1 /* ELF executable support for BFD. 2 3 Copyright (C) 1993-2016 Free Software Foundation, Inc. 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 23 /* 24 SECTION 25 ELF backends 26 27 BFD support for ELF formats is being worked on. 28 Currently, the best supported back ends are for sparc and i386 29 (running svr4 or Solaris 2). 30 31 Documentation of the internals of the support code still needs 32 to be written. The code is changing quickly enough that we 33 haven't bothered yet. */ 34 35 /* For sparc64-cross-sparc32. */ 36 #define _SYSCALL32 37 #include "sysdep.h" 38 #include "bfd.h" 39 #include "bfdlink.h" 40 #include "libbfd.h" 41 #define ARCH_SIZE 0 42 #include "elf-bfd.h" 43 #include "libiberty.h" 44 #include "safe-ctype.h" 45 #include "elf-linux-core.h" 46 47 #ifdef CORE_HEADER 48 #include CORE_HEADER 49 #endif 50 51 static int elf_sort_sections (const void *, const void *); 52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *); 53 static bfd_boolean prep_headers (bfd *); 54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ; 55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type) ; 56 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size, 57 file_ptr offset); 58 59 /* Swap version information in and out. The version information is 60 currently size independent. If that ever changes, this code will 61 need to move into elfcode.h. */ 62 63 /* Swap in a Verdef structure. */ 64 65 void 66 _bfd_elf_swap_verdef_in (bfd *abfd, 67 const Elf_External_Verdef *src, 68 Elf_Internal_Verdef *dst) 69 { 70 dst->vd_version = H_GET_16 (abfd, src->vd_version); 71 dst->vd_flags = H_GET_16 (abfd, src->vd_flags); 72 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx); 73 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt); 74 dst->vd_hash = H_GET_32 (abfd, src->vd_hash); 75 dst->vd_aux = H_GET_32 (abfd, src->vd_aux); 76 dst->vd_next = H_GET_32 (abfd, src->vd_next); 77 } 78 79 /* Swap out a Verdef structure. */ 80 81 void 82 _bfd_elf_swap_verdef_out (bfd *abfd, 83 const Elf_Internal_Verdef *src, 84 Elf_External_Verdef *dst) 85 { 86 H_PUT_16 (abfd, src->vd_version, dst->vd_version); 87 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags); 88 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx); 89 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt); 90 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash); 91 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux); 92 H_PUT_32 (abfd, src->vd_next, dst->vd_next); 93 } 94 95 /* Swap in a Verdaux structure. */ 96 97 void 98 _bfd_elf_swap_verdaux_in (bfd *abfd, 99 const Elf_External_Verdaux *src, 100 Elf_Internal_Verdaux *dst) 101 { 102 dst->vda_name = H_GET_32 (abfd, src->vda_name); 103 dst->vda_next = H_GET_32 (abfd, src->vda_next); 104 } 105 106 /* Swap out a Verdaux structure. */ 107 108 void 109 _bfd_elf_swap_verdaux_out (bfd *abfd, 110 const Elf_Internal_Verdaux *src, 111 Elf_External_Verdaux *dst) 112 { 113 H_PUT_32 (abfd, src->vda_name, dst->vda_name); 114 H_PUT_32 (abfd, src->vda_next, dst->vda_next); 115 } 116 117 /* Swap in a Verneed structure. */ 118 119 void 120 _bfd_elf_swap_verneed_in (bfd *abfd, 121 const Elf_External_Verneed *src, 122 Elf_Internal_Verneed *dst) 123 { 124 dst->vn_version = H_GET_16 (abfd, src->vn_version); 125 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt); 126 dst->vn_file = H_GET_32 (abfd, src->vn_file); 127 dst->vn_aux = H_GET_32 (abfd, src->vn_aux); 128 dst->vn_next = H_GET_32 (abfd, src->vn_next); 129 } 130 131 /* Swap out a Verneed structure. */ 132 133 void 134 _bfd_elf_swap_verneed_out (bfd *abfd, 135 const Elf_Internal_Verneed *src, 136 Elf_External_Verneed *dst) 137 { 138 H_PUT_16 (abfd, src->vn_version, dst->vn_version); 139 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt); 140 H_PUT_32 (abfd, src->vn_file, dst->vn_file); 141 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux); 142 H_PUT_32 (abfd, src->vn_next, dst->vn_next); 143 } 144 145 /* Swap in a Vernaux structure. */ 146 147 void 148 _bfd_elf_swap_vernaux_in (bfd *abfd, 149 const Elf_External_Vernaux *src, 150 Elf_Internal_Vernaux *dst) 151 { 152 dst->vna_hash = H_GET_32 (abfd, src->vna_hash); 153 dst->vna_flags = H_GET_16 (abfd, src->vna_flags); 154 dst->vna_other = H_GET_16 (abfd, src->vna_other); 155 dst->vna_name = H_GET_32 (abfd, src->vna_name); 156 dst->vna_next = H_GET_32 (abfd, src->vna_next); 157 } 158 159 /* Swap out a Vernaux structure. */ 160 161 void 162 _bfd_elf_swap_vernaux_out (bfd *abfd, 163 const Elf_Internal_Vernaux *src, 164 Elf_External_Vernaux *dst) 165 { 166 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash); 167 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags); 168 H_PUT_16 (abfd, src->vna_other, dst->vna_other); 169 H_PUT_32 (abfd, src->vna_name, dst->vna_name); 170 H_PUT_32 (abfd, src->vna_next, dst->vna_next); 171 } 172 173 /* Swap in a Versym structure. */ 174 175 void 176 _bfd_elf_swap_versym_in (bfd *abfd, 177 const Elf_External_Versym *src, 178 Elf_Internal_Versym *dst) 179 { 180 dst->vs_vers = H_GET_16 (abfd, src->vs_vers); 181 } 182 183 /* Swap out a Versym structure. */ 184 185 void 186 _bfd_elf_swap_versym_out (bfd *abfd, 187 const Elf_Internal_Versym *src, 188 Elf_External_Versym *dst) 189 { 190 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers); 191 } 192 193 /* Standard ELF hash function. Do not change this function; you will 194 cause invalid hash tables to be generated. */ 195 196 unsigned long 197 bfd_elf_hash (const char *namearg) 198 { 199 const unsigned char *name = (const unsigned char *) namearg; 200 unsigned long h = 0; 201 unsigned long g; 202 int ch; 203 204 while ((ch = *name++) != '\0') 205 { 206 h = (h << 4) + ch; 207 if ((g = (h & 0xf0000000)) != 0) 208 { 209 h ^= g >> 24; 210 /* The ELF ABI says `h &= ~g', but this is equivalent in 211 this case and on some machines one insn instead of two. */ 212 h ^= g; 213 } 214 } 215 return h & 0xffffffff; 216 } 217 218 /* DT_GNU_HASH hash function. Do not change this function; you will 219 cause invalid hash tables to be generated. */ 220 221 unsigned long 222 bfd_elf_gnu_hash (const char *namearg) 223 { 224 const unsigned char *name = (const unsigned char *) namearg; 225 unsigned long h = 5381; 226 unsigned char ch; 227 228 while ((ch = *name++) != '\0') 229 h = (h << 5) + h + ch; 230 return h & 0xffffffff; 231 } 232 233 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with 234 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */ 235 bfd_boolean 236 bfd_elf_allocate_object (bfd *abfd, 237 size_t object_size, 238 enum elf_target_id object_id) 239 { 240 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata)); 241 abfd->tdata.any = bfd_zalloc (abfd, object_size); 242 if (abfd->tdata.any == NULL) 243 return FALSE; 244 245 elf_object_id (abfd) = object_id; 246 if (abfd->direction != read_direction) 247 { 248 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o); 249 if (o == NULL) 250 return FALSE; 251 elf_tdata (abfd)->o = o; 252 elf_program_header_size (abfd) = (bfd_size_type) -1; 253 } 254 return TRUE; 255 } 256 257 258 bfd_boolean 259 bfd_elf_make_object (bfd *abfd) 260 { 261 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 262 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata), 263 bed->target_id); 264 } 265 266 bfd_boolean 267 bfd_elf_mkcorefile (bfd *abfd) 268 { 269 /* I think this can be done just like an object file. */ 270 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd)) 271 return FALSE; 272 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core)); 273 return elf_tdata (abfd)->core != NULL; 274 } 275 276 static char * 277 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex) 278 { 279 Elf_Internal_Shdr **i_shdrp; 280 bfd_byte *shstrtab = NULL; 281 file_ptr offset; 282 bfd_size_type shstrtabsize; 283 284 i_shdrp = elf_elfsections (abfd); 285 if (i_shdrp == 0 286 || shindex >= elf_numsections (abfd) 287 || i_shdrp[shindex] == 0) 288 return NULL; 289 290 shstrtab = i_shdrp[shindex]->contents; 291 if (shstrtab == NULL) 292 { 293 /* No cached one, attempt to read, and cache what we read. */ 294 offset = i_shdrp[shindex]->sh_offset; 295 shstrtabsize = i_shdrp[shindex]->sh_size; 296 297 /* Allocate and clear an extra byte at the end, to prevent crashes 298 in case the string table is not terminated. */ 299 if (shstrtabsize + 1 <= 1 300 || bfd_seek (abfd, offset, SEEK_SET) != 0 301 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL) 302 shstrtab = NULL; 303 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize) 304 { 305 if (bfd_get_error () != bfd_error_system_call) 306 bfd_set_error (bfd_error_file_truncated); 307 bfd_release (abfd, shstrtab); 308 shstrtab = NULL; 309 /* Once we've failed to read it, make sure we don't keep 310 trying. Otherwise, we'll keep allocating space for 311 the string table over and over. */ 312 i_shdrp[shindex]->sh_size = 0; 313 } 314 else 315 shstrtab[shstrtabsize] = '\0'; 316 i_shdrp[shindex]->contents = shstrtab; 317 } 318 return (char *) shstrtab; 319 } 320 321 char * 322 bfd_elf_string_from_elf_section (bfd *abfd, 323 unsigned int shindex, 324 unsigned int strindex) 325 { 326 Elf_Internal_Shdr *hdr; 327 328 if (strindex == 0) 329 return ""; 330 331 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd)) 332 return NULL; 333 334 hdr = elf_elfsections (abfd)[shindex]; 335 336 if (hdr->contents == NULL) 337 { 338 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS) 339 { 340 /* PR 17512: file: f057ec89. */ 341 _bfd_error_handler (_("%B: attempt to load strings from a non-string section (number %d)"), 342 abfd, shindex); 343 return NULL; 344 } 345 346 if (bfd_elf_get_str_section (abfd, shindex) == NULL) 347 return NULL; 348 } 349 350 if (strindex >= hdr->sh_size) 351 { 352 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx; 353 (*_bfd_error_handler) 354 (_("%B: invalid string offset %u >= %lu for section `%s'"), 355 abfd, strindex, (unsigned long) hdr->sh_size, 356 (shindex == shstrndx && strindex == hdr->sh_name 357 ? ".shstrtab" 358 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name))); 359 return NULL; 360 } 361 362 return ((char *) hdr->contents) + strindex; 363 } 364 365 /* Read and convert symbols to internal format. 366 SYMCOUNT specifies the number of symbols to read, starting from 367 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF 368 are non-NULL, they are used to store the internal symbols, external 369 symbols, and symbol section index extensions, respectively. 370 Returns a pointer to the internal symbol buffer (malloced if necessary) 371 or NULL if there were no symbols or some kind of problem. */ 372 373 Elf_Internal_Sym * 374 bfd_elf_get_elf_syms (bfd *ibfd, 375 Elf_Internal_Shdr *symtab_hdr, 376 size_t symcount, 377 size_t symoffset, 378 Elf_Internal_Sym *intsym_buf, 379 void *extsym_buf, 380 Elf_External_Sym_Shndx *extshndx_buf) 381 { 382 Elf_Internal_Shdr *shndx_hdr; 383 void *alloc_ext; 384 const bfd_byte *esym; 385 Elf_External_Sym_Shndx *alloc_extshndx; 386 Elf_External_Sym_Shndx *shndx; 387 Elf_Internal_Sym *alloc_intsym; 388 Elf_Internal_Sym *isym; 389 Elf_Internal_Sym *isymend; 390 const struct elf_backend_data *bed; 391 size_t extsym_size; 392 bfd_size_type amt; 393 file_ptr pos; 394 395 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) 396 abort (); 397 398 if (symcount == 0) 399 return intsym_buf; 400 401 /* Normal syms might have section extension entries. */ 402 shndx_hdr = NULL; 403 if (elf_symtab_shndx_list (ibfd) != NULL) 404 { 405 elf_section_list * entry; 406 Elf_Internal_Shdr **sections = elf_elfsections (ibfd); 407 408 /* Find an index section that is linked to this symtab section. */ 409 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next) 410 { 411 /* PR 20063. */ 412 if (entry->hdr.sh_link >= elf_numsections (ibfd)) 413 continue; 414 415 if (sections[entry->hdr.sh_link] == symtab_hdr) 416 { 417 shndx_hdr = & entry->hdr; 418 break; 419 }; 420 } 421 422 if (shndx_hdr == NULL) 423 { 424 if (symtab_hdr == & elf_symtab_hdr (ibfd)) 425 /* Not really accurate, but this was how the old code used to work. */ 426 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr; 427 /* Otherwise we do nothing. The assumption is that 428 the index table will not be needed. */ 429 } 430 } 431 432 /* Read the symbols. */ 433 alloc_ext = NULL; 434 alloc_extshndx = NULL; 435 alloc_intsym = NULL; 436 bed = get_elf_backend_data (ibfd); 437 extsym_size = bed->s->sizeof_sym; 438 amt = (bfd_size_type) symcount * extsym_size; 439 pos = symtab_hdr->sh_offset + symoffset * extsym_size; 440 if (extsym_buf == NULL) 441 { 442 alloc_ext = bfd_malloc2 (symcount, extsym_size); 443 extsym_buf = alloc_ext; 444 } 445 if (extsym_buf == NULL 446 || bfd_seek (ibfd, pos, SEEK_SET) != 0 447 || bfd_bread (extsym_buf, amt, ibfd) != amt) 448 { 449 intsym_buf = NULL; 450 goto out; 451 } 452 453 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0) 454 extshndx_buf = NULL; 455 else 456 { 457 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx); 458 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx); 459 if (extshndx_buf == NULL) 460 { 461 alloc_extshndx = (Elf_External_Sym_Shndx *) 462 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx)); 463 extshndx_buf = alloc_extshndx; 464 } 465 if (extshndx_buf == NULL 466 || bfd_seek (ibfd, pos, SEEK_SET) != 0 467 || bfd_bread (extshndx_buf, amt, ibfd) != amt) 468 { 469 intsym_buf = NULL; 470 goto out; 471 } 472 } 473 474 if (intsym_buf == NULL) 475 { 476 alloc_intsym = (Elf_Internal_Sym *) 477 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym)); 478 intsym_buf = alloc_intsym; 479 if (intsym_buf == NULL) 480 goto out; 481 } 482 483 /* Convert the symbols to internal form. */ 484 isymend = intsym_buf + symcount; 485 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf, 486 shndx = extshndx_buf; 487 isym < isymend; 488 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL) 489 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym)) 490 { 491 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size; 492 (*_bfd_error_handler) (_("%B symbol number %lu references " 493 "nonexistent SHT_SYMTAB_SHNDX section"), 494 ibfd, (unsigned long) symoffset); 495 if (alloc_intsym != NULL) 496 free (alloc_intsym); 497 intsym_buf = NULL; 498 goto out; 499 } 500 501 out: 502 if (alloc_ext != NULL) 503 free (alloc_ext); 504 if (alloc_extshndx != NULL) 505 free (alloc_extshndx); 506 507 return intsym_buf; 508 } 509 510 /* Look up a symbol name. */ 511 const char * 512 bfd_elf_sym_name (bfd *abfd, 513 Elf_Internal_Shdr *symtab_hdr, 514 Elf_Internal_Sym *isym, 515 asection *sym_sec) 516 { 517 const char *name; 518 unsigned int iname = isym->st_name; 519 unsigned int shindex = symtab_hdr->sh_link; 520 521 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION 522 /* Check for a bogus st_shndx to avoid crashing. */ 523 && isym->st_shndx < elf_numsections (abfd)) 524 { 525 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name; 526 shindex = elf_elfheader (abfd)->e_shstrndx; 527 } 528 529 name = bfd_elf_string_from_elf_section (abfd, shindex, iname); 530 if (name == NULL) 531 name = "(null)"; 532 else if (sym_sec && *name == '\0') 533 name = bfd_section_name (abfd, sym_sec); 534 535 return name; 536 } 537 538 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP 539 sections. The first element is the flags, the rest are section 540 pointers. */ 541 542 typedef union elf_internal_group { 543 Elf_Internal_Shdr *shdr; 544 unsigned int flags; 545 } Elf_Internal_Group; 546 547 /* Return the name of the group signature symbol. Why isn't the 548 signature just a string? */ 549 550 static const char * 551 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr) 552 { 553 Elf_Internal_Shdr *hdr; 554 unsigned char esym[sizeof (Elf64_External_Sym)]; 555 Elf_External_Sym_Shndx eshndx; 556 Elf_Internal_Sym isym; 557 558 /* First we need to ensure the symbol table is available. Make sure 559 that it is a symbol table section. */ 560 if (ghdr->sh_link >= elf_numsections (abfd)) 561 return NULL; 562 hdr = elf_elfsections (abfd) [ghdr->sh_link]; 563 if (hdr->sh_type != SHT_SYMTAB 564 || ! bfd_section_from_shdr (abfd, ghdr->sh_link)) 565 return NULL; 566 567 /* Go read the symbol. */ 568 hdr = &elf_tdata (abfd)->symtab_hdr; 569 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info, 570 &isym, esym, &eshndx) == NULL) 571 return NULL; 572 573 return bfd_elf_sym_name (abfd, hdr, &isym, NULL); 574 } 575 576 /* Set next_in_group list pointer, and group name for NEWSECT. */ 577 578 static bfd_boolean 579 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect) 580 { 581 unsigned int num_group = elf_tdata (abfd)->num_group; 582 583 /* If num_group is zero, read in all SHT_GROUP sections. The count 584 is set to -1 if there are no SHT_GROUP sections. */ 585 if (num_group == 0) 586 { 587 unsigned int i, shnum; 588 589 /* First count the number of groups. If we have a SHT_GROUP 590 section with just a flag word (ie. sh_size is 4), ignore it. */ 591 shnum = elf_numsections (abfd); 592 num_group = 0; 593 594 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \ 595 ( (shdr)->sh_type == SHT_GROUP \ 596 && (shdr)->sh_size >= minsize \ 597 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \ 598 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0) 599 600 for (i = 0; i < shnum; i++) 601 { 602 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i]; 603 604 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE)) 605 num_group += 1; 606 } 607 608 if (num_group == 0) 609 { 610 num_group = (unsigned) -1; 611 elf_tdata (abfd)->num_group = num_group; 612 } 613 else 614 { 615 /* We keep a list of elf section headers for group sections, 616 so we can find them quickly. */ 617 bfd_size_type amt; 618 619 elf_tdata (abfd)->num_group = num_group; 620 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **) 621 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *)); 622 if (elf_tdata (abfd)->group_sect_ptr == NULL) 623 return FALSE; 624 625 num_group = 0; 626 for (i = 0; i < shnum; i++) 627 { 628 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i]; 629 630 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE)) 631 { 632 unsigned char *src; 633 Elf_Internal_Group *dest; 634 635 /* Add to list of sections. */ 636 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr; 637 num_group += 1; 638 639 /* Read the raw contents. */ 640 BFD_ASSERT (sizeof (*dest) >= 4); 641 amt = shdr->sh_size * sizeof (*dest) / 4; 642 shdr->contents = (unsigned char *) 643 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4); 644 /* PR binutils/4110: Handle corrupt group headers. */ 645 if (shdr->contents == NULL) 646 { 647 _bfd_error_handler 648 (_("%B: corrupt size field in group section header: 0x%lx"), abfd, shdr->sh_size); 649 bfd_set_error (bfd_error_bad_value); 650 -- num_group; 651 continue; 652 } 653 654 memset (shdr->contents, 0, amt); 655 656 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0 657 || (bfd_bread (shdr->contents, shdr->sh_size, abfd) 658 != shdr->sh_size)) 659 { 660 _bfd_error_handler 661 (_("%B: invalid size field in group section header: 0x%lx"), abfd, shdr->sh_size); 662 bfd_set_error (bfd_error_bad_value); 663 -- num_group; 664 /* PR 17510: If the group contents are even partially 665 corrupt, do not allow any of the contents to be used. */ 666 memset (shdr->contents, 0, amt); 667 continue; 668 } 669 670 /* Translate raw contents, a flag word followed by an 671 array of elf section indices all in target byte order, 672 to the flag word followed by an array of elf section 673 pointers. */ 674 src = shdr->contents + shdr->sh_size; 675 dest = (Elf_Internal_Group *) (shdr->contents + amt); 676 677 while (1) 678 { 679 unsigned int idx; 680 681 src -= 4; 682 --dest; 683 idx = H_GET_32 (abfd, src); 684 if (src == shdr->contents) 685 { 686 dest->flags = idx; 687 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT)) 688 shdr->bfd_section->flags 689 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; 690 break; 691 } 692 if (idx >= shnum) 693 { 694 ((*_bfd_error_handler) 695 (_("%B: invalid SHT_GROUP entry"), abfd)); 696 idx = 0; 697 } 698 dest->shdr = elf_elfsections (abfd)[idx]; 699 } 700 } 701 } 702 703 /* PR 17510: Corrupt binaries might contain invalid groups. */ 704 if (num_group != (unsigned) elf_tdata (abfd)->num_group) 705 { 706 elf_tdata (abfd)->num_group = num_group; 707 708 /* If all groups are invalid then fail. */ 709 if (num_group == 0) 710 { 711 elf_tdata (abfd)->group_sect_ptr = NULL; 712 elf_tdata (abfd)->num_group = num_group = -1; 713 (*_bfd_error_handler) (_("%B: no valid group sections found"), abfd); 714 bfd_set_error (bfd_error_bad_value); 715 } 716 } 717 } 718 } 719 720 if (num_group != (unsigned) -1) 721 { 722 unsigned int i; 723 724 for (i = 0; i < num_group; i++) 725 { 726 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i]; 727 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents; 728 unsigned int n_elt = shdr->sh_size / 4; 729 730 /* Look through this group's sections to see if current 731 section is a member. */ 732 while (--n_elt != 0) 733 if ((++idx)->shdr == hdr) 734 { 735 asection *s = NULL; 736 737 /* We are a member of this group. Go looking through 738 other members to see if any others are linked via 739 next_in_group. */ 740 idx = (Elf_Internal_Group *) shdr->contents; 741 n_elt = shdr->sh_size / 4; 742 while (--n_elt != 0) 743 if ((s = (++idx)->shdr->bfd_section) != NULL 744 && elf_next_in_group (s) != NULL) 745 break; 746 if (n_elt != 0) 747 { 748 /* Snarf the group name from other member, and 749 insert current section in circular list. */ 750 elf_group_name (newsect) = elf_group_name (s); 751 elf_next_in_group (newsect) = elf_next_in_group (s); 752 elf_next_in_group (s) = newsect; 753 } 754 else 755 { 756 const char *gname; 757 758 gname = group_signature (abfd, shdr); 759 if (gname == NULL) 760 return FALSE; 761 elf_group_name (newsect) = gname; 762 763 /* Start a circular list with one element. */ 764 elf_next_in_group (newsect) = newsect; 765 } 766 767 /* If the group section has been created, point to the 768 new member. */ 769 if (shdr->bfd_section != NULL) 770 elf_next_in_group (shdr->bfd_section) = newsect; 771 772 i = num_group - 1; 773 break; 774 } 775 } 776 } 777 778 if (elf_group_name (newsect) == NULL) 779 { 780 (*_bfd_error_handler) (_("%B: no group info for section %A"), 781 abfd, newsect); 782 return FALSE; 783 } 784 return TRUE; 785 } 786 787 bfd_boolean 788 _bfd_elf_setup_sections (bfd *abfd) 789 { 790 unsigned int i; 791 unsigned int num_group = elf_tdata (abfd)->num_group; 792 bfd_boolean result = TRUE; 793 asection *s; 794 795 /* Process SHF_LINK_ORDER. */ 796 for (s = abfd->sections; s != NULL; s = s->next) 797 { 798 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr; 799 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0) 800 { 801 unsigned int elfsec = this_hdr->sh_link; 802 /* FIXME: The old Intel compiler and old strip/objcopy may 803 not set the sh_link or sh_info fields. Hence we could 804 get the situation where elfsec is 0. */ 805 if (elfsec == 0) 806 { 807 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 808 if (bed->link_order_error_handler) 809 bed->link_order_error_handler 810 (_("%B: warning: sh_link not set for section `%A'"), 811 abfd, s); 812 } 813 else 814 { 815 asection *linksec = NULL; 816 817 if (elfsec < elf_numsections (abfd)) 818 { 819 this_hdr = elf_elfsections (abfd)[elfsec]; 820 linksec = this_hdr->bfd_section; 821 } 822 823 /* PR 1991, 2008: 824 Some strip/objcopy may leave an incorrect value in 825 sh_link. We don't want to proceed. */ 826 if (linksec == NULL) 827 { 828 (*_bfd_error_handler) 829 (_("%B: sh_link [%d] in section `%A' is incorrect"), 830 s->owner, s, elfsec); 831 result = FALSE; 832 } 833 834 elf_linked_to_section (s) = linksec; 835 } 836 } 837 } 838 839 /* Process section groups. */ 840 if (num_group == (unsigned) -1) 841 return result; 842 843 for (i = 0; i < num_group; i++) 844 { 845 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i]; 846 Elf_Internal_Group *idx; 847 unsigned int n_elt; 848 849 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */ 850 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL) 851 { 852 (*_bfd_error_handler) 853 (_("%B: section group entry number %u is corrupt"), 854 abfd, i); 855 result = FALSE; 856 continue; 857 } 858 859 idx = (Elf_Internal_Group *) shdr->contents; 860 n_elt = shdr->sh_size / 4; 861 862 while (--n_elt != 0) 863 if ((++idx)->shdr->bfd_section) 864 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section; 865 else if (idx->shdr->sh_type == SHT_RELA 866 || idx->shdr->sh_type == SHT_REL) 867 /* We won't include relocation sections in section groups in 868 output object files. We adjust the group section size here 869 so that relocatable link will work correctly when 870 relocation sections are in section group in input object 871 files. */ 872 shdr->bfd_section->size -= 4; 873 else 874 { 875 /* There are some unknown sections in the group. */ 876 (*_bfd_error_handler) 877 (_("%B: unknown [%d] section `%s' in group [%s]"), 878 abfd, 879 (unsigned int) idx->shdr->sh_type, 880 bfd_elf_string_from_elf_section (abfd, 881 (elf_elfheader (abfd) 882 ->e_shstrndx), 883 idx->shdr->sh_name), 884 shdr->bfd_section->name); 885 result = FALSE; 886 } 887 } 888 return result; 889 } 890 891 bfd_boolean 892 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec) 893 { 894 return elf_next_in_group (sec) != NULL; 895 } 896 897 static char * 898 convert_debug_to_zdebug (bfd *abfd, const char *name) 899 { 900 unsigned int len = strlen (name); 901 char *new_name = bfd_alloc (abfd, len + 2); 902 if (new_name == NULL) 903 return NULL; 904 new_name[0] = '.'; 905 new_name[1] = 'z'; 906 memcpy (new_name + 2, name + 1, len); 907 return new_name; 908 } 909 910 static char * 911 convert_zdebug_to_debug (bfd *abfd, const char *name) 912 { 913 unsigned int len = strlen (name); 914 char *new_name = bfd_alloc (abfd, len); 915 if (new_name == NULL) 916 return NULL; 917 new_name[0] = '.'; 918 memcpy (new_name + 1, name + 2, len - 1); 919 return new_name; 920 } 921 922 /* Make a BFD section from an ELF section. We store a pointer to the 923 BFD section in the bfd_section field of the header. */ 924 925 bfd_boolean 926 _bfd_elf_make_section_from_shdr (bfd *abfd, 927 Elf_Internal_Shdr *hdr, 928 const char *name, 929 int shindex) 930 { 931 asection *newsect; 932 flagword flags; 933 const struct elf_backend_data *bed; 934 935 if (hdr->bfd_section != NULL) 936 return TRUE; 937 938 newsect = bfd_make_section_anyway (abfd, name); 939 if (newsect == NULL) 940 return FALSE; 941 942 hdr->bfd_section = newsect; 943 elf_section_data (newsect)->this_hdr = *hdr; 944 elf_section_data (newsect)->this_idx = shindex; 945 946 /* Always use the real type/flags. */ 947 elf_section_type (newsect) = hdr->sh_type; 948 elf_section_flags (newsect) = hdr->sh_flags; 949 950 newsect->filepos = hdr->sh_offset; 951 952 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr) 953 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size) 954 || ! bfd_set_section_alignment (abfd, newsect, 955 bfd_log2 (hdr->sh_addralign))) 956 return FALSE; 957 958 flags = SEC_NO_FLAGS; 959 if (hdr->sh_type != SHT_NOBITS) 960 flags |= SEC_HAS_CONTENTS; 961 if (hdr->sh_type == SHT_GROUP) 962 flags |= SEC_GROUP | SEC_EXCLUDE; 963 if ((hdr->sh_flags & SHF_ALLOC) != 0) 964 { 965 flags |= SEC_ALLOC; 966 if (hdr->sh_type != SHT_NOBITS) 967 flags |= SEC_LOAD; 968 } 969 if ((hdr->sh_flags & SHF_WRITE) == 0) 970 flags |= SEC_READONLY; 971 if ((hdr->sh_flags & SHF_EXECINSTR) != 0) 972 flags |= SEC_CODE; 973 else if ((flags & SEC_LOAD) != 0) 974 flags |= SEC_DATA; 975 if ((hdr->sh_flags & SHF_MERGE) != 0) 976 { 977 flags |= SEC_MERGE; 978 newsect->entsize = hdr->sh_entsize; 979 } 980 if ((hdr->sh_flags & SHF_STRINGS) != 0) 981 flags |= SEC_STRINGS; 982 if (hdr->sh_flags & SHF_GROUP) 983 if (!setup_group (abfd, hdr, newsect)) 984 return FALSE; 985 if ((hdr->sh_flags & SHF_TLS) != 0) 986 flags |= SEC_THREAD_LOCAL; 987 if ((hdr->sh_flags & SHF_EXCLUDE) != 0) 988 flags |= SEC_EXCLUDE; 989 990 if ((flags & SEC_ALLOC) == 0) 991 { 992 /* The debugging sections appear to be recognized only by name, 993 not any sort of flag. Their SEC_ALLOC bits are cleared. */ 994 if (name [0] == '.') 995 { 996 const char *p; 997 int n; 998 if (name[1] == 'd') 999 p = ".debug", n = 6; 1000 else if (name[1] == 'g' && name[2] == 'n') 1001 p = ".gnu.linkonce.wi.", n = 17; 1002 else if (name[1] == 'g' && name[2] == 'd') 1003 p = ".gdb_index", n = 11; /* yes we really do mean 11. */ 1004 else if (name[1] == 'l') 1005 p = ".line", n = 5; 1006 else if (name[1] == 's') 1007 p = ".stab", n = 5; 1008 else if (name[1] == 'z') 1009 p = ".zdebug", n = 7; 1010 else 1011 p = NULL, n = 0; 1012 if (p != NULL && strncmp (name, p, n) == 0) 1013 flags |= SEC_DEBUGGING; 1014 } 1015 } 1016 1017 /* As a GNU extension, if the name begins with .gnu.linkonce, we 1018 only link a single copy of the section. This is used to support 1019 g++. g++ will emit each template expansion in its own section. 1020 The symbols will be defined as weak, so that multiple definitions 1021 are permitted. The GNU linker extension is to actually discard 1022 all but one of the sections. */ 1023 if (CONST_STRNEQ (name, ".gnu.linkonce") 1024 && elf_next_in_group (newsect) == NULL) 1025 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; 1026 1027 bed = get_elf_backend_data (abfd); 1028 if (bed->elf_backend_section_flags) 1029 if (! bed->elf_backend_section_flags (&flags, hdr)) 1030 return FALSE; 1031 1032 if (! bfd_set_section_flags (abfd, newsect, flags)) 1033 return FALSE; 1034 1035 /* We do not parse the PT_NOTE segments as we are interested even in the 1036 separate debug info files which may have the segments offsets corrupted. 1037 PT_NOTEs from the core files are currently not parsed using BFD. */ 1038 if (hdr->sh_type == SHT_NOTE) 1039 { 1040 bfd_byte *contents; 1041 1042 if (!bfd_malloc_and_get_section (abfd, newsect, &contents)) 1043 return FALSE; 1044 1045 elf_parse_notes (abfd, (char *) contents, hdr->sh_size, -1); 1046 free (contents); 1047 } 1048 1049 if ((flags & SEC_ALLOC) != 0) 1050 { 1051 Elf_Internal_Phdr *phdr; 1052 unsigned int i, nload; 1053 1054 /* Some ELF linkers produce binaries with all the program header 1055 p_paddr fields zero. If we have such a binary with more than 1056 one PT_LOAD header, then leave the section lma equal to vma 1057 so that we don't create sections with overlapping lma. */ 1058 phdr = elf_tdata (abfd)->phdr; 1059 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) 1060 if (phdr->p_paddr != 0) 1061 break; 1062 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0) 1063 ++nload; 1064 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1) 1065 return TRUE; 1066 1067 phdr = elf_tdata (abfd)->phdr; 1068 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) 1069 { 1070 if (((phdr->p_type == PT_LOAD 1071 && (hdr->sh_flags & SHF_TLS) == 0) 1072 || phdr->p_type == PT_TLS) 1073 && ELF_SECTION_IN_SEGMENT (hdr, phdr)) 1074 { 1075 if ((flags & SEC_LOAD) == 0) 1076 newsect->lma = (phdr->p_paddr 1077 + hdr->sh_addr - phdr->p_vaddr); 1078 else 1079 /* We used to use the same adjustment for SEC_LOAD 1080 sections, but that doesn't work if the segment 1081 is packed with code from multiple VMAs. 1082 Instead we calculate the section LMA based on 1083 the segment LMA. It is assumed that the 1084 segment will contain sections with contiguous 1085 LMAs, even if the VMAs are not. */ 1086 newsect->lma = (phdr->p_paddr 1087 + hdr->sh_offset - phdr->p_offset); 1088 1089 /* With contiguous segments, we can't tell from file 1090 offsets whether a section with zero size should 1091 be placed at the end of one segment or the 1092 beginning of the next. Decide based on vaddr. */ 1093 if (hdr->sh_addr >= phdr->p_vaddr 1094 && (hdr->sh_addr + hdr->sh_size 1095 <= phdr->p_vaddr + phdr->p_memsz)) 1096 break; 1097 } 1098 } 1099 } 1100 1101 /* Compress/decompress DWARF debug sections with names: .debug_* and 1102 .zdebug_*, after the section flags is set. */ 1103 if ((flags & SEC_DEBUGGING) 1104 && ((name[1] == 'd' && name[6] == '_') 1105 || (name[1] == 'z' && name[7] == '_'))) 1106 { 1107 enum { nothing, compress, decompress } action = nothing; 1108 int compression_header_size; 1109 bfd_size_type uncompressed_size; 1110 bfd_boolean compressed 1111 = bfd_is_section_compressed_with_header (abfd, newsect, 1112 &compression_header_size, 1113 &uncompressed_size); 1114 1115 if (compressed) 1116 { 1117 /* Compressed section. Check if we should decompress. */ 1118 if ((abfd->flags & BFD_DECOMPRESS)) 1119 action = decompress; 1120 } 1121 1122 /* Compress the uncompressed section or convert from/to .zdebug* 1123 section. Check if we should compress. */ 1124 if (action == nothing) 1125 { 1126 if (newsect->size != 0 1127 && (abfd->flags & BFD_COMPRESS) 1128 && compression_header_size >= 0 1129 && uncompressed_size > 0 1130 && (!compressed 1131 || ((compression_header_size > 0) 1132 != ((abfd->flags & BFD_COMPRESS_GABI) != 0)))) 1133 action = compress; 1134 else 1135 return TRUE; 1136 } 1137 1138 if (action == compress) 1139 { 1140 if (!bfd_init_section_compress_status (abfd, newsect)) 1141 { 1142 (*_bfd_error_handler) 1143 (_("%B: unable to initialize compress status for section %s"), 1144 abfd, name); 1145 return FALSE; 1146 } 1147 } 1148 else 1149 { 1150 if (!bfd_init_section_decompress_status (abfd, newsect)) 1151 { 1152 (*_bfd_error_handler) 1153 (_("%B: unable to initialize decompress status for section %s"), 1154 abfd, name); 1155 return FALSE; 1156 } 1157 } 1158 1159 if (abfd->is_linker_input) 1160 { 1161 if (name[1] == 'z' 1162 && (action == decompress 1163 || (action == compress 1164 && (abfd->flags & BFD_COMPRESS_GABI) != 0))) 1165 { 1166 /* Convert section name from .zdebug_* to .debug_* so 1167 that linker will consider this section as a debug 1168 section. */ 1169 char *new_name = convert_zdebug_to_debug (abfd, name); 1170 if (new_name == NULL) 1171 return FALSE; 1172 bfd_rename_section (abfd, newsect, new_name); 1173 } 1174 } 1175 else 1176 /* For objdump, don't rename the section. For objcopy, delay 1177 section rename to elf_fake_sections. */ 1178 newsect->flags |= SEC_ELF_RENAME; 1179 } 1180 1181 return TRUE; 1182 } 1183 1184 const char *const bfd_elf_section_type_names[] = 1185 { 1186 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB", 1187 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE", 1188 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM", 1189 }; 1190 1191 /* ELF relocs are against symbols. If we are producing relocatable 1192 output, and the reloc is against an external symbol, and nothing 1193 has given us any additional addend, the resulting reloc will also 1194 be against the same symbol. In such a case, we don't want to 1195 change anything about the way the reloc is handled, since it will 1196 all be done at final link time. Rather than put special case code 1197 into bfd_perform_relocation, all the reloc types use this howto 1198 function. It just short circuits the reloc if producing 1199 relocatable output against an external symbol. */ 1200 1201 bfd_reloc_status_type 1202 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, 1203 arelent *reloc_entry, 1204 asymbol *symbol, 1205 void *data ATTRIBUTE_UNUSED, 1206 asection *input_section, 1207 bfd *output_bfd, 1208 char **error_message ATTRIBUTE_UNUSED) 1209 { 1210 if (output_bfd != NULL 1211 && (symbol->flags & BSF_SECTION_SYM) == 0 1212 && (! reloc_entry->howto->partial_inplace 1213 || reloc_entry->addend == 0)) 1214 { 1215 reloc_entry->address += input_section->output_offset; 1216 return bfd_reloc_ok; 1217 } 1218 1219 return bfd_reloc_continue; 1220 } 1221 1222 /* Returns TRUE if section A matches section B. 1223 Names, addresses and links may be different, but everything else 1224 should be the same. */ 1225 1226 static bfd_boolean 1227 section_match (const Elf_Internal_Shdr * a, 1228 const Elf_Internal_Shdr * b) 1229 { 1230 return 1231 a->sh_type == b->sh_type 1232 && (a->sh_flags & ~ SHF_INFO_LINK) 1233 == (b->sh_flags & ~ SHF_INFO_LINK) 1234 && a->sh_addralign == b->sh_addralign 1235 && a->sh_size == b->sh_size 1236 && a->sh_entsize == b->sh_entsize 1237 /* FIXME: Check sh_addr ? */ 1238 ; 1239 } 1240 1241 /* Find a section in OBFD that has the same characteristics 1242 as IHEADER. Return the index of this section or SHN_UNDEF if 1243 none can be found. Check's section HINT first, as this is likely 1244 to be the correct section. */ 1245 1246 static unsigned int 1247 find_link (const bfd * obfd, const Elf_Internal_Shdr * iheader, const unsigned int hint) 1248 { 1249 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd); 1250 unsigned int i; 1251 1252 if (section_match (oheaders[hint], iheader)) 1253 return hint; 1254 1255 for (i = 1; i < elf_numsections (obfd); i++) 1256 { 1257 Elf_Internal_Shdr * oheader = oheaders[i]; 1258 1259 if (section_match (oheader, iheader)) 1260 /* FIXME: Do we care if there is a potential for 1261 multiple matches ? */ 1262 return i; 1263 } 1264 1265 return SHN_UNDEF; 1266 } 1267 1268 /* PR 19938: Attempt to set the ELF section header fields of an OS or 1269 Processor specific section, based upon a matching input section. 1270 Returns TRUE upon success, FALSE otherwise. */ 1271 1272 static bfd_boolean 1273 copy_special_section_fields (const bfd *ibfd, 1274 bfd *obfd, 1275 const Elf_Internal_Shdr *iheader, 1276 Elf_Internal_Shdr *oheader, 1277 const unsigned int secnum) 1278 { 1279 const struct elf_backend_data *bed = get_elf_backend_data (obfd); 1280 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd); 1281 bfd_boolean changed = FALSE; 1282 unsigned int sh_link; 1283 1284 if (oheader->sh_type == SHT_NOBITS) 1285 { 1286 /* This is a feature for objcopy --only-keep-debug: 1287 When a section's type is changed to NOBITS, we preserve 1288 the sh_link and sh_info fields so that they can be 1289 matched up with the original. 1290 1291 Note: Strictly speaking these assignments are wrong. 1292 The sh_link and sh_info fields should point to the 1293 relevent sections in the output BFD, which may not be in 1294 the same location as they were in the input BFD. But 1295 the whole point of this action is to preserve the 1296 original values of the sh_link and sh_info fields, so 1297 that they can be matched up with the section headers in 1298 the original file. So strictly speaking we may be 1299 creating an invalid ELF file, but it is only for a file 1300 that just contains debug info and only for sections 1301 without any contents. */ 1302 if (oheader->sh_link == 0) 1303 oheader->sh_link = iheader->sh_link; 1304 if (oheader->sh_info == 0) 1305 oheader->sh_info = iheader->sh_info; 1306 return TRUE; 1307 } 1308 1309 /* Allow the target a chance to decide how these fields should be set. */ 1310 if (bed->elf_backend_copy_special_section_fields != NULL 1311 && bed->elf_backend_copy_special_section_fields 1312 (ibfd, obfd, iheader, oheader)) 1313 return TRUE; 1314 1315 /* We have an iheader which might match oheader, and which has non-zero 1316 sh_info and/or sh_link fields. Attempt to follow those links and find 1317 the section in the output bfd which corresponds to the linked section 1318 in the input bfd. */ 1319 if (iheader->sh_link != SHN_UNDEF) 1320 { 1321 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link); 1322 if (sh_link != SHN_UNDEF) 1323 { 1324 oheader->sh_link = sh_link; 1325 changed = TRUE; 1326 } 1327 else 1328 /* FIXME: Should we install iheader->sh_link 1329 if we could not find a match ? */ 1330 (* _bfd_error_handler) 1331 (_("%B: Failed to find link section for section %d"), obfd, secnum); 1332 } 1333 1334 if (iheader->sh_info) 1335 { 1336 /* The sh_info field can hold arbitrary information, but if the 1337 SHF_LINK_INFO flag is set then it should be interpreted as a 1338 section index. */ 1339 if (iheader->sh_flags & SHF_INFO_LINK) 1340 { 1341 sh_link = find_link (obfd, iheaders[iheader->sh_info], 1342 iheader->sh_info); 1343 if (sh_link != SHN_UNDEF) 1344 oheader->sh_flags |= SHF_INFO_LINK; 1345 } 1346 else 1347 /* No idea what it means - just copy it. */ 1348 sh_link = iheader->sh_info; 1349 1350 if (sh_link != SHN_UNDEF) 1351 { 1352 oheader->sh_info = sh_link; 1353 changed = TRUE; 1354 } 1355 else 1356 (* _bfd_error_handler) 1357 (_("%B: Failed to find info section for section %d"), obfd, secnum); 1358 } 1359 1360 return changed; 1361 } 1362 1363 /* Copy the program header and other data from one object module to 1364 another. */ 1365 1366 bfd_boolean 1367 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd) 1368 { 1369 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd); 1370 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd); 1371 const struct elf_backend_data *bed; 1372 unsigned int i; 1373 1374 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 1375 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 1376 return TRUE; 1377 1378 if (!elf_flags_init (obfd)) 1379 { 1380 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; 1381 elf_flags_init (obfd) = TRUE; 1382 } 1383 1384 elf_gp (obfd) = elf_gp (ibfd); 1385 1386 /* Also copy the EI_OSABI field. */ 1387 elf_elfheader (obfd)->e_ident[EI_OSABI] = 1388 elf_elfheader (ibfd)->e_ident[EI_OSABI]; 1389 1390 /* If set, copy the EI_ABIVERSION field. */ 1391 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION]) 1392 elf_elfheader (obfd)->e_ident[EI_ABIVERSION] 1393 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION]; 1394 1395 /* Copy object attributes. */ 1396 _bfd_elf_copy_obj_attributes (ibfd, obfd); 1397 1398 if (iheaders == NULL || oheaders == NULL) 1399 return TRUE; 1400 1401 bed = get_elf_backend_data (obfd); 1402 1403 /* Possibly copy other fields in the section header. */ 1404 for (i = 1; i < elf_numsections (obfd); i++) 1405 { 1406 unsigned int j; 1407 Elf_Internal_Shdr * oheader = oheaders[i]; 1408 1409 /* Ignore ordinary sections. SHT_NOBITS sections are considered however 1410 because of a special case need for generating separate debug info 1411 files. See below for more details. */ 1412 if (oheader == NULL 1413 || (oheader->sh_type != SHT_NOBITS 1414 && oheader->sh_type < SHT_LOOS)) 1415 continue; 1416 1417 /* Ignore empty sections, and sections whose 1418 fields have already been initialised. */ 1419 if (oheader->sh_size == 0 1420 || (oheader->sh_info != 0 && oheader->sh_link != 0)) 1421 continue; 1422 1423 /* Scan for the matching section in the input bfd. 1424 First we try for a direct mapping between the input and output sections. */ 1425 for (j = 1; j < elf_numsections (ibfd); j++) 1426 { 1427 const Elf_Internal_Shdr * iheader = iheaders[j]; 1428 1429 if (iheader == NULL) 1430 continue; 1431 1432 if (oheader->bfd_section != NULL 1433 && iheader->bfd_section != NULL 1434 && iheader->bfd_section->output_section != NULL 1435 && iheader->bfd_section->output_section == oheader->bfd_section) 1436 { 1437 /* We have found a connection from the input section to the 1438 output section. Attempt to copy the header fields. If 1439 this fails then do not try any further sections - there 1440 should only be a one-to-one mapping between input and output. */ 1441 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i)) 1442 j = elf_numsections (ibfd); 1443 break; 1444 } 1445 } 1446 1447 if (j < elf_numsections (ibfd)) 1448 continue; 1449 1450 /* That failed. So try to deduce the corresponding input section. 1451 Unfortunately we cannot compare names as the output string table 1452 is empty, so instead we check size, address and type. */ 1453 for (j = 1; j < elf_numsections (ibfd); j++) 1454 { 1455 const Elf_Internal_Shdr * iheader = iheaders[j]; 1456 1457 if (iheader == NULL) 1458 continue; 1459 1460 /* Try matching fields in the input section's header. 1461 Since --only-keep-debug turns all non-debug sections into 1462 SHT_NOBITS sections, the output SHT_NOBITS type matches any 1463 input type. */ 1464 if ((oheader->sh_type == SHT_NOBITS 1465 || iheader->sh_type == oheader->sh_type) 1466 && (iheader->sh_flags & ~ SHF_INFO_LINK) 1467 == (oheader->sh_flags & ~ SHF_INFO_LINK) 1468 && iheader->sh_addralign == oheader->sh_addralign 1469 && iheader->sh_entsize == oheader->sh_entsize 1470 && iheader->sh_size == oheader->sh_size 1471 && iheader->sh_addr == oheader->sh_addr 1472 && (iheader->sh_info != oheader->sh_info 1473 || iheader->sh_link != oheader->sh_link)) 1474 { 1475 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i)) 1476 break; 1477 } 1478 } 1479 1480 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS) 1481 { 1482 /* Final attempt. Call the backend copy function 1483 with a NULL input section. */ 1484 if (bed->elf_backend_copy_special_section_fields != NULL) 1485 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader); 1486 } 1487 } 1488 1489 return TRUE; 1490 } 1491 1492 static const char * 1493 get_segment_type (unsigned int p_type) 1494 { 1495 const char *pt; 1496 switch (p_type) 1497 { 1498 case PT_NULL: pt = "NULL"; break; 1499 case PT_LOAD: pt = "LOAD"; break; 1500 case PT_DYNAMIC: pt = "DYNAMIC"; break; 1501 case PT_INTERP: pt = "INTERP"; break; 1502 case PT_NOTE: pt = "NOTE"; break; 1503 case PT_SHLIB: pt = "SHLIB"; break; 1504 case PT_PHDR: pt = "PHDR"; break; 1505 case PT_TLS: pt = "TLS"; break; 1506 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break; 1507 case PT_GNU_STACK: pt = "STACK"; break; 1508 case PT_GNU_RELRO: pt = "RELRO"; break; 1509 default: pt = NULL; break; 1510 } 1511 return pt; 1512 } 1513 1514 /* Print out the program headers. */ 1515 1516 bfd_boolean 1517 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg) 1518 { 1519 FILE *f = (FILE *) farg; 1520 Elf_Internal_Phdr *p; 1521 asection *s; 1522 bfd_byte *dynbuf = NULL; 1523 1524 p = elf_tdata (abfd)->phdr; 1525 if (p != NULL) 1526 { 1527 unsigned int i, c; 1528 1529 fprintf (f, _("\nProgram Header:\n")); 1530 c = elf_elfheader (abfd)->e_phnum; 1531 for (i = 0; i < c; i++, p++) 1532 { 1533 const char *pt = get_segment_type (p->p_type); 1534 char buf[20]; 1535 1536 if (pt == NULL) 1537 { 1538 sprintf (buf, "0x%lx", p->p_type); 1539 pt = buf; 1540 } 1541 fprintf (f, "%8s off 0x", pt); 1542 bfd_fprintf_vma (abfd, f, p->p_offset); 1543 fprintf (f, " vaddr 0x"); 1544 bfd_fprintf_vma (abfd, f, p->p_vaddr); 1545 fprintf (f, " paddr 0x"); 1546 bfd_fprintf_vma (abfd, f, p->p_paddr); 1547 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align)); 1548 fprintf (f, " filesz 0x"); 1549 bfd_fprintf_vma (abfd, f, p->p_filesz); 1550 fprintf (f, " memsz 0x"); 1551 bfd_fprintf_vma (abfd, f, p->p_memsz); 1552 fprintf (f, " flags %c%c%c", 1553 (p->p_flags & PF_R) != 0 ? 'r' : '-', 1554 (p->p_flags & PF_W) != 0 ? 'w' : '-', 1555 (p->p_flags & PF_X) != 0 ? 'x' : '-'); 1556 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0) 1557 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)); 1558 fprintf (f, "\n"); 1559 } 1560 } 1561 1562 s = bfd_get_section_by_name (abfd, ".dynamic"); 1563 if (s != NULL) 1564 { 1565 unsigned int elfsec; 1566 unsigned long shlink; 1567 bfd_byte *extdyn, *extdynend; 1568 size_t extdynsize; 1569 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); 1570 1571 fprintf (f, _("\nDynamic Section:\n")); 1572 1573 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) 1574 goto error_return; 1575 1576 elfsec = _bfd_elf_section_from_bfd_section (abfd, s); 1577 if (elfsec == SHN_BAD) 1578 goto error_return; 1579 shlink = elf_elfsections (abfd)[elfsec]->sh_link; 1580 1581 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; 1582 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; 1583 1584 extdyn = dynbuf; 1585 /* PR 17512: file: 6f427532. */ 1586 if (s->size < extdynsize) 1587 goto error_return; 1588 extdynend = extdyn + s->size; 1589 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664. 1590 Fix range check. */ 1591 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize) 1592 { 1593 Elf_Internal_Dyn dyn; 1594 const char *name = ""; 1595 char ab[20]; 1596 bfd_boolean stringp; 1597 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 1598 1599 (*swap_dyn_in) (abfd, extdyn, &dyn); 1600 1601 if (dyn.d_tag == DT_NULL) 1602 break; 1603 1604 stringp = FALSE; 1605 switch (dyn.d_tag) 1606 { 1607 default: 1608 if (bed->elf_backend_get_target_dtag) 1609 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag); 1610 1611 if (!strcmp (name, "")) 1612 { 1613 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag); 1614 name = ab; 1615 } 1616 break; 1617 1618 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break; 1619 case DT_PLTRELSZ: name = "PLTRELSZ"; break; 1620 case DT_PLTGOT: name = "PLTGOT"; break; 1621 case DT_HASH: name = "HASH"; break; 1622 case DT_STRTAB: name = "STRTAB"; break; 1623 case DT_SYMTAB: name = "SYMTAB"; break; 1624 case DT_RELA: name = "RELA"; break; 1625 case DT_RELASZ: name = "RELASZ"; break; 1626 case DT_RELAENT: name = "RELAENT"; break; 1627 case DT_STRSZ: name = "STRSZ"; break; 1628 case DT_SYMENT: name = "SYMENT"; break; 1629 case DT_INIT: name = "INIT"; break; 1630 case DT_FINI: name = "FINI"; break; 1631 case DT_SONAME: name = "SONAME"; stringp = TRUE; break; 1632 case DT_RPATH: name = "RPATH"; stringp = TRUE; break; 1633 case DT_SYMBOLIC: name = "SYMBOLIC"; break; 1634 case DT_REL: name = "REL"; break; 1635 case DT_RELSZ: name = "RELSZ"; break; 1636 case DT_RELENT: name = "RELENT"; break; 1637 case DT_PLTREL: name = "PLTREL"; break; 1638 case DT_DEBUG: name = "DEBUG"; break; 1639 case DT_TEXTREL: name = "TEXTREL"; break; 1640 case DT_JMPREL: name = "JMPREL"; break; 1641 case DT_BIND_NOW: name = "BIND_NOW"; break; 1642 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break; 1643 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break; 1644 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break; 1645 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break; 1646 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break; 1647 case DT_FLAGS: name = "FLAGS"; break; 1648 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break; 1649 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break; 1650 case DT_CHECKSUM: name = "CHECKSUM"; break; 1651 case DT_PLTPADSZ: name = "PLTPADSZ"; break; 1652 case DT_MOVEENT: name = "MOVEENT"; break; 1653 case DT_MOVESZ: name = "MOVESZ"; break; 1654 case DT_FEATURE: name = "FEATURE"; break; 1655 case DT_POSFLAG_1: name = "POSFLAG_1"; break; 1656 case DT_SYMINSZ: name = "SYMINSZ"; break; 1657 case DT_SYMINENT: name = "SYMINENT"; break; 1658 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break; 1659 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break; 1660 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break; 1661 case DT_PLTPAD: name = "PLTPAD"; break; 1662 case DT_MOVETAB: name = "MOVETAB"; break; 1663 case DT_SYMINFO: name = "SYMINFO"; break; 1664 case DT_RELACOUNT: name = "RELACOUNT"; break; 1665 case DT_RELCOUNT: name = "RELCOUNT"; break; 1666 case DT_FLAGS_1: name = "FLAGS_1"; break; 1667 case DT_VERSYM: name = "VERSYM"; break; 1668 case DT_VERDEF: name = "VERDEF"; break; 1669 case DT_VERDEFNUM: name = "VERDEFNUM"; break; 1670 case DT_VERNEED: name = "VERNEED"; break; 1671 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break; 1672 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break; 1673 case DT_USED: name = "USED"; break; 1674 case DT_FILTER: name = "FILTER"; stringp = TRUE; break; 1675 case DT_GNU_HASH: name = "GNU_HASH"; break; 1676 } 1677 1678 fprintf (f, " %-20s ", name); 1679 if (! stringp) 1680 { 1681 fprintf (f, "0x"); 1682 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val); 1683 } 1684 else 1685 { 1686 const char *string; 1687 unsigned int tagv = dyn.d_un.d_val; 1688 1689 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 1690 if (string == NULL) 1691 goto error_return; 1692 fprintf (f, "%s", string); 1693 } 1694 fprintf (f, "\n"); 1695 } 1696 1697 free (dynbuf); 1698 dynbuf = NULL; 1699 } 1700 1701 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL) 1702 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL)) 1703 { 1704 if (! _bfd_elf_slurp_version_tables (abfd, FALSE)) 1705 return FALSE; 1706 } 1707 1708 if (elf_dynverdef (abfd) != 0) 1709 { 1710 Elf_Internal_Verdef *t; 1711 1712 fprintf (f, _("\nVersion definitions:\n")); 1713 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef) 1714 { 1715 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx, 1716 t->vd_flags, t->vd_hash, 1717 t->vd_nodename ? t->vd_nodename : "<corrupt>"); 1718 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL) 1719 { 1720 Elf_Internal_Verdaux *a; 1721 1722 fprintf (f, "\t"); 1723 for (a = t->vd_auxptr->vda_nextptr; 1724 a != NULL; 1725 a = a->vda_nextptr) 1726 fprintf (f, "%s ", 1727 a->vda_nodename ? a->vda_nodename : "<corrupt>"); 1728 fprintf (f, "\n"); 1729 } 1730 } 1731 } 1732 1733 if (elf_dynverref (abfd) != 0) 1734 { 1735 Elf_Internal_Verneed *t; 1736 1737 fprintf (f, _("\nVersion References:\n")); 1738 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref) 1739 { 1740 Elf_Internal_Vernaux *a; 1741 1742 fprintf (f, _(" required from %s:\n"), 1743 t->vn_filename ? t->vn_filename : "<corrupt>"); 1744 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 1745 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash, 1746 a->vna_flags, a->vna_other, 1747 a->vna_nodename ? a->vna_nodename : "<corrupt>"); 1748 } 1749 } 1750 1751 return TRUE; 1752 1753 error_return: 1754 if (dynbuf != NULL) 1755 free (dynbuf); 1756 return FALSE; 1757 } 1758 1759 /* Get version string. */ 1760 1761 const char * 1762 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol, 1763 bfd_boolean *hidden) 1764 { 1765 const char *version_string = NULL; 1766 if (elf_dynversym (abfd) != 0 1767 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0)) 1768 { 1769 unsigned int vernum = ((elf_symbol_type *) symbol)->version; 1770 1771 *hidden = (vernum & VERSYM_HIDDEN) != 0; 1772 vernum &= VERSYM_VERSION; 1773 1774 if (vernum == 0) 1775 version_string = ""; 1776 else if (vernum == 1) 1777 version_string = "Base"; 1778 else if (vernum <= elf_tdata (abfd)->cverdefs) 1779 version_string = 1780 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; 1781 else 1782 { 1783 Elf_Internal_Verneed *t; 1784 1785 version_string = ""; 1786 for (t = elf_tdata (abfd)->verref; 1787 t != NULL; 1788 t = t->vn_nextref) 1789 { 1790 Elf_Internal_Vernaux *a; 1791 1792 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 1793 { 1794 if (a->vna_other == vernum) 1795 { 1796 version_string = a->vna_nodename; 1797 break; 1798 } 1799 } 1800 } 1801 } 1802 } 1803 return version_string; 1804 } 1805 1806 /* Display ELF-specific fields of a symbol. */ 1807 1808 void 1809 bfd_elf_print_symbol (bfd *abfd, 1810 void *filep, 1811 asymbol *symbol, 1812 bfd_print_symbol_type how) 1813 { 1814 FILE *file = (FILE *) filep; 1815 switch (how) 1816 { 1817 case bfd_print_symbol_name: 1818 fprintf (file, "%s", symbol->name); 1819 break; 1820 case bfd_print_symbol_more: 1821 fprintf (file, "elf "); 1822 bfd_fprintf_vma (abfd, file, symbol->value); 1823 fprintf (file, " %lx", (unsigned long) symbol->flags); 1824 break; 1825 case bfd_print_symbol_all: 1826 { 1827 const char *section_name; 1828 const char *name = NULL; 1829 const struct elf_backend_data *bed; 1830 unsigned char st_other; 1831 bfd_vma val; 1832 const char *version_string; 1833 bfd_boolean hidden; 1834 1835 section_name = symbol->section ? symbol->section->name : "(*none*)"; 1836 1837 bed = get_elf_backend_data (abfd); 1838 if (bed->elf_backend_print_symbol_all) 1839 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol); 1840 1841 if (name == NULL) 1842 { 1843 name = symbol->name; 1844 bfd_print_symbol_vandf (abfd, file, symbol); 1845 } 1846 1847 fprintf (file, " %s\t", section_name); 1848 /* Print the "other" value for a symbol. For common symbols, 1849 we've already printed the size; now print the alignment. 1850 For other symbols, we have no specified alignment, and 1851 we've printed the address; now print the size. */ 1852 if (symbol->section && bfd_is_com_section (symbol->section)) 1853 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value; 1854 else 1855 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size; 1856 bfd_fprintf_vma (abfd, file, val); 1857 1858 /* If we have version information, print it. */ 1859 version_string = _bfd_elf_get_symbol_version_string (abfd, 1860 symbol, 1861 &hidden); 1862 if (version_string) 1863 { 1864 if (!hidden) 1865 fprintf (file, " %-11s", version_string); 1866 else 1867 { 1868 int i; 1869 1870 fprintf (file, " (%s)", version_string); 1871 for (i = 10 - strlen (version_string); i > 0; --i) 1872 putc (' ', file); 1873 } 1874 } 1875 1876 /* If the st_other field is not zero, print it. */ 1877 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other; 1878 1879 switch (st_other) 1880 { 1881 case 0: break; 1882 case STV_INTERNAL: fprintf (file, " .internal"); break; 1883 case STV_HIDDEN: fprintf (file, " .hidden"); break; 1884 case STV_PROTECTED: fprintf (file, " .protected"); break; 1885 default: 1886 /* Some other non-defined flags are also present, so print 1887 everything hex. */ 1888 fprintf (file, " 0x%02x", (unsigned int) st_other); 1889 } 1890 1891 fprintf (file, " %s", name); 1892 } 1893 break; 1894 } 1895 } 1896 1897 /* ELF .o/exec file reading */ 1898 1899 /* Create a new bfd section from an ELF section header. */ 1900 1901 bfd_boolean 1902 bfd_section_from_shdr (bfd *abfd, unsigned int shindex) 1903 { 1904 Elf_Internal_Shdr *hdr; 1905 Elf_Internal_Ehdr *ehdr; 1906 const struct elf_backend_data *bed; 1907 const char *name; 1908 bfd_boolean ret = TRUE; 1909 static bfd_boolean * sections_being_created = NULL; 1910 static bfd * sections_being_created_abfd = NULL; 1911 static unsigned int nesting = 0; 1912 1913 if (shindex >= elf_numsections (abfd)) 1914 return FALSE; 1915 1916 if (++ nesting > 3) 1917 { 1918 /* PR17512: A corrupt ELF binary might contain a recursive group of 1919 sections, with each the string indicies pointing to the next in the 1920 loop. Detect this here, by refusing to load a section that we are 1921 already in the process of loading. We only trigger this test if 1922 we have nested at least three sections deep as normal ELF binaries 1923 can expect to recurse at least once. 1924 1925 FIXME: It would be better if this array was attached to the bfd, 1926 rather than being held in a static pointer. */ 1927 1928 if (sections_being_created_abfd != abfd) 1929 sections_being_created = NULL; 1930 if (sections_being_created == NULL) 1931 { 1932 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */ 1933 sections_being_created = (bfd_boolean *) 1934 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean)); 1935 sections_being_created_abfd = abfd; 1936 } 1937 if (sections_being_created [shindex]) 1938 { 1939 (*_bfd_error_handler) 1940 (_("%B: warning: loop in section dependencies detected"), abfd); 1941 return FALSE; 1942 } 1943 sections_being_created [shindex] = TRUE; 1944 } 1945 1946 hdr = elf_elfsections (abfd)[shindex]; 1947 ehdr = elf_elfheader (abfd); 1948 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx, 1949 hdr->sh_name); 1950 if (name == NULL) 1951 goto fail; 1952 1953 bed = get_elf_backend_data (abfd); 1954 switch (hdr->sh_type) 1955 { 1956 case SHT_NULL: 1957 /* Inactive section. Throw it away. */ 1958 goto success; 1959 1960 case SHT_PROGBITS: /* Normal section with contents. */ 1961 case SHT_NOBITS: /* .bss section. */ 1962 case SHT_HASH: /* .hash section. */ 1963 case SHT_NOTE: /* .note section. */ 1964 case SHT_INIT_ARRAY: /* .init_array section. */ 1965 case SHT_FINI_ARRAY: /* .fini_array section. */ 1966 case SHT_PREINIT_ARRAY: /* .preinit_array section. */ 1967 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */ 1968 case SHT_GNU_HASH: /* .gnu.hash section. */ 1969 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 1970 goto success; 1971 1972 case SHT_DYNAMIC: /* Dynamic linking information. */ 1973 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 1974 goto fail; 1975 1976 if (hdr->sh_link > elf_numsections (abfd)) 1977 { 1978 /* PR 10478: Accept Solaris binaries with a sh_link 1979 field set to SHN_BEFORE or SHN_AFTER. */ 1980 switch (bfd_get_arch (abfd)) 1981 { 1982 case bfd_arch_i386: 1983 case bfd_arch_sparc: 1984 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */ 1985 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */) 1986 break; 1987 /* Otherwise fall through. */ 1988 default: 1989 goto fail; 1990 } 1991 } 1992 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL) 1993 goto fail; 1994 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB) 1995 { 1996 Elf_Internal_Shdr *dynsymhdr; 1997 1998 /* The shared libraries distributed with hpux11 have a bogus 1999 sh_link field for the ".dynamic" section. Find the 2000 string table for the ".dynsym" section instead. */ 2001 if (elf_dynsymtab (abfd) != 0) 2002 { 2003 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)]; 2004 hdr->sh_link = dynsymhdr->sh_link; 2005 } 2006 else 2007 { 2008 unsigned int i, num_sec; 2009 2010 num_sec = elf_numsections (abfd); 2011 for (i = 1; i < num_sec; i++) 2012 { 2013 dynsymhdr = elf_elfsections (abfd)[i]; 2014 if (dynsymhdr->sh_type == SHT_DYNSYM) 2015 { 2016 hdr->sh_link = dynsymhdr->sh_link; 2017 break; 2018 } 2019 } 2020 } 2021 } 2022 goto success; 2023 2024 case SHT_SYMTAB: /* A symbol table. */ 2025 if (elf_onesymtab (abfd) == shindex) 2026 goto success; 2027 2028 if (hdr->sh_entsize != bed->s->sizeof_sym) 2029 goto fail; 2030 2031 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size) 2032 { 2033 if (hdr->sh_size != 0) 2034 goto fail; 2035 /* Some assemblers erroneously set sh_info to one with a 2036 zero sh_size. ld sees this as a global symbol count 2037 of (unsigned) -1. Fix it here. */ 2038 hdr->sh_info = 0; 2039 goto success; 2040 } 2041 2042 /* PR 18854: A binary might contain more than one symbol table. 2043 Unusual, but possible. Warn, but continue. */ 2044 if (elf_onesymtab (abfd) != 0) 2045 { 2046 (*_bfd_error_handler) 2047 (_("%B: warning: multiple symbol tables detected - ignoring the table in section %u"), 2048 abfd, shindex); 2049 goto success; 2050 } 2051 elf_onesymtab (abfd) = shindex; 2052 elf_symtab_hdr (abfd) = *hdr; 2053 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd); 2054 abfd->flags |= HAS_SYMS; 2055 2056 /* Sometimes a shared object will map in the symbol table. If 2057 SHF_ALLOC is set, and this is a shared object, then we also 2058 treat this section as a BFD section. We can not base the 2059 decision purely on SHF_ALLOC, because that flag is sometimes 2060 set in a relocatable object file, which would confuse the 2061 linker. */ 2062 if ((hdr->sh_flags & SHF_ALLOC) != 0 2063 && (abfd->flags & DYNAMIC) != 0 2064 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name, 2065 shindex)) 2066 goto fail; 2067 2068 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we 2069 can't read symbols without that section loaded as well. It 2070 is most likely specified by the next section header. */ 2071 { 2072 elf_section_list * entry; 2073 unsigned int i, num_sec; 2074 2075 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next) 2076 if (entry->hdr.sh_link == shindex) 2077 goto success; 2078 2079 num_sec = elf_numsections (abfd); 2080 for (i = shindex + 1; i < num_sec; i++) 2081 { 2082 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; 2083 2084 if (hdr2->sh_type == SHT_SYMTAB_SHNDX 2085 && hdr2->sh_link == shindex) 2086 break; 2087 } 2088 2089 if (i == num_sec) 2090 for (i = 1; i < shindex; i++) 2091 { 2092 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; 2093 2094 if (hdr2->sh_type == SHT_SYMTAB_SHNDX 2095 && hdr2->sh_link == shindex) 2096 break; 2097 } 2098 2099 if (i != shindex) 2100 ret = bfd_section_from_shdr (abfd, i); 2101 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */ 2102 goto success; 2103 } 2104 2105 case SHT_DYNSYM: /* A dynamic symbol table. */ 2106 if (elf_dynsymtab (abfd) == shindex) 2107 goto success; 2108 2109 if (hdr->sh_entsize != bed->s->sizeof_sym) 2110 goto fail; 2111 2112 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size) 2113 { 2114 if (hdr->sh_size != 0) 2115 goto fail; 2116 2117 /* Some linkers erroneously set sh_info to one with a 2118 zero sh_size. ld sees this as a global symbol count 2119 of (unsigned) -1. Fix it here. */ 2120 hdr->sh_info = 0; 2121 goto success; 2122 } 2123 2124 /* PR 18854: A binary might contain more than one dynamic symbol table. 2125 Unusual, but possible. Warn, but continue. */ 2126 if (elf_dynsymtab (abfd) != 0) 2127 { 2128 (*_bfd_error_handler) 2129 (_("%B: warning: multiple dynamic symbol tables detected - ignoring the table in section %u"), 2130 abfd, shindex); 2131 goto success; 2132 } 2133 elf_dynsymtab (abfd) = shindex; 2134 elf_tdata (abfd)->dynsymtab_hdr = *hdr; 2135 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr; 2136 abfd->flags |= HAS_SYMS; 2137 2138 /* Besides being a symbol table, we also treat this as a regular 2139 section, so that objcopy can handle it. */ 2140 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 2141 goto success; 2142 2143 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */ 2144 { 2145 elf_section_list * entry; 2146 2147 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next) 2148 if (entry->ndx == shindex) 2149 goto success; 2150 2151 entry = bfd_alloc (abfd, sizeof * entry); 2152 if (entry == NULL) 2153 goto fail; 2154 entry->ndx = shindex; 2155 entry->hdr = * hdr; 2156 entry->next = elf_symtab_shndx_list (abfd); 2157 elf_symtab_shndx_list (abfd) = entry; 2158 elf_elfsections (abfd)[shindex] = & entry->hdr; 2159 goto success; 2160 } 2161 2162 case SHT_STRTAB: /* A string table. */ 2163 if (hdr->bfd_section != NULL) 2164 goto success; 2165 2166 if (ehdr->e_shstrndx == shindex) 2167 { 2168 elf_tdata (abfd)->shstrtab_hdr = *hdr; 2169 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr; 2170 goto success; 2171 } 2172 2173 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex) 2174 { 2175 symtab_strtab: 2176 elf_tdata (abfd)->strtab_hdr = *hdr; 2177 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr; 2178 goto success; 2179 } 2180 2181 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex) 2182 { 2183 dynsymtab_strtab: 2184 elf_tdata (abfd)->dynstrtab_hdr = *hdr; 2185 hdr = &elf_tdata (abfd)->dynstrtab_hdr; 2186 elf_elfsections (abfd)[shindex] = hdr; 2187 /* We also treat this as a regular section, so that objcopy 2188 can handle it. */ 2189 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, 2190 shindex); 2191 goto success; 2192 } 2193 2194 /* If the string table isn't one of the above, then treat it as a 2195 regular section. We need to scan all the headers to be sure, 2196 just in case this strtab section appeared before the above. */ 2197 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0) 2198 { 2199 unsigned int i, num_sec; 2200 2201 num_sec = elf_numsections (abfd); 2202 for (i = 1; i < num_sec; i++) 2203 { 2204 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; 2205 if (hdr2->sh_link == shindex) 2206 { 2207 /* Prevent endless recursion on broken objects. */ 2208 if (i == shindex) 2209 goto fail; 2210 if (! bfd_section_from_shdr (abfd, i)) 2211 goto fail; 2212 if (elf_onesymtab (abfd) == i) 2213 goto symtab_strtab; 2214 if (elf_dynsymtab (abfd) == i) 2215 goto dynsymtab_strtab; 2216 } 2217 } 2218 } 2219 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 2220 goto success; 2221 2222 case SHT_REL: 2223 case SHT_RELA: 2224 /* *These* do a lot of work -- but build no sections! */ 2225 { 2226 asection *target_sect; 2227 Elf_Internal_Shdr *hdr2, **p_hdr; 2228 unsigned int num_sec = elf_numsections (abfd); 2229 struct bfd_elf_section_data *esdt; 2230 2231 if (hdr->sh_entsize 2232 != (bfd_size_type) (hdr->sh_type == SHT_REL 2233 ? bed->s->sizeof_rel : bed->s->sizeof_rela)) 2234 goto fail; 2235 2236 /* Check for a bogus link to avoid crashing. */ 2237 if (hdr->sh_link >= num_sec) 2238 { 2239 ((*_bfd_error_handler) 2240 (_("%B: invalid link %lu for reloc section %s (index %u)"), 2241 abfd, hdr->sh_link, name, shindex)); 2242 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, 2243 shindex); 2244 goto success; 2245 } 2246 2247 /* For some incomprehensible reason Oracle distributes 2248 libraries for Solaris in which some of the objects have 2249 bogus sh_link fields. It would be nice if we could just 2250 reject them, but, unfortunately, some people need to use 2251 them. We scan through the section headers; if we find only 2252 one suitable symbol table, we clobber the sh_link to point 2253 to it. I hope this doesn't break anything. 2254 2255 Don't do it on executable nor shared library. */ 2256 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 2257 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB 2258 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM) 2259 { 2260 unsigned int scan; 2261 int found; 2262 2263 found = 0; 2264 for (scan = 1; scan < num_sec; scan++) 2265 { 2266 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB 2267 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM) 2268 { 2269 if (found != 0) 2270 { 2271 found = 0; 2272 break; 2273 } 2274 found = scan; 2275 } 2276 } 2277 if (found != 0) 2278 hdr->sh_link = found; 2279 } 2280 2281 /* Get the symbol table. */ 2282 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB 2283 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM) 2284 && ! bfd_section_from_shdr (abfd, hdr->sh_link)) 2285 goto fail; 2286 2287 /* If this reloc section does not use the main symbol table we 2288 don't treat it as a reloc section. BFD can't adequately 2289 represent such a section, so at least for now, we don't 2290 try. We just present it as a normal section. We also 2291 can't use it as a reloc section if it points to the null 2292 section, an invalid section, another reloc section, or its 2293 sh_link points to the null section. */ 2294 if (hdr->sh_link != elf_onesymtab (abfd) 2295 || hdr->sh_link == SHN_UNDEF 2296 || hdr->sh_info == SHN_UNDEF 2297 || hdr->sh_info >= num_sec 2298 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL 2299 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA) 2300 { 2301 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, 2302 shindex); 2303 goto success; 2304 } 2305 2306 if (! bfd_section_from_shdr (abfd, hdr->sh_info)) 2307 goto fail; 2308 2309 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info); 2310 if (target_sect == NULL) 2311 goto fail; 2312 2313 esdt = elf_section_data (target_sect); 2314 if (hdr->sh_type == SHT_RELA) 2315 p_hdr = &esdt->rela.hdr; 2316 else 2317 p_hdr = &esdt->rel.hdr; 2318 2319 /* PR 17512: file: 0b4f81b7. */ 2320 if (*p_hdr != NULL) 2321 goto fail; 2322 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2)); 2323 if (hdr2 == NULL) 2324 goto fail; 2325 *hdr2 = *hdr; 2326 *p_hdr = hdr2; 2327 elf_elfsections (abfd)[shindex] = hdr2; 2328 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr); 2329 target_sect->flags |= SEC_RELOC; 2330 target_sect->relocation = NULL; 2331 target_sect->rel_filepos = hdr->sh_offset; 2332 /* In the section to which the relocations apply, mark whether 2333 its relocations are of the REL or RELA variety. */ 2334 if (hdr->sh_size != 0) 2335 { 2336 if (hdr->sh_type == SHT_RELA) 2337 target_sect->use_rela_p = 1; 2338 } 2339 abfd->flags |= HAS_RELOC; 2340 goto success; 2341 } 2342 2343 case SHT_GNU_verdef: 2344 elf_dynverdef (abfd) = shindex; 2345 elf_tdata (abfd)->dynverdef_hdr = *hdr; 2346 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 2347 goto success; 2348 2349 case SHT_GNU_versym: 2350 if (hdr->sh_entsize != sizeof (Elf_External_Versym)) 2351 goto fail; 2352 2353 elf_dynversym (abfd) = shindex; 2354 elf_tdata (abfd)->dynversym_hdr = *hdr; 2355 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 2356 goto success; 2357 2358 case SHT_GNU_verneed: 2359 elf_dynverref (abfd) = shindex; 2360 elf_tdata (abfd)->dynverref_hdr = *hdr; 2361 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 2362 goto success; 2363 2364 case SHT_SHLIB: 2365 goto success; 2366 2367 case SHT_GROUP: 2368 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE)) 2369 goto fail; 2370 2371 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 2372 goto fail; 2373 2374 if (hdr->contents != NULL) 2375 { 2376 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents; 2377 unsigned int n_elt = hdr->sh_size / sizeof (* idx); 2378 asection *s; 2379 2380 if (n_elt == 0) 2381 goto fail; 2382 if (idx->flags & GRP_COMDAT) 2383 hdr->bfd_section->flags 2384 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; 2385 2386 /* We try to keep the same section order as it comes in. */ 2387 idx += n_elt; 2388 2389 while (--n_elt != 0) 2390 { 2391 --idx; 2392 2393 if (idx->shdr != NULL 2394 && (s = idx->shdr->bfd_section) != NULL 2395 && elf_next_in_group (s) != NULL) 2396 { 2397 elf_next_in_group (hdr->bfd_section) = s; 2398 break; 2399 } 2400 } 2401 } 2402 goto success; 2403 2404 default: 2405 /* Possibly an attributes section. */ 2406 if (hdr->sh_type == SHT_GNU_ATTRIBUTES 2407 || hdr->sh_type == bed->obj_attrs_section_type) 2408 { 2409 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 2410 goto fail; 2411 _bfd_elf_parse_attributes (abfd, hdr); 2412 goto success; 2413 } 2414 2415 /* Check for any processor-specific section types. */ 2416 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex)) 2417 goto success; 2418 2419 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER) 2420 { 2421 if ((hdr->sh_flags & SHF_ALLOC) != 0) 2422 /* FIXME: How to properly handle allocated section reserved 2423 for applications? */ 2424 (*_bfd_error_handler) 2425 (_("%B: don't know how to handle allocated, application " 2426 "specific section `%s' [0x%8x]"), 2427 abfd, name, hdr->sh_type); 2428 else 2429 { 2430 /* Allow sections reserved for applications. */ 2431 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, 2432 shindex); 2433 goto success; 2434 } 2435 } 2436 else if (hdr->sh_type >= SHT_LOPROC 2437 && hdr->sh_type <= SHT_HIPROC) 2438 /* FIXME: We should handle this section. */ 2439 (*_bfd_error_handler) 2440 (_("%B: don't know how to handle processor specific section " 2441 "`%s' [0x%8x]"), 2442 abfd, name, hdr->sh_type); 2443 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS) 2444 { 2445 /* Unrecognised OS-specific sections. */ 2446 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0) 2447 /* SHF_OS_NONCONFORMING indicates that special knowledge is 2448 required to correctly process the section and the file should 2449 be rejected with an error message. */ 2450 (*_bfd_error_handler) 2451 (_("%B: don't know how to handle OS specific section " 2452 "`%s' [0x%8x]"), 2453 abfd, name, hdr->sh_type); 2454 else 2455 { 2456 /* Otherwise it should be processed. */ 2457 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); 2458 goto success; 2459 } 2460 } 2461 else 2462 /* FIXME: We should handle this section. */ 2463 (*_bfd_error_handler) 2464 (_("%B: don't know how to handle section `%s' [0x%8x]"), 2465 abfd, name, hdr->sh_type); 2466 2467 goto fail; 2468 } 2469 2470 fail: 2471 ret = FALSE; 2472 success: 2473 if (sections_being_created && sections_being_created_abfd == abfd) 2474 sections_being_created [shindex] = FALSE; 2475 if (-- nesting == 0) 2476 { 2477 sections_being_created = NULL; 2478 sections_being_created_abfd = abfd; 2479 } 2480 return ret; 2481 } 2482 2483 /* Return the local symbol specified by ABFD, R_SYMNDX. */ 2484 2485 Elf_Internal_Sym * 2486 bfd_sym_from_r_symndx (struct sym_cache *cache, 2487 bfd *abfd, 2488 unsigned long r_symndx) 2489 { 2490 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE; 2491 2492 if (cache->abfd != abfd || cache->indx[ent] != r_symndx) 2493 { 2494 Elf_Internal_Shdr *symtab_hdr; 2495 unsigned char esym[sizeof (Elf64_External_Sym)]; 2496 Elf_External_Sym_Shndx eshndx; 2497 2498 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2499 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx, 2500 &cache->sym[ent], esym, &eshndx) == NULL) 2501 return NULL; 2502 2503 if (cache->abfd != abfd) 2504 { 2505 memset (cache->indx, -1, sizeof (cache->indx)); 2506 cache->abfd = abfd; 2507 } 2508 cache->indx[ent] = r_symndx; 2509 } 2510 2511 return &cache->sym[ent]; 2512 } 2513 2514 /* Given an ELF section number, retrieve the corresponding BFD 2515 section. */ 2516 2517 asection * 2518 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index) 2519 { 2520 if (sec_index >= elf_numsections (abfd)) 2521 return NULL; 2522 return elf_elfsections (abfd)[sec_index]->bfd_section; 2523 } 2524 2525 static const struct bfd_elf_special_section special_sections_b[] = 2526 { 2527 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, 2528 { NULL, 0, 0, 0, 0 } 2529 }; 2530 2531 static const struct bfd_elf_special_section special_sections_c[] = 2532 { 2533 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 }, 2534 { NULL, 0, 0, 0, 0 } 2535 }; 2536 2537 static const struct bfd_elf_special_section special_sections_d[] = 2538 { 2539 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, 2540 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, 2541 /* There are more DWARF sections than these, but they needn't be added here 2542 unless you have to cope with broken compilers that don't emit section 2543 attributes or you want to help the user writing assembler. */ 2544 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 }, 2545 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 }, 2546 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 }, 2547 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 }, 2548 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 }, 2549 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC }, 2550 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC }, 2551 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC }, 2552 { NULL, 0, 0, 0, 0 } 2553 }; 2554 2555 static const struct bfd_elf_special_section special_sections_f[] = 2556 { 2557 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 2558 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE }, 2559 { NULL, 0, 0, 0, 0 } 2560 }; 2561 2562 static const struct bfd_elf_special_section special_sections_g[] = 2563 { 2564 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, 2565 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE }, 2566 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, 2567 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 }, 2568 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 }, 2569 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 }, 2570 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC }, 2571 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC }, 2572 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC }, 2573 { NULL, 0, 0, 0, 0 } 2574 }; 2575 2576 static const struct bfd_elf_special_section special_sections_h[] = 2577 { 2578 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC }, 2579 { NULL, 0, 0, 0, 0 } 2580 }; 2581 2582 static const struct bfd_elf_special_section special_sections_i[] = 2583 { 2584 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 2585 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE }, 2586 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 }, 2587 { NULL, 0, 0, 0, 0 } 2588 }; 2589 2590 static const struct bfd_elf_special_section special_sections_l[] = 2591 { 2592 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 }, 2593 { NULL, 0, 0, 0, 0 } 2594 }; 2595 2596 static const struct bfd_elf_special_section special_sections_n[] = 2597 { 2598 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 }, 2599 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 }, 2600 { NULL, 0, 0, 0, 0 } 2601 }; 2602 2603 static const struct bfd_elf_special_section special_sections_p[] = 2604 { 2605 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE }, 2606 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 2607 { NULL, 0, 0, 0, 0 } 2608 }; 2609 2610 static const struct bfd_elf_special_section special_sections_r[] = 2611 { 2612 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC }, 2613 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC }, 2614 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 }, 2615 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 }, 2616 { NULL, 0, 0, 0, 0 } 2617 }; 2618 2619 static const struct bfd_elf_special_section special_sections_s[] = 2620 { 2621 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 }, 2622 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 }, 2623 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 }, 2624 /* See struct bfd_elf_special_section declaration for the semantics of 2625 this special case where .prefix_length != strlen (.prefix). */ 2626 { ".stabstr", 5, 3, SHT_STRTAB, 0 }, 2627 { NULL, 0, 0, 0, 0 } 2628 }; 2629 2630 static const struct bfd_elf_special_section special_sections_t[] = 2631 { 2632 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, 2633 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS }, 2634 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS }, 2635 { NULL, 0, 0, 0, 0 } 2636 }; 2637 2638 static const struct bfd_elf_special_section special_sections_z[] = 2639 { 2640 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 }, 2641 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 }, 2642 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 }, 2643 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 }, 2644 { NULL, 0, 0, 0, 0 } 2645 }; 2646 2647 static const struct bfd_elf_special_section * const special_sections[] = 2648 { 2649 special_sections_b, /* 'b' */ 2650 special_sections_c, /* 'c' */ 2651 special_sections_d, /* 'd' */ 2652 NULL, /* 'e' */ 2653 special_sections_f, /* 'f' */ 2654 special_sections_g, /* 'g' */ 2655 special_sections_h, /* 'h' */ 2656 special_sections_i, /* 'i' */ 2657 NULL, /* 'j' */ 2658 NULL, /* 'k' */ 2659 special_sections_l, /* 'l' */ 2660 NULL, /* 'm' */ 2661 special_sections_n, /* 'n' */ 2662 NULL, /* 'o' */ 2663 special_sections_p, /* 'p' */ 2664 NULL, /* 'q' */ 2665 special_sections_r, /* 'r' */ 2666 special_sections_s, /* 's' */ 2667 special_sections_t, /* 't' */ 2668 NULL, /* 'u' */ 2669 NULL, /* 'v' */ 2670 NULL, /* 'w' */ 2671 NULL, /* 'x' */ 2672 NULL, /* 'y' */ 2673 special_sections_z /* 'z' */ 2674 }; 2675 2676 const struct bfd_elf_special_section * 2677 _bfd_elf_get_special_section (const char *name, 2678 const struct bfd_elf_special_section *spec, 2679 unsigned int rela) 2680 { 2681 int i; 2682 int len; 2683 2684 len = strlen (name); 2685 2686 for (i = 0; spec[i].prefix != NULL; i++) 2687 { 2688 int suffix_len; 2689 int prefix_len = spec[i].prefix_length; 2690 2691 if (len < prefix_len) 2692 continue; 2693 if (memcmp (name, spec[i].prefix, prefix_len) != 0) 2694 continue; 2695 2696 suffix_len = spec[i].suffix_length; 2697 if (suffix_len <= 0) 2698 { 2699 if (name[prefix_len] != 0) 2700 { 2701 if (suffix_len == 0) 2702 continue; 2703 if (name[prefix_len] != '.' 2704 && (suffix_len == -2 2705 || (rela && spec[i].type == SHT_REL))) 2706 continue; 2707 } 2708 } 2709 else 2710 { 2711 if (len < prefix_len + suffix_len) 2712 continue; 2713 if (memcmp (name + len - suffix_len, 2714 spec[i].prefix + prefix_len, 2715 suffix_len) != 0) 2716 continue; 2717 } 2718 return &spec[i]; 2719 } 2720 2721 return NULL; 2722 } 2723 2724 const struct bfd_elf_special_section * 2725 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec) 2726 { 2727 int i; 2728 const struct bfd_elf_special_section *spec; 2729 const struct elf_backend_data *bed; 2730 2731 /* See if this is one of the special sections. */ 2732 if (sec->name == NULL) 2733 return NULL; 2734 2735 bed = get_elf_backend_data (abfd); 2736 spec = bed->special_sections; 2737 if (spec) 2738 { 2739 spec = _bfd_elf_get_special_section (sec->name, 2740 bed->special_sections, 2741 sec->use_rela_p); 2742 if (spec != NULL) 2743 return spec; 2744 } 2745 2746 if (sec->name[0] != '.') 2747 return NULL; 2748 2749 i = sec->name[1] - 'b'; 2750 if (i < 0 || i > 'z' - 'b') 2751 return NULL; 2752 2753 spec = special_sections[i]; 2754 2755 if (spec == NULL) 2756 return NULL; 2757 2758 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p); 2759 } 2760 2761 bfd_boolean 2762 _bfd_elf_new_section_hook (bfd *abfd, asection *sec) 2763 { 2764 struct bfd_elf_section_data *sdata; 2765 const struct elf_backend_data *bed; 2766 const struct bfd_elf_special_section *ssect; 2767 2768 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd; 2769 if (sdata == NULL) 2770 { 2771 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd, 2772 sizeof (*sdata)); 2773 if (sdata == NULL) 2774 return FALSE; 2775 sec->used_by_bfd = sdata; 2776 } 2777 2778 /* Indicate whether or not this section should use RELA relocations. */ 2779 bed = get_elf_backend_data (abfd); 2780 sec->use_rela_p = bed->default_use_rela_p; 2781 2782 /* When we read a file, we don't need to set ELF section type and 2783 flags. They will be overridden in _bfd_elf_make_section_from_shdr 2784 anyway. We will set ELF section type and flags for all linker 2785 created sections. If user specifies BFD section flags, we will 2786 set ELF section type and flags based on BFD section flags in 2787 elf_fake_sections. Special handling for .init_array/.fini_array 2788 output sections since they may contain .ctors/.dtors input 2789 sections. We don't want _bfd_elf_init_private_section_data to 2790 copy ELF section type from .ctors/.dtors input sections. */ 2791 if (abfd->direction != read_direction 2792 || (sec->flags & SEC_LINKER_CREATED) != 0) 2793 { 2794 ssect = (*bed->get_sec_type_attr) (abfd, sec); 2795 if (ssect != NULL 2796 && (!sec->flags 2797 || (sec->flags & SEC_LINKER_CREATED) != 0 2798 || ssect->type == SHT_INIT_ARRAY 2799 || ssect->type == SHT_FINI_ARRAY)) 2800 { 2801 elf_section_type (sec) = ssect->type; 2802 elf_section_flags (sec) = ssect->attr; 2803 } 2804 } 2805 2806 return _bfd_generic_new_section_hook (abfd, sec); 2807 } 2808 2809 /* Create a new bfd section from an ELF program header. 2810 2811 Since program segments have no names, we generate a synthetic name 2812 of the form segment<NUM>, where NUM is generally the index in the 2813 program header table. For segments that are split (see below) we 2814 generate the names segment<NUM>a and segment<NUM>b. 2815 2816 Note that some program segments may have a file size that is different than 2817 (less than) the memory size. All this means is that at execution the 2818 system must allocate the amount of memory specified by the memory size, 2819 but only initialize it with the first "file size" bytes read from the 2820 file. This would occur for example, with program segments consisting 2821 of combined data+bss. 2822 2823 To handle the above situation, this routine generates TWO bfd sections 2824 for the single program segment. The first has the length specified by 2825 the file size of the segment, and the second has the length specified 2826 by the difference between the two sizes. In effect, the segment is split 2827 into its initialized and uninitialized parts. 2828 2829 */ 2830 2831 bfd_boolean 2832 _bfd_elf_make_section_from_phdr (bfd *abfd, 2833 Elf_Internal_Phdr *hdr, 2834 int hdr_index, 2835 const char *type_name) 2836 { 2837 asection *newsect; 2838 char *name; 2839 char namebuf[64]; 2840 size_t len; 2841 int split; 2842 2843 split = ((hdr->p_memsz > 0) 2844 && (hdr->p_filesz > 0) 2845 && (hdr->p_memsz > hdr->p_filesz)); 2846 2847 if (hdr->p_filesz > 0) 2848 { 2849 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : ""); 2850 len = strlen (namebuf) + 1; 2851 name = (char *) bfd_alloc (abfd, len); 2852 if (!name) 2853 return FALSE; 2854 memcpy (name, namebuf, len); 2855 newsect = bfd_make_section (abfd, name); 2856 if (newsect == NULL) 2857 return FALSE; 2858 newsect->vma = hdr->p_vaddr; 2859 newsect->lma = hdr->p_paddr; 2860 newsect->size = hdr->p_filesz; 2861 newsect->filepos = hdr->p_offset; 2862 newsect->flags |= SEC_HAS_CONTENTS; 2863 newsect->alignment_power = bfd_log2 (hdr->p_align); 2864 if (hdr->p_type == PT_LOAD) 2865 { 2866 newsect->flags |= SEC_ALLOC; 2867 newsect->flags |= SEC_LOAD; 2868 if (hdr->p_flags & PF_X) 2869 { 2870 /* FIXME: all we known is that it has execute PERMISSION, 2871 may be data. */ 2872 newsect->flags |= SEC_CODE; 2873 } 2874 } 2875 if (!(hdr->p_flags & PF_W)) 2876 { 2877 newsect->flags |= SEC_READONLY; 2878 } 2879 } 2880 2881 if (hdr->p_memsz > hdr->p_filesz) 2882 { 2883 bfd_vma align; 2884 2885 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : ""); 2886 len = strlen (namebuf) + 1; 2887 name = (char *) bfd_alloc (abfd, len); 2888 if (!name) 2889 return FALSE; 2890 memcpy (name, namebuf, len); 2891 newsect = bfd_make_section (abfd, name); 2892 if (newsect == NULL) 2893 return FALSE; 2894 newsect->vma = hdr->p_vaddr + hdr->p_filesz; 2895 newsect->lma = hdr->p_paddr + hdr->p_filesz; 2896 newsect->size = hdr->p_memsz - hdr->p_filesz; 2897 newsect->filepos = hdr->p_offset + hdr->p_filesz; 2898 align = newsect->vma & -newsect->vma; 2899 if (align == 0 || align > hdr->p_align) 2900 align = hdr->p_align; 2901 newsect->alignment_power = bfd_log2 (align); 2902 if (hdr->p_type == PT_LOAD) 2903 { 2904 /* Hack for gdb. Segments that have not been modified do 2905 not have their contents written to a core file, on the 2906 assumption that a debugger can find the contents in the 2907 executable. We flag this case by setting the fake 2908 section size to zero. Note that "real" bss sections will 2909 always have their contents dumped to the core file. */ 2910 if (bfd_get_format (abfd) == bfd_core) 2911 newsect->size = 0; 2912 newsect->flags |= SEC_ALLOC; 2913 if (hdr->p_flags & PF_X) 2914 newsect->flags |= SEC_CODE; 2915 } 2916 if (!(hdr->p_flags & PF_W)) 2917 newsect->flags |= SEC_READONLY; 2918 } 2919 2920 return TRUE; 2921 } 2922 2923 bfd_boolean 2924 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index) 2925 { 2926 const struct elf_backend_data *bed; 2927 2928 switch (hdr->p_type) 2929 { 2930 case PT_NULL: 2931 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null"); 2932 2933 case PT_LOAD: 2934 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"); 2935 2936 case PT_DYNAMIC: 2937 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic"); 2938 2939 case PT_INTERP: 2940 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp"); 2941 2942 case PT_NOTE: 2943 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note")) 2944 return FALSE; 2945 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz)) 2946 return FALSE; 2947 return TRUE; 2948 2949 case PT_SHLIB: 2950 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib"); 2951 2952 case PT_PHDR: 2953 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr"); 2954 2955 case PT_GNU_EH_FRAME: 2956 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, 2957 "eh_frame_hdr"); 2958 2959 case PT_GNU_STACK: 2960 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack"); 2961 2962 case PT_GNU_RELRO: 2963 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro"); 2964 2965 default: 2966 /* Check for any processor-specific program segment types. */ 2967 bed = get_elf_backend_data (abfd); 2968 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc"); 2969 } 2970 } 2971 2972 /* Return the REL_HDR for SEC, assuming there is only a single one, either 2973 REL or RELA. */ 2974 2975 Elf_Internal_Shdr * 2976 _bfd_elf_single_rel_hdr (asection *sec) 2977 { 2978 if (elf_section_data (sec)->rel.hdr) 2979 { 2980 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL); 2981 return elf_section_data (sec)->rel.hdr; 2982 } 2983 else 2984 return elf_section_data (sec)->rela.hdr; 2985 } 2986 2987 static bfd_boolean 2988 _bfd_elf_set_reloc_sh_name (bfd *abfd, 2989 Elf_Internal_Shdr *rel_hdr, 2990 const char *sec_name, 2991 bfd_boolean use_rela_p) 2992 { 2993 char *name = (char *) bfd_alloc (abfd, 2994 sizeof ".rela" + strlen (sec_name)); 2995 if (name == NULL) 2996 return FALSE; 2997 2998 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name); 2999 rel_hdr->sh_name = 3000 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name, 3001 FALSE); 3002 if (rel_hdr->sh_name == (unsigned int) -1) 3003 return FALSE; 3004 3005 return TRUE; 3006 } 3007 3008 /* Allocate and initialize a section-header for a new reloc section, 3009 containing relocations against ASECT. It is stored in RELDATA. If 3010 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL 3011 relocations. */ 3012 3013 static bfd_boolean 3014 _bfd_elf_init_reloc_shdr (bfd *abfd, 3015 struct bfd_elf_section_reloc_data *reldata, 3016 const char *sec_name, 3017 bfd_boolean use_rela_p, 3018 bfd_boolean delay_st_name_p) 3019 { 3020 Elf_Internal_Shdr *rel_hdr; 3021 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 3022 3023 BFD_ASSERT (reldata->hdr == NULL); 3024 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr)); 3025 reldata->hdr = rel_hdr; 3026 3027 if (delay_st_name_p) 3028 rel_hdr->sh_name = (unsigned int) -1; 3029 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name, 3030 use_rela_p)) 3031 return FALSE; 3032 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL; 3033 rel_hdr->sh_entsize = (use_rela_p 3034 ? bed->s->sizeof_rela 3035 : bed->s->sizeof_rel); 3036 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; 3037 rel_hdr->sh_flags = 0; 3038 rel_hdr->sh_addr = 0; 3039 rel_hdr->sh_size = 0; 3040 rel_hdr->sh_offset = 0; 3041 3042 return TRUE; 3043 } 3044 3045 /* Return the default section type based on the passed in section flags. */ 3046 3047 int 3048 bfd_elf_get_default_section_type (flagword flags) 3049 { 3050 if ((flags & SEC_ALLOC) != 0 3051 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0) 3052 return SHT_NOBITS; 3053 return SHT_PROGBITS; 3054 } 3055 3056 struct fake_section_arg 3057 { 3058 struct bfd_link_info *link_info; 3059 bfd_boolean failed; 3060 }; 3061 3062 /* Set up an ELF internal section header for a section. */ 3063 3064 static void 3065 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg) 3066 { 3067 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg; 3068 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 3069 struct bfd_elf_section_data *esd = elf_section_data (asect); 3070 Elf_Internal_Shdr *this_hdr; 3071 unsigned int sh_type; 3072 const char *name = asect->name; 3073 bfd_boolean delay_st_name_p = FALSE; 3074 3075 if (arg->failed) 3076 { 3077 /* We already failed; just get out of the bfd_map_over_sections 3078 loop. */ 3079 return; 3080 } 3081 3082 this_hdr = &esd->this_hdr; 3083 3084 if (arg->link_info) 3085 { 3086 /* ld: compress DWARF debug sections with names: .debug_*. */ 3087 if ((arg->link_info->compress_debug & COMPRESS_DEBUG) 3088 && (asect->flags & SEC_DEBUGGING) 3089 && name[1] == 'd' 3090 && name[6] == '_') 3091 { 3092 /* Set SEC_ELF_COMPRESS to indicate this section should be 3093 compressed. */ 3094 asect->flags |= SEC_ELF_COMPRESS; 3095 3096 /* If this section will be compressed, delay adding setion 3097 name to section name section after it is compressed in 3098 _bfd_elf_assign_file_positions_for_non_load. */ 3099 delay_st_name_p = TRUE; 3100 } 3101 } 3102 else if ((asect->flags & SEC_ELF_RENAME)) 3103 { 3104 /* objcopy: rename output DWARF debug section. */ 3105 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI))) 3106 { 3107 /* When we decompress or compress with SHF_COMPRESSED, 3108 convert section name from .zdebug_* to .debug_* if 3109 needed. */ 3110 if (name[1] == 'z') 3111 { 3112 char *new_name = convert_zdebug_to_debug (abfd, name); 3113 if (new_name == NULL) 3114 { 3115 arg->failed = TRUE; 3116 return; 3117 } 3118 name = new_name; 3119 } 3120 } 3121 else if (asect->compress_status == COMPRESS_SECTION_DONE) 3122 { 3123 /* PR binutils/18087: Compression does not always make a 3124 section smaller. So only rename the section when 3125 compression has actually taken place. If input section 3126 name is .zdebug_*, we should never compress it again. */ 3127 char *new_name = convert_debug_to_zdebug (abfd, name); 3128 if (new_name == NULL) 3129 { 3130 arg->failed = TRUE; 3131 return; 3132 } 3133 BFD_ASSERT (name[1] != 'z'); 3134 name = new_name; 3135 } 3136 } 3137 3138 if (delay_st_name_p) 3139 this_hdr->sh_name = (unsigned int) -1; 3140 else 3141 { 3142 this_hdr->sh_name 3143 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), 3144 name, FALSE); 3145 if (this_hdr->sh_name == (unsigned int) -1) 3146 { 3147 arg->failed = TRUE; 3148 return; 3149 } 3150 } 3151 3152 /* Don't clear sh_flags. Assembler may set additional bits. */ 3153 3154 if ((asect->flags & SEC_ALLOC) != 0 3155 || asect->user_set_vma) 3156 this_hdr->sh_addr = asect->vma; 3157 else 3158 this_hdr->sh_addr = 0; 3159 3160 this_hdr->sh_offset = 0; 3161 this_hdr->sh_size = asect->size; 3162 this_hdr->sh_link = 0; 3163 /* PR 17512: file: 0eb809fe, 8b0535ee. */ 3164 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1) 3165 { 3166 (*_bfd_error_handler) 3167 (_("%B: error: Alignment power %d of section `%A' is too big"), 3168 abfd, asect, asect->alignment_power); 3169 arg->failed = TRUE; 3170 return; 3171 } 3172 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power; 3173 /* The sh_entsize and sh_info fields may have been set already by 3174 copy_private_section_data. */ 3175 3176 this_hdr->bfd_section = asect; 3177 this_hdr->contents = NULL; 3178 3179 /* If the section type is unspecified, we set it based on 3180 asect->flags. */ 3181 if ((asect->flags & SEC_GROUP) != 0) 3182 sh_type = SHT_GROUP; 3183 else 3184 sh_type = bfd_elf_get_default_section_type (asect->flags); 3185 3186 if (this_hdr->sh_type == SHT_NULL) 3187 this_hdr->sh_type = sh_type; 3188 else if (this_hdr->sh_type == SHT_NOBITS 3189 && sh_type == SHT_PROGBITS 3190 && (asect->flags & SEC_ALLOC) != 0) 3191 { 3192 /* Warn if we are changing a NOBITS section to PROGBITS, but 3193 allow the link to proceed. This can happen when users link 3194 non-bss input sections to bss output sections, or emit data 3195 to a bss output section via a linker script. */ 3196 (*_bfd_error_handler) 3197 (_("warning: section `%A' type changed to PROGBITS"), asect); 3198 this_hdr->sh_type = sh_type; 3199 } 3200 3201 switch (this_hdr->sh_type) 3202 { 3203 default: 3204 break; 3205 3206 case SHT_STRTAB: 3207 case SHT_NOTE: 3208 case SHT_NOBITS: 3209 case SHT_PROGBITS: 3210 break; 3211 3212 case SHT_INIT_ARRAY: 3213 case SHT_FINI_ARRAY: 3214 case SHT_PREINIT_ARRAY: 3215 this_hdr->sh_entsize = bed->s->arch_size / 8; 3216 break; 3217 3218 case SHT_HASH: 3219 this_hdr->sh_entsize = bed->s->sizeof_hash_entry; 3220 break; 3221 3222 case SHT_DYNSYM: 3223 this_hdr->sh_entsize = bed->s->sizeof_sym; 3224 break; 3225 3226 case SHT_DYNAMIC: 3227 this_hdr->sh_entsize = bed->s->sizeof_dyn; 3228 break; 3229 3230 case SHT_RELA: 3231 if (get_elf_backend_data (abfd)->may_use_rela_p) 3232 this_hdr->sh_entsize = bed->s->sizeof_rela; 3233 break; 3234 3235 case SHT_REL: 3236 if (get_elf_backend_data (abfd)->may_use_rel_p) 3237 this_hdr->sh_entsize = bed->s->sizeof_rel; 3238 break; 3239 3240 case SHT_GNU_versym: 3241 this_hdr->sh_entsize = sizeof (Elf_External_Versym); 3242 break; 3243 3244 case SHT_GNU_verdef: 3245 this_hdr->sh_entsize = 0; 3246 /* objcopy or strip will copy over sh_info, but may not set 3247 cverdefs. The linker will set cverdefs, but sh_info will be 3248 zero. */ 3249 if (this_hdr->sh_info == 0) 3250 this_hdr->sh_info = elf_tdata (abfd)->cverdefs; 3251 else 3252 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0 3253 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs); 3254 break; 3255 3256 case SHT_GNU_verneed: 3257 this_hdr->sh_entsize = 0; 3258 /* objcopy or strip will copy over sh_info, but may not set 3259 cverrefs. The linker will set cverrefs, but sh_info will be 3260 zero. */ 3261 if (this_hdr->sh_info == 0) 3262 this_hdr->sh_info = elf_tdata (abfd)->cverrefs; 3263 else 3264 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0 3265 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs); 3266 break; 3267 3268 case SHT_GROUP: 3269 this_hdr->sh_entsize = GRP_ENTRY_SIZE; 3270 break; 3271 3272 case SHT_GNU_HASH: 3273 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4; 3274 break; 3275 } 3276 3277 if ((asect->flags & SEC_ALLOC) != 0) 3278 this_hdr->sh_flags |= SHF_ALLOC; 3279 if ((asect->flags & SEC_READONLY) == 0) 3280 this_hdr->sh_flags |= SHF_WRITE; 3281 if ((asect->flags & SEC_CODE) != 0) 3282 this_hdr->sh_flags |= SHF_EXECINSTR; 3283 if ((asect->flags & SEC_MERGE) != 0) 3284 { 3285 this_hdr->sh_flags |= SHF_MERGE; 3286 this_hdr->sh_entsize = asect->entsize; 3287 } 3288 if ((asect->flags & SEC_STRINGS) != 0) 3289 this_hdr->sh_flags |= SHF_STRINGS; 3290 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL) 3291 this_hdr->sh_flags |= SHF_GROUP; 3292 if ((asect->flags & SEC_THREAD_LOCAL) != 0) 3293 { 3294 this_hdr->sh_flags |= SHF_TLS; 3295 if (asect->size == 0 3296 && (asect->flags & SEC_HAS_CONTENTS) == 0) 3297 { 3298 struct bfd_link_order *o = asect->map_tail.link_order; 3299 3300 this_hdr->sh_size = 0; 3301 if (o != NULL) 3302 { 3303 this_hdr->sh_size = o->offset + o->size; 3304 if (this_hdr->sh_size != 0) 3305 this_hdr->sh_type = SHT_NOBITS; 3306 } 3307 } 3308 } 3309 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE) 3310 this_hdr->sh_flags |= SHF_EXCLUDE; 3311 3312 /* If the section has relocs, set up a section header for the 3313 SHT_REL[A] section. If two relocation sections are required for 3314 this section, it is up to the processor-specific back-end to 3315 create the other. */ 3316 if ((asect->flags & SEC_RELOC) != 0) 3317 { 3318 /* When doing a relocatable link, create both REL and RELA sections if 3319 needed. */ 3320 if (arg->link_info 3321 /* Do the normal setup if we wouldn't create any sections here. */ 3322 && esd->rel.count + esd->rela.count > 0 3323 && (bfd_link_relocatable (arg->link_info) 3324 || arg->link_info->emitrelocations)) 3325 { 3326 if (esd->rel.count && esd->rel.hdr == NULL 3327 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name, FALSE, 3328 delay_st_name_p)) 3329 { 3330 arg->failed = TRUE; 3331 return; 3332 } 3333 if (esd->rela.count && esd->rela.hdr == NULL 3334 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name, TRUE, 3335 delay_st_name_p)) 3336 { 3337 arg->failed = TRUE; 3338 return; 3339 } 3340 } 3341 else if (!_bfd_elf_init_reloc_shdr (abfd, 3342 (asect->use_rela_p 3343 ? &esd->rela : &esd->rel), 3344 name, 3345 asect->use_rela_p, 3346 delay_st_name_p)) 3347 arg->failed = TRUE; 3348 } 3349 3350 /* Check for processor-specific section types. */ 3351 sh_type = this_hdr->sh_type; 3352 if (bed->elf_backend_fake_sections 3353 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect)) 3354 arg->failed = TRUE; 3355 3356 if (sh_type == SHT_NOBITS && asect->size != 0) 3357 { 3358 /* Don't change the header type from NOBITS if we are being 3359 called for objcopy --only-keep-debug. */ 3360 this_hdr->sh_type = sh_type; 3361 } 3362 } 3363 3364 /* Fill in the contents of a SHT_GROUP section. Called from 3365 _bfd_elf_compute_section_file_positions for gas, objcopy, and 3366 when ELF targets use the generic linker, ld. Called for ld -r 3367 from bfd_elf_final_link. */ 3368 3369 void 3370 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg) 3371 { 3372 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg; 3373 asection *elt, *first; 3374 unsigned char *loc; 3375 bfd_boolean gas; 3376 3377 /* Ignore linker created group section. See elfNN_ia64_object_p in 3378 elfxx-ia64.c. */ 3379 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP) 3380 || *failedptr) 3381 return; 3382 3383 if (elf_section_data (sec)->this_hdr.sh_info == 0) 3384 { 3385 unsigned long symindx = 0; 3386 3387 /* elf_group_id will have been set up by objcopy and the 3388 generic linker. */ 3389 if (elf_group_id (sec) != NULL) 3390 symindx = elf_group_id (sec)->udata.i; 3391 3392 if (symindx == 0) 3393 { 3394 /* If called from the assembler, swap_out_syms will have set up 3395 elf_section_syms. */ 3396 BFD_ASSERT (elf_section_syms (abfd) != NULL); 3397 symindx = elf_section_syms (abfd)[sec->index]->udata.i; 3398 } 3399 elf_section_data (sec)->this_hdr.sh_info = symindx; 3400 } 3401 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2) 3402 { 3403 /* The ELF backend linker sets sh_info to -2 when the group 3404 signature symbol is global, and thus the index can't be 3405 set until all local symbols are output. */ 3406 asection *igroup = elf_sec_group (elf_next_in_group (sec)); 3407 struct bfd_elf_section_data *sec_data = elf_section_data (igroup); 3408 unsigned long symndx = sec_data->this_hdr.sh_info; 3409 unsigned long extsymoff = 0; 3410 struct elf_link_hash_entry *h; 3411 3412 if (!elf_bad_symtab (igroup->owner)) 3413 { 3414 Elf_Internal_Shdr *symtab_hdr; 3415 3416 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr; 3417 extsymoff = symtab_hdr->sh_info; 3418 } 3419 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff]; 3420 while (h->root.type == bfd_link_hash_indirect 3421 || h->root.type == bfd_link_hash_warning) 3422 h = (struct elf_link_hash_entry *) h->root.u.i.link; 3423 3424 elf_section_data (sec)->this_hdr.sh_info = h->indx; 3425 } 3426 3427 /* The contents won't be allocated for "ld -r" or objcopy. */ 3428 gas = TRUE; 3429 if (sec->contents == NULL) 3430 { 3431 gas = FALSE; 3432 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size); 3433 3434 /* Arrange for the section to be written out. */ 3435 elf_section_data (sec)->this_hdr.contents = sec->contents; 3436 if (sec->contents == NULL) 3437 { 3438 *failedptr = TRUE; 3439 return; 3440 } 3441 } 3442 3443 loc = sec->contents + sec->size; 3444 3445 /* Get the pointer to the first section in the group that gas 3446 squirreled away here. objcopy arranges for this to be set to the 3447 start of the input section group. */ 3448 first = elt = elf_next_in_group (sec); 3449 3450 /* First element is a flag word. Rest of section is elf section 3451 indices for all the sections of the group. Write them backwards 3452 just to keep the group in the same order as given in .section 3453 directives, not that it matters. */ 3454 while (elt != NULL) 3455 { 3456 asection *s; 3457 3458 s = elt; 3459 if (!gas) 3460 s = s->output_section; 3461 if (s != NULL 3462 && !bfd_is_abs_section (s)) 3463 { 3464 unsigned int idx = elf_section_data (s)->this_idx; 3465 3466 loc -= 4; 3467 H_PUT_32 (abfd, idx, loc); 3468 } 3469 elt = elf_next_in_group (elt); 3470 if (elt == first) 3471 break; 3472 } 3473 3474 if ((loc -= 4) != sec->contents) 3475 abort (); 3476 3477 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc); 3478 } 3479 3480 /* Return the section which RELOC_SEC applies to. */ 3481 3482 asection * 3483 _bfd_elf_get_reloc_section (asection *reloc_sec) 3484 { 3485 const char *name; 3486 unsigned int type; 3487 bfd *abfd; 3488 3489 if (reloc_sec == NULL) 3490 return NULL; 3491 3492 type = elf_section_data (reloc_sec)->this_hdr.sh_type; 3493 if (type != SHT_REL && type != SHT_RELA) 3494 return NULL; 3495 3496 /* We look up the section the relocs apply to by name. */ 3497 name = reloc_sec->name; 3498 if (type == SHT_REL) 3499 name += 4; 3500 else 3501 name += 5; 3502 3503 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt 3504 section apply to .got.plt section. */ 3505 abfd = reloc_sec->owner; 3506 if (get_elf_backend_data (abfd)->want_got_plt 3507 && strcmp (name, ".plt") == 0) 3508 { 3509 /* .got.plt is a linker created input section. It may be mapped 3510 to some other output section. Try two likely sections. */ 3511 name = ".got.plt"; 3512 reloc_sec = bfd_get_section_by_name (abfd, name); 3513 if (reloc_sec != NULL) 3514 return reloc_sec; 3515 name = ".got"; 3516 } 3517 3518 reloc_sec = bfd_get_section_by_name (abfd, name); 3519 return reloc_sec; 3520 } 3521 3522 /* Assign all ELF section numbers. The dummy first section is handled here 3523 too. The link/info pointers for the standard section types are filled 3524 in here too, while we're at it. */ 3525 3526 static bfd_boolean 3527 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info) 3528 { 3529 struct elf_obj_tdata *t = elf_tdata (abfd); 3530 asection *sec; 3531 unsigned int section_number; 3532 Elf_Internal_Shdr **i_shdrp; 3533 struct bfd_elf_section_data *d; 3534 bfd_boolean need_symtab; 3535 3536 section_number = 1; 3537 3538 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd)); 3539 3540 /* SHT_GROUP sections are in relocatable files only. */ 3541 if (link_info == NULL || bfd_link_relocatable (link_info)) 3542 { 3543 size_t reloc_count = 0; 3544 3545 /* Put SHT_GROUP sections first. */ 3546 for (sec = abfd->sections; sec != NULL; sec = sec->next) 3547 { 3548 d = elf_section_data (sec); 3549 3550 if (d->this_hdr.sh_type == SHT_GROUP) 3551 { 3552 if (sec->flags & SEC_LINKER_CREATED) 3553 { 3554 /* Remove the linker created SHT_GROUP sections. */ 3555 bfd_section_list_remove (abfd, sec); 3556 abfd->section_count--; 3557 } 3558 else 3559 d->this_idx = section_number++; 3560 } 3561 3562 /* Count relocations. */ 3563 reloc_count += sec->reloc_count; 3564 } 3565 3566 /* Clear HAS_RELOC if there are no relocations. */ 3567 if (reloc_count == 0) 3568 abfd->flags &= ~HAS_RELOC; 3569 } 3570 3571 for (sec = abfd->sections; sec; sec = sec->next) 3572 { 3573 d = elf_section_data (sec); 3574 3575 if (d->this_hdr.sh_type != SHT_GROUP) 3576 d->this_idx = section_number++; 3577 if (d->this_hdr.sh_name != (unsigned int) -1) 3578 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name); 3579 if (d->rel.hdr) 3580 { 3581 d->rel.idx = section_number++; 3582 if (d->rel.hdr->sh_name != (unsigned int) -1) 3583 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name); 3584 } 3585 else 3586 d->rel.idx = 0; 3587 3588 if (d->rela.hdr) 3589 { 3590 d->rela.idx = section_number++; 3591 if (d->rela.hdr->sh_name != (unsigned int) -1) 3592 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name); 3593 } 3594 else 3595 d->rela.idx = 0; 3596 } 3597 3598 elf_shstrtab_sec (abfd) = section_number++; 3599 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name); 3600 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd); 3601 3602 need_symtab = (bfd_get_symcount (abfd) > 0 3603 || (link_info == NULL 3604 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC)) 3605 == HAS_RELOC))); 3606 if (need_symtab) 3607 { 3608 elf_onesymtab (abfd) = section_number++; 3609 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name); 3610 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF)) 3611 { 3612 elf_section_list * entry; 3613 3614 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL); 3615 3616 entry = bfd_zalloc (abfd, sizeof * entry); 3617 entry->ndx = section_number++; 3618 elf_symtab_shndx_list (abfd) = entry; 3619 entry->hdr.sh_name 3620 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), 3621 ".symtab_shndx", FALSE); 3622 if (entry->hdr.sh_name == (unsigned int) -1) 3623 return FALSE; 3624 } 3625 elf_strtab_sec (abfd) = section_number++; 3626 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name); 3627 } 3628 3629 if (section_number >= SHN_LORESERVE) 3630 { 3631 _bfd_error_handler (_("%B: too many sections: %u"), 3632 abfd, section_number); 3633 return FALSE; 3634 } 3635 3636 elf_numsections (abfd) = section_number; 3637 elf_elfheader (abfd)->e_shnum = section_number; 3638 3639 /* Set up the list of section header pointers, in agreement with the 3640 indices. */ 3641 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number, 3642 sizeof (Elf_Internal_Shdr *)); 3643 if (i_shdrp == NULL) 3644 return FALSE; 3645 3646 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd, 3647 sizeof (Elf_Internal_Shdr)); 3648 if (i_shdrp[0] == NULL) 3649 { 3650 bfd_release (abfd, i_shdrp); 3651 return FALSE; 3652 } 3653 3654 elf_elfsections (abfd) = i_shdrp; 3655 3656 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr; 3657 if (need_symtab) 3658 { 3659 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr; 3660 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)) 3661 { 3662 elf_section_list * entry = elf_symtab_shndx_list (abfd); 3663 BFD_ASSERT (entry != NULL); 3664 i_shdrp[entry->ndx] = & entry->hdr; 3665 entry->hdr.sh_link = elf_onesymtab (abfd); 3666 } 3667 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr; 3668 t->symtab_hdr.sh_link = elf_strtab_sec (abfd); 3669 } 3670 3671 for (sec = abfd->sections; sec; sec = sec->next) 3672 { 3673 asection *s; 3674 3675 d = elf_section_data (sec); 3676 3677 i_shdrp[d->this_idx] = &d->this_hdr; 3678 if (d->rel.idx != 0) 3679 i_shdrp[d->rel.idx] = d->rel.hdr; 3680 if (d->rela.idx != 0) 3681 i_shdrp[d->rela.idx] = d->rela.hdr; 3682 3683 /* Fill in the sh_link and sh_info fields while we're at it. */ 3684 3685 /* sh_link of a reloc section is the section index of the symbol 3686 table. sh_info is the section index of the section to which 3687 the relocation entries apply. */ 3688 if (d->rel.idx != 0) 3689 { 3690 d->rel.hdr->sh_link = elf_onesymtab (abfd); 3691 d->rel.hdr->sh_info = d->this_idx; 3692 d->rel.hdr->sh_flags |= SHF_INFO_LINK; 3693 } 3694 if (d->rela.idx != 0) 3695 { 3696 d->rela.hdr->sh_link = elf_onesymtab (abfd); 3697 d->rela.hdr->sh_info = d->this_idx; 3698 d->rela.hdr->sh_flags |= SHF_INFO_LINK; 3699 } 3700 3701 /* We need to set up sh_link for SHF_LINK_ORDER. */ 3702 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0) 3703 { 3704 s = elf_linked_to_section (sec); 3705 if (s) 3706 { 3707 /* elf_linked_to_section points to the input section. */ 3708 if (link_info != NULL) 3709 { 3710 /* Check discarded linkonce section. */ 3711 if (discarded_section (s)) 3712 { 3713 asection *kept; 3714 (*_bfd_error_handler) 3715 (_("%B: sh_link of section `%A' points to discarded section `%A' of `%B'"), 3716 abfd, d->this_hdr.bfd_section, 3717 s, s->owner); 3718 /* Point to the kept section if it has the same 3719 size as the discarded one. */ 3720 kept = _bfd_elf_check_kept_section (s, link_info); 3721 if (kept == NULL) 3722 { 3723 bfd_set_error (bfd_error_bad_value); 3724 return FALSE; 3725 } 3726 s = kept; 3727 } 3728 3729 s = s->output_section; 3730 BFD_ASSERT (s != NULL); 3731 } 3732 else 3733 { 3734 /* Handle objcopy. */ 3735 if (s->output_section == NULL) 3736 { 3737 (*_bfd_error_handler) 3738 (_("%B: sh_link of section `%A' points to removed section `%A' of `%B'"), 3739 abfd, d->this_hdr.bfd_section, s, s->owner); 3740 bfd_set_error (bfd_error_bad_value); 3741 return FALSE; 3742 } 3743 s = s->output_section; 3744 } 3745 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 3746 } 3747 else 3748 { 3749 /* PR 290: 3750 The Intel C compiler generates SHT_IA_64_UNWIND with 3751 SHF_LINK_ORDER. But it doesn't set the sh_link or 3752 sh_info fields. Hence we could get the situation 3753 where s is NULL. */ 3754 const struct elf_backend_data *bed 3755 = get_elf_backend_data (abfd); 3756 if (bed->link_order_error_handler) 3757 bed->link_order_error_handler 3758 (_("%B: warning: sh_link not set for section `%A'"), 3759 abfd, sec); 3760 } 3761 } 3762 3763 switch (d->this_hdr.sh_type) 3764 { 3765 case SHT_REL: 3766 case SHT_RELA: 3767 /* A reloc section which we are treating as a normal BFD 3768 section. sh_link is the section index of the symbol 3769 table. sh_info is the section index of the section to 3770 which the relocation entries apply. We assume that an 3771 allocated reloc section uses the dynamic symbol table. 3772 FIXME: How can we be sure? */ 3773 s = bfd_get_section_by_name (abfd, ".dynsym"); 3774 if (s != NULL) 3775 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 3776 3777 s = get_elf_backend_data (abfd)->get_reloc_section (sec); 3778 if (s != NULL) 3779 { 3780 d->this_hdr.sh_info = elf_section_data (s)->this_idx; 3781 d->this_hdr.sh_flags |= SHF_INFO_LINK; 3782 } 3783 break; 3784 3785 case SHT_STRTAB: 3786 /* We assume that a section named .stab*str is a stabs 3787 string section. We look for a section with the same name 3788 but without the trailing ``str'', and set its sh_link 3789 field to point to this section. */ 3790 if (CONST_STRNEQ (sec->name, ".stab") 3791 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0) 3792 { 3793 size_t len; 3794 char *alc; 3795 3796 len = strlen (sec->name); 3797 alc = (char *) bfd_malloc (len - 2); 3798 if (alc == NULL) 3799 return FALSE; 3800 memcpy (alc, sec->name, len - 3); 3801 alc[len - 3] = '\0'; 3802 s = bfd_get_section_by_name (abfd, alc); 3803 free (alc); 3804 if (s != NULL) 3805 { 3806 elf_section_data (s)->this_hdr.sh_link = d->this_idx; 3807 3808 /* This is a .stab section. */ 3809 if (elf_section_data (s)->this_hdr.sh_entsize == 0) 3810 elf_section_data (s)->this_hdr.sh_entsize 3811 = 4 + 2 * bfd_get_arch_size (abfd) / 8; 3812 } 3813 } 3814 break; 3815 3816 case SHT_DYNAMIC: 3817 case SHT_DYNSYM: 3818 case SHT_GNU_verneed: 3819 case SHT_GNU_verdef: 3820 /* sh_link is the section header index of the string table 3821 used for the dynamic entries, or the symbol table, or the 3822 version strings. */ 3823 s = bfd_get_section_by_name (abfd, ".dynstr"); 3824 if (s != NULL) 3825 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 3826 break; 3827 3828 case SHT_GNU_LIBLIST: 3829 /* sh_link is the section header index of the prelink library 3830 list used for the dynamic entries, or the symbol table, or 3831 the version strings. */ 3832 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC) 3833 ? ".dynstr" : ".gnu.libstr"); 3834 if (s != NULL) 3835 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 3836 break; 3837 3838 case SHT_HASH: 3839 case SHT_GNU_HASH: 3840 case SHT_GNU_versym: 3841 /* sh_link is the section header index of the symbol table 3842 this hash table or version table is for. */ 3843 s = bfd_get_section_by_name (abfd, ".dynsym"); 3844 if (s != NULL) 3845 d->this_hdr.sh_link = elf_section_data (s)->this_idx; 3846 break; 3847 3848 case SHT_GROUP: 3849 d->this_hdr.sh_link = elf_onesymtab (abfd); 3850 } 3851 } 3852 3853 /* Delay setting sh_name to _bfd_elf_write_object_contents so that 3854 _bfd_elf_assign_file_positions_for_non_load can convert DWARF 3855 debug section name from .debug_* to .zdebug_* if needed. */ 3856 3857 return TRUE; 3858 } 3859 3860 static bfd_boolean 3861 sym_is_global (bfd *abfd, asymbol *sym) 3862 { 3863 /* If the backend has a special mapping, use it. */ 3864 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 3865 if (bed->elf_backend_sym_is_global) 3866 return (*bed->elf_backend_sym_is_global) (abfd, sym); 3867 3868 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0 3869 || bfd_is_und_section (bfd_get_section (sym)) 3870 || bfd_is_com_section (bfd_get_section (sym))); 3871 } 3872 3873 /* Filter global symbols of ABFD to include in the import library. All 3874 SYMCOUNT symbols of ABFD can be examined from their pointers in 3875 SYMS. Pointers of symbols to keep should be stored contiguously at 3876 the beginning of that array. 3877 3878 Returns the number of symbols to keep. */ 3879 3880 unsigned int 3881 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info, 3882 asymbol **syms, long symcount) 3883 { 3884 long src_count, dst_count = 0; 3885 3886 for (src_count = 0; src_count < symcount; src_count++) 3887 { 3888 asymbol *sym = syms[src_count]; 3889 char *name = (char *) bfd_asymbol_name (sym); 3890 struct bfd_link_hash_entry *h; 3891 3892 if (!sym_is_global (abfd, sym)) 3893 continue; 3894 3895 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE); 3896 if (h == NULL) 3897 continue; 3898 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak) 3899 continue; 3900 if (h->linker_def || h->ldscript_def) 3901 continue; 3902 3903 syms[dst_count++] = sym; 3904 } 3905 3906 syms[dst_count] = NULL; 3907 3908 return dst_count; 3909 } 3910 3911 /* Don't output section symbols for sections that are not going to be 3912 output, that are duplicates or there is no BFD section. */ 3913 3914 static bfd_boolean 3915 ignore_section_sym (bfd *abfd, asymbol *sym) 3916 { 3917 elf_symbol_type *type_ptr; 3918 3919 if ((sym->flags & BSF_SECTION_SYM) == 0) 3920 return FALSE; 3921 3922 type_ptr = elf_symbol_from (abfd, sym); 3923 return ((type_ptr != NULL 3924 && type_ptr->internal_elf_sym.st_shndx != 0 3925 && bfd_is_abs_section (sym->section)) 3926 || !(sym->section->owner == abfd 3927 || (sym->section->output_section->owner == abfd 3928 && sym->section->output_offset == 0) 3929 || bfd_is_abs_section (sym->section))); 3930 } 3931 3932 /* Map symbol from it's internal number to the external number, moving 3933 all local symbols to be at the head of the list. */ 3934 3935 static bfd_boolean 3936 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals) 3937 { 3938 unsigned int symcount = bfd_get_symcount (abfd); 3939 asymbol **syms = bfd_get_outsymbols (abfd); 3940 asymbol **sect_syms; 3941 unsigned int num_locals = 0; 3942 unsigned int num_globals = 0; 3943 unsigned int num_locals2 = 0; 3944 unsigned int num_globals2 = 0; 3945 unsigned int max_index = 0; 3946 unsigned int idx; 3947 asection *asect; 3948 asymbol **new_syms; 3949 3950 #ifdef DEBUG 3951 fprintf (stderr, "elf_map_symbols\n"); 3952 fflush (stderr); 3953 #endif 3954 3955 for (asect = abfd->sections; asect; asect = asect->next) 3956 { 3957 if (max_index < asect->index) 3958 max_index = asect->index; 3959 } 3960 3961 max_index++; 3962 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *)); 3963 if (sect_syms == NULL) 3964 return FALSE; 3965 elf_section_syms (abfd) = sect_syms; 3966 elf_num_section_syms (abfd) = max_index; 3967 3968 /* Init sect_syms entries for any section symbols we have already 3969 decided to output. */ 3970 for (idx = 0; idx < symcount; idx++) 3971 { 3972 asymbol *sym = syms[idx]; 3973 3974 if ((sym->flags & BSF_SECTION_SYM) != 0 3975 && sym->value == 0 3976 && !ignore_section_sym (abfd, sym) 3977 && !bfd_is_abs_section (sym->section)) 3978 { 3979 asection *sec = sym->section; 3980 3981 if (sec->owner != abfd) 3982 sec = sec->output_section; 3983 3984 sect_syms[sec->index] = syms[idx]; 3985 } 3986 } 3987 3988 /* Classify all of the symbols. */ 3989 for (idx = 0; idx < symcount; idx++) 3990 { 3991 if (sym_is_global (abfd, syms[idx])) 3992 num_globals++; 3993 else if (!ignore_section_sym (abfd, syms[idx])) 3994 num_locals++; 3995 } 3996 3997 /* We will be adding a section symbol for each normal BFD section. Most 3998 sections will already have a section symbol in outsymbols, but 3999 eg. SHT_GROUP sections will not, and we need the section symbol mapped 4000 at least in that case. */ 4001 for (asect = abfd->sections; asect; asect = asect->next) 4002 { 4003 if (sect_syms[asect->index] == NULL) 4004 { 4005 if (!sym_is_global (abfd, asect->symbol)) 4006 num_locals++; 4007 else 4008 num_globals++; 4009 } 4010 } 4011 4012 /* Now sort the symbols so the local symbols are first. */ 4013 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals, 4014 sizeof (asymbol *)); 4015 4016 if (new_syms == NULL) 4017 return FALSE; 4018 4019 for (idx = 0; idx < symcount; idx++) 4020 { 4021 asymbol *sym = syms[idx]; 4022 unsigned int i; 4023 4024 if (sym_is_global (abfd, sym)) 4025 i = num_locals + num_globals2++; 4026 else if (!ignore_section_sym (abfd, sym)) 4027 i = num_locals2++; 4028 else 4029 continue; 4030 new_syms[i] = sym; 4031 sym->udata.i = i + 1; 4032 } 4033 for (asect = abfd->sections; asect; asect = asect->next) 4034 { 4035 if (sect_syms[asect->index] == NULL) 4036 { 4037 asymbol *sym = asect->symbol; 4038 unsigned int i; 4039 4040 sect_syms[asect->index] = sym; 4041 if (!sym_is_global (abfd, sym)) 4042 i = num_locals2++; 4043 else 4044 i = num_locals + num_globals2++; 4045 new_syms[i] = sym; 4046 sym->udata.i = i + 1; 4047 } 4048 } 4049 4050 bfd_set_symtab (abfd, new_syms, num_locals + num_globals); 4051 4052 *pnum_locals = num_locals; 4053 return TRUE; 4054 } 4055 4056 /* Align to the maximum file alignment that could be required for any 4057 ELF data structure. */ 4058 4059 static inline file_ptr 4060 align_file_position (file_ptr off, int align) 4061 { 4062 return (off + align - 1) & ~(align - 1); 4063 } 4064 4065 /* Assign a file position to a section, optionally aligning to the 4066 required section alignment. */ 4067 4068 file_ptr 4069 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp, 4070 file_ptr offset, 4071 bfd_boolean align) 4072 { 4073 if (align && i_shdrp->sh_addralign > 1) 4074 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign); 4075 i_shdrp->sh_offset = offset; 4076 if (i_shdrp->bfd_section != NULL) 4077 i_shdrp->bfd_section->filepos = offset; 4078 if (i_shdrp->sh_type != SHT_NOBITS) 4079 offset += i_shdrp->sh_size; 4080 return offset; 4081 } 4082 4083 /* Compute the file positions we are going to put the sections at, and 4084 otherwise prepare to begin writing out the ELF file. If LINK_INFO 4085 is not NULL, this is being called by the ELF backend linker. */ 4086 4087 bfd_boolean 4088 _bfd_elf_compute_section_file_positions (bfd *abfd, 4089 struct bfd_link_info *link_info) 4090 { 4091 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 4092 struct fake_section_arg fsargs; 4093 bfd_boolean failed; 4094 struct elf_strtab_hash *strtab = NULL; 4095 Elf_Internal_Shdr *shstrtab_hdr; 4096 bfd_boolean need_symtab; 4097 4098 if (abfd->output_has_begun) 4099 return TRUE; 4100 4101 /* Do any elf backend specific processing first. */ 4102 if (bed->elf_backend_begin_write_processing) 4103 (*bed->elf_backend_begin_write_processing) (abfd, link_info); 4104 4105 if (! prep_headers (abfd)) 4106 return FALSE; 4107 4108 /* Post process the headers if necessary. */ 4109 (*bed->elf_backend_post_process_headers) (abfd, link_info); 4110 4111 fsargs.failed = FALSE; 4112 fsargs.link_info = link_info; 4113 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs); 4114 if (fsargs.failed) 4115 return FALSE; 4116 4117 if (!assign_section_numbers (abfd, link_info)) 4118 return FALSE; 4119 4120 /* The backend linker builds symbol table information itself. */ 4121 need_symtab = (link_info == NULL 4122 && (bfd_get_symcount (abfd) > 0 4123 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC)) 4124 == HAS_RELOC))); 4125 if (need_symtab) 4126 { 4127 /* Non-zero if doing a relocatable link. */ 4128 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC)); 4129 4130 if (! swap_out_syms (abfd, &strtab, relocatable_p)) 4131 return FALSE; 4132 } 4133 4134 failed = FALSE; 4135 if (link_info == NULL) 4136 { 4137 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); 4138 if (failed) 4139 return FALSE; 4140 } 4141 4142 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr; 4143 /* sh_name was set in prep_headers. */ 4144 shstrtab_hdr->sh_type = SHT_STRTAB; 4145 shstrtab_hdr->sh_flags = bed->elf_strtab_flags; 4146 shstrtab_hdr->sh_addr = 0; 4147 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */ 4148 shstrtab_hdr->sh_entsize = 0; 4149 shstrtab_hdr->sh_link = 0; 4150 shstrtab_hdr->sh_info = 0; 4151 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */ 4152 shstrtab_hdr->sh_addralign = 1; 4153 4154 if (!assign_file_positions_except_relocs (abfd, link_info)) 4155 return FALSE; 4156 4157 if (need_symtab) 4158 { 4159 file_ptr off; 4160 Elf_Internal_Shdr *hdr; 4161 4162 off = elf_next_file_pos (abfd); 4163 4164 hdr = & elf_symtab_hdr (abfd); 4165 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 4166 4167 if (elf_symtab_shndx_list (abfd) != NULL) 4168 { 4169 hdr = & elf_symtab_shndx_list (abfd)->hdr; 4170 if (hdr->sh_size != 0) 4171 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 4172 /* FIXME: What about other symtab_shndx sections in the list ? */ 4173 } 4174 4175 hdr = &elf_tdata (abfd)->strtab_hdr; 4176 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 4177 4178 elf_next_file_pos (abfd) = off; 4179 4180 /* Now that we know where the .strtab section goes, write it 4181 out. */ 4182 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 4183 || ! _bfd_elf_strtab_emit (abfd, strtab)) 4184 return FALSE; 4185 _bfd_elf_strtab_free (strtab); 4186 } 4187 4188 abfd->output_has_begun = TRUE; 4189 4190 return TRUE; 4191 } 4192 4193 /* Make an initial estimate of the size of the program header. If we 4194 get the number wrong here, we'll redo section placement. */ 4195 4196 static bfd_size_type 4197 get_program_header_size (bfd *abfd, struct bfd_link_info *info) 4198 { 4199 size_t segs; 4200 asection *s; 4201 const struct elf_backend_data *bed; 4202 4203 /* Assume we will need exactly two PT_LOAD segments: one for text 4204 and one for data. */ 4205 segs = 2; 4206 4207 s = bfd_get_section_by_name (abfd, ".interp"); 4208 if (s != NULL && (s->flags & SEC_LOAD) != 0) 4209 { 4210 /* If we have a loadable interpreter section, we need a 4211 PT_INTERP segment. In this case, assume we also need a 4212 PT_PHDR segment, although that may not be true for all 4213 targets. */ 4214 segs += 2; 4215 } 4216 4217 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) 4218 { 4219 /* We need a PT_DYNAMIC segment. */ 4220 ++segs; 4221 } 4222 4223 if (info != NULL && info->relro) 4224 { 4225 /* We need a PT_GNU_RELRO segment. */ 4226 ++segs; 4227 } 4228 4229 if (elf_eh_frame_hdr (abfd)) 4230 { 4231 /* We need a PT_GNU_EH_FRAME segment. */ 4232 ++segs; 4233 } 4234 4235 if (elf_stack_flags (abfd)) 4236 { 4237 /* We need a PT_GNU_STACK segment. */ 4238 ++segs; 4239 } 4240 4241 for (s = abfd->sections; s != NULL; s = s->next) 4242 { 4243 if ((s->flags & SEC_LOAD) != 0 4244 && CONST_STRNEQ (s->name, ".note")) 4245 { 4246 /* We need a PT_NOTE segment. */ 4247 ++segs; 4248 /* Try to create just one PT_NOTE segment 4249 for all adjacent loadable .note* sections. 4250 gABI requires that within a PT_NOTE segment 4251 (and also inside of each SHT_NOTE section) 4252 each note is padded to a multiple of 4 size, 4253 so we check whether the sections are correctly 4254 aligned. */ 4255 if (s->alignment_power == 2) 4256 while (s->next != NULL 4257 && s->next->alignment_power == 2 4258 && (s->next->flags & SEC_LOAD) != 0 4259 && CONST_STRNEQ (s->next->name, ".note")) 4260 s = s->next; 4261 } 4262 } 4263 4264 for (s = abfd->sections; s != NULL; s = s->next) 4265 { 4266 if (s->flags & SEC_THREAD_LOCAL) 4267 { 4268 /* We need a PT_TLS segment. */ 4269 ++segs; 4270 break; 4271 } 4272 } 4273 4274 /* Let the backend count up any program headers it might need. */ 4275 bed = get_elf_backend_data (abfd); 4276 if (bed->elf_backend_additional_program_headers) 4277 { 4278 int a; 4279 4280 a = (*bed->elf_backend_additional_program_headers) (abfd, info); 4281 if (a == -1) 4282 abort (); 4283 segs += a; 4284 } 4285 4286 return segs * bed->s->sizeof_phdr; 4287 } 4288 4289 /* Find the segment that contains the output_section of section. */ 4290 4291 Elf_Internal_Phdr * 4292 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section) 4293 { 4294 struct elf_segment_map *m; 4295 Elf_Internal_Phdr *p; 4296 4297 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr; 4298 m != NULL; 4299 m = m->next, p++) 4300 { 4301 int i; 4302 4303 for (i = m->count - 1; i >= 0; i--) 4304 if (m->sections[i] == section) 4305 return p; 4306 } 4307 4308 return NULL; 4309 } 4310 4311 /* Create a mapping from a set of sections to a program segment. */ 4312 4313 static struct elf_segment_map * 4314 make_mapping (bfd *abfd, 4315 asection **sections, 4316 unsigned int from, 4317 unsigned int to, 4318 bfd_boolean phdr) 4319 { 4320 struct elf_segment_map *m; 4321 unsigned int i; 4322 asection **hdrpp; 4323 bfd_size_type amt; 4324 4325 amt = sizeof (struct elf_segment_map); 4326 amt += (to - from - 1) * sizeof (asection *); 4327 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 4328 if (m == NULL) 4329 return NULL; 4330 m->next = NULL; 4331 m->p_type = PT_LOAD; 4332 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++) 4333 m->sections[i - from] = *hdrpp; 4334 m->count = to - from; 4335 4336 if (from == 0 && phdr) 4337 { 4338 /* Include the headers in the first PT_LOAD segment. */ 4339 m->includes_filehdr = 1; 4340 m->includes_phdrs = 1; 4341 } 4342 4343 return m; 4344 } 4345 4346 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL 4347 on failure. */ 4348 4349 struct elf_segment_map * 4350 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec) 4351 { 4352 struct elf_segment_map *m; 4353 4354 m = (struct elf_segment_map *) bfd_zalloc (abfd, 4355 sizeof (struct elf_segment_map)); 4356 if (m == NULL) 4357 return NULL; 4358 m->next = NULL; 4359 m->p_type = PT_DYNAMIC; 4360 m->count = 1; 4361 m->sections[0] = dynsec; 4362 4363 return m; 4364 } 4365 4366 /* Possibly add or remove segments from the segment map. */ 4367 4368 static bfd_boolean 4369 elf_modify_segment_map (bfd *abfd, 4370 struct bfd_link_info *info, 4371 bfd_boolean remove_empty_load) 4372 { 4373 struct elf_segment_map **m; 4374 const struct elf_backend_data *bed; 4375 4376 /* The placement algorithm assumes that non allocated sections are 4377 not in PT_LOAD segments. We ensure this here by removing such 4378 sections from the segment map. We also remove excluded 4379 sections. Finally, any PT_LOAD segment without sections is 4380 removed. */ 4381 m = &elf_seg_map (abfd); 4382 while (*m) 4383 { 4384 unsigned int i, new_count; 4385 4386 for (new_count = 0, i = 0; i < (*m)->count; i++) 4387 { 4388 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0 4389 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0 4390 || (*m)->p_type != PT_LOAD)) 4391 { 4392 (*m)->sections[new_count] = (*m)->sections[i]; 4393 new_count++; 4394 } 4395 } 4396 (*m)->count = new_count; 4397 4398 if (remove_empty_load && (*m)->p_type == PT_LOAD && (*m)->count == 0) 4399 *m = (*m)->next; 4400 else 4401 m = &(*m)->next; 4402 } 4403 4404 bed = get_elf_backend_data (abfd); 4405 if (bed->elf_backend_modify_segment_map != NULL) 4406 { 4407 if (!(*bed->elf_backend_modify_segment_map) (abfd, info)) 4408 return FALSE; 4409 } 4410 4411 return TRUE; 4412 } 4413 4414 /* Set up a mapping from BFD sections to program segments. */ 4415 4416 bfd_boolean 4417 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info) 4418 { 4419 unsigned int count; 4420 struct elf_segment_map *m; 4421 asection **sections = NULL; 4422 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 4423 bfd_boolean no_user_phdrs; 4424 4425 no_user_phdrs = elf_seg_map (abfd) == NULL; 4426 4427 if (info != NULL) 4428 info->user_phdrs = !no_user_phdrs; 4429 4430 if (no_user_phdrs && bfd_count_sections (abfd) != 0) 4431 { 4432 asection *s; 4433 unsigned int i; 4434 struct elf_segment_map *mfirst; 4435 struct elf_segment_map **pm; 4436 asection *last_hdr; 4437 bfd_vma last_size; 4438 unsigned int phdr_index; 4439 bfd_vma maxpagesize; 4440 asection **hdrpp; 4441 bfd_boolean phdr_in_segment = TRUE; 4442 bfd_boolean writable; 4443 int tls_count = 0; 4444 asection *first_tls = NULL; 4445 asection *dynsec, *eh_frame_hdr; 4446 bfd_size_type amt; 4447 bfd_vma addr_mask, wrap_to = 0; 4448 4449 /* Select the allocated sections, and sort them. */ 4450 4451 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd), 4452 sizeof (asection *)); 4453 if (sections == NULL) 4454 goto error_return; 4455 4456 /* Calculate top address, avoiding undefined behaviour of shift 4457 left operator when shift count is equal to size of type 4458 being shifted. */ 4459 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1; 4460 addr_mask = (addr_mask << 1) + 1; 4461 4462 i = 0; 4463 for (s = abfd->sections; s != NULL; s = s->next) 4464 { 4465 if ((s->flags & SEC_ALLOC) != 0) 4466 { 4467 sections[i] = s; 4468 ++i; 4469 /* A wrapping section potentially clashes with header. */ 4470 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask)) 4471 wrap_to = (s->lma + s->size) & addr_mask; 4472 } 4473 } 4474 BFD_ASSERT (i <= bfd_count_sections (abfd)); 4475 count = i; 4476 4477 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections); 4478 4479 /* Build the mapping. */ 4480 4481 mfirst = NULL; 4482 pm = &mfirst; 4483 4484 /* If we have a .interp section, then create a PT_PHDR segment for 4485 the program headers and a PT_INTERP segment for the .interp 4486 section. */ 4487 s = bfd_get_section_by_name (abfd, ".interp"); 4488 if (s != NULL && (s->flags & SEC_LOAD) != 0) 4489 { 4490 amt = sizeof (struct elf_segment_map); 4491 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 4492 if (m == NULL) 4493 goto error_return; 4494 m->next = NULL; 4495 m->p_type = PT_PHDR; 4496 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */ 4497 m->p_flags = PF_R | PF_X; 4498 m->p_flags_valid = 1; 4499 m->includes_phdrs = 1; 4500 4501 *pm = m; 4502 pm = &m->next; 4503 4504 amt = sizeof (struct elf_segment_map); 4505 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 4506 if (m == NULL) 4507 goto error_return; 4508 m->next = NULL; 4509 m->p_type = PT_INTERP; 4510 m->count = 1; 4511 m->sections[0] = s; 4512 4513 *pm = m; 4514 pm = &m->next; 4515 } 4516 4517 /* Look through the sections. We put sections in the same program 4518 segment when the start of the second section can be placed within 4519 a few bytes of the end of the first section. */ 4520 last_hdr = NULL; 4521 last_size = 0; 4522 phdr_index = 0; 4523 maxpagesize = bed->maxpagesize; 4524 /* PR 17512: file: c8455299. 4525 Avoid divide-by-zero errors later on. 4526 FIXME: Should we abort if the maxpagesize is zero ? */ 4527 if (maxpagesize == 0) 4528 maxpagesize = 1; 4529 writable = FALSE; 4530 dynsec = bfd_get_section_by_name (abfd, ".dynamic"); 4531 if (dynsec != NULL 4532 && (dynsec->flags & SEC_LOAD) == 0) 4533 dynsec = NULL; 4534 4535 /* Deal with -Ttext or something similar such that the first section 4536 is not adjacent to the program headers. This is an 4537 approximation, since at this point we don't know exactly how many 4538 program headers we will need. */ 4539 if (count > 0) 4540 { 4541 bfd_size_type phdr_size = elf_program_header_size (abfd); 4542 4543 if (phdr_size == (bfd_size_type) -1) 4544 phdr_size = get_program_header_size (abfd, info); 4545 phdr_size += bed->s->sizeof_ehdr; 4546 if ((abfd->flags & D_PAGED) == 0 4547 || (sections[0]->lma & addr_mask) < phdr_size 4548 || ((sections[0]->lma & addr_mask) % maxpagesize 4549 < phdr_size % maxpagesize) 4550 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to) 4551 phdr_in_segment = FALSE; 4552 } 4553 4554 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++) 4555 { 4556 asection *hdr; 4557 bfd_boolean new_segment; 4558 4559 hdr = *hdrpp; 4560 4561 /* See if this section and the last one will fit in the same 4562 segment. */ 4563 4564 if (last_hdr == NULL) 4565 { 4566 /* If we don't have a segment yet, then we don't need a new 4567 one (we build the last one after this loop). */ 4568 new_segment = FALSE; 4569 } 4570 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma) 4571 { 4572 /* If this section has a different relation between the 4573 virtual address and the load address, then we need a new 4574 segment. */ 4575 new_segment = TRUE; 4576 } 4577 else if (hdr->lma < last_hdr->lma + last_size 4578 || last_hdr->lma + last_size < last_hdr->lma) 4579 { 4580 /* If this section has a load address that makes it overlap 4581 the previous section, then we need a new segment. */ 4582 new_segment = TRUE; 4583 } 4584 /* In the next test we have to be careful when last_hdr->lma is close 4585 to the end of the address space. If the aligned address wraps 4586 around to the start of the address space, then there are no more 4587 pages left in memory and it is OK to assume that the current 4588 section can be included in the current segment. */ 4589 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize 4590 > last_hdr->lma) 4591 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) + maxpagesize 4592 <= hdr->lma)) 4593 { 4594 /* If putting this section in this segment would force us to 4595 skip a page in the segment, then we need a new segment. */ 4596 new_segment = TRUE; 4597 } 4598 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0 4599 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0 4600 && ((abfd->flags & D_PAGED) == 0 4601 || (((last_hdr->lma + last_size - 1) & -maxpagesize) 4602 != (hdr->lma & -maxpagesize)))) 4603 { 4604 /* We don't want to put a loaded section after a 4605 nonloaded (ie. bss style) section in the same segment 4606 as that will force the non-loaded section to be loaded. 4607 Consider .tbss sections as loaded for this purpose. 4608 However, like the writable/non-writable case below, 4609 if they are on the same page then they must be put 4610 in the same segment. */ 4611 new_segment = TRUE; 4612 } 4613 else if ((abfd->flags & D_PAGED) == 0) 4614 { 4615 /* If the file is not demand paged, which means that we 4616 don't require the sections to be correctly aligned in the 4617 file, then there is no other reason for a new segment. */ 4618 new_segment = FALSE; 4619 } 4620 else if (! writable 4621 && (hdr->flags & SEC_READONLY) == 0 4622 && (((last_hdr->lma + last_size - 1) & -maxpagesize) 4623 != (hdr->lma & -maxpagesize))) 4624 { 4625 /* We don't want to put a writable section in a read only 4626 segment, unless they are on the same page in memory 4627 anyhow. We already know that the last section does not 4628 bring us past the current section on the page, so the 4629 only case in which the new section is not on the same 4630 page as the previous section is when the previous section 4631 ends precisely on a page boundary. */ 4632 new_segment = TRUE; 4633 } 4634 else 4635 { 4636 /* Otherwise, we can use the same segment. */ 4637 new_segment = FALSE; 4638 } 4639 4640 /* Allow interested parties a chance to override our decision. */ 4641 if (last_hdr != NULL 4642 && info != NULL 4643 && info->callbacks->override_segment_assignment != NULL) 4644 new_segment 4645 = info->callbacks->override_segment_assignment (info, abfd, hdr, 4646 last_hdr, 4647 new_segment); 4648 4649 if (! new_segment) 4650 { 4651 if ((hdr->flags & SEC_READONLY) == 0) 4652 writable = TRUE; 4653 last_hdr = hdr; 4654 /* .tbss sections effectively have zero size. */ 4655 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) 4656 != SEC_THREAD_LOCAL) 4657 last_size = hdr->size; 4658 else 4659 last_size = 0; 4660 continue; 4661 } 4662 4663 /* We need a new program segment. We must create a new program 4664 header holding all the sections from phdr_index until hdr. */ 4665 4666 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment); 4667 if (m == NULL) 4668 goto error_return; 4669 4670 *pm = m; 4671 pm = &m->next; 4672 4673 if ((hdr->flags & SEC_READONLY) == 0) 4674 writable = TRUE; 4675 else 4676 writable = FALSE; 4677 4678 last_hdr = hdr; 4679 /* .tbss sections effectively have zero size. */ 4680 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL) 4681 last_size = hdr->size; 4682 else 4683 last_size = 0; 4684 phdr_index = i; 4685 phdr_in_segment = FALSE; 4686 } 4687 4688 /* Create a final PT_LOAD program segment, but not if it's just 4689 for .tbss. */ 4690 if (last_hdr != NULL 4691 && (i - phdr_index != 1 4692 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) 4693 != SEC_THREAD_LOCAL))) 4694 { 4695 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment); 4696 if (m == NULL) 4697 goto error_return; 4698 4699 *pm = m; 4700 pm = &m->next; 4701 } 4702 4703 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */ 4704 if (dynsec != NULL) 4705 { 4706 m = _bfd_elf_make_dynamic_segment (abfd, dynsec); 4707 if (m == NULL) 4708 goto error_return; 4709 *pm = m; 4710 pm = &m->next; 4711 } 4712 4713 /* For each batch of consecutive loadable .note sections, 4714 add a PT_NOTE segment. We don't use bfd_get_section_by_name, 4715 because if we link together nonloadable .note sections and 4716 loadable .note sections, we will generate two .note sections 4717 in the output file. FIXME: Using names for section types is 4718 bogus anyhow. */ 4719 for (s = abfd->sections; s != NULL; s = s->next) 4720 { 4721 if ((s->flags & SEC_LOAD) != 0 4722 && CONST_STRNEQ (s->name, ".note")) 4723 { 4724 asection *s2; 4725 4726 count = 1; 4727 amt = sizeof (struct elf_segment_map); 4728 if (s->alignment_power == 2) 4729 for (s2 = s; s2->next != NULL; s2 = s2->next) 4730 { 4731 if (s2->next->alignment_power == 2 4732 && (s2->next->flags & SEC_LOAD) != 0 4733 && CONST_STRNEQ (s2->next->name, ".note") 4734 && align_power (s2->lma + s2->size, 2) 4735 == s2->next->lma) 4736 count++; 4737 else 4738 break; 4739 } 4740 amt += (count - 1) * sizeof (asection *); 4741 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 4742 if (m == NULL) 4743 goto error_return; 4744 m->next = NULL; 4745 m->p_type = PT_NOTE; 4746 m->count = count; 4747 while (count > 1) 4748 { 4749 m->sections[m->count - count--] = s; 4750 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0); 4751 s = s->next; 4752 } 4753 m->sections[m->count - 1] = s; 4754 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0); 4755 *pm = m; 4756 pm = &m->next; 4757 } 4758 if (s->flags & SEC_THREAD_LOCAL) 4759 { 4760 if (! tls_count) 4761 first_tls = s; 4762 tls_count++; 4763 } 4764 } 4765 4766 /* If there are any SHF_TLS output sections, add PT_TLS segment. */ 4767 if (tls_count > 0) 4768 { 4769 amt = sizeof (struct elf_segment_map); 4770 amt += (tls_count - 1) * sizeof (asection *); 4771 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 4772 if (m == NULL) 4773 goto error_return; 4774 m->next = NULL; 4775 m->p_type = PT_TLS; 4776 m->count = tls_count; 4777 /* Mandated PF_R. */ 4778 m->p_flags = PF_R; 4779 m->p_flags_valid = 1; 4780 s = first_tls; 4781 for (i = 0; i < (unsigned int) tls_count; ++i) 4782 { 4783 if ((s->flags & SEC_THREAD_LOCAL) == 0) 4784 { 4785 _bfd_error_handler 4786 (_("%B: TLS sections are not adjacent:"), abfd); 4787 s = first_tls; 4788 i = 0; 4789 while (i < (unsigned int) tls_count) 4790 { 4791 if ((s->flags & SEC_THREAD_LOCAL) != 0) 4792 { 4793 _bfd_error_handler (_(" TLS: %A"), s); 4794 i++; 4795 } 4796 else 4797 _bfd_error_handler (_(" non-TLS: %A"), s); 4798 s = s->next; 4799 } 4800 bfd_set_error (bfd_error_bad_value); 4801 goto error_return; 4802 } 4803 m->sections[i] = s; 4804 s = s->next; 4805 } 4806 4807 *pm = m; 4808 pm = &m->next; 4809 } 4810 4811 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME 4812 segment. */ 4813 eh_frame_hdr = elf_eh_frame_hdr (abfd); 4814 if (eh_frame_hdr != NULL 4815 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0) 4816 { 4817 amt = sizeof (struct elf_segment_map); 4818 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 4819 if (m == NULL) 4820 goto error_return; 4821 m->next = NULL; 4822 m->p_type = PT_GNU_EH_FRAME; 4823 m->count = 1; 4824 m->sections[0] = eh_frame_hdr->output_section; 4825 4826 *pm = m; 4827 pm = &m->next; 4828 } 4829 4830 if (elf_stack_flags (abfd)) 4831 { 4832 amt = sizeof (struct elf_segment_map); 4833 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 4834 if (m == NULL) 4835 goto error_return; 4836 m->next = NULL; 4837 m->p_type = PT_GNU_STACK; 4838 m->p_flags = elf_stack_flags (abfd); 4839 m->p_align = bed->stack_align; 4840 m->p_flags_valid = 1; 4841 m->p_align_valid = m->p_align != 0; 4842 if (info->stacksize > 0) 4843 { 4844 m->p_size = info->stacksize; 4845 m->p_size_valid = 1; 4846 } 4847 4848 *pm = m; 4849 pm = &m->next; 4850 } 4851 4852 if (info != NULL && info->relro) 4853 { 4854 for (m = mfirst; m != NULL; m = m->next) 4855 { 4856 if (m->p_type == PT_LOAD 4857 && m->count != 0 4858 && m->sections[0]->vma >= info->relro_start 4859 && m->sections[0]->vma < info->relro_end) 4860 { 4861 i = m->count; 4862 while (--i != (unsigned) -1) 4863 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) 4864 == (SEC_LOAD | SEC_HAS_CONTENTS)) 4865 break; 4866 4867 if (i != (unsigned) -1) 4868 break; 4869 } 4870 } 4871 4872 /* Make a PT_GNU_RELRO segment only when it isn't empty. */ 4873 if (m != NULL) 4874 { 4875 amt = sizeof (struct elf_segment_map); 4876 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); 4877 if (m == NULL) 4878 goto error_return; 4879 m->next = NULL; 4880 m->p_type = PT_GNU_RELRO; 4881 *pm = m; 4882 pm = &m->next; 4883 } 4884 } 4885 4886 free (sections); 4887 elf_seg_map (abfd) = mfirst; 4888 } 4889 4890 if (!elf_modify_segment_map (abfd, info, no_user_phdrs)) 4891 return FALSE; 4892 4893 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next) 4894 ++count; 4895 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr; 4896 4897 return TRUE; 4898 4899 error_return: 4900 if (sections != NULL) 4901 free (sections); 4902 return FALSE; 4903 } 4904 4905 /* Sort sections by address. */ 4906 4907 static int 4908 elf_sort_sections (const void *arg1, const void *arg2) 4909 { 4910 const asection *sec1 = *(const asection **) arg1; 4911 const asection *sec2 = *(const asection **) arg2; 4912 bfd_size_type size1, size2; 4913 4914 /* Sort by LMA first, since this is the address used to 4915 place the section into a segment. */ 4916 if (sec1->lma < sec2->lma) 4917 return -1; 4918 else if (sec1->lma > sec2->lma) 4919 return 1; 4920 4921 /* Then sort by VMA. Normally the LMA and the VMA will be 4922 the same, and this will do nothing. */ 4923 if (sec1->vma < sec2->vma) 4924 return -1; 4925 else if (sec1->vma > sec2->vma) 4926 return 1; 4927 4928 /* Put !SEC_LOAD sections after SEC_LOAD ones. */ 4929 4930 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0) 4931 4932 if (TOEND (sec1)) 4933 { 4934 if (TOEND (sec2)) 4935 { 4936 /* If the indicies are the same, do not return 0 4937 here, but continue to try the next comparison. */ 4938 if (sec1->target_index - sec2->target_index != 0) 4939 return sec1->target_index - sec2->target_index; 4940 } 4941 else 4942 return 1; 4943 } 4944 else if (TOEND (sec2)) 4945 return -1; 4946 4947 #undef TOEND 4948 4949 /* Sort by size, to put zero sized sections 4950 before others at the same address. */ 4951 4952 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0; 4953 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0; 4954 4955 if (size1 < size2) 4956 return -1; 4957 if (size1 > size2) 4958 return 1; 4959 4960 return sec1->target_index - sec2->target_index; 4961 } 4962 4963 /* Ian Lance Taylor writes: 4964 4965 We shouldn't be using % with a negative signed number. That's just 4966 not good. We have to make sure either that the number is not 4967 negative, or that the number has an unsigned type. When the types 4968 are all the same size they wind up as unsigned. When file_ptr is a 4969 larger signed type, the arithmetic winds up as signed long long, 4970 which is wrong. 4971 4972 What we're trying to say here is something like ``increase OFF by 4973 the least amount that will cause it to be equal to the VMA modulo 4974 the page size.'' */ 4975 /* In other words, something like: 4976 4977 vma_offset = m->sections[0]->vma % bed->maxpagesize; 4978 off_offset = off % bed->maxpagesize; 4979 if (vma_offset < off_offset) 4980 adjustment = vma_offset + bed->maxpagesize - off_offset; 4981 else 4982 adjustment = vma_offset - off_offset; 4983 4984 which can can be collapsed into the expression below. */ 4985 4986 static file_ptr 4987 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize) 4988 { 4989 /* PR binutils/16199: Handle an alignment of zero. */ 4990 if (maxpagesize == 0) 4991 maxpagesize = 1; 4992 return ((vma - off) % maxpagesize); 4993 } 4994 4995 static void 4996 print_segment_map (const struct elf_segment_map *m) 4997 { 4998 unsigned int j; 4999 const char *pt = get_segment_type (m->p_type); 5000 char buf[32]; 5001 5002 if (pt == NULL) 5003 { 5004 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC) 5005 sprintf (buf, "LOPROC+%7.7x", 5006 (unsigned int) (m->p_type - PT_LOPROC)); 5007 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS) 5008 sprintf (buf, "LOOS+%7.7x", 5009 (unsigned int) (m->p_type - PT_LOOS)); 5010 else 5011 snprintf (buf, sizeof (buf), "%8.8x", 5012 (unsigned int) m->p_type); 5013 pt = buf; 5014 } 5015 fflush (stdout); 5016 fprintf (stderr, "%s:", pt); 5017 for (j = 0; j < m->count; j++) 5018 fprintf (stderr, " %s", m->sections [j]->name); 5019 putc ('\n',stderr); 5020 fflush (stderr); 5021 } 5022 5023 static bfd_boolean 5024 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len) 5025 { 5026 void *buf; 5027 bfd_boolean ret; 5028 5029 if (bfd_seek (abfd, pos, SEEK_SET) != 0) 5030 return FALSE; 5031 buf = bfd_zmalloc (len); 5032 if (buf == NULL) 5033 return FALSE; 5034 ret = bfd_bwrite (buf, len, abfd) == len; 5035 free (buf); 5036 return ret; 5037 } 5038 5039 /* Assign file positions to the sections based on the mapping from 5040 sections to segments. This function also sets up some fields in 5041 the file header. */ 5042 5043 static bfd_boolean 5044 assign_file_positions_for_load_sections (bfd *abfd, 5045 struct bfd_link_info *link_info) 5046 { 5047 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 5048 struct elf_segment_map *m; 5049 Elf_Internal_Phdr *phdrs; 5050 Elf_Internal_Phdr *p; 5051 file_ptr off; 5052 bfd_size_type maxpagesize; 5053 unsigned int alloc; 5054 unsigned int i, j; 5055 bfd_vma header_pad = 0; 5056 5057 if (link_info == NULL 5058 && !_bfd_elf_map_sections_to_segments (abfd, link_info)) 5059 return FALSE; 5060 5061 alloc = 0; 5062 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 5063 { 5064 ++alloc; 5065 if (m->header_size) 5066 header_pad = m->header_size; 5067 } 5068 5069 if (alloc) 5070 { 5071 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr; 5072 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr; 5073 } 5074 else 5075 { 5076 /* PR binutils/12467. */ 5077 elf_elfheader (abfd)->e_phoff = 0; 5078 elf_elfheader (abfd)->e_phentsize = 0; 5079 } 5080 5081 elf_elfheader (abfd)->e_phnum = alloc; 5082 5083 if (elf_program_header_size (abfd) == (bfd_size_type) -1) 5084 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr; 5085 else 5086 BFD_ASSERT (elf_program_header_size (abfd) 5087 >= alloc * bed->s->sizeof_phdr); 5088 5089 if (alloc == 0) 5090 { 5091 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr; 5092 return TRUE; 5093 } 5094 5095 /* We're writing the size in elf_program_header_size (abfd), 5096 see assign_file_positions_except_relocs, so make sure we have 5097 that amount allocated, with trailing space cleared. 5098 The variable alloc contains the computed need, while 5099 elf_program_header_size (abfd) contains the size used for the 5100 layout. 5101 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments 5102 where the layout is forced to according to a larger size in the 5103 last iterations for the testcase ld-elf/header. */ 5104 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr 5105 == 0); 5106 phdrs = (Elf_Internal_Phdr *) 5107 bfd_zalloc2 (abfd, 5108 (elf_program_header_size (abfd) / bed->s->sizeof_phdr), 5109 sizeof (Elf_Internal_Phdr)); 5110 elf_tdata (abfd)->phdr = phdrs; 5111 if (phdrs == NULL) 5112 return FALSE; 5113 5114 maxpagesize = 1; 5115 if ((abfd->flags & D_PAGED) != 0) 5116 maxpagesize = bed->maxpagesize; 5117 5118 off = bed->s->sizeof_ehdr; 5119 off += alloc * bed->s->sizeof_phdr; 5120 if (header_pad < (bfd_vma) off) 5121 header_pad = 0; 5122 else 5123 header_pad -= off; 5124 off += header_pad; 5125 5126 for (m = elf_seg_map (abfd), p = phdrs, j = 0; 5127 m != NULL; 5128 m = m->next, p++, j++) 5129 { 5130 asection **secpp; 5131 bfd_vma off_adjust; 5132 bfd_boolean no_contents; 5133 5134 /* If elf_segment_map is not from map_sections_to_segments, the 5135 sections may not be correctly ordered. NOTE: sorting should 5136 not be done to the PT_NOTE section of a corefile, which may 5137 contain several pseudo-sections artificially created by bfd. 5138 Sorting these pseudo-sections breaks things badly. */ 5139 if (m->count > 1 5140 && !(elf_elfheader (abfd)->e_type == ET_CORE 5141 && m->p_type == PT_NOTE)) 5142 qsort (m->sections, (size_t) m->count, sizeof (asection *), 5143 elf_sort_sections); 5144 5145 /* An ELF segment (described by Elf_Internal_Phdr) may contain a 5146 number of sections with contents contributing to both p_filesz 5147 and p_memsz, followed by a number of sections with no contents 5148 that just contribute to p_memsz. In this loop, OFF tracks next 5149 available file offset for PT_LOAD and PT_NOTE segments. */ 5150 p->p_type = m->p_type; 5151 p->p_flags = m->p_flags; 5152 5153 if (m->count == 0) 5154 p->p_vaddr = 0; 5155 else 5156 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset; 5157 5158 if (m->p_paddr_valid) 5159 p->p_paddr = m->p_paddr; 5160 else if (m->count == 0) 5161 p->p_paddr = 0; 5162 else 5163 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset; 5164 5165 if (p->p_type == PT_LOAD 5166 && (abfd->flags & D_PAGED) != 0) 5167 { 5168 /* p_align in demand paged PT_LOAD segments effectively stores 5169 the maximum page size. When copying an executable with 5170 objcopy, we set m->p_align from the input file. Use this 5171 value for maxpagesize rather than bed->maxpagesize, which 5172 may be different. Note that we use maxpagesize for PT_TLS 5173 segment alignment later in this function, so we are relying 5174 on at least one PT_LOAD segment appearing before a PT_TLS 5175 segment. */ 5176 if (m->p_align_valid) 5177 maxpagesize = m->p_align; 5178 5179 p->p_align = maxpagesize; 5180 } 5181 else if (m->p_align_valid) 5182 p->p_align = m->p_align; 5183 else if (m->count == 0) 5184 p->p_align = 1 << bed->s->log_file_align; 5185 else 5186 p->p_align = 0; 5187 5188 no_contents = FALSE; 5189 off_adjust = 0; 5190 if (p->p_type == PT_LOAD 5191 && m->count > 0) 5192 { 5193 bfd_size_type align; 5194 unsigned int align_power = 0; 5195 5196 if (m->p_align_valid) 5197 align = p->p_align; 5198 else 5199 { 5200 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) 5201 { 5202 unsigned int secalign; 5203 5204 secalign = bfd_get_section_alignment (abfd, *secpp); 5205 if (secalign > align_power) 5206 align_power = secalign; 5207 } 5208 align = (bfd_size_type) 1 << align_power; 5209 if (align < maxpagesize) 5210 align = maxpagesize; 5211 } 5212 5213 for (i = 0; i < m->count; i++) 5214 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0) 5215 /* If we aren't making room for this section, then 5216 it must be SHT_NOBITS regardless of what we've 5217 set via struct bfd_elf_special_section. */ 5218 elf_section_type (m->sections[i]) = SHT_NOBITS; 5219 5220 /* Find out whether this segment contains any loadable 5221 sections. */ 5222 no_contents = TRUE; 5223 for (i = 0; i < m->count; i++) 5224 if (elf_section_type (m->sections[i]) != SHT_NOBITS) 5225 { 5226 no_contents = FALSE; 5227 break; 5228 } 5229 5230 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align); 5231 off += off_adjust; 5232 if (no_contents) 5233 { 5234 /* We shouldn't need to align the segment on disk since 5235 the segment doesn't need file space, but the gABI 5236 arguably requires the alignment and glibc ld.so 5237 checks it. So to comply with the alignment 5238 requirement but not waste file space, we adjust 5239 p_offset for just this segment. (OFF_ADJUST is 5240 subtracted from OFF later.) This may put p_offset 5241 past the end of file, but that shouldn't matter. */ 5242 } 5243 else 5244 off_adjust = 0; 5245 } 5246 /* Make sure the .dynamic section is the first section in the 5247 PT_DYNAMIC segment. */ 5248 else if (p->p_type == PT_DYNAMIC 5249 && m->count > 1 5250 && strcmp (m->sections[0]->name, ".dynamic") != 0) 5251 { 5252 _bfd_error_handler 5253 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"), 5254 abfd); 5255 bfd_set_error (bfd_error_bad_value); 5256 return FALSE; 5257 } 5258 /* Set the note section type to SHT_NOTE. */ 5259 else if (p->p_type == PT_NOTE) 5260 for (i = 0; i < m->count; i++) 5261 elf_section_type (m->sections[i]) = SHT_NOTE; 5262 5263 p->p_offset = 0; 5264 p->p_filesz = 0; 5265 p->p_memsz = 0; 5266 5267 if (m->includes_filehdr) 5268 { 5269 if (!m->p_flags_valid) 5270 p->p_flags |= PF_R; 5271 p->p_filesz = bed->s->sizeof_ehdr; 5272 p->p_memsz = bed->s->sizeof_ehdr; 5273 if (m->count > 0) 5274 { 5275 if (p->p_vaddr < (bfd_vma) off 5276 || (!m->p_paddr_valid 5277 && p->p_paddr < (bfd_vma) off)) 5278 { 5279 (*_bfd_error_handler) 5280 (_("%B: Not enough room for program headers, try linking with -N"), 5281 abfd); 5282 bfd_set_error (bfd_error_bad_value); 5283 return FALSE; 5284 } 5285 5286 p->p_vaddr -= off; 5287 if (!m->p_paddr_valid) 5288 p->p_paddr -= off; 5289 } 5290 } 5291 5292 if (m->includes_phdrs) 5293 { 5294 if (!m->p_flags_valid) 5295 p->p_flags |= PF_R; 5296 5297 if (!m->includes_filehdr) 5298 { 5299 p->p_offset = bed->s->sizeof_ehdr; 5300 5301 if (m->count > 0) 5302 { 5303 p->p_vaddr -= off - p->p_offset; 5304 if (!m->p_paddr_valid) 5305 p->p_paddr -= off - p->p_offset; 5306 } 5307 } 5308 5309 p->p_filesz += alloc * bed->s->sizeof_phdr; 5310 p->p_memsz += alloc * bed->s->sizeof_phdr; 5311 if (m->count) 5312 { 5313 p->p_filesz += header_pad; 5314 p->p_memsz += header_pad; 5315 } 5316 } 5317 5318 if (p->p_type == PT_LOAD 5319 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)) 5320 { 5321 if (!m->includes_filehdr && !m->includes_phdrs) 5322 p->p_offset = off; 5323 else 5324 { 5325 file_ptr adjust; 5326 5327 adjust = off - (p->p_offset + p->p_filesz); 5328 if (!no_contents) 5329 p->p_filesz += adjust; 5330 p->p_memsz += adjust; 5331 } 5332 } 5333 5334 /* Set up p_filesz, p_memsz, p_align and p_flags from the section 5335 maps. Set filepos for sections in PT_LOAD segments, and in 5336 core files, for sections in PT_NOTE segments. 5337 assign_file_positions_for_non_load_sections will set filepos 5338 for other sections and update p_filesz for other segments. */ 5339 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) 5340 { 5341 asection *sec; 5342 bfd_size_type align; 5343 Elf_Internal_Shdr *this_hdr; 5344 5345 sec = *secpp; 5346 this_hdr = &elf_section_data (sec)->this_hdr; 5347 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec); 5348 5349 if ((p->p_type == PT_LOAD 5350 || p->p_type == PT_TLS) 5351 && (this_hdr->sh_type != SHT_NOBITS 5352 || ((this_hdr->sh_flags & SHF_ALLOC) != 0 5353 && ((this_hdr->sh_flags & SHF_TLS) == 0 5354 || p->p_type == PT_TLS)))) 5355 { 5356 bfd_vma p_start = p->p_paddr; 5357 bfd_vma p_end = p_start + p->p_memsz; 5358 bfd_vma s_start = sec->lma; 5359 bfd_vma adjust = s_start - p_end; 5360 5361 if (adjust != 0 5362 && (s_start < p_end 5363 || p_end < p_start)) 5364 { 5365 (*_bfd_error_handler) 5366 (_("%B: section %A lma %#lx adjusted to %#lx"), abfd, sec, 5367 (unsigned long) s_start, (unsigned long) p_end); 5368 adjust = 0; 5369 sec->lma = p_end; 5370 } 5371 p->p_memsz += adjust; 5372 5373 if (this_hdr->sh_type != SHT_NOBITS) 5374 { 5375 if (p->p_filesz + adjust < p->p_memsz) 5376 { 5377 /* We have a PROGBITS section following NOBITS ones. 5378 Allocate file space for the NOBITS section(s) and 5379 zero it. */ 5380 adjust = p->p_memsz - p->p_filesz; 5381 if (!write_zeros (abfd, off, adjust)) 5382 return FALSE; 5383 } 5384 off += adjust; 5385 p->p_filesz += adjust; 5386 } 5387 } 5388 5389 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core) 5390 { 5391 /* The section at i == 0 is the one that actually contains 5392 everything. */ 5393 if (i == 0) 5394 { 5395 this_hdr->sh_offset = sec->filepos = off; 5396 off += this_hdr->sh_size; 5397 p->p_filesz = this_hdr->sh_size; 5398 p->p_memsz = 0; 5399 p->p_align = 1; 5400 } 5401 else 5402 { 5403 /* The rest are fake sections that shouldn't be written. */ 5404 sec->filepos = 0; 5405 sec->size = 0; 5406 sec->flags = 0; 5407 continue; 5408 } 5409 } 5410 else 5411 { 5412 if (p->p_type == PT_LOAD) 5413 { 5414 this_hdr->sh_offset = sec->filepos = off; 5415 if (this_hdr->sh_type != SHT_NOBITS) 5416 off += this_hdr->sh_size; 5417 } 5418 else if (this_hdr->sh_type == SHT_NOBITS 5419 && (this_hdr->sh_flags & SHF_TLS) != 0 5420 && this_hdr->sh_offset == 0) 5421 { 5422 /* This is a .tbss section that didn't get a PT_LOAD. 5423 (See _bfd_elf_map_sections_to_segments "Create a 5424 final PT_LOAD".) Set sh_offset to the value it 5425 would have if we had created a zero p_filesz and 5426 p_memsz PT_LOAD header for the section. This 5427 also makes the PT_TLS header have the same 5428 p_offset value. */ 5429 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr, 5430 off, align); 5431 this_hdr->sh_offset = sec->filepos = off + adjust; 5432 } 5433 5434 if (this_hdr->sh_type != SHT_NOBITS) 5435 { 5436 p->p_filesz += this_hdr->sh_size; 5437 /* A load section without SHF_ALLOC is something like 5438 a note section in a PT_NOTE segment. These take 5439 file space but are not loaded into memory. */ 5440 if ((this_hdr->sh_flags & SHF_ALLOC) != 0) 5441 p->p_memsz += this_hdr->sh_size; 5442 } 5443 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0) 5444 { 5445 if (p->p_type == PT_TLS) 5446 p->p_memsz += this_hdr->sh_size; 5447 5448 /* .tbss is special. It doesn't contribute to p_memsz of 5449 normal segments. */ 5450 else if ((this_hdr->sh_flags & SHF_TLS) == 0) 5451 p->p_memsz += this_hdr->sh_size; 5452 } 5453 5454 if (align > p->p_align 5455 && !m->p_align_valid 5456 && (p->p_type != PT_LOAD 5457 || (abfd->flags & D_PAGED) == 0)) 5458 p->p_align = align; 5459 } 5460 5461 if (!m->p_flags_valid) 5462 { 5463 p->p_flags |= PF_R; 5464 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0) 5465 p->p_flags |= PF_X; 5466 if ((this_hdr->sh_flags & SHF_WRITE) != 0) 5467 p->p_flags |= PF_W; 5468 } 5469 } 5470 5471 off -= off_adjust; 5472 5473 /* Check that all sections are in a PT_LOAD segment. 5474 Don't check funky gdb generated core files. */ 5475 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core) 5476 { 5477 bfd_boolean check_vma = TRUE; 5478 5479 for (i = 1; i < m->count; i++) 5480 if (m->sections[i]->vma == m->sections[i - 1]->vma 5481 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i]) 5482 ->this_hdr), p) != 0 5483 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1]) 5484 ->this_hdr), p) != 0) 5485 { 5486 /* Looks like we have overlays packed into the segment. */ 5487 check_vma = FALSE; 5488 break; 5489 } 5490 5491 for (i = 0; i < m->count; i++) 5492 { 5493 Elf_Internal_Shdr *this_hdr; 5494 asection *sec; 5495 5496 sec = m->sections[i]; 5497 this_hdr = &(elf_section_data(sec)->this_hdr); 5498 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0) 5499 && !ELF_TBSS_SPECIAL (this_hdr, p)) 5500 { 5501 (*_bfd_error_handler) 5502 (_("%B: section `%A' can't be allocated in segment %d"), 5503 abfd, sec, j); 5504 print_segment_map (m); 5505 } 5506 } 5507 } 5508 } 5509 5510 elf_next_file_pos (abfd) = off; 5511 return TRUE; 5512 } 5513 5514 /* Assign file positions for the other sections. */ 5515 5516 static bfd_boolean 5517 assign_file_positions_for_non_load_sections (bfd *abfd, 5518 struct bfd_link_info *link_info) 5519 { 5520 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 5521 Elf_Internal_Shdr **i_shdrpp; 5522 Elf_Internal_Shdr **hdrpp, **end_hdrpp; 5523 Elf_Internal_Phdr *phdrs; 5524 Elf_Internal_Phdr *p; 5525 struct elf_segment_map *m; 5526 struct elf_segment_map *hdrs_segment; 5527 bfd_vma filehdr_vaddr, filehdr_paddr; 5528 bfd_vma phdrs_vaddr, phdrs_paddr; 5529 file_ptr off; 5530 unsigned int count; 5531 5532 i_shdrpp = elf_elfsections (abfd); 5533 end_hdrpp = i_shdrpp + elf_numsections (abfd); 5534 off = elf_next_file_pos (abfd); 5535 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++) 5536 { 5537 Elf_Internal_Shdr *hdr; 5538 5539 hdr = *hdrpp; 5540 if (hdr->bfd_section != NULL 5541 && (hdr->bfd_section->filepos != 0 5542 || (hdr->sh_type == SHT_NOBITS 5543 && hdr->contents == NULL))) 5544 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos); 5545 else if ((hdr->sh_flags & SHF_ALLOC) != 0) 5546 { 5547 if (hdr->sh_size != 0) 5548 (*_bfd_error_handler) 5549 (_("%B: warning: allocated section `%s' not in segment"), 5550 abfd, 5551 (hdr->bfd_section == NULL 5552 ? "*unknown*" 5553 : hdr->bfd_section->name)); 5554 /* We don't need to page align empty sections. */ 5555 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0) 5556 off += vma_page_aligned_bias (hdr->sh_addr, off, 5557 bed->maxpagesize); 5558 else 5559 off += vma_page_aligned_bias (hdr->sh_addr, off, 5560 hdr->sh_addralign); 5561 off = _bfd_elf_assign_file_position_for_section (hdr, off, 5562 FALSE); 5563 } 5564 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) 5565 && hdr->bfd_section == NULL) 5566 || (hdr->bfd_section != NULL 5567 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS)) 5568 /* Compress DWARF debug sections. */ 5569 || hdr == i_shdrpp[elf_onesymtab (abfd)] 5570 || (elf_symtab_shndx_list (abfd) != NULL 5571 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx]) 5572 || hdr == i_shdrpp[elf_strtab_sec (abfd)] 5573 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)]) 5574 hdr->sh_offset = -1; 5575 else 5576 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 5577 } 5578 5579 /* Now that we have set the section file positions, we can set up 5580 the file positions for the non PT_LOAD segments. */ 5581 count = 0; 5582 filehdr_vaddr = 0; 5583 filehdr_paddr = 0; 5584 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr; 5585 phdrs_paddr = 0; 5586 hdrs_segment = NULL; 5587 phdrs = elf_tdata (abfd)->phdr; 5588 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++) 5589 { 5590 ++count; 5591 if (p->p_type != PT_LOAD) 5592 continue; 5593 5594 if (m->includes_filehdr) 5595 { 5596 filehdr_vaddr = p->p_vaddr; 5597 filehdr_paddr = p->p_paddr; 5598 } 5599 if (m->includes_phdrs) 5600 { 5601 phdrs_vaddr = p->p_vaddr; 5602 phdrs_paddr = p->p_paddr; 5603 if (m->includes_filehdr) 5604 { 5605 hdrs_segment = m; 5606 phdrs_vaddr += bed->s->sizeof_ehdr; 5607 phdrs_paddr += bed->s->sizeof_ehdr; 5608 } 5609 } 5610 } 5611 5612 if (hdrs_segment != NULL && link_info != NULL) 5613 { 5614 /* There is a segment that contains both the file headers and the 5615 program headers, so provide a symbol __ehdr_start pointing there. 5616 A program can use this to examine itself robustly. */ 5617 5618 struct elf_link_hash_entry *hash 5619 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start", 5620 FALSE, FALSE, TRUE); 5621 /* If the symbol was referenced and not defined, define it. */ 5622 if (hash != NULL 5623 && (hash->root.type == bfd_link_hash_new 5624 || hash->root.type == bfd_link_hash_undefined 5625 || hash->root.type == bfd_link_hash_undefweak 5626 || hash->root.type == bfd_link_hash_common)) 5627 { 5628 asection *s = NULL; 5629 if (hdrs_segment->count != 0) 5630 /* The segment contains sections, so use the first one. */ 5631 s = hdrs_segment->sections[0]; 5632 else 5633 /* Use the first (i.e. lowest-addressed) section in any segment. */ 5634 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 5635 if (m->count != 0) 5636 { 5637 s = m->sections[0]; 5638 break; 5639 } 5640 5641 if (s != NULL) 5642 { 5643 hash->root.u.def.value = filehdr_vaddr - s->vma; 5644 hash->root.u.def.section = s; 5645 } 5646 else 5647 { 5648 hash->root.u.def.value = filehdr_vaddr; 5649 hash->root.u.def.section = bfd_abs_section_ptr; 5650 } 5651 5652 hash->root.type = bfd_link_hash_defined; 5653 hash->def_regular = 1; 5654 hash->non_elf = 0; 5655 } 5656 } 5657 5658 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++) 5659 { 5660 if (p->p_type == PT_GNU_RELRO) 5661 { 5662 const Elf_Internal_Phdr *lp; 5663 struct elf_segment_map *lm; 5664 5665 if (link_info != NULL) 5666 { 5667 /* During linking the range of the RELRO segment is passed 5668 in link_info. */ 5669 for (lm = elf_seg_map (abfd), lp = phdrs; 5670 lm != NULL; 5671 lm = lm->next, lp++) 5672 { 5673 if (lp->p_type == PT_LOAD 5674 && lp->p_vaddr < link_info->relro_end 5675 && lm->count != 0 5676 && lm->sections[0]->vma >= link_info->relro_start) 5677 break; 5678 } 5679 5680 BFD_ASSERT (lm != NULL); 5681 } 5682 else 5683 { 5684 /* Otherwise we are copying an executable or shared 5685 library, but we need to use the same linker logic. */ 5686 for (lp = phdrs; lp < phdrs + count; ++lp) 5687 { 5688 if (lp->p_type == PT_LOAD 5689 && lp->p_paddr == p->p_paddr) 5690 break; 5691 } 5692 } 5693 5694 if (lp < phdrs + count) 5695 { 5696 p->p_vaddr = lp->p_vaddr; 5697 p->p_paddr = lp->p_paddr; 5698 p->p_offset = lp->p_offset; 5699 if (link_info != NULL) 5700 p->p_filesz = link_info->relro_end - lp->p_vaddr; 5701 else if (m->p_size_valid) 5702 p->p_filesz = m->p_size; 5703 else 5704 abort (); 5705 p->p_memsz = p->p_filesz; 5706 /* Preserve the alignment and flags if they are valid. The 5707 gold linker generates RW/4 for the PT_GNU_RELRO section. 5708 It is better for objcopy/strip to honor these attributes 5709 otherwise gdb will choke when using separate debug files. 5710 */ 5711 if (!m->p_align_valid) 5712 p->p_align = 1; 5713 if (!m->p_flags_valid) 5714 p->p_flags = PF_R; 5715 } 5716 else 5717 { 5718 memset (p, 0, sizeof *p); 5719 p->p_type = PT_NULL; 5720 } 5721 } 5722 else if (p->p_type == PT_GNU_STACK) 5723 { 5724 if (m->p_size_valid) 5725 p->p_memsz = m->p_size; 5726 } 5727 else if (m->count != 0) 5728 { 5729 unsigned int i; 5730 if (p->p_type != PT_LOAD 5731 && (p->p_type != PT_NOTE 5732 || bfd_get_format (abfd) != bfd_core)) 5733 { 5734 if (m->includes_filehdr || m->includes_phdrs) 5735 { 5736 /* PR 17512: file: 2195325e. */ 5737 (*_bfd_error_handler) 5738 (_("%B: warning: non-load segment includes file header and/or program header"), 5739 abfd); 5740 return FALSE; 5741 } 5742 5743 p->p_filesz = 0; 5744 p->p_offset = m->sections[0]->filepos; 5745 for (i = m->count; i-- != 0;) 5746 { 5747 asection *sect = m->sections[i]; 5748 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr; 5749 if (hdr->sh_type != SHT_NOBITS) 5750 { 5751 p->p_filesz = (sect->filepos - m->sections[0]->filepos 5752 + hdr->sh_size); 5753 break; 5754 } 5755 } 5756 } 5757 } 5758 else if (m->includes_filehdr) 5759 { 5760 p->p_vaddr = filehdr_vaddr; 5761 if (! m->p_paddr_valid) 5762 p->p_paddr = filehdr_paddr; 5763 } 5764 else if (m->includes_phdrs) 5765 { 5766 p->p_vaddr = phdrs_vaddr; 5767 if (! m->p_paddr_valid) 5768 p->p_paddr = phdrs_paddr; 5769 } 5770 } 5771 5772 elf_next_file_pos (abfd) = off; 5773 5774 return TRUE; 5775 } 5776 5777 static elf_section_list * 5778 find_section_in_list (unsigned int i, elf_section_list * list) 5779 { 5780 for (;list != NULL; list = list->next) 5781 if (list->ndx == i) 5782 break; 5783 return list; 5784 } 5785 5786 /* Work out the file positions of all the sections. This is called by 5787 _bfd_elf_compute_section_file_positions. All the section sizes and 5788 VMAs must be known before this is called. 5789 5790 Reloc sections come in two flavours: Those processed specially as 5791 "side-channel" data attached to a section to which they apply, and 5792 those that bfd doesn't process as relocations. The latter sort are 5793 stored in a normal bfd section by bfd_section_from_shdr. We don't 5794 consider the former sort here, unless they form part of the loadable 5795 image. Reloc sections not assigned here will be handled later by 5796 assign_file_positions_for_relocs. 5797 5798 We also don't set the positions of the .symtab and .strtab here. */ 5799 5800 static bfd_boolean 5801 assign_file_positions_except_relocs (bfd *abfd, 5802 struct bfd_link_info *link_info) 5803 { 5804 struct elf_obj_tdata *tdata = elf_tdata (abfd); 5805 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd); 5806 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 5807 5808 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 5809 && bfd_get_format (abfd) != bfd_core) 5810 { 5811 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd); 5812 unsigned int num_sec = elf_numsections (abfd); 5813 Elf_Internal_Shdr **hdrpp; 5814 unsigned int i; 5815 file_ptr off; 5816 5817 /* Start after the ELF header. */ 5818 off = i_ehdrp->e_ehsize; 5819 5820 /* We are not creating an executable, which means that we are 5821 not creating a program header, and that the actual order of 5822 the sections in the file is unimportant. */ 5823 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++) 5824 { 5825 Elf_Internal_Shdr *hdr; 5826 5827 hdr = *hdrpp; 5828 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) 5829 && hdr->bfd_section == NULL) 5830 || (hdr->bfd_section != NULL 5831 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS)) 5832 /* Compress DWARF debug sections. */ 5833 || i == elf_onesymtab (abfd) 5834 || (elf_symtab_shndx_list (abfd) != NULL 5835 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx]) 5836 || i == elf_strtab_sec (abfd) 5837 || i == elf_shstrtab_sec (abfd)) 5838 { 5839 hdr->sh_offset = -1; 5840 } 5841 else 5842 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE); 5843 } 5844 5845 elf_next_file_pos (abfd) = off; 5846 } 5847 else 5848 { 5849 unsigned int alloc; 5850 5851 /* Assign file positions for the loaded sections based on the 5852 assignment of sections to segments. */ 5853 if (!assign_file_positions_for_load_sections (abfd, link_info)) 5854 return FALSE; 5855 5856 /* And for non-load sections. */ 5857 if (!assign_file_positions_for_non_load_sections (abfd, link_info)) 5858 return FALSE; 5859 5860 if (bed->elf_backend_modify_program_headers != NULL) 5861 { 5862 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info)) 5863 return FALSE; 5864 } 5865 5866 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */ 5867 if (link_info != NULL && bfd_link_pie (link_info)) 5868 { 5869 unsigned int num_segments = elf_elfheader (abfd)->e_phnum; 5870 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr; 5871 Elf_Internal_Phdr *end_segment = &segment[num_segments]; 5872 5873 /* Find the lowest p_vaddr in PT_LOAD segments. */ 5874 bfd_vma p_vaddr = (bfd_vma) -1; 5875 for (; segment < end_segment; segment++) 5876 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr) 5877 p_vaddr = segment->p_vaddr; 5878 5879 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD 5880 segments is non-zero. */ 5881 if (p_vaddr) 5882 i_ehdrp->e_type = ET_EXEC; 5883 } 5884 5885 /* Write out the program headers. */ 5886 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr; 5887 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0 5888 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0) 5889 return FALSE; 5890 } 5891 5892 return TRUE; 5893 } 5894 5895 static bfd_boolean 5896 prep_headers (bfd *abfd) 5897 { 5898 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */ 5899 struct elf_strtab_hash *shstrtab; 5900 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 5901 5902 i_ehdrp = elf_elfheader (abfd); 5903 5904 shstrtab = _bfd_elf_strtab_init (); 5905 if (shstrtab == NULL) 5906 return FALSE; 5907 5908 elf_shstrtab (abfd) = shstrtab; 5909 5910 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0; 5911 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1; 5912 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2; 5913 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3; 5914 5915 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass; 5916 i_ehdrp->e_ident[EI_DATA] = 5917 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB; 5918 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current; 5919 5920 if ((abfd->flags & DYNAMIC) != 0) 5921 i_ehdrp->e_type = ET_DYN; 5922 else if ((abfd->flags & EXEC_P) != 0) 5923 i_ehdrp->e_type = ET_EXEC; 5924 else if (bfd_get_format (abfd) == bfd_core) 5925 i_ehdrp->e_type = ET_CORE; 5926 else 5927 i_ehdrp->e_type = ET_REL; 5928 5929 switch (bfd_get_arch (abfd)) 5930 { 5931 case bfd_arch_unknown: 5932 i_ehdrp->e_machine = EM_NONE; 5933 break; 5934 5935 /* There used to be a long list of cases here, each one setting 5936 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE 5937 in the corresponding bfd definition. To avoid duplication, 5938 the switch was removed. Machines that need special handling 5939 can generally do it in elf_backend_final_write_processing(), 5940 unless they need the information earlier than the final write. 5941 Such need can generally be supplied by replacing the tests for 5942 e_machine with the conditions used to determine it. */ 5943 default: 5944 i_ehdrp->e_machine = bed->elf_machine_code; 5945 } 5946 5947 i_ehdrp->e_version = bed->s->ev_current; 5948 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr; 5949 5950 /* No program header, for now. */ 5951 i_ehdrp->e_phoff = 0; 5952 i_ehdrp->e_phentsize = 0; 5953 i_ehdrp->e_phnum = 0; 5954 5955 /* Each bfd section is section header entry. */ 5956 i_ehdrp->e_entry = bfd_get_start_address (abfd); 5957 i_ehdrp->e_shentsize = bed->s->sizeof_shdr; 5958 5959 /* If we're building an executable, we'll need a program header table. */ 5960 if (abfd->flags & EXEC_P) 5961 /* It all happens later. */ 5962 ; 5963 else 5964 { 5965 i_ehdrp->e_phentsize = 0; 5966 i_ehdrp->e_phoff = 0; 5967 } 5968 5969 elf_tdata (abfd)->symtab_hdr.sh_name = 5970 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE); 5971 elf_tdata (abfd)->strtab_hdr.sh_name = 5972 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE); 5973 elf_tdata (abfd)->shstrtab_hdr.sh_name = 5974 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE); 5975 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 5976 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1 5977 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1) 5978 return FALSE; 5979 5980 return TRUE; 5981 } 5982 5983 /* Assign file positions for all the reloc sections which are not part 5984 of the loadable file image, and the file position of section headers. */ 5985 5986 static bfd_boolean 5987 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd) 5988 { 5989 file_ptr off; 5990 Elf_Internal_Shdr **shdrpp, **end_shdrpp; 5991 Elf_Internal_Shdr *shdrp; 5992 Elf_Internal_Ehdr *i_ehdrp; 5993 const struct elf_backend_data *bed; 5994 5995 off = elf_next_file_pos (abfd); 5996 5997 shdrpp = elf_elfsections (abfd); 5998 end_shdrpp = shdrpp + elf_numsections (abfd); 5999 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++) 6000 { 6001 shdrp = *shdrpp; 6002 if (shdrp->sh_offset == -1) 6003 { 6004 asection *sec = shdrp->bfd_section; 6005 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL 6006 || shdrp->sh_type == SHT_RELA); 6007 if (is_rel 6008 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS))) 6009 { 6010 if (!is_rel) 6011 { 6012 const char *name = sec->name; 6013 struct bfd_elf_section_data *d; 6014 6015 /* Compress DWARF debug sections. */ 6016 if (!bfd_compress_section (abfd, sec, 6017 shdrp->contents)) 6018 return FALSE; 6019 6020 if (sec->compress_status == COMPRESS_SECTION_DONE 6021 && (abfd->flags & BFD_COMPRESS_GABI) == 0) 6022 { 6023 /* If section is compressed with zlib-gnu, convert 6024 section name from .debug_* to .zdebug_*. */ 6025 char *new_name 6026 = convert_debug_to_zdebug (abfd, name); 6027 if (new_name == NULL) 6028 return FALSE; 6029 name = new_name; 6030 } 6031 /* Add setion name to section name section. */ 6032 if (shdrp->sh_name != (unsigned int) -1) 6033 abort (); 6034 shdrp->sh_name 6035 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), 6036 name, FALSE); 6037 d = elf_section_data (sec); 6038 6039 /* Add reloc setion name to section name section. */ 6040 if (d->rel.hdr 6041 && !_bfd_elf_set_reloc_sh_name (abfd, 6042 d->rel.hdr, 6043 name, FALSE)) 6044 return FALSE; 6045 if (d->rela.hdr 6046 && !_bfd_elf_set_reloc_sh_name (abfd, 6047 d->rela.hdr, 6048 name, TRUE)) 6049 return FALSE; 6050 6051 /* Update section size and contents. */ 6052 shdrp->sh_size = sec->size; 6053 shdrp->contents = sec->contents; 6054 shdrp->bfd_section->contents = NULL; 6055 } 6056 off = _bfd_elf_assign_file_position_for_section (shdrp, 6057 off, 6058 TRUE); 6059 } 6060 } 6061 } 6062 6063 /* Place section name section after DWARF debug sections have been 6064 compressed. */ 6065 _bfd_elf_strtab_finalize (elf_shstrtab (abfd)); 6066 shdrp = &elf_tdata (abfd)->shstrtab_hdr; 6067 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd)); 6068 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE); 6069 6070 /* Place the section headers. */ 6071 i_ehdrp = elf_elfheader (abfd); 6072 bed = get_elf_backend_data (abfd); 6073 off = align_file_position (off, 1 << bed->s->log_file_align); 6074 i_ehdrp->e_shoff = off; 6075 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize; 6076 elf_next_file_pos (abfd) = off; 6077 6078 return TRUE; 6079 } 6080 6081 bfd_boolean 6082 _bfd_elf_write_object_contents (bfd *abfd) 6083 { 6084 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 6085 Elf_Internal_Shdr **i_shdrp; 6086 bfd_boolean failed; 6087 unsigned int count, num_sec; 6088 struct elf_obj_tdata *t; 6089 6090 if (! abfd->output_has_begun 6091 && ! _bfd_elf_compute_section_file_positions (abfd, NULL)) 6092 return FALSE; 6093 6094 i_shdrp = elf_elfsections (abfd); 6095 6096 failed = FALSE; 6097 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed); 6098 if (failed) 6099 return FALSE; 6100 6101 if (!_bfd_elf_assign_file_positions_for_non_load (abfd)) 6102 return FALSE; 6103 6104 /* After writing the headers, we need to write the sections too... */ 6105 num_sec = elf_numsections (abfd); 6106 for (count = 1; count < num_sec; count++) 6107 { 6108 i_shdrp[count]->sh_name 6109 = _bfd_elf_strtab_offset (elf_shstrtab (abfd), 6110 i_shdrp[count]->sh_name); 6111 if (bed->elf_backend_section_processing) 6112 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]); 6113 if (i_shdrp[count]->contents) 6114 { 6115 bfd_size_type amt = i_shdrp[count]->sh_size; 6116 6117 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0 6118 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt) 6119 return FALSE; 6120 } 6121 } 6122 6123 /* Write out the section header names. */ 6124 t = elf_tdata (abfd); 6125 if (elf_shstrtab (abfd) != NULL 6126 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0 6127 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))) 6128 return FALSE; 6129 6130 if (bed->elf_backend_final_write_processing) 6131 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd)); 6132 6133 if (!bed->s->write_shdrs_and_ehdr (abfd)) 6134 return FALSE; 6135 6136 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */ 6137 if (t->o->build_id.after_write_object_contents != NULL) 6138 return (*t->o->build_id.after_write_object_contents) (abfd); 6139 6140 return TRUE; 6141 } 6142 6143 bfd_boolean 6144 _bfd_elf_write_corefile_contents (bfd *abfd) 6145 { 6146 /* Hopefully this can be done just like an object file. */ 6147 return _bfd_elf_write_object_contents (abfd); 6148 } 6149 6150 /* Given a section, search the header to find them. */ 6151 6152 unsigned int 6153 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect) 6154 { 6155 const struct elf_backend_data *bed; 6156 unsigned int sec_index; 6157 6158 if (elf_section_data (asect) != NULL 6159 && elf_section_data (asect)->this_idx != 0) 6160 return elf_section_data (asect)->this_idx; 6161 6162 if (bfd_is_abs_section (asect)) 6163 sec_index = SHN_ABS; 6164 else if (bfd_is_com_section (asect)) 6165 sec_index = SHN_COMMON; 6166 else if (bfd_is_und_section (asect)) 6167 sec_index = SHN_UNDEF; 6168 else 6169 sec_index = SHN_BAD; 6170 6171 bed = get_elf_backend_data (abfd); 6172 if (bed->elf_backend_section_from_bfd_section) 6173 { 6174 int retval = sec_index; 6175 6176 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval)) 6177 return retval; 6178 } 6179 6180 if (sec_index == SHN_BAD) 6181 bfd_set_error (bfd_error_nonrepresentable_section); 6182 6183 return sec_index; 6184 } 6185 6186 /* Given a BFD symbol, return the index in the ELF symbol table, or -1 6187 on error. */ 6188 6189 int 6190 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr) 6191 { 6192 asymbol *asym_ptr = *asym_ptr_ptr; 6193 int idx; 6194 flagword flags = asym_ptr->flags; 6195 6196 /* When gas creates relocations against local labels, it creates its 6197 own symbol for the section, but does put the symbol into the 6198 symbol chain, so udata is 0. When the linker is generating 6199 relocatable output, this section symbol may be for one of the 6200 input sections rather than the output section. */ 6201 if (asym_ptr->udata.i == 0 6202 && (flags & BSF_SECTION_SYM) 6203 && asym_ptr->section) 6204 { 6205 asection *sec; 6206 int indx; 6207 6208 sec = asym_ptr->section; 6209 if (sec->owner != abfd && sec->output_section != NULL) 6210 sec = sec->output_section; 6211 if (sec->owner == abfd 6212 && (indx = sec->index) < elf_num_section_syms (abfd) 6213 && elf_section_syms (abfd)[indx] != NULL) 6214 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i; 6215 } 6216 6217 idx = asym_ptr->udata.i; 6218 6219 if (idx == 0) 6220 { 6221 /* This case can occur when using --strip-symbol on a symbol 6222 which is used in a relocation entry. */ 6223 (*_bfd_error_handler) 6224 (_("%B: symbol `%s' required but not present"), 6225 abfd, bfd_asymbol_name (asym_ptr)); 6226 bfd_set_error (bfd_error_no_symbols); 6227 return -1; 6228 } 6229 6230 #if DEBUG & 4 6231 { 6232 fprintf (stderr, 6233 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx\n", 6234 (long) asym_ptr, asym_ptr->name, idx, (long) flags); 6235 fflush (stderr); 6236 } 6237 #endif 6238 6239 return idx; 6240 } 6241 6242 /* Rewrite program header information. */ 6243 6244 static bfd_boolean 6245 rewrite_elf_program_header (bfd *ibfd, bfd *obfd) 6246 { 6247 Elf_Internal_Ehdr *iehdr; 6248 struct elf_segment_map *map; 6249 struct elf_segment_map *map_first; 6250 struct elf_segment_map **pointer_to_map; 6251 Elf_Internal_Phdr *segment; 6252 asection *section; 6253 unsigned int i; 6254 unsigned int num_segments; 6255 bfd_boolean phdr_included = FALSE; 6256 bfd_boolean p_paddr_valid; 6257 bfd_vma maxpagesize; 6258 struct elf_segment_map *phdr_adjust_seg = NULL; 6259 unsigned int phdr_adjust_num = 0; 6260 const struct elf_backend_data *bed; 6261 6262 bed = get_elf_backend_data (ibfd); 6263 iehdr = elf_elfheader (ibfd); 6264 6265 map_first = NULL; 6266 pointer_to_map = &map_first; 6267 6268 num_segments = elf_elfheader (ibfd)->e_phnum; 6269 maxpagesize = get_elf_backend_data (obfd)->maxpagesize; 6270 6271 /* Returns the end address of the segment + 1. */ 6272 #define SEGMENT_END(segment, start) \ 6273 (start + (segment->p_memsz > segment->p_filesz \ 6274 ? segment->p_memsz : segment->p_filesz)) 6275 6276 #define SECTION_SIZE(section, segment) \ 6277 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \ 6278 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \ 6279 ? section->size : 0) 6280 6281 /* Returns TRUE if the given section is contained within 6282 the given segment. VMA addresses are compared. */ 6283 #define IS_CONTAINED_BY_VMA(section, segment) \ 6284 (section->vma >= segment->p_vaddr \ 6285 && (section->vma + SECTION_SIZE (section, segment) \ 6286 <= (SEGMENT_END (segment, segment->p_vaddr)))) 6287 6288 /* Returns TRUE if the given section is contained within 6289 the given segment. LMA addresses are compared. */ 6290 #define IS_CONTAINED_BY_LMA(section, segment, base) \ 6291 (section->lma >= base \ 6292 && (section->lma + SECTION_SIZE (section, segment) \ 6293 <= SEGMENT_END (segment, base))) 6294 6295 /* Handle PT_NOTE segment. */ 6296 #define IS_NOTE(p, s) \ 6297 (p->p_type == PT_NOTE \ 6298 && elf_section_type (s) == SHT_NOTE \ 6299 && (bfd_vma) s->filepos >= p->p_offset \ 6300 && ((bfd_vma) s->filepos + s->size \ 6301 <= p->p_offset + p->p_filesz)) 6302 6303 /* Special case: corefile "NOTE" section containing regs, prpsinfo 6304 etc. */ 6305 #define IS_COREFILE_NOTE(p, s) \ 6306 (IS_NOTE (p, s) \ 6307 && bfd_get_format (ibfd) == bfd_core \ 6308 && s->vma == 0 \ 6309 && s->lma == 0) 6310 6311 /* The complicated case when p_vaddr is 0 is to handle the Solaris 6312 linker, which generates a PT_INTERP section with p_vaddr and 6313 p_memsz set to 0. */ 6314 #define IS_SOLARIS_PT_INTERP(p, s) \ 6315 (p->p_vaddr == 0 \ 6316 && p->p_paddr == 0 \ 6317 && p->p_memsz == 0 \ 6318 && p->p_filesz > 0 \ 6319 && (s->flags & SEC_HAS_CONTENTS) != 0 \ 6320 && s->size > 0 \ 6321 && (bfd_vma) s->filepos >= p->p_offset \ 6322 && ((bfd_vma) s->filepos + s->size \ 6323 <= p->p_offset + p->p_filesz)) 6324 6325 /* Decide if the given section should be included in the given segment. 6326 A section will be included if: 6327 1. It is within the address space of the segment -- we use the LMA 6328 if that is set for the segment and the VMA otherwise, 6329 2. It is an allocated section or a NOTE section in a PT_NOTE 6330 segment. 6331 3. There is an output section associated with it, 6332 4. The section has not already been allocated to a previous segment. 6333 5. PT_GNU_STACK segments do not include any sections. 6334 6. PT_TLS segment includes only SHF_TLS sections. 6335 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. 6336 8. PT_DYNAMIC should not contain empty sections at the beginning 6337 (with the possible exception of .dynamic). */ 6338 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \ 6339 ((((segment->p_paddr \ 6340 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \ 6341 : IS_CONTAINED_BY_VMA (section, segment)) \ 6342 && (section->flags & SEC_ALLOC) != 0) \ 6343 || IS_NOTE (segment, section)) \ 6344 && segment->p_type != PT_GNU_STACK \ 6345 && (segment->p_type != PT_TLS \ 6346 || (section->flags & SEC_THREAD_LOCAL)) \ 6347 && (segment->p_type == PT_LOAD \ 6348 || segment->p_type == PT_TLS \ 6349 || (section->flags & SEC_THREAD_LOCAL) == 0) \ 6350 && (segment->p_type != PT_DYNAMIC \ 6351 || SECTION_SIZE (section, segment) > 0 \ 6352 || (segment->p_paddr \ 6353 ? segment->p_paddr != section->lma \ 6354 : segment->p_vaddr != section->vma) \ 6355 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \ 6356 == 0)) \ 6357 && !section->segment_mark) 6358 6359 /* If the output section of a section in the input segment is NULL, 6360 it is removed from the corresponding output segment. */ 6361 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \ 6362 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \ 6363 && section->output_section != NULL) 6364 6365 /* Returns TRUE iff seg1 starts after the end of seg2. */ 6366 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \ 6367 (seg1->field >= SEGMENT_END (seg2, seg2->field)) 6368 6369 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both 6370 their VMA address ranges and their LMA address ranges overlap. 6371 It is possible to have overlapping VMA ranges without overlapping LMA 6372 ranges. RedBoot images for example can have both .data and .bss mapped 6373 to the same VMA range, but with the .data section mapped to a different 6374 LMA. */ 6375 #define SEGMENT_OVERLAPS(seg1, seg2) \ 6376 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \ 6377 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \ 6378 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \ 6379 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr))) 6380 6381 /* Initialise the segment mark field. */ 6382 for (section = ibfd->sections; section != NULL; section = section->next) 6383 section->segment_mark = FALSE; 6384 6385 /* The Solaris linker creates program headers in which all the 6386 p_paddr fields are zero. When we try to objcopy or strip such a 6387 file, we get confused. Check for this case, and if we find it 6388 don't set the p_paddr_valid fields. */ 6389 p_paddr_valid = FALSE; 6390 for (i = 0, segment = elf_tdata (ibfd)->phdr; 6391 i < num_segments; 6392 i++, segment++) 6393 if (segment->p_paddr != 0) 6394 { 6395 p_paddr_valid = TRUE; 6396 break; 6397 } 6398 6399 /* Scan through the segments specified in the program header 6400 of the input BFD. For this first scan we look for overlaps 6401 in the loadable segments. These can be created by weird 6402 parameters to objcopy. Also, fix some solaris weirdness. */ 6403 for (i = 0, segment = elf_tdata (ibfd)->phdr; 6404 i < num_segments; 6405 i++, segment++) 6406 { 6407 unsigned int j; 6408 Elf_Internal_Phdr *segment2; 6409 6410 if (segment->p_type == PT_INTERP) 6411 for (section = ibfd->sections; section; section = section->next) 6412 if (IS_SOLARIS_PT_INTERP (segment, section)) 6413 { 6414 /* Mininal change so that the normal section to segment 6415 assignment code will work. */ 6416 segment->p_vaddr = section->vma; 6417 break; 6418 } 6419 6420 if (segment->p_type != PT_LOAD) 6421 { 6422 /* Remove PT_GNU_RELRO segment. */ 6423 if (segment->p_type == PT_GNU_RELRO) 6424 segment->p_type = PT_NULL; 6425 continue; 6426 } 6427 6428 /* Determine if this segment overlaps any previous segments. */ 6429 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++) 6430 { 6431 bfd_signed_vma extra_length; 6432 6433 if (segment2->p_type != PT_LOAD 6434 || !SEGMENT_OVERLAPS (segment, segment2)) 6435 continue; 6436 6437 /* Merge the two segments together. */ 6438 if (segment2->p_vaddr < segment->p_vaddr) 6439 { 6440 /* Extend SEGMENT2 to include SEGMENT and then delete 6441 SEGMENT. */ 6442 extra_length = (SEGMENT_END (segment, segment->p_vaddr) 6443 - SEGMENT_END (segment2, segment2->p_vaddr)); 6444 6445 if (extra_length > 0) 6446 { 6447 segment2->p_memsz += extra_length; 6448 segment2->p_filesz += extra_length; 6449 } 6450 6451 segment->p_type = PT_NULL; 6452 6453 /* Since we have deleted P we must restart the outer loop. */ 6454 i = 0; 6455 segment = elf_tdata (ibfd)->phdr; 6456 break; 6457 } 6458 else 6459 { 6460 /* Extend SEGMENT to include SEGMENT2 and then delete 6461 SEGMENT2. */ 6462 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr) 6463 - SEGMENT_END (segment, segment->p_vaddr)); 6464 6465 if (extra_length > 0) 6466 { 6467 segment->p_memsz += extra_length; 6468 segment->p_filesz += extra_length; 6469 } 6470 6471 segment2->p_type = PT_NULL; 6472 } 6473 } 6474 } 6475 6476 /* The second scan attempts to assign sections to segments. */ 6477 for (i = 0, segment = elf_tdata (ibfd)->phdr; 6478 i < num_segments; 6479 i++, segment++) 6480 { 6481 unsigned int section_count; 6482 asection **sections; 6483 asection *output_section; 6484 unsigned int isec; 6485 bfd_vma matching_lma; 6486 bfd_vma suggested_lma; 6487 unsigned int j; 6488 bfd_size_type amt; 6489 asection *first_section; 6490 bfd_boolean first_matching_lma; 6491 bfd_boolean first_suggested_lma; 6492 6493 if (segment->p_type == PT_NULL) 6494 continue; 6495 6496 first_section = NULL; 6497 /* Compute how many sections might be placed into this segment. */ 6498 for (section = ibfd->sections, section_count = 0; 6499 section != NULL; 6500 section = section->next) 6501 { 6502 /* Find the first section in the input segment, which may be 6503 removed from the corresponding output segment. */ 6504 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed)) 6505 { 6506 if (first_section == NULL) 6507 first_section = section; 6508 if (section->output_section != NULL) 6509 ++section_count; 6510 } 6511 } 6512 6513 /* Allocate a segment map big enough to contain 6514 all of the sections we have selected. */ 6515 amt = sizeof (struct elf_segment_map); 6516 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *); 6517 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt); 6518 if (map == NULL) 6519 return FALSE; 6520 6521 /* Initialise the fields of the segment map. Default to 6522 using the physical address of the segment in the input BFD. */ 6523 map->next = NULL; 6524 map->p_type = segment->p_type; 6525 map->p_flags = segment->p_flags; 6526 map->p_flags_valid = 1; 6527 6528 /* If the first section in the input segment is removed, there is 6529 no need to preserve segment physical address in the corresponding 6530 output segment. */ 6531 if (!first_section || first_section->output_section != NULL) 6532 { 6533 map->p_paddr = segment->p_paddr; 6534 map->p_paddr_valid = p_paddr_valid; 6535 } 6536 6537 /* Determine if this segment contains the ELF file header 6538 and if it contains the program headers themselves. */ 6539 map->includes_filehdr = (segment->p_offset == 0 6540 && segment->p_filesz >= iehdr->e_ehsize); 6541 map->includes_phdrs = 0; 6542 6543 if (!phdr_included || segment->p_type != PT_LOAD) 6544 { 6545 map->includes_phdrs = 6546 (segment->p_offset <= (bfd_vma) iehdr->e_phoff 6547 && (segment->p_offset + segment->p_filesz 6548 >= ((bfd_vma) iehdr->e_phoff 6549 + iehdr->e_phnum * iehdr->e_phentsize))); 6550 6551 if (segment->p_type == PT_LOAD && map->includes_phdrs) 6552 phdr_included = TRUE; 6553 } 6554 6555 if (section_count == 0) 6556 { 6557 /* Special segments, such as the PT_PHDR segment, may contain 6558 no sections, but ordinary, loadable segments should contain 6559 something. They are allowed by the ELF spec however, so only 6560 a warning is produced. */ 6561 if (segment->p_type == PT_LOAD) 6562 (*_bfd_error_handler) (_("\ 6563 %B: warning: Empty loadable segment detected, is this intentional ?"), 6564 ibfd); 6565 6566 map->count = 0; 6567 *pointer_to_map = map; 6568 pointer_to_map = &map->next; 6569 6570 continue; 6571 } 6572 6573 /* Now scan the sections in the input BFD again and attempt 6574 to add their corresponding output sections to the segment map. 6575 The problem here is how to handle an output section which has 6576 been moved (ie had its LMA changed). There are four possibilities: 6577 6578 1. None of the sections have been moved. 6579 In this case we can continue to use the segment LMA from the 6580 input BFD. 6581 6582 2. All of the sections have been moved by the same amount. 6583 In this case we can change the segment's LMA to match the LMA 6584 of the first section. 6585 6586 3. Some of the sections have been moved, others have not. 6587 In this case those sections which have not been moved can be 6588 placed in the current segment which will have to have its size, 6589 and possibly its LMA changed, and a new segment or segments will 6590 have to be created to contain the other sections. 6591 6592 4. The sections have been moved, but not by the same amount. 6593 In this case we can change the segment's LMA to match the LMA 6594 of the first section and we will have to create a new segment 6595 or segments to contain the other sections. 6596 6597 In order to save time, we allocate an array to hold the section 6598 pointers that we are interested in. As these sections get assigned 6599 to a segment, they are removed from this array. */ 6600 6601 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *)); 6602 if (sections == NULL) 6603 return FALSE; 6604 6605 /* Step One: Scan for segment vs section LMA conflicts. 6606 Also add the sections to the section array allocated above. 6607 Also add the sections to the current segment. In the common 6608 case, where the sections have not been moved, this means that 6609 we have completely filled the segment, and there is nothing 6610 more to do. */ 6611 isec = 0; 6612 matching_lma = 0; 6613 suggested_lma = 0; 6614 first_matching_lma = TRUE; 6615 first_suggested_lma = TRUE; 6616 6617 for (section = first_section, j = 0; 6618 section != NULL; 6619 section = section->next) 6620 { 6621 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed)) 6622 { 6623 output_section = section->output_section; 6624 6625 sections[j++] = section; 6626 6627 /* The Solaris native linker always sets p_paddr to 0. 6628 We try to catch that case here, and set it to the 6629 correct value. Note - some backends require that 6630 p_paddr be left as zero. */ 6631 if (!p_paddr_valid 6632 && segment->p_vaddr != 0 6633 && !bed->want_p_paddr_set_to_zero 6634 && isec == 0 6635 && output_section->lma != 0 6636 && output_section->vma == (segment->p_vaddr 6637 + (map->includes_filehdr 6638 ? iehdr->e_ehsize 6639 : 0) 6640 + (map->includes_phdrs 6641 ? (iehdr->e_phnum 6642 * iehdr->e_phentsize) 6643 : 0))) 6644 map->p_paddr = segment->p_vaddr; 6645 6646 /* Match up the physical address of the segment with the 6647 LMA address of the output section. */ 6648 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr) 6649 || IS_COREFILE_NOTE (segment, section) 6650 || (bed->want_p_paddr_set_to_zero 6651 && IS_CONTAINED_BY_VMA (output_section, segment))) 6652 { 6653 if (first_matching_lma || output_section->lma < matching_lma) 6654 { 6655 matching_lma = output_section->lma; 6656 first_matching_lma = FALSE; 6657 } 6658 6659 /* We assume that if the section fits within the segment 6660 then it does not overlap any other section within that 6661 segment. */ 6662 map->sections[isec++] = output_section; 6663 } 6664 else if (first_suggested_lma) 6665 { 6666 suggested_lma = output_section->lma; 6667 first_suggested_lma = FALSE; 6668 } 6669 6670 if (j == section_count) 6671 break; 6672 } 6673 } 6674 6675 BFD_ASSERT (j == section_count); 6676 6677 /* Step Two: Adjust the physical address of the current segment, 6678 if necessary. */ 6679 if (isec == section_count) 6680 { 6681 /* All of the sections fitted within the segment as currently 6682 specified. This is the default case. Add the segment to 6683 the list of built segments and carry on to process the next 6684 program header in the input BFD. */ 6685 map->count = section_count; 6686 *pointer_to_map = map; 6687 pointer_to_map = &map->next; 6688 6689 if (p_paddr_valid 6690 && !bed->want_p_paddr_set_to_zero 6691 && matching_lma != map->p_paddr 6692 && !map->includes_filehdr 6693 && !map->includes_phdrs) 6694 /* There is some padding before the first section in the 6695 segment. So, we must account for that in the output 6696 segment's vma. */ 6697 map->p_vaddr_offset = matching_lma - map->p_paddr; 6698 6699 free (sections); 6700 continue; 6701 } 6702 else 6703 { 6704 if (!first_matching_lma) 6705 { 6706 /* At least one section fits inside the current segment. 6707 Keep it, but modify its physical address to match the 6708 LMA of the first section that fitted. */ 6709 map->p_paddr = matching_lma; 6710 } 6711 else 6712 { 6713 /* None of the sections fitted inside the current segment. 6714 Change the current segment's physical address to match 6715 the LMA of the first section. */ 6716 map->p_paddr = suggested_lma; 6717 } 6718 6719 /* Offset the segment physical address from the lma 6720 to allow for space taken up by elf headers. */ 6721 if (map->includes_filehdr) 6722 { 6723 if (map->p_paddr >= iehdr->e_ehsize) 6724 map->p_paddr -= iehdr->e_ehsize; 6725 else 6726 { 6727 map->includes_filehdr = FALSE; 6728 map->includes_phdrs = FALSE; 6729 } 6730 } 6731 6732 if (map->includes_phdrs) 6733 { 6734 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize) 6735 { 6736 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize; 6737 6738 /* iehdr->e_phnum is just an estimate of the number 6739 of program headers that we will need. Make a note 6740 here of the number we used and the segment we chose 6741 to hold these headers, so that we can adjust the 6742 offset when we know the correct value. */ 6743 phdr_adjust_num = iehdr->e_phnum; 6744 phdr_adjust_seg = map; 6745 } 6746 else 6747 map->includes_phdrs = FALSE; 6748 } 6749 } 6750 6751 /* Step Three: Loop over the sections again, this time assigning 6752 those that fit to the current segment and removing them from the 6753 sections array; but making sure not to leave large gaps. Once all 6754 possible sections have been assigned to the current segment it is 6755 added to the list of built segments and if sections still remain 6756 to be assigned, a new segment is constructed before repeating 6757 the loop. */ 6758 isec = 0; 6759 do 6760 { 6761 map->count = 0; 6762 suggested_lma = 0; 6763 first_suggested_lma = TRUE; 6764 6765 /* Fill the current segment with sections that fit. */ 6766 for (j = 0; j < section_count; j++) 6767 { 6768 section = sections[j]; 6769 6770 if (section == NULL) 6771 continue; 6772 6773 output_section = section->output_section; 6774 6775 BFD_ASSERT (output_section != NULL); 6776 6777 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr) 6778 || IS_COREFILE_NOTE (segment, section)) 6779 { 6780 if (map->count == 0) 6781 { 6782 /* If the first section in a segment does not start at 6783 the beginning of the segment, then something is 6784 wrong. */ 6785 if (output_section->lma 6786 != (map->p_paddr 6787 + (map->includes_filehdr ? iehdr->e_ehsize : 0) 6788 + (map->includes_phdrs 6789 ? iehdr->e_phnum * iehdr->e_phentsize 6790 : 0))) 6791 abort (); 6792 } 6793 else 6794 { 6795 asection *prev_sec; 6796 6797 prev_sec = map->sections[map->count - 1]; 6798 6799 /* If the gap between the end of the previous section 6800 and the start of this section is more than 6801 maxpagesize then we need to start a new segment. */ 6802 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size, 6803 maxpagesize) 6804 < BFD_ALIGN (output_section->lma, maxpagesize)) 6805 || (prev_sec->lma + prev_sec->size 6806 > output_section->lma)) 6807 { 6808 if (first_suggested_lma) 6809 { 6810 suggested_lma = output_section->lma; 6811 first_suggested_lma = FALSE; 6812 } 6813 6814 continue; 6815 } 6816 } 6817 6818 map->sections[map->count++] = output_section; 6819 ++isec; 6820 sections[j] = NULL; 6821 section->segment_mark = TRUE; 6822 } 6823 else if (first_suggested_lma) 6824 { 6825 suggested_lma = output_section->lma; 6826 first_suggested_lma = FALSE; 6827 } 6828 } 6829 6830 BFD_ASSERT (map->count > 0); 6831 6832 /* Add the current segment to the list of built segments. */ 6833 *pointer_to_map = map; 6834 pointer_to_map = &map->next; 6835 6836 if (isec < section_count) 6837 { 6838 /* We still have not allocated all of the sections to 6839 segments. Create a new segment here, initialise it 6840 and carry on looping. */ 6841 amt = sizeof (struct elf_segment_map); 6842 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *); 6843 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt); 6844 if (map == NULL) 6845 { 6846 free (sections); 6847 return FALSE; 6848 } 6849 6850 /* Initialise the fields of the segment map. Set the physical 6851 physical address to the LMA of the first section that has 6852 not yet been assigned. */ 6853 map->next = NULL; 6854 map->p_type = segment->p_type; 6855 map->p_flags = segment->p_flags; 6856 map->p_flags_valid = 1; 6857 map->p_paddr = suggested_lma; 6858 map->p_paddr_valid = p_paddr_valid; 6859 map->includes_filehdr = 0; 6860 map->includes_phdrs = 0; 6861 } 6862 } 6863 while (isec < section_count); 6864 6865 free (sections); 6866 } 6867 6868 elf_seg_map (obfd) = map_first; 6869 6870 /* If we had to estimate the number of program headers that were 6871 going to be needed, then check our estimate now and adjust 6872 the offset if necessary. */ 6873 if (phdr_adjust_seg != NULL) 6874 { 6875 unsigned int count; 6876 6877 for (count = 0, map = map_first; map != NULL; map = map->next) 6878 count++; 6879 6880 if (count > phdr_adjust_num) 6881 phdr_adjust_seg->p_paddr 6882 -= (count - phdr_adjust_num) * iehdr->e_phentsize; 6883 } 6884 6885 #undef SEGMENT_END 6886 #undef SECTION_SIZE 6887 #undef IS_CONTAINED_BY_VMA 6888 #undef IS_CONTAINED_BY_LMA 6889 #undef IS_NOTE 6890 #undef IS_COREFILE_NOTE 6891 #undef IS_SOLARIS_PT_INTERP 6892 #undef IS_SECTION_IN_INPUT_SEGMENT 6893 #undef INCLUDE_SECTION_IN_SEGMENT 6894 #undef SEGMENT_AFTER_SEGMENT 6895 #undef SEGMENT_OVERLAPS 6896 return TRUE; 6897 } 6898 6899 /* Copy ELF program header information. */ 6900 6901 static bfd_boolean 6902 copy_elf_program_header (bfd *ibfd, bfd *obfd) 6903 { 6904 Elf_Internal_Ehdr *iehdr; 6905 struct elf_segment_map *map; 6906 struct elf_segment_map *map_first; 6907 struct elf_segment_map **pointer_to_map; 6908 Elf_Internal_Phdr *segment; 6909 unsigned int i; 6910 unsigned int num_segments; 6911 bfd_boolean phdr_included = FALSE; 6912 bfd_boolean p_paddr_valid; 6913 6914 iehdr = elf_elfheader (ibfd); 6915 6916 map_first = NULL; 6917 pointer_to_map = &map_first; 6918 6919 /* If all the segment p_paddr fields are zero, don't set 6920 map->p_paddr_valid. */ 6921 p_paddr_valid = FALSE; 6922 num_segments = elf_elfheader (ibfd)->e_phnum; 6923 for (i = 0, segment = elf_tdata (ibfd)->phdr; 6924 i < num_segments; 6925 i++, segment++) 6926 if (segment->p_paddr != 0) 6927 { 6928 p_paddr_valid = TRUE; 6929 break; 6930 } 6931 6932 for (i = 0, segment = elf_tdata (ibfd)->phdr; 6933 i < num_segments; 6934 i++, segment++) 6935 { 6936 asection *section; 6937 unsigned int section_count; 6938 bfd_size_type amt; 6939 Elf_Internal_Shdr *this_hdr; 6940 asection *first_section = NULL; 6941 asection *lowest_section; 6942 6943 /* Compute how many sections are in this segment. */ 6944 for (section = ibfd->sections, section_count = 0; 6945 section != NULL; 6946 section = section->next) 6947 { 6948 this_hdr = &(elf_section_data(section)->this_hdr); 6949 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment)) 6950 { 6951 if (first_section == NULL) 6952 first_section = section; 6953 section_count++; 6954 } 6955 } 6956 6957 /* Allocate a segment map big enough to contain 6958 all of the sections we have selected. */ 6959 amt = sizeof (struct elf_segment_map); 6960 if (section_count != 0) 6961 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *); 6962 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt); 6963 if (map == NULL) 6964 return FALSE; 6965 6966 /* Initialize the fields of the output segment map with the 6967 input segment. */ 6968 map->next = NULL; 6969 map->p_type = segment->p_type; 6970 map->p_flags = segment->p_flags; 6971 map->p_flags_valid = 1; 6972 map->p_paddr = segment->p_paddr; 6973 map->p_paddr_valid = p_paddr_valid; 6974 map->p_align = segment->p_align; 6975 map->p_align_valid = 1; 6976 map->p_vaddr_offset = 0; 6977 6978 if (map->p_type == PT_GNU_RELRO 6979 || map->p_type == PT_GNU_STACK) 6980 { 6981 /* The PT_GNU_RELRO segment may contain the first a few 6982 bytes in the .got.plt section even if the whole .got.plt 6983 section isn't in the PT_GNU_RELRO segment. We won't 6984 change the size of the PT_GNU_RELRO segment. 6985 Similarly, PT_GNU_STACK size is significant on uclinux 6986 systems. */ 6987 map->p_size = segment->p_memsz; 6988 map->p_size_valid = 1; 6989 } 6990 6991 /* Determine if this segment contains the ELF file header 6992 and if it contains the program headers themselves. */ 6993 map->includes_filehdr = (segment->p_offset == 0 6994 && segment->p_filesz >= iehdr->e_ehsize); 6995 6996 map->includes_phdrs = 0; 6997 if (! phdr_included || segment->p_type != PT_LOAD) 6998 { 6999 map->includes_phdrs = 7000 (segment->p_offset <= (bfd_vma) iehdr->e_phoff 7001 && (segment->p_offset + segment->p_filesz 7002 >= ((bfd_vma) iehdr->e_phoff 7003 + iehdr->e_phnum * iehdr->e_phentsize))); 7004 7005 if (segment->p_type == PT_LOAD && map->includes_phdrs) 7006 phdr_included = TRUE; 7007 } 7008 7009 lowest_section = NULL; 7010 if (section_count != 0) 7011 { 7012 unsigned int isec = 0; 7013 7014 for (section = first_section; 7015 section != NULL; 7016 section = section->next) 7017 { 7018 this_hdr = &(elf_section_data(section)->this_hdr); 7019 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment)) 7020 { 7021 map->sections[isec++] = section->output_section; 7022 if ((section->flags & SEC_ALLOC) != 0) 7023 { 7024 bfd_vma seg_off; 7025 7026 if (lowest_section == NULL 7027 || section->lma < lowest_section->lma) 7028 lowest_section = section; 7029 7030 /* Section lmas are set up from PT_LOAD header 7031 p_paddr in _bfd_elf_make_section_from_shdr. 7032 If this header has a p_paddr that disagrees 7033 with the section lma, flag the p_paddr as 7034 invalid. */ 7035 if ((section->flags & SEC_LOAD) != 0) 7036 seg_off = this_hdr->sh_offset - segment->p_offset; 7037 else 7038 seg_off = this_hdr->sh_addr - segment->p_vaddr; 7039 if (section->lma - segment->p_paddr != seg_off) 7040 map->p_paddr_valid = FALSE; 7041 } 7042 if (isec == section_count) 7043 break; 7044 } 7045 } 7046 } 7047 7048 if (map->includes_filehdr && lowest_section != NULL) 7049 /* We need to keep the space used by the headers fixed. */ 7050 map->header_size = lowest_section->vma - segment->p_vaddr; 7051 7052 if (!map->includes_phdrs 7053 && !map->includes_filehdr 7054 && map->p_paddr_valid) 7055 /* There is some other padding before the first section. */ 7056 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0) 7057 - segment->p_paddr); 7058 7059 map->count = section_count; 7060 *pointer_to_map = map; 7061 pointer_to_map = &map->next; 7062 } 7063 7064 elf_seg_map (obfd) = map_first; 7065 return TRUE; 7066 } 7067 7068 /* Copy private BFD data. This copies or rewrites ELF program header 7069 information. */ 7070 7071 static bfd_boolean 7072 copy_private_bfd_data (bfd *ibfd, bfd *obfd) 7073 { 7074 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 7075 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 7076 return TRUE; 7077 7078 if (elf_tdata (ibfd)->phdr == NULL) 7079 return TRUE; 7080 7081 if (ibfd->xvec == obfd->xvec) 7082 { 7083 /* Check to see if any sections in the input BFD 7084 covered by ELF program header have changed. */ 7085 Elf_Internal_Phdr *segment; 7086 asection *section, *osec; 7087 unsigned int i, num_segments; 7088 Elf_Internal_Shdr *this_hdr; 7089 const struct elf_backend_data *bed; 7090 7091 bed = get_elf_backend_data (ibfd); 7092 7093 /* Regenerate the segment map if p_paddr is set to 0. */ 7094 if (bed->want_p_paddr_set_to_zero) 7095 goto rewrite; 7096 7097 /* Initialize the segment mark field. */ 7098 for (section = obfd->sections; section != NULL; 7099 section = section->next) 7100 section->segment_mark = FALSE; 7101 7102 num_segments = elf_elfheader (ibfd)->e_phnum; 7103 for (i = 0, segment = elf_tdata (ibfd)->phdr; 7104 i < num_segments; 7105 i++, segment++) 7106 { 7107 /* PR binutils/3535. The Solaris linker always sets the p_paddr 7108 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0 7109 which severly confuses things, so always regenerate the segment 7110 map in this case. */ 7111 if (segment->p_paddr == 0 7112 && segment->p_memsz == 0 7113 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC)) 7114 goto rewrite; 7115 7116 for (section = ibfd->sections; 7117 section != NULL; section = section->next) 7118 { 7119 /* We mark the output section so that we know it comes 7120 from the input BFD. */ 7121 osec = section->output_section; 7122 if (osec) 7123 osec->segment_mark = TRUE; 7124 7125 /* Check if this section is covered by the segment. */ 7126 this_hdr = &(elf_section_data(section)->this_hdr); 7127 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment)) 7128 { 7129 /* FIXME: Check if its output section is changed or 7130 removed. What else do we need to check? */ 7131 if (osec == NULL 7132 || section->flags != osec->flags 7133 || section->lma != osec->lma 7134 || section->vma != osec->vma 7135 || section->size != osec->size 7136 || section->rawsize != osec->rawsize 7137 || section->alignment_power != osec->alignment_power) 7138 goto rewrite; 7139 } 7140 } 7141 } 7142 7143 /* Check to see if any output section do not come from the 7144 input BFD. */ 7145 for (section = obfd->sections; section != NULL; 7146 section = section->next) 7147 { 7148 if (section->segment_mark == FALSE) 7149 goto rewrite; 7150 else 7151 section->segment_mark = FALSE; 7152 } 7153 7154 return copy_elf_program_header (ibfd, obfd); 7155 } 7156 7157 rewrite: 7158 if (ibfd->xvec == obfd->xvec) 7159 { 7160 /* When rewriting program header, set the output maxpagesize to 7161 the maximum alignment of input PT_LOAD segments. */ 7162 Elf_Internal_Phdr *segment; 7163 unsigned int i; 7164 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum; 7165 bfd_vma maxpagesize = 0; 7166 7167 for (i = 0, segment = elf_tdata (ibfd)->phdr; 7168 i < num_segments; 7169 i++, segment++) 7170 if (segment->p_type == PT_LOAD 7171 && maxpagesize < segment->p_align) 7172 { 7173 /* PR 17512: file: f17299af. */ 7174 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2)) 7175 (*_bfd_error_handler) (_("\ 7176 %B: warning: segment alignment of 0x%llx is too large"), 7177 ibfd, (long long) segment->p_align); 7178 else 7179 maxpagesize = segment->p_align; 7180 } 7181 7182 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize) 7183 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize); 7184 } 7185 7186 return rewrite_elf_program_header (ibfd, obfd); 7187 } 7188 7189 /* Initialize private output section information from input section. */ 7190 7191 bfd_boolean 7192 _bfd_elf_init_private_section_data (bfd *ibfd, 7193 asection *isec, 7194 bfd *obfd, 7195 asection *osec, 7196 struct bfd_link_info *link_info) 7197 7198 { 7199 Elf_Internal_Shdr *ihdr, *ohdr; 7200 bfd_boolean final_link = (link_info != NULL 7201 && !bfd_link_relocatable (link_info)); 7202 7203 if (ibfd->xvec->flavour != bfd_target_elf_flavour 7204 || obfd->xvec->flavour != bfd_target_elf_flavour) 7205 return TRUE; 7206 7207 BFD_ASSERT (elf_section_data (osec) != NULL); 7208 7209 /* For objcopy and relocatable link, don't copy the output ELF 7210 section type from input if the output BFD section flags have been 7211 set to something different. For a final link allow some flags 7212 that the linker clears to differ. */ 7213 if (elf_section_type (osec) == SHT_NULL 7214 && (osec->flags == isec->flags 7215 || (final_link 7216 && ((osec->flags ^ isec->flags) 7217 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0))) 7218 elf_section_type (osec) = elf_section_type (isec); 7219 7220 /* FIXME: Is this correct for all OS/PROC specific flags? */ 7221 elf_section_flags (osec) |= (elf_section_flags (isec) 7222 & (SHF_MASKOS | SHF_MASKPROC)); 7223 7224 /* Set things up for objcopy and relocatable link. The output 7225 SHT_GROUP section will have its elf_next_in_group pointing back 7226 to the input group members. Ignore linker created group section. 7227 See elfNN_ia64_object_p in elfxx-ia64.c. */ 7228 if (!final_link) 7229 { 7230 if (elf_sec_group (isec) == NULL 7231 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0) 7232 { 7233 if (elf_section_flags (isec) & SHF_GROUP) 7234 elf_section_flags (osec) |= SHF_GROUP; 7235 elf_next_in_group (osec) = elf_next_in_group (isec); 7236 elf_section_data (osec)->group = elf_section_data (isec)->group; 7237 } 7238 7239 /* If not decompress, preserve SHF_COMPRESSED. */ 7240 if ((ibfd->flags & BFD_DECOMPRESS) == 0) 7241 elf_section_flags (osec) |= (elf_section_flags (isec) 7242 & SHF_COMPRESSED); 7243 } 7244 7245 ihdr = &elf_section_data (isec)->this_hdr; 7246 7247 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We 7248 don't use the output section of the linked-to section since it 7249 may be NULL at this point. */ 7250 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0) 7251 { 7252 ohdr = &elf_section_data (osec)->this_hdr; 7253 ohdr->sh_flags |= SHF_LINK_ORDER; 7254 elf_linked_to_section (osec) = elf_linked_to_section (isec); 7255 } 7256 7257 osec->use_rela_p = isec->use_rela_p; 7258 7259 return TRUE; 7260 } 7261 7262 /* Copy private section information. This copies over the entsize 7263 field, and sometimes the info field. */ 7264 7265 bfd_boolean 7266 _bfd_elf_copy_private_section_data (bfd *ibfd, 7267 asection *isec, 7268 bfd *obfd, 7269 asection *osec) 7270 { 7271 Elf_Internal_Shdr *ihdr, *ohdr; 7272 7273 if (ibfd->xvec->flavour != bfd_target_elf_flavour 7274 || obfd->xvec->flavour != bfd_target_elf_flavour) 7275 return TRUE; 7276 7277 ihdr = &elf_section_data (isec)->this_hdr; 7278 ohdr = &elf_section_data (osec)->this_hdr; 7279 7280 ohdr->sh_entsize = ihdr->sh_entsize; 7281 7282 if (ihdr->sh_type == SHT_SYMTAB 7283 || ihdr->sh_type == SHT_DYNSYM 7284 || ihdr->sh_type == SHT_GNU_verneed 7285 || ihdr->sh_type == SHT_GNU_verdef) 7286 ohdr->sh_info = ihdr->sh_info; 7287 7288 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec, 7289 NULL); 7290 } 7291 7292 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments 7293 necessary if we are removing either the SHT_GROUP section or any of 7294 the group member sections. DISCARDED is the value that a section's 7295 output_section has if the section will be discarded, NULL when this 7296 function is called from objcopy, bfd_abs_section_ptr when called 7297 from the linker. */ 7298 7299 bfd_boolean 7300 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded) 7301 { 7302 asection *isec; 7303 7304 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 7305 if (elf_section_type (isec) == SHT_GROUP) 7306 { 7307 asection *first = elf_next_in_group (isec); 7308 asection *s = first; 7309 bfd_size_type removed = 0; 7310 7311 while (s != NULL) 7312 { 7313 /* If this member section is being output but the 7314 SHT_GROUP section is not, then clear the group info 7315 set up by _bfd_elf_copy_private_section_data. */ 7316 if (s->output_section != discarded 7317 && isec->output_section == discarded) 7318 { 7319 elf_section_flags (s->output_section) &= ~SHF_GROUP; 7320 elf_group_name (s->output_section) = NULL; 7321 } 7322 /* Conversely, if the member section is not being output 7323 but the SHT_GROUP section is, then adjust its size. */ 7324 else if (s->output_section == discarded 7325 && isec->output_section != discarded) 7326 removed += 4; 7327 s = elf_next_in_group (s); 7328 if (s == first) 7329 break; 7330 } 7331 if (removed != 0) 7332 { 7333 if (discarded != NULL) 7334 { 7335 /* If we've been called for ld -r, then we need to 7336 adjust the input section size. This function may 7337 be called multiple times, so save the original 7338 size. */ 7339 if (isec->rawsize == 0) 7340 isec->rawsize = isec->size; 7341 isec->size = isec->rawsize - removed; 7342 } 7343 else 7344 { 7345 /* Adjust the output section size when called from 7346 objcopy. */ 7347 isec->output_section->size -= removed; 7348 } 7349 } 7350 } 7351 7352 return TRUE; 7353 } 7354 7355 /* Copy private header information. */ 7356 7357 bfd_boolean 7358 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd) 7359 { 7360 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 7361 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 7362 return TRUE; 7363 7364 /* Copy over private BFD data if it has not already been copied. 7365 This must be done here, rather than in the copy_private_bfd_data 7366 entry point, because the latter is called after the section 7367 contents have been set, which means that the program headers have 7368 already been worked out. */ 7369 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL) 7370 { 7371 if (! copy_private_bfd_data (ibfd, obfd)) 7372 return FALSE; 7373 } 7374 7375 return _bfd_elf_fixup_group_sections (ibfd, NULL); 7376 } 7377 7378 /* Copy private symbol information. If this symbol is in a section 7379 which we did not map into a BFD section, try to map the section 7380 index correctly. We use special macro definitions for the mapped 7381 section indices; these definitions are interpreted by the 7382 swap_out_syms function. */ 7383 7384 #define MAP_ONESYMTAB (SHN_HIOS + 1) 7385 #define MAP_DYNSYMTAB (SHN_HIOS + 2) 7386 #define MAP_STRTAB (SHN_HIOS + 3) 7387 #define MAP_SHSTRTAB (SHN_HIOS + 4) 7388 #define MAP_SYM_SHNDX (SHN_HIOS + 5) 7389 7390 bfd_boolean 7391 _bfd_elf_copy_private_symbol_data (bfd *ibfd, 7392 asymbol *isymarg, 7393 bfd *obfd, 7394 asymbol *osymarg) 7395 { 7396 elf_symbol_type *isym, *osym; 7397 7398 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 7399 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 7400 return TRUE; 7401 7402 isym = elf_symbol_from (ibfd, isymarg); 7403 osym = elf_symbol_from (obfd, osymarg); 7404 7405 if (isym != NULL 7406 && isym->internal_elf_sym.st_shndx != 0 7407 && osym != NULL 7408 && bfd_is_abs_section (isym->symbol.section)) 7409 { 7410 unsigned int shndx; 7411 7412 shndx = isym->internal_elf_sym.st_shndx; 7413 if (shndx == elf_onesymtab (ibfd)) 7414 shndx = MAP_ONESYMTAB; 7415 else if (shndx == elf_dynsymtab (ibfd)) 7416 shndx = MAP_DYNSYMTAB; 7417 else if (shndx == elf_strtab_sec (ibfd)) 7418 shndx = MAP_STRTAB; 7419 else if (shndx == elf_shstrtab_sec (ibfd)) 7420 shndx = MAP_SHSTRTAB; 7421 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd))) 7422 shndx = MAP_SYM_SHNDX; 7423 osym->internal_elf_sym.st_shndx = shndx; 7424 } 7425 7426 return TRUE; 7427 } 7428 7429 /* Swap out the symbols. */ 7430 7431 static bfd_boolean 7432 swap_out_syms (bfd *abfd, 7433 struct elf_strtab_hash **sttp, 7434 int relocatable_p) 7435 { 7436 const struct elf_backend_data *bed; 7437 int symcount; 7438 asymbol **syms; 7439 struct elf_strtab_hash *stt; 7440 Elf_Internal_Shdr *symtab_hdr; 7441 Elf_Internal_Shdr *symtab_shndx_hdr; 7442 Elf_Internal_Shdr *symstrtab_hdr; 7443 struct elf_sym_strtab *symstrtab; 7444 bfd_byte *outbound_syms; 7445 bfd_byte *outbound_shndx; 7446 unsigned long outbound_syms_index; 7447 unsigned long outbound_shndx_index; 7448 int idx; 7449 unsigned int num_locals; 7450 bfd_size_type amt; 7451 bfd_boolean name_local_sections; 7452 7453 if (!elf_map_symbols (abfd, &num_locals)) 7454 return FALSE; 7455 7456 /* Dump out the symtabs. */ 7457 stt = _bfd_elf_strtab_init (); 7458 if (stt == NULL) 7459 return FALSE; 7460 7461 bed = get_elf_backend_data (abfd); 7462 symcount = bfd_get_symcount (abfd); 7463 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 7464 symtab_hdr->sh_type = SHT_SYMTAB; 7465 symtab_hdr->sh_entsize = bed->s->sizeof_sym; 7466 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1); 7467 symtab_hdr->sh_info = num_locals + 1; 7468 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; 7469 7470 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; 7471 symstrtab_hdr->sh_type = SHT_STRTAB; 7472 7473 /* Allocate buffer to swap out the .strtab section. */ 7474 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1) 7475 * sizeof (*symstrtab)); 7476 if (symstrtab == NULL) 7477 { 7478 _bfd_elf_strtab_free (stt); 7479 return FALSE; 7480 } 7481 7482 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount, 7483 bed->s->sizeof_sym); 7484 if (outbound_syms == NULL) 7485 { 7486 error_return: 7487 _bfd_elf_strtab_free (stt); 7488 free (symstrtab); 7489 return FALSE; 7490 } 7491 symtab_hdr->contents = outbound_syms; 7492 outbound_syms_index = 0; 7493 7494 outbound_shndx = NULL; 7495 outbound_shndx_index = 0; 7496 7497 if (elf_symtab_shndx_list (abfd)) 7498 { 7499 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr; 7500 if (symtab_shndx_hdr->sh_name != 0) 7501 { 7502 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx); 7503 outbound_shndx = (bfd_byte *) 7504 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx)); 7505 if (outbound_shndx == NULL) 7506 goto error_return; 7507 7508 symtab_shndx_hdr->contents = outbound_shndx; 7509 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX; 7510 symtab_shndx_hdr->sh_size = amt; 7511 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); 7512 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); 7513 } 7514 /* FIXME: What about any other headers in the list ? */ 7515 } 7516 7517 /* Now generate the data (for "contents"). */ 7518 { 7519 /* Fill in zeroth symbol and swap it out. */ 7520 Elf_Internal_Sym sym; 7521 sym.st_name = 0; 7522 sym.st_value = 0; 7523 sym.st_size = 0; 7524 sym.st_info = 0; 7525 sym.st_other = 0; 7526 sym.st_shndx = SHN_UNDEF; 7527 sym.st_target_internal = 0; 7528 symstrtab[0].sym = sym; 7529 symstrtab[0].dest_index = outbound_syms_index; 7530 symstrtab[0].destshndx_index = outbound_shndx_index; 7531 outbound_syms_index++; 7532 if (outbound_shndx != NULL) 7533 outbound_shndx_index++; 7534 } 7535 7536 name_local_sections 7537 = (bed->elf_backend_name_local_section_symbols 7538 && bed->elf_backend_name_local_section_symbols (abfd)); 7539 7540 syms = bfd_get_outsymbols (abfd); 7541 for (idx = 0; idx < symcount;) 7542 { 7543 Elf_Internal_Sym sym; 7544 bfd_vma value = syms[idx]->value; 7545 elf_symbol_type *type_ptr; 7546 flagword flags = syms[idx]->flags; 7547 int type; 7548 7549 if (!name_local_sections 7550 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM) 7551 { 7552 /* Local section symbols have no name. */ 7553 sym.st_name = (unsigned long) -1; 7554 } 7555 else 7556 { 7557 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize 7558 to get the final offset for st_name. */ 7559 sym.st_name 7560 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name, 7561 FALSE); 7562 if (sym.st_name == (unsigned long) -1) 7563 goto error_return; 7564 } 7565 7566 type_ptr = elf_symbol_from (abfd, syms[idx]); 7567 7568 if ((flags & BSF_SECTION_SYM) == 0 7569 && bfd_is_com_section (syms[idx]->section)) 7570 { 7571 /* ELF common symbols put the alignment into the `value' field, 7572 and the size into the `size' field. This is backwards from 7573 how BFD handles it, so reverse it here. */ 7574 sym.st_size = value; 7575 if (type_ptr == NULL 7576 || type_ptr->internal_elf_sym.st_value == 0) 7577 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value)); 7578 else 7579 sym.st_value = type_ptr->internal_elf_sym.st_value; 7580 sym.st_shndx = _bfd_elf_section_from_bfd_section 7581 (abfd, syms[idx]->section); 7582 } 7583 else 7584 { 7585 asection *sec = syms[idx]->section; 7586 unsigned int shndx; 7587 7588 if (sec->output_section) 7589 { 7590 value += sec->output_offset; 7591 sec = sec->output_section; 7592 } 7593 7594 /* Don't add in the section vma for relocatable output. */ 7595 if (! relocatable_p) 7596 value += sec->vma; 7597 sym.st_value = value; 7598 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0; 7599 7600 if (bfd_is_abs_section (sec) 7601 && type_ptr != NULL 7602 && type_ptr->internal_elf_sym.st_shndx != 0) 7603 { 7604 /* This symbol is in a real ELF section which we did 7605 not create as a BFD section. Undo the mapping done 7606 by copy_private_symbol_data. */ 7607 shndx = type_ptr->internal_elf_sym.st_shndx; 7608 switch (shndx) 7609 { 7610 case MAP_ONESYMTAB: 7611 shndx = elf_onesymtab (abfd); 7612 break; 7613 case MAP_DYNSYMTAB: 7614 shndx = elf_dynsymtab (abfd); 7615 break; 7616 case MAP_STRTAB: 7617 shndx = elf_strtab_sec (abfd); 7618 break; 7619 case MAP_SHSTRTAB: 7620 shndx = elf_shstrtab_sec (abfd); 7621 break; 7622 case MAP_SYM_SHNDX: 7623 if (elf_symtab_shndx_list (abfd)) 7624 shndx = elf_symtab_shndx_list (abfd)->ndx; 7625 break; 7626 default: 7627 shndx = SHN_ABS; 7628 break; 7629 } 7630 } 7631 else 7632 { 7633 shndx = _bfd_elf_section_from_bfd_section (abfd, sec); 7634 7635 if (shndx == SHN_BAD) 7636 { 7637 asection *sec2; 7638 7639 /* Writing this would be a hell of a lot easier if 7640 we had some decent documentation on bfd, and 7641 knew what to expect of the library, and what to 7642 demand of applications. For example, it 7643 appears that `objcopy' might not set the 7644 section of a symbol to be a section that is 7645 actually in the output file. */ 7646 sec2 = bfd_get_section_by_name (abfd, sec->name); 7647 if (sec2 != NULL) 7648 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2); 7649 if (shndx == SHN_BAD) 7650 { 7651 _bfd_error_handler (_("\ 7652 Unable to find equivalent output section for symbol '%s' from section '%s'"), 7653 syms[idx]->name ? syms[idx]->name : "<Local sym>", 7654 sec->name); 7655 bfd_set_error (bfd_error_invalid_operation); 7656 goto error_return; 7657 } 7658 } 7659 } 7660 7661 sym.st_shndx = shndx; 7662 } 7663 7664 if ((flags & BSF_THREAD_LOCAL) != 0) 7665 type = STT_TLS; 7666 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0) 7667 type = STT_GNU_IFUNC; 7668 else if ((flags & BSF_FUNCTION) != 0) 7669 type = STT_FUNC; 7670 else if ((flags & BSF_OBJECT) != 0) 7671 type = STT_OBJECT; 7672 else if ((flags & BSF_RELC) != 0) 7673 type = STT_RELC; 7674 else if ((flags & BSF_SRELC) != 0) 7675 type = STT_SRELC; 7676 else 7677 type = STT_NOTYPE; 7678 7679 if (syms[idx]->section->flags & SEC_THREAD_LOCAL) 7680 type = STT_TLS; 7681 7682 /* Processor-specific types. */ 7683 if (type_ptr != NULL 7684 && bed->elf_backend_get_symbol_type) 7685 type = ((*bed->elf_backend_get_symbol_type) 7686 (&type_ptr->internal_elf_sym, type)); 7687 7688 if (flags & BSF_SECTION_SYM) 7689 { 7690 if (flags & BSF_GLOBAL) 7691 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 7692 else 7693 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); 7694 } 7695 else if (bfd_is_com_section (syms[idx]->section)) 7696 { 7697 if (type != STT_TLS) 7698 { 7699 if ((abfd->flags & BFD_CONVERT_ELF_COMMON)) 7700 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON) 7701 ? STT_COMMON : STT_OBJECT); 7702 else 7703 type = ((flags & BSF_ELF_COMMON) != 0 7704 ? STT_COMMON : STT_OBJECT); 7705 } 7706 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); 7707 } 7708 else if (bfd_is_und_section (syms[idx]->section)) 7709 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK) 7710 ? STB_WEAK 7711 : STB_GLOBAL), 7712 type); 7713 else if (flags & BSF_FILE) 7714 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); 7715 else 7716 { 7717 int bind = STB_LOCAL; 7718 7719 if (flags & BSF_LOCAL) 7720 bind = STB_LOCAL; 7721 else if (flags & BSF_GNU_UNIQUE) 7722 bind = STB_GNU_UNIQUE; 7723 else if (flags & BSF_WEAK) 7724 bind = STB_WEAK; 7725 else if (flags & BSF_GLOBAL) 7726 bind = STB_GLOBAL; 7727 7728 sym.st_info = ELF_ST_INFO (bind, type); 7729 } 7730 7731 if (type_ptr != NULL) 7732 { 7733 sym.st_other = type_ptr->internal_elf_sym.st_other; 7734 sym.st_target_internal 7735 = type_ptr->internal_elf_sym.st_target_internal; 7736 } 7737 else 7738 { 7739 sym.st_other = 0; 7740 sym.st_target_internal = 0; 7741 } 7742 7743 idx++; 7744 symstrtab[idx].sym = sym; 7745 symstrtab[idx].dest_index = outbound_syms_index; 7746 symstrtab[idx].destshndx_index = outbound_shndx_index; 7747 7748 outbound_syms_index++; 7749 if (outbound_shndx != NULL) 7750 outbound_shndx_index++; 7751 } 7752 7753 /* Finalize the .strtab section. */ 7754 _bfd_elf_strtab_finalize (stt); 7755 7756 /* Swap out the .strtab section. */ 7757 for (idx = 0; idx <= symcount; idx++) 7758 { 7759 struct elf_sym_strtab *elfsym = &symstrtab[idx]; 7760 if (elfsym->sym.st_name == (unsigned long) -1) 7761 elfsym->sym.st_name = 0; 7762 else 7763 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt, 7764 elfsym->sym.st_name); 7765 bed->s->swap_symbol_out (abfd, &elfsym->sym, 7766 (outbound_syms 7767 + (elfsym->dest_index 7768 * bed->s->sizeof_sym)), 7769 (outbound_shndx 7770 + (elfsym->destshndx_index 7771 * sizeof (Elf_External_Sym_Shndx)))); 7772 } 7773 free (symstrtab); 7774 7775 *sttp = stt; 7776 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt); 7777 symstrtab_hdr->sh_type = SHT_STRTAB; 7778 symstrtab_hdr->sh_flags = bed->elf_strtab_flags; 7779 symstrtab_hdr->sh_addr = 0; 7780 symstrtab_hdr->sh_entsize = 0; 7781 symstrtab_hdr->sh_link = 0; 7782 symstrtab_hdr->sh_info = 0; 7783 symstrtab_hdr->sh_addralign = 1; 7784 7785 return TRUE; 7786 } 7787 7788 /* Return the number of bytes required to hold the symtab vector. 7789 7790 Note that we base it on the count plus 1, since we will null terminate 7791 the vector allocated based on this size. However, the ELF symbol table 7792 always has a dummy entry as symbol #0, so it ends up even. */ 7793 7794 long 7795 _bfd_elf_get_symtab_upper_bound (bfd *abfd) 7796 { 7797 long symcount; 7798 long symtab_size; 7799 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr; 7800 7801 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; 7802 symtab_size = (symcount + 1) * (sizeof (asymbol *)); 7803 if (symcount > 0) 7804 symtab_size -= sizeof (asymbol *); 7805 7806 return symtab_size; 7807 } 7808 7809 long 7810 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd) 7811 { 7812 long symcount; 7813 long symtab_size; 7814 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr; 7815 7816 if (elf_dynsymtab (abfd) == 0) 7817 { 7818 bfd_set_error (bfd_error_invalid_operation); 7819 return -1; 7820 } 7821 7822 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; 7823 symtab_size = (symcount + 1) * (sizeof (asymbol *)); 7824 if (symcount > 0) 7825 symtab_size -= sizeof (asymbol *); 7826 7827 return symtab_size; 7828 } 7829 7830 long 7831 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, 7832 sec_ptr asect) 7833 { 7834 return (asect->reloc_count + 1) * sizeof (arelent *); 7835 } 7836 7837 /* Canonicalize the relocs. */ 7838 7839 long 7840 _bfd_elf_canonicalize_reloc (bfd *abfd, 7841 sec_ptr section, 7842 arelent **relptr, 7843 asymbol **symbols) 7844 { 7845 arelent *tblptr; 7846 unsigned int i; 7847 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 7848 7849 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE)) 7850 return -1; 7851 7852 tblptr = section->relocation; 7853 for (i = 0; i < section->reloc_count; i++) 7854 *relptr++ = tblptr++; 7855 7856 *relptr = NULL; 7857 7858 return section->reloc_count; 7859 } 7860 7861 long 7862 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation) 7863 { 7864 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 7865 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE); 7866 7867 if (symcount >= 0) 7868 bfd_get_symcount (abfd) = symcount; 7869 return symcount; 7870 } 7871 7872 long 7873 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd, 7874 asymbol **allocation) 7875 { 7876 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 7877 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE); 7878 7879 if (symcount >= 0) 7880 bfd_get_dynamic_symcount (abfd) = symcount; 7881 return symcount; 7882 } 7883 7884 /* Return the size required for the dynamic reloc entries. Any loadable 7885 section that was actually installed in the BFD, and has type SHT_REL 7886 or SHT_RELA, and uses the dynamic symbol table, is considered to be a 7887 dynamic reloc section. */ 7888 7889 long 7890 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd) 7891 { 7892 long ret; 7893 asection *s; 7894 7895 if (elf_dynsymtab (abfd) == 0) 7896 { 7897 bfd_set_error (bfd_error_invalid_operation); 7898 return -1; 7899 } 7900 7901 ret = sizeof (arelent *); 7902 for (s = abfd->sections; s != NULL; s = s->next) 7903 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) 7904 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL 7905 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) 7906 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize) 7907 * sizeof (arelent *)); 7908 7909 return ret; 7910 } 7911 7912 /* Canonicalize the dynamic relocation entries. Note that we return the 7913 dynamic relocations as a single block, although they are actually 7914 associated with particular sections; the interface, which was 7915 designed for SunOS style shared libraries, expects that there is only 7916 one set of dynamic relocs. Any loadable section that was actually 7917 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the 7918 dynamic symbol table, is considered to be a dynamic reloc section. */ 7919 7920 long 7921 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd, 7922 arelent **storage, 7923 asymbol **syms) 7924 { 7925 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); 7926 asection *s; 7927 long ret; 7928 7929 if (elf_dynsymtab (abfd) == 0) 7930 { 7931 bfd_set_error (bfd_error_invalid_operation); 7932 return -1; 7933 } 7934 7935 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; 7936 ret = 0; 7937 for (s = abfd->sections; s != NULL; s = s->next) 7938 { 7939 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) 7940 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL 7941 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) 7942 { 7943 arelent *p; 7944 long count, i; 7945 7946 if (! (*slurp_relocs) (abfd, s, syms, TRUE)) 7947 return -1; 7948 count = s->size / elf_section_data (s)->this_hdr.sh_entsize; 7949 p = s->relocation; 7950 for (i = 0; i < count; i++) 7951 *storage++ = p++; 7952 ret += count; 7953 } 7954 } 7955 7956 *storage = NULL; 7957 7958 return ret; 7959 } 7960 7961 /* Read in the version information. */ 7962 7963 bfd_boolean 7964 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver) 7965 { 7966 bfd_byte *contents = NULL; 7967 unsigned int freeidx = 0; 7968 7969 if (elf_dynverref (abfd) != 0) 7970 { 7971 Elf_Internal_Shdr *hdr; 7972 Elf_External_Verneed *everneed; 7973 Elf_Internal_Verneed *iverneed; 7974 unsigned int i; 7975 bfd_byte *contents_end; 7976 7977 hdr = &elf_tdata (abfd)->dynverref_hdr; 7978 7979 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verneed)) 7980 { 7981 error_return_bad_verref: 7982 (*_bfd_error_handler) 7983 (_("%B: .gnu.version_r invalid entry"), abfd); 7984 bfd_set_error (bfd_error_bad_value); 7985 error_return_verref: 7986 elf_tdata (abfd)->verref = NULL; 7987 elf_tdata (abfd)->cverrefs = 0; 7988 goto error_return; 7989 } 7990 7991 contents = (bfd_byte *) bfd_malloc (hdr->sh_size); 7992 if (contents == NULL) 7993 goto error_return_verref; 7994 7995 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 7996 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size) 7997 goto error_return_verref; 7998 7999 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) 8000 bfd_zalloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed)); 8001 8002 if (elf_tdata (abfd)->verref == NULL) 8003 goto error_return_verref; 8004 8005 BFD_ASSERT (sizeof (Elf_External_Verneed) 8006 == sizeof (Elf_External_Vernaux)); 8007 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed); 8008 everneed = (Elf_External_Verneed *) contents; 8009 iverneed = elf_tdata (abfd)->verref; 8010 for (i = 0; i < hdr->sh_info; i++, iverneed++) 8011 { 8012 Elf_External_Vernaux *evernaux; 8013 Elf_Internal_Vernaux *ivernaux; 8014 unsigned int j; 8015 8016 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed); 8017 8018 iverneed->vn_bfd = abfd; 8019 8020 iverneed->vn_filename = 8021 bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 8022 iverneed->vn_file); 8023 if (iverneed->vn_filename == NULL) 8024 goto error_return_bad_verref; 8025 8026 if (iverneed->vn_cnt == 0) 8027 iverneed->vn_auxptr = NULL; 8028 else 8029 { 8030 iverneed->vn_auxptr = (struct elf_internal_vernaux *) 8031 bfd_alloc2 (abfd, iverneed->vn_cnt, 8032 sizeof (Elf_Internal_Vernaux)); 8033 if (iverneed->vn_auxptr == NULL) 8034 goto error_return_verref; 8035 } 8036 8037 if (iverneed->vn_aux 8038 > (size_t) (contents_end - (bfd_byte *) everneed)) 8039 goto error_return_bad_verref; 8040 8041 evernaux = ((Elf_External_Vernaux *) 8042 ((bfd_byte *) everneed + iverneed->vn_aux)); 8043 ivernaux = iverneed->vn_auxptr; 8044 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++) 8045 { 8046 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux); 8047 8048 ivernaux->vna_nodename = 8049 bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 8050 ivernaux->vna_name); 8051 if (ivernaux->vna_nodename == NULL) 8052 goto error_return_bad_verref; 8053 8054 if (ivernaux->vna_other > freeidx) 8055 freeidx = ivernaux->vna_other; 8056 8057 ivernaux->vna_nextptr = NULL; 8058 if (ivernaux->vna_next == 0) 8059 { 8060 iverneed->vn_cnt = j + 1; 8061 break; 8062 } 8063 if (j + 1 < iverneed->vn_cnt) 8064 ivernaux->vna_nextptr = ivernaux + 1; 8065 8066 if (ivernaux->vna_next 8067 > (size_t) (contents_end - (bfd_byte *) evernaux)) 8068 goto error_return_bad_verref; 8069 8070 evernaux = ((Elf_External_Vernaux *) 8071 ((bfd_byte *) evernaux + ivernaux->vna_next)); 8072 } 8073 8074 iverneed->vn_nextref = NULL; 8075 if (iverneed->vn_next == 0) 8076 break; 8077 if (i + 1 < hdr->sh_info) 8078 iverneed->vn_nextref = iverneed + 1; 8079 8080 if (iverneed->vn_next 8081 > (size_t) (contents_end - (bfd_byte *) everneed)) 8082 goto error_return_bad_verref; 8083 8084 everneed = ((Elf_External_Verneed *) 8085 ((bfd_byte *) everneed + iverneed->vn_next)); 8086 } 8087 elf_tdata (abfd)->cverrefs = i; 8088 8089 free (contents); 8090 contents = NULL; 8091 } 8092 8093 if (elf_dynverdef (abfd) != 0) 8094 { 8095 Elf_Internal_Shdr *hdr; 8096 Elf_External_Verdef *everdef; 8097 Elf_Internal_Verdef *iverdef; 8098 Elf_Internal_Verdef *iverdefarr; 8099 Elf_Internal_Verdef iverdefmem; 8100 unsigned int i; 8101 unsigned int maxidx; 8102 bfd_byte *contents_end_def, *contents_end_aux; 8103 8104 hdr = &elf_tdata (abfd)->dynverdef_hdr; 8105 8106 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef)) 8107 { 8108 error_return_bad_verdef: 8109 (*_bfd_error_handler) 8110 (_("%B: .gnu.version_d invalid entry"), abfd); 8111 bfd_set_error (bfd_error_bad_value); 8112 error_return_verdef: 8113 elf_tdata (abfd)->verdef = NULL; 8114 elf_tdata (abfd)->cverdefs = 0; 8115 goto error_return; 8116 } 8117 8118 contents = (bfd_byte *) bfd_malloc (hdr->sh_size); 8119 if (contents == NULL) 8120 goto error_return_verdef; 8121 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 8122 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size) 8123 goto error_return_verdef; 8124 8125 BFD_ASSERT (sizeof (Elf_External_Verdef) 8126 >= sizeof (Elf_External_Verdaux)); 8127 contents_end_def = contents + hdr->sh_size 8128 - sizeof (Elf_External_Verdef); 8129 contents_end_aux = contents + hdr->sh_size 8130 - sizeof (Elf_External_Verdaux); 8131 8132 /* We know the number of entries in the section but not the maximum 8133 index. Therefore we have to run through all entries and find 8134 the maximum. */ 8135 everdef = (Elf_External_Verdef *) contents; 8136 maxidx = 0; 8137 for (i = 0; i < hdr->sh_info; ++i) 8138 { 8139 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem); 8140 8141 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0) 8142 goto error_return_bad_verdef; 8143 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx) 8144 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION); 8145 8146 if (iverdefmem.vd_next == 0) 8147 break; 8148 8149 if (iverdefmem.vd_next 8150 > (size_t) (contents_end_def - (bfd_byte *) everdef)) 8151 goto error_return_bad_verdef; 8152 8153 everdef = ((Elf_External_Verdef *) 8154 ((bfd_byte *) everdef + iverdefmem.vd_next)); 8155 } 8156 8157 if (default_imported_symver) 8158 { 8159 if (freeidx > maxidx) 8160 maxidx = ++freeidx; 8161 else 8162 freeidx = ++maxidx; 8163 } 8164 8165 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) 8166 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef)); 8167 if (elf_tdata (abfd)->verdef == NULL) 8168 goto error_return_verdef; 8169 8170 elf_tdata (abfd)->cverdefs = maxidx; 8171 8172 everdef = (Elf_External_Verdef *) contents; 8173 iverdefarr = elf_tdata (abfd)->verdef; 8174 for (i = 0; i < hdr->sh_info; i++) 8175 { 8176 Elf_External_Verdaux *everdaux; 8177 Elf_Internal_Verdaux *iverdaux; 8178 unsigned int j; 8179 8180 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem); 8181 8182 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0) 8183 goto error_return_bad_verdef; 8184 8185 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1]; 8186 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd)); 8187 8188 iverdef->vd_bfd = abfd; 8189 8190 if (iverdef->vd_cnt == 0) 8191 iverdef->vd_auxptr = NULL; 8192 else 8193 { 8194 iverdef->vd_auxptr = (struct elf_internal_verdaux *) 8195 bfd_alloc2 (abfd, iverdef->vd_cnt, 8196 sizeof (Elf_Internal_Verdaux)); 8197 if (iverdef->vd_auxptr == NULL) 8198 goto error_return_verdef; 8199 } 8200 8201 if (iverdef->vd_aux 8202 > (size_t) (contents_end_aux - (bfd_byte *) everdef)) 8203 goto error_return_bad_verdef; 8204 8205 everdaux = ((Elf_External_Verdaux *) 8206 ((bfd_byte *) everdef + iverdef->vd_aux)); 8207 iverdaux = iverdef->vd_auxptr; 8208 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++) 8209 { 8210 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux); 8211 8212 iverdaux->vda_nodename = 8213 bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 8214 iverdaux->vda_name); 8215 if (iverdaux->vda_nodename == NULL) 8216 goto error_return_bad_verdef; 8217 8218 iverdaux->vda_nextptr = NULL; 8219 if (iverdaux->vda_next == 0) 8220 { 8221 iverdef->vd_cnt = j + 1; 8222 break; 8223 } 8224 if (j + 1 < iverdef->vd_cnt) 8225 iverdaux->vda_nextptr = iverdaux + 1; 8226 8227 if (iverdaux->vda_next 8228 > (size_t) (contents_end_aux - (bfd_byte *) everdaux)) 8229 goto error_return_bad_verdef; 8230 8231 everdaux = ((Elf_External_Verdaux *) 8232 ((bfd_byte *) everdaux + iverdaux->vda_next)); 8233 } 8234 8235 iverdef->vd_nodename = NULL; 8236 if (iverdef->vd_cnt) 8237 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename; 8238 8239 iverdef->vd_nextdef = NULL; 8240 if (iverdef->vd_next == 0) 8241 break; 8242 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx) 8243 iverdef->vd_nextdef = iverdef + 1; 8244 8245 everdef = ((Elf_External_Verdef *) 8246 ((bfd_byte *) everdef + iverdef->vd_next)); 8247 } 8248 8249 free (contents); 8250 contents = NULL; 8251 } 8252 else if (default_imported_symver) 8253 { 8254 if (freeidx < 3) 8255 freeidx = 3; 8256 else 8257 freeidx++; 8258 8259 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) 8260 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef)); 8261 if (elf_tdata (abfd)->verdef == NULL) 8262 goto error_return; 8263 8264 elf_tdata (abfd)->cverdefs = freeidx; 8265 } 8266 8267 /* Create a default version based on the soname. */ 8268 if (default_imported_symver) 8269 { 8270 Elf_Internal_Verdef *iverdef; 8271 Elf_Internal_Verdaux *iverdaux; 8272 8273 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1]; 8274 8275 iverdef->vd_version = VER_DEF_CURRENT; 8276 iverdef->vd_flags = 0; 8277 iverdef->vd_ndx = freeidx; 8278 iverdef->vd_cnt = 1; 8279 8280 iverdef->vd_bfd = abfd; 8281 8282 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd); 8283 if (iverdef->vd_nodename == NULL) 8284 goto error_return_verdef; 8285 iverdef->vd_nextdef = NULL; 8286 iverdef->vd_auxptr = ((struct elf_internal_verdaux *) 8287 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux))); 8288 if (iverdef->vd_auxptr == NULL) 8289 goto error_return_verdef; 8290 8291 iverdaux = iverdef->vd_auxptr; 8292 iverdaux->vda_nodename = iverdef->vd_nodename; 8293 } 8294 8295 return TRUE; 8296 8297 error_return: 8298 if (contents != NULL) 8299 free (contents); 8300 return FALSE; 8301 } 8302 8303 asymbol * 8304 _bfd_elf_make_empty_symbol (bfd *abfd) 8305 { 8306 elf_symbol_type *newsym; 8307 8308 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym); 8309 if (!newsym) 8310 return NULL; 8311 newsym->symbol.the_bfd = abfd; 8312 return &newsym->symbol; 8313 } 8314 8315 void 8316 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED, 8317 asymbol *symbol, 8318 symbol_info *ret) 8319 { 8320 bfd_symbol_info (symbol, ret); 8321 } 8322 8323 /* Return whether a symbol name implies a local symbol. Most targets 8324 use this function for the is_local_label_name entry point, but some 8325 override it. */ 8326 8327 bfd_boolean 8328 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, 8329 const char *name) 8330 { 8331 /* Normal local symbols start with ``.L''. */ 8332 if (name[0] == '.' && name[1] == 'L') 8333 return TRUE; 8334 8335 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate 8336 DWARF debugging symbols starting with ``..''. */ 8337 if (name[0] == '.' && name[1] == '.') 8338 return TRUE; 8339 8340 /* gcc will sometimes generate symbols beginning with ``_.L_'' when 8341 emitting DWARF debugging output. I suspect this is actually a 8342 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call 8343 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading 8344 underscore to be emitted on some ELF targets). For ease of use, 8345 we treat such symbols as local. */ 8346 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_') 8347 return TRUE; 8348 8349 /* Treat assembler generated fake symbols, dollar local labels and 8350 forward-backward labels (aka local labels) as locals. 8351 These labels have the form: 8352 8353 L0^A.* (fake symbols) 8354 8355 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels) 8356 8357 Versions which start with .L will have already been matched above, 8358 so we only need to match the rest. */ 8359 if (name[0] == 'L' && ISDIGIT (name[1])) 8360 { 8361 bfd_boolean ret = FALSE; 8362 const char * p; 8363 char c; 8364 8365 for (p = name + 2; (c = *p); p++) 8366 { 8367 if (c == 1 || c == 2) 8368 { 8369 if (c == 1 && p == name + 2) 8370 /* A fake symbol. */ 8371 return TRUE; 8372 8373 /* FIXME: We are being paranoid here and treating symbols like 8374 L0^Bfoo as if there were non-local, on the grounds that the 8375 assembler will never generate them. But can any symbol 8376 containing an ASCII value in the range 1-31 ever be anything 8377 other than some kind of local ? */ 8378 ret = TRUE; 8379 } 8380 8381 if (! ISDIGIT (c)) 8382 { 8383 ret = FALSE; 8384 break; 8385 } 8386 } 8387 return ret; 8388 } 8389 8390 return FALSE; 8391 } 8392 8393 alent * 8394 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED, 8395 asymbol *symbol ATTRIBUTE_UNUSED) 8396 { 8397 abort (); 8398 return NULL; 8399 } 8400 8401 bfd_boolean 8402 _bfd_elf_set_arch_mach (bfd *abfd, 8403 enum bfd_architecture arch, 8404 unsigned long machine) 8405 { 8406 /* If this isn't the right architecture for this backend, and this 8407 isn't the generic backend, fail. */ 8408 if (arch != get_elf_backend_data (abfd)->arch 8409 && arch != bfd_arch_unknown 8410 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown) 8411 return FALSE; 8412 8413 return bfd_default_set_arch_mach (abfd, arch, machine); 8414 } 8415 8416 /* Find the nearest line to a particular section and offset, 8417 for error reporting. */ 8418 8419 bfd_boolean 8420 _bfd_elf_find_nearest_line (bfd *abfd, 8421 asymbol **symbols, 8422 asection *section, 8423 bfd_vma offset, 8424 const char **filename_ptr, 8425 const char **functionname_ptr, 8426 unsigned int *line_ptr, 8427 unsigned int *discriminator_ptr) 8428 { 8429 bfd_boolean found; 8430 8431 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset, 8432 filename_ptr, functionname_ptr, 8433 line_ptr, discriminator_ptr, 8434 dwarf_debug_sections, 0, 8435 &elf_tdata (abfd)->dwarf2_find_line_info) 8436 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset, 8437 filename_ptr, functionname_ptr, 8438 line_ptr)) 8439 { 8440 if (!*functionname_ptr) 8441 _bfd_elf_find_function (abfd, symbols, section, offset, 8442 *filename_ptr ? NULL : filename_ptr, 8443 functionname_ptr); 8444 return TRUE; 8445 } 8446 8447 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, 8448 &found, filename_ptr, 8449 functionname_ptr, line_ptr, 8450 &elf_tdata (abfd)->line_info)) 8451 return FALSE; 8452 if (found && (*functionname_ptr || *line_ptr)) 8453 return TRUE; 8454 8455 if (symbols == NULL) 8456 return FALSE; 8457 8458 if (! _bfd_elf_find_function (abfd, symbols, section, offset, 8459 filename_ptr, functionname_ptr)) 8460 return FALSE; 8461 8462 *line_ptr = 0; 8463 return TRUE; 8464 } 8465 8466 /* Find the line for a symbol. */ 8467 8468 bfd_boolean 8469 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol, 8470 const char **filename_ptr, unsigned int *line_ptr) 8471 { 8472 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0, 8473 filename_ptr, NULL, line_ptr, NULL, 8474 dwarf_debug_sections, 0, 8475 &elf_tdata (abfd)->dwarf2_find_line_info); 8476 } 8477 8478 /* After a call to bfd_find_nearest_line, successive calls to 8479 bfd_find_inliner_info can be used to get source information about 8480 each level of function inlining that terminated at the address 8481 passed to bfd_find_nearest_line. Currently this is only supported 8482 for DWARF2 with appropriate DWARF3 extensions. */ 8483 8484 bfd_boolean 8485 _bfd_elf_find_inliner_info (bfd *abfd, 8486 const char **filename_ptr, 8487 const char **functionname_ptr, 8488 unsigned int *line_ptr) 8489 { 8490 bfd_boolean found; 8491 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, 8492 functionname_ptr, line_ptr, 8493 & elf_tdata (abfd)->dwarf2_find_line_info); 8494 return found; 8495 } 8496 8497 int 8498 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info) 8499 { 8500 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 8501 int ret = bed->s->sizeof_ehdr; 8502 8503 if (!bfd_link_relocatable (info)) 8504 { 8505 bfd_size_type phdr_size = elf_program_header_size (abfd); 8506 8507 if (phdr_size == (bfd_size_type) -1) 8508 { 8509 struct elf_segment_map *m; 8510 8511 phdr_size = 0; 8512 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 8513 phdr_size += bed->s->sizeof_phdr; 8514 8515 if (phdr_size == 0) 8516 phdr_size = get_program_header_size (abfd, info); 8517 } 8518 8519 elf_program_header_size (abfd) = phdr_size; 8520 ret += phdr_size; 8521 } 8522 8523 return ret; 8524 } 8525 8526 bfd_boolean 8527 _bfd_elf_set_section_contents (bfd *abfd, 8528 sec_ptr section, 8529 const void *location, 8530 file_ptr offset, 8531 bfd_size_type count) 8532 { 8533 Elf_Internal_Shdr *hdr; 8534 file_ptr pos; 8535 8536 if (! abfd->output_has_begun 8537 && ! _bfd_elf_compute_section_file_positions (abfd, NULL)) 8538 return FALSE; 8539 8540 if (!count) 8541 return TRUE; 8542 8543 hdr = &elf_section_data (section)->this_hdr; 8544 if (hdr->sh_offset == (file_ptr) -1) 8545 { 8546 /* We must compress this section. Write output to the buffer. */ 8547 unsigned char *contents = hdr->contents; 8548 if ((offset + count) > hdr->sh_size 8549 || (section->flags & SEC_ELF_COMPRESS) == 0 8550 || contents == NULL) 8551 abort (); 8552 memcpy (contents + offset, location, count); 8553 return TRUE; 8554 } 8555 pos = hdr->sh_offset + offset; 8556 if (bfd_seek (abfd, pos, SEEK_SET) != 0 8557 || bfd_bwrite (location, count, abfd) != count) 8558 return FALSE; 8559 8560 return TRUE; 8561 } 8562 8563 void 8564 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, 8565 arelent *cache_ptr ATTRIBUTE_UNUSED, 8566 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED) 8567 { 8568 abort (); 8569 } 8570 8571 /* Try to convert a non-ELF reloc into an ELF one. */ 8572 8573 bfd_boolean 8574 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc) 8575 { 8576 /* Check whether we really have an ELF howto. */ 8577 8578 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec) 8579 { 8580 bfd_reloc_code_real_type code; 8581 reloc_howto_type *howto; 8582 8583 /* Alien reloc: Try to determine its type to replace it with an 8584 equivalent ELF reloc. */ 8585 8586 if (areloc->howto->pc_relative) 8587 { 8588 switch (areloc->howto->bitsize) 8589 { 8590 case 8: 8591 code = BFD_RELOC_8_PCREL; 8592 break; 8593 case 12: 8594 code = BFD_RELOC_12_PCREL; 8595 break; 8596 case 16: 8597 code = BFD_RELOC_16_PCREL; 8598 break; 8599 case 24: 8600 code = BFD_RELOC_24_PCREL; 8601 break; 8602 case 32: 8603 code = BFD_RELOC_32_PCREL; 8604 break; 8605 case 64: 8606 code = BFD_RELOC_64_PCREL; 8607 break; 8608 default: 8609 goto fail; 8610 } 8611 8612 howto = bfd_reloc_type_lookup (abfd, code); 8613 8614 if (areloc->howto->pcrel_offset != howto->pcrel_offset) 8615 { 8616 if (howto->pcrel_offset) 8617 areloc->addend += areloc->address; 8618 else 8619 areloc->addend -= areloc->address; /* addend is unsigned!! */ 8620 } 8621 } 8622 else 8623 { 8624 switch (areloc->howto->bitsize) 8625 { 8626 case 8: 8627 code = BFD_RELOC_8; 8628 break; 8629 case 14: 8630 code = BFD_RELOC_14; 8631 break; 8632 case 16: 8633 code = BFD_RELOC_16; 8634 break; 8635 case 26: 8636 code = BFD_RELOC_26; 8637 break; 8638 case 32: 8639 code = BFD_RELOC_32; 8640 break; 8641 case 64: 8642 code = BFD_RELOC_64; 8643 break; 8644 default: 8645 goto fail; 8646 } 8647 8648 howto = bfd_reloc_type_lookup (abfd, code); 8649 } 8650 8651 if (howto) 8652 areloc->howto = howto; 8653 else 8654 goto fail; 8655 } 8656 8657 return TRUE; 8658 8659 fail: 8660 (*_bfd_error_handler) 8661 (_("%B: unsupported relocation type %s"), 8662 abfd, areloc->howto->name); 8663 bfd_set_error (bfd_error_bad_value); 8664 return FALSE; 8665 } 8666 8667 bfd_boolean 8668 _bfd_elf_close_and_cleanup (bfd *abfd) 8669 { 8670 struct elf_obj_tdata *tdata = elf_tdata (abfd); 8671 if (bfd_get_format (abfd) == bfd_object && tdata != NULL) 8672 { 8673 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL) 8674 _bfd_elf_strtab_free (elf_shstrtab (abfd)); 8675 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info); 8676 } 8677 8678 return _bfd_generic_close_and_cleanup (abfd); 8679 } 8680 8681 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY 8682 in the relocation's offset. Thus we cannot allow any sort of sanity 8683 range-checking to interfere. There is nothing else to do in processing 8684 this reloc. */ 8685 8686 bfd_reloc_status_type 8687 _bfd_elf_rel_vtable_reloc_fn 8688 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED, 8689 struct bfd_symbol *symbol ATTRIBUTE_UNUSED, 8690 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED, 8691 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED) 8692 { 8693 return bfd_reloc_ok; 8694 } 8695 8696 /* Elf core file support. Much of this only works on native 8697 toolchains, since we rely on knowing the 8698 machine-dependent procfs structure in order to pick 8699 out details about the corefile. */ 8700 8701 #ifdef HAVE_SYS_PROCFS_H 8702 /* Needed for new procfs interface on sparc-solaris. */ 8703 # define _STRUCTURED_PROC 1 8704 # include <sys/procfs.h> 8705 #endif 8706 8707 /* Return a PID that identifies a "thread" for threaded cores, or the 8708 PID of the main process for non-threaded cores. */ 8709 8710 static int 8711 elfcore_make_pid (bfd *abfd) 8712 { 8713 int pid; 8714 8715 pid = elf_tdata (abfd)->core->lwpid; 8716 if (pid == 0) 8717 pid = elf_tdata (abfd)->core->pid; 8718 8719 return pid; 8720 } 8721 8722 /* If there isn't a section called NAME, make one, using 8723 data from SECT. Note, this function will generate a 8724 reference to NAME, so you shouldn't deallocate or 8725 overwrite it. */ 8726 8727 static bfd_boolean 8728 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect) 8729 { 8730 asection *sect2; 8731 8732 if (bfd_get_section_by_name (abfd, name) != NULL) 8733 return TRUE; 8734 8735 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags); 8736 if (sect2 == NULL) 8737 return FALSE; 8738 8739 sect2->size = sect->size; 8740 sect2->filepos = sect->filepos; 8741 sect2->alignment_power = sect->alignment_power; 8742 return TRUE; 8743 } 8744 8745 /* Create a pseudosection containing SIZE bytes at FILEPOS. This 8746 actually creates up to two pseudosections: 8747 - For the single-threaded case, a section named NAME, unless 8748 such a section already exists. 8749 - For the multi-threaded case, a section named "NAME/PID", where 8750 PID is elfcore_make_pid (abfd). 8751 Both pseudosections have identical contents. */ 8752 bfd_boolean 8753 _bfd_elfcore_make_pseudosection (bfd *abfd, 8754 char *name, 8755 size_t size, 8756 ufile_ptr filepos) 8757 { 8758 char buf[100]; 8759 char *threaded_name; 8760 size_t len; 8761 asection *sect; 8762 8763 /* Build the section name. */ 8764 8765 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd)); 8766 len = strlen (buf) + 1; 8767 threaded_name = (char *) bfd_alloc (abfd, len); 8768 if (threaded_name == NULL) 8769 return FALSE; 8770 memcpy (threaded_name, buf, len); 8771 8772 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name, 8773 SEC_HAS_CONTENTS); 8774 if (sect == NULL) 8775 return FALSE; 8776 sect->size = size; 8777 sect->filepos = filepos; 8778 sect->alignment_power = 2; 8779 8780 return elfcore_maybe_make_sect (abfd, name, sect); 8781 } 8782 8783 /* prstatus_t exists on: 8784 solaris 2.5+ 8785 linux 2.[01] + glibc 8786 unixware 4.2 8787 */ 8788 8789 #if defined (HAVE_PRSTATUS_T) 8790 8791 static bfd_boolean 8792 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 8793 { 8794 size_t size; 8795 int offset; 8796 8797 if (note->descsz == sizeof (prstatus_t)) 8798 { 8799 prstatus_t prstat; 8800 8801 size = sizeof (prstat.pr_reg); 8802 offset = offsetof (prstatus_t, pr_reg); 8803 memcpy (&prstat, note->descdata, sizeof (prstat)); 8804 8805 /* Do not overwrite the core signal if it 8806 has already been set by another thread. */ 8807 if (elf_tdata (abfd)->core->signal == 0) 8808 elf_tdata (abfd)->core->signal = prstat.pr_cursig; 8809 if (elf_tdata (abfd)->core->pid == 0) 8810 elf_tdata (abfd)->core->pid = prstat.pr_pid; 8811 8812 /* pr_who exists on: 8813 solaris 2.5+ 8814 unixware 4.2 8815 pr_who doesn't exist on: 8816 linux 2.[01] 8817 */ 8818 #if defined (HAVE_PRSTATUS_T_PR_WHO) 8819 elf_tdata (abfd)->core->lwpid = prstat.pr_who; 8820 #else 8821 elf_tdata (abfd)->core->lwpid = prstat.pr_pid; 8822 #endif 8823 } 8824 #if defined (HAVE_PRSTATUS32_T) 8825 else if (note->descsz == sizeof (prstatus32_t)) 8826 { 8827 /* 64-bit host, 32-bit corefile */ 8828 prstatus32_t prstat; 8829 8830 size = sizeof (prstat.pr_reg); 8831 offset = offsetof (prstatus32_t, pr_reg); 8832 memcpy (&prstat, note->descdata, sizeof (prstat)); 8833 8834 /* Do not overwrite the core signal if it 8835 has already been set by another thread. */ 8836 if (elf_tdata (abfd)->core->signal == 0) 8837 elf_tdata (abfd)->core->signal = prstat.pr_cursig; 8838 if (elf_tdata (abfd)->core->pid == 0) 8839 elf_tdata (abfd)->core->pid = prstat.pr_pid; 8840 8841 /* pr_who exists on: 8842 solaris 2.5+ 8843 unixware 4.2 8844 pr_who doesn't exist on: 8845 linux 2.[01] 8846 */ 8847 #if defined (HAVE_PRSTATUS32_T_PR_WHO) 8848 elf_tdata (abfd)->core->lwpid = prstat.pr_who; 8849 #else 8850 elf_tdata (abfd)->core->lwpid = prstat.pr_pid; 8851 #endif 8852 } 8853 #endif /* HAVE_PRSTATUS32_T */ 8854 else 8855 { 8856 /* Fail - we don't know how to handle any other 8857 note size (ie. data object type). */ 8858 return TRUE; 8859 } 8860 8861 /* Make a ".reg/999" section and a ".reg" section. */ 8862 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 8863 size, note->descpos + offset); 8864 } 8865 #endif /* defined (HAVE_PRSTATUS_T) */ 8866 8867 /* Create a pseudosection containing the exact contents of NOTE. */ 8868 static bfd_boolean 8869 elfcore_make_note_pseudosection (bfd *abfd, 8870 char *name, 8871 Elf_Internal_Note *note) 8872 { 8873 return _bfd_elfcore_make_pseudosection (abfd, name, 8874 note->descsz, note->descpos); 8875 } 8876 8877 /* There isn't a consistent prfpregset_t across platforms, 8878 but it doesn't matter, because we don't have to pick this 8879 data structure apart. */ 8880 8881 static bfd_boolean 8882 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note) 8883 { 8884 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 8885 } 8886 8887 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note 8888 type of NT_PRXFPREG. Just include the whole note's contents 8889 literally. */ 8890 8891 static bfd_boolean 8892 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note) 8893 { 8894 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note); 8895 } 8896 8897 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX" 8898 with a note type of NT_X86_XSTATE. Just include the whole note's 8899 contents literally. */ 8900 8901 static bfd_boolean 8902 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note) 8903 { 8904 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note); 8905 } 8906 8907 static bfd_boolean 8908 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note) 8909 { 8910 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note); 8911 } 8912 8913 static bfd_boolean 8914 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note) 8915 { 8916 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note); 8917 } 8918 8919 static bfd_boolean 8920 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note) 8921 { 8922 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note); 8923 } 8924 8925 static bfd_boolean 8926 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note) 8927 { 8928 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note); 8929 } 8930 8931 static bfd_boolean 8932 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note) 8933 { 8934 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note); 8935 } 8936 8937 static bfd_boolean 8938 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note) 8939 { 8940 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note); 8941 } 8942 8943 static bfd_boolean 8944 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note) 8945 { 8946 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note); 8947 } 8948 8949 static bfd_boolean 8950 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note) 8951 { 8952 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note); 8953 } 8954 8955 static bfd_boolean 8956 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note) 8957 { 8958 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note); 8959 } 8960 8961 static bfd_boolean 8962 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note) 8963 { 8964 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note); 8965 } 8966 8967 static bfd_boolean 8968 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note) 8969 { 8970 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note); 8971 } 8972 8973 static bfd_boolean 8974 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note) 8975 { 8976 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note); 8977 } 8978 8979 static bfd_boolean 8980 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note) 8981 { 8982 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note); 8983 } 8984 8985 static bfd_boolean 8986 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note) 8987 { 8988 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note); 8989 } 8990 8991 static bfd_boolean 8992 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note) 8993 { 8994 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note); 8995 } 8996 8997 static bfd_boolean 8998 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note) 8999 { 9000 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note); 9001 } 9002 9003 static bfd_boolean 9004 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note) 9005 { 9006 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note); 9007 } 9008 9009 #if defined (HAVE_PRPSINFO_T) 9010 typedef prpsinfo_t elfcore_psinfo_t; 9011 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */ 9012 typedef prpsinfo32_t elfcore_psinfo32_t; 9013 #endif 9014 #endif 9015 9016 #if defined (HAVE_PSINFO_T) 9017 typedef psinfo_t elfcore_psinfo_t; 9018 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */ 9019 typedef psinfo32_t elfcore_psinfo32_t; 9020 #endif 9021 #endif 9022 9023 /* return a malloc'ed copy of a string at START which is at 9024 most MAX bytes long, possibly without a terminating '\0'. 9025 the copy will always have a terminating '\0'. */ 9026 9027 char * 9028 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max) 9029 { 9030 char *dups; 9031 char *end = (char *) memchr (start, '\0', max); 9032 size_t len; 9033 9034 if (end == NULL) 9035 len = max; 9036 else 9037 len = end - start; 9038 9039 dups = (char *) bfd_alloc (abfd, len + 1); 9040 if (dups == NULL) 9041 return NULL; 9042 9043 memcpy (dups, start, len); 9044 dups[len] = '\0'; 9045 9046 return dups; 9047 } 9048 9049 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) 9050 static bfd_boolean 9051 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 9052 { 9053 if (note->descsz == sizeof (elfcore_psinfo_t)) 9054 { 9055 elfcore_psinfo_t psinfo; 9056 9057 memcpy (&psinfo, note->descdata, sizeof (psinfo)); 9058 9059 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID) 9060 elf_tdata (abfd)->core->pid = psinfo.pr_pid; 9061 #endif 9062 elf_tdata (abfd)->core->program 9063 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname, 9064 sizeof (psinfo.pr_fname)); 9065 9066 elf_tdata (abfd)->core->command 9067 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs, 9068 sizeof (psinfo.pr_psargs)); 9069 } 9070 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T) 9071 else if (note->descsz == sizeof (elfcore_psinfo32_t)) 9072 { 9073 /* 64-bit host, 32-bit corefile */ 9074 elfcore_psinfo32_t psinfo; 9075 9076 memcpy (&psinfo, note->descdata, sizeof (psinfo)); 9077 9078 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID) 9079 elf_tdata (abfd)->core->pid = psinfo.pr_pid; 9080 #endif 9081 elf_tdata (abfd)->core->program 9082 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname, 9083 sizeof (psinfo.pr_fname)); 9084 9085 elf_tdata (abfd)->core->command 9086 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs, 9087 sizeof (psinfo.pr_psargs)); 9088 } 9089 #endif 9090 9091 else 9092 { 9093 /* Fail - we don't know how to handle any other 9094 note size (ie. data object type). */ 9095 return TRUE; 9096 } 9097 9098 /* Note that for some reason, a spurious space is tacked 9099 onto the end of the args in some (at least one anyway) 9100 implementations, so strip it off if it exists. */ 9101 9102 { 9103 char *command = elf_tdata (abfd)->core->command; 9104 int n = strlen (command); 9105 9106 if (0 < n && command[n - 1] == ' ') 9107 command[n - 1] = '\0'; 9108 } 9109 9110 return TRUE; 9111 } 9112 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */ 9113 9114 #if defined (HAVE_PSTATUS_T) 9115 static bfd_boolean 9116 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note) 9117 { 9118 if (note->descsz == sizeof (pstatus_t) 9119 #if defined (HAVE_PXSTATUS_T) 9120 || note->descsz == sizeof (pxstatus_t) 9121 #endif 9122 ) 9123 { 9124 pstatus_t pstat; 9125 9126 memcpy (&pstat, note->descdata, sizeof (pstat)); 9127 9128 elf_tdata (abfd)->core->pid = pstat.pr_pid; 9129 } 9130 #if defined (HAVE_PSTATUS32_T) 9131 else if (note->descsz == sizeof (pstatus32_t)) 9132 { 9133 /* 64-bit host, 32-bit corefile */ 9134 pstatus32_t pstat; 9135 9136 memcpy (&pstat, note->descdata, sizeof (pstat)); 9137 9138 elf_tdata (abfd)->core->pid = pstat.pr_pid; 9139 } 9140 #endif 9141 /* Could grab some more details from the "representative" 9142 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an 9143 NT_LWPSTATUS note, presumably. */ 9144 9145 return TRUE; 9146 } 9147 #endif /* defined (HAVE_PSTATUS_T) */ 9148 9149 #if defined (HAVE_LWPSTATUS_T) 9150 static bfd_boolean 9151 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note) 9152 { 9153 lwpstatus_t lwpstat; 9154 char buf[100]; 9155 char *name; 9156 size_t len; 9157 asection *sect; 9158 9159 if (note->descsz != sizeof (lwpstat) 9160 #if defined (HAVE_LWPXSTATUS_T) 9161 && note->descsz != sizeof (lwpxstatus_t) 9162 #endif 9163 ) 9164 return TRUE; 9165 9166 memcpy (&lwpstat, note->descdata, sizeof (lwpstat)); 9167 9168 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid; 9169 /* Do not overwrite the core signal if it has already been set by 9170 another thread. */ 9171 if (elf_tdata (abfd)->core->signal == 0) 9172 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig; 9173 9174 /* Make a ".reg/999" section. */ 9175 9176 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd)); 9177 len = strlen (buf) + 1; 9178 name = bfd_alloc (abfd, len); 9179 if (name == NULL) 9180 return FALSE; 9181 memcpy (name, buf, len); 9182 9183 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 9184 if (sect == NULL) 9185 return FALSE; 9186 9187 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT) 9188 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs); 9189 sect->filepos = note->descpos 9190 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs); 9191 #endif 9192 9193 #if defined (HAVE_LWPSTATUS_T_PR_REG) 9194 sect->size = sizeof (lwpstat.pr_reg); 9195 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg); 9196 #endif 9197 9198 sect->alignment_power = 2; 9199 9200 if (!elfcore_maybe_make_sect (abfd, ".reg", sect)) 9201 return FALSE; 9202 9203 /* Make a ".reg2/999" section */ 9204 9205 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd)); 9206 len = strlen (buf) + 1; 9207 name = bfd_alloc (abfd, len); 9208 if (name == NULL) 9209 return FALSE; 9210 memcpy (name, buf, len); 9211 9212 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 9213 if (sect == NULL) 9214 return FALSE; 9215 9216 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT) 9217 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs); 9218 sect->filepos = note->descpos 9219 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs); 9220 #endif 9221 9222 #if defined (HAVE_LWPSTATUS_T_PR_FPREG) 9223 sect->size = sizeof (lwpstat.pr_fpreg); 9224 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg); 9225 #endif 9226 9227 sect->alignment_power = 2; 9228 9229 return elfcore_maybe_make_sect (abfd, ".reg2", sect); 9230 } 9231 #endif /* defined (HAVE_LWPSTATUS_T) */ 9232 9233 static bfd_boolean 9234 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note) 9235 { 9236 char buf[30]; 9237 char *name; 9238 size_t len; 9239 asection *sect; 9240 int type; 9241 int is_active_thread; 9242 bfd_vma base_addr; 9243 9244 if (note->descsz < 728) 9245 return TRUE; 9246 9247 if (! CONST_STRNEQ (note->namedata, "win32")) 9248 return TRUE; 9249 9250 type = bfd_get_32 (abfd, note->descdata); 9251 9252 switch (type) 9253 { 9254 case 1 /* NOTE_INFO_PROCESS */: 9255 /* FIXME: need to add ->core->command. */ 9256 /* process_info.pid */ 9257 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8); 9258 /* process_info.signal */ 9259 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12); 9260 break; 9261 9262 case 2 /* NOTE_INFO_THREAD */: 9263 /* Make a ".reg/999" section. */ 9264 /* thread_info.tid */ 9265 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8)); 9266 9267 len = strlen (buf) + 1; 9268 name = (char *) bfd_alloc (abfd, len); 9269 if (name == NULL) 9270 return FALSE; 9271 9272 memcpy (name, buf, len); 9273 9274 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 9275 if (sect == NULL) 9276 return FALSE; 9277 9278 /* sizeof (thread_info.thread_context) */ 9279 sect->size = 716; 9280 /* offsetof (thread_info.thread_context) */ 9281 sect->filepos = note->descpos + 12; 9282 sect->alignment_power = 2; 9283 9284 /* thread_info.is_active_thread */ 9285 is_active_thread = bfd_get_32 (abfd, note->descdata + 8); 9286 9287 if (is_active_thread) 9288 if (! elfcore_maybe_make_sect (abfd, ".reg", sect)) 9289 return FALSE; 9290 break; 9291 9292 case 3 /* NOTE_INFO_MODULE */: 9293 /* Make a ".module/xxxxxxxx" section. */ 9294 /* module_info.base_address */ 9295 base_addr = bfd_get_32 (abfd, note->descdata + 4); 9296 sprintf (buf, ".module/%08lx", (unsigned long) base_addr); 9297 9298 len = strlen (buf) + 1; 9299 name = (char *) bfd_alloc (abfd, len); 9300 if (name == NULL) 9301 return FALSE; 9302 9303 memcpy (name, buf, len); 9304 9305 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 9306 9307 if (sect == NULL) 9308 return FALSE; 9309 9310 sect->size = note->descsz; 9311 sect->filepos = note->descpos; 9312 sect->alignment_power = 2; 9313 break; 9314 9315 default: 9316 return TRUE; 9317 } 9318 9319 return TRUE; 9320 } 9321 9322 static bfd_boolean 9323 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note) 9324 { 9325 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 9326 9327 switch (note->type) 9328 { 9329 default: 9330 return TRUE; 9331 9332 case NT_PRSTATUS: 9333 if (bed->elf_backend_grok_prstatus) 9334 if ((*bed->elf_backend_grok_prstatus) (abfd, note)) 9335 return TRUE; 9336 #if defined (HAVE_PRSTATUS_T) 9337 return elfcore_grok_prstatus (abfd, note); 9338 #else 9339 return TRUE; 9340 #endif 9341 9342 #if defined (HAVE_PSTATUS_T) 9343 case NT_PSTATUS: 9344 return elfcore_grok_pstatus (abfd, note); 9345 #endif 9346 9347 #if defined (HAVE_LWPSTATUS_T) 9348 case NT_LWPSTATUS: 9349 return elfcore_grok_lwpstatus (abfd, note); 9350 #endif 9351 9352 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */ 9353 return elfcore_grok_prfpreg (abfd, note); 9354 9355 case NT_WIN32PSTATUS: 9356 return elfcore_grok_win32pstatus (abfd, note); 9357 9358 case NT_PRXFPREG: /* Linux SSE extension */ 9359 if (note->namesz == 6 9360 && strcmp (note->namedata, "LINUX") == 0) 9361 return elfcore_grok_prxfpreg (abfd, note); 9362 else 9363 return TRUE; 9364 9365 case NT_X86_XSTATE: /* Linux XSAVE extension */ 9366 if (note->namesz == 6 9367 && strcmp (note->namedata, "LINUX") == 0) 9368 return elfcore_grok_xstatereg (abfd, note); 9369 else 9370 return TRUE; 9371 9372 case NT_PPC_VMX: 9373 if (note->namesz == 6 9374 && strcmp (note->namedata, "LINUX") == 0) 9375 return elfcore_grok_ppc_vmx (abfd, note); 9376 else 9377 return TRUE; 9378 9379 case NT_PPC_VSX: 9380 if (note->namesz == 6 9381 && strcmp (note->namedata, "LINUX") == 0) 9382 return elfcore_grok_ppc_vsx (abfd, note); 9383 else 9384 return TRUE; 9385 9386 case NT_S390_HIGH_GPRS: 9387 if (note->namesz == 6 9388 && strcmp (note->namedata, "LINUX") == 0) 9389 return elfcore_grok_s390_high_gprs (abfd, note); 9390 else 9391 return TRUE; 9392 9393 case NT_S390_TIMER: 9394 if (note->namesz == 6 9395 && strcmp (note->namedata, "LINUX") == 0) 9396 return elfcore_grok_s390_timer (abfd, note); 9397 else 9398 return TRUE; 9399 9400 case NT_S390_TODCMP: 9401 if (note->namesz == 6 9402 && strcmp (note->namedata, "LINUX") == 0) 9403 return elfcore_grok_s390_todcmp (abfd, note); 9404 else 9405 return TRUE; 9406 9407 case NT_S390_TODPREG: 9408 if (note->namesz == 6 9409 && strcmp (note->namedata, "LINUX") == 0) 9410 return elfcore_grok_s390_todpreg (abfd, note); 9411 else 9412 return TRUE; 9413 9414 case NT_S390_CTRS: 9415 if (note->namesz == 6 9416 && strcmp (note->namedata, "LINUX") == 0) 9417 return elfcore_grok_s390_ctrs (abfd, note); 9418 else 9419 return TRUE; 9420 9421 case NT_S390_PREFIX: 9422 if (note->namesz == 6 9423 && strcmp (note->namedata, "LINUX") == 0) 9424 return elfcore_grok_s390_prefix (abfd, note); 9425 else 9426 return TRUE; 9427 9428 case NT_S390_LAST_BREAK: 9429 if (note->namesz == 6 9430 && strcmp (note->namedata, "LINUX") == 0) 9431 return elfcore_grok_s390_last_break (abfd, note); 9432 else 9433 return TRUE; 9434 9435 case NT_S390_SYSTEM_CALL: 9436 if (note->namesz == 6 9437 && strcmp (note->namedata, "LINUX") == 0) 9438 return elfcore_grok_s390_system_call (abfd, note); 9439 else 9440 return TRUE; 9441 9442 case NT_S390_TDB: 9443 if (note->namesz == 6 9444 && strcmp (note->namedata, "LINUX") == 0) 9445 return elfcore_grok_s390_tdb (abfd, note); 9446 else 9447 return TRUE; 9448 9449 case NT_S390_VXRS_LOW: 9450 if (note->namesz == 6 9451 && strcmp (note->namedata, "LINUX") == 0) 9452 return elfcore_grok_s390_vxrs_low (abfd, note); 9453 else 9454 return TRUE; 9455 9456 case NT_S390_VXRS_HIGH: 9457 if (note->namesz == 6 9458 && strcmp (note->namedata, "LINUX") == 0) 9459 return elfcore_grok_s390_vxrs_high (abfd, note); 9460 else 9461 return TRUE; 9462 9463 case NT_ARM_VFP: 9464 if (note->namesz == 6 9465 && strcmp (note->namedata, "LINUX") == 0) 9466 return elfcore_grok_arm_vfp (abfd, note); 9467 else 9468 return TRUE; 9469 9470 case NT_ARM_TLS: 9471 if (note->namesz == 6 9472 && strcmp (note->namedata, "LINUX") == 0) 9473 return elfcore_grok_aarch_tls (abfd, note); 9474 else 9475 return TRUE; 9476 9477 case NT_ARM_HW_BREAK: 9478 if (note->namesz == 6 9479 && strcmp (note->namedata, "LINUX") == 0) 9480 return elfcore_grok_aarch_hw_break (abfd, note); 9481 else 9482 return TRUE; 9483 9484 case NT_ARM_HW_WATCH: 9485 if (note->namesz == 6 9486 && strcmp (note->namedata, "LINUX") == 0) 9487 return elfcore_grok_aarch_hw_watch (abfd, note); 9488 else 9489 return TRUE; 9490 9491 case NT_PRPSINFO: 9492 case NT_PSINFO: 9493 if (bed->elf_backend_grok_psinfo) 9494 if ((*bed->elf_backend_grok_psinfo) (abfd, note)) 9495 return TRUE; 9496 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) 9497 return elfcore_grok_psinfo (abfd, note); 9498 #else 9499 return TRUE; 9500 #endif 9501 9502 case NT_AUXV: 9503 { 9504 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv", 9505 SEC_HAS_CONTENTS); 9506 9507 if (sect == NULL) 9508 return FALSE; 9509 sect->size = note->descsz; 9510 sect->filepos = note->descpos; 9511 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; 9512 9513 return TRUE; 9514 } 9515 9516 case NT_FILE: 9517 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file", 9518 note); 9519 9520 case NT_SIGINFO: 9521 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo", 9522 note); 9523 9524 } 9525 } 9526 9527 static bfd_boolean 9528 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note) 9529 { 9530 struct bfd_build_id* build_id; 9531 9532 if (note->descsz == 0) 9533 return FALSE; 9534 9535 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz); 9536 if (build_id == NULL) 9537 return FALSE; 9538 9539 build_id->size = note->descsz; 9540 memcpy (build_id->data, note->descdata, note->descsz); 9541 abfd->build_id = build_id; 9542 9543 return TRUE; 9544 } 9545 9546 static bfd_boolean 9547 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note) 9548 { 9549 switch (note->type) 9550 { 9551 default: 9552 return TRUE; 9553 9554 case NT_GNU_BUILD_ID: 9555 return elfobj_grok_gnu_build_id (abfd, note); 9556 } 9557 } 9558 9559 static bfd_boolean 9560 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note) 9561 { 9562 struct sdt_note *cur = 9563 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note) 9564 + note->descsz); 9565 9566 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head; 9567 cur->size = (bfd_size_type) note->descsz; 9568 memcpy (cur->data, note->descdata, note->descsz); 9569 9570 elf_tdata (abfd)->sdt_note_head = cur; 9571 9572 return TRUE; 9573 } 9574 9575 static bfd_boolean 9576 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note) 9577 { 9578 switch (note->type) 9579 { 9580 case NT_STAPSDT: 9581 return elfobj_grok_stapsdt_note_1 (abfd, note); 9582 9583 default: 9584 return TRUE; 9585 } 9586 } 9587 9588 static bfd_boolean 9589 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note) 9590 { 9591 size_t offset; 9592 9593 switch (abfd->arch_info->bits_per_word) 9594 { 9595 case 32: 9596 if (note->descsz < 108) 9597 return FALSE; 9598 break; 9599 9600 case 64: 9601 if (note->descsz < 120) 9602 return FALSE; 9603 break; 9604 9605 default: 9606 return FALSE; 9607 } 9608 9609 /* Check for version 1 in pr_version. */ 9610 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1) 9611 return FALSE; 9612 offset = 4; 9613 9614 /* Skip over pr_psinfosz. */ 9615 if (abfd->arch_info->bits_per_word == 32) 9616 offset += 4; 9617 else 9618 { 9619 offset += 4; /* Padding before pr_psinfosz. */ 9620 offset += 8; 9621 } 9622 9623 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */ 9624 elf_tdata (abfd)->core->program 9625 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17); 9626 offset += 17; 9627 9628 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */ 9629 elf_tdata (abfd)->core->command 9630 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81); 9631 offset += 81; 9632 9633 /* Padding before pr_pid. */ 9634 offset += 2; 9635 9636 /* The pr_pid field was added in version "1a". */ 9637 if (note->descsz < offset + 4) 9638 return TRUE; 9639 9640 elf_tdata (abfd)->core->pid 9641 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset); 9642 9643 return TRUE; 9644 } 9645 9646 static bfd_boolean 9647 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note) 9648 { 9649 size_t offset; 9650 size_t size; 9651 9652 /* Check for version 1 in pr_version. */ 9653 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1) 9654 return FALSE; 9655 offset = 4; 9656 9657 /* Skip over pr_statussz. */ 9658 switch (abfd->arch_info->bits_per_word) 9659 { 9660 case 32: 9661 offset += 4; 9662 break; 9663 9664 case 64: 9665 offset += 4; /* Padding before pr_statussz. */ 9666 offset += 8; 9667 break; 9668 9669 default: 9670 return FALSE; 9671 } 9672 9673 /* Extract size of pr_reg from pr_gregsetsz. */ 9674 if (abfd->arch_info->bits_per_word == 32) 9675 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset); 9676 else 9677 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset); 9678 9679 /* Skip over pr_gregsetsz and pr_fpregsetsz. */ 9680 offset += (abfd->arch_info->bits_per_word / 8) * 2; 9681 9682 /* Skip over pr_osreldate. */ 9683 offset += 4; 9684 9685 /* Read signal from pr_cursig. */ 9686 if (elf_tdata (abfd)->core->signal == 0) 9687 elf_tdata (abfd)->core->signal 9688 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset); 9689 offset += 4; 9690 9691 /* Read TID from pr_pid. */ 9692 elf_tdata (abfd)->core->lwpid 9693 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset); 9694 offset += 4; 9695 9696 /* Padding before pr_reg. */ 9697 if (abfd->arch_info->bits_per_word == 64) 9698 offset += 4; 9699 9700 /* Make a ".reg/999" section and a ".reg" section. */ 9701 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 9702 size, note->descpos + offset); 9703 } 9704 9705 static bfd_boolean 9706 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note) 9707 { 9708 switch (note->type) 9709 { 9710 case NT_PRSTATUS: 9711 return elfcore_grok_freebsd_prstatus (abfd, note); 9712 9713 case NT_FPREGSET: 9714 return elfcore_grok_prfpreg (abfd, note); 9715 9716 case NT_PRPSINFO: 9717 return elfcore_grok_freebsd_psinfo (abfd, note); 9718 9719 case NT_FREEBSD_THRMISC: 9720 if (note->namesz == 8) 9721 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note); 9722 else 9723 return TRUE; 9724 9725 case NT_FREEBSD_PROCSTAT_AUXV: 9726 { 9727 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv", 9728 SEC_HAS_CONTENTS); 9729 9730 if (sect == NULL) 9731 return FALSE; 9732 sect->size = note->descsz - 4; 9733 sect->filepos = note->descpos + 4; 9734 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; 9735 9736 return TRUE; 9737 } 9738 9739 case NT_X86_XSTATE: 9740 if (note->namesz == 8) 9741 return elfcore_grok_xstatereg (abfd, note); 9742 else 9743 return TRUE; 9744 9745 default: 9746 return TRUE; 9747 } 9748 } 9749 9750 static bfd_boolean 9751 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp) 9752 { 9753 char *cp; 9754 9755 cp = strchr (note->namedata, '@'); 9756 if (cp != NULL) 9757 { 9758 *lwpidp = atoi(cp + 1); 9759 return TRUE; 9760 } 9761 return FALSE; 9762 } 9763 9764 static bfd_boolean 9765 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note) 9766 { 9767 /* Signal number at offset 0x08. */ 9768 elf_tdata (abfd)->core->signal 9769 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08); 9770 9771 /* Process ID at offset 0x50. */ 9772 elf_tdata (abfd)->core->pid 9773 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50); 9774 9775 /* Command name at 0x7c (max 32 bytes, including nul). */ 9776 elf_tdata (abfd)->core->command 9777 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31); 9778 9779 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo", 9780 note); 9781 } 9782 9783 static bfd_boolean 9784 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note) 9785 { 9786 int lwp; 9787 9788 if (elfcore_netbsd_get_lwpid (note, &lwp)) 9789 elf_tdata (abfd)->core->lwpid = lwp; 9790 9791 if (note->type == NT_NETBSDCORE_PROCINFO) 9792 { 9793 /* NetBSD-specific core "procinfo". Note that we expect to 9794 find this note before any of the others, which is fine, 9795 since the kernel writes this note out first when it 9796 creates a core file. */ 9797 9798 return elfcore_grok_netbsd_procinfo (abfd, note); 9799 } 9800 9801 if (note->type == NT_NETBSDCORE_AUXV) 9802 { 9803 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv", 9804 SEC_HAS_CONTENTS); 9805 9806 if (sect == NULL) 9807 return FALSE; 9808 sect->size = note->descsz; 9809 sect->filepos = note->descpos; 9810 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; 9811 9812 return TRUE; 9813 } 9814 9815 /* As of Jan 2002 there are no other machine-independent notes 9816 defined for NetBSD core files. If the note type is less 9817 than the start of the machine-dependent note types, we don't 9818 understand it. */ 9819 9820 if (note->type < NT_NETBSDCORE_FIRSTMACH) 9821 return TRUE; 9822 9823 9824 switch (bfd_get_arch (abfd)) 9825 { 9826 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and 9827 PT_GETFPREGS == mach+2. */ 9828 9829 case bfd_arch_alpha: 9830 case bfd_arch_sparc: 9831 switch (note->type) 9832 { 9833 case NT_NETBSDCORE_FIRSTMACH+0: 9834 return elfcore_make_note_pseudosection (abfd, ".reg", note); 9835 9836 case NT_NETBSDCORE_FIRSTMACH+2: 9837 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 9838 9839 default: 9840 return TRUE; 9841 } 9842 9843 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5. 9844 There's also old PT___GETREGS40 == mach + 1 for old reg 9845 structure which lacks GBR. */ 9846 9847 case bfd_arch_sh: 9848 switch (note->type) 9849 { 9850 case NT_NETBSDCORE_FIRSTMACH+3: 9851 return elfcore_make_note_pseudosection (abfd, ".reg", note); 9852 9853 case NT_NETBSDCORE_FIRSTMACH+5: 9854 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 9855 9856 default: 9857 return TRUE; 9858 } 9859 9860 /* On all other arch's, PT_GETREGS == mach+1 and 9861 PT_GETFPREGS == mach+3. */ 9862 9863 default: 9864 switch (note->type) 9865 { 9866 case NT_NETBSDCORE_FIRSTMACH+1: 9867 return elfcore_make_note_pseudosection (abfd, ".reg", note); 9868 9869 case NT_NETBSDCORE_FIRSTMACH+3: 9870 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 9871 9872 default: 9873 return TRUE; 9874 } 9875 } 9876 /* NOTREACHED */ 9877 } 9878 9879 static bfd_boolean 9880 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note) 9881 { 9882 /* Signal number at offset 0x08. */ 9883 elf_tdata (abfd)->core->signal 9884 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08); 9885 9886 /* Process ID at offset 0x20. */ 9887 elf_tdata (abfd)->core->pid 9888 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20); 9889 9890 /* Command name at 0x48 (max 32 bytes, including nul). */ 9891 elf_tdata (abfd)->core->command 9892 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31); 9893 9894 return TRUE; 9895 } 9896 9897 static bfd_boolean 9898 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note) 9899 { 9900 if (note->type == NT_OPENBSD_PROCINFO) 9901 return elfcore_grok_openbsd_procinfo (abfd, note); 9902 9903 if (note->type == NT_OPENBSD_REGS) 9904 return elfcore_make_note_pseudosection (abfd, ".reg", note); 9905 9906 if (note->type == NT_OPENBSD_FPREGS) 9907 return elfcore_make_note_pseudosection (abfd, ".reg2", note); 9908 9909 if (note->type == NT_OPENBSD_XFPREGS) 9910 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note); 9911 9912 if (note->type == NT_OPENBSD_AUXV) 9913 { 9914 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv", 9915 SEC_HAS_CONTENTS); 9916 9917 if (sect == NULL) 9918 return FALSE; 9919 sect->size = note->descsz; 9920 sect->filepos = note->descpos; 9921 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; 9922 9923 return TRUE; 9924 } 9925 9926 if (note->type == NT_OPENBSD_WCOOKIE) 9927 { 9928 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie", 9929 SEC_HAS_CONTENTS); 9930 9931 if (sect == NULL) 9932 return FALSE; 9933 sect->size = note->descsz; 9934 sect->filepos = note->descpos; 9935 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; 9936 9937 return TRUE; 9938 } 9939 9940 return TRUE; 9941 } 9942 9943 static bfd_boolean 9944 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid) 9945 { 9946 void *ddata = note->descdata; 9947 char buf[100]; 9948 char *name; 9949 asection *sect; 9950 short sig; 9951 unsigned flags; 9952 9953 /* nto_procfs_status 'pid' field is at offset 0. */ 9954 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata); 9955 9956 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */ 9957 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4); 9958 9959 /* nto_procfs_status 'flags' field is at offset 8. */ 9960 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8); 9961 9962 /* nto_procfs_status 'what' field is at offset 14. */ 9963 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0) 9964 { 9965 elf_tdata (abfd)->core->signal = sig; 9966 elf_tdata (abfd)->core->lwpid = *tid; 9967 } 9968 9969 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores 9970 do not come from signals so we make sure we set the current 9971 thread just in case. */ 9972 if (flags & 0x00000080) 9973 elf_tdata (abfd)->core->lwpid = *tid; 9974 9975 /* Make a ".qnx_core_status/%d" section. */ 9976 sprintf (buf, ".qnx_core_status/%ld", *tid); 9977 9978 name = (char *) bfd_alloc (abfd, strlen (buf) + 1); 9979 if (name == NULL) 9980 return FALSE; 9981 strcpy (name, buf); 9982 9983 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 9984 if (sect == NULL) 9985 return FALSE; 9986 9987 sect->size = note->descsz; 9988 sect->filepos = note->descpos; 9989 sect->alignment_power = 2; 9990 9991 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect)); 9992 } 9993 9994 static bfd_boolean 9995 elfcore_grok_nto_regs (bfd *abfd, 9996 Elf_Internal_Note *note, 9997 long tid, 9998 char *base) 9999 { 10000 char buf[100]; 10001 char *name; 10002 asection *sect; 10003 10004 /* Make a "(base)/%d" section. */ 10005 sprintf (buf, "%s/%ld", base, tid); 10006 10007 name = (char *) bfd_alloc (abfd, strlen (buf) + 1); 10008 if (name == NULL) 10009 return FALSE; 10010 strcpy (name, buf); 10011 10012 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 10013 if (sect == NULL) 10014 return FALSE; 10015 10016 sect->size = note->descsz; 10017 sect->filepos = note->descpos; 10018 sect->alignment_power = 2; 10019 10020 /* This is the current thread. */ 10021 if (elf_tdata (abfd)->core->lwpid == tid) 10022 return elfcore_maybe_make_sect (abfd, base, sect); 10023 10024 return TRUE; 10025 } 10026 10027 #define BFD_QNT_CORE_INFO 7 10028 #define BFD_QNT_CORE_STATUS 8 10029 #define BFD_QNT_CORE_GREG 9 10030 #define BFD_QNT_CORE_FPREG 10 10031 10032 static bfd_boolean 10033 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note) 10034 { 10035 /* Every GREG section has a STATUS section before it. Store the 10036 tid from the previous call to pass down to the next gregs 10037 function. */ 10038 static long tid = 1; 10039 10040 switch (note->type) 10041 { 10042 case BFD_QNT_CORE_INFO: 10043 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note); 10044 case BFD_QNT_CORE_STATUS: 10045 return elfcore_grok_nto_status (abfd, note, &tid); 10046 case BFD_QNT_CORE_GREG: 10047 return elfcore_grok_nto_regs (abfd, note, tid, ".reg"); 10048 case BFD_QNT_CORE_FPREG: 10049 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2"); 10050 default: 10051 return TRUE; 10052 } 10053 } 10054 10055 static bfd_boolean 10056 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note) 10057 { 10058 char *name; 10059 asection *sect; 10060 size_t len; 10061 10062 /* Use note name as section name. */ 10063 len = note->namesz; 10064 name = (char *) bfd_alloc (abfd, len); 10065 if (name == NULL) 10066 return FALSE; 10067 memcpy (name, note->namedata, len); 10068 name[len - 1] = '\0'; 10069 10070 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); 10071 if (sect == NULL) 10072 return FALSE; 10073 10074 sect->size = note->descsz; 10075 sect->filepos = note->descpos; 10076 sect->alignment_power = 1; 10077 10078 return TRUE; 10079 } 10080 10081 /* Function: elfcore_write_note 10082 10083 Inputs: 10084 buffer to hold note, and current size of buffer 10085 name of note 10086 type of note 10087 data for note 10088 size of data for note 10089 10090 Writes note to end of buffer. ELF64 notes are written exactly as 10091 for ELF32, despite the current (as of 2006) ELF gabi specifying 10092 that they ought to have 8-byte namesz and descsz field, and have 10093 8-byte alignment. Other writers, eg. Linux kernel, do the same. 10094 10095 Return: 10096 Pointer to realloc'd buffer, *BUFSIZ updated. */ 10097 10098 char * 10099 elfcore_write_note (bfd *abfd, 10100 char *buf, 10101 int *bufsiz, 10102 const char *name, 10103 int type, 10104 const void *input, 10105 int size) 10106 { 10107 Elf_External_Note *xnp; 10108 size_t namesz; 10109 size_t newspace; 10110 char *dest; 10111 10112 namesz = 0; 10113 if (name != NULL) 10114 namesz = strlen (name) + 1; 10115 10116 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4); 10117 10118 buf = (char *) realloc (buf, *bufsiz + newspace); 10119 if (buf == NULL) 10120 return buf; 10121 dest = buf + *bufsiz; 10122 *bufsiz += newspace; 10123 xnp = (Elf_External_Note *) dest; 10124 H_PUT_32 (abfd, namesz, xnp->namesz); 10125 H_PUT_32 (abfd, size, xnp->descsz); 10126 H_PUT_32 (abfd, type, xnp->type); 10127 dest = xnp->name; 10128 if (name != NULL) 10129 { 10130 memcpy (dest, name, namesz); 10131 dest += namesz; 10132 while (namesz & 3) 10133 { 10134 *dest++ = '\0'; 10135 ++namesz; 10136 } 10137 } 10138 memcpy (dest, input, size); 10139 dest += size; 10140 while (size & 3) 10141 { 10142 *dest++ = '\0'; 10143 ++size; 10144 } 10145 return buf; 10146 } 10147 10148 char * 10149 elfcore_write_prpsinfo (bfd *abfd, 10150 char *buf, 10151 int *bufsiz, 10152 const char *fname, 10153 const char *psargs) 10154 { 10155 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 10156 10157 if (bed->elf_backend_write_core_note != NULL) 10158 { 10159 char *ret; 10160 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz, 10161 NT_PRPSINFO, fname, psargs); 10162 if (ret != NULL) 10163 return ret; 10164 } 10165 10166 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) 10167 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T) 10168 if (bed->s->elfclass == ELFCLASS32) 10169 { 10170 #if defined (HAVE_PSINFO32_T) 10171 psinfo32_t data; 10172 int note_type = NT_PSINFO; 10173 #else 10174 prpsinfo32_t data; 10175 int note_type = NT_PRPSINFO; 10176 #endif 10177 10178 memset (&data, 0, sizeof (data)); 10179 strncpy (data.pr_fname, fname, sizeof (data.pr_fname)); 10180 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs)); 10181 return elfcore_write_note (abfd, buf, bufsiz, 10182 "CORE", note_type, &data, sizeof (data)); 10183 } 10184 else 10185 #endif 10186 { 10187 #if defined (HAVE_PSINFO_T) 10188 psinfo_t data; 10189 int note_type = NT_PSINFO; 10190 #else 10191 prpsinfo_t data; 10192 int note_type = NT_PRPSINFO; 10193 #endif 10194 10195 memset (&data, 0, sizeof (data)); 10196 strncpy (data.pr_fname, fname, sizeof (data.pr_fname)); 10197 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs)); 10198 return elfcore_write_note (abfd, buf, bufsiz, 10199 "CORE", note_type, &data, sizeof (data)); 10200 } 10201 #endif /* PSINFO_T or PRPSINFO_T */ 10202 10203 free (buf); 10204 return NULL; 10205 } 10206 10207 char * 10208 elfcore_write_linux_prpsinfo32 10209 (bfd *abfd, char *buf, int *bufsiz, 10210 const struct elf_internal_linux_prpsinfo *prpsinfo) 10211 { 10212 struct elf_external_linux_prpsinfo32 data; 10213 10214 swap_linux_prpsinfo32_out (abfd, prpsinfo, &data); 10215 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO, 10216 &data, sizeof (data)); 10217 } 10218 10219 char * 10220 elfcore_write_linux_prpsinfo64 10221 (bfd *abfd, char *buf, int *bufsiz, 10222 const struct elf_internal_linux_prpsinfo *prpsinfo) 10223 { 10224 struct elf_external_linux_prpsinfo64 data; 10225 10226 swap_linux_prpsinfo64_out (abfd, prpsinfo, &data); 10227 return elfcore_write_note (abfd, buf, bufsiz, 10228 "CORE", NT_PRPSINFO, &data, sizeof (data)); 10229 } 10230 10231 char * 10232 elfcore_write_prstatus (bfd *abfd, 10233 char *buf, 10234 int *bufsiz, 10235 long pid, 10236 int cursig, 10237 const void *gregs) 10238 { 10239 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 10240 10241 if (bed->elf_backend_write_core_note != NULL) 10242 { 10243 char *ret; 10244 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz, 10245 NT_PRSTATUS, 10246 pid, cursig, gregs); 10247 if (ret != NULL) 10248 return ret; 10249 } 10250 10251 #if defined (HAVE_PRSTATUS_T) 10252 #if defined (HAVE_PRSTATUS32_T) 10253 if (bed->s->elfclass == ELFCLASS32) 10254 { 10255 prstatus32_t prstat; 10256 10257 memset (&prstat, 0, sizeof (prstat)); 10258 prstat.pr_pid = pid; 10259 prstat.pr_cursig = cursig; 10260 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); 10261 return elfcore_write_note (abfd, buf, bufsiz, "CORE", 10262 NT_PRSTATUS, &prstat, sizeof (prstat)); 10263 } 10264 else 10265 #endif 10266 { 10267 prstatus_t prstat; 10268 10269 memset (&prstat, 0, sizeof (prstat)); 10270 prstat.pr_pid = pid; 10271 prstat.pr_cursig = cursig; 10272 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); 10273 return elfcore_write_note (abfd, buf, bufsiz, "CORE", 10274 NT_PRSTATUS, &prstat, sizeof (prstat)); 10275 } 10276 #endif /* HAVE_PRSTATUS_T */ 10277 10278 free (buf); 10279 return NULL; 10280 } 10281 10282 #if defined (HAVE_LWPSTATUS_T) 10283 char * 10284 elfcore_write_lwpstatus (bfd *abfd, 10285 char *buf, 10286 int *bufsiz, 10287 long pid, 10288 int cursig, 10289 const void *gregs) 10290 { 10291 lwpstatus_t lwpstat; 10292 const char *note_name = "CORE"; 10293 10294 memset (&lwpstat, 0, sizeof (lwpstat)); 10295 lwpstat.pr_lwpid = pid >> 16; 10296 lwpstat.pr_cursig = cursig; 10297 #if defined (HAVE_LWPSTATUS_T_PR_REG) 10298 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg)); 10299 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT) 10300 #if !defined(gregs) 10301 memcpy (lwpstat.pr_context.uc_mcontext.gregs, 10302 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs)); 10303 #else 10304 memcpy (lwpstat.pr_context.uc_mcontext.__gregs, 10305 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs)); 10306 #endif 10307 #endif 10308 return elfcore_write_note (abfd, buf, bufsiz, note_name, 10309 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat)); 10310 } 10311 #endif /* HAVE_LWPSTATUS_T */ 10312 10313 #if defined (HAVE_PSTATUS_T) 10314 char * 10315 elfcore_write_pstatus (bfd *abfd, 10316 char *buf, 10317 int *bufsiz, 10318 long pid, 10319 int cursig ATTRIBUTE_UNUSED, 10320 const void *gregs ATTRIBUTE_UNUSED) 10321 { 10322 const char *note_name = "CORE"; 10323 #if defined (HAVE_PSTATUS32_T) 10324 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 10325 10326 if (bed->s->elfclass == ELFCLASS32) 10327 { 10328 pstatus32_t pstat; 10329 10330 memset (&pstat, 0, sizeof (pstat)); 10331 pstat.pr_pid = pid & 0xffff; 10332 buf = elfcore_write_note (abfd, buf, bufsiz, note_name, 10333 NT_PSTATUS, &pstat, sizeof (pstat)); 10334 return buf; 10335 } 10336 else 10337 #endif 10338 { 10339 pstatus_t pstat; 10340 10341 memset (&pstat, 0, sizeof (pstat)); 10342 pstat.pr_pid = pid & 0xffff; 10343 buf = elfcore_write_note (abfd, buf, bufsiz, note_name, 10344 NT_PSTATUS, &pstat, sizeof (pstat)); 10345 return buf; 10346 } 10347 } 10348 #endif /* HAVE_PSTATUS_T */ 10349 10350 char * 10351 elfcore_write_prfpreg (bfd *abfd, 10352 char *buf, 10353 int *bufsiz, 10354 const void *fpregs, 10355 int size) 10356 { 10357 const char *note_name = "CORE"; 10358 return elfcore_write_note (abfd, buf, bufsiz, 10359 note_name, NT_FPREGSET, fpregs, size); 10360 } 10361 10362 char * 10363 elfcore_write_prxfpreg (bfd *abfd, 10364 char *buf, 10365 int *bufsiz, 10366 const void *xfpregs, 10367 int size) 10368 { 10369 char *note_name = "LINUX"; 10370 return elfcore_write_note (abfd, buf, bufsiz, 10371 note_name, NT_PRXFPREG, xfpregs, size); 10372 } 10373 10374 char * 10375 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz, 10376 const void *xfpregs, int size) 10377 { 10378 char *note_name; 10379 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD) 10380 note_name = "FreeBSD"; 10381 else 10382 note_name = "LINUX"; 10383 return elfcore_write_note (abfd, buf, bufsiz, 10384 note_name, NT_X86_XSTATE, xfpregs, size); 10385 } 10386 10387 char * 10388 elfcore_write_ppc_vmx (bfd *abfd, 10389 char *buf, 10390 int *bufsiz, 10391 const void *ppc_vmx, 10392 int size) 10393 { 10394 char *note_name = "LINUX"; 10395 return elfcore_write_note (abfd, buf, bufsiz, 10396 note_name, NT_PPC_VMX, ppc_vmx, size); 10397 } 10398 10399 char * 10400 elfcore_write_ppc_vsx (bfd *abfd, 10401 char *buf, 10402 int *bufsiz, 10403 const void *ppc_vsx, 10404 int size) 10405 { 10406 char *note_name = "LINUX"; 10407 return elfcore_write_note (abfd, buf, bufsiz, 10408 note_name, NT_PPC_VSX, ppc_vsx, size); 10409 } 10410 10411 static char * 10412 elfcore_write_s390_high_gprs (bfd *abfd, 10413 char *buf, 10414 int *bufsiz, 10415 const void *s390_high_gprs, 10416 int size) 10417 { 10418 char *note_name = "LINUX"; 10419 return elfcore_write_note (abfd, buf, bufsiz, 10420 note_name, NT_S390_HIGH_GPRS, 10421 s390_high_gprs, size); 10422 } 10423 10424 char * 10425 elfcore_write_s390_timer (bfd *abfd, 10426 char *buf, 10427 int *bufsiz, 10428 const void *s390_timer, 10429 int size) 10430 { 10431 char *note_name = "LINUX"; 10432 return elfcore_write_note (abfd, buf, bufsiz, 10433 note_name, NT_S390_TIMER, s390_timer, size); 10434 } 10435 10436 char * 10437 elfcore_write_s390_todcmp (bfd *abfd, 10438 char *buf, 10439 int *bufsiz, 10440 const void *s390_todcmp, 10441 int size) 10442 { 10443 char *note_name = "LINUX"; 10444 return elfcore_write_note (abfd, buf, bufsiz, 10445 note_name, NT_S390_TODCMP, s390_todcmp, size); 10446 } 10447 10448 char * 10449 elfcore_write_s390_todpreg (bfd *abfd, 10450 char *buf, 10451 int *bufsiz, 10452 const void *s390_todpreg, 10453 int size) 10454 { 10455 char *note_name = "LINUX"; 10456 return elfcore_write_note (abfd, buf, bufsiz, 10457 note_name, NT_S390_TODPREG, s390_todpreg, size); 10458 } 10459 10460 char * 10461 elfcore_write_s390_ctrs (bfd *abfd, 10462 char *buf, 10463 int *bufsiz, 10464 const void *s390_ctrs, 10465 int size) 10466 { 10467 char *note_name = "LINUX"; 10468 return elfcore_write_note (abfd, buf, bufsiz, 10469 note_name, NT_S390_CTRS, s390_ctrs, size); 10470 } 10471 10472 char * 10473 elfcore_write_s390_prefix (bfd *abfd, 10474 char *buf, 10475 int *bufsiz, 10476 const void *s390_prefix, 10477 int size) 10478 { 10479 char *note_name = "LINUX"; 10480 return elfcore_write_note (abfd, buf, bufsiz, 10481 note_name, NT_S390_PREFIX, s390_prefix, size); 10482 } 10483 10484 char * 10485 elfcore_write_s390_last_break (bfd *abfd, 10486 char *buf, 10487 int *bufsiz, 10488 const void *s390_last_break, 10489 int size) 10490 { 10491 char *note_name = "LINUX"; 10492 return elfcore_write_note (abfd, buf, bufsiz, 10493 note_name, NT_S390_LAST_BREAK, 10494 s390_last_break, size); 10495 } 10496 10497 char * 10498 elfcore_write_s390_system_call (bfd *abfd, 10499 char *buf, 10500 int *bufsiz, 10501 const void *s390_system_call, 10502 int size) 10503 { 10504 char *note_name = "LINUX"; 10505 return elfcore_write_note (abfd, buf, bufsiz, 10506 note_name, NT_S390_SYSTEM_CALL, 10507 s390_system_call, size); 10508 } 10509 10510 char * 10511 elfcore_write_s390_tdb (bfd *abfd, 10512 char *buf, 10513 int *bufsiz, 10514 const void *s390_tdb, 10515 int size) 10516 { 10517 char *note_name = "LINUX"; 10518 return elfcore_write_note (abfd, buf, bufsiz, 10519 note_name, NT_S390_TDB, s390_tdb, size); 10520 } 10521 10522 char * 10523 elfcore_write_s390_vxrs_low (bfd *abfd, 10524 char *buf, 10525 int *bufsiz, 10526 const void *s390_vxrs_low, 10527 int size) 10528 { 10529 char *note_name = "LINUX"; 10530 return elfcore_write_note (abfd, buf, bufsiz, 10531 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size); 10532 } 10533 10534 char * 10535 elfcore_write_s390_vxrs_high (bfd *abfd, 10536 char *buf, 10537 int *bufsiz, 10538 const void *s390_vxrs_high, 10539 int size) 10540 { 10541 char *note_name = "LINUX"; 10542 return elfcore_write_note (abfd, buf, bufsiz, 10543 note_name, NT_S390_VXRS_HIGH, 10544 s390_vxrs_high, size); 10545 } 10546 10547 char * 10548 elfcore_write_arm_vfp (bfd *abfd, 10549 char *buf, 10550 int *bufsiz, 10551 const void *arm_vfp, 10552 int size) 10553 { 10554 char *note_name = "LINUX"; 10555 return elfcore_write_note (abfd, buf, bufsiz, 10556 note_name, NT_ARM_VFP, arm_vfp, size); 10557 } 10558 10559 char * 10560 elfcore_write_aarch_tls (bfd *abfd, 10561 char *buf, 10562 int *bufsiz, 10563 const void *aarch_tls, 10564 int size) 10565 { 10566 char *note_name = "LINUX"; 10567 return elfcore_write_note (abfd, buf, bufsiz, 10568 note_name, NT_ARM_TLS, aarch_tls, size); 10569 } 10570 10571 char * 10572 elfcore_write_aarch_hw_break (bfd *abfd, 10573 char *buf, 10574 int *bufsiz, 10575 const void *aarch_hw_break, 10576 int size) 10577 { 10578 char *note_name = "LINUX"; 10579 return elfcore_write_note (abfd, buf, bufsiz, 10580 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size); 10581 } 10582 10583 char * 10584 elfcore_write_aarch_hw_watch (bfd *abfd, 10585 char *buf, 10586 int *bufsiz, 10587 const void *aarch_hw_watch, 10588 int size) 10589 { 10590 char *note_name = "LINUX"; 10591 return elfcore_write_note (abfd, buf, bufsiz, 10592 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size); 10593 } 10594 10595 char * 10596 elfcore_write_register_note (bfd *abfd, 10597 char *buf, 10598 int *bufsiz, 10599 const char *section, 10600 const void *data, 10601 int size) 10602 { 10603 if (strcmp (section, ".reg2") == 0) 10604 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size); 10605 if (strcmp (section, ".reg-xfp") == 0) 10606 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size); 10607 if (strcmp (section, ".reg-xstate") == 0) 10608 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size); 10609 if (strcmp (section, ".reg-ppc-vmx") == 0) 10610 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size); 10611 if (strcmp (section, ".reg-ppc-vsx") == 0) 10612 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size); 10613 if (strcmp (section, ".reg-s390-high-gprs") == 0) 10614 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size); 10615 if (strcmp (section, ".reg-s390-timer") == 0) 10616 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size); 10617 if (strcmp (section, ".reg-s390-todcmp") == 0) 10618 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size); 10619 if (strcmp (section, ".reg-s390-todpreg") == 0) 10620 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size); 10621 if (strcmp (section, ".reg-s390-ctrs") == 0) 10622 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size); 10623 if (strcmp (section, ".reg-s390-prefix") == 0) 10624 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size); 10625 if (strcmp (section, ".reg-s390-last-break") == 0) 10626 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size); 10627 if (strcmp (section, ".reg-s390-system-call") == 0) 10628 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size); 10629 if (strcmp (section, ".reg-s390-tdb") == 0) 10630 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size); 10631 if (strcmp (section, ".reg-s390-vxrs-low") == 0) 10632 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size); 10633 if (strcmp (section, ".reg-s390-vxrs-high") == 0) 10634 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size); 10635 if (strcmp (section, ".reg-arm-vfp") == 0) 10636 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size); 10637 if (strcmp (section, ".reg-aarch-tls") == 0) 10638 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size); 10639 if (strcmp (section, ".reg-aarch-hw-break") == 0) 10640 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size); 10641 if (strcmp (section, ".reg-aarch-hw-watch") == 0) 10642 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size); 10643 return NULL; 10644 } 10645 10646 static bfd_boolean 10647 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset) 10648 { 10649 char *p; 10650 10651 p = buf; 10652 while (p < buf + size) 10653 { 10654 /* FIXME: bad alignment assumption. */ 10655 Elf_External_Note *xnp = (Elf_External_Note *) p; 10656 Elf_Internal_Note in; 10657 10658 if (offsetof (Elf_External_Note, name) > buf - p + size) 10659 return FALSE; 10660 10661 in.type = H_GET_32 (abfd, xnp->type); 10662 10663 in.namesz = H_GET_32 (abfd, xnp->namesz); 10664 in.namedata = xnp->name; 10665 if (in.namesz > buf - in.namedata + size) 10666 return FALSE; 10667 10668 in.descsz = H_GET_32 (abfd, xnp->descsz); 10669 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4); 10670 in.descpos = offset + (in.descdata - buf); 10671 if (in.descsz != 0 10672 && (in.descdata >= buf + size 10673 || in.descsz > buf - in.descdata + size)) 10674 return FALSE; 10675 10676 switch (bfd_get_format (abfd)) 10677 { 10678 default: 10679 return TRUE; 10680 10681 case bfd_core: 10682 { 10683 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F} 10684 struct 10685 { 10686 const char * string; 10687 size_t len; 10688 bfd_boolean (* func)(bfd *, Elf_Internal_Note *); 10689 } 10690 grokers[] = 10691 { 10692 GROKER_ELEMENT ("", elfcore_grok_note), 10693 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note), 10694 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note), 10695 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note), 10696 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note), 10697 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note) 10698 }; 10699 #undef GROKER_ELEMENT 10700 int i; 10701 10702 for (i = ARRAY_SIZE (grokers); i--;) 10703 { 10704 if (in.namesz >= grokers[i].len 10705 && strncmp (in.namedata, grokers[i].string, 10706 grokers[i].len) == 0) 10707 { 10708 if (! grokers[i].func (abfd, & in)) 10709 return FALSE; 10710 break; 10711 } 10712 } 10713 break; 10714 } 10715 10716 case bfd_object: 10717 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0) 10718 { 10719 if (! elfobj_grok_gnu_note (abfd, &in)) 10720 return FALSE; 10721 } 10722 else if (in.namesz == sizeof "stapsdt" 10723 && strcmp (in.namedata, "stapsdt") == 0) 10724 { 10725 if (! elfobj_grok_stapsdt_note (abfd, &in)) 10726 return FALSE; 10727 } 10728 break; 10729 } 10730 10731 p = in.descdata + BFD_ALIGN (in.descsz, 4); 10732 } 10733 10734 return TRUE; 10735 } 10736 10737 static bfd_boolean 10738 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size) 10739 { 10740 char *buf; 10741 10742 if (size <= 0) 10743 return TRUE; 10744 10745 if (bfd_seek (abfd, offset, SEEK_SET) != 0) 10746 return FALSE; 10747 10748 buf = (char *) bfd_malloc (size + 1); 10749 if (buf == NULL) 10750 return FALSE; 10751 10752 /* PR 17512: file: ec08f814 10753 0-termintate the buffer so that string searches will not overflow. */ 10754 buf[size] = 0; 10755 10756 if (bfd_bread (buf, size, abfd) != size 10757 || !elf_parse_notes (abfd, buf, size, offset)) 10758 { 10759 free (buf); 10760 return FALSE; 10761 } 10762 10763 free (buf); 10764 return TRUE; 10765 } 10766 10767 /* Providing external access to the ELF program header table. */ 10768 10769 /* Return an upper bound on the number of bytes required to store a 10770 copy of ABFD's program header table entries. Return -1 if an error 10771 occurs; bfd_get_error will return an appropriate code. */ 10772 10773 long 10774 bfd_get_elf_phdr_upper_bound (bfd *abfd) 10775 { 10776 if (abfd->xvec->flavour != bfd_target_elf_flavour) 10777 { 10778 bfd_set_error (bfd_error_wrong_format); 10779 return -1; 10780 } 10781 10782 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr); 10783 } 10784 10785 /* Copy ABFD's program header table entries to *PHDRS. The entries 10786 will be stored as an array of Elf_Internal_Phdr structures, as 10787 defined in include/elf/internal.h. To find out how large the 10788 buffer needs to be, call bfd_get_elf_phdr_upper_bound. 10789 10790 Return the number of program header table entries read, or -1 if an 10791 error occurs; bfd_get_error will return an appropriate code. */ 10792 10793 int 10794 bfd_get_elf_phdrs (bfd *abfd, void *phdrs) 10795 { 10796 int num_phdrs; 10797 10798 if (abfd->xvec->flavour != bfd_target_elf_flavour) 10799 { 10800 bfd_set_error (bfd_error_wrong_format); 10801 return -1; 10802 } 10803 10804 num_phdrs = elf_elfheader (abfd)->e_phnum; 10805 memcpy (phdrs, elf_tdata (abfd)->phdr, 10806 num_phdrs * sizeof (Elf_Internal_Phdr)); 10807 10808 return num_phdrs; 10809 } 10810 10811 enum elf_reloc_type_class 10812 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 10813 const asection *rel_sec ATTRIBUTE_UNUSED, 10814 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED) 10815 { 10816 return reloc_class_normal; 10817 } 10818 10819 /* For RELA architectures, return the relocation value for a 10820 relocation against a local symbol. */ 10821 10822 bfd_vma 10823 _bfd_elf_rela_local_sym (bfd *abfd, 10824 Elf_Internal_Sym *sym, 10825 asection **psec, 10826 Elf_Internal_Rela *rel) 10827 { 10828 asection *sec = *psec; 10829 bfd_vma relocation; 10830 10831 relocation = (sec->output_section->vma 10832 + sec->output_offset 10833 + sym->st_value); 10834 if ((sec->flags & SEC_MERGE) 10835 && ELF_ST_TYPE (sym->st_info) == STT_SECTION 10836 && sec->sec_info_type == SEC_INFO_TYPE_MERGE) 10837 { 10838 rel->r_addend = 10839 _bfd_merged_section_offset (abfd, psec, 10840 elf_section_data (sec)->sec_info, 10841 sym->st_value + rel->r_addend); 10842 if (sec != *psec) 10843 { 10844 /* If we have changed the section, and our original section is 10845 marked with SEC_EXCLUDE, it means that the original 10846 SEC_MERGE section has been completely subsumed in some 10847 other SEC_MERGE section. In this case, we need to leave 10848 some info around for --emit-relocs. */ 10849 if ((sec->flags & SEC_EXCLUDE) != 0) 10850 sec->kept_section = *psec; 10851 sec = *psec; 10852 } 10853 rel->r_addend -= relocation; 10854 rel->r_addend += sec->output_section->vma + sec->output_offset; 10855 } 10856 return relocation; 10857 } 10858 10859 bfd_vma 10860 _bfd_elf_rel_local_sym (bfd *abfd, 10861 Elf_Internal_Sym *sym, 10862 asection **psec, 10863 bfd_vma addend) 10864 { 10865 asection *sec = *psec; 10866 10867 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE) 10868 return sym->st_value + addend; 10869 10870 return _bfd_merged_section_offset (abfd, psec, 10871 elf_section_data (sec)->sec_info, 10872 sym->st_value + addend); 10873 } 10874 10875 /* Adjust an address within a section. Given OFFSET within SEC, return 10876 the new offset within the section, based upon changes made to the 10877 section. Returns -1 if the offset is now invalid. 10878 The offset (in abnd out) is in target sized bytes, however big a 10879 byte may be. */ 10880 10881 bfd_vma 10882 _bfd_elf_section_offset (bfd *abfd, 10883 struct bfd_link_info *info, 10884 asection *sec, 10885 bfd_vma offset) 10886 { 10887 switch (sec->sec_info_type) 10888 { 10889 case SEC_INFO_TYPE_STABS: 10890 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info, 10891 offset); 10892 case SEC_INFO_TYPE_EH_FRAME: 10893 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset); 10894 10895 default: 10896 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0) 10897 { 10898 /* Reverse the offset. */ 10899 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 10900 bfd_size_type address_size = bed->s->arch_size / 8; 10901 10902 /* address_size and sec->size are in octets. Convert 10903 to bytes before subtracting the original offset. */ 10904 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset; 10905 } 10906 return offset; 10907 } 10908 } 10909 10910 /* Create a new BFD as if by bfd_openr. Rather than opening a file, 10911 reconstruct an ELF file by reading the segments out of remote memory 10912 based on the ELF file header at EHDR_VMA and the ELF program headers it 10913 points to. If not null, *LOADBASEP is filled in with the difference 10914 between the VMAs from which the segments were read, and the VMAs the 10915 file headers (and hence BFD's idea of each section's VMA) put them at. 10916 10917 The function TARGET_READ_MEMORY is called to copy LEN bytes from the 10918 remote memory at target address VMA into the local buffer at MYADDR; it 10919 should return zero on success or an `errno' code on failure. TEMPL must 10920 be a BFD for an ELF target with the word size and byte order found in 10921 the remote memory. */ 10922 10923 bfd * 10924 bfd_elf_bfd_from_remote_memory 10925 (bfd *templ, 10926 bfd_vma ehdr_vma, 10927 bfd_size_type size, 10928 bfd_vma *loadbasep, 10929 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type)) 10930 { 10931 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory) 10932 (templ, ehdr_vma, size, loadbasep, target_read_memory); 10933 } 10934 10935 long 10936 _bfd_elf_get_synthetic_symtab (bfd *abfd, 10937 long symcount ATTRIBUTE_UNUSED, 10938 asymbol **syms ATTRIBUTE_UNUSED, 10939 long dynsymcount, 10940 asymbol **dynsyms, 10941 asymbol **ret) 10942 { 10943 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 10944 asection *relplt; 10945 asymbol *s; 10946 const char *relplt_name; 10947 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); 10948 arelent *p; 10949 long count, i, n; 10950 size_t size; 10951 Elf_Internal_Shdr *hdr; 10952 char *names; 10953 asection *plt; 10954 10955 *ret = NULL; 10956 10957 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0) 10958 return 0; 10959 10960 if (dynsymcount <= 0) 10961 return 0; 10962 10963 if (!bed->plt_sym_val) 10964 return 0; 10965 10966 relplt_name = bed->relplt_name; 10967 if (relplt_name == NULL) 10968 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt"; 10969 relplt = bfd_get_section_by_name (abfd, relplt_name); 10970 if (relplt == NULL) 10971 return 0; 10972 10973 hdr = &elf_section_data (relplt)->this_hdr; 10974 if (hdr->sh_link != elf_dynsymtab (abfd) 10975 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA)) 10976 return 0; 10977 10978 plt = bfd_get_section_by_name (abfd, ".plt"); 10979 if (plt == NULL) 10980 return 0; 10981 10982 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; 10983 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE)) 10984 return -1; 10985 10986 count = relplt->size / hdr->sh_entsize; 10987 size = count * sizeof (asymbol); 10988 p = relplt->relocation; 10989 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel) 10990 { 10991 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt"); 10992 if (p->addend != 0) 10993 { 10994 #ifdef BFD64 10995 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64); 10996 #else 10997 size += sizeof ("+0x") - 1 + 8; 10998 #endif 10999 } 11000 } 11001 11002 s = *ret = (asymbol *) bfd_malloc (size); 11003 if (s == NULL) 11004 return -1; 11005 11006 names = (char *) (s + count); 11007 p = relplt->relocation; 11008 n = 0; 11009 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel) 11010 { 11011 size_t len; 11012 bfd_vma addr; 11013 11014 addr = bed->plt_sym_val (i, plt, p); 11015 if (addr == (bfd_vma) -1) 11016 continue; 11017 11018 *s = **p->sym_ptr_ptr; 11019 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since 11020 we are defining a symbol, ensure one of them is set. */ 11021 if ((s->flags & BSF_LOCAL) == 0) 11022 s->flags |= BSF_GLOBAL; 11023 s->flags |= BSF_SYNTHETIC; 11024 s->section = plt; 11025 s->value = addr - plt->vma; 11026 s->name = names; 11027 s->udata.p = NULL; 11028 len = strlen ((*p->sym_ptr_ptr)->name); 11029 memcpy (names, (*p->sym_ptr_ptr)->name, len); 11030 names += len; 11031 if (p->addend != 0) 11032 { 11033 char buf[30], *a; 11034 11035 memcpy (names, "+0x", sizeof ("+0x") - 1); 11036 names += sizeof ("+0x") - 1; 11037 bfd_sprintf_vma (abfd, buf, p->addend); 11038 for (a = buf; *a == '0'; ++a) 11039 ; 11040 len = strlen (a); 11041 memcpy (names, a, len); 11042 names += len; 11043 } 11044 memcpy (names, "@plt", sizeof ("@plt")); 11045 names += sizeof ("@plt"); 11046 ++s, ++n; 11047 } 11048 11049 return n; 11050 } 11051 11052 /* It is only used by x86-64 so far. */ 11053 asection _bfd_elf_large_com_section 11054 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, 11055 SEC_IS_COMMON, NULL, "LARGE_COMMON", 0); 11056 11057 void 11058 _bfd_elf_post_process_headers (bfd * abfd, 11059 struct bfd_link_info * link_info ATTRIBUTE_UNUSED) 11060 { 11061 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */ 11062 11063 i_ehdrp = elf_elfheader (abfd); 11064 11065 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi; 11066 11067 /* To make things simpler for the loader on Linux systems we set the 11068 osabi field to ELFOSABI_GNU if the binary contains symbols of 11069 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */ 11070 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE 11071 && elf_tdata (abfd)->has_gnu_symbols) 11072 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU; 11073 } 11074 11075 11076 /* Return TRUE for ELF symbol types that represent functions. 11077 This is the default version of this function, which is sufficient for 11078 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */ 11079 11080 bfd_boolean 11081 _bfd_elf_is_function_type (unsigned int type) 11082 { 11083 return (type == STT_FUNC 11084 || type == STT_GNU_IFUNC); 11085 } 11086 11087 /* If the ELF symbol SYM might be a function in SEC, return the 11088 function size and set *CODE_OFF to the function's entry point, 11089 otherwise return zero. */ 11090 11091 bfd_size_type 11092 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec, 11093 bfd_vma *code_off) 11094 { 11095 bfd_size_type size; 11096 11097 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT 11098 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0 11099 || sym->section != sec) 11100 return 0; 11101 11102 *code_off = sym->value; 11103 size = 0; 11104 if (!(sym->flags & BSF_SYNTHETIC)) 11105 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size; 11106 if (size == 0) 11107 size = 1; 11108 return size; 11109 } 11110