16741 else 16742 elf32_arm_allocate_dynrelocs (info, srel, p->count); 16743 if ((p->sec->output_section->flags & SEC_READONLY) != 0) 16744 info->flags |= DF_TEXTREL; 16745 } 16746 } 16747 } 16748 16749 local_got = elf_local_got_refcounts (ibfd); 16750 if (!local_got) 16751 continue; 16752 16753 symtab_hdr = & elf_symtab_hdr (ibfd); 16754 locsymcount = symtab_hdr->sh_info; 16755 end_local_got = local_got + locsymcount; 16756 local_iplt_ptr = elf32_arm_local_iplt (ibfd); 16757 local_tls_type = elf32_arm_local_got_tls_type (ibfd); 16758 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd); 16759 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd); 16760 symndx = 0; 16761 s = htab->root.sgot; 16762 srel = htab->root.srelgot; 16763 for (; local_got < end_local_got; 16764 ++local_got, ++local_iplt_ptr, ++local_tls_type, 16765 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts) 16766 { 16767 *local_tlsdesc_gotent = (bfd_vma) -1; 16768 local_iplt = *local_iplt_ptr; 16769 16770 /* FDPIC support. */ 16771 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0) 16772 { 16773 if (local_fdpic_cnts->funcdesc_offset == -1) 16774 { 16775 local_fdpic_cnts->funcdesc_offset = s->size; 16776 s->size += 8; 16777 16778 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */ 16779 if (bfd_link_pic(info)) 16780 elf32_arm_allocate_dynrelocs (info, srel, 1); 16781 else 16782 htab->srofixup->size += 8; 16783 } 16784 } 16785 16786 if (local_fdpic_cnts->funcdesc_cnt > 0) 16787 { 16788 if (local_fdpic_cnts->funcdesc_offset == -1) 16789 { 16790 local_fdpic_cnts->funcdesc_offset = s->size; 16791 s->size += 8; 16792 16793 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */ 16794 if (bfd_link_pic(info)) 16795 elf32_arm_allocate_dynrelocs (info, srel, 1); 16796 else 16797 htab->srofixup->size += 8; 16798 } 16799 16800 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */ 16801 if (bfd_link_pic(info)) 16802 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt); 16803 else 16804 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt; 16805 } 16806 16807 if (local_iplt != NULL) 16808 { 16809 struct elf_dyn_relocs *p; 16810 16811 if (local_iplt->root.refcount > 0) 16812 { 16813 elf32_arm_allocate_plt_entry (info, TRUE, 16814 &local_iplt->root, 16815 &local_iplt->arm); 16816 if (local_iplt->arm.noncall_refcount == 0) 16817 /* All references to the PLT are calls, so all 16818 non-call references can resolve directly to the 16819 run-time target. This means that the .got entry 16820 would be the same as the .igot.plt entry, so there's 16821 no point creating both. */ 16822 *local_got = 0; 16823 } 16824 else 16825 { 16826 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0); 16827 local_iplt->root.offset = (bfd_vma) -1; 16828 } 16829 16830 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next) 16831 { 16832 asection *psrel; 16833 16834 psrel = elf_section_data (p->sec)->sreloc; 16835 if (local_iplt->arm.noncall_refcount == 0) 16836 elf32_arm_allocate_irelocs (info, psrel, p->count); 16837 else 16838 elf32_arm_allocate_dynrelocs (info, psrel, p->count); 16839 } 16840 } 16841 if (*local_got > 0) 16842 { 16843 Elf_Internal_Sym *isym; 16844 16845 *local_got = s->size; 16846 if (*local_tls_type & GOT_TLS_GD) 16847 /* TLS_GD relocs need an 8-byte structure in the GOT. */ 16848 s->size += 8; 16849 if (*local_tls_type & GOT_TLS_GDESC) 16850 { 16851 *local_tlsdesc_gotent = htab->root.sgotplt->size 16852 - elf32_arm_compute_jump_table_size (htab); 16853 htab->root.sgotplt->size += 8; 16854 *local_got = (bfd_vma) -2; 16855 /* plt.got_offset needs to know there's a TLS_DESC 16856 reloc in the middle of .got.plt. */ 16857 htab->num_tls_desc++; 16858 } 16859 if (*local_tls_type & GOT_TLS_IE) 16860 s->size += 4; 16861 16862 if (*local_tls_type & GOT_NORMAL) 16863 { 16864 /* If the symbol is both GD and GDESC, *local_got 16865 may have been overwritten. */ 16866 *local_got = s->size; 16867 s->size += 4; 16868 } 16869 16870 isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ibfd, 16871 symndx); 16872 if (isym == NULL) 16873 return FALSE; 16874 16875 /* If all references to an STT_GNU_IFUNC PLT are calls, 16876 then all non-call references, including this GOT entry, 16877 resolve directly to the run-time target. */ 16878 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC 16879 && (local_iplt == NULL 16880 || local_iplt->arm.noncall_refcount == 0)) 16881 elf32_arm_allocate_irelocs (info, srel, 1); 16882 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p) 16883 { 16884 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC))) 16885 elf32_arm_allocate_dynrelocs (info, srel, 1); 16886 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL) 16887 htab->srofixup->size += 4; 16888 16889 if ((bfd_link_pic (info) || htab->fdpic_p) 16890 && *local_tls_type & GOT_TLS_GDESC) 16891 { 16892 elf32_arm_allocate_dynrelocs (info, 16893 htab->root.srelplt, 1); 16894 htab->tls_trampoline = -1; 16895 } 16896 } 16897 } 16898 else 16899 *local_got = (bfd_vma) -1; 16900 } 16901 } 16902 16903 if (htab->tls_ldm_got.refcount > 0) 16904 { 16905 /* Allocate two GOT entries and one dynamic relocation (if necessary) 16906 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */ 16907 htab->tls_ldm_got.offset = htab->root.sgot->size; 16908 htab->root.sgot->size += 8; 16909 if (bfd_link_pic (info)) 16910 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1); 16911 } 16912 else 16913 htab->tls_ldm_got.offset = -1; 16914 16915 /* At the very end of the .rofixup section is a pointer to the GOT, 16916 reserve space for it. */ 16917 if (htab->fdpic_p && htab->srofixup != NULL) 16918 htab->srofixup->size += 4; 16919 16920 /* Allocate global sym .plt and .got entries, and space for global 16921 sym dynamic relocs. */ 16922 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info); 16923 16924 /* Here we rummage through the found bfds to collect glue information. */ 16925 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 16926 { 16927 if (! is_arm_elf (ibfd)) 16928 continue; 16929 16930 /* Initialise mapping tables for code/data. */ 16931 bfd_elf32_arm_init_maps (ibfd); 16932 16933 if (!bfd_elf32_arm_process_before_allocation (ibfd, info) 16934 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info) 16935 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info)) 16936 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd); 16937 } 16938 16939 /* Allocate space for the glue sections now that we've sized them. */ 16940 bfd_elf32_arm_allocate_interworking_sections (info); 16941 16942 /* For every jump slot reserved in the sgotplt, reloc_count is 16943 incremented. However, when we reserve space for TLS descriptors, 16944 it's not incremented, so in order to compute the space reserved 16945 for them, it suffices to multiply the reloc count by the jump 16946 slot size. */ 16947 if (htab->root.srelplt) 16948 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab); 16949 16950 if (htab->tls_trampoline) 16951 { 16952 if (htab->root.splt->size == 0) 16953 htab->root.splt->size += htab->plt_header_size; 16954 16955 htab->tls_trampoline = htab->root.splt->size; 16956 htab->root.splt->size += htab->plt_entry_size; 16957 16958 /* If we're not using lazy TLS relocations, don't generate the 16959 PLT and GOT entries they require. */ 16960 if ((info->flags & DF_BIND_NOW)) 16961 htab->root.tlsdesc_plt = 0; 16962 else 16963 { 16964 htab->root.tlsdesc_got = htab->root.sgot->size; 16965 htab->root.sgot->size += 4; 16966 16967 htab->root.tlsdesc_plt = htab->root.splt->size; 16968 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline); 16969 } 16970 } 16971 16972 /* The check_relocs and adjust_dynamic_symbol entry points have 16973 determined the sizes of the various dynamic sections. Allocate 16974 memory for them. */ 16975 relocs = FALSE; 16976 for (s = dynobj->sections; s != NULL; s = s->next) 16977 { 16978 const char * name; 16979 16980 if ((s->flags & SEC_LINKER_CREATED) == 0) 16981 continue; 16982 16983 /* It's OK to base decisions on the section name, because none 16984 of the dynobj section names depend upon the input files. */ 16985 name = bfd_section_name (s); 16986 16987 if (s == htab->root.splt) 16988 { 16989 /* Remember whether there is a PLT. */ 16990 ; 16991 } 16992 else if (CONST_STRNEQ (name, ".rel")) 16993 { 16994 if (s->size != 0) 16995 { 16996 /* Remember whether there are any reloc sections other 16997 than .rel(a).plt and .rela.plt.unloaded. */ 16998 if (s != htab->root.srelplt && s != htab->srelplt2) 16999 relocs = TRUE; 17000 17001 /* We use the reloc_count field as a counter if we need 17002 to copy relocs into the output file. */ 17003 s->reloc_count = 0; 17004 } 17005 } 17006 else if (s != htab->root.sgot 17007 && s != htab->root.sgotplt 17008 && s != htab->root.iplt 17009 && s != htab->root.igotplt 17010 && s != htab->root.sdynbss 17011 && s != htab->root.sdynrelro 17012 && s != htab->srofixup) 17013 { 17014 /* It's not one of our sections, so don't allocate space. */ 17015 continue; 17016 } 17017 17018 if (s->size == 0) 17019 { 17020 /* If we don't need this section, strip it from the 17021 output file. This is mostly to handle .rel(a).bss and 17022 .rel(a).plt. We must create both sections in 17023 create_dynamic_sections, because they must be created 17024 before the linker maps input sections to output 17025 sections. The linker does that before 17026 adjust_dynamic_symbol is called, and it is that 17027 function which decides whether anything needs to go 17028 into these sections. */ 17029 s->flags |= SEC_EXCLUDE; 17030 continue; 17031 } 17032 17033 if ((s->flags & SEC_HAS_CONTENTS) == 0) 17034 continue; 17035 17036 /* Allocate memory for the section contents. */ 17037 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size); 17038 if (s->contents == NULL) 17039 return FALSE; 17040 } 17041 17042 return _bfd_elf_maybe_vxworks_add_dynamic_tags (output_bfd, info, 17043 relocs); 17044 } 17045 17046 /* Size sections even though they're not dynamic. We use it to setup 17047 _TLS_MODULE_BASE_, if needed. */ 17048 17049 static bfd_boolean 17050 elf32_arm_always_size_sections (bfd *output_bfd, 17051 struct bfd_link_info *info) 17052 { 17053 asection *tls_sec; 17054 struct elf32_arm_link_hash_table *htab; 17055 17056 htab = elf32_arm_hash_table (info); 17057 17058 if (bfd_link_relocatable (info)) 17059 return TRUE; 17060 17061 tls_sec = elf_hash_table (info)->tls_sec; 17062 17063 if (tls_sec) 17064 { 17065 struct elf_link_hash_entry *tlsbase; 17066 17067 tlsbase = elf_link_hash_lookup 17068 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE); 17069 17070 if (tlsbase) 17071 { 17072 struct bfd_link_hash_entry *bh = NULL; 17073 const struct elf_backend_data *bed 17074 = get_elf_backend_data (output_bfd); 17075 17076 if (!(_bfd_generic_link_add_one_symbol 17077 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, 17078 tls_sec, 0, NULL, FALSE, 17079 bed->collect, &bh))) 17080 return FALSE; 17081 17082 tlsbase->type = STT_TLS; 17083 tlsbase = (struct elf_link_hash_entry *)bh; 17084 tlsbase->def_regular = 1; 17085 tlsbase->other = STV_HIDDEN; 17086 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); 17087 } 17088 } 17089 17090 if (htab->fdpic_p && !bfd_link_relocatable (info) 17091 && !bfd_elf_stack_segment_size (output_bfd, info, 17092 "__stacksize", DEFAULT_STACK_SIZE)) 17093 return FALSE; 17094 17095 return TRUE; 17096 } 17097 17098 /* Finish up dynamic symbol handling. We set the contents of various 17099 dynamic sections here. */ 17100 17101 static bfd_boolean 17102 elf32_arm_finish_dynamic_symbol (bfd * output_bfd, 17103 struct bfd_link_info * info, 17104 struct elf_link_hash_entry * h, 17105 Elf_Internal_Sym * sym) 17106 { 17107 struct elf32_arm_link_hash_table *htab; 17108 struct elf32_arm_link_hash_entry *eh; 17109 17110 htab = elf32_arm_hash_table (info); 17111 if (htab == NULL) 17112 return FALSE; 17113 17114 eh = (struct elf32_arm_link_hash_entry *) h; 17115 17116 if (h->plt.offset != (bfd_vma) -1) 17117 { 17118 if (!eh->is_iplt) 17119 { 17120 BFD_ASSERT (h->dynindx != -1); 17121 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt, 17122 h->dynindx, 0)) 17123 return FALSE; 17124 } 17125 17126 if (!h->def_regular) 17127 { 17128 /* Mark the symbol as undefined, rather than as defined in 17129 the .plt section. */ 17130 sym->st_shndx = SHN_UNDEF; 17131 /* If the symbol is weak we need to clear the value. 17132 Otherwise, the PLT entry would provide a definition for 17133 the symbol even if the symbol wasn't defined anywhere, 17134 and so the symbol would never be NULL. Leave the value if 17135 there were any relocations where pointer equality matters 17136 (this is a clue for the dynamic linker, to make function 17137 pointer comparisons work between an application and shared 17138 library). */ 17139 if (!h->ref_regular_nonweak || !h->pointer_equality_needed) 17140 sym->st_value = 0; 17141 } 17142 else if (eh->is_iplt && eh->plt.noncall_refcount != 0) 17143 { 17144 /* At least one non-call relocation references this .iplt entry, 17145 so the .iplt entry is the function's canonical address. */ 17146 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC); 17147 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM); 17148 sym->st_shndx = (_bfd_elf_section_from_bfd_section 17149 (output_bfd, htab->root.iplt->output_section)); 17150 sym->st_value = (h->plt.offset 17151 + htab->root.iplt->output_section->vma 17152 + htab->root.iplt->output_offset); 17153 } 17154 } 17155 17156 if (h->needs_copy) 17157 { 17158 asection * s; 17159 Elf_Internal_Rela rel; 17160 17161 /* This symbol needs a copy reloc. Set it up. */ 17162 BFD_ASSERT (h->dynindx != -1 17163 && (h->root.type == bfd_link_hash_defined 17164 || h->root.type == bfd_link_hash_defweak)); 17165 17166 rel.r_addend = 0; 17167 rel.r_offset = (h->root.u.def.value 17168 + h->root.u.def.section->output_section->vma 17169 + h->root.u.def.section->output_offset); 17170 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY); 17171 if (h->root.u.def.section == htab->root.sdynrelro) 17172 s = htab->root.sreldynrelro; 17173 else 17174 s = htab->root.srelbss; 17175 elf32_arm_add_dynreloc (output_bfd, info, s, &rel); 17176 } 17177 17178 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks, 17179 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: 17180 it is relative to the ".got" section. */ 17181 if (h == htab->root.hdynamic 17182 || (!htab->fdpic_p 17183 && htab->root.target_os != is_vxworks 17184 && h == htab->root.hgot)) 17185 sym->st_shndx = SHN_ABS; 17186 17187 return TRUE; 17188 } 17189 17190 static void 17191 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd, 17192 void *contents, 17193 const unsigned long *template, unsigned count) 17194 { 17195 unsigned ix; 17196 17197 for (ix = 0; ix != count; ix++) 17198 { 17199 unsigned long insn = template[ix]; 17200 17201 /* Emit mov pc,rx if bx is not permitted. */ 17202 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10) 17203 insn = (insn & 0xf000000f) | 0x01a0f000; 17204 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4); 17205 } 17206 } 17207 17208 /* Install the special first PLT entry for elf32-arm-nacl. Unlike 17209 other variants, NaCl needs this entry in a static executable's 17210 .iplt too. When we're handling that case, GOT_DISPLACEMENT is 17211 zero. For .iplt really only the last bundle is useful, and .iplt 17212 could have a shorter first entry, with each individual PLT entry's 17213 relative branch calculated differently so it targets the last 17214 bundle instead of the instruction before it (labelled .Lplt_tail 17215 above). But it's simpler to keep the size and layout of PLT0 17216 consistent with the dynamic case, at the cost of some dead code at 17217 the start of .iplt and the one dead store to the stack at the start 17218 of .Lplt_tail. */ 17219 static void 17220 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd, 17221 asection *plt, bfd_vma got_displacement) 17222 { 17223 unsigned int i; 17224 17225 put_arm_insn (htab, output_bfd, 17226 elf32_arm_nacl_plt0_entry[0] 17227 | arm_movw_immediate (got_displacement), 17228 plt->contents + 0); 17229 put_arm_insn (htab, output_bfd, 17230 elf32_arm_nacl_plt0_entry[1] 17231 | arm_movt_immediate (got_displacement), 17232 plt->contents + 4); 17233 17234 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i) 17235 put_arm_insn (htab, output_bfd, 17236 elf32_arm_nacl_plt0_entry[i], 17237 plt->contents + (i * 4)); 17238 } 17239 17240 /* Finish up the dynamic sections. */ 17241 17242 static bfd_boolean 17243 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info) 17244 { 17245 bfd * dynobj; 17246 asection * sgot; 17247 asection * sdyn; 17248 struct elf32_arm_link_hash_table *htab; 17249 17250 htab = elf32_arm_hash_table (info); 17251 if (htab == NULL) 17252 return FALSE; 17253 17254 dynobj = elf_hash_table (info)->dynobj; 17255 17256 sgot = htab->root.sgotplt; 17257 /* A broken linker script might have discarded the dynamic sections. 17258 Catch this here so that we do not seg-fault later on. */ 17259 if (sgot != NULL && bfd_is_abs_section (sgot->output_section)) 17260 return FALSE; 17261 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 17262 17263 if (elf_hash_table (info)->dynamic_sections_created) 17264 { 17265 asection *splt; 17266 Elf32_External_Dyn *dyncon, *dynconend; 17267 17268 splt = htab->root.splt; 17269 BFD_ASSERT (splt != NULL && sdyn != NULL); 17270 BFD_ASSERT (htab->root.target_os == is_symbian || sgot != NULL); 17271 17272 dyncon = (Elf32_External_Dyn *) sdyn->contents; 17273 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); 17274 17275 for (; dyncon < dynconend; dyncon++) 17276 { 17277 Elf_Internal_Dyn dyn; 17278 const char * name; 17279 asection * s; 17280 17281 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); 17282 17283 switch (dyn.d_tag) 17284 { 17285 unsigned int type; 17286 17287 default: 17288 if (htab->root.target_os == is_vxworks 17289 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) 17290 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 17291 break; 17292 17293 case DT_HASH: 17294 name = ".hash"; 17295 goto get_vma_if_bpabi; 17296 case DT_STRTAB: 17297 name = ".dynstr"; 17298 goto get_vma_if_bpabi; 17299 case DT_SYMTAB: 17300 name = ".dynsym"; 17301 goto get_vma_if_bpabi; 17302 case DT_VERSYM: 17303 name = ".gnu.version"; 17304 goto get_vma_if_bpabi; 17305 case DT_VERDEF: 17306 name = ".gnu.version_d"; 17307 goto get_vma_if_bpabi; 17308 case DT_VERNEED: 17309 name = ".gnu.version_r"; 17310 goto get_vma_if_bpabi; 17311 17312 case DT_PLTGOT: 17313 name = (htab->root.target_os == is_symbian 17314 ? ".got" : ".got.plt"); 17315 goto get_vma; 17316 case DT_JMPREL: 17317 name = RELOC_SECTION (htab, ".plt"); 17318 get_vma: 17319 s = bfd_get_linker_section (dynobj, name); 17320 if (s == NULL) 17321 { 17322 _bfd_error_handler 17323 (_("could not find section %s"), name); 17324 bfd_set_error (bfd_error_invalid_operation); 17325 return FALSE; 17326 } 17327 if (htab->root.target_os != is_symbian) 17328 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 17329 else 17330 /* In the BPABI, tags in the PT_DYNAMIC section point 17331 at the file offset, not the memory address, for the 17332 convenience of the post linker. */ 17333 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset; 17334 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 17335 break; 17336 17337 get_vma_if_bpabi: 17338 if (htab->root.target_os == is_symbian) 17339 goto get_vma; 17340 break; 17341 17342 case DT_PLTRELSZ: 17343 s = htab->root.srelplt; 17344 BFD_ASSERT (s != NULL); 17345 dyn.d_un.d_val = s->size; 17346 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 17347 break; 17348 17349 case DT_RELSZ: 17350 case DT_RELASZ: 17351 case DT_REL: 17352 case DT_RELA: 17353 /* In the BPABI, the DT_REL tag must point at the file 17354 offset, not the VMA, of the first relocation 17355 section. So, we use code similar to that in 17356 elflink.c, but do not check for SHF_ALLOC on the 17357 relocation section, since relocation sections are 17358 never allocated under the BPABI. PLT relocs are also 17359 included. */ 17360 if (htab->root.target_os == is_symbian) 17361 { 17362 unsigned int i; 17363 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) 17364 ? SHT_REL : SHT_RELA); 17365 dyn.d_un.d_val = 0; 17366 for (i = 1; i < elf_numsections (output_bfd); i++) 17367 { 17368 Elf_Internal_Shdr *hdr 17369 = elf_elfsections (output_bfd)[i]; 17370 if (hdr->sh_type == type) 17371 { 17372 if (dyn.d_tag == DT_RELSZ 17373 || dyn.d_tag == DT_RELASZ) 17374 dyn.d_un.d_val += hdr->sh_size; 17375 else if ((ufile_ptr) hdr->sh_offset 17376 <= dyn.d_un.d_val - 1) 17377 dyn.d_un.d_val = hdr->sh_offset; 17378 } 17379 } 17380 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 17381 } 17382 break; 17383 17384 case DT_TLSDESC_PLT: 17385 s = htab->root.splt; 17386 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset 17387 + htab->root.tlsdesc_plt); 17388 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 17389 break; 17390 17391 case DT_TLSDESC_GOT: 17392 s = htab->root.sgot; 17393 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset 17394 + htab->root.tlsdesc_got); 17395 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 17396 break; 17397 17398 /* Set the bottom bit of DT_INIT/FINI if the 17399 corresponding function is Thumb. */ 17400 case DT_INIT: 17401 name = info->init_function; 17402 goto get_sym; 17403 case DT_FINI: 17404 name = info->fini_function; 17405 get_sym: 17406 /* If it wasn't set by elf_bfd_final_link 17407 then there is nothing to adjust. */ 17408 if (dyn.d_un.d_val != 0) 17409 { 17410 struct elf_link_hash_entry * eh; 17411 17412 eh = elf_link_hash_lookup (elf_hash_table (info), name, 17413 FALSE, FALSE, TRUE); 17414 if (eh != NULL 17415 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal) 17416 == ST_BRANCH_TO_THUMB) 17417 { 17418 dyn.d_un.d_val |= 1; 17419 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 17420 } 17421 } 17422 break; 17423 } 17424 } 17425 17426 /* Fill in the first entry in the procedure linkage table. */ 17427 if (splt->size > 0 && htab->plt_header_size) 17428 { 17429 const bfd_vma *plt0_entry; 17430 bfd_vma got_address, plt_address, got_displacement; 17431 17432 /* Calculate the addresses of the GOT and PLT. */ 17433 got_address = sgot->output_section->vma + sgot->output_offset; 17434 plt_address = splt->output_section->vma + splt->output_offset; 17435 17436 if (htab->root.target_os == is_vxworks) 17437 { 17438 /* The VxWorks GOT is relocated by the dynamic linker. 17439 Therefore, we must emit relocations rather than simply 17440 computing the values now. */ 17441 Elf_Internal_Rela rel; 17442 17443 plt0_entry = elf32_arm_vxworks_exec_plt0_entry; 17444 put_arm_insn (htab, output_bfd, plt0_entry[0], 17445 splt->contents + 0); 17446 put_arm_insn (htab, output_bfd, plt0_entry[1], 17447 splt->contents + 4); 17448 put_arm_insn (htab, output_bfd, plt0_entry[2], 17449 splt->contents + 8); 17450 bfd_put_32 (output_bfd, got_address, splt->contents + 12); 17451 17452 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */ 17453 rel.r_offset = plt_address + 12; 17454 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32); 17455 rel.r_addend = 0; 17456 SWAP_RELOC_OUT (htab) (output_bfd, &rel, 17457 htab->srelplt2->contents); 17458 } 17459 else if (htab->root.target_os == is_nacl) 17460 arm_nacl_put_plt0 (htab, output_bfd, splt, 17461 got_address + 8 - (plt_address + 16)); 17462 else if (using_thumb_only (htab)) 17463 { 17464 got_displacement = got_address - (plt_address + 12); 17465 17466 plt0_entry = elf32_thumb2_plt0_entry; 17467 put_arm_insn (htab, output_bfd, plt0_entry[0], 17468 splt->contents + 0); 17469 put_arm_insn (htab, output_bfd, plt0_entry[1], 17470 splt->contents + 4); 17471 put_arm_insn (htab, output_bfd, plt0_entry[2], 17472 splt->contents + 8); 17473 17474 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12); 17475 } 17476 else 17477 { 17478 got_displacement = got_address - (plt_address + 16); 17479 17480 plt0_entry = elf32_arm_plt0_entry; 17481 put_arm_insn (htab, output_bfd, plt0_entry[0], 17482 splt->contents + 0); 17483 put_arm_insn (htab, output_bfd, plt0_entry[1], 17484 splt->contents + 4); 17485 put_arm_insn (htab, output_bfd, plt0_entry[2], 17486 splt->contents + 8); 17487 put_arm_insn (htab, output_bfd, plt0_entry[3], 17488 splt->contents + 12); 17489 17490 #ifdef FOUR_WORD_PLT 17491 /* The displacement value goes in the otherwise-unused 17492 last word of the second entry. */ 17493 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28); 17494 #else 17495 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16); 17496 #endif 17497 } 17498 } 17499 17500 /* UnixWare sets the entsize of .plt to 4, although that doesn't 17501 really seem like the right value. */ 17502 if (splt->output_section->owner == output_bfd) 17503 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4; 17504 17505 if (htab->root.tlsdesc_plt) 17506 { 17507 bfd_vma got_address 17508 = sgot->output_section->vma + sgot->output_offset; 17509 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma 17510 + htab->root.sgot->output_offset); 17511 bfd_vma plt_address 17512 = splt->output_section->vma + splt->output_offset; 17513 17514 arm_put_trampoline (htab, output_bfd, 17515 splt->contents + htab->root.tlsdesc_plt, 17516 dl_tlsdesc_lazy_trampoline, 6); 17517 17518 bfd_put_32 (output_bfd, 17519 gotplt_address + htab->root.tlsdesc_got 17520 - (plt_address + htab->root.tlsdesc_plt) 17521 - dl_tlsdesc_lazy_trampoline[6], 17522 splt->contents + htab->root.tlsdesc_plt + 24); 17523 bfd_put_32 (output_bfd, 17524 got_address - (plt_address + htab->root.tlsdesc_plt) 17525 - dl_tlsdesc_lazy_trampoline[7], 17526 splt->contents + htab->root.tlsdesc_plt + 24 + 4); 17527 } 17528 17529 if (htab->tls_trampoline) 17530 { 17531 arm_put_trampoline (htab, output_bfd, 17532 splt->contents + htab->tls_trampoline, 17533 tls_trampoline, 3); 17534 #ifdef FOUR_WORD_PLT 17535 bfd_put_32 (output_bfd, 0x00000000, 17536 splt->contents + htab->tls_trampoline + 12); 17537 #endif 17538 } 17539 17540 if (htab->root.target_os == is_vxworks 17541 && !bfd_link_pic (info) 17542 && htab->root.splt->size > 0) 17543 { 17544 /* Correct the .rel(a).plt.unloaded relocations. They will have 17545 incorrect symbol indexes. */ 17546 int num_plts; 17547 unsigned char *p; 17548 17549 num_plts = ((htab->root.splt->size - htab->plt_header_size) 17550 / htab->plt_entry_size); 17551 p = htab->srelplt2->contents + RELOC_SIZE (htab); 17552 17553 for (; num_plts; num_plts--) 17554 { 17555 Elf_Internal_Rela rel; 17556 17557 SWAP_RELOC_IN (htab) (output_bfd, p, &rel); 17558 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32); 17559 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p); 17560 p += RELOC_SIZE (htab); 17561 17562 SWAP_RELOC_IN (htab) (output_bfd, p, &rel); 17563 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32); 17564 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p); 17565 p += RELOC_SIZE (htab); 17566 } 17567 } 17568 } 17569 17570 if (htab->root.target_os == is_nacl 17571 && htab->root.iplt != NULL 17572 && htab->root.iplt->size > 0) 17573 /* NaCl uses a special first entry in .iplt too. */ 17574 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0); 17575 17576 /* Fill in the first three entries in the global offset table. */ 17577 if (sgot) 17578 { 17579 if (sgot->size > 0) 17580 { 17581 if (sdyn == NULL) 17582 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); 17583 else 17584 bfd_put_32 (output_bfd, 17585 sdyn->output_section->vma + sdyn->output_offset, 17586 sgot->contents); 17587 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); 17588 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); 17589 } 17590 17591 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; 17592 } 17593 17594 /* At the very end of the .rofixup section is a pointer to the GOT. */ 17595 if (htab->fdpic_p && htab->srofixup != NULL) 17596 { 17597 struct elf_link_hash_entry *hgot = htab->root.hgot; 17598 17599 bfd_vma got_value = hgot->root.u.def.value 17600 + hgot->root.u.def.section->output_section->vma 17601 + hgot->root.u.def.section->output_offset; 17602 17603 arm_elf_add_rofixup(output_bfd, htab->srofixup, got_value); 17604 17605 /* Make sure we allocated and generated the same number of fixups. */ 17606 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size); 17607 } 17608 17609 return TRUE; 17610 } 17611 17612 static bfd_boolean 17613 elf32_arm_init_file_header (bfd *abfd, struct bfd_link_info *link_info) 17614 { 17615 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */ 17616 struct elf32_arm_link_hash_table *globals; 17617 struct elf_segment_map *m; 17618 17619 if (!_bfd_elf_init_file_header (abfd, link_info)) 17620 return FALSE; 17621 17622 i_ehdrp = elf_elfheader (abfd); 17623 17624 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN) 17625 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM; 17626 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION; 17627 17628 if (link_info) 17629 { 17630 globals = elf32_arm_hash_table (link_info); 17631 if (globals != NULL && globals->byteswap_code) 17632 i_ehdrp->e_flags |= EF_ARM_BE8; 17633 17634 if (globals->fdpic_p) 17635 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC; 17636 } 17637 17638 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5 17639 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC))) 17640 { 17641 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args); 17642 if (abi == AEABI_VFP_args_vfp) 17643 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD; 17644 else 17645 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT; 17646 } 17647 17648 /* Scan segment to set p_flags attribute if it contains only sections with 17649 SHF_ARM_PURECODE flag. */ 17650 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 17651 { 17652 unsigned int j; 17653 17654 if (m->count == 0) 17655 continue; 17656 for (j = 0; j < m->count; j++) 17657 { 17658 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE)) 17659 break; 17660 } 17661 if (j == m->count) 17662 { 17663 m->p_flags = PF_X; 17664 m->p_flags_valid = 1; 17665 } 17666 } 17667 return TRUE; 17668 } 17669 17670 static enum elf_reloc_type_class 17671 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 17672 const asection *rel_sec ATTRIBUTE_UNUSED, 17673 const Elf_Internal_Rela *rela) 17674 { 17675 switch ((int) ELF32_R_TYPE (rela->r_info)) 17676 { 17677 case R_ARM_RELATIVE: 17678 return reloc_class_relative; 17679 case R_ARM_JUMP_SLOT: 17680 return reloc_class_plt; 17681 case R_ARM_COPY: 17682 return reloc_class_copy; 17683 case R_ARM_IRELATIVE: 17684 return reloc_class_ifunc; 17685 default: 17686 return reloc_class_normal; 17687 } 17688 } 17689 17690 static void 17691 arm_final_write_processing (bfd *abfd) 17692 { 17693 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION); 17694 } 17695 17696 static bfd_boolean 17697 elf32_arm_final_write_processing (bfd *abfd) 17698 { 17699 arm_final_write_processing (abfd); 17700 return _bfd_elf_final_write_processing (abfd); 17701 } 17702 17703 /* Return TRUE if this is an unwinding table entry. */ 17704 17705 static bfd_boolean 17706 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name) 17707 { 17708 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind) 17709 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once)); 17710 } 17711 17712 17713 /* Set the type and flags for an ARM section. We do this by 17714 the section name, which is a hack, but ought to work. */ 17715 17716 static bfd_boolean 17717 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec) 17718 { 17719 const char * name; 17720 17721 name = bfd_section_name (sec); 17722 17723 if (is_arm_elf_unwind_section_name (abfd, name)) 17724 { 17725 hdr->sh_type = SHT_ARM_EXIDX; 17726 hdr->sh_flags |= SHF_LINK_ORDER; 17727 } 17728 17729 if (sec->flags & SEC_ELF_PURECODE) 17730 hdr->sh_flags |= SHF_ARM_PURECODE; 17731 17732 return TRUE; 17733 } 17734 17735 /* Handle an ARM specific section when reading an object file. This is 17736 called when bfd_section_from_shdr finds a section with an unknown 17737 type. */ 17738 17739 static bfd_boolean 17740 elf32_arm_section_from_shdr (bfd *abfd, 17741 Elf_Internal_Shdr * hdr, 17742 const char *name, 17743 int shindex) 17744 { 17745 /* There ought to be a place to keep ELF backend specific flags, but 17746 at the moment there isn't one. We just keep track of the 17747 sections by their name, instead. Fortunately, the ABI gives 17748 names for all the ARM specific sections, so we will probably get 17749 away with this. */ 17750 switch (hdr->sh_type) 17751 { 17752 case SHT_ARM_EXIDX: 17753 case SHT_ARM_PREEMPTMAP: 17754 case SHT_ARM_ATTRIBUTES: 17755 break; 17756 17757 default: 17758 return FALSE; 17759 } 17760 17761 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 17762 return FALSE; 17763 17764 return TRUE; 17765 } 17766 17767 static _arm_elf_section_data * 17768 get_arm_elf_section_data (asection * sec) 17769 { 17770 if (sec && sec->owner && is_arm_elf (sec->owner)) 17771 return elf32_arm_section_data (sec); 17772 else 17773 return NULL; 17774 } 17775 17776 typedef struct 17777 { 17778 void *flaginfo; 17779 struct bfd_link_info *info; 17780 asection *sec; 17781 int sec_shndx; 17782 int (*func) (void *, const char *, Elf_Internal_Sym *, 17783 asection *, struct elf_link_hash_entry *); 17784 } output_arch_syminfo; 17785 17786 enum map_symbol_type 17787 { 17788 ARM_MAP_ARM, 17789 ARM_MAP_THUMB, 17790 ARM_MAP_DATA 17791 }; 17792 17793 17794 /* Output a single mapping symbol. */ 17795 17796 static bfd_boolean 17797 elf32_arm_output_map_sym (output_arch_syminfo *osi, 17798 enum map_symbol_type type, 17799 bfd_vma offset) 17800 { 17801 static const char *names[3] = {"$a", "$t", "$d"}; 17802 Elf_Internal_Sym sym; 17803 17804 sym.st_value = osi->sec->output_section->vma 17805 + osi->sec->output_offset 17806 + offset; 17807 sym.st_size = 0; 17808 sym.st_other = 0; 17809 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); 17810 sym.st_shndx = osi->sec_shndx; 17811 sym.st_target_internal = 0; 17812 elf32_arm_section_map_add (osi->sec, names[type][1], offset); 17813 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1; 17814 } 17815 17816 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT. 17817 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */ 17818 17819 static bfd_boolean 17820 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi, 17821 bfd_boolean is_iplt_entry_p, 17822 union gotplt_union *root_plt, 17823 struct arm_plt_info *arm_plt) 17824 { 17825 struct elf32_arm_link_hash_table *htab; 17826 bfd_vma addr, plt_header_size; 17827 17828 if (root_plt->offset == (bfd_vma) -1) 17829 return TRUE; 17830 17831 htab = elf32_arm_hash_table (osi->info); 17832 if (htab == NULL) 17833 return FALSE; 17834 17835 if (is_iplt_entry_p) 17836 { 17837 osi->sec = htab->root.iplt; 17838 plt_header_size = 0; 17839 } 17840 else 17841 { 17842 osi->sec = htab->root.splt; 17843 plt_header_size = htab->plt_header_size; 17844 } 17845 osi->sec_shndx = (_bfd_elf_section_from_bfd_section 17846 (osi->info->output_bfd, osi->sec->output_section)); 17847 17848 addr = root_plt->offset & -2; 17849 if (htab->root.target_os == is_symbian) 17850 { 17851 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 17852 return FALSE; 17853 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4)) 17854 return FALSE; 17855 } 17856 else if (htab->root.target_os == is_vxworks) 17857 { 17858 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 17859 return FALSE; 17860 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8)) 17861 return FALSE; 17862 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12)) 17863 return FALSE; 17864 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20)) 17865 return FALSE; 17866 } 17867 else if (htab->root.target_os == is_nacl) 17868 { 17869 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 17870 return FALSE; 17871 } 17872 else if (htab->fdpic_p) 17873 { 17874 enum map_symbol_type type = using_thumb_only(htab) 17875 ? ARM_MAP_THUMB 17876 : ARM_MAP_ARM; 17877 17878 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt)) 17879 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4)) 17880 return FALSE; 17881 if (!elf32_arm_output_map_sym (osi, type, addr)) 17882 return FALSE; 17883 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16)) 17884 return FALSE; 17885 if (htab->plt_entry_size == 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry)) 17886 if (!elf32_arm_output_map_sym (osi, type, addr + 24)) 17887 return FALSE; 17888 } 17889 else if (using_thumb_only (htab)) 17890 { 17891 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr)) 17892 return FALSE; 17893 } 17894 else 17895 { 17896 bfd_boolean thumb_stub_p; 17897 17898 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt); 17899 if (thumb_stub_p) 17900 { 17901 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4)) 17902 return FALSE; 17903 } 17904 #ifdef FOUR_WORD_PLT 17905 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 17906 return FALSE; 17907 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12)) 17908 return FALSE; 17909 #else 17910 /* A three-word PLT with no Thumb thunk contains only Arm code, 17911 so only need to output a mapping symbol for the first PLT entry and 17912 entries with thumb thunks. */ 17913 if (thumb_stub_p || addr == plt_header_size) 17914 { 17915 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr)) 17916 return FALSE; 17917 } 17918 #endif 17919 } 17920 17921 return TRUE; 17922 } 17923 17924 /* Output mapping symbols for PLT entries associated with H. */ 17925 17926 static bfd_boolean 17927 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf) 17928 { 17929 output_arch_syminfo *osi = (output_arch_syminfo *) inf; 17930 struct elf32_arm_link_hash_entry *eh; 17931 17932 if (h->root.type == bfd_link_hash_indirect) 17933 return TRUE; 17934 17935 if (h->root.type == bfd_link_hash_warning) 17936 /* When warning symbols are created, they **replace** the "real" 17937 entry in the hash table, thus we never get to see the real 17938 symbol in a hash traversal. So look at it now. */ 17939 h = (struct elf_link_hash_entry *) h->root.u.i.link; 17940 17941 eh = (struct elf32_arm_link_hash_entry *) h; 17942 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h), 17943 &h->plt, &eh->plt); 17944 } 17945 17946 /* Bind a veneered symbol to its veneer identified by its hash entry 17947 STUB_ENTRY. The veneered location thus loose its symbol. */ 17948 17949 static void 17950 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry) 17951 { 17952 struct elf32_arm_link_hash_entry *hash = stub_entry->h; 17953 17954 BFD_ASSERT (hash); 17955 hash->root.root.u.def.section = stub_entry->stub_sec; 17956 hash->root.root.u.def.value = stub_entry->stub_offset; 17957 hash->root.size = stub_entry->stub_size; 17958 } 17959 17960 /* Output a single local symbol for a generated stub. */ 17961 17962 static bfd_boolean 17963 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name, 17964 bfd_vma offset, bfd_vma size) 17965 { 17966 Elf_Internal_Sym sym; 17967 17968 sym.st_value = osi->sec->output_section->vma 17969 + osi->sec->output_offset 17970 + offset; 17971 sym.st_size = size; 17972 sym.st_other = 0; 17973 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 17974 sym.st_shndx = osi->sec_shndx; 17975 sym.st_target_internal = 0; 17976 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1; 17977 } 17978 17979 static bfd_boolean 17980 arm_map_one_stub (struct bfd_hash_entry * gen_entry, 17981 void * in_arg) 17982 { 17983 struct elf32_arm_stub_hash_entry *stub_entry; 17984 asection *stub_sec; 17985 bfd_vma addr; 17986 char *stub_name; 17987 output_arch_syminfo *osi; 17988 const insn_sequence *template_sequence; 17989 enum stub_insn_type prev_type; 17990 int size; 17991 int i; 17992 enum map_symbol_type sym_type; 17993 17994 /* Massage our args to the form they really have. */ 17995 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 17996 osi = (output_arch_syminfo *) in_arg; 17997 17998 stub_sec = stub_entry->stub_sec; 17999 18000 /* Ensure this stub is attached to the current section being 18001 processed. */ 18002 if (stub_sec != osi->sec) 18003 return TRUE; 18004 18005 addr = (bfd_vma) stub_entry->stub_offset; 18006 template_sequence = stub_entry->stub_template; 18007 18008 if (arm_stub_sym_claimed (stub_entry->stub_type)) 18009 arm_stub_claim_sym (stub_entry); 18010 else 18011 { 18012 stub_name = stub_entry->output_name; 18013 switch (template_sequence[0].type) 18014 { 18015 case ARM_TYPE: 18016 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 18017 stub_entry->stub_size)) 18018 return FALSE; 18019 break; 18020 case THUMB16_TYPE: 18021 case THUMB32_TYPE: 18022 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 18023 stub_entry->stub_size)) 18024 return FALSE; 18025 break; 18026 default: 18027 BFD_FAIL (); 18028 return 0; 18029 } 18030 } 18031 18032 prev_type = DATA_TYPE; 18033 size = 0; 18034 for (i = 0; i < stub_entry->stub_template_size; i++) 18035 { 18036 switch (template_sequence[i].type) 18037 { 18038 case ARM_TYPE: 18039 sym_type = ARM_MAP_ARM; 18040 break; 18041 18042 case THUMB16_TYPE: 18043 case THUMB32_TYPE: 18044 sym_type = ARM_MAP_THUMB; 18045 break; 18046 18047 case DATA_TYPE: 18048 sym_type = ARM_MAP_DATA; 18049 break; 18050 18051 default: 18052 BFD_FAIL (); 18053 return FALSE; 18054 } 18055 18056 if (template_sequence[i].type != prev_type) 18057 { 18058 prev_type = template_sequence[i].type; 18059 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size)) 18060 return FALSE; 18061 } 18062 18063 switch (template_sequence[i].type) 18064 { 18065 case ARM_TYPE: 18066 case THUMB32_TYPE: 18067 size += 4; 18068 break; 18069 18070 case THUMB16_TYPE: 18071 size += 2; 18072 break; 18073 18074 case DATA_TYPE: 18075 size += 4; 18076 break; 18077 18078 default: 18079 BFD_FAIL (); 18080 return FALSE; 18081 } 18082 } 18083 18084 return TRUE; 18085 } 18086 18087 /* Output mapping symbols for linker generated sections, 18088 and for those data-only sections that do not have a 18089 $d. */ 18090 18091 static bfd_boolean 18092 elf32_arm_output_arch_local_syms (bfd *output_bfd, 18093 struct bfd_link_info *info, 18094 void *flaginfo, 18095 int (*func) (void *, const char *, 18096 Elf_Internal_Sym *, 18097 asection *, 18098 struct elf_link_hash_entry *)) 18099 { 18100 output_arch_syminfo osi; 18101 struct elf32_arm_link_hash_table *htab; 18102 bfd_vma offset; 18103 bfd_size_type size; 18104 bfd *input_bfd; 18105 18106 htab = elf32_arm_hash_table (info); 18107 if (htab == NULL) 18108 return FALSE; 18109 18110 check_use_blx (htab); 18111 18112 osi.flaginfo = flaginfo; 18113 osi.info = info; 18114 osi.func = func; 18115 18116 /* Add a $d mapping symbol to data-only sections that 18117 don't have any mapping symbol. This may result in (harmless) redundant 18118 mapping symbols. */ 18119 for (input_bfd = info->input_bfds; 18120 input_bfd != NULL; 18121 input_bfd = input_bfd->link.next) 18122 { 18123 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS) 18124 for (osi.sec = input_bfd->sections; 18125 osi.sec != NULL; 18126 osi.sec = osi.sec->next) 18127 { 18128 if (osi.sec->output_section != NULL 18129 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE)) 18130 != 0) 18131 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED)) 18132 == SEC_HAS_CONTENTS 18133 && get_arm_elf_section_data (osi.sec) != NULL 18134 && get_arm_elf_section_data (osi.sec)->mapcount == 0 18135 && osi.sec->size > 0 18136 && (osi.sec->flags & SEC_EXCLUDE) == 0) 18137 { 18138 osi.sec_shndx = _bfd_elf_section_from_bfd_section 18139 (output_bfd, osi.sec->output_section); 18140 if (osi.sec_shndx != (int)SHN_BAD) 18141 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0); 18142 } 18143 } 18144 } 18145 18146 /* ARM->Thumb glue. */ 18147 if (htab->arm_glue_size > 0) 18148 { 18149 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner, 18150 ARM2THUMB_GLUE_SECTION_NAME); 18151 18152 osi.sec_shndx = _bfd_elf_section_from_bfd_section 18153 (output_bfd, osi.sec->output_section); 18154 if (bfd_link_pic (info) || htab->root.is_relocatable_executable 18155 || htab->pic_veneer) 18156 size = ARM2THUMB_PIC_GLUE_SIZE; 18157 else if (htab->use_blx) 18158 size = ARM2THUMB_V5_STATIC_GLUE_SIZE; 18159 else 18160 size = ARM2THUMB_STATIC_GLUE_SIZE; 18161 18162 for (offset = 0; offset < htab->arm_glue_size; offset += size) 18163 { 18164 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset); 18165 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4); 18166 } 18167 } 18168 18169 /* Thumb->ARM glue. */ 18170 if (htab->thumb_glue_size > 0) 18171 { 18172 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner, 18173 THUMB2ARM_GLUE_SECTION_NAME); 18174 18175 osi.sec_shndx = _bfd_elf_section_from_bfd_section 18176 (output_bfd, osi.sec->output_section); 18177 size = THUMB2ARM_GLUE_SIZE; 18178 18179 for (offset = 0; offset < htab->thumb_glue_size; offset += size) 18180 { 18181 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset); 18182 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4); 18183 } 18184 } 18185 18186 /* ARMv4 BX veneers. */ 18187 if (htab->bx_glue_size > 0) 18188 { 18189 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner, 18190 ARM_BX_GLUE_SECTION_NAME); 18191 18192 osi.sec_shndx = _bfd_elf_section_from_bfd_section 18193 (output_bfd, osi.sec->output_section); 18194 18195 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0); 18196 } 18197 18198 /* Long calls stubs. */ 18199 if (htab->stub_bfd && htab->stub_bfd->sections) 18200 { 18201 asection* stub_sec; 18202 18203 for (stub_sec = htab->stub_bfd->sections; 18204 stub_sec != NULL; 18205 stub_sec = stub_sec->next) 18206 { 18207 /* Ignore non-stub sections. */ 18208 if (!strstr (stub_sec->name, STUB_SUFFIX)) 18209 continue; 18210 18211 osi.sec = stub_sec; 18212 18213 osi.sec_shndx = _bfd_elf_section_from_bfd_section 18214 (output_bfd, osi.sec->output_section); 18215 18216 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi); 18217 } 18218 } 18219 18220 /* Finally, output mapping symbols for the PLT. */ 18221 if (htab->root.splt && htab->root.splt->size > 0) 18222 { 18223 osi.sec = htab->root.splt; 18224 osi.sec_shndx = (_bfd_elf_section_from_bfd_section 18225 (output_bfd, osi.sec->output_section)); 18226 18227 /* Output mapping symbols for the plt header. SymbianOS does not have a 18228 plt header. */ 18229 if (htab->root.target_os == is_vxworks) 18230 { 18231 /* VxWorks shared libraries have no PLT header. */ 18232 if (!bfd_link_pic (info)) 18233 { 18234 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) 18235 return FALSE; 18236 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12)) 18237 return FALSE; 18238 } 18239 } 18240 else if (htab->root.target_os == is_nacl) 18241 { 18242 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) 18243 return FALSE; 18244 } 18245 else if (using_thumb_only (htab) && !htab->fdpic_p) 18246 { 18247 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0)) 18248 return FALSE; 18249 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12)) 18250 return FALSE; 18251 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16)) 18252 return FALSE; 18253 } 18254 else if (htab->root.target_os != is_symbian && !htab->fdpic_p) 18255 { 18256 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) 18257 return FALSE; 18258 #ifndef FOUR_WORD_PLT 18259 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16)) 18260 return FALSE; 18261 #endif 18262 } 18263 } 18264 if (htab->root.target_os == is_nacl 18265 && htab->root.iplt 18266 && htab->root.iplt->size > 0) 18267 { 18268 /* NaCl uses a special first entry in .iplt too. */ 18269 osi.sec = htab->root.iplt; 18270 osi.sec_shndx = (_bfd_elf_section_from_bfd_section 18271 (output_bfd, osi.sec->output_section)); 18272 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0)) 18273 return FALSE; 18274 } 18275 if ((htab->root.splt && htab->root.splt->size > 0) 18276 || (htab->root.iplt && htab->root.iplt->size > 0)) 18277 { 18278 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi); 18279 for (input_bfd = info->input_bfds; 18280 input_bfd != NULL; 18281 input_bfd = input_bfd->link.next) 18282 { 18283 struct arm_local_iplt_info **local_iplt; 18284 unsigned int i, num_syms; 18285 18286 local_iplt = elf32_arm_local_iplt (input_bfd); 18287 if (local_iplt != NULL) 18288 { 18289 num_syms = elf_symtab_hdr (input_bfd).sh_info; 18290 for (i = 0; i < num_syms; i++) 18291 if (local_iplt[i] != NULL 18292 && !elf32_arm_output_plt_map_1 (&osi, TRUE, 18293 &local_iplt[i]->root, 18294 &local_iplt[i]->arm)) 18295 return FALSE; 18296 } 18297 } 18298 } 18299 if (htab->root.tlsdesc_plt != 0) 18300 { 18301 /* Mapping symbols for the lazy tls trampoline. */ 18302 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 18303 htab->root.tlsdesc_plt)) 18304 return FALSE; 18305 18306 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 18307 htab->root.tlsdesc_plt + 24)) 18308 return FALSE; 18309 } 18310 if (htab->tls_trampoline != 0) 18311 { 18312 /* Mapping symbols for the tls trampoline. */ 18313 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline)) 18314 return FALSE; 18315 #ifdef FOUR_WORD_PLT 18316 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 18317 htab->tls_trampoline + 12)) 18318 return FALSE; 18319 #endif 18320 } 18321 18322 return TRUE; 18323 } 18324 18325 /* Filter normal symbols of CMSE entry functions of ABFD to include in 18326 the import library. All SYMCOUNT symbols of ABFD can be examined 18327 from their pointers in SYMS. Pointers of symbols to keep should be 18328 stored continuously at the beginning of that array. 18329 18330 Returns the number of symbols to keep. */ 18331 18332 static unsigned int 18333 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED, 18334 struct bfd_link_info *info, 18335 asymbol **syms, long symcount) 18336 { 18337 size_t maxnamelen; 18338 char *cmse_name; 18339 long src_count, dst_count = 0; 18340 struct elf32_arm_link_hash_table *htab; 18341 18342 htab = elf32_arm_hash_table (info); 18343 if (!htab->stub_bfd || !htab->stub_bfd->sections) 18344 symcount = 0; 18345 18346 maxnamelen = 128; 18347 cmse_name = (char *) bfd_malloc (maxnamelen); 18348 BFD_ASSERT (cmse_name); 18349 18350 for (src_count = 0; src_count < symcount; src_count++) 18351 { 18352 struct elf32_arm_link_hash_entry *cmse_hash; 18353 asymbol *sym; 18354 flagword flags; 18355 char *name; 18356 size_t namelen; 18357 18358 sym = syms[src_count]; 18359 flags = sym->flags; 18360 name = (char *) bfd_asymbol_name (sym); 18361 18362 if ((flags & BSF_FUNCTION) != BSF_FUNCTION) 18363 continue; 18364 if (!(flags & (BSF_GLOBAL | BSF_WEAK))) 18365 continue; 18366 18367 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1; 18368 if (namelen > maxnamelen) 18369 { 18370 cmse_name = (char *) 18371 bfd_realloc (cmse_name, namelen); 18372 maxnamelen = namelen; 18373 } 18374 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name); 18375 cmse_hash = (struct elf32_arm_link_hash_entry *) 18376 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE); 18377 18378 if (!cmse_hash 18379 || (cmse_hash->root.root.type != bfd_link_hash_defined 18380 && cmse_hash->root.root.type != bfd_link_hash_defweak) 18381 || cmse_hash->root.type != STT_FUNC) 18382 continue; 18383 18384 syms[dst_count++] = sym; 18385 } 18386 free (cmse_name); 18387 18388 syms[dst_count] = NULL; 18389 18390 return dst_count; 18391 } 18392 18393 /* Filter symbols of ABFD to include in the import library. All 18394 SYMCOUNT symbols of ABFD can be examined from their pointers in 18395 SYMS. Pointers of symbols to keep should be stored continuously at 18396 the beginning of that array. 18397 18398 Returns the number of symbols to keep. */ 18399 18400 static unsigned int 18401 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED, 18402 struct bfd_link_info *info, 18403 asymbol **syms, long symcount) 18404 { 18405 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info); 18406 18407 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on 18408 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import 18409 library to be a relocatable object file. */ 18410 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P)); 18411 if (globals->cmse_implib) 18412 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount); 18413 else 18414 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount); 18415 } 18416 18417 /* Allocate target specific section data. */ 18418 18419 static bfd_boolean 18420 elf32_arm_new_section_hook (bfd *abfd, asection *sec) 18421 { 18422 if (!sec->used_by_bfd) 18423 { 18424 _arm_elf_section_data *sdata; 18425 size_t amt = sizeof (*sdata); 18426 18427 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt); 18428 if (sdata == NULL) 18429 return FALSE; 18430 sec->used_by_bfd = sdata; 18431 } 18432 18433 return _bfd_elf_new_section_hook (abfd, sec); 18434 } 18435 18436 18437 /* Used to order a list of mapping symbols by address. */ 18438 18439 static int 18440 elf32_arm_compare_mapping (const void * a, const void * b) 18441 { 18442 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a; 18443 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b; 18444 18445 if (amap->vma > bmap->vma) 18446 return 1; 18447 else if (amap->vma < bmap->vma) 18448 return -1; 18449 else if (amap->type > bmap->type) 18450 /* Ensure results do not depend on the host qsort for objects with 18451 multiple mapping symbols at the same address by sorting on type 18452 after vma. */ 18453 return 1; 18454 else if (amap->type < bmap->type) 18455 return -1; 18456 else 18457 return 0; 18458 } 18459 18460 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */ 18461 18462 static unsigned long 18463 offset_prel31 (unsigned long addr, bfd_vma offset) 18464 { 18465 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful); 18466 } 18467 18468 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31 18469 relocations. */ 18470 18471 static void 18472 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset) 18473 { 18474 unsigned long first_word = bfd_get_32 (output_bfd, from); 18475 unsigned long second_word = bfd_get_32 (output_bfd, from + 4); 18476 18477 /* High bit of first word is supposed to be zero. */ 18478 if ((first_word & 0x80000000ul) == 0) 18479 first_word = offset_prel31 (first_word, offset); 18480 18481 /* If the high bit of the first word is clear, and the bit pattern is not 0x1 18482 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */ 18483 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0)) 18484 second_word = offset_prel31 (second_word, offset); 18485 18486 bfd_put_32 (output_bfd, first_word, to); 18487 bfd_put_32 (output_bfd, second_word, to + 4); 18488 } 18489 18490 /* Data for make_branch_to_a8_stub(). */ 18491 18492 struct a8_branch_to_stub_data 18493 { 18494 asection *writing_section; 18495 bfd_byte *contents; 18496 }; 18497 18498 18499 /* Helper to insert branches to Cortex-A8 erratum stubs in the right 18500 places for a particular section. */ 18501 18502 static bfd_boolean 18503 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry, 18504 void *in_arg) 18505 { 18506 struct elf32_arm_stub_hash_entry *stub_entry; 18507 struct a8_branch_to_stub_data *data; 18508 bfd_byte *contents; 18509 unsigned long branch_insn; 18510 bfd_vma veneered_insn_loc, veneer_entry_loc; 18511 bfd_signed_vma branch_offset; 18512 bfd *abfd; 18513 unsigned int loc; 18514 18515 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry; 18516 data = (struct a8_branch_to_stub_data *) in_arg; 18517 18518 if (stub_entry->target_section != data->writing_section 18519 || stub_entry->stub_type < arm_stub_a8_veneer_lwm) 18520 return TRUE; 18521 18522 contents = data->contents; 18523 18524 /* We use target_section as Cortex-A8 erratum workaround stubs are only 18525 generated when both source and target are in the same section. */ 18526 veneered_insn_loc = stub_entry->target_section->output_section->vma 18527 + stub_entry->target_section->output_offset 18528 + stub_entry->source_value; 18529 18530 veneer_entry_loc = stub_entry->stub_sec->output_section->vma 18531 + stub_entry->stub_sec->output_offset 18532 + stub_entry->stub_offset; 18533 18534 if (stub_entry->stub_type == arm_stub_a8_veneer_blx) 18535 veneered_insn_loc &= ~3u; 18536 18537 branch_offset = veneer_entry_loc - veneered_insn_loc - 4; 18538 18539 abfd = stub_entry->target_section->owner; 18540 loc = stub_entry->source_value; 18541 18542 /* We attempt to avoid this condition by setting stubs_always_after_branch 18543 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround. 18544 This check is just to be on the safe side... */ 18545 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff)) 18546 { 18547 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is " 18548 "allocated in unsafe location"), abfd); 18549 return FALSE; 18550 } 18551 18552 switch (stub_entry->stub_type) 18553 { 18554 case arm_stub_a8_veneer_b: 18555 case arm_stub_a8_veneer_b_cond: 18556 branch_insn = 0xf0009000; 18557 goto jump24; 18558 18559 case arm_stub_a8_veneer_blx: 18560 branch_insn = 0xf000e800; 18561 goto jump24; 18562 18563 case arm_stub_a8_veneer_bl: 18564 { 18565 unsigned int i1, j1, i2, j2, s; 18566 18567 branch_insn = 0xf000d000; 18568 18569 jump24: 18570 if (branch_offset < -16777216 || branch_offset > 16777214) 18571 { 18572 /* There's not much we can do apart from complain if this 18573 happens. */ 18574 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out " 18575 "of range (input file too large)"), abfd); 18576 return FALSE; 18577 } 18578 18579 /* i1 = not(j1 eor s), so: 18580 not i1 = j1 eor s 18581 j1 = (not i1) eor s. */ 18582 18583 branch_insn |= (branch_offset >> 1) & 0x7ff; 18584 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16; 18585 i2 = (branch_offset >> 22) & 1; 18586 i1 = (branch_offset >> 23) & 1; 18587 s = (branch_offset >> 24) & 1; 18588 j1 = (!i1) ^ s; 18589 j2 = (!i2) ^ s; 18590 branch_insn |= j2 << 11; 18591 branch_insn |= j1 << 13; 18592 branch_insn |= s << 26; 18593 } 18594 break; 18595 18596 default: 18597 BFD_FAIL (); 18598 return FALSE; 18599 } 18600 18601 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]); 18602 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]); 18603 18604 return TRUE; 18605 } 18606 18607 /* Beginning of stm32l4xx work-around. */ 18608 18609 /* Functions encoding instructions necessary for the emission of the 18610 fix-stm32l4xx-629360. 18611 Encoding is extracted from the 18612 ARM (C) Architecture Reference Manual 18613 ARMv7-A and ARMv7-R edition 18614 ARM DDI 0406C.b (ID072512). */ 18615 18616 static inline bfd_vma 18617 create_instruction_branch_absolute (int branch_offset) 18618 { 18619 /* A8.8.18 B (A8-334) 18620 B target_address (Encoding T4). */ 18621 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */ 18622 /* jump offset is: S:I1:I2:imm10:imm11:0. */ 18623 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */ 18624 18625 int s = ((branch_offset & 0x1000000) >> 24); 18626 int j1 = s ^ !((branch_offset & 0x800000) >> 23); 18627 int j2 = s ^ !((branch_offset & 0x400000) >> 22); 18628 18629 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24)) 18630 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch."); 18631 18632 bfd_vma patched_inst = 0xf0009000 18633 | s << 26 /* S. */ 18634 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */ 18635 | j1 << 13 /* J1. */ 18636 | j2 << 11 /* J2. */ 18637 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */ 18638 18639 return patched_inst; 18640 } 18641 18642 static inline bfd_vma 18643 create_instruction_ldmia (int base_reg, int wback, int reg_mask) 18644 { 18645 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396) 18646 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */ 18647 bfd_vma patched_inst = 0xe8900000 18648 | (/*W=*/wback << 21) 18649 | (base_reg << 16) 18650 | (reg_mask & 0x0000ffff); 18651 18652 return patched_inst; 18653 } 18654 18655 static inline bfd_vma 18656 create_instruction_ldmdb (int base_reg, int wback, int reg_mask) 18657 { 18658 /* A8.8.60 LDMDB/LDMEA (A8-402) 18659 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */ 18660 bfd_vma patched_inst = 0xe9100000 18661 | (/*W=*/wback << 21) 18662 | (base_reg << 16) 18663 | (reg_mask & 0x0000ffff); 18664 18665 return patched_inst; 18666 } 18667 18668 static inline bfd_vma 18669 create_instruction_mov (int target_reg, int source_reg) 18670 { 18671 /* A8.8.103 MOV (register) (A8-486) 18672 MOV Rd, Rm (Encoding T1). */ 18673 bfd_vma patched_inst = 0x4600 18674 | (target_reg & 0x7) 18675 | ((target_reg & 0x8) >> 3) << 7 18676 | (source_reg << 3); 18677 18678 return patched_inst; 18679 } 18680 18681 static inline bfd_vma 18682 create_instruction_sub (int target_reg, int source_reg, int value) 18683 { 18684 /* A8.8.221 SUB (immediate) (A8-708) 18685 SUB Rd, Rn, #value (Encoding T3). */ 18686 bfd_vma patched_inst = 0xf1a00000 18687 | (target_reg << 8) 18688 | (source_reg << 16) 18689 | (/*S=*/0 << 20) 18690 | ((value & 0x800) >> 11) << 26 18691 | ((value & 0x700) >> 8) << 12 18692 | (value & 0x0ff); 18693 18694 return patched_inst; 18695 } 18696 18697 static inline bfd_vma 18698 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words, 18699 int first_reg) 18700 { 18701 /* A8.8.332 VLDM (A8-922) 18702 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */ 18703 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00) 18704 | (/*W=*/wback << 21) 18705 | (base_reg << 16) 18706 | (num_words & 0x000000ff) 18707 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12 18708 | (first_reg & 0x00000001) << 22; 18709 18710 return patched_inst; 18711 } 18712 18713 static inline bfd_vma 18714 create_instruction_vldmdb (int base_reg, int is_dp, int num_words, 18715 int first_reg) 18716 { 18717 /* A8.8.332 VLDM (A8-922) 18718 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */ 18719 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00) 18720 | (base_reg << 16) 18721 | (num_words & 0x000000ff) 18722 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12 18723 | (first_reg & 0x00000001) << 22; 18724 18725 return patched_inst; 18726 } 18727 18728 static inline bfd_vma 18729 create_instruction_udf_w (int value) 18730 { 18731 /* A8.8.247 UDF (A8-758) 18732 Undefined (Encoding T2). */ 18733 bfd_vma patched_inst = 0xf7f0a000 18734 | (value & 0x00000fff) 18735 | (value & 0x000f0000) << 16; 18736 18737 return patched_inst; 18738 } 18739 18740 static inline bfd_vma 18741 create_instruction_udf (int value) 18742 { 18743 /* A8.8.247 UDF (A8-758) 18744 Undefined (Encoding T1). */ 18745 bfd_vma patched_inst = 0xde00 18746 | (value & 0xff); 18747 18748 return patched_inst; 18749 } 18750 18751 /* Functions writing an instruction in memory, returning the next 18752 memory position to write to. */ 18753 18754 static inline bfd_byte * 18755 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab, 18756 bfd * output_bfd, bfd_byte *pt, insn32 insn) 18757 { 18758 put_thumb2_insn (htab, output_bfd, insn, pt); 18759 return pt + 4; 18760 } 18761 18762 static inline bfd_byte * 18763 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab, 18764 bfd * output_bfd, bfd_byte *pt, insn32 insn) 18765 { 18766 put_thumb_insn (htab, output_bfd, insn, pt); 18767 return pt + 2; 18768 } 18769 18770 /* Function filling up a region in memory with T1 and T2 UDFs taking 18771 care of alignment. */ 18772 18773 static bfd_byte * 18774 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab, 18775 bfd * output_bfd, 18776 const bfd_byte * const base_stub_contents, 18777 bfd_byte * const from_stub_contents, 18778 const bfd_byte * const end_stub_contents) 18779 { 18780 bfd_byte *current_stub_contents = from_stub_contents; 18781 18782 /* Fill the remaining of the stub with deterministic contents : UDF 18783 instructions. 18784 Check if realignment is needed on modulo 4 frontier using T1, to 18785 further use T2. */ 18786 if ((current_stub_contents < end_stub_contents) 18787 && !((current_stub_contents - base_stub_contents) % 2) 18788 && ((current_stub_contents - base_stub_contents) % 4)) 18789 current_stub_contents = 18790 push_thumb2_insn16 (htab, output_bfd, current_stub_contents, 18791 create_instruction_udf (0)); 18792 18793 for (; current_stub_contents < end_stub_contents;) 18794 current_stub_contents = 18795 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18796 create_instruction_udf_w (0)); 18797 18798 return current_stub_contents; 18799 } 18800 18801 /* Functions writing the stream of instructions equivalent to the 18802 derived sequence for ldmia, ldmdb, vldm respectively. */ 18803 18804 static void 18805 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab, 18806 bfd * output_bfd, 18807 const insn32 initial_insn, 18808 const bfd_byte *const initial_insn_addr, 18809 bfd_byte *const base_stub_contents) 18810 { 18811 int wback = (initial_insn & 0x00200000) >> 21; 18812 int ri, rn = (initial_insn & 0x000F0000) >> 16; 18813 int insn_all_registers = initial_insn & 0x0000ffff; 18814 int insn_low_registers, insn_high_registers; 18815 int usable_register_mask; 18816 int nb_registers = elf32_arm_popcount (insn_all_registers); 18817 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0; 18818 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0; 18819 bfd_byte *current_stub_contents = base_stub_contents; 18820 18821 BFD_ASSERT (is_thumb2_ldmia (initial_insn)); 18822 18823 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with 18824 smaller than 8 registers load sequences that do not cause the 18825 hardware issue. */ 18826 if (nb_registers <= 8) 18827 { 18828 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */ 18829 current_stub_contents = 18830 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18831 initial_insn); 18832 18833 /* B initial_insn_addr+4. */ 18834 if (!restore_pc) 18835 current_stub_contents = 18836 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18837 create_instruction_branch_absolute 18838 (initial_insn_addr - current_stub_contents)); 18839 18840 /* Fill the remaining of the stub with deterministic contents. */ 18841 current_stub_contents = 18842 stm32l4xx_fill_stub_udf (htab, output_bfd, 18843 base_stub_contents, current_stub_contents, 18844 base_stub_contents + 18845 STM32L4XX_ERRATUM_LDM_VENEER_SIZE); 18846 18847 return; 18848 } 18849 18850 /* - reg_list[13] == 0. */ 18851 BFD_ASSERT ((insn_all_registers & (1 << 13))==0); 18852 18853 /* - reg_list[14] & reg_list[15] != 1. */ 18854 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000); 18855 18856 /* - if (wback==1) reg_list[rn] == 0. */ 18857 BFD_ASSERT (!wback || !restore_rn); 18858 18859 /* - nb_registers > 8. */ 18860 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8); 18861 18862 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */ 18863 18864 /* In the following algorithm, we split this wide LDM using 2 LDM insns: 18865 - One with the 7 lowest registers (register mask 0x007F) 18866 This LDM will finally contain between 2 and 7 registers 18867 - One with the 7 highest registers (register mask 0xDF80) 18868 This ldm will finally contain between 2 and 7 registers. */ 18869 insn_low_registers = insn_all_registers & 0x007F; 18870 insn_high_registers = insn_all_registers & 0xDF80; 18871 18872 /* A spare register may be needed during this veneer to temporarily 18873 handle the base register. This register will be restored with the 18874 last LDM operation. 18875 The usable register may be any general purpose register (that 18876 excludes PC, SP, LR : register mask is 0x1FFF). */ 18877 usable_register_mask = 0x1FFF; 18878 18879 /* Generate the stub function. */ 18880 if (wback) 18881 { 18882 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */ 18883 current_stub_contents = 18884 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18885 create_instruction_ldmia 18886 (rn, /*wback=*/1, insn_low_registers)); 18887 18888 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */ 18889 current_stub_contents = 18890 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18891 create_instruction_ldmia 18892 (rn, /*wback=*/1, insn_high_registers)); 18893 if (!restore_pc) 18894 { 18895 /* B initial_insn_addr+4. */ 18896 current_stub_contents = 18897 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18898 create_instruction_branch_absolute 18899 (initial_insn_addr - current_stub_contents)); 18900 } 18901 } 18902 else /* if (!wback). */ 18903 { 18904 ri = rn; 18905 18906 /* If Rn is not part of the high-register-list, move it there. */ 18907 if (!(insn_high_registers & (1 << rn))) 18908 { 18909 /* Choose a Ri in the high-register-list that will be restored. */ 18910 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn)); 18911 18912 /* MOV Ri, Rn. */ 18913 current_stub_contents = 18914 push_thumb2_insn16 (htab, output_bfd, current_stub_contents, 18915 create_instruction_mov (ri, rn)); 18916 } 18917 18918 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */ 18919 current_stub_contents = 18920 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18921 create_instruction_ldmia 18922 (ri, /*wback=*/1, insn_low_registers)); 18923 18924 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */ 18925 current_stub_contents = 18926 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18927 create_instruction_ldmia 18928 (ri, /*wback=*/0, insn_high_registers)); 18929 18930 if (!restore_pc) 18931 { 18932 /* B initial_insn_addr+4. */ 18933 current_stub_contents = 18934 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18935 create_instruction_branch_absolute 18936 (initial_insn_addr - current_stub_contents)); 18937 } 18938 } 18939 18940 /* Fill the remaining of the stub with deterministic contents. */ 18941 current_stub_contents = 18942 stm32l4xx_fill_stub_udf (htab, output_bfd, 18943 base_stub_contents, current_stub_contents, 18944 base_stub_contents + 18945 STM32L4XX_ERRATUM_LDM_VENEER_SIZE); 18946 } 18947 18948 static void 18949 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab, 18950 bfd * output_bfd, 18951 const insn32 initial_insn, 18952 const bfd_byte *const initial_insn_addr, 18953 bfd_byte *const base_stub_contents) 18954 { 18955 int wback = (initial_insn & 0x00200000) >> 21; 18956 int ri, rn = (initial_insn & 0x000f0000) >> 16; 18957 int insn_all_registers = initial_insn & 0x0000ffff; 18958 int insn_low_registers, insn_high_registers; 18959 int usable_register_mask; 18960 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0; 18961 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0; 18962 int nb_registers = elf32_arm_popcount (insn_all_registers); 18963 bfd_byte *current_stub_contents = base_stub_contents; 18964 18965 BFD_ASSERT (is_thumb2_ldmdb (initial_insn)); 18966 18967 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with 18968 smaller than 8 registers load sequences that do not cause the 18969 hardware issue. */ 18970 if (nb_registers <= 8) 18971 { 18972 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */ 18973 current_stub_contents = 18974 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18975 initial_insn); 18976 18977 /* B initial_insn_addr+4. */ 18978 current_stub_contents = 18979 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 18980 create_instruction_branch_absolute 18981 (initial_insn_addr - current_stub_contents)); 18982 18983 /* Fill the remaining of the stub with deterministic contents. */ 18984 current_stub_contents = 18985 stm32l4xx_fill_stub_udf (htab, output_bfd, 18986 base_stub_contents, current_stub_contents, 18987 base_stub_contents + 18988 STM32L4XX_ERRATUM_LDM_VENEER_SIZE); 18989 18990 return; 18991 } 18992 18993 /* - reg_list[13] == 0. */ 18994 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0); 18995 18996 /* - reg_list[14] & reg_list[15] != 1. */ 18997 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000); 18998 18999 /* - if (wback==1) reg_list[rn] == 0. */ 19000 BFD_ASSERT (!wback || !restore_rn); 19001 19002 /* - nb_registers > 8. */ 19003 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8); 19004 19005 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */ 19006 19007 /* In the following algorithm, we split this wide LDM using 2 LDM insn: 19008 - One with the 7 lowest registers (register mask 0x007F) 19009 This LDM will finally contain between 2 and 7 registers 19010 - One with the 7 highest registers (register mask 0xDF80) 19011 This ldm will finally contain between 2 and 7 registers. */ 19012 insn_low_registers = insn_all_registers & 0x007F; 19013 insn_high_registers = insn_all_registers & 0xDF80; 19014 19015 /* A spare register may be needed during this veneer to temporarily 19016 handle the base register. This register will be restored with 19017 the last LDM operation. 19018 The usable register may be any general purpose register (that excludes 19019 PC, SP, LR : register mask is 0x1FFF). */ 19020 usable_register_mask = 0x1FFF; 19021 19022 /* Generate the stub function. */ 19023 if (!wback && !restore_pc && !restore_rn) 19024 { 19025 /* Choose a Ri in the low-register-list that will be restored. */ 19026 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn)); 19027 19028 /* MOV Ri, Rn. */ 19029 current_stub_contents = 19030 push_thumb2_insn16 (htab, output_bfd, current_stub_contents, 19031 create_instruction_mov (ri, rn)); 19032 19033 /* LDMDB Ri!, {R-high-register-list}. */ 19034 current_stub_contents = 19035 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19036 create_instruction_ldmdb 19037 (ri, /*wback=*/1, insn_high_registers)); 19038 19039 /* LDMDB Ri, {R-low-register-list}. */ 19040 current_stub_contents = 19041 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19042 create_instruction_ldmdb 19043 (ri, /*wback=*/0, insn_low_registers)); 19044 19045 /* B initial_insn_addr+4. */ 19046 current_stub_contents = 19047 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19048 create_instruction_branch_absolute 19049 (initial_insn_addr - current_stub_contents)); 19050 } 19051 else if (wback && !restore_pc && !restore_rn) 19052 { 19053 /* LDMDB Rn!, {R-high-register-list}. */ 19054 current_stub_contents = 19055 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19056 create_instruction_ldmdb 19057 (rn, /*wback=*/1, insn_high_registers)); 19058 19059 /* LDMDB Rn!, {R-low-register-list}. */ 19060 current_stub_contents = 19061 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19062 create_instruction_ldmdb 19063 (rn, /*wback=*/1, insn_low_registers)); 19064 19065 /* B initial_insn_addr+4. */ 19066 current_stub_contents = 19067 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19068 create_instruction_branch_absolute 19069 (initial_insn_addr - current_stub_contents)); 19070 } 19071 else if (!wback && restore_pc && !restore_rn) 19072 { 19073 /* Choose a Ri in the high-register-list that will be restored. */ 19074 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn)); 19075 19076 /* SUB Ri, Rn, #(4*nb_registers). */ 19077 current_stub_contents = 19078 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19079 create_instruction_sub (ri, rn, (4 * nb_registers))); 19080 19081 /* LDMIA Ri!, {R-low-register-list}. */ 19082 current_stub_contents = 19083 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19084 create_instruction_ldmia 19085 (ri, /*wback=*/1, insn_low_registers)); 19086 19087 /* LDMIA Ri, {R-high-register-list}. */ 19088 current_stub_contents = 19089 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19090 create_instruction_ldmia 19091 (ri, /*wback=*/0, insn_high_registers)); 19092 } 19093 else if (wback && restore_pc && !restore_rn) 19094 { 19095 /* Choose a Ri in the high-register-list that will be restored. */ 19096 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn)); 19097 19098 /* SUB Rn, Rn, #(4*nb_registers) */ 19099 current_stub_contents = 19100 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19101 create_instruction_sub (rn, rn, (4 * nb_registers))); 19102 19103 /* MOV Ri, Rn. */ 19104 current_stub_contents = 19105 push_thumb2_insn16 (htab, output_bfd, current_stub_contents, 19106 create_instruction_mov (ri, rn)); 19107 19108 /* LDMIA Ri!, {R-low-register-list}. */ 19109 current_stub_contents = 19110 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19111 create_instruction_ldmia 19112 (ri, /*wback=*/1, insn_low_registers)); 19113 19114 /* LDMIA Ri, {R-high-register-list}. */ 19115 current_stub_contents = 19116 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19117 create_instruction_ldmia 19118 (ri, /*wback=*/0, insn_high_registers)); 19119 } 19120 else if (!wback && !restore_pc && restore_rn) 19121 { 19122 ri = rn; 19123 if (!(insn_low_registers & (1 << rn))) 19124 { 19125 /* Choose a Ri in the low-register-list that will be restored. */ 19126 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn)); 19127 19128 /* MOV Ri, Rn. */ 19129 current_stub_contents = 19130 push_thumb2_insn16 (htab, output_bfd, current_stub_contents, 19131 create_instruction_mov (ri, rn)); 19132 } 19133 19134 /* LDMDB Ri!, {R-high-register-list}. */ 19135 current_stub_contents = 19136 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19137 create_instruction_ldmdb 19138 (ri, /*wback=*/1, insn_high_registers)); 19139 19140 /* LDMDB Ri, {R-low-register-list}. */ 19141 current_stub_contents = 19142 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19143 create_instruction_ldmdb 19144 (ri, /*wback=*/0, insn_low_registers)); 19145 19146 /* B initial_insn_addr+4. */ 19147 current_stub_contents = 19148 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19149 create_instruction_branch_absolute 19150 (initial_insn_addr - current_stub_contents)); 19151 } 19152 else if (!wback && restore_pc && restore_rn) 19153 { 19154 ri = rn; 19155 if (!(insn_high_registers & (1 << rn))) 19156 { 19157 /* Choose a Ri in the high-register-list that will be restored. */ 19158 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn)); 19159 } 19160 19161 /* SUB Ri, Rn, #(4*nb_registers). */ 19162 current_stub_contents = 19163 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19164 create_instruction_sub (ri, rn, (4 * nb_registers))); 19165 19166 /* LDMIA Ri!, {R-low-register-list}. */ 19167 current_stub_contents = 19168 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19169 create_instruction_ldmia 19170 (ri, /*wback=*/1, insn_low_registers)); 19171 19172 /* LDMIA Ri, {R-high-register-list}. */ 19173 current_stub_contents = 19174 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19175 create_instruction_ldmia 19176 (ri, /*wback=*/0, insn_high_registers)); 19177 } 19178 else if (wback && restore_rn) 19179 { 19180 /* The assembler should not have accepted to encode this. */ 19181 BFD_ASSERT (0 && "Cannot patch an instruction that has an " 19182 "undefined behavior.\n"); 19183 } 19184 19185 /* Fill the remaining of the stub with deterministic contents. */ 19186 current_stub_contents = 19187 stm32l4xx_fill_stub_udf (htab, output_bfd, 19188 base_stub_contents, current_stub_contents, 19189 base_stub_contents + 19190 STM32L4XX_ERRATUM_LDM_VENEER_SIZE); 19191 19192 } 19193 19194 static void 19195 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab, 19196 bfd * output_bfd, 19197 const insn32 initial_insn, 19198 const bfd_byte *const initial_insn_addr, 19199 bfd_byte *const base_stub_contents) 19200 { 19201 int num_words = initial_insn & 0xff; 19202 bfd_byte *current_stub_contents = base_stub_contents; 19203 19204 BFD_ASSERT (is_thumb2_vldm (initial_insn)); 19205 19206 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with 19207 smaller than 8 words load sequences that do not cause the 19208 hardware issue. */ 19209 if (num_words <= 8) 19210 { 19211 /* Untouched instruction. */ 19212 current_stub_contents = 19213 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19214 initial_insn); 19215 19216 /* B initial_insn_addr+4. */ 19217 current_stub_contents = 19218 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19219 create_instruction_branch_absolute 19220 (initial_insn_addr - current_stub_contents)); 19221 } 19222 else 19223 { 19224 bfd_boolean is_dp = /* DP encoding. */ 19225 (initial_insn & 0xfe100f00) == 0xec100b00; 19226 bfd_boolean is_ia_nobang = /* (IA without !). */ 19227 (((initial_insn << 7) >> 28) & 0xd) == 0x4; 19228 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */ 19229 (((initial_insn << 7) >> 28) & 0xd) == 0x5; 19230 bfd_boolean is_db_bang = /* (DB with !). */ 19231 (((initial_insn << 7) >> 28) & 0xd) == 0x9; 19232 int base_reg = ((unsigned int) initial_insn << 12) >> 28; 19233 /* d = UInt (Vd:D);. */ 19234 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1) 19235 | (((unsigned int)initial_insn << 9) >> 31); 19236 19237 /* Compute the number of 8-words chunks needed to split. */ 19238 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8); 19239 int chunk; 19240 19241 /* The test coverage has been done assuming the following 19242 hypothesis that exactly one of the previous is_ predicates is 19243 true. */ 19244 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang) 19245 && !(is_ia_nobang & is_ia_bang & is_db_bang)); 19246 19247 /* We treat the cutting of the words in one pass for all 19248 cases, then we emit the adjustments: 19249 19250 vldm rx, {...} 19251 -> vldm rx!, {8_words_or_less} for each needed 8_word 19252 -> sub rx, rx, #size (list) 19253 19254 vldm rx!, {...} 19255 -> vldm rx!, {8_words_or_less} for each needed 8_word 19256 This also handles vpop instruction (when rx is sp) 19257 19258 vldmd rx!, {...} 19259 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */ 19260 for (chunk = 0; chunk < chunks; ++chunk) 19261 { 19262 bfd_vma new_insn = 0; 19263 19264 if (is_ia_nobang || is_ia_bang) 19265 { 19266 new_insn = create_instruction_vldmia 19267 (base_reg, 19268 is_dp, 19269 /*wback= . */1, 19270 chunks - (chunk + 1) ? 19271 8 : num_words - chunk * 8, 19272 first_reg + chunk * 8); 19273 } 19274 else if (is_db_bang) 19275 { 19276 new_insn = create_instruction_vldmdb 19277 (base_reg, 19278 is_dp, 19279 chunks - (chunk + 1) ? 19280 8 : num_words - chunk * 8, 19281 first_reg + chunk * 8); 19282 } 19283 19284 if (new_insn) 19285 current_stub_contents = 19286 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19287 new_insn); 19288 } 19289 19290 /* Only this case requires the base register compensation 19291 subtract. */ 19292 if (is_ia_nobang) 19293 { 19294 current_stub_contents = 19295 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19296 create_instruction_sub 19297 (base_reg, base_reg, 4*num_words)); 19298 } 19299 19300 /* B initial_insn_addr+4. */ 19301 current_stub_contents = 19302 push_thumb2_insn32 (htab, output_bfd, current_stub_contents, 19303 create_instruction_branch_absolute 19304 (initial_insn_addr - current_stub_contents)); 19305 } 19306 19307 /* Fill the remaining of the stub with deterministic contents. */ 19308 current_stub_contents = 19309 stm32l4xx_fill_stub_udf (htab, output_bfd, 19310 base_stub_contents, current_stub_contents, 19311 base_stub_contents + 19312 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE); 19313 } 19314 19315 static void 19316 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab, 19317 bfd * output_bfd, 19318 const insn32 wrong_insn, 19319 const bfd_byte *const wrong_insn_addr, 19320 bfd_byte *const stub_contents) 19321 { 19322 if (is_thumb2_ldmia (wrong_insn)) 19323 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd, 19324 wrong_insn, wrong_insn_addr, 19325 stub_contents); 19326 else if (is_thumb2_ldmdb (wrong_insn)) 19327 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd, 19328 wrong_insn, wrong_insn_addr, 19329 stub_contents); 19330 else if (is_thumb2_vldm (wrong_insn)) 19331 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd, 19332 wrong_insn, wrong_insn_addr, 19333 stub_contents); 19334 } 19335 19336 /* End of stm32l4xx work-around. */ 19337 19338 19339 /* Do code byteswapping. Return FALSE afterwards so that the section is 19340 written out as normal. */ 19341 19342 static bfd_boolean 19343 elf32_arm_write_section (bfd *output_bfd, 19344 struct bfd_link_info *link_info, 19345 asection *sec, 19346 bfd_byte *contents) 19347 { 19348 unsigned int mapcount, errcount; 19349 _arm_elf_section_data *arm_data; 19350 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info); 19351 elf32_arm_section_map *map; 19352 elf32_vfp11_erratum_list *errnode; 19353 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode; 19354 bfd_vma ptr; 19355 bfd_vma end; 19356 bfd_vma offset = sec->output_section->vma + sec->output_offset; 19357 bfd_byte tmp; 19358 unsigned int i; 19359 19360 if (globals == NULL) 19361 return FALSE; 19362 19363 /* If this section has not been allocated an _arm_elf_section_data 19364 structure then we cannot record anything. */ 19365 arm_data = get_arm_elf_section_data (sec); 19366 if (arm_data == NULL) 19367 return FALSE; 19368 19369 mapcount = arm_data->mapcount; 19370 map = arm_data->map; 19371 errcount = arm_data->erratumcount; 19372 19373 if (errcount != 0) 19374 { 19375 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0; 19376 19377 for (errnode = arm_data->erratumlist; errnode != 0; 19378 errnode = errnode->next) 19379 { 19380 bfd_vma target = errnode->vma - offset; 19381 19382 switch (errnode->type) 19383 { 19384 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER: 19385 { 19386 bfd_vma branch_to_veneer; 19387 /* Original condition code of instruction, plus bit mask for 19388 ARM B instruction. */ 19389 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000) 19390 | 0x0a000000; 19391 19392 /* The instruction is before the label. */ 19393 target -= 4; 19394 19395 /* Above offset included in -4 below. */ 19396 branch_to_veneer = errnode->u.b.veneer->vma 19397 - errnode->vma - 4; 19398 19399 if ((signed) branch_to_veneer < -(1 << 25) 19400 || (signed) branch_to_veneer >= (1 << 25)) 19401 _bfd_error_handler (_("%pB: error: VFP11 veneer out of " 19402 "range"), output_bfd); 19403 19404 insn |= (branch_to_veneer >> 2) & 0xffffff; 19405 contents[endianflip ^ target] = insn & 0xff; 19406 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff; 19407 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff; 19408 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff; 19409 } 19410 break; 19411 19412 case VFP11_ERRATUM_ARM_VENEER: 19413 { 19414 bfd_vma branch_from_veneer; 19415 unsigned int insn; 19416 19417 /* Take size of veneer into account. */ 19418 branch_from_veneer = errnode->u.v.branch->vma 19419 - errnode->vma - 12; 19420 19421 if ((signed) branch_from_veneer < -(1 << 25) 19422 || (signed) branch_from_veneer >= (1 << 25)) 19423 _bfd_error_handler (_("%pB: error: VFP11 veneer out of " 19424 "range"), output_bfd); 19425 19426 /* Original instruction. */ 19427 insn = errnode->u.v.branch->u.b.vfp_insn; 19428 contents[endianflip ^ target] = insn & 0xff; 19429 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff; 19430 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff; 19431 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff; 19432 19433 /* Branch back to insn after original insn. */ 19434 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff); 19435 contents[endianflip ^ (target + 4)] = insn & 0xff; 19436 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff; 19437 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff; 19438 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff; 19439 } 19440 break; 19441 19442 default: 19443 abort (); 19444 } 19445 } 19446 } 19447 19448 if (arm_data->stm32l4xx_erratumcount != 0) 19449 { 19450 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist; 19451 stm32l4xx_errnode != 0; 19452 stm32l4xx_errnode = stm32l4xx_errnode->next) 19453 { 19454 bfd_vma target = stm32l4xx_errnode->vma - offset; 19455 19456 switch (stm32l4xx_errnode->type) 19457 { 19458 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER: 19459 { 19460 unsigned int insn; 19461 bfd_vma branch_to_veneer = 19462 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma; 19463 19464 if ((signed) branch_to_veneer < -(1 << 24) 19465 || (signed) branch_to_veneer >= (1 << 24)) 19466 { 19467 bfd_vma out_of_range = 19468 ((signed) branch_to_veneer < -(1 << 24)) ? 19469 - branch_to_veneer - (1 << 24) : 19470 ((signed) branch_to_veneer >= (1 << 24)) ? 19471 branch_to_veneer - (1 << 24) : 0; 19472 19473 _bfd_error_handler 19474 (_("%pB(%#" PRIx64 "): error: " 19475 "cannot create STM32L4XX veneer; " 19476 "jump out of range by %" PRId64 " bytes; " 19477 "cannot encode branch instruction"), 19478 output_bfd, 19479 (uint64_t) (stm32l4xx_errnode->vma - 4), 19480 (int64_t) out_of_range); 19481 continue; 19482 } 19483 19484 insn = create_instruction_branch_absolute 19485 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma); 19486 19487 /* The instruction is before the label. */ 19488 target -= 4; 19489 19490 put_thumb2_insn (globals, output_bfd, 19491 (bfd_vma) insn, contents + target); 19492 } 19493 break; 19494 19495 case STM32L4XX_ERRATUM_VENEER: 19496 { 19497 bfd_byte * veneer; 19498 bfd_byte * veneer_r; 19499 unsigned int insn; 19500 19501 veneer = contents + target; 19502 veneer_r = veneer 19503 + stm32l4xx_errnode->u.b.veneer->vma 19504 - stm32l4xx_errnode->vma - 4; 19505 19506 if ((signed) (veneer_r - veneer - 19507 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE > 19508 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ? 19509 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE : 19510 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24) 19511 || (signed) (veneer_r - veneer) >= (1 << 24)) 19512 { 19513 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX " 19514 "veneer"), output_bfd); 19515 continue; 19516 } 19517 19518 /* Original instruction. */ 19519 insn = stm32l4xx_errnode->u.v.branch->u.b.insn; 19520 19521 stm32l4xx_create_replacing_stub 19522 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer); 19523 } 19524 break; 19525 19526 default: 19527 abort (); 19528 } 19529 } 19530 } 19531 19532 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX) 19533 { 19534 arm_unwind_table_edit *edit_node 19535 = arm_data->u.exidx.unwind_edit_list; 19536 /* Now, sec->size is the size of the section we will write. The original 19537 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND 19538 markers) was sec->rawsize. (This isn't the case if we perform no 19539 edits, then rawsize will be zero and we should use size). */ 19540 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size); 19541 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size; 19542 unsigned int in_index, out_index; 19543 bfd_vma add_to_offsets = 0; 19544 19545 if (edited_contents == NULL) 19546 return FALSE; 19547 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;) 19548 { 19549 if (edit_node) 19550 { 19551 unsigned int edit_index = edit_node->index; 19552 19553 if (in_index < edit_index && in_index * 8 < input_size) 19554 { 19555 copy_exidx_entry (output_bfd, edited_contents + out_index * 8, 19556 contents + in_index * 8, add_to_offsets); 19557 out_index++; 19558 in_index++; 19559 } 19560 else if (in_index == edit_index 19561 || (in_index * 8 >= input_size 19562 && edit_index == UINT_MAX)) 19563 { 19564 switch (edit_node->type) 19565 { 19566 case DELETE_EXIDX_ENTRY: 19567 in_index++; 19568 add_to_offsets += 8; 19569 break; 19570 19571 case INSERT_EXIDX_CANTUNWIND_AT_END: 19572 { 19573 asection *text_sec = edit_node->linked_section; 19574 bfd_vma text_offset = text_sec->output_section->vma 19575 + text_sec->output_offset 19576 + text_sec->size; 19577 bfd_vma exidx_offset = offset + out_index * 8; 19578 unsigned long prel31_offset; 19579 19580 /* Note: this is meant to be equivalent to an 19581 R_ARM_PREL31 relocation. These synthetic 19582 EXIDX_CANTUNWIND markers are not relocated by the 19583 usual BFD method. */ 19584 prel31_offset = (text_offset - exidx_offset) 19585 & 0x7ffffffful; 19586 if (bfd_link_relocatable (link_info)) 19587 { 19588 /* Here relocation for new EXIDX_CANTUNWIND is 19589 created, so there is no need to 19590 adjust offset by hand. */ 19591 prel31_offset = text_sec->output_offset 19592 + text_sec->size; 19593 } 19594 19595 /* First address we can't unwind. */ 19596 bfd_put_32 (output_bfd, prel31_offset, 19597 &edited_contents[out_index * 8]); 19598 19599 /* Code for EXIDX_CANTUNWIND. */ 19600 bfd_put_32 (output_bfd, 0x1, 19601 &edited_contents[out_index * 8 + 4]); 19602 19603 out_index++; 19604 add_to_offsets -= 8; 19605 } 19606 break; 19607 } 19608 19609 edit_node = edit_node->next; 19610 } 19611 } 19612 else 19613 { 19614 /* No more edits, copy remaining entries verbatim. */ 19615 copy_exidx_entry (output_bfd, edited_contents + out_index * 8, 19616 contents + in_index * 8, add_to_offsets); 19617 out_index++; 19618 in_index++; 19619 } 19620 } 19621 19622 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD)) 19623 bfd_set_section_contents (output_bfd, sec->output_section, 19624 edited_contents, 19625 (file_ptr) sec->output_offset, sec->size); 19626 19627 return TRUE; 19628 } 19629 19630 /* Fix code to point to Cortex-A8 erratum stubs. */ 19631 if (globals->fix_cortex_a8) 19632 { 19633 struct a8_branch_to_stub_data data; 19634 19635 data.writing_section = sec; 19636 data.contents = contents; 19637 19638 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub, 19639 & data); 19640 } 19641 19642 if (mapcount == 0) 19643 return FALSE; 19644 19645 if (globals->byteswap_code) 19646 { 19647 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping); 19648 19649 ptr = map[0].vma; 19650 for (i = 0; i < mapcount; i++) 19651 { 19652 if (i == mapcount - 1) 19653 end = sec->size; 19654 else 19655 end = map[i + 1].vma; 19656 19657 switch (map[i].type) 19658 { 19659 case 'a': 19660 /* Byte swap code words. */ 19661 while (ptr + 3 < end) 19662 { 19663 tmp = contents[ptr]; 19664 contents[ptr] = contents[ptr + 3]; 19665 contents[ptr + 3] = tmp; 19666 tmp = contents[ptr + 1]; 19667 contents[ptr + 1] = contents[ptr + 2]; 19668 contents[ptr + 2] = tmp; 19669 ptr += 4; 19670 } 19671 break; 19672 19673 case 't': 19674 /* Byte swap code halfwords. */ 19675 while (ptr + 1 < end) 19676 { 19677 tmp = contents[ptr]; 19678 contents[ptr] = contents[ptr + 1]; 19679 contents[ptr + 1] = tmp; 19680 ptr += 2; 19681 } 19682 break; 19683 19684 case 'd': 19685 /* Leave data alone. */ 19686 break; 19687 } 19688 ptr = end; 19689 } 19690 } 19691 19692 free (map); 19693 arm_data->mapcount = -1; 19694 arm_data->mapsize = 0; 19695 arm_data->map = NULL; 19696 19697 return FALSE; 19698 } 19699 19700 /* Mangle thumb function symbols as we read them in. */ 19701 19702 static bfd_boolean 19703 elf32_arm_swap_symbol_in (bfd * abfd, 19704 const void *psrc, 19705 const void *pshn, 19706 Elf_Internal_Sym *dst) 19707 { 19708 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst)) 19709 return FALSE; 19710 dst->st_target_internal = 0; 19711 19712 /* New EABI objects mark thumb function symbols by setting the low bit of 19713 the address. */ 19714 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC 19715 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC) 19716 { 19717 if (dst->st_value & 1) 19718 { 19719 dst->st_value &= ~(bfd_vma) 1; 19720 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, 19721 ST_BRANCH_TO_THUMB); 19722 } 19723 else 19724 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM); 19725 } 19726 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC) 19727 { 19728 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC); 19729 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB); 19730 } 19731 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION) 19732 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG); 19733 else 19734 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN); 19735 19736 return TRUE; 19737 } 19738 19739 19740 /* Mangle thumb function symbols as we write them out. */ 19741 19742 static void 19743 elf32_arm_swap_symbol_out (bfd *abfd, 19744 const Elf_Internal_Sym *src, 19745 void *cdst, 19746 void *shndx) 19747 { 19748 Elf_Internal_Sym newsym; 19749 19750 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit 19751 of the address set, as per the new EABI. We do this unconditionally 19752 because objcopy does not set the elf header flags until after 19753 it writes out the symbol table. */ 19754 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB) 19755 { 19756 newsym = *src; 19757 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC) 19758 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC); 19759 if (newsym.st_shndx != SHN_UNDEF) 19760 { 19761 /* Do this only for defined symbols. At link type, the static 19762 linker will simulate the work of dynamic linker of resolving 19763 symbols and will carry over the thumbness of found symbols to 19764 the output symbol table. It's not clear how it happens, but 19765 the thumbness of undefined symbols can well be different at 19766 runtime, and writing '1' for them will be confusing for users 19767 and possibly for dynamic linker itself. 19768 */ 19769 newsym.st_value |= 1; 19770 } 19771 19772 src = &newsym; 19773 } 19774 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx); 19775 } 19776 19777 /* Add the PT_ARM_EXIDX program header. */ 19778 19779 static bfd_boolean 19780 elf32_arm_modify_segment_map (bfd *abfd, 19781 struct bfd_link_info *info ATTRIBUTE_UNUSED) 19782 { 19783 struct elf_segment_map *m; 19784 asection *sec; 19785 19786 sec = bfd_get_section_by_name (abfd, ".ARM.exidx"); 19787 if (sec != NULL && (sec->flags & SEC_LOAD) != 0) 19788 { 19789 /* If there is already a PT_ARM_EXIDX header, then we do not 19790 want to add another one. This situation arises when running 19791 "strip"; the input binary already has the header. */ 19792 m = elf_seg_map (abfd); 19793 while (m && m->p_type != PT_ARM_EXIDX) 19794 m = m->next; 19795 if (!m) 19796 { 19797 m = (struct elf_segment_map *) 19798 bfd_zalloc (abfd, sizeof (struct elf_segment_map)); 19799 if (m == NULL) 19800 return FALSE; 19801 m->p_type = PT_ARM_EXIDX; 19802 m->count = 1; 19803 m->sections[0] = sec; 19804 19805 m->next = elf_seg_map (abfd); 19806 elf_seg_map (abfd) = m; 19807 } 19808 } 19809 19810 return TRUE; 19811 } 19812 19813 /* We may add a PT_ARM_EXIDX program header. */ 19814 19815 static int 19816 elf32_arm_additional_program_headers (bfd *abfd, 19817 struct bfd_link_info *info ATTRIBUTE_UNUSED) 19818 { 19819 asection *sec; 19820 19821 sec = bfd_get_section_by_name (abfd, ".ARM.exidx"); 19822 if (sec != NULL && (sec->flags & SEC_LOAD) != 0) 19823 return 1; 19824 else 19825 return 0; 19826 } 19827 19828 /* Hook called by the linker routine which adds symbols from an object 19829 file. */ 19830 19831 static bfd_boolean 19832 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, 19833 Elf_Internal_Sym *sym, const char **namep, 19834 flagword *flagsp, asection **secp, bfd_vma *valp) 19835 { 19836 if (elf32_arm_hash_table (info) == NULL) 19837 return FALSE; 19838 19839 if (elf32_arm_hash_table (info)->root.target_os == is_vxworks 19840 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep, 19841 flagsp, secp, valp)) 19842 return FALSE; 19843 19844 return TRUE; 19845 } 19846 19847 /* We use this to override swap_symbol_in and swap_symbol_out. */ 19848 const struct elf_size_info elf32_arm_size_info = 19849 { 19850 sizeof (Elf32_External_Ehdr), 19851 sizeof (Elf32_External_Phdr), 19852 sizeof (Elf32_External_Shdr), 19853 sizeof (Elf32_External_Rel), 19854 sizeof (Elf32_External_Rela), 19855 sizeof (Elf32_External_Sym), 19856 sizeof (Elf32_External_Dyn), 19857 sizeof (Elf_External_Note), 19858 4, 19859 1, 19860 32, 2, 19861 ELFCLASS32, EV_CURRENT, 19862 bfd_elf32_write_out_phdrs, 19863 bfd_elf32_write_shdrs_and_ehdr, 19864 bfd_elf32_checksum_contents, 19865 bfd_elf32_write_relocs, 19866 elf32_arm_swap_symbol_in, 19867 elf32_arm_swap_symbol_out, 19868 bfd_elf32_slurp_reloc_table, 19869 bfd_elf32_slurp_symbol_table, 19870 bfd_elf32_swap_dyn_in, 19871 bfd_elf32_swap_dyn_out, 19872 bfd_elf32_swap_reloc_in, 19873 bfd_elf32_swap_reloc_out, 19874 bfd_elf32_swap_reloca_in, 19875 bfd_elf32_swap_reloca_out 19876 }; 19877 19878 static bfd_vma 19879 read_code32 (const bfd *abfd, const bfd_byte *addr) 19880 { 19881 /* V7 BE8 code is always little endian. */ 19882 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0) 19883 return bfd_getl32 (addr); 19884 19885 return bfd_get_32 (abfd, addr); 19886 } 19887 19888 static bfd_vma 19889 read_code16 (const bfd *abfd, const bfd_byte *addr) 19890 { 19891 /* V7 BE8 code is always little endian. */ 19892 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0) 19893 return bfd_getl16 (addr); 19894 19895 return bfd_get_16 (abfd, addr); 19896 } 19897 19898 /* Return size of plt0 entry starting at ADDR 19899 or (bfd_vma) -1 if size can not be determined. */ 19900 19901 static bfd_vma 19902 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr) 19903 { 19904 bfd_vma first_word; 19905 bfd_vma plt0_size; 19906 19907 first_word = read_code32 (abfd, addr); 19908 19909 if (first_word == elf32_arm_plt0_entry[0]) 19910 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry); 19911 else if (first_word == elf32_thumb2_plt0_entry[0]) 19912 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry); 19913 else 19914 /* We don't yet handle this PLT format. */ 19915 return (bfd_vma) -1; 19916 19917 return plt0_size; 19918 } 19919 19920 /* Return size of plt entry starting at offset OFFSET 19921 of plt section located at address START 19922 or (bfd_vma) -1 if size can not be determined. */ 19923 19924 static bfd_vma 19925 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset) 19926 { 19927 bfd_vma first_insn; 19928 bfd_vma plt_size = 0; 19929 const bfd_byte *addr = start + offset; 19930 19931 /* PLT entry size if fixed on Thumb-only platforms. */ 19932 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0]) 19933 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry); 19934 19935 /* Respect Thumb stub if necessary. */ 19936 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0]) 19937 { 19938 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub); 19939 } 19940 19941 /* Strip immediate from first add. */ 19942 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00; 19943 19944 #ifdef FOUR_WORD_PLT 19945 if (first_insn == elf32_arm_plt_entry[0]) 19946 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry); 19947 #else 19948 if (first_insn == elf32_arm_plt_entry_long[0]) 19949 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long); 19950 else if (first_insn == elf32_arm_plt_entry_short[0]) 19951 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short); 19952 #endif 19953 else 19954 /* We don't yet handle this PLT format. */ 19955 return (bfd_vma) -1; 19956 19957 return plt_size; 19958 } 19959 19960 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */ 19961 19962 static long 19963 elf32_arm_get_synthetic_symtab (bfd *abfd, 19964 long symcount ATTRIBUTE_UNUSED, 19965 asymbol **syms ATTRIBUTE_UNUSED, 19966 long dynsymcount, 19967 asymbol **dynsyms, 19968 asymbol **ret) 19969 { 19970 asection *relplt; 19971 asymbol *s; 19972 arelent *p; 19973 long count, i, n; 19974 size_t size; 19975 Elf_Internal_Shdr *hdr; 19976 char *names; 19977 asection *plt; 19978 bfd_vma offset; 19979 bfd_byte *data; 19980 19981 *ret = NULL; 19982 19983 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0) 19984 return 0; 19985 19986 if (dynsymcount <= 0) 19987 return 0; 19988 19989 relplt = bfd_get_section_by_name (abfd, ".rel.plt"); 19990 if (relplt == NULL) 19991 return 0; 19992 19993 hdr = &elf_section_data (relplt)->this_hdr; 19994 if (hdr->sh_link != elf_dynsymtab (abfd) 19995 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA)) 19996 return 0; 19997 19998 plt = bfd_get_section_by_name (abfd, ".plt"); 19999 if (plt == NULL) 20000 return 0; 20001 20002 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE)) 20003 return -1; 20004 20005 data = plt->contents; 20006 if (data == NULL) 20007 { 20008 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL) 20009 return -1; 20010 bfd_cache_section_contents((asection *) plt, data); 20011 } 20012 20013 count = relplt->size / hdr->sh_entsize; 20014 size = count * sizeof (asymbol); 20015 p = relplt->relocation; 20016 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel) 20017 { 20018 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt"); 20019 if (p->addend != 0) 20020 size += sizeof ("+0x") - 1 + 8; 20021 } 20022 20023 s = *ret = (asymbol *) bfd_malloc (size); 20024 if (s == NULL) 20025 return -1; 20026 20027 offset = elf32_arm_plt0_size (abfd, data); 20028 if (offset == (bfd_vma) -1) 20029 return -1; 20030 20031 names = (char *) (s + count); 20032 p = relplt->relocation; 20033 n = 0; 20034 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel) 20035 { 20036 size_t len; 20037 20038 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset); 20039 if (plt_size == (bfd_vma) -1) 20040 break; 20041 20042 *s = **p->sym_ptr_ptr; 20043 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since 20044 we are defining a symbol, ensure one of them is set. */ 20045 if ((s->flags & BSF_LOCAL) == 0) 20046 s->flags |= BSF_GLOBAL; 20047 s->flags |= BSF_SYNTHETIC; 20048 s->section = plt; 20049 s->value = offset; 20050 s->name = names; 20051 s->udata.p = NULL; 20052 len = strlen ((*p->sym_ptr_ptr)->name); 20053 memcpy (names, (*p->sym_ptr_ptr)->name, len); 20054 names += len; 20055 if (p->addend != 0) 20056 { 20057 char buf[30], *a; 20058 20059 memcpy (names, "+0x", sizeof ("+0x") - 1); 20060 names += sizeof ("+0x") - 1; 20061 bfd_sprintf_vma (abfd, buf, p->addend); 20062 for (a = buf; *a == '0'; ++a) 20063 ; 20064 len = strlen (a); 20065 memcpy (names, a, len); 20066 names += len; 20067 } 20068 memcpy (names, "@plt", sizeof ("@plt")); 20069 names += sizeof ("@plt"); 20070 ++s, ++n; 20071 offset += plt_size; 20072 } 20073 20074 return n; 20075 } 20076 20077 static bfd_boolean 20078 elf32_arm_section_flags (const Elf_Internal_Shdr *hdr) 20079 { 20080 if (hdr->sh_flags & SHF_ARM_PURECODE) 20081 hdr->bfd_section->flags |= SEC_ELF_PURECODE; 20082 return TRUE; 20083 } 20084 20085 static flagword 20086 elf32_arm_lookup_section_flags (char *flag_name) 20087 { 20088 if (!strcmp (flag_name, "SHF_ARM_PURECODE")) 20089 return SHF_ARM_PURECODE; 20090 20091 return SEC_NO_FLAGS; 20092 } 20093 20094 static unsigned int 20095 elf32_arm_count_additional_relocs (asection *sec) 20096 { 20097 struct _arm_elf_section_data *arm_data; 20098 arm_data = get_arm_elf_section_data (sec); 20099 20100 return arm_data == NULL ? 0 : arm_data->additional_reloc_count; 20101 } 20102 20103 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which 20104 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised 20105 FALSE otherwise. ISECTION is the best guess matching section from the 20106 input bfd IBFD, but it might be NULL. */ 20107 20108 static bfd_boolean 20109 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED, 20110 bfd *obfd ATTRIBUTE_UNUSED, 20111 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED, 20112 Elf_Internal_Shdr *osection) 20113 { 20114 switch (osection->sh_type) 20115 { 20116 case SHT_ARM_EXIDX: 20117 { 20118 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd); 20119 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd); 20120 unsigned i = 0; 20121 20122 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER; 20123 osection->sh_info = 0; 20124 20125 /* The sh_link field must be set to the text section associated with 20126 this index section. Unfortunately the ARM EHABI does not specify 20127 exactly how to determine this association. Our caller does try 20128 to match up OSECTION with its corresponding input section however 20129 so that is a good first guess. */ 20130 if (isection != NULL 20131 && osection->bfd_section != NULL 20132 && isection->bfd_section != NULL 20133 && isection->bfd_section->output_section != NULL 20134 && isection->bfd_section->output_section == osection->bfd_section 20135 && iheaders != NULL 20136 && isection->sh_link > 0 20137 && isection->sh_link < elf_numsections (ibfd) 20138 && iheaders[isection->sh_link]->bfd_section != NULL 20139 && iheaders[isection->sh_link]->bfd_section->output_section != NULL 20140 ) 20141 { 20142 for (i = elf_numsections (obfd); i-- > 0;) 20143 if (oheaders[i]->bfd_section 20144 == iheaders[isection->sh_link]->bfd_section->output_section) 20145 break; 20146 } 20147 20148 if (i == 0) 20149 { 20150 /* Failing that we have to find a matching section ourselves. If 20151 we had the output section name available we could compare that 20152 with input section names. Unfortunately we don't. So instead 20153 we use a simple heuristic and look for the nearest executable 20154 section before this one. */ 20155 for (i = elf_numsections (obfd); i-- > 0;) 20156 if (oheaders[i] == osection) 20157 break; 20158 if (i == 0) 20159 break; 20160 20161 while (i-- > 0) 20162 if (oheaders[i]->sh_type == SHT_PROGBITS 20163 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR)) 20164 == (SHF_ALLOC | SHF_EXECINSTR)) 20165 break; 20166 } 20167 20168 if (i) 20169 { 20170 osection->sh_link = i; 20171 /* If the text section was part of a group 20172 then the index section should be too. */ 20173 if (oheaders[i]->sh_flags & SHF_GROUP) 20174 osection->sh_flags |= SHF_GROUP; 20175 return TRUE; 20176 } 20177 } 20178 break; 20179 20180 case SHT_ARM_PREEMPTMAP: 20181 osection->sh_flags = SHF_ALLOC; 20182 break; 20183 20184 case SHT_ARM_ATTRIBUTES: 20185 case SHT_ARM_DEBUGOVERLAY: 20186 case SHT_ARM_OVERLAYSECTION: 20187 default: 20188 break; 20189 } 20190 20191 return FALSE; 20192 } 20193 20194 /* Returns TRUE if NAME is an ARM mapping symbol. 20195 Traditionally the symbols $a, $d and $t have been used. 20196 The ARM ELF standard also defines $x (for A64 code). It also allows a 20197 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+". 20198 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do 20199 not support them here. $t.x indicates the start of ThumbEE instructions. */ 20200 20201 static bfd_boolean 20202 is_arm_mapping_symbol (const char * name) 20203 { 20204 return name != NULL /* Paranoia. */ 20205 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then 20206 the mapping symbols could have acquired a prefix. 20207 We do not support this here, since such symbols no 20208 longer conform to the ARM ELF ABI. */ 20209 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x') 20210 && (name[2] == 0 || name[2] == '.'); 20211 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if 20212 any characters that follow the period are legal characters for the body 20213 of a symbol's name. For now we just assume that this is the case. */ 20214 } 20215 20216 /* Make sure that mapping symbols in object files are not removed via the 20217 "strip --strip-unneeded" tool. These symbols are needed in order to 20218 correctly generate interworking veneers, and for byte swapping code 20219 regions. Once an object file has been linked, it is safe to remove the 20220 symbols as they will no longer be needed. */ 20221 20222 static void 20223 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym) 20224 { 20225 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0) 20226 && sym->section != bfd_abs_section_ptr 20227 && is_arm_mapping_symbol (sym->name)) 20228 sym->flags |= BSF_KEEP; 20229 } 20230 20231 #undef elf_backend_copy_special_section_fields 20232 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields 20233 20234 #define ELF_ARCH bfd_arch_arm 20235 #define ELF_TARGET_ID ARM_ELF_DATA 20236 #define ELF_MACHINE_CODE EM_ARM 20237 #ifdef __QNXTARGET__ 20238 #define ELF_MAXPAGESIZE 0x1000 20239 #else 20240 #define ELF_MAXPAGESIZE 0x10000 20241 #endif 20242 #define ELF_MINPAGESIZE 0x1000 20243 #define ELF_COMMONPAGESIZE 0x1000 20244 20245 #define bfd_elf32_mkobject elf32_arm_mkobject 20246 20247 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data 20248 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data 20249 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags 20250 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data 20251 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create 20252 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup 20253 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup 20254 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info 20255 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook 20256 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol 20257 #define bfd_elf32_bfd_final_link elf32_arm_final_link 20258 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab 20259 20260 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type 20261 #define elf_backend_maybe_function_sym elf32_arm_maybe_function_sym 20262 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook 20263 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections 20264 #define elf_backend_check_relocs elf32_arm_check_relocs 20265 #define elf_backend_update_relocs elf32_arm_update_relocs 20266 #define elf_backend_relocate_section elf32_arm_relocate_section 20267 #define elf_backend_write_section elf32_arm_write_section 20268 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol 20269 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections 20270 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol 20271 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections 20272 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections 20273 #define elf_backend_always_size_sections elf32_arm_always_size_sections 20274 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections 20275 #define elf_backend_init_file_header elf32_arm_init_file_header 20276 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class 20277 #define elf_backend_object_p elf32_arm_object_p 20278 #define elf_backend_fake_sections elf32_arm_fake_sections 20279 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr 20280 #define elf_backend_final_write_processing elf32_arm_final_write_processing 20281 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol 20282 #define elf_backend_size_info elf32_arm_size_info 20283 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map 20284 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers 20285 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms 20286 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols 20287 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing 20288 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook 20289 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs 20290 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing 20291 20292 #define elf_backend_can_refcount 1 20293 #define elf_backend_can_gc_sections 1 20294 #define elf_backend_plt_readonly 1 20295 #define elf_backend_want_got_plt 1 20296 #define elf_backend_want_plt_sym 0 20297 #define elf_backend_want_dynrelro 1 20298 #define elf_backend_may_use_rel_p 1 20299 #define elf_backend_may_use_rela_p 0 20300 #define elf_backend_default_use_rela_p 0 20301 #define elf_backend_dtrel_excludes_plt 1 20302 20303 #define elf_backend_got_header_size 12 20304 #define elf_backend_extern_protected_data 1 20305 20306 #undef elf_backend_obj_attrs_vendor 20307 #define elf_backend_obj_attrs_vendor "aeabi" 20308 #undef elf_backend_obj_attrs_section 20309 #define elf_backend_obj_attrs_section ".ARM.attributes" 20310 #undef elf_backend_obj_attrs_arg_type 20311 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type 20312 #undef elf_backend_obj_attrs_section_type 20313 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES 20314 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order 20315 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown 20316 20317 #undef elf_backend_section_flags 20318 #define elf_backend_section_flags elf32_arm_section_flags 20319 #undef elf_backend_lookup_section_flags_hook 20320 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags 20321 20322 #define elf_backend_linux_prpsinfo32_ugid16 TRUE 20323 20324 #include "elf32-target.h" 20325 20326 /* Native Client targets. */ 20327 20328 #undef TARGET_LITTLE_SYM 20329 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec 20330 #undef TARGET_LITTLE_NAME 20331 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl" 20332 #undef TARGET_BIG_SYM 20333 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec 20334 #undef TARGET_BIG_NAME 20335 #define TARGET_BIG_NAME "elf32-bigarm-nacl" 20336 20337 /* Like elf32_arm_link_hash_table_create -- but overrides 20338 appropriately for NaCl. */ 20339 20340 static struct bfd_link_hash_table * 20341 elf32_arm_nacl_link_hash_table_create (bfd *abfd) 20342 { 20343 struct bfd_link_hash_table *ret; 20344 20345 ret = elf32_arm_link_hash_table_create (abfd); 20346 if (ret) 20347 { 20348 struct elf32_arm_link_hash_table *htab 20349 = (struct elf32_arm_link_hash_table *) ret; 20350 20351 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry); 20352 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry); 20353 } 20354 return ret; 20355 } 20356 20357 /* Since NaCl doesn't use the ARM-specific unwind format, we don't 20358 really need to use elf32_arm_modify_segment_map. But we do it 20359 anyway just to reduce gratuitous differences with the stock ARM backend. */ 20360 20361 static bfd_boolean 20362 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info) 20363 { 20364 return (elf32_arm_modify_segment_map (abfd, info) 20365 && nacl_modify_segment_map (abfd, info)); 20366 } 20367 20368 static bfd_boolean 20369 elf32_arm_nacl_final_write_processing (bfd *abfd) 20370 { 20371 arm_final_write_processing (abfd); 20372 return nacl_final_write_processing (abfd); 20373 } 20374 20375 static bfd_vma 20376 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt, 20377 const arelent *rel ATTRIBUTE_UNUSED) 20378 { 20379 return plt->vma 20380 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) + 20381 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry)); 20382 } 20383 20384 #undef elf32_bed 20385 #define elf32_bed elf32_arm_nacl_bed 20386 #undef bfd_elf32_bfd_link_hash_table_create 20387 #define bfd_elf32_bfd_link_hash_table_create \ 20388 elf32_arm_nacl_link_hash_table_create 20389 #undef elf_backend_plt_alignment 20390 #define elf_backend_plt_alignment 4 20391 #undef elf_backend_modify_segment_map 20392 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map 20393 #undef elf_backend_modify_headers 20394 #define elf_backend_modify_headers nacl_modify_headers 20395 #undef elf_backend_final_write_processing 20396 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing 20397 #undef bfd_elf32_get_synthetic_symtab 20398 #undef elf_backend_plt_sym_val 20399 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val 20400 #undef elf_backend_copy_special_section_fields 20401 20402 #undef ELF_MINPAGESIZE 20403 #undef ELF_COMMONPAGESIZE 20404 20405 #undef ELF_TARGET_OS 20406 #define ELF_TARGET_OS is_nacl 20407 20408 #include "elf32-target.h" 20409 20410 /* Reset to defaults. */ 20411 #undef elf_backend_plt_alignment 20412 #undef elf_backend_modify_segment_map 20413 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map 20414 #undef elf_backend_modify_headers 20415 #undef elf_backend_final_write_processing 20416 #define elf_backend_final_write_processing elf32_arm_final_write_processing 20417 #undef ELF_MINPAGESIZE 20418 #define ELF_MINPAGESIZE 0x1000 20419 #undef ELF_COMMONPAGESIZE 20420 #define ELF_COMMONPAGESIZE 0x1000 20421 20422 20423 /* FDPIC Targets. */ 20424 20425 #undef TARGET_LITTLE_SYM 20426 #define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec 20427 #undef TARGET_LITTLE_NAME 20428 #define TARGET_LITTLE_NAME "elf32-littlearm-fdpic" 20429 #undef TARGET_BIG_SYM 20430 #define TARGET_BIG_SYM arm_elf32_fdpic_be_vec 20431 #undef TARGET_BIG_NAME 20432 #define TARGET_BIG_NAME "elf32-bigarm-fdpic" 20433 #undef elf_match_priority 20434 #define elf_match_priority 128 20435 #undef ELF_OSABI 20436 #define ELF_OSABI ELFOSABI_ARM_FDPIC 20437 20438 /* Like elf32_arm_link_hash_table_create -- but overrides 20439 appropriately for FDPIC. */ 20440 20441 static struct bfd_link_hash_table * 20442 elf32_arm_fdpic_link_hash_table_create (bfd *abfd) 20443 { 20444 struct bfd_link_hash_table *ret; 20445 20446 ret = elf32_arm_link_hash_table_create (abfd); 20447 if (ret) 20448 { 20449 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret; 20450 20451 htab->fdpic_p = 1; 20452 } 20453 return ret; 20454 } 20455 20456 /* We need dynamic symbols for every section, since segments can 20457 relocate independently. */ 20458 static bfd_boolean 20459 elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED, 20460 struct bfd_link_info *info 20461 ATTRIBUTE_UNUSED, 20462 asection *p ATTRIBUTE_UNUSED) 20463 { 20464 switch (elf_section_data (p)->this_hdr.sh_type) 20465 { 20466 case SHT_PROGBITS: 20467 case SHT_NOBITS: 20468 /* If sh_type is yet undecided, assume it could be 20469 SHT_PROGBITS/SHT_NOBITS. */ 20470 case SHT_NULL: 20471 return FALSE; 20472 20473 /* There shouldn't be section relative relocations 20474 against any other section. */ 20475 default: 20476 return TRUE; 20477 } 20478 } 20479 20480 #undef elf32_bed 20481 #define elf32_bed elf32_arm_fdpic_bed 20482 20483 #undef bfd_elf32_bfd_link_hash_table_create 20484 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create 20485 20486 #undef elf_backend_omit_section_dynsym 20487 #define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym 20488 20489 #undef ELF_TARGET_OS 20490 20491 #include "elf32-target.h" 20492 20493 #undef elf_match_priority 20494 #undef ELF_OSABI 20495 #undef elf_backend_omit_section_dynsym 20496 20497 /* VxWorks Targets. */ 20498 20499 #undef TARGET_LITTLE_SYM 20500 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec 20501 #undef TARGET_LITTLE_NAME 20502 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks" 20503 #undef TARGET_BIG_SYM 20504 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec 20505 #undef TARGET_BIG_NAME 20506 #define TARGET_BIG_NAME "elf32-bigarm-vxworks" 20507 20508 /* Like elf32_arm_link_hash_table_create -- but overrides 20509 appropriately for VxWorks. */ 20510 20511 static struct bfd_link_hash_table * 20512 elf32_arm_vxworks_link_hash_table_create (bfd *abfd) 20513 { 20514 struct bfd_link_hash_table *ret; 20515 20516 ret = elf32_arm_link_hash_table_create (abfd); 20517 if (ret) 20518 { 20519 struct elf32_arm_link_hash_table *htab 20520 = (struct elf32_arm_link_hash_table *) ret; 20521 htab->use_rel = 0; 20522 } 20523 return ret; 20524 } 20525 20526 static bfd_boolean 20527 elf32_arm_vxworks_final_write_processing (bfd *abfd) 20528 { 20529 arm_final_write_processing (abfd); 20530 return elf_vxworks_final_write_processing (abfd); 20531 } 20532 20533 #undef elf32_bed 20534 #define elf32_bed elf32_arm_vxworks_bed 20535 20536 #undef bfd_elf32_bfd_link_hash_table_create 20537 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create 20538 #undef elf_backend_final_write_processing 20539 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing 20540 #undef elf_backend_emit_relocs 20541 #define elf_backend_emit_relocs elf_vxworks_emit_relocs 20542 20543 #undef elf_backend_may_use_rel_p 20544 #define elf_backend_may_use_rel_p 0 20545 #undef elf_backend_may_use_rela_p 20546 #define elf_backend_may_use_rela_p 1 20547 #undef elf_backend_default_use_rela_p 20548 #define elf_backend_default_use_rela_p 1 20549 #undef elf_backend_want_plt_sym 20550 #define elf_backend_want_plt_sym 1 20551 #undef ELF_MAXPAGESIZE 20552 #define ELF_MAXPAGESIZE 0x1000 20553 #undef ELF_TARGET_OS 20554 #define ELF_TARGET_OS is_vxworks 20555 20556 #include "elf32-target.h" 20557 20558 20559 /* Merge backend specific data from an object file to the output 20560 object file when linking. */ 20561 20562 static bfd_boolean 20563 elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) 20564 { 20565 bfd *obfd = info->output_bfd; 20566 flagword out_flags; 20567 flagword in_flags; 20568 bfd_boolean flags_compatible = TRUE; 20569 asection *sec; 20570 20571 /* Check if we have the same endianness. */ 20572 if (! _bfd_generic_verify_endian_match (ibfd, info)) 20573 return FALSE; 20574 20575 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd)) 20576 return TRUE; 20577 20578 if (!elf32_arm_merge_eabi_attributes (ibfd, info)) 20579 return FALSE; 20580 20581 /* The input BFD must have had its flags initialised. */ 20582 /* The following seems bogus to me -- The flags are initialized in 20583 the assembler but I don't think an elf_flags_init field is 20584 written into the object. */ 20585 /* BFD_ASSERT (elf_flags_init (ibfd)); */ 20586 20587 in_flags = elf_elfheader (ibfd)->e_flags; 20588 out_flags = elf_elfheader (obfd)->e_flags; 20589 20590 /* In theory there is no reason why we couldn't handle this. However 20591 in practice it isn't even close to working and there is no real 20592 reason to want it. */ 20593 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4 20594 && !(ibfd->flags & DYNAMIC) 20595 && (in_flags & EF_ARM_BE8)) 20596 { 20597 _bfd_error_handler (_("error: %pB is already in final BE8 format"), 20598 ibfd); 20599 return FALSE; 20600 } 20601 20602 if (!elf_flags_init (obfd)) 20603 { 20604 /* If the input is the default architecture and had the default 20605 flags then do not bother setting the flags for the output 20606 architecture, instead allow future merges to do this. If no 20607 future merges ever set these flags then they will retain their 20608 uninitialised values, which surprise surprise, correspond 20609 to the default values. */ 20610 if (bfd_get_arch_info (ibfd)->the_default 20611 && elf_elfheader (ibfd)->e_flags == 0) 20612 return TRUE; 20613 20614 elf_flags_init (obfd) = TRUE; 20615 elf_elfheader (obfd)->e_flags = in_flags; 20616 20617 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) 20618 && bfd_get_arch_info (obfd)->the_default) 20619 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd)); 20620 20621 return TRUE; 20622 } 20623 20624 /* Determine what should happen if the input ARM architecture 20625 does not match the output ARM architecture. */ 20626 if (! bfd_arm_merge_machines (ibfd, obfd)) 20627 return FALSE; 20628 20629 /* Identical flags must be compatible. */ 20630 if (in_flags == out_flags) 20631 return TRUE; 20632 20633 /* Check to see if the input BFD actually contains any sections. If 20634 not, its flags may not have been initialised either, but it 20635 cannot actually cause any incompatiblity. Do not short-circuit 20636 dynamic objects; their section list may be emptied by 20637 elf_link_add_object_symbols. 20638 20639 Also check to see if there are no code sections in the input. 20640 In this case there is no need to check for code specific flags. 20641 XXX - do we need to worry about floating-point format compatability 20642 in data sections ? */ 20643 if (!(ibfd->flags & DYNAMIC)) 20644 { 20645 bfd_boolean null_input_bfd = TRUE; 20646 bfd_boolean only_data_sections = TRUE; 20647 20648 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 20649 { 20650 /* Ignore synthetic glue sections. */ 20651 if (strcmp (sec->name, ".glue_7") 20652 && strcmp (sec->name, ".glue_7t")) 20653 { 20654 if ((bfd_section_flags (sec) 20655 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) 20656 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) 20657 only_data_sections = FALSE; 20658 20659 null_input_bfd = FALSE; 20660 break; 20661 } 20662 } 20663 20664 if (null_input_bfd || only_data_sections) 20665 return TRUE; 20666 } 20667 20668 /* Complain about various flag mismatches. */ 20669 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags), 20670 EF_ARM_EABI_VERSION (out_flags))) 20671 { 20672 _bfd_error_handler 20673 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"), 20674 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24, 20675 obfd, (out_flags & EF_ARM_EABIMASK) >> 24); 20676 return FALSE; 20677 } 20678 20679 /* Not sure what needs to be checked for EABI versions >= 1. */ 20680 /* VxWorks libraries do not use these flags. */ 20681 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed 20682 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed 20683 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN) 20684 { 20685 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26)) 20686 { 20687 _bfd_error_handler 20688 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"), 20689 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32, 20690 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32); 20691 flags_compatible = FALSE; 20692 } 20693 20694 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT)) 20695 { 20696 if (in_flags & EF_ARM_APCS_FLOAT) 20697 _bfd_error_handler 20698 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"), 20699 ibfd, obfd); 20700 else 20701 _bfd_error_handler 20702 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"), 20703 ibfd, obfd); 20704 20705 flags_compatible = FALSE; 20706 } 20707 20708 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT)) 20709 { 20710 if (in_flags & EF_ARM_VFP_FLOAT) 20711 _bfd_error_handler 20712 (_("error: %pB uses %s instructions, whereas %pB does not"), 20713 ibfd, "VFP", obfd); 20714 else 20715 _bfd_error_handler 20716 (_("error: %pB uses %s instructions, whereas %pB does not"), 20717 ibfd, "FPA", obfd); 20718 20719 flags_compatible = FALSE; 20720 } 20721 20722 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT)) 20723 { 20724 if (in_flags & EF_ARM_MAVERICK_FLOAT) 20725 _bfd_error_handler 20726 (_("error: %pB uses %s instructions, whereas %pB does not"), 20727 ibfd, "Maverick", obfd); 20728 else 20729 _bfd_error_handler 20730 (_("error: %pB does not use %s instructions, whereas %pB does"), 20731 ibfd, "Maverick", obfd); 20732 20733 flags_compatible = FALSE; 20734 } 20735 20736 #ifdef EF_ARM_SOFT_FLOAT 20737 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT)) 20738 { 20739 /* We can allow interworking between code that is VFP format 20740 layout, and uses either soft float or integer regs for 20741 passing floating point arguments and results. We already 20742 know that the APCS_FLOAT flags match; similarly for VFP 20743 flags. */ 20744 if ((in_flags & EF_ARM_APCS_FLOAT) != 0 20745 || (in_flags & EF_ARM_VFP_FLOAT) == 0) 20746 { 20747 if (in_flags & EF_ARM_SOFT_FLOAT) 20748 _bfd_error_handler 20749 (_("error: %pB uses software FP, whereas %pB uses hardware FP"), 20750 ibfd, obfd); 20751 else 20752 _bfd_error_handler 20753 (_("error: %pB uses hardware FP, whereas %pB uses software FP"), 20754 ibfd, obfd); 20755 20756 flags_compatible = FALSE; 20757 } 20758 } 20759 #endif 20760 20761 /* Interworking mismatch is only a warning. */ 20762 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK)) 20763 { 20764 if (in_flags & EF_ARM_INTERWORK) 20765 { 20766 _bfd_error_handler 20767 (_("warning: %pB supports interworking, whereas %pB does not"), 20768 ibfd, obfd); 20769 } 20770 else 20771 { 20772 _bfd_error_handler 20773 (_("warning: %pB does not support interworking, whereas %pB does"), 20774 ibfd, obfd); 20775 } 20776 } 20777 } 20778 20779 return flags_compatible; 20780 } 20781 20782 20783 /* Symbian OS Targets. */ 20784 20785 #undef TARGET_LITTLE_SYM 20786 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec 20787 #undef TARGET_LITTLE_NAME 20788 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian" 20789 #undef TARGET_BIG_SYM 20790 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec 20791 #undef TARGET_BIG_NAME 20792 #define TARGET_BIG_NAME "elf32-bigarm-symbian" 20793 20794 /* Like elf32_arm_link_hash_table_create -- but overrides 20795 appropriately for Symbian OS. */ 20796 20797 static struct bfd_link_hash_table * 20798 elf32_arm_symbian_link_hash_table_create (bfd *abfd) 20799 { 20800 struct bfd_link_hash_table *ret; 20801 20802 ret = elf32_arm_link_hash_table_create (abfd); 20803 if (ret) 20804 { 20805 struct elf32_arm_link_hash_table *htab 20806 = (struct elf32_arm_link_hash_table *)ret; 20807 /* There is no PLT header for Symbian OS. */ 20808 htab->plt_header_size = 0; 20809 /* The PLT entries are each one instruction and one word. */ 20810 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry); 20811 /* Symbian uses armv5t or above, so use_blx is always true. */ 20812 htab->use_blx = 1; 20813 htab->root.is_relocatable_executable = 1; 20814 } 20815 return ret; 20816 } 20817 20818 static const struct bfd_elf_special_section 20819 elf32_arm_symbian_special_sections[] = 20820 { 20821 /* In a BPABI executable, the dynamic linking sections do not go in 20822 the loadable read-only segment. The post-linker may wish to 20823 refer to these sections, but they are not part of the final 20824 program image. */ 20825 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 }, 20826 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 }, 20827 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 }, 20828 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 }, 20829 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 }, 20830 /* These sections do not need to be writable as the SymbianOS 20831 postlinker will arrange things so that no dynamic relocation is 20832 required. */ 20833 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC }, 20834 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC }, 20835 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC }, 20836 { NULL, 0, 0, 0, 0 } 20837 }; 20838 20839 static void 20840 elf32_arm_symbian_begin_write_processing (bfd *abfd, 20841 struct bfd_link_info *link_info) 20842 { 20843 /* BPABI objects are never loaded directly by an OS kernel; they are 20844 processed by a postlinker first, into an OS-specific format. If 20845 the D_PAGED bit is set on the file, BFD will align segments on 20846 page boundaries, so that an OS can directly map the file. With 20847 BPABI objects, that just results in wasted space. In addition, 20848 because we clear the D_PAGED bit, map_sections_to_segments will 20849 recognize that the program headers should not be mapped into any 20850 loadable segment. */ 20851 abfd->flags &= ~D_PAGED; 20852 elf32_arm_begin_write_processing (abfd, link_info); 20853 } 20854 20855 static bfd_boolean 20856 elf32_arm_symbian_modify_segment_map (bfd *abfd, 20857 struct bfd_link_info *info) 20858 { 20859 struct elf_segment_map *m; 20860 asection *dynsec; 20861 20862 /* BPABI shared libraries and executables should have a PT_DYNAMIC 20863 segment. However, because the .dynamic section is not marked 20864 with SEC_LOAD, the generic ELF code will not create such a 20865 segment. */ 20866 dynsec = bfd_get_section_by_name (abfd, ".dynamic"); 20867 if (dynsec) 20868 { 20869 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 20870 if (m->p_type == PT_DYNAMIC) 20871 break; 20872 20873 if (m == NULL) 20874 { 20875 m = _bfd_elf_make_dynamic_segment (abfd, dynsec); 20876 m->next = elf_seg_map (abfd); 20877 elf_seg_map (abfd) = m; 20878 } 20879 } 20880 20881 /* Also call the generic arm routine. */ 20882 return elf32_arm_modify_segment_map (abfd, info); 20883 } 20884 20885 /* Return address for Ith PLT stub in section PLT, for relocation REL 20886 or (bfd_vma) -1 if it should not be included. */ 20887 20888 static bfd_vma 20889 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt, 20890 const arelent *rel ATTRIBUTE_UNUSED) 20891 { 20892 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i; 20893 } 20894 20895 #undef elf32_bed 20896 #define elf32_bed elf32_arm_symbian_bed 20897 20898 /* The dynamic sections are not allocated on SymbianOS; the postlinker 20899 will process them and then discard them. */ 20900 #undef ELF_DYNAMIC_SEC_FLAGS 20901 #define ELF_DYNAMIC_SEC_FLAGS \ 20902 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED) 20903 20904 #undef elf_backend_emit_relocs 20905 20906 #undef bfd_elf32_bfd_link_hash_table_create 20907 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create 20908 #undef elf_backend_special_sections 20909 #define elf_backend_special_sections elf32_arm_symbian_special_sections 20910 #undef elf_backend_begin_write_processing 20911 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing 20912 #undef elf_backend_final_write_processing 20913 #define elf_backend_final_write_processing elf32_arm_final_write_processing 20914 20915 #undef elf_backend_modify_segment_map 20916 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map 20917 20918 /* There is no .got section for BPABI objects, and hence no header. */ 20919 #undef elf_backend_got_header_size 20920 #define elf_backend_got_header_size 0 20921 20922 /* Similarly, there is no .got.plt section. */ 20923 #undef elf_backend_want_got_plt 20924 #define elf_backend_want_got_plt 0 20925 20926 #undef elf_backend_plt_sym_val 20927 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val 20928 20929 #undef elf_backend_may_use_rel_p 20930 #define elf_backend_may_use_rel_p 1 20931 #undef elf_backend_may_use_rela_p 20932 #define elf_backend_may_use_rela_p 0 20933 #undef elf_backend_default_use_rela_p 20934 #define elf_backend_default_use_rela_p 0 20935 #undef elf_backend_want_plt_sym 20936 #define elf_backend_want_plt_sym 0 20937 #undef elf_backend_dtrel_excludes_plt 20938 #define elf_backend_dtrel_excludes_plt 0 20939 #undef ELF_MAXPAGESIZE 20940 #define ELF_MAXPAGESIZE 0x8000 20941 #undef ELF_TARGET_OS 20942 #define ELF_TARGET_OS is_symbian 20943 20944 #include "elf32-target.h" 20945