xref: /netbsd-src/external/gpl3/gdb.old/dist/bfd/coff-alpha.c (revision 4d342c046e3288fb5a1edcd33cfec48c41c80664)
1 /* BFD back-end for ALPHA Extended-Coff files.
2    Copyright (C) 1993-2019 Free Software Foundation, Inc.
3    Modified from coff-mips.c by Steve Chamberlain <sac@cygnus.com> and
4    Ian Lance Taylor <ian@cygnus.com>.
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21    MA 02110-1301, USA.  */
22 
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "coff/internal.h"
28 #include "coff/sym.h"
29 #include "coff/symconst.h"
30 #include "coff/ecoff.h"
31 #include "coff/alpha.h"
32 #include "aout/ar.h"
33 #include "libcoff.h"
34 #include "libecoff.h"
35 
36 /* Prototypes for static functions.  */
37 
38 
39 
40 /* ECOFF has COFF sections, but the debugging information is stored in
41    a completely different format.  ECOFF targets use some of the
42    swapping routines from coffswap.h, and some of the generic COFF
43    routines in coffgen.c, but, unlike the real COFF targets, do not
44    use coffcode.h itself.
45 
46    Get the generic COFF swapping routines, except for the reloc,
47    symbol, and lineno ones.  Give them ecoff names.  Define some
48    accessor macros for the large sizes used for Alpha ECOFF.  */
49 
50 #define GET_FILEHDR_SYMPTR H_GET_64
51 #define PUT_FILEHDR_SYMPTR H_PUT_64
52 #define GET_AOUTHDR_TSIZE H_GET_64
53 #define PUT_AOUTHDR_TSIZE H_PUT_64
54 #define GET_AOUTHDR_DSIZE H_GET_64
55 #define PUT_AOUTHDR_DSIZE H_PUT_64
56 #define GET_AOUTHDR_BSIZE H_GET_64
57 #define PUT_AOUTHDR_BSIZE H_PUT_64
58 #define GET_AOUTHDR_ENTRY H_GET_64
59 #define PUT_AOUTHDR_ENTRY H_PUT_64
60 #define GET_AOUTHDR_TEXT_START H_GET_64
61 #define PUT_AOUTHDR_TEXT_START H_PUT_64
62 #define GET_AOUTHDR_DATA_START H_GET_64
63 #define PUT_AOUTHDR_DATA_START H_PUT_64
64 #define GET_SCNHDR_PADDR H_GET_64
65 #define PUT_SCNHDR_PADDR H_PUT_64
66 #define GET_SCNHDR_VADDR H_GET_64
67 #define PUT_SCNHDR_VADDR H_PUT_64
68 #define GET_SCNHDR_SIZE H_GET_64
69 #define PUT_SCNHDR_SIZE H_PUT_64
70 #define GET_SCNHDR_SCNPTR H_GET_64
71 #define PUT_SCNHDR_SCNPTR H_PUT_64
72 #define GET_SCNHDR_RELPTR H_GET_64
73 #define PUT_SCNHDR_RELPTR H_PUT_64
74 #define GET_SCNHDR_LNNOPTR H_GET_64
75 #define PUT_SCNHDR_LNNOPTR H_PUT_64
76 
77 #define ALPHAECOFF
78 
79 #define NO_COFF_RELOCS
80 #define NO_COFF_SYMBOLS
81 #define NO_COFF_LINENOS
82 #define coff_swap_filehdr_in alpha_ecoff_swap_filehdr_in
83 #define coff_swap_filehdr_out alpha_ecoff_swap_filehdr_out
84 #define coff_swap_aouthdr_in alpha_ecoff_swap_aouthdr_in
85 #define coff_swap_aouthdr_out alpha_ecoff_swap_aouthdr_out
86 #define coff_swap_scnhdr_in alpha_ecoff_swap_scnhdr_in
87 #define coff_swap_scnhdr_out alpha_ecoff_swap_scnhdr_out
88 #include "coffswap.h"
89 
90 /* Get the ECOFF swapping routines.  */
91 #define ECOFF_64
92 #include "ecoffswap.h"
93 
94 /* How to process the various reloc types.  */
95 
96 static bfd_reloc_status_type
97 reloc_nil (bfd *abfd ATTRIBUTE_UNUSED,
98 	   arelent *reloc ATTRIBUTE_UNUSED,
99 	   asymbol *sym ATTRIBUTE_UNUSED,
100 	   void * data ATTRIBUTE_UNUSED,
101 	   asection *sec ATTRIBUTE_UNUSED,
102 	   bfd *output_bfd ATTRIBUTE_UNUSED,
103 	   char **error_message ATTRIBUTE_UNUSED)
104 {
105   return bfd_reloc_ok;
106 }
107 
108 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
109    from smaller values.  Start with zero, widen, *then* decrement.  */
110 #define MINUS_ONE	(((bfd_vma)0) - 1)
111 
112 static reloc_howto_type alpha_howto_table[] =
113 {
114   /* Reloc type 0 is ignored by itself.  However, it appears after a
115      GPDISP reloc to identify the location where the low order 16 bits
116      of the gp register are loaded.  */
117   HOWTO (ALPHA_R_IGNORE,	/* type */
118 	 0,			/* rightshift */
119 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
120 	 8,			/* bitsize */
121 	 TRUE,			/* pc_relative */
122 	 0,			/* bitpos */
123 	 complain_overflow_dont, /* complain_on_overflow */
124 	 reloc_nil,		/* special_function */
125 	 "IGNORE",		/* name */
126 	 TRUE,			/* partial_inplace */
127 	 0,			/* src_mask */
128 	 0,			/* dst_mask */
129 	 TRUE),			/* pcrel_offset */
130 
131   /* A 32 bit reference to a symbol.  */
132   HOWTO (ALPHA_R_REFLONG,	/* type */
133 	 0,			/* rightshift */
134 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
135 	 32,			/* bitsize */
136 	 FALSE,			/* pc_relative */
137 	 0,			/* bitpos */
138 	 complain_overflow_bitfield, /* complain_on_overflow */
139 	 0,			/* special_function */
140 	 "REFLONG",		/* name */
141 	 TRUE,			/* partial_inplace */
142 	 0xffffffff,		/* src_mask */
143 	 0xffffffff,		/* dst_mask */
144 	 FALSE),		/* pcrel_offset */
145 
146   /* A 64 bit reference to a symbol.  */
147   HOWTO (ALPHA_R_REFQUAD,	/* type */
148 	 0,			/* rightshift */
149 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
150 	 64,			/* bitsize */
151 	 FALSE,			/* pc_relative */
152 	 0,			/* bitpos */
153 	 complain_overflow_bitfield, /* complain_on_overflow */
154 	 0,			/* special_function */
155 	 "REFQUAD",		/* name */
156 	 TRUE,			/* partial_inplace */
157 	 MINUS_ONE,		/* src_mask */
158 	 MINUS_ONE,		/* dst_mask */
159 	 FALSE),		/* pcrel_offset */
160 
161   /* A 32 bit GP relative offset.  This is just like REFLONG except
162      that when the value is used the value of the gp register will be
163      added in.  */
164   HOWTO (ALPHA_R_GPREL32,	/* type */
165 	 0,			/* rightshift */
166 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
167 	 32,			/* bitsize */
168 	 FALSE,			/* pc_relative */
169 	 0,			/* bitpos */
170 	 complain_overflow_bitfield, /* complain_on_overflow */
171 	 0,			/* special_function */
172 	 "GPREL32",		/* name */
173 	 TRUE,			/* partial_inplace */
174 	 0xffffffff,		/* src_mask */
175 	 0xffffffff,		/* dst_mask */
176 	 FALSE),		/* pcrel_offset */
177 
178   /* Used for an instruction that refers to memory off the GP
179      register.  The offset is 16 bits of the 32 bit instruction.  This
180      reloc always seems to be against the .lita section.  */
181   HOWTO (ALPHA_R_LITERAL,	/* type */
182 	 0,			/* rightshift */
183 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
184 	 16,			/* bitsize */
185 	 FALSE,			/* pc_relative */
186 	 0,			/* bitpos */
187 	 complain_overflow_signed, /* complain_on_overflow */
188 	 0,			/* special_function */
189 	 "LITERAL",		/* name */
190 	 TRUE,			/* partial_inplace */
191 	 0xffff,		/* src_mask */
192 	 0xffff,		/* dst_mask */
193 	 FALSE),		/* pcrel_offset */
194 
195   /* This reloc only appears immediately following a LITERAL reloc.
196      It identifies a use of the literal.  It seems that the linker can
197      use this to eliminate a portion of the .lita section.  The symbol
198      index is special: 1 means the literal address is in the base
199      register of a memory format instruction; 2 means the literal
200      address is in the byte offset register of a byte-manipulation
201      instruction; 3 means the literal address is in the target
202      register of a jsr instruction.  This does not actually do any
203      relocation.  */
204   HOWTO (ALPHA_R_LITUSE,	/* type */
205 	 0,			/* rightshift */
206 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
207 	 32,			/* bitsize */
208 	 FALSE,			/* pc_relative */
209 	 0,			/* bitpos */
210 	 complain_overflow_dont, /* complain_on_overflow */
211 	 reloc_nil,		/* special_function */
212 	 "LITUSE",		/* name */
213 	 FALSE,			/* partial_inplace */
214 	 0,			/* src_mask */
215 	 0,			/* dst_mask */
216 	 FALSE),		/* pcrel_offset */
217 
218   /* Load the gp register.  This is always used for a ldah instruction
219      which loads the upper 16 bits of the gp register.  The next reloc
220      will be an IGNORE reloc which identifies the location of the lda
221      instruction which loads the lower 16 bits.  The symbol index of
222      the GPDISP instruction appears to actually be the number of bytes
223      between the ldah and lda instructions.  This gives two different
224      ways to determine where the lda instruction is; I don't know why
225      both are used.  The value to use for the relocation is the
226      difference between the GP value and the current location; the
227      load will always be done against a register holding the current
228      address.  */
229   HOWTO (ALPHA_R_GPDISP,	/* type */
230 	 16,			/* rightshift */
231 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
232 	 16,			/* bitsize */
233 	 TRUE,			/* pc_relative */
234 	 0,			/* bitpos */
235 	 complain_overflow_dont, /* complain_on_overflow */
236 	 reloc_nil,		/* special_function */
237 	 "GPDISP",		/* name */
238 	 TRUE,			/* partial_inplace */
239 	 0xffff,		/* src_mask */
240 	 0xffff,		/* dst_mask */
241 	 TRUE),			/* pcrel_offset */
242 
243   /* A 21 bit branch.  The native assembler generates these for
244      branches within the text segment, and also fills in the PC
245      relative offset in the instruction.  */
246   HOWTO (ALPHA_R_BRADDR,	/* type */
247 	 2,			/* rightshift */
248 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
249 	 21,			/* bitsize */
250 	 TRUE,			/* pc_relative */
251 	 0,			/* bitpos */
252 	 complain_overflow_signed, /* complain_on_overflow */
253 	 0,			/* special_function */
254 	 "BRADDR",		/* name */
255 	 TRUE,			/* partial_inplace */
256 	 0x1fffff,		/* src_mask */
257 	 0x1fffff,		/* dst_mask */
258 	 FALSE),		/* pcrel_offset */
259 
260   /* A hint for a jump to a register.  */
261   HOWTO (ALPHA_R_HINT,		/* type */
262 	 2,			/* rightshift */
263 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
264 	 14,			/* bitsize */
265 	 TRUE,			/* pc_relative */
266 	 0,			/* bitpos */
267 	 complain_overflow_dont, /* complain_on_overflow */
268 	 0,			/* special_function */
269 	 "HINT",		/* name */
270 	 TRUE,			/* partial_inplace */
271 	 0x3fff,		/* src_mask */
272 	 0x3fff,		/* dst_mask */
273 	 FALSE),		/* pcrel_offset */
274 
275   /* 16 bit PC relative offset.  */
276   HOWTO (ALPHA_R_SREL16,	/* type */
277 	 0,			/* rightshift */
278 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
279 	 16,			/* bitsize */
280 	 TRUE,			/* pc_relative */
281 	 0,			/* bitpos */
282 	 complain_overflow_signed, /* complain_on_overflow */
283 	 0,			/* special_function */
284 	 "SREL16",		/* name */
285 	 TRUE,			/* partial_inplace */
286 	 0xffff,		/* src_mask */
287 	 0xffff,		/* dst_mask */
288 	 FALSE),		/* pcrel_offset */
289 
290   /* 32 bit PC relative offset.  */
291   HOWTO (ALPHA_R_SREL32,	/* type */
292 	 0,			/* rightshift */
293 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
294 	 32,			/* bitsize */
295 	 TRUE,			/* pc_relative */
296 	 0,			/* bitpos */
297 	 complain_overflow_signed, /* complain_on_overflow */
298 	 0,			/* special_function */
299 	 "SREL32",		/* name */
300 	 TRUE,			/* partial_inplace */
301 	 0xffffffff,		/* src_mask */
302 	 0xffffffff,		/* dst_mask */
303 	 FALSE),		/* pcrel_offset */
304 
305   /* A 64 bit PC relative offset.  */
306   HOWTO (ALPHA_R_SREL64,	/* type */
307 	 0,			/* rightshift */
308 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
309 	 64,			/* bitsize */
310 	 TRUE,			/* pc_relative */
311 	 0,			/* bitpos */
312 	 complain_overflow_signed, /* complain_on_overflow */
313 	 0,			/* special_function */
314 	 "SREL64",		/* name */
315 	 TRUE,			/* partial_inplace */
316 	 MINUS_ONE,		/* src_mask */
317 	 MINUS_ONE,		/* dst_mask */
318 	 FALSE),		/* pcrel_offset */
319 
320   /* Push a value on the reloc evaluation stack.  */
321   HOWTO (ALPHA_R_OP_PUSH,	/* type */
322 	 0,			/* rightshift */
323 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
324 	 0,			/* bitsize */
325 	 FALSE,			/* pc_relative */
326 	 0,			/* bitpos */
327 	 complain_overflow_dont, /* complain_on_overflow */
328 	 0,			/* special_function */
329 	 "OP_PUSH",		/* name */
330 	 FALSE,			/* partial_inplace */
331 	 0,			/* src_mask */
332 	 0,			/* dst_mask */
333 	 FALSE),		/* pcrel_offset */
334 
335   /* Store the value from the stack at the given address.  Store it in
336      a bitfield of size r_size starting at bit position r_offset.  */
337   HOWTO (ALPHA_R_OP_STORE,	/* type */
338 	 0,			/* rightshift */
339 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
340 	 64,			/* bitsize */
341 	 FALSE,			/* pc_relative */
342 	 0,			/* bitpos */
343 	 complain_overflow_dont, /* complain_on_overflow */
344 	 0,			/* special_function */
345 	 "OP_STORE",		/* name */
346 	 FALSE,			/* partial_inplace */
347 	 0,			/* src_mask */
348 	 MINUS_ONE,		/* dst_mask */
349 	 FALSE),		/* pcrel_offset */
350 
351   /* Subtract the reloc address from the value on the top of the
352      relocation stack.  */
353   HOWTO (ALPHA_R_OP_PSUB,	/* type */
354 	 0,			/* rightshift */
355 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
356 	 0,			/* bitsize */
357 	 FALSE,			/* pc_relative */
358 	 0,			/* bitpos */
359 	 complain_overflow_dont, /* complain_on_overflow */
360 	 0,			/* special_function */
361 	 "OP_PSUB",		/* name */
362 	 FALSE,			/* partial_inplace */
363 	 0,			/* src_mask */
364 	 0,			/* dst_mask */
365 	 FALSE),		/* pcrel_offset */
366 
367   /* Shift the value on the top of the relocation stack right by the
368      given value.  */
369   HOWTO (ALPHA_R_OP_PRSHIFT,	/* type */
370 	 0,			/* rightshift */
371 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
372 	 0,			/* bitsize */
373 	 FALSE,			/* pc_relative */
374 	 0,			/* bitpos */
375 	 complain_overflow_dont, /* complain_on_overflow */
376 	 0,			/* special_function */
377 	 "OP_PRSHIFT",		/* name */
378 	 FALSE,			/* partial_inplace */
379 	 0,			/* src_mask */
380 	 0,			/* dst_mask */
381 	 FALSE),		/* pcrel_offset */
382 
383   /* Adjust the GP value for a new range in the object file.  */
384   HOWTO (ALPHA_R_GPVALUE,	/* type */
385 	 0,			/* rightshift */
386 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
387 	 0,			/* bitsize */
388 	 FALSE,			/* pc_relative */
389 	 0,			/* bitpos */
390 	 complain_overflow_dont, /* complain_on_overflow */
391 	 0,			/* special_function */
392 	 "GPVALUE",		/* name */
393 	 FALSE,			/* partial_inplace */
394 	 0,			/* src_mask */
395 	 0,			/* dst_mask */
396 	 FALSE)			/* pcrel_offset */
397 };
398 
399 /* Recognize an Alpha ECOFF file.  */
400 
401 static const bfd_target *
402 alpha_ecoff_object_p (bfd *abfd)
403 {
404   static const bfd_target *ret;
405 
406   ret = coff_object_p (abfd);
407 
408   if (ret != NULL)
409     {
410       asection *sec;
411 
412       /* Alpha ECOFF has a .pdata section.  The lnnoptr field of the
413 	 .pdata section is the number of entries it contains.  Each
414 	 entry takes up 8 bytes.  The number of entries is required
415 	 since the section is aligned to a 16 byte boundary.  When we
416 	 link .pdata sections together, we do not want to include the
417 	 alignment bytes.  We handle this on input by faking the size
418 	 of the .pdata section to remove the unwanted alignment bytes.
419 	 On output we will set the lnnoptr field and force the
420 	 alignment.  */
421       sec = bfd_get_section_by_name (abfd, _PDATA);
422       if (sec != (asection *) NULL)
423 	{
424 	  bfd_size_type size;
425 
426 	  size = sec->line_filepos * 8;
427 	  BFD_ASSERT (size == sec->size
428 		      || size + 8 == sec->size);
429 	  if (! bfd_set_section_size (abfd, sec, size))
430 	    return NULL;
431 	}
432     }
433 
434   return ret;
435 }
436 
437 /* See whether the magic number matches.  */
438 
439 static bfd_boolean
440 alpha_ecoff_bad_format_hook (bfd *abfd ATTRIBUTE_UNUSED,
441 			     void * filehdr)
442 {
443   struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
444 
445   if (! ALPHA_ECOFF_BADMAG (*internal_f))
446     return TRUE;
447 
448   if (ALPHA_ECOFF_COMPRESSEDMAG (*internal_f))
449     _bfd_error_handler
450       (_("%pB: cannot handle compressed Alpha binaries; "
451 	 "use compiler flags, or objZ, to generate uncompressed binaries"),
452        abfd);
453 
454   return FALSE;
455 }
456 
457 /* This is a hook called by coff_real_object_p to create any backend
458    specific information.  */
459 
460 static void *
461 alpha_ecoff_mkobject_hook (bfd *abfd, void * filehdr, void * aouthdr)
462 {
463   void * ecoff;
464 
465   ecoff = _bfd_ecoff_mkobject_hook (abfd, filehdr, aouthdr);
466 
467   if (ecoff != NULL)
468     {
469       struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr;
470 
471       /* Set additional BFD flags according to the object type from the
472 	 machine specific file header flags.  */
473       switch (internal_f->f_flags & F_ALPHA_OBJECT_TYPE_MASK)
474 	{
475 	case F_ALPHA_SHARABLE:
476 	  abfd->flags |= DYNAMIC;
477 	  break;
478 	case F_ALPHA_CALL_SHARED:
479 	  /* Always executable if using shared libraries as the run time
480 	     loader might resolve undefined references.  */
481 	  abfd->flags |= (DYNAMIC | EXEC_P);
482 	  break;
483 	}
484     }
485   return ecoff;
486 }
487 
488 /* Reloc handling.  */
489 
490 /* Swap a reloc in.  */
491 
492 static void
493 alpha_ecoff_swap_reloc_in (bfd *abfd,
494 			   void * ext_ptr,
495 			   struct internal_reloc *intern)
496 {
497   const RELOC *ext = (RELOC *) ext_ptr;
498 
499   intern->r_vaddr = H_GET_64 (abfd, ext->r_vaddr);
500   intern->r_symndx = H_GET_32 (abfd, ext->r_symndx);
501 
502   BFD_ASSERT (bfd_header_little_endian (abfd));
503 
504   intern->r_type = ((ext->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
505 		    >> RELOC_BITS0_TYPE_SH_LITTLE);
506   intern->r_extern = (ext->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
507   intern->r_offset = ((ext->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
508 		      >> RELOC_BITS1_OFFSET_SH_LITTLE);
509   /* Ignored the reserved bits.  */
510   intern->r_size = ((ext->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
511 		    >> RELOC_BITS3_SIZE_SH_LITTLE);
512 
513   if (intern->r_type == ALPHA_R_LITUSE
514       || intern->r_type == ALPHA_R_GPDISP)
515     {
516       /* Handle the LITUSE and GPDISP relocs specially.  Its symndx
517 	 value is not actually a symbol index, but is instead a
518 	 special code.  We put the code in the r_size field, and
519 	 clobber the symndx.  */
520       if (intern->r_size != 0)
521 	abort ();
522       intern->r_size = intern->r_symndx;
523       intern->r_symndx = RELOC_SECTION_NONE;
524     }
525   else if (intern->r_type == ALPHA_R_IGNORE)
526     {
527       /* The IGNORE reloc generally follows a GPDISP reloc, and is
528 	 against the .lita section.  The section is irrelevant.  */
529       if (! intern->r_extern &&
530 	  intern->r_symndx == RELOC_SECTION_ABS)
531 	abort ();
532       if (! intern->r_extern && intern->r_symndx == RELOC_SECTION_LITA)
533 	intern->r_symndx = RELOC_SECTION_ABS;
534     }
535 }
536 
537 /* Swap a reloc out.  */
538 
539 static void
540 alpha_ecoff_swap_reloc_out (bfd *abfd,
541 			    const struct internal_reloc *intern,
542 			    void * dst)
543 {
544   RELOC *ext = (RELOC *) dst;
545   long symndx;
546   unsigned char size;
547 
548   /* Undo the hackery done in swap_reloc_in.  */
549   if (intern->r_type == ALPHA_R_LITUSE
550       || intern->r_type == ALPHA_R_GPDISP)
551     {
552       symndx = intern->r_size;
553       size = 0;
554     }
555   else if (intern->r_type == ALPHA_R_IGNORE
556 	   && ! intern->r_extern
557 	   && intern->r_symndx == RELOC_SECTION_ABS)
558     {
559       symndx = RELOC_SECTION_LITA;
560       size = intern->r_size;
561     }
562   else
563     {
564       symndx = intern->r_symndx;
565       size = intern->r_size;
566     }
567 
568   /* XXX FIXME:  The maximum symndx value used to be 14 but this
569      fails with object files produced by DEC's C++ compiler.
570      Where does the value 14 (or 15) come from anyway ?  */
571   BFD_ASSERT (intern->r_extern
572 	      || (intern->r_symndx >= 0 && intern->r_symndx <= 15));
573 
574   H_PUT_64 (abfd, intern->r_vaddr, ext->r_vaddr);
575   H_PUT_32 (abfd, symndx, ext->r_symndx);
576 
577   BFD_ASSERT (bfd_header_little_endian (abfd));
578 
579   ext->r_bits[0] = ((intern->r_type << RELOC_BITS0_TYPE_SH_LITTLE)
580 		    & RELOC_BITS0_TYPE_LITTLE);
581   ext->r_bits[1] = ((intern->r_extern ? RELOC_BITS1_EXTERN_LITTLE : 0)
582 		    | ((intern->r_offset << RELOC_BITS1_OFFSET_SH_LITTLE)
583 		       & RELOC_BITS1_OFFSET_LITTLE));
584   ext->r_bits[2] = 0;
585   ext->r_bits[3] = ((size << RELOC_BITS3_SIZE_SH_LITTLE)
586 		    & RELOC_BITS3_SIZE_LITTLE);
587 }
588 
589 /* Finish canonicalizing a reloc.  Part of this is generic to all
590    ECOFF targets, and that part is in ecoff.c.  The rest is done in
591    this backend routine.  It must fill in the howto field.  */
592 
593 static void
594 alpha_adjust_reloc_in (bfd *abfd,
595 		       const struct internal_reloc *intern,
596 		       arelent *rptr)
597 {
598   if (intern->r_type > ALPHA_R_GPVALUE)
599     {
600       /* xgettext:c-format */
601       _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
602 			  abfd, intern->r_type);
603       bfd_set_error (bfd_error_bad_value);
604       rptr->addend = 0;
605       rptr->howto  = NULL;
606       return;
607     }
608 
609   switch (intern->r_type)
610     {
611     case ALPHA_R_BRADDR:
612     case ALPHA_R_SREL16:
613     case ALPHA_R_SREL32:
614     case ALPHA_R_SREL64:
615       /* This relocs appear to be fully resolved when they are against
616 	 internal symbols.  Against external symbols, BRADDR at least
617 	 appears to be resolved against the next instruction.  */
618       if (! intern->r_extern)
619 	rptr->addend = 0;
620       else
621 	rptr->addend = - (intern->r_vaddr + 4);
622       break;
623 
624     case ALPHA_R_GPREL32:
625     case ALPHA_R_LITERAL:
626       /* Copy the gp value for this object file into the addend, to
627 	 ensure that we are not confused by the linker.  */
628       if (! intern->r_extern)
629 	rptr->addend += ecoff_data (abfd)->gp;
630       break;
631 
632     case ALPHA_R_LITUSE:
633     case ALPHA_R_GPDISP:
634       /* The LITUSE and GPDISP relocs do not use a symbol, or an
635 	 addend, but they do use a special code.  Put this code in the
636 	 addend field.  */
637       rptr->addend = intern->r_size;
638       break;
639 
640     case ALPHA_R_OP_STORE:
641       /* The STORE reloc needs the size and offset fields.  We store
642 	 them in the addend.  */
643       BFD_ASSERT (intern->r_offset <= 256);
644       rptr->addend = (intern->r_offset << 8) + intern->r_size;
645       break;
646 
647     case ALPHA_R_OP_PUSH:
648     case ALPHA_R_OP_PSUB:
649     case ALPHA_R_OP_PRSHIFT:
650       /* The PUSH, PSUB and PRSHIFT relocs do not actually use an
651 	 address.  I believe that the address supplied is really an
652 	 addend.  */
653       rptr->addend = intern->r_vaddr;
654       break;
655 
656     case ALPHA_R_GPVALUE:
657       /* Set the addend field to the new GP value.  */
658       rptr->addend = intern->r_symndx + ecoff_data (abfd)->gp;
659       break;
660 
661     case ALPHA_R_IGNORE:
662       /* If the type is ALPHA_R_IGNORE, make sure this is a reference
663 	 to the absolute section so that the reloc is ignored.  For
664 	 some reason the address of this reloc type is not adjusted by
665 	 the section vma.  We record the gp value for this object file
666 	 here, for convenience when doing the GPDISP relocation.  */
667       rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
668       rptr->address = intern->r_vaddr;
669       rptr->addend = ecoff_data (abfd)->gp;
670       break;
671 
672     default:
673       break;
674     }
675 
676   rptr->howto = &alpha_howto_table[intern->r_type];
677 }
678 
679 /* When writing out a reloc we need to pull some values back out of
680    the addend field into the reloc.  This is roughly the reverse of
681    alpha_adjust_reloc_in, except that there are several changes we do
682    not need to undo.  */
683 
684 static void
685 alpha_adjust_reloc_out (bfd *abfd ATTRIBUTE_UNUSED,
686 			const arelent *rel,
687 			struct internal_reloc *intern)
688 {
689   switch (intern->r_type)
690     {
691     case ALPHA_R_LITUSE:
692     case ALPHA_R_GPDISP:
693       intern->r_size = rel->addend;
694       break;
695 
696     case ALPHA_R_OP_STORE:
697       intern->r_size = rel->addend & 0xff;
698       intern->r_offset = (rel->addend >> 8) & 0xff;
699       break;
700 
701     case ALPHA_R_OP_PUSH:
702     case ALPHA_R_OP_PSUB:
703     case ALPHA_R_OP_PRSHIFT:
704       intern->r_vaddr = rel->addend;
705       break;
706 
707     case ALPHA_R_IGNORE:
708       intern->r_vaddr = rel->address;
709       break;
710 
711     default:
712       break;
713     }
714 }
715 
716 /* The size of the stack for the relocation evaluator.  */
717 #define RELOC_STACKSIZE (10)
718 
719 /* Alpha ECOFF relocs have a built in expression evaluator as well as
720    other interdependencies.  Rather than use a bunch of special
721    functions and global variables, we use a single routine to do all
722    the relocation for a section.  I haven't yet worked out how the
723    assembler is going to handle this.  */
724 
725 static bfd_byte *
726 alpha_ecoff_get_relocated_section_contents (bfd *abfd,
727 					    struct bfd_link_info *link_info,
728 					    struct bfd_link_order *link_order,
729 					    bfd_byte *data,
730 					    bfd_boolean relocatable,
731 					    asymbol **symbols)
732 {
733   bfd *input_bfd = link_order->u.indirect.section->owner;
734   asection *input_section = link_order->u.indirect.section;
735   long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
736   arelent **reloc_vector = NULL;
737   long reloc_count;
738   bfd *output_bfd = relocatable ? abfd : (bfd *) NULL;
739   bfd_vma gp;
740   bfd_size_type sz;
741   bfd_boolean gp_undefined;
742   bfd_vma stack[RELOC_STACKSIZE];
743   int tos = 0;
744 
745   if (reloc_size < 0)
746     goto error_return;
747   reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
748   if (reloc_vector == NULL && reloc_size != 0)
749     goto error_return;
750 
751   sz = input_section->rawsize ? input_section->rawsize : input_section->size;
752   if (! bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
753     goto error_return;
754 
755   reloc_count = bfd_canonicalize_reloc (input_bfd, input_section,
756 					reloc_vector, symbols);
757   if (reloc_count < 0)
758     goto error_return;
759   if (reloc_count == 0)
760     goto successful_return;
761 
762   /* Get the GP value for the output BFD.  */
763   gp_undefined = FALSE;
764   gp = _bfd_get_gp_value (abfd);
765   if (gp == 0)
766     {
767       if (relocatable)
768 	{
769 	  asection *sec;
770 	  bfd_vma lo;
771 
772 	  /* Make up a value.  */
773 	  lo = (bfd_vma) -1;
774 	  for (sec = abfd->sections; sec != NULL; sec = sec->next)
775 	    {
776 	      if (sec->vma < lo
777 		  && (strcmp (sec->name, ".sbss") == 0
778 		      || strcmp (sec->name, ".sdata") == 0
779 		      || strcmp (sec->name, ".lit4") == 0
780 		      || strcmp (sec->name, ".lit8") == 0
781 		      || strcmp (sec->name, ".lita") == 0))
782 		lo = sec->vma;
783 	    }
784 	  gp = lo + 0x8000;
785 	  _bfd_set_gp_value (abfd, gp);
786 	}
787       else
788 	{
789 	  struct bfd_link_hash_entry *h;
790 
791 	  h = bfd_link_hash_lookup (link_info->hash, "_gp", FALSE, FALSE,
792 				    TRUE);
793 	  if (h == (struct bfd_link_hash_entry *) NULL
794 	      || h->type != bfd_link_hash_defined)
795 	    gp_undefined = TRUE;
796 	  else
797 	    {
798 	      gp = (h->u.def.value
799 		    + h->u.def.section->output_section->vma
800 		    + h->u.def.section->output_offset);
801 	      _bfd_set_gp_value (abfd, gp);
802 	    }
803 	}
804     }
805 
806   for (; *reloc_vector != (arelent *) NULL; reloc_vector++)
807     {
808       arelent *rel;
809       bfd_reloc_status_type r;
810       char *err;
811 
812       rel = *reloc_vector;
813       r = bfd_reloc_ok;
814       switch (rel->howto->type)
815 	{
816 	case ALPHA_R_IGNORE:
817 	  rel->address += input_section->output_offset;
818 	  break;
819 
820 	case ALPHA_R_REFLONG:
821 	case ALPHA_R_REFQUAD:
822 	case ALPHA_R_BRADDR:
823 	case ALPHA_R_HINT:
824 	case ALPHA_R_SREL16:
825 	case ALPHA_R_SREL32:
826 	case ALPHA_R_SREL64:
827 	  if (relocatable
828 	      && ((*rel->sym_ptr_ptr)->flags & BSF_SECTION_SYM) == 0)
829 	    {
830 	      rel->address += input_section->output_offset;
831 	      break;
832 	    }
833 	  r = bfd_perform_relocation (input_bfd, rel, data, input_section,
834 				      output_bfd, &err);
835 	  break;
836 
837 	case ALPHA_R_GPREL32:
838 	  /* This relocation is used in a switch table.  It is a 32
839 	     bit offset from the current GP value.  We must adjust it
840 	     by the different between the original GP value and the
841 	     current GP value.  The original GP value is stored in the
842 	     addend.  We adjust the addend and let
843 	     bfd_perform_relocation finish the job.  */
844 	  rel->addend -= gp;
845 	  r = bfd_perform_relocation (input_bfd, rel, data, input_section,
846 				      output_bfd, &err);
847 	  if (r == bfd_reloc_ok && gp_undefined)
848 	    {
849 	      r = bfd_reloc_dangerous;
850 	      err = (char *) _("GP relative relocation used when GP not defined");
851 	    }
852 	  break;
853 
854 	case ALPHA_R_LITERAL:
855 	  /* This is a reference to a literal value, generally
856 	     (always?) in the .lita section.  This is a 16 bit GP
857 	     relative relocation.  Sometimes the subsequent reloc is a
858 	     LITUSE reloc, which indicates how this reloc is used.
859 	     This sometimes permits rewriting the two instructions
860 	     referred to by the LITERAL and the LITUSE into different
861 	     instructions which do not refer to .lita.  This can save
862 	     a memory reference, and permits removing a value from
863 	     .lita thus saving GP relative space.
864 
865 	     We do not these optimizations.  To do them we would need
866 	     to arrange to link the .lita section first, so that by
867 	     the time we got here we would know the final values to
868 	     use.  This would not be particularly difficult, but it is
869 	     not currently implemented.  */
870 
871 	  {
872 	    unsigned long insn;
873 
874 	    /* I believe that the LITERAL reloc will only apply to a
875 	       ldq or ldl instruction, so check my assumption.  */
876 	    insn = bfd_get_32 (input_bfd, data + rel->address);
877 	    BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
878 			|| ((insn >> 26) & 0x3f) == 0x28);
879 
880 	    rel->addend -= gp;
881 	    r = bfd_perform_relocation (input_bfd, rel, data, input_section,
882 					output_bfd, &err);
883 	    if (r == bfd_reloc_ok && gp_undefined)
884 	      {
885 		r = bfd_reloc_dangerous;
886 		err =
887 		  (char *) _("GP relative relocation used when GP not defined");
888 	      }
889 	  }
890 	  break;
891 
892 	case ALPHA_R_LITUSE:
893 	  /* See ALPHA_R_LITERAL above for the uses of this reloc.  It
894 	     does not cause anything to happen, itself.  */
895 	  rel->address += input_section->output_offset;
896 	  break;
897 
898 	case ALPHA_R_GPDISP:
899 	  /* This marks the ldah of an ldah/lda pair which loads the
900 	     gp register with the difference of the gp value and the
901 	     current location.  The second of the pair is r_size bytes
902 	     ahead; it used to be marked with an ALPHA_R_IGNORE reloc,
903 	     but that no longer happens in OSF/1 3.2.  */
904 	  {
905 	    unsigned long insn1, insn2;
906 	    bfd_vma addend;
907 
908 	    /* Get the two instructions.  */
909 	    insn1 = bfd_get_32 (input_bfd, data + rel->address);
910 	    insn2 = bfd_get_32 (input_bfd, data + rel->address + rel->addend);
911 
912 	    BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
913 	    BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
914 
915 	    /* Get the existing addend.  We must account for the sign
916 	       extension done by lda and ldah.  */
917 	    addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
918 	    if (insn1 & 0x8000)
919 	      {
920 		addend -= 0x80000000;
921 		addend -= 0x80000000;
922 	      }
923 	    if (insn2 & 0x8000)
924 	      addend -= 0x10000;
925 
926 	    /* The existing addend includes the different between the
927 	       gp of the input BFD and the address in the input BFD.
928 	       Subtract this out.  */
929 	    addend -= (ecoff_data (input_bfd)->gp
930 		       - (input_section->vma + rel->address));
931 
932 	    /* Now add in the final gp value, and subtract out the
933 	       final address.  */
934 	    addend += (gp
935 		       - (input_section->output_section->vma
936 			  + input_section->output_offset
937 			  + rel->address));
938 
939 	    /* Change the instructions, accounting for the sign
940 	       extension, and write them out.  */
941 	    if (addend & 0x8000)
942 	      addend += 0x10000;
943 	    insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
944 	    insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
945 
946 	    bfd_put_32 (input_bfd, (bfd_vma) insn1, data + rel->address);
947 	    bfd_put_32 (input_bfd, (bfd_vma) insn2,
948 			data + rel->address + rel->addend);
949 
950 	    rel->address += input_section->output_offset;
951 	  }
952 	  break;
953 
954 	case ALPHA_R_OP_PUSH:
955 	  /* Push a value on the reloc evaluation stack.  */
956 	  {
957 	    asymbol *symbol;
958 	    bfd_vma relocation;
959 
960 	    if (relocatable)
961 	      {
962 		rel->address += input_section->output_offset;
963 		break;
964 	      }
965 
966 	    /* Figure out the relocation of this symbol.  */
967 	    symbol = *rel->sym_ptr_ptr;
968 
969 	    if (bfd_is_und_section (symbol->section))
970 	      r = bfd_reloc_undefined;
971 
972 	    if (bfd_is_com_section (symbol->section))
973 	      relocation = 0;
974 	    else
975 	      relocation = symbol->value;
976 	    relocation += symbol->section->output_section->vma;
977 	    relocation += symbol->section->output_offset;
978 	    relocation += rel->addend;
979 
980 	    if (tos >= RELOC_STACKSIZE)
981 	      abort ();
982 
983 	    stack[tos++] = relocation;
984 	  }
985 	  break;
986 
987 	case ALPHA_R_OP_STORE:
988 	  /* Store a value from the reloc stack into a bitfield.  */
989 	  {
990 	    bfd_vma val;
991 	    int offset, size;
992 
993 	    if (relocatable)
994 	      {
995 		rel->address += input_section->output_offset;
996 		break;
997 	      }
998 
999 	    if (tos == 0)
1000 	      abort ();
1001 
1002 	    /* The offset and size for this reloc are encoded into the
1003 	       addend field by alpha_adjust_reloc_in.  */
1004 	    offset = (rel->addend >> 8) & 0xff;
1005 	    size = rel->addend & 0xff;
1006 
1007 	    val = bfd_get_64 (abfd, data + rel->address);
1008 	    val &=~ (((1 << size) - 1) << offset);
1009 	    val |= (stack[--tos] & ((1 << size) - 1)) << offset;
1010 	    bfd_put_64 (abfd, val, data + rel->address);
1011 	  }
1012 	  break;
1013 
1014 	case ALPHA_R_OP_PSUB:
1015 	  /* Subtract a value from the top of the stack.  */
1016 	  {
1017 	    asymbol *symbol;
1018 	    bfd_vma relocation;
1019 
1020 	    if (relocatable)
1021 	      {
1022 		rel->address += input_section->output_offset;
1023 		break;
1024 	      }
1025 
1026 	    /* Figure out the relocation of this symbol.  */
1027 	    symbol = *rel->sym_ptr_ptr;
1028 
1029 	    if (bfd_is_und_section (symbol->section))
1030 	      r = bfd_reloc_undefined;
1031 
1032 	    if (bfd_is_com_section (symbol->section))
1033 	      relocation = 0;
1034 	    else
1035 	      relocation = symbol->value;
1036 	    relocation += symbol->section->output_section->vma;
1037 	    relocation += symbol->section->output_offset;
1038 	    relocation += rel->addend;
1039 
1040 	    if (tos == 0)
1041 	      abort ();
1042 
1043 	    stack[tos - 1] -= relocation;
1044 	  }
1045 	  break;
1046 
1047 	case ALPHA_R_OP_PRSHIFT:
1048 	  /* Shift the value on the top of the stack.  */
1049 	  {
1050 	    asymbol *symbol;
1051 	    bfd_vma relocation;
1052 
1053 	    if (relocatable)
1054 	      {
1055 		rel->address += input_section->output_offset;
1056 		break;
1057 	      }
1058 
1059 	    /* Figure out the relocation of this symbol.  */
1060 	    symbol = *rel->sym_ptr_ptr;
1061 
1062 	    if (bfd_is_und_section (symbol->section))
1063 	      r = bfd_reloc_undefined;
1064 
1065 	    if (bfd_is_com_section (symbol->section))
1066 	      relocation = 0;
1067 	    else
1068 	      relocation = symbol->value;
1069 	    relocation += symbol->section->output_section->vma;
1070 	    relocation += symbol->section->output_offset;
1071 	    relocation += rel->addend;
1072 
1073 	    if (tos == 0)
1074 	      abort ();
1075 
1076 	    stack[tos - 1] >>= relocation;
1077 	  }
1078 	  break;
1079 
1080 	case ALPHA_R_GPVALUE:
1081 	  /* I really don't know if this does the right thing.  */
1082 	  gp = rel->addend;
1083 	  gp_undefined = FALSE;
1084 	  break;
1085 
1086 	default:
1087 	  abort ();
1088 	}
1089 
1090       if (relocatable)
1091 	{
1092 	  asection *os = input_section->output_section;
1093 
1094 	  /* A partial link, so keep the relocs.  */
1095 	  os->orelocation[os->reloc_count] = rel;
1096 	  os->reloc_count++;
1097 	}
1098 
1099       if (r != bfd_reloc_ok)
1100 	{
1101 	  switch (r)
1102 	    {
1103 	    case bfd_reloc_undefined:
1104 	      (*link_info->callbacks->undefined_symbol)
1105 		(link_info, bfd_asymbol_name (*rel->sym_ptr_ptr),
1106 		 input_bfd, input_section, rel->address, TRUE);
1107 	      break;
1108 	    case bfd_reloc_dangerous:
1109 	      (*link_info->callbacks->reloc_dangerous)
1110 		(link_info, err, input_bfd, input_section, rel->address);
1111 	      break;
1112 	    case bfd_reloc_overflow:
1113 	      (*link_info->callbacks->reloc_overflow)
1114 		(link_info, NULL, bfd_asymbol_name (*rel->sym_ptr_ptr),
1115 		 rel->howto->name, rel->addend, input_bfd,
1116 		 input_section, rel->address);
1117 	      break;
1118 	    case bfd_reloc_outofrange:
1119 	    default:
1120 	      abort ();
1121 	      break;
1122 	    }
1123 	}
1124     }
1125 
1126   if (tos != 0)
1127     abort ();
1128 
1129  successful_return:
1130   if (reloc_vector != NULL)
1131     free (reloc_vector);
1132   return data;
1133 
1134  error_return:
1135   if (reloc_vector != NULL)
1136     free (reloc_vector);
1137   return NULL;
1138 }
1139 
1140 /* Get the howto structure for a generic reloc type.  */
1141 
1142 static reloc_howto_type *
1143 alpha_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1144 			     bfd_reloc_code_real_type code)
1145 {
1146   int alpha_type;
1147 
1148   switch (code)
1149     {
1150     case BFD_RELOC_32:
1151       alpha_type = ALPHA_R_REFLONG;
1152       break;
1153     case BFD_RELOC_64:
1154     case BFD_RELOC_CTOR:
1155       alpha_type = ALPHA_R_REFQUAD;
1156       break;
1157     case BFD_RELOC_GPREL32:
1158       alpha_type = ALPHA_R_GPREL32;
1159       break;
1160     case BFD_RELOC_ALPHA_LITERAL:
1161       alpha_type = ALPHA_R_LITERAL;
1162       break;
1163     case BFD_RELOC_ALPHA_LITUSE:
1164       alpha_type = ALPHA_R_LITUSE;
1165       break;
1166     case BFD_RELOC_ALPHA_GPDISP_HI16:
1167       alpha_type = ALPHA_R_GPDISP;
1168       break;
1169     case BFD_RELOC_ALPHA_GPDISP_LO16:
1170       alpha_type = ALPHA_R_IGNORE;
1171       break;
1172     case BFD_RELOC_23_PCREL_S2:
1173       alpha_type = ALPHA_R_BRADDR;
1174       break;
1175     case BFD_RELOC_ALPHA_HINT:
1176       alpha_type = ALPHA_R_HINT;
1177       break;
1178     case BFD_RELOC_16_PCREL:
1179       alpha_type = ALPHA_R_SREL16;
1180       break;
1181     case BFD_RELOC_32_PCREL:
1182       alpha_type = ALPHA_R_SREL32;
1183       break;
1184     case BFD_RELOC_64_PCREL:
1185       alpha_type = ALPHA_R_SREL64;
1186       break;
1187     default:
1188       return (reloc_howto_type *) NULL;
1189     }
1190 
1191   return &alpha_howto_table[alpha_type];
1192 }
1193 
1194 static reloc_howto_type *
1195 alpha_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1196 			     const char *r_name)
1197 {
1198   unsigned int i;
1199 
1200   for (i = 0;
1201        i < sizeof (alpha_howto_table) / sizeof (alpha_howto_table[0]);
1202        i++)
1203     if (alpha_howto_table[i].name != NULL
1204 	&& strcasecmp (alpha_howto_table[i].name, r_name) == 0)
1205       return &alpha_howto_table[i];
1206 
1207   return NULL;
1208 }
1209 
1210 /* A helper routine for alpha_relocate_section which converts an
1211    external reloc when generating relocatable output.  Returns the
1212    relocation amount.  */
1213 
1214 static bfd_vma
1215 alpha_convert_external_reloc (bfd *output_bfd ATTRIBUTE_UNUSED,
1216 			      struct bfd_link_info *info,
1217 			      bfd *input_bfd,
1218 			      struct external_reloc *ext_rel,
1219 			      struct ecoff_link_hash_entry *h)
1220 {
1221   unsigned long r_symndx;
1222   bfd_vma relocation;
1223 
1224   BFD_ASSERT (bfd_link_relocatable (info));
1225 
1226   if (h->root.type == bfd_link_hash_defined
1227       || h->root.type == bfd_link_hash_defweak)
1228     {
1229       asection *hsec;
1230       const char *name;
1231 
1232       /* This symbol is defined in the output.  Convert the reloc from
1233 	 being against the symbol to being against the section.  */
1234 
1235       /* Clear the r_extern bit.  */
1236       ext_rel->r_bits[1] &=~ RELOC_BITS1_EXTERN_LITTLE;
1237 
1238       /* Compute a new r_symndx value.  */
1239       hsec = h->root.u.def.section;
1240       name = bfd_get_section_name (output_bfd, hsec->output_section);
1241 
1242       r_symndx = (unsigned long) -1;
1243       switch (name[1])
1244 	{
1245 	case 'A':
1246 	  if (strcmp (name, "*ABS*") == 0)
1247 	    r_symndx = RELOC_SECTION_ABS;
1248 	  break;
1249 	case 'b':
1250 	  if (strcmp (name, ".bss") == 0)
1251 	    r_symndx = RELOC_SECTION_BSS;
1252 	  break;
1253 	case 'd':
1254 	  if (strcmp (name, ".data") == 0)
1255 	    r_symndx = RELOC_SECTION_DATA;
1256 	  break;
1257 	case 'f':
1258 	  if (strcmp (name, ".fini") == 0)
1259 	    r_symndx = RELOC_SECTION_FINI;
1260 	  break;
1261 	case 'i':
1262 	  if (strcmp (name, ".init") == 0)
1263 	    r_symndx = RELOC_SECTION_INIT;
1264 	  break;
1265 	case 'l':
1266 	  if (strcmp (name, ".lita") == 0)
1267 	    r_symndx = RELOC_SECTION_LITA;
1268 	  else if (strcmp (name, ".lit8") == 0)
1269 	    r_symndx = RELOC_SECTION_LIT8;
1270 	  else if (strcmp (name, ".lit4") == 0)
1271 	    r_symndx = RELOC_SECTION_LIT4;
1272 	  break;
1273 	case 'p':
1274 	  if (strcmp (name, ".pdata") == 0)
1275 	    r_symndx = RELOC_SECTION_PDATA;
1276 	  break;
1277 	case 'r':
1278 	  if (strcmp (name, ".rdata") == 0)
1279 	    r_symndx = RELOC_SECTION_RDATA;
1280 	  else if (strcmp (name, ".rconst") == 0)
1281 	    r_symndx = RELOC_SECTION_RCONST;
1282 	  break;
1283 	case 's':
1284 	  if (strcmp (name, ".sdata") == 0)
1285 	    r_symndx = RELOC_SECTION_SDATA;
1286 	  else if (strcmp (name, ".sbss") == 0)
1287 	    r_symndx = RELOC_SECTION_SBSS;
1288 	  break;
1289 	case 't':
1290 	  if (strcmp (name, ".text") == 0)
1291 	    r_symndx = RELOC_SECTION_TEXT;
1292 	  break;
1293 	case 'x':
1294 	  if (strcmp (name, ".xdata") == 0)
1295 	    r_symndx = RELOC_SECTION_XDATA;
1296 	  break;
1297 	}
1298 
1299       if (r_symndx == (unsigned long) -1)
1300 	abort ();
1301 
1302       /* Add the section VMA and the symbol value.  */
1303       relocation = (h->root.u.def.value
1304 		    + hsec->output_section->vma
1305 		    + hsec->output_offset);
1306     }
1307   else
1308     {
1309       /* Change the symndx value to the right one for
1310 	 the output BFD.  */
1311       r_symndx = h->indx;
1312       if (r_symndx == (unsigned long) -1)
1313 	{
1314 	  /* Caller must give an error.  */
1315 	  r_symndx = 0;
1316 	}
1317       relocation = 0;
1318     }
1319 
1320   /* Write out the new r_symndx value.  */
1321   H_PUT_32 (input_bfd, r_symndx, ext_rel->r_symndx);
1322 
1323   return relocation;
1324 }
1325 
1326 /* Relocate a section while linking an Alpha ECOFF file.  This is
1327    quite similar to get_relocated_section_contents.  Perhaps they
1328    could be combined somehow.  */
1329 
1330 static bfd_boolean
1331 alpha_relocate_section (bfd *output_bfd,
1332 			struct bfd_link_info *info,
1333 			bfd *input_bfd,
1334 			asection *input_section,
1335 			bfd_byte *contents,
1336 			void * external_relocs)
1337 {
1338   asection **symndx_to_section, *lita_sec;
1339   struct ecoff_link_hash_entry **sym_hashes;
1340   bfd_vma gp;
1341   bfd_boolean gp_undefined;
1342   bfd_vma stack[RELOC_STACKSIZE];
1343   int tos = 0;
1344   struct external_reloc *ext_rel;
1345   struct external_reloc *ext_rel_end;
1346   bfd_size_type amt;
1347 
1348   /* We keep a table mapping the symndx found in an internal reloc to
1349      the appropriate section.  This is faster than looking up the
1350      section by name each time.  */
1351   symndx_to_section = ecoff_data (input_bfd)->symndx_to_section;
1352   if (symndx_to_section == (asection **) NULL)
1353     {
1354       amt = NUM_RELOC_SECTIONS * sizeof (asection *);
1355       symndx_to_section = (asection **) bfd_alloc (input_bfd, amt);
1356       if (!symndx_to_section)
1357 	return FALSE;
1358 
1359       symndx_to_section[RELOC_SECTION_NONE] = NULL;
1360       symndx_to_section[RELOC_SECTION_TEXT] =
1361 	bfd_get_section_by_name (input_bfd, ".text");
1362       symndx_to_section[RELOC_SECTION_RDATA] =
1363 	bfd_get_section_by_name (input_bfd, ".rdata");
1364       symndx_to_section[RELOC_SECTION_DATA] =
1365 	bfd_get_section_by_name (input_bfd, ".data");
1366       symndx_to_section[RELOC_SECTION_SDATA] =
1367 	bfd_get_section_by_name (input_bfd, ".sdata");
1368       symndx_to_section[RELOC_SECTION_SBSS] =
1369 	bfd_get_section_by_name (input_bfd, ".sbss");
1370       symndx_to_section[RELOC_SECTION_BSS] =
1371 	bfd_get_section_by_name (input_bfd, ".bss");
1372       symndx_to_section[RELOC_SECTION_INIT] =
1373 	bfd_get_section_by_name (input_bfd, ".init");
1374       symndx_to_section[RELOC_SECTION_LIT8] =
1375 	bfd_get_section_by_name (input_bfd, ".lit8");
1376       symndx_to_section[RELOC_SECTION_LIT4] =
1377 	bfd_get_section_by_name (input_bfd, ".lit4");
1378       symndx_to_section[RELOC_SECTION_XDATA] =
1379 	bfd_get_section_by_name (input_bfd, ".xdata");
1380       symndx_to_section[RELOC_SECTION_PDATA] =
1381 	bfd_get_section_by_name (input_bfd, ".pdata");
1382       symndx_to_section[RELOC_SECTION_FINI] =
1383 	bfd_get_section_by_name (input_bfd, ".fini");
1384       symndx_to_section[RELOC_SECTION_LITA] =
1385 	bfd_get_section_by_name (input_bfd, ".lita");
1386       symndx_to_section[RELOC_SECTION_ABS] = bfd_abs_section_ptr;
1387       symndx_to_section[RELOC_SECTION_RCONST] =
1388 	bfd_get_section_by_name (input_bfd, ".rconst");
1389 
1390       ecoff_data (input_bfd)->symndx_to_section = symndx_to_section;
1391     }
1392 
1393   sym_hashes = ecoff_data (input_bfd)->sym_hashes;
1394 
1395   /* On the Alpha, the .lita section must be addressable by the global
1396      pointer.  To support large programs, we need to allow multiple
1397      global pointers.  This works as long as each input .lita section
1398      is <64KB big.  This implies that when producing relocatable
1399      output, the .lita section is limited to 64KB. .  */
1400 
1401   lita_sec = symndx_to_section[RELOC_SECTION_LITA];
1402   gp = _bfd_get_gp_value (output_bfd);
1403   if (! bfd_link_relocatable (info) && lita_sec != NULL)
1404     {
1405       struct ecoff_section_tdata *lita_sec_data;
1406 
1407       /* Make sure we have a section data structure to which we can
1408 	 hang on to the gp value we pick for the section.  */
1409       lita_sec_data = ecoff_section_data (input_bfd, lita_sec);
1410       if (lita_sec_data == NULL)
1411 	{
1412 	  amt = sizeof (struct ecoff_section_tdata);
1413 	  lita_sec_data = ((struct ecoff_section_tdata *)
1414 			   bfd_zalloc (input_bfd, amt));
1415 	  lita_sec->used_by_bfd = lita_sec_data;
1416 	}
1417 
1418       if (lita_sec_data->gp != 0)
1419 	{
1420 	  /* If we already assigned a gp to this section, we better
1421 	     stick with that value.  */
1422 	  gp = lita_sec_data->gp;
1423 	}
1424       else
1425 	{
1426 	  bfd_vma lita_vma;
1427 	  bfd_size_type lita_size;
1428 
1429 	  lita_vma = lita_sec->output_offset + lita_sec->output_section->vma;
1430 	  lita_size = lita_sec->size;
1431 
1432 	  if (gp == 0
1433 	      || lita_vma <  gp - 0x8000
1434 	      || lita_vma + lita_size >= gp + 0x8000)
1435 	    {
1436 	      /* Either gp hasn't been set at all or the current gp
1437 		 cannot address this .lita section.  In both cases we
1438 		 reset the gp to point into the "middle" of the
1439 		 current input .lita section.  */
1440 	      if (gp && !ecoff_data (output_bfd)->issued_multiple_gp_warning)
1441 		{
1442 		  (*info->callbacks->warning) (info,
1443 					       _("using multiple gp values"),
1444 					       (char *) NULL, output_bfd,
1445 					       (asection *) NULL, (bfd_vma) 0);
1446 		  ecoff_data (output_bfd)->issued_multiple_gp_warning = TRUE;
1447 		}
1448 	      if (lita_vma < gp - 0x8000)
1449 		gp = lita_vma + lita_size - 0x8000;
1450 	      else
1451 		gp = lita_vma + 0x8000;
1452 
1453 	    }
1454 
1455 	  lita_sec_data->gp = gp;
1456 	}
1457 
1458       _bfd_set_gp_value (output_bfd, gp);
1459     }
1460 
1461   gp_undefined = (gp == 0);
1462 
1463   BFD_ASSERT (bfd_header_little_endian (output_bfd));
1464   BFD_ASSERT (bfd_header_little_endian (input_bfd));
1465 
1466   ext_rel = (struct external_reloc *) external_relocs;
1467   ext_rel_end = ext_rel + input_section->reloc_count;
1468   for (; ext_rel < ext_rel_end; ext_rel++)
1469     {
1470       bfd_vma r_vaddr;
1471       unsigned long r_symndx;
1472       int r_type;
1473       int r_extern;
1474       int r_offset;
1475       int r_size;
1476       bfd_boolean relocatep;
1477       bfd_boolean adjust_addrp;
1478       bfd_boolean gp_usedp;
1479       bfd_vma addend;
1480 
1481       r_vaddr = H_GET_64 (input_bfd, ext_rel->r_vaddr);
1482       r_symndx = H_GET_32 (input_bfd, ext_rel->r_symndx);
1483 
1484       r_type = ((ext_rel->r_bits[0] & RELOC_BITS0_TYPE_LITTLE)
1485 		>> RELOC_BITS0_TYPE_SH_LITTLE);
1486       r_extern = (ext_rel->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0;
1487       r_offset = ((ext_rel->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE)
1488 		  >> RELOC_BITS1_OFFSET_SH_LITTLE);
1489       /* Ignored the reserved bits.  */
1490       r_size = ((ext_rel->r_bits[3] & RELOC_BITS3_SIZE_LITTLE)
1491 		>> RELOC_BITS3_SIZE_SH_LITTLE);
1492 
1493       relocatep = FALSE;
1494       adjust_addrp = TRUE;
1495       gp_usedp = FALSE;
1496       addend = 0;
1497 
1498       switch (r_type)
1499 	{
1500 	case ALPHA_R_GPRELHIGH:
1501 	  _bfd_error_handler (_("%pB: %s unsupported"),
1502 			      input_bfd, "ALPHA_R_GPRELHIGH");
1503 	  bfd_set_error (bfd_error_bad_value);
1504 	  continue;
1505 
1506 	case ALPHA_R_GPRELLOW:
1507 	  _bfd_error_handler (_("%pB: %s unsupported"),
1508 			      input_bfd, "ALPHA_R_GPRELLOW");
1509 	  bfd_set_error (bfd_error_bad_value);
1510 	  continue;
1511 
1512 	default:
1513 	  /* xgettext:c-format */
1514 	  _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1515 			      input_bfd, (int) r_type);
1516 	  bfd_set_error (bfd_error_bad_value);
1517 	  continue;
1518 
1519 	case ALPHA_R_IGNORE:
1520 	  /* This reloc appears after a GPDISP reloc.  On earlier
1521 	     versions of OSF/1, It marked the position of the second
1522 	     instruction to be altered by the GPDISP reloc, but it is
1523 	     not otherwise used for anything.  For some reason, the
1524 	     address of the relocation does not appear to include the
1525 	     section VMA, unlike the other relocation types.  */
1526 	  if (bfd_link_relocatable (info))
1527 	    H_PUT_64 (input_bfd, input_section->output_offset + r_vaddr,
1528 		      ext_rel->r_vaddr);
1529 	  adjust_addrp = FALSE;
1530 	  break;
1531 
1532 	case ALPHA_R_REFLONG:
1533 	case ALPHA_R_REFQUAD:
1534 	case ALPHA_R_HINT:
1535 	  relocatep = TRUE;
1536 	  break;
1537 
1538 	case ALPHA_R_BRADDR:
1539 	case ALPHA_R_SREL16:
1540 	case ALPHA_R_SREL32:
1541 	case ALPHA_R_SREL64:
1542 	  if (r_extern)
1543 	    addend += - (r_vaddr + 4);
1544 	  relocatep = TRUE;
1545 	  break;
1546 
1547 	case ALPHA_R_GPREL32:
1548 	  /* This relocation is used in a switch table.  It is a 32
1549 	     bit offset from the current GP value.  We must adjust it
1550 	     by the different between the original GP value and the
1551 	     current GP value.  */
1552 	  relocatep = TRUE;
1553 	  addend = ecoff_data (input_bfd)->gp - gp;
1554 	  gp_usedp = TRUE;
1555 	  break;
1556 
1557 	case ALPHA_R_LITERAL:
1558 	  /* This is a reference to a literal value, generally
1559 	     (always?) in the .lita section.  This is a 16 bit GP
1560 	     relative relocation.  Sometimes the subsequent reloc is a
1561 	     LITUSE reloc, which indicates how this reloc is used.
1562 	     This sometimes permits rewriting the two instructions
1563 	     referred to by the LITERAL and the LITUSE into different
1564 	     instructions which do not refer to .lita.  This can save
1565 	     a memory reference, and permits removing a value from
1566 	     .lita thus saving GP relative space.
1567 
1568 	     We do not these optimizations.  To do them we would need
1569 	     to arrange to link the .lita section first, so that by
1570 	     the time we got here we would know the final values to
1571 	     use.  This would not be particularly difficult, but it is
1572 	     not currently implemented.  */
1573 
1574 	  /* I believe that the LITERAL reloc will only apply to a ldq
1575 	     or ldl instruction, so check my assumption.  */
1576 	  {
1577 	    unsigned long insn;
1578 
1579 	    insn = bfd_get_32 (input_bfd,
1580 			       contents + r_vaddr - input_section->vma);
1581 	    BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29
1582 			|| ((insn >> 26) & 0x3f) == 0x28);
1583 	  }
1584 
1585 	  relocatep = TRUE;
1586 	  addend = ecoff_data (input_bfd)->gp - gp;
1587 	  gp_usedp = TRUE;
1588 	  break;
1589 
1590 	case ALPHA_R_LITUSE:
1591 	  /* See ALPHA_R_LITERAL above for the uses of this reloc.  It
1592 	     does not cause anything to happen, itself.  */
1593 	  break;
1594 
1595 	case ALPHA_R_GPDISP:
1596 	  /* This marks the ldah of an ldah/lda pair which loads the
1597 	     gp register with the difference of the gp value and the
1598 	     current location.  The second of the pair is r_symndx
1599 	     bytes ahead.  It used to be marked with an ALPHA_R_IGNORE
1600 	     reloc, but OSF/1 3.2 no longer does that.  */
1601 	  {
1602 	    unsigned long insn1, insn2;
1603 
1604 	    /* Get the two instructions.  */
1605 	    insn1 = bfd_get_32 (input_bfd,
1606 				contents + r_vaddr - input_section->vma);
1607 	    insn2 = bfd_get_32 (input_bfd,
1608 				(contents
1609 				 + r_vaddr
1610 				 - input_section->vma
1611 				 + r_symndx));
1612 
1613 	    BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */
1614 	    BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */
1615 
1616 	    /* Get the existing addend.  We must account for the sign
1617 	       extension done by lda and ldah.  */
1618 	    addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff);
1619 	    if (insn1 & 0x8000)
1620 	      {
1621 		/* This is addend -= 0x100000000 without causing an
1622 		   integer overflow on a 32 bit host.  */
1623 		addend -= 0x80000000;
1624 		addend -= 0x80000000;
1625 	      }
1626 	    if (insn2 & 0x8000)
1627 	      addend -= 0x10000;
1628 
1629 	    /* The existing addend includes the difference between the
1630 	       gp of the input BFD and the address in the input BFD.
1631 	       We want to change this to the difference between the
1632 	       final GP and the final address.  */
1633 	    addend += (gp
1634 		       - ecoff_data (input_bfd)->gp
1635 		       + input_section->vma
1636 		       - (input_section->output_section->vma
1637 			  + input_section->output_offset));
1638 
1639 	    /* Change the instructions, accounting for the sign
1640 	       extension, and write them out.  */
1641 	    if (addend & 0x8000)
1642 	      addend += 0x10000;
1643 	    insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff);
1644 	    insn2 = (insn2 & 0xffff0000) | (addend & 0xffff);
1645 
1646 	    bfd_put_32 (input_bfd, (bfd_vma) insn1,
1647 			contents + r_vaddr - input_section->vma);
1648 	    bfd_put_32 (input_bfd, (bfd_vma) insn2,
1649 			contents + r_vaddr - input_section->vma + r_symndx);
1650 
1651 	    gp_usedp = TRUE;
1652 	  }
1653 	  break;
1654 
1655 	case ALPHA_R_OP_PUSH:
1656 	case ALPHA_R_OP_PSUB:
1657 	case ALPHA_R_OP_PRSHIFT:
1658 	  /* Manipulate values on the reloc evaluation stack.  The
1659 	     r_vaddr field is not an address in input_section, it is
1660 	     the current value (including any addend) of the object
1661 	     being used.  */
1662 	  if (! r_extern)
1663 	    {
1664 	      asection *s;
1665 
1666 	      s = symndx_to_section[r_symndx];
1667 	      if (s == (asection *) NULL)
1668 		abort ();
1669 	      addend = s->output_section->vma + s->output_offset - s->vma;
1670 	    }
1671 	  else
1672 	    {
1673 	      struct ecoff_link_hash_entry *h;
1674 
1675 	      h = sym_hashes[r_symndx];
1676 	      if (h == (struct ecoff_link_hash_entry *) NULL)
1677 		abort ();
1678 
1679 	      if (! bfd_link_relocatable (info))
1680 		{
1681 		  if (h->root.type == bfd_link_hash_defined
1682 		      || h->root.type == bfd_link_hash_defweak)
1683 		    addend = (h->root.u.def.value
1684 			      + h->root.u.def.section->output_section->vma
1685 			      + h->root.u.def.section->output_offset);
1686 		  else
1687 		    {
1688 		      /* Note that we pass the address as 0, since we
1689 			 do not have a meaningful number for the
1690 			 location within the section that is being
1691 			 relocated.  */
1692 		      (*info->callbacks->undefined_symbol)
1693 			(info, h->root.root.string, input_bfd,
1694 			 input_section, (bfd_vma) 0, TRUE);
1695 		      addend = 0;
1696 		    }
1697 		}
1698 	      else
1699 		{
1700 		  if (h->root.type != bfd_link_hash_defined
1701 		      && h->root.type != bfd_link_hash_defweak
1702 		      && h->indx == -1)
1703 		    {
1704 		      /* This symbol is not being written out.  Pass
1705 			 the address as 0, as with undefined_symbol,
1706 			 above.  */
1707 		      (*info->callbacks->unattached_reloc)
1708 			(info, h->root.root.string,
1709 			 input_bfd, input_section, (bfd_vma) 0);
1710 		    }
1711 
1712 		  addend = alpha_convert_external_reloc (output_bfd, info,
1713 							 input_bfd,
1714 							 ext_rel, h);
1715 		}
1716 	    }
1717 
1718 	  addend += r_vaddr;
1719 
1720 	  if (bfd_link_relocatable (info))
1721 	    {
1722 	      /* Adjust r_vaddr by the addend.  */
1723 	      H_PUT_64 (input_bfd, addend, ext_rel->r_vaddr);
1724 	    }
1725 	  else
1726 	    {
1727 	      switch (r_type)
1728 		{
1729 		case ALPHA_R_OP_PUSH:
1730 		  if (tos >= RELOC_STACKSIZE)
1731 		    abort ();
1732 		  stack[tos++] = addend;
1733 		  break;
1734 
1735 		case ALPHA_R_OP_PSUB:
1736 		  if (tos == 0)
1737 		    abort ();
1738 		  stack[tos - 1] -= addend;
1739 		  break;
1740 
1741 		case ALPHA_R_OP_PRSHIFT:
1742 		  if (tos == 0)
1743 		    abort ();
1744 		  stack[tos - 1] >>= addend;
1745 		  break;
1746 		}
1747 	    }
1748 
1749 	  adjust_addrp = FALSE;
1750 	  break;
1751 
1752 	case ALPHA_R_OP_STORE:
1753 	  /* Store a value from the reloc stack into a bitfield.  If
1754 	     we are generating relocatable output, all we do is
1755 	     adjust the address of the reloc.  */
1756 	  if (! bfd_link_relocatable (info))
1757 	    {
1758 	      bfd_vma mask;
1759 	      bfd_vma val;
1760 
1761 	      if (tos == 0)
1762 		abort ();
1763 
1764 	      /* Get the relocation mask.  The separate steps and the
1765 		 casts to bfd_vma are attempts to avoid a bug in the
1766 		 Alpha OSF 1.3 C compiler.  See reloc.c for more
1767 		 details.  */
1768 	      mask = 1;
1769 	      mask <<= (bfd_vma) r_size;
1770 	      mask -= 1;
1771 
1772 	      /* FIXME: I don't know what kind of overflow checking,
1773 		 if any, should be done here.  */
1774 	      val = bfd_get_64 (input_bfd,
1775 				contents + r_vaddr - input_section->vma);
1776 	      val &=~ mask << (bfd_vma) r_offset;
1777 	      val |= (stack[--tos] & mask) << (bfd_vma) r_offset;
1778 	      bfd_put_64 (input_bfd, val,
1779 			  contents + r_vaddr - input_section->vma);
1780 	    }
1781 	  break;
1782 
1783 	case ALPHA_R_GPVALUE:
1784 	  /* I really don't know if this does the right thing.  */
1785 	  gp = ecoff_data (input_bfd)->gp + r_symndx;
1786 	  gp_undefined = FALSE;
1787 	  break;
1788 	}
1789 
1790       if (relocatep)
1791 	{
1792 	  reloc_howto_type *howto;
1793 	  struct ecoff_link_hash_entry *h = NULL;
1794 	  asection *s = NULL;
1795 	  bfd_vma relocation;
1796 	  bfd_reloc_status_type r;
1797 
1798 	  /* Perform a relocation.  */
1799 
1800 	  howto = &alpha_howto_table[r_type];
1801 
1802 	  if (r_extern)
1803 	    {
1804 	      h = sym_hashes[r_symndx];
1805 	      /* If h is NULL, that means that there is a reloc
1806 		 against an external symbol which we thought was just
1807 		 a debugging symbol.  This should not happen.  */
1808 	      if (h == (struct ecoff_link_hash_entry *) NULL)
1809 		abort ();
1810 	    }
1811 	  else
1812 	    {
1813 	      if (r_symndx >= NUM_RELOC_SECTIONS)
1814 		s = NULL;
1815 	      else
1816 		s = symndx_to_section[r_symndx];
1817 
1818 	      if (s == (asection *) NULL)
1819 		abort ();
1820 	    }
1821 
1822 	  if (bfd_link_relocatable (info))
1823 	    {
1824 	      /* We are generating relocatable output, and must
1825 		 convert the existing reloc.  */
1826 	      if (r_extern)
1827 		{
1828 		  if (h->root.type != bfd_link_hash_defined
1829 		      && h->root.type != bfd_link_hash_defweak
1830 		      && h->indx == -1)
1831 		    {
1832 		      /* This symbol is not being written out.  */
1833 		      (*info->callbacks->unattached_reloc)
1834 			(info, h->root.root.string, input_bfd,
1835 			 input_section, r_vaddr - input_section->vma);
1836 		    }
1837 
1838 		  relocation = alpha_convert_external_reloc (output_bfd,
1839 							     info,
1840 							     input_bfd,
1841 							     ext_rel,
1842 							     h);
1843 		}
1844 	      else
1845 		{
1846 		  /* This is a relocation against a section.  Adjust
1847 		     the value by the amount the section moved.  */
1848 		  relocation = (s->output_section->vma
1849 				+ s->output_offset
1850 				- s->vma);
1851 		}
1852 
1853 	      /* If this is PC relative, the existing object file
1854 		 appears to already have the reloc worked out.  We
1855 		 must subtract out the old value and add in the new
1856 		 one.  */
1857 	      if (howto->pc_relative)
1858 		relocation -= (input_section->output_section->vma
1859 			       + input_section->output_offset
1860 			       - input_section->vma);
1861 
1862 	      /* Put in any addend.  */
1863 	      relocation += addend;
1864 
1865 	      /* Adjust the contents.  */
1866 	      r = _bfd_relocate_contents (howto, input_bfd, relocation,
1867 					  (contents
1868 					   + r_vaddr
1869 					   - input_section->vma));
1870 	    }
1871 	  else
1872 	    {
1873 	      /* We are producing a final executable.  */
1874 	      if (r_extern)
1875 		{
1876 		  /* This is a reloc against a symbol.  */
1877 		  if (h->root.type == bfd_link_hash_defined
1878 		      || h->root.type == bfd_link_hash_defweak)
1879 		    {
1880 		      asection *hsec;
1881 
1882 		      hsec = h->root.u.def.section;
1883 		      relocation = (h->root.u.def.value
1884 				    + hsec->output_section->vma
1885 				    + hsec->output_offset);
1886 		    }
1887 		  else
1888 		    {
1889 		      (*info->callbacks->undefined_symbol)
1890 			(info, h->root.root.string, input_bfd, input_section,
1891 			 r_vaddr - input_section->vma, TRUE);
1892 		      relocation = 0;
1893 		    }
1894 		}
1895 	      else
1896 		{
1897 		  /* This is a reloc against a section.  */
1898 		  relocation = (s->output_section->vma
1899 				+ s->output_offset
1900 				- s->vma);
1901 
1902 		  /* Adjust a PC relative relocation by removing the
1903 		     reference to the original source section.  */
1904 		  if (howto->pc_relative)
1905 		    relocation += input_section->vma;
1906 		}
1907 
1908 	      r = _bfd_final_link_relocate (howto,
1909 					    input_bfd,
1910 					    input_section,
1911 					    contents,
1912 					    r_vaddr - input_section->vma,
1913 					    relocation,
1914 					    addend);
1915 	    }
1916 
1917 	  if (r != bfd_reloc_ok)
1918 	    {
1919 	      switch (r)
1920 		{
1921 		default:
1922 		case bfd_reloc_outofrange:
1923 		  abort ();
1924 		case bfd_reloc_overflow:
1925 		  {
1926 		    const char *name;
1927 
1928 		    if (r_extern)
1929 		      name = sym_hashes[r_symndx]->root.root.string;
1930 		    else
1931 		      name = bfd_section_name (input_bfd,
1932 					       symndx_to_section[r_symndx]);
1933 		    (*info->callbacks->reloc_overflow)
1934 		      (info, NULL, name, alpha_howto_table[r_type].name,
1935 		       (bfd_vma) 0, input_bfd, input_section,
1936 		       r_vaddr - input_section->vma);
1937 		  }
1938 		  break;
1939 		}
1940 	    }
1941 	}
1942 
1943       if (bfd_link_relocatable (info) && adjust_addrp)
1944 	{
1945 	  /* Change the address of the relocation.  */
1946 	  H_PUT_64 (input_bfd,
1947 		    (input_section->output_section->vma
1948 		     + input_section->output_offset
1949 		     - input_section->vma
1950 		     + r_vaddr),
1951 		    ext_rel->r_vaddr);
1952 	}
1953 
1954       if (gp_usedp && gp_undefined)
1955 	{
1956 	  (*info->callbacks->reloc_dangerous)
1957 	    (info, _("GP relative relocation used when GP not defined"),
1958 	     input_bfd, input_section, r_vaddr - input_section->vma);
1959 	  /* Only give the error once per link.  */
1960 	  gp = 4;
1961 	  _bfd_set_gp_value (output_bfd, gp);
1962 	  gp_undefined = FALSE;
1963 	}
1964     }
1965 
1966   if (tos != 0)
1967     abort ();
1968 
1969   return TRUE;
1970 }
1971 
1972 /* Do final adjustments to the filehdr and the aouthdr.  This routine
1973    sets the dynamic bits in the file header.  */
1974 
1975 static bfd_boolean
1976 alpha_adjust_headers (bfd *abfd,
1977 		      struct internal_filehdr *fhdr,
1978 		      struct internal_aouthdr *ahdr ATTRIBUTE_UNUSED)
1979 {
1980   if ((abfd->flags & (DYNAMIC | EXEC_P)) == (DYNAMIC | EXEC_P))
1981     fhdr->f_flags |= F_ALPHA_CALL_SHARED;
1982   else if ((abfd->flags & DYNAMIC) != 0)
1983     fhdr->f_flags |= F_ALPHA_SHARABLE;
1984   return TRUE;
1985 }
1986 
1987 /* Archive handling.  In OSF/1 (or Digital Unix) v3.2, Digital
1988    introduced archive packing, in which the elements in an archive are
1989    optionally compressed using a simple dictionary scheme.  We know
1990    how to read such archives, but we don't write them.  */
1991 
1992 #define alpha_ecoff_slurp_armap _bfd_ecoff_slurp_armap
1993 #define alpha_ecoff_slurp_extended_name_table \
1994   _bfd_ecoff_slurp_extended_name_table
1995 #define alpha_ecoff_construct_extended_name_table \
1996   _bfd_ecoff_construct_extended_name_table
1997 #define alpha_ecoff_truncate_arname _bfd_ecoff_truncate_arname
1998 #define alpha_ecoff_write_armap _bfd_ecoff_write_armap
1999 #define alpha_ecoff_write_ar_hdr _bfd_generic_write_ar_hdr
2000 #define alpha_ecoff_generic_stat_arch_elt _bfd_ecoff_generic_stat_arch_elt
2001 #define alpha_ecoff_update_armap_timestamp _bfd_ecoff_update_armap_timestamp
2002 
2003 /* A compressed file uses this instead of ARFMAG.  */
2004 
2005 #define ARFZMAG "Z\012"
2006 
2007 /* Read an archive header.  This is like the standard routine, but it
2008    also accepts ARFZMAG.  */
2009 
2010 static void *
2011 alpha_ecoff_read_ar_hdr (bfd *abfd)
2012 {
2013   struct areltdata *ret;
2014   struct ar_hdr *h;
2015 
2016   ret = (struct areltdata *) _bfd_generic_read_ar_hdr_mag (abfd, ARFZMAG);
2017   if (ret == NULL)
2018     return NULL;
2019 
2020   h = (struct ar_hdr *) ret->arch_header;
2021   if (strncmp (h->ar_fmag, ARFZMAG, 2) == 0)
2022     {
2023       bfd_byte ab[8];
2024 
2025       /* This is a compressed file.  We must set the size correctly.
2026 	 The size is the eight bytes after the dummy file header.  */
2027       if (bfd_seek (abfd, (file_ptr) FILHSZ, SEEK_CUR) != 0
2028 	  || bfd_bread (ab, (bfd_size_type) 8, abfd) != 8
2029 	  || bfd_seek (abfd, (file_ptr) (- (FILHSZ + 8)), SEEK_CUR) != 0)
2030 	return NULL;
2031 
2032       ret->parsed_size = H_GET_64 (abfd, ab);
2033     }
2034 
2035   return ret;
2036 }
2037 
2038 /* Get an archive element at a specified file position.  This is where
2039    we uncompress the archive element if necessary.  */
2040 
2041 static bfd *
2042 alpha_ecoff_get_elt_at_filepos (bfd *archive, file_ptr filepos)
2043 {
2044   bfd *nbfd = NULL;
2045   struct areltdata *tdata;
2046   struct ar_hdr *hdr;
2047   bfd_byte ab[8];
2048   bfd_size_type size;
2049   bfd_byte *buf, *p;
2050   struct bfd_in_memory *bim;
2051 
2052   buf = NULL;
2053   nbfd = _bfd_get_elt_at_filepos (archive, filepos);
2054   if (nbfd == NULL)
2055     goto error_return;
2056 
2057   if ((nbfd->flags & BFD_IN_MEMORY) != 0)
2058     {
2059       /* We have already expanded this BFD.  */
2060       return nbfd;
2061     }
2062 
2063   tdata = (struct areltdata *) nbfd->arelt_data;
2064   hdr = (struct ar_hdr *) tdata->arch_header;
2065   if (strncmp (hdr->ar_fmag, ARFZMAG, 2) != 0)
2066     return nbfd;
2067 
2068   /* We must uncompress this element.  We do this by copying it into a
2069      memory buffer, and making bfd_bread and bfd_seek use that buffer.
2070      This can use a lot of memory, but it's simpler than getting a
2071      temporary file, making that work with the file descriptor caching
2072      code, and making sure that it is deleted at all appropriate
2073      times.  It can be changed if it ever becomes important.  */
2074 
2075   /* The compressed file starts with a dummy ECOFF file header.  */
2076   if (bfd_seek (nbfd, (file_ptr) FILHSZ, SEEK_SET) != 0)
2077     goto error_return;
2078 
2079   /* The next eight bytes are the real file size.  */
2080   if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8)
2081     goto error_return;
2082   size = H_GET_64 (nbfd, ab);
2083 
2084   if (size != 0)
2085     {
2086       bfd_size_type left;
2087       bfd_byte dict[4096];
2088       unsigned int h;
2089       bfd_byte b;
2090 
2091       buf = (bfd_byte *) bfd_malloc (size);
2092       if (buf == NULL)
2093 	goto error_return;
2094       p = buf;
2095 
2096       left = size;
2097 
2098       /* I don't know what the next eight bytes are for.  */
2099       if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8)
2100 	goto error_return;
2101 
2102       /* This is the uncompression algorithm.  It's a simple
2103 	 dictionary based scheme in which each character is predicted
2104 	 by a hash of the previous three characters.  A control byte
2105 	 indicates whether the character is predicted or whether it
2106 	 appears in the input stream; each control byte manages the
2107 	 next eight bytes in the output stream.  */
2108       memset (dict, 0, sizeof dict);
2109       h = 0;
2110       while (bfd_bread (&b, (bfd_size_type) 1, nbfd) == 1)
2111 	{
2112 	  unsigned int i;
2113 
2114 	  for (i = 0; i < 8; i++, b >>= 1)
2115 	    {
2116 	      bfd_byte n;
2117 
2118 	      if ((b & 1) == 0)
2119 		n = dict[h];
2120 	      else
2121 		{
2122 		  if (! bfd_bread (&n, (bfd_size_type) 1, nbfd))
2123 		    goto error_return;
2124 		  dict[h] = n;
2125 		}
2126 
2127 	      *p++ = n;
2128 
2129 	      --left;
2130 	      if (left == 0)
2131 		break;
2132 
2133 	      h <<= 4;
2134 	      h ^= n;
2135 	      h &= sizeof dict - 1;
2136 	    }
2137 
2138 	  if (left == 0)
2139 	    break;
2140 	}
2141     }
2142 
2143   /* Now the uncompressed file contents are in buf.  */
2144   bim = ((struct bfd_in_memory *)
2145 	 bfd_malloc ((bfd_size_type) sizeof (struct bfd_in_memory)));
2146   if (bim == NULL)
2147     goto error_return;
2148   bim->size = size;
2149   bim->buffer = buf;
2150 
2151   nbfd->mtime_set = TRUE;
2152   nbfd->mtime = strtol (hdr->ar_date, (char **) NULL, 10);
2153 
2154   nbfd->flags |= BFD_IN_MEMORY;
2155   nbfd->iostream = bim;
2156   nbfd->iovec = &_bfd_memory_iovec;
2157   nbfd->origin = 0;
2158   BFD_ASSERT (! nbfd->cacheable);
2159 
2160   return nbfd;
2161 
2162  error_return:
2163   if (buf != NULL)
2164     free (buf);
2165   if (nbfd != NULL)
2166     bfd_close (nbfd);
2167   return NULL;
2168 }
2169 
2170 /* Open the next archived file.  */
2171 
2172 static bfd *
2173 alpha_ecoff_openr_next_archived_file (bfd *archive, bfd *last_file)
2174 {
2175   ufile_ptr filestart;
2176 
2177   if (last_file == NULL)
2178     filestart = bfd_ardata (archive)->first_file_filepos;
2179   else
2180     {
2181       struct areltdata *t;
2182       struct ar_hdr *h;
2183       bfd_size_type size;
2184 
2185       /* We can't use arelt_size here, because that uses parsed_size,
2186 	 which is the uncompressed size.  We need the compressed size.  */
2187       t = (struct areltdata *) last_file->arelt_data;
2188       h = (struct ar_hdr *) t->arch_header;
2189       size = strtol (h->ar_size, (char **) NULL, 10);
2190 
2191       /* Pad to an even boundary...
2192 	 Note that last_file->origin can be odd in the case of
2193 	 BSD-4.4-style element with a long odd size.  */
2194       filestart = last_file->proxy_origin + size;
2195       filestart += filestart % 2;
2196       if (filestart < last_file->proxy_origin)
2197 	{
2198 	  /* Prevent looping.  See PR19256.  */
2199 	  bfd_set_error (bfd_error_malformed_archive);
2200 	  return NULL;
2201 	}
2202     }
2203 
2204   return alpha_ecoff_get_elt_at_filepos (archive, filestart);
2205 }
2206 
2207 /* Open the archive file given an index into the armap.  */
2208 
2209 static bfd *
2210 alpha_ecoff_get_elt_at_index (bfd *abfd, symindex sym_index)
2211 {
2212   carsym *entry;
2213 
2214   entry = bfd_ardata (abfd)->symdefs + sym_index;
2215   return alpha_ecoff_get_elt_at_filepos (abfd, entry->file_offset);
2216 }
2217 
2218 static void
2219 alpha_ecoff_swap_coff_aux_in (bfd *abfd ATTRIBUTE_UNUSED,
2220 			      void *ext1 ATTRIBUTE_UNUSED,
2221 			      int type ATTRIBUTE_UNUSED,
2222 			      int in_class ATTRIBUTE_UNUSED,
2223 			      int indx ATTRIBUTE_UNUSED,
2224 			      int numaux ATTRIBUTE_UNUSED,
2225 			      void *in1 ATTRIBUTE_UNUSED)
2226 {
2227 }
2228 
2229 static void
2230 alpha_ecoff_swap_coff_sym_in (bfd *abfd ATTRIBUTE_UNUSED,
2231 			      void *ext1 ATTRIBUTE_UNUSED,
2232 			      void *in1 ATTRIBUTE_UNUSED)
2233 {
2234 }
2235 
2236 static void
2237 alpha_ecoff_swap_coff_lineno_in (bfd *abfd ATTRIBUTE_UNUSED,
2238 				 void *ext1 ATTRIBUTE_UNUSED,
2239 				 void *in1 ATTRIBUTE_UNUSED)
2240 {
2241 }
2242 
2243 static unsigned int
2244 alpha_ecoff_swap_coff_aux_out (bfd *abfd ATTRIBUTE_UNUSED,
2245 			       void *inp ATTRIBUTE_UNUSED,
2246 			       int type ATTRIBUTE_UNUSED,
2247 			       int in_class ATTRIBUTE_UNUSED,
2248 			       int indx ATTRIBUTE_UNUSED,
2249 			       int numaux ATTRIBUTE_UNUSED,
2250 			       void *extp ATTRIBUTE_UNUSED)
2251 {
2252   return 0;
2253 }
2254 
2255 static unsigned int
2256 alpha_ecoff_swap_coff_sym_out (bfd *abfd ATTRIBUTE_UNUSED,
2257 			       void *inp ATTRIBUTE_UNUSED,
2258 			       void *extp ATTRIBUTE_UNUSED)
2259 {
2260   return 0;
2261 }
2262 
2263 static unsigned int
2264 alpha_ecoff_swap_coff_lineno_out (bfd *abfd ATTRIBUTE_UNUSED,
2265 				  void *inp ATTRIBUTE_UNUSED,
2266 				  void *extp ATTRIBUTE_UNUSED)
2267 {
2268   return 0;
2269 }
2270 
2271 static unsigned int
2272 alpha_ecoff_swap_coff_reloc_out (bfd *abfd ATTRIBUTE_UNUSED,
2273 				 void *inp ATTRIBUTE_UNUSED,
2274 				 void *extp ATTRIBUTE_UNUSED)
2275 {
2276   return 0;
2277 }
2278 
2279 /* This is the ECOFF backend structure.  The backend field of the
2280    target vector points to this.  */
2281 
2282 static const struct ecoff_backend_data alpha_ecoff_backend_data =
2283 {
2284   /* COFF backend structure.  */
2285   {
2286     alpha_ecoff_swap_coff_aux_in, alpha_ecoff_swap_coff_sym_in,
2287     alpha_ecoff_swap_coff_lineno_in, alpha_ecoff_swap_coff_aux_out,
2288     alpha_ecoff_swap_coff_sym_out, alpha_ecoff_swap_coff_lineno_out,
2289     alpha_ecoff_swap_coff_reloc_out,
2290     alpha_ecoff_swap_filehdr_out, alpha_ecoff_swap_aouthdr_out,
2291     alpha_ecoff_swap_scnhdr_out,
2292     FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, FILNMLEN, TRUE,
2293     ECOFF_NO_LONG_SECTION_NAMES, 4, FALSE, 2, 32768,
2294     alpha_ecoff_swap_filehdr_in, alpha_ecoff_swap_aouthdr_in,
2295     alpha_ecoff_swap_scnhdr_in, NULL,
2296     alpha_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook,
2297     alpha_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags,
2298     _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table,
2299     NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2300     NULL, NULL, NULL, NULL
2301   },
2302   /* Supported architecture.  */
2303   bfd_arch_alpha,
2304   /* Initial portion of armap string.  */
2305   "________64",
2306   /* The page boundary used to align sections in a demand-paged
2307      executable file.  E.g., 0x1000.  */
2308   0x2000,
2309   /* TRUE if the .rdata section is part of the text segment, as on the
2310      Alpha.  FALSE if .rdata is part of the data segment, as on the
2311      MIPS.  */
2312   TRUE,
2313   /* Bitsize of constructor entries.  */
2314   64,
2315   /* Reloc to use for constructor entries.  */
2316   &alpha_howto_table[ALPHA_R_REFQUAD],
2317   {
2318     /* Symbol table magic number.  */
2319     magicSym2,
2320     /* Alignment of debugging information.  E.g., 4.  */
2321     8,
2322     /* Sizes of external symbolic information.  */
2323     sizeof (struct hdr_ext),
2324     sizeof (struct dnr_ext),
2325     sizeof (struct pdr_ext),
2326     sizeof (struct sym_ext),
2327     sizeof (struct opt_ext),
2328     sizeof (struct fdr_ext),
2329     sizeof (struct rfd_ext),
2330     sizeof (struct ext_ext),
2331     /* Functions to swap in external symbolic data.  */
2332     ecoff_swap_hdr_in,
2333     ecoff_swap_dnr_in,
2334     ecoff_swap_pdr_in,
2335     ecoff_swap_sym_in,
2336     ecoff_swap_opt_in,
2337     ecoff_swap_fdr_in,
2338     ecoff_swap_rfd_in,
2339     ecoff_swap_ext_in,
2340     _bfd_ecoff_swap_tir_in,
2341     _bfd_ecoff_swap_rndx_in,
2342     /* Functions to swap out external symbolic data.  */
2343     ecoff_swap_hdr_out,
2344     ecoff_swap_dnr_out,
2345     ecoff_swap_pdr_out,
2346     ecoff_swap_sym_out,
2347     ecoff_swap_opt_out,
2348     ecoff_swap_fdr_out,
2349     ecoff_swap_rfd_out,
2350     ecoff_swap_ext_out,
2351     _bfd_ecoff_swap_tir_out,
2352     _bfd_ecoff_swap_rndx_out,
2353     /* Function to read in symbolic data.  */
2354     _bfd_ecoff_slurp_symbolic_info
2355   },
2356   /* External reloc size.  */
2357   RELSZ,
2358   /* Reloc swapping functions.  */
2359   alpha_ecoff_swap_reloc_in,
2360   alpha_ecoff_swap_reloc_out,
2361   /* Backend reloc tweaking.  */
2362   alpha_adjust_reloc_in,
2363   alpha_adjust_reloc_out,
2364   /* Relocate section contents while linking.  */
2365   alpha_relocate_section,
2366   /* Do final adjustments to filehdr and aouthdr.  */
2367   alpha_adjust_headers,
2368   /* Read an element from an archive at a given file position.  */
2369   alpha_ecoff_get_elt_at_filepos
2370 };
2371 
2372 /* Looking up a reloc type is Alpha specific.  */
2373 #define _bfd_ecoff_bfd_reloc_type_lookup alpha_bfd_reloc_type_lookup
2374 #define _bfd_ecoff_bfd_reloc_name_lookup \
2375   alpha_bfd_reloc_name_lookup
2376 
2377 /* So is getting relocated section contents.  */
2378 #define _bfd_ecoff_bfd_get_relocated_section_contents \
2379   alpha_ecoff_get_relocated_section_contents
2380 
2381 /* Handling file windows is generic.  */
2382 #define _bfd_ecoff_get_section_contents_in_window \
2383   _bfd_generic_get_section_contents_in_window
2384 
2385 /* Input section flag lookup is generic.  */
2386 #define _bfd_ecoff_bfd_lookup_section_flags bfd_generic_lookup_section_flags
2387 
2388 /* Relaxing sections is generic.  */
2389 #define _bfd_ecoff_bfd_relax_section bfd_generic_relax_section
2390 #define _bfd_ecoff_bfd_gc_sections bfd_generic_gc_sections
2391 #define _bfd_ecoff_bfd_merge_sections bfd_generic_merge_sections
2392 #define _bfd_ecoff_bfd_is_group_section bfd_generic_is_group_section
2393 #define _bfd_ecoff_bfd_discard_group bfd_generic_discard_group
2394 #define _bfd_ecoff_section_already_linked \
2395   _bfd_coff_section_already_linked
2396 #define _bfd_ecoff_bfd_define_common_symbol bfd_generic_define_common_symbol
2397 #define _bfd_ecoff_bfd_link_hide_symbol _bfd_generic_link_hide_symbol
2398 #define _bfd_ecoff_bfd_define_start_stop    bfd_generic_define_start_stop
2399 #define _bfd_ecoff_bfd_link_check_relocs    _bfd_generic_link_check_relocs
2400 
2401 /* Installing internal relocations in a section is also generic.  */
2402 #define _bfd_ecoff_set_reloc _bfd_generic_set_reloc
2403 
2404 const bfd_target alpha_ecoff_le_vec =
2405 {
2406   "ecoff-littlealpha",		/* name */
2407   bfd_target_ecoff_flavour,
2408   BFD_ENDIAN_LITTLE,		/* data byte order is little */
2409   BFD_ENDIAN_LITTLE,		/* header byte order is little */
2410 
2411   (HAS_RELOC | EXEC_P		/* object flags */
2412    | HAS_LINENO | HAS_DEBUG
2413    | HAS_SYMS | HAS_LOCALS | DYNAMIC | WP_TEXT | D_PAGED),
2414 
2415   (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA),
2416   0,				/* leading underscore */
2417   ' ',				/* ar_pad_char */
2418   15,				/* ar_max_namelen */
2419   0,				/* match priority.  */
2420   bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2421      bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2422      bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */
2423   bfd_getl64, bfd_getl_signed_64, bfd_putl64,
2424      bfd_getl32, bfd_getl_signed_32, bfd_putl32,
2425      bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */
2426 
2427   {				/* bfd_check_format */
2428     _bfd_dummy_target,
2429     alpha_ecoff_object_p,
2430     bfd_generic_archive_p,
2431     _bfd_dummy_target
2432   },
2433   {				/* bfd_set_format */
2434     _bfd_bool_bfd_false_error,
2435     _bfd_ecoff_mkobject,
2436     _bfd_generic_mkarchive,
2437     _bfd_bool_bfd_false_error
2438   },
2439   {				/* bfd_write_contents */
2440     _bfd_bool_bfd_false_error,
2441     _bfd_ecoff_write_object_contents,
2442     _bfd_write_archive_contents,
2443     _bfd_bool_bfd_false_error
2444   },
2445 
2446   BFD_JUMP_TABLE_GENERIC (_bfd_ecoff),
2447   BFD_JUMP_TABLE_COPY (_bfd_ecoff),
2448   BFD_JUMP_TABLE_CORE (_bfd_nocore),
2449   BFD_JUMP_TABLE_ARCHIVE (alpha_ecoff),
2450   BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff),
2451   BFD_JUMP_TABLE_RELOCS (_bfd_ecoff),
2452   BFD_JUMP_TABLE_WRITE (_bfd_ecoff),
2453   BFD_JUMP_TABLE_LINK (_bfd_ecoff),
2454   BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
2455 
2456   NULL,
2457 
2458   &alpha_ecoff_backend_data
2459 };
2460