1 /* BFD back-end for ALPHA Extended-Coff files. 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 3 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011, 2012 4 Free Software Foundation, Inc. 5 Modified from coff-mips.c by Steve Chamberlain <sac@cygnus.com> and 6 Ian Lance Taylor <ian@cygnus.com>. 7 8 This file is part of BFD, the Binary File Descriptor library. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 3 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program; if not, write to the Free Software 22 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 23 MA 02110-1301, USA. */ 24 25 #include "sysdep.h" 26 #include "bfd.h" 27 #include "bfdlink.h" 28 #include "libbfd.h" 29 #include "coff/internal.h" 30 #include "coff/sym.h" 31 #include "coff/symconst.h" 32 #include "coff/ecoff.h" 33 #include "coff/alpha.h" 34 #include "aout/ar.h" 35 #include "libcoff.h" 36 #include "libecoff.h" 37 38 /* Prototypes for static functions. */ 39 40 41 42 /* ECOFF has COFF sections, but the debugging information is stored in 43 a completely different format. ECOFF targets use some of the 44 swapping routines from coffswap.h, and some of the generic COFF 45 routines in coffgen.c, but, unlike the real COFF targets, do not 46 use coffcode.h itself. 47 48 Get the generic COFF swapping routines, except for the reloc, 49 symbol, and lineno ones. Give them ecoff names. Define some 50 accessor macros for the large sizes used for Alpha ECOFF. */ 51 52 #define GET_FILEHDR_SYMPTR H_GET_64 53 #define PUT_FILEHDR_SYMPTR H_PUT_64 54 #define GET_AOUTHDR_TSIZE H_GET_64 55 #define PUT_AOUTHDR_TSIZE H_PUT_64 56 #define GET_AOUTHDR_DSIZE H_GET_64 57 #define PUT_AOUTHDR_DSIZE H_PUT_64 58 #define GET_AOUTHDR_BSIZE H_GET_64 59 #define PUT_AOUTHDR_BSIZE H_PUT_64 60 #define GET_AOUTHDR_ENTRY H_GET_64 61 #define PUT_AOUTHDR_ENTRY H_PUT_64 62 #define GET_AOUTHDR_TEXT_START H_GET_64 63 #define PUT_AOUTHDR_TEXT_START H_PUT_64 64 #define GET_AOUTHDR_DATA_START H_GET_64 65 #define PUT_AOUTHDR_DATA_START H_PUT_64 66 #define GET_SCNHDR_PADDR H_GET_64 67 #define PUT_SCNHDR_PADDR H_PUT_64 68 #define GET_SCNHDR_VADDR H_GET_64 69 #define PUT_SCNHDR_VADDR H_PUT_64 70 #define GET_SCNHDR_SIZE H_GET_64 71 #define PUT_SCNHDR_SIZE H_PUT_64 72 #define GET_SCNHDR_SCNPTR H_GET_64 73 #define PUT_SCNHDR_SCNPTR H_PUT_64 74 #define GET_SCNHDR_RELPTR H_GET_64 75 #define PUT_SCNHDR_RELPTR H_PUT_64 76 #define GET_SCNHDR_LNNOPTR H_GET_64 77 #define PUT_SCNHDR_LNNOPTR H_PUT_64 78 79 #define ALPHAECOFF 80 81 #define NO_COFF_RELOCS 82 #define NO_COFF_SYMBOLS 83 #define NO_COFF_LINENOS 84 #define coff_swap_filehdr_in alpha_ecoff_swap_filehdr_in 85 #define coff_swap_filehdr_out alpha_ecoff_swap_filehdr_out 86 #define coff_swap_aouthdr_in alpha_ecoff_swap_aouthdr_in 87 #define coff_swap_aouthdr_out alpha_ecoff_swap_aouthdr_out 88 #define coff_swap_scnhdr_in alpha_ecoff_swap_scnhdr_in 89 #define coff_swap_scnhdr_out alpha_ecoff_swap_scnhdr_out 90 #include "coffswap.h" 91 92 /* Get the ECOFF swapping routines. */ 93 #define ECOFF_64 94 #include "ecoffswap.h" 95 96 /* How to process the various reloc types. */ 97 98 static bfd_reloc_status_type 99 reloc_nil (bfd *abfd ATTRIBUTE_UNUSED, 100 arelent *reloc ATTRIBUTE_UNUSED, 101 asymbol *sym ATTRIBUTE_UNUSED, 102 void * data ATTRIBUTE_UNUSED, 103 asection *sec ATTRIBUTE_UNUSED, 104 bfd *output_bfd ATTRIBUTE_UNUSED, 105 char **error_message ATTRIBUTE_UNUSED) 106 { 107 return bfd_reloc_ok; 108 } 109 110 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value 111 from smaller values. Start with zero, widen, *then* decrement. */ 112 #define MINUS_ONE (((bfd_vma)0) - 1) 113 114 static reloc_howto_type alpha_howto_table[] = 115 { 116 /* Reloc type 0 is ignored by itself. However, it appears after a 117 GPDISP reloc to identify the location where the low order 16 bits 118 of the gp register are loaded. */ 119 HOWTO (ALPHA_R_IGNORE, /* type */ 120 0, /* rightshift */ 121 0, /* size (0 = byte, 1 = short, 2 = long) */ 122 8, /* bitsize */ 123 TRUE, /* pc_relative */ 124 0, /* bitpos */ 125 complain_overflow_dont, /* complain_on_overflow */ 126 reloc_nil, /* special_function */ 127 "IGNORE", /* name */ 128 TRUE, /* partial_inplace */ 129 0, /* src_mask */ 130 0, /* dst_mask */ 131 TRUE), /* pcrel_offset */ 132 133 /* A 32 bit reference to a symbol. */ 134 HOWTO (ALPHA_R_REFLONG, /* type */ 135 0, /* rightshift */ 136 2, /* size (0 = byte, 1 = short, 2 = long) */ 137 32, /* bitsize */ 138 FALSE, /* pc_relative */ 139 0, /* bitpos */ 140 complain_overflow_bitfield, /* complain_on_overflow */ 141 0, /* special_function */ 142 "REFLONG", /* name */ 143 TRUE, /* partial_inplace */ 144 0xffffffff, /* src_mask */ 145 0xffffffff, /* dst_mask */ 146 FALSE), /* pcrel_offset */ 147 148 /* A 64 bit reference to a symbol. */ 149 HOWTO (ALPHA_R_REFQUAD, /* type */ 150 0, /* rightshift */ 151 4, /* size (0 = byte, 1 = short, 2 = long) */ 152 64, /* bitsize */ 153 FALSE, /* pc_relative */ 154 0, /* bitpos */ 155 complain_overflow_bitfield, /* complain_on_overflow */ 156 0, /* special_function */ 157 "REFQUAD", /* name */ 158 TRUE, /* partial_inplace */ 159 MINUS_ONE, /* src_mask */ 160 MINUS_ONE, /* dst_mask */ 161 FALSE), /* pcrel_offset */ 162 163 /* A 32 bit GP relative offset. This is just like REFLONG except 164 that when the value is used the value of the gp register will be 165 added in. */ 166 HOWTO (ALPHA_R_GPREL32, /* type */ 167 0, /* rightshift */ 168 2, /* size (0 = byte, 1 = short, 2 = long) */ 169 32, /* bitsize */ 170 FALSE, /* pc_relative */ 171 0, /* bitpos */ 172 complain_overflow_bitfield, /* complain_on_overflow */ 173 0, /* special_function */ 174 "GPREL32", /* name */ 175 TRUE, /* partial_inplace */ 176 0xffffffff, /* src_mask */ 177 0xffffffff, /* dst_mask */ 178 FALSE), /* pcrel_offset */ 179 180 /* Used for an instruction that refers to memory off the GP 181 register. The offset is 16 bits of the 32 bit instruction. This 182 reloc always seems to be against the .lita section. */ 183 HOWTO (ALPHA_R_LITERAL, /* type */ 184 0, /* rightshift */ 185 2, /* size (0 = byte, 1 = short, 2 = long) */ 186 16, /* bitsize */ 187 FALSE, /* pc_relative */ 188 0, /* bitpos */ 189 complain_overflow_signed, /* complain_on_overflow */ 190 0, /* special_function */ 191 "LITERAL", /* name */ 192 TRUE, /* partial_inplace */ 193 0xffff, /* src_mask */ 194 0xffff, /* dst_mask */ 195 FALSE), /* pcrel_offset */ 196 197 /* This reloc only appears immediately following a LITERAL reloc. 198 It identifies a use of the literal. It seems that the linker can 199 use this to eliminate a portion of the .lita section. The symbol 200 index is special: 1 means the literal address is in the base 201 register of a memory format instruction; 2 means the literal 202 address is in the byte offset register of a byte-manipulation 203 instruction; 3 means the literal address is in the target 204 register of a jsr instruction. This does not actually do any 205 relocation. */ 206 HOWTO (ALPHA_R_LITUSE, /* type */ 207 0, /* rightshift */ 208 2, /* size (0 = byte, 1 = short, 2 = long) */ 209 32, /* bitsize */ 210 FALSE, /* pc_relative */ 211 0, /* bitpos */ 212 complain_overflow_dont, /* complain_on_overflow */ 213 reloc_nil, /* special_function */ 214 "LITUSE", /* name */ 215 FALSE, /* partial_inplace */ 216 0, /* src_mask */ 217 0, /* dst_mask */ 218 FALSE), /* pcrel_offset */ 219 220 /* Load the gp register. This is always used for a ldah instruction 221 which loads the upper 16 bits of the gp register. The next reloc 222 will be an IGNORE reloc which identifies the location of the lda 223 instruction which loads the lower 16 bits. The symbol index of 224 the GPDISP instruction appears to actually be the number of bytes 225 between the ldah and lda instructions. This gives two different 226 ways to determine where the lda instruction is; I don't know why 227 both are used. The value to use for the relocation is the 228 difference between the GP value and the current location; the 229 load will always be done against a register holding the current 230 address. */ 231 HOWTO (ALPHA_R_GPDISP, /* type */ 232 16, /* rightshift */ 233 2, /* size (0 = byte, 1 = short, 2 = long) */ 234 16, /* bitsize */ 235 TRUE, /* pc_relative */ 236 0, /* bitpos */ 237 complain_overflow_dont, /* complain_on_overflow */ 238 reloc_nil, /* special_function */ 239 "GPDISP", /* name */ 240 TRUE, /* partial_inplace */ 241 0xffff, /* src_mask */ 242 0xffff, /* dst_mask */ 243 TRUE), /* pcrel_offset */ 244 245 /* A 21 bit branch. The native assembler generates these for 246 branches within the text segment, and also fills in the PC 247 relative offset in the instruction. */ 248 HOWTO (ALPHA_R_BRADDR, /* type */ 249 2, /* rightshift */ 250 2, /* size (0 = byte, 1 = short, 2 = long) */ 251 21, /* bitsize */ 252 TRUE, /* pc_relative */ 253 0, /* bitpos */ 254 complain_overflow_signed, /* complain_on_overflow */ 255 0, /* special_function */ 256 "BRADDR", /* name */ 257 TRUE, /* partial_inplace */ 258 0x1fffff, /* src_mask */ 259 0x1fffff, /* dst_mask */ 260 FALSE), /* pcrel_offset */ 261 262 /* A hint for a jump to a register. */ 263 HOWTO (ALPHA_R_HINT, /* type */ 264 2, /* rightshift */ 265 2, /* size (0 = byte, 1 = short, 2 = long) */ 266 14, /* bitsize */ 267 TRUE, /* pc_relative */ 268 0, /* bitpos */ 269 complain_overflow_dont, /* complain_on_overflow */ 270 0, /* special_function */ 271 "HINT", /* name */ 272 TRUE, /* partial_inplace */ 273 0x3fff, /* src_mask */ 274 0x3fff, /* dst_mask */ 275 FALSE), /* pcrel_offset */ 276 277 /* 16 bit PC relative offset. */ 278 HOWTO (ALPHA_R_SREL16, /* type */ 279 0, /* rightshift */ 280 1, /* size (0 = byte, 1 = short, 2 = long) */ 281 16, /* bitsize */ 282 TRUE, /* pc_relative */ 283 0, /* bitpos */ 284 complain_overflow_signed, /* complain_on_overflow */ 285 0, /* special_function */ 286 "SREL16", /* name */ 287 TRUE, /* partial_inplace */ 288 0xffff, /* src_mask */ 289 0xffff, /* dst_mask */ 290 FALSE), /* pcrel_offset */ 291 292 /* 32 bit PC relative offset. */ 293 HOWTO (ALPHA_R_SREL32, /* type */ 294 0, /* rightshift */ 295 2, /* size (0 = byte, 1 = short, 2 = long) */ 296 32, /* bitsize */ 297 TRUE, /* pc_relative */ 298 0, /* bitpos */ 299 complain_overflow_signed, /* complain_on_overflow */ 300 0, /* special_function */ 301 "SREL32", /* name */ 302 TRUE, /* partial_inplace */ 303 0xffffffff, /* src_mask */ 304 0xffffffff, /* dst_mask */ 305 FALSE), /* pcrel_offset */ 306 307 /* A 64 bit PC relative offset. */ 308 HOWTO (ALPHA_R_SREL64, /* type */ 309 0, /* rightshift */ 310 4, /* size (0 = byte, 1 = short, 2 = long) */ 311 64, /* bitsize */ 312 TRUE, /* pc_relative */ 313 0, /* bitpos */ 314 complain_overflow_signed, /* complain_on_overflow */ 315 0, /* special_function */ 316 "SREL64", /* name */ 317 TRUE, /* partial_inplace */ 318 MINUS_ONE, /* src_mask */ 319 MINUS_ONE, /* dst_mask */ 320 FALSE), /* pcrel_offset */ 321 322 /* Push a value on the reloc evaluation stack. */ 323 HOWTO (ALPHA_R_OP_PUSH, /* type */ 324 0, /* rightshift */ 325 0, /* size (0 = byte, 1 = short, 2 = long) */ 326 0, /* bitsize */ 327 FALSE, /* pc_relative */ 328 0, /* bitpos */ 329 complain_overflow_dont, /* complain_on_overflow */ 330 0, /* special_function */ 331 "OP_PUSH", /* name */ 332 FALSE, /* partial_inplace */ 333 0, /* src_mask */ 334 0, /* dst_mask */ 335 FALSE), /* pcrel_offset */ 336 337 /* Store the value from the stack at the given address. Store it in 338 a bitfield of size r_size starting at bit position r_offset. */ 339 HOWTO (ALPHA_R_OP_STORE, /* type */ 340 0, /* rightshift */ 341 4, /* size (0 = byte, 1 = short, 2 = long) */ 342 64, /* bitsize */ 343 FALSE, /* pc_relative */ 344 0, /* bitpos */ 345 complain_overflow_dont, /* complain_on_overflow */ 346 0, /* special_function */ 347 "OP_STORE", /* name */ 348 FALSE, /* partial_inplace */ 349 0, /* src_mask */ 350 MINUS_ONE, /* dst_mask */ 351 FALSE), /* pcrel_offset */ 352 353 /* Subtract the reloc address from the value on the top of the 354 relocation stack. */ 355 HOWTO (ALPHA_R_OP_PSUB, /* type */ 356 0, /* rightshift */ 357 0, /* size (0 = byte, 1 = short, 2 = long) */ 358 0, /* bitsize */ 359 FALSE, /* pc_relative */ 360 0, /* bitpos */ 361 complain_overflow_dont, /* complain_on_overflow */ 362 0, /* special_function */ 363 "OP_PSUB", /* name */ 364 FALSE, /* partial_inplace */ 365 0, /* src_mask */ 366 0, /* dst_mask */ 367 FALSE), /* pcrel_offset */ 368 369 /* Shift the value on the top of the relocation stack right by the 370 given value. */ 371 HOWTO (ALPHA_R_OP_PRSHIFT, /* type */ 372 0, /* rightshift */ 373 0, /* size (0 = byte, 1 = short, 2 = long) */ 374 0, /* bitsize */ 375 FALSE, /* pc_relative */ 376 0, /* bitpos */ 377 complain_overflow_dont, /* complain_on_overflow */ 378 0, /* special_function */ 379 "OP_PRSHIFT", /* name */ 380 FALSE, /* partial_inplace */ 381 0, /* src_mask */ 382 0, /* dst_mask */ 383 FALSE), /* pcrel_offset */ 384 385 /* Adjust the GP value for a new range in the object file. */ 386 HOWTO (ALPHA_R_GPVALUE, /* type */ 387 0, /* rightshift */ 388 0, /* size (0 = byte, 1 = short, 2 = long) */ 389 0, /* bitsize */ 390 FALSE, /* pc_relative */ 391 0, /* bitpos */ 392 complain_overflow_dont, /* complain_on_overflow */ 393 0, /* special_function */ 394 "GPVALUE", /* name */ 395 FALSE, /* partial_inplace */ 396 0, /* src_mask */ 397 0, /* dst_mask */ 398 FALSE) /* pcrel_offset */ 399 }; 400 401 /* Recognize an Alpha ECOFF file. */ 402 403 static const bfd_target * 404 alpha_ecoff_object_p (bfd *abfd) 405 { 406 static const bfd_target *ret; 407 408 ret = coff_object_p (abfd); 409 410 if (ret != NULL) 411 { 412 asection *sec; 413 414 /* Alpha ECOFF has a .pdata section. The lnnoptr field of the 415 .pdata section is the number of entries it contains. Each 416 entry takes up 8 bytes. The number of entries is required 417 since the section is aligned to a 16 byte boundary. When we 418 link .pdata sections together, we do not want to include the 419 alignment bytes. We handle this on input by faking the size 420 of the .pdata section to remove the unwanted alignment bytes. 421 On output we will set the lnnoptr field and force the 422 alignment. */ 423 sec = bfd_get_section_by_name (abfd, _PDATA); 424 if (sec != (asection *) NULL) 425 { 426 bfd_size_type size; 427 428 size = sec->line_filepos * 8; 429 BFD_ASSERT (size == sec->size 430 || size + 8 == sec->size); 431 if (! bfd_set_section_size (abfd, sec, size)) 432 return NULL; 433 } 434 } 435 436 return ret; 437 } 438 439 /* See whether the magic number matches. */ 440 441 static bfd_boolean 442 alpha_ecoff_bad_format_hook (bfd *abfd ATTRIBUTE_UNUSED, 443 void * filehdr) 444 { 445 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr; 446 447 if (! ALPHA_ECOFF_BADMAG (*internal_f)) 448 return TRUE; 449 450 if (ALPHA_ECOFF_COMPRESSEDMAG (*internal_f)) 451 (*_bfd_error_handler) 452 (_("%B: Cannot handle compressed Alpha binaries.\n" 453 " Use compiler flags, or objZ, to generate uncompressed binaries."), 454 abfd); 455 456 return FALSE; 457 } 458 459 /* This is a hook called by coff_real_object_p to create any backend 460 specific information. */ 461 462 static void * 463 alpha_ecoff_mkobject_hook (bfd *abfd, void * filehdr, void * aouthdr) 464 { 465 void * ecoff; 466 467 ecoff = _bfd_ecoff_mkobject_hook (abfd, filehdr, aouthdr); 468 469 if (ecoff != NULL) 470 { 471 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr; 472 473 /* Set additional BFD flags according to the object type from the 474 machine specific file header flags. */ 475 switch (internal_f->f_flags & F_ALPHA_OBJECT_TYPE_MASK) 476 { 477 case F_ALPHA_SHARABLE: 478 abfd->flags |= DYNAMIC; 479 break; 480 case F_ALPHA_CALL_SHARED: 481 /* Always executable if using shared libraries as the run time 482 loader might resolve undefined references. */ 483 abfd->flags |= (DYNAMIC | EXEC_P); 484 break; 485 } 486 } 487 return ecoff; 488 } 489 490 /* Reloc handling. */ 491 492 /* Swap a reloc in. */ 493 494 static void 495 alpha_ecoff_swap_reloc_in (bfd *abfd, 496 void * ext_ptr, 497 struct internal_reloc *intern) 498 { 499 const RELOC *ext = (RELOC *) ext_ptr; 500 501 intern->r_vaddr = H_GET_64 (abfd, ext->r_vaddr); 502 intern->r_symndx = H_GET_32 (abfd, ext->r_symndx); 503 504 BFD_ASSERT (bfd_header_little_endian (abfd)); 505 506 intern->r_type = ((ext->r_bits[0] & RELOC_BITS0_TYPE_LITTLE) 507 >> RELOC_BITS0_TYPE_SH_LITTLE); 508 intern->r_extern = (ext->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0; 509 intern->r_offset = ((ext->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE) 510 >> RELOC_BITS1_OFFSET_SH_LITTLE); 511 /* Ignored the reserved bits. */ 512 intern->r_size = ((ext->r_bits[3] & RELOC_BITS3_SIZE_LITTLE) 513 >> RELOC_BITS3_SIZE_SH_LITTLE); 514 515 if (intern->r_type == ALPHA_R_LITUSE 516 || intern->r_type == ALPHA_R_GPDISP) 517 { 518 /* Handle the LITUSE and GPDISP relocs specially. Its symndx 519 value is not actually a symbol index, but is instead a 520 special code. We put the code in the r_size field, and 521 clobber the symndx. */ 522 if (intern->r_size != 0) 523 abort (); 524 intern->r_size = intern->r_symndx; 525 intern->r_symndx = RELOC_SECTION_NONE; 526 } 527 else if (intern->r_type == ALPHA_R_IGNORE) 528 { 529 /* The IGNORE reloc generally follows a GPDISP reloc, and is 530 against the .lita section. The section is irrelevant. */ 531 if (! intern->r_extern && 532 intern->r_symndx == RELOC_SECTION_ABS) 533 abort (); 534 if (! intern->r_extern && intern->r_symndx == RELOC_SECTION_LITA) 535 intern->r_symndx = RELOC_SECTION_ABS; 536 } 537 } 538 539 /* Swap a reloc out. */ 540 541 static void 542 alpha_ecoff_swap_reloc_out (bfd *abfd, 543 const struct internal_reloc *intern, 544 void * dst) 545 { 546 RELOC *ext = (RELOC *) dst; 547 long symndx; 548 unsigned char size; 549 550 /* Undo the hackery done in swap_reloc_in. */ 551 if (intern->r_type == ALPHA_R_LITUSE 552 || intern->r_type == ALPHA_R_GPDISP) 553 { 554 symndx = intern->r_size; 555 size = 0; 556 } 557 else if (intern->r_type == ALPHA_R_IGNORE 558 && ! intern->r_extern 559 && intern->r_symndx == RELOC_SECTION_ABS) 560 { 561 symndx = RELOC_SECTION_LITA; 562 size = intern->r_size; 563 } 564 else 565 { 566 symndx = intern->r_symndx; 567 size = intern->r_size; 568 } 569 570 /* XXX FIXME: The maximum symndx value used to be 14 but this 571 fails with object files produced by DEC's C++ compiler. 572 Where does the value 14 (or 15) come from anyway ? */ 573 BFD_ASSERT (intern->r_extern 574 || (intern->r_symndx >= 0 && intern->r_symndx <= 15)); 575 576 H_PUT_64 (abfd, intern->r_vaddr, ext->r_vaddr); 577 H_PUT_32 (abfd, symndx, ext->r_symndx); 578 579 BFD_ASSERT (bfd_header_little_endian (abfd)); 580 581 ext->r_bits[0] = ((intern->r_type << RELOC_BITS0_TYPE_SH_LITTLE) 582 & RELOC_BITS0_TYPE_LITTLE); 583 ext->r_bits[1] = ((intern->r_extern ? RELOC_BITS1_EXTERN_LITTLE : 0) 584 | ((intern->r_offset << RELOC_BITS1_OFFSET_SH_LITTLE) 585 & RELOC_BITS1_OFFSET_LITTLE)); 586 ext->r_bits[2] = 0; 587 ext->r_bits[3] = ((size << RELOC_BITS3_SIZE_SH_LITTLE) 588 & RELOC_BITS3_SIZE_LITTLE); 589 } 590 591 /* Finish canonicalizing a reloc. Part of this is generic to all 592 ECOFF targets, and that part is in ecoff.c. The rest is done in 593 this backend routine. It must fill in the howto field. */ 594 595 static void 596 alpha_adjust_reloc_in (bfd *abfd, 597 const struct internal_reloc *intern, 598 arelent *rptr) 599 { 600 if (intern->r_type > ALPHA_R_GPVALUE) 601 { 602 (*_bfd_error_handler) 603 (_("%B: unknown/unsupported relocation type %d"), 604 abfd, intern->r_type); 605 bfd_set_error (bfd_error_bad_value); 606 rptr->addend = 0; 607 rptr->howto = NULL; 608 return; 609 } 610 611 switch (intern->r_type) 612 { 613 case ALPHA_R_BRADDR: 614 case ALPHA_R_SREL16: 615 case ALPHA_R_SREL32: 616 case ALPHA_R_SREL64: 617 /* This relocs appear to be fully resolved when they are against 618 internal symbols. Against external symbols, BRADDR at least 619 appears to be resolved against the next instruction. */ 620 if (! intern->r_extern) 621 rptr->addend = 0; 622 else 623 rptr->addend = - (intern->r_vaddr + 4); 624 break; 625 626 case ALPHA_R_GPREL32: 627 case ALPHA_R_LITERAL: 628 /* Copy the gp value for this object file into the addend, to 629 ensure that we are not confused by the linker. */ 630 if (! intern->r_extern) 631 rptr->addend += ecoff_data (abfd)->gp; 632 break; 633 634 case ALPHA_R_LITUSE: 635 case ALPHA_R_GPDISP: 636 /* The LITUSE and GPDISP relocs do not use a symbol, or an 637 addend, but they do use a special code. Put this code in the 638 addend field. */ 639 rptr->addend = intern->r_size; 640 break; 641 642 case ALPHA_R_OP_STORE: 643 /* The STORE reloc needs the size and offset fields. We store 644 them in the addend. */ 645 BFD_ASSERT (intern->r_offset <= 256); 646 rptr->addend = (intern->r_offset << 8) + intern->r_size; 647 break; 648 649 case ALPHA_R_OP_PUSH: 650 case ALPHA_R_OP_PSUB: 651 case ALPHA_R_OP_PRSHIFT: 652 /* The PUSH, PSUB and PRSHIFT relocs do not actually use an 653 address. I believe that the address supplied is really an 654 addend. */ 655 rptr->addend = intern->r_vaddr; 656 break; 657 658 case ALPHA_R_GPVALUE: 659 /* Set the addend field to the new GP value. */ 660 rptr->addend = intern->r_symndx + ecoff_data (abfd)->gp; 661 break; 662 663 case ALPHA_R_IGNORE: 664 /* If the type is ALPHA_R_IGNORE, make sure this is a reference 665 to the absolute section so that the reloc is ignored. For 666 some reason the address of this reloc type is not adjusted by 667 the section vma. We record the gp value for this object file 668 here, for convenience when doing the GPDISP relocation. */ 669 rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; 670 rptr->address = intern->r_vaddr; 671 rptr->addend = ecoff_data (abfd)->gp; 672 break; 673 674 default: 675 break; 676 } 677 678 rptr->howto = &alpha_howto_table[intern->r_type]; 679 } 680 681 /* When writing out a reloc we need to pull some values back out of 682 the addend field into the reloc. This is roughly the reverse of 683 alpha_adjust_reloc_in, except that there are several changes we do 684 not need to undo. */ 685 686 static void 687 alpha_adjust_reloc_out (bfd *abfd ATTRIBUTE_UNUSED, 688 const arelent *rel, 689 struct internal_reloc *intern) 690 { 691 switch (intern->r_type) 692 { 693 case ALPHA_R_LITUSE: 694 case ALPHA_R_GPDISP: 695 intern->r_size = rel->addend; 696 break; 697 698 case ALPHA_R_OP_STORE: 699 intern->r_size = rel->addend & 0xff; 700 intern->r_offset = (rel->addend >> 8) & 0xff; 701 break; 702 703 case ALPHA_R_OP_PUSH: 704 case ALPHA_R_OP_PSUB: 705 case ALPHA_R_OP_PRSHIFT: 706 intern->r_vaddr = rel->addend; 707 break; 708 709 case ALPHA_R_IGNORE: 710 intern->r_vaddr = rel->address; 711 break; 712 713 default: 714 break; 715 } 716 } 717 718 /* The size of the stack for the relocation evaluator. */ 719 #define RELOC_STACKSIZE (10) 720 721 /* Alpha ECOFF relocs have a built in expression evaluator as well as 722 other interdependencies. Rather than use a bunch of special 723 functions and global variables, we use a single routine to do all 724 the relocation for a section. I haven't yet worked out how the 725 assembler is going to handle this. */ 726 727 static bfd_byte * 728 alpha_ecoff_get_relocated_section_contents (bfd *abfd, 729 struct bfd_link_info *link_info, 730 struct bfd_link_order *link_order, 731 bfd_byte *data, 732 bfd_boolean relocatable, 733 asymbol **symbols) 734 { 735 bfd *input_bfd = link_order->u.indirect.section->owner; 736 asection *input_section = link_order->u.indirect.section; 737 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); 738 arelent **reloc_vector = NULL; 739 long reloc_count; 740 bfd *output_bfd = relocatable ? abfd : (bfd *) NULL; 741 bfd_vma gp; 742 bfd_size_type sz; 743 bfd_boolean gp_undefined; 744 bfd_vma stack[RELOC_STACKSIZE]; 745 int tos = 0; 746 747 if (reloc_size < 0) 748 goto error_return; 749 reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size); 750 if (reloc_vector == NULL && reloc_size != 0) 751 goto error_return; 752 753 sz = input_section->rawsize ? input_section->rawsize : input_section->size; 754 if (! bfd_get_section_contents (input_bfd, input_section, data, 0, sz)) 755 goto error_return; 756 757 reloc_count = bfd_canonicalize_reloc (input_bfd, input_section, 758 reloc_vector, symbols); 759 if (reloc_count < 0) 760 goto error_return; 761 if (reloc_count == 0) 762 goto successful_return; 763 764 /* Get the GP value for the output BFD. */ 765 gp_undefined = FALSE; 766 gp = _bfd_get_gp_value (abfd); 767 if (gp == 0) 768 { 769 if (relocatable) 770 { 771 asection *sec; 772 bfd_vma lo; 773 774 /* Make up a value. */ 775 lo = (bfd_vma) -1; 776 for (sec = abfd->sections; sec != NULL; sec = sec->next) 777 { 778 if (sec->vma < lo 779 && (strcmp (sec->name, ".sbss") == 0 780 || strcmp (sec->name, ".sdata") == 0 781 || strcmp (sec->name, ".lit4") == 0 782 || strcmp (sec->name, ".lit8") == 0 783 || strcmp (sec->name, ".lita") == 0)) 784 lo = sec->vma; 785 } 786 gp = lo + 0x8000; 787 _bfd_set_gp_value (abfd, gp); 788 } 789 else 790 { 791 struct bfd_link_hash_entry *h; 792 793 h = bfd_link_hash_lookup (link_info->hash, "_gp", FALSE, FALSE, 794 TRUE); 795 if (h == (struct bfd_link_hash_entry *) NULL 796 || h->type != bfd_link_hash_defined) 797 gp_undefined = TRUE; 798 else 799 { 800 gp = (h->u.def.value 801 + h->u.def.section->output_section->vma 802 + h->u.def.section->output_offset); 803 _bfd_set_gp_value (abfd, gp); 804 } 805 } 806 } 807 808 for (; *reloc_vector != (arelent *) NULL; reloc_vector++) 809 { 810 arelent *rel; 811 bfd_reloc_status_type r; 812 char *err; 813 814 rel = *reloc_vector; 815 r = bfd_reloc_ok; 816 switch (rel->howto->type) 817 { 818 case ALPHA_R_IGNORE: 819 rel->address += input_section->output_offset; 820 break; 821 822 case ALPHA_R_REFLONG: 823 case ALPHA_R_REFQUAD: 824 case ALPHA_R_BRADDR: 825 case ALPHA_R_HINT: 826 case ALPHA_R_SREL16: 827 case ALPHA_R_SREL32: 828 case ALPHA_R_SREL64: 829 if (relocatable 830 && ((*rel->sym_ptr_ptr)->flags & BSF_SECTION_SYM) == 0) 831 { 832 rel->address += input_section->output_offset; 833 break; 834 } 835 r = bfd_perform_relocation (input_bfd, rel, data, input_section, 836 output_bfd, &err); 837 break; 838 839 case ALPHA_R_GPREL32: 840 /* This relocation is used in a switch table. It is a 32 841 bit offset from the current GP value. We must adjust it 842 by the different between the original GP value and the 843 current GP value. The original GP value is stored in the 844 addend. We adjust the addend and let 845 bfd_perform_relocation finish the job. */ 846 rel->addend -= gp; 847 r = bfd_perform_relocation (input_bfd, rel, data, input_section, 848 output_bfd, &err); 849 if (r == bfd_reloc_ok && gp_undefined) 850 { 851 r = bfd_reloc_dangerous; 852 err = (char *) _("GP relative relocation used when GP not defined"); 853 } 854 break; 855 856 case ALPHA_R_LITERAL: 857 /* This is a reference to a literal value, generally 858 (always?) in the .lita section. This is a 16 bit GP 859 relative relocation. Sometimes the subsequent reloc is a 860 LITUSE reloc, which indicates how this reloc is used. 861 This sometimes permits rewriting the two instructions 862 referred to by the LITERAL and the LITUSE into different 863 instructions which do not refer to .lita. This can save 864 a memory reference, and permits removing a value from 865 .lita thus saving GP relative space. 866 867 We do not these optimizations. To do them we would need 868 to arrange to link the .lita section first, so that by 869 the time we got here we would know the final values to 870 use. This would not be particularly difficult, but it is 871 not currently implemented. */ 872 873 { 874 unsigned long insn; 875 876 /* I believe that the LITERAL reloc will only apply to a 877 ldq or ldl instruction, so check my assumption. */ 878 insn = bfd_get_32 (input_bfd, data + rel->address); 879 BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29 880 || ((insn >> 26) & 0x3f) == 0x28); 881 882 rel->addend -= gp; 883 r = bfd_perform_relocation (input_bfd, rel, data, input_section, 884 output_bfd, &err); 885 if (r == bfd_reloc_ok && gp_undefined) 886 { 887 r = bfd_reloc_dangerous; 888 err = 889 (char *) _("GP relative relocation used when GP not defined"); 890 } 891 } 892 break; 893 894 case ALPHA_R_LITUSE: 895 /* See ALPHA_R_LITERAL above for the uses of this reloc. It 896 does not cause anything to happen, itself. */ 897 rel->address += input_section->output_offset; 898 break; 899 900 case ALPHA_R_GPDISP: 901 /* This marks the ldah of an ldah/lda pair which loads the 902 gp register with the difference of the gp value and the 903 current location. The second of the pair is r_size bytes 904 ahead; it used to be marked with an ALPHA_R_IGNORE reloc, 905 but that no longer happens in OSF/1 3.2. */ 906 { 907 unsigned long insn1, insn2; 908 bfd_vma addend; 909 910 /* Get the two instructions. */ 911 insn1 = bfd_get_32 (input_bfd, data + rel->address); 912 insn2 = bfd_get_32 (input_bfd, data + rel->address + rel->addend); 913 914 BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */ 915 BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */ 916 917 /* Get the existing addend. We must account for the sign 918 extension done by lda and ldah. */ 919 addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff); 920 if (insn1 & 0x8000) 921 { 922 addend -= 0x80000000; 923 addend -= 0x80000000; 924 } 925 if (insn2 & 0x8000) 926 addend -= 0x10000; 927 928 /* The existing addend includes the different between the 929 gp of the input BFD and the address in the input BFD. 930 Subtract this out. */ 931 addend -= (ecoff_data (input_bfd)->gp 932 - (input_section->vma + rel->address)); 933 934 /* Now add in the final gp value, and subtract out the 935 final address. */ 936 addend += (gp 937 - (input_section->output_section->vma 938 + input_section->output_offset 939 + rel->address)); 940 941 /* Change the instructions, accounting for the sign 942 extension, and write them out. */ 943 if (addend & 0x8000) 944 addend += 0x10000; 945 insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff); 946 insn2 = (insn2 & 0xffff0000) | (addend & 0xffff); 947 948 bfd_put_32 (input_bfd, (bfd_vma) insn1, data + rel->address); 949 bfd_put_32 (input_bfd, (bfd_vma) insn2, 950 data + rel->address + rel->addend); 951 952 rel->address += input_section->output_offset; 953 } 954 break; 955 956 case ALPHA_R_OP_PUSH: 957 /* Push a value on the reloc evaluation stack. */ 958 { 959 asymbol *symbol; 960 bfd_vma relocation; 961 962 if (relocatable) 963 { 964 rel->address += input_section->output_offset; 965 break; 966 } 967 968 /* Figure out the relocation of this symbol. */ 969 symbol = *rel->sym_ptr_ptr; 970 971 if (bfd_is_und_section (symbol->section)) 972 r = bfd_reloc_undefined; 973 974 if (bfd_is_com_section (symbol->section)) 975 relocation = 0; 976 else 977 relocation = symbol->value; 978 relocation += symbol->section->output_section->vma; 979 relocation += symbol->section->output_offset; 980 relocation += rel->addend; 981 982 if (tos >= RELOC_STACKSIZE) 983 abort (); 984 985 stack[tos++] = relocation; 986 } 987 break; 988 989 case ALPHA_R_OP_STORE: 990 /* Store a value from the reloc stack into a bitfield. */ 991 { 992 bfd_vma val; 993 int offset, size; 994 995 if (relocatable) 996 { 997 rel->address += input_section->output_offset; 998 break; 999 } 1000 1001 if (tos == 0) 1002 abort (); 1003 1004 /* The offset and size for this reloc are encoded into the 1005 addend field by alpha_adjust_reloc_in. */ 1006 offset = (rel->addend >> 8) & 0xff; 1007 size = rel->addend & 0xff; 1008 1009 val = bfd_get_64 (abfd, data + rel->address); 1010 val &=~ (((1 << size) - 1) << offset); 1011 val |= (stack[--tos] & ((1 << size) - 1)) << offset; 1012 bfd_put_64 (abfd, val, data + rel->address); 1013 } 1014 break; 1015 1016 case ALPHA_R_OP_PSUB: 1017 /* Subtract a value from the top of the stack. */ 1018 { 1019 asymbol *symbol; 1020 bfd_vma relocation; 1021 1022 if (relocatable) 1023 { 1024 rel->address += input_section->output_offset; 1025 break; 1026 } 1027 1028 /* Figure out the relocation of this symbol. */ 1029 symbol = *rel->sym_ptr_ptr; 1030 1031 if (bfd_is_und_section (symbol->section)) 1032 r = bfd_reloc_undefined; 1033 1034 if (bfd_is_com_section (symbol->section)) 1035 relocation = 0; 1036 else 1037 relocation = symbol->value; 1038 relocation += symbol->section->output_section->vma; 1039 relocation += symbol->section->output_offset; 1040 relocation += rel->addend; 1041 1042 if (tos == 0) 1043 abort (); 1044 1045 stack[tos - 1] -= relocation; 1046 } 1047 break; 1048 1049 case ALPHA_R_OP_PRSHIFT: 1050 /* Shift the value on the top of the stack. */ 1051 { 1052 asymbol *symbol; 1053 bfd_vma relocation; 1054 1055 if (relocatable) 1056 { 1057 rel->address += input_section->output_offset; 1058 break; 1059 } 1060 1061 /* Figure out the relocation of this symbol. */ 1062 symbol = *rel->sym_ptr_ptr; 1063 1064 if (bfd_is_und_section (symbol->section)) 1065 r = bfd_reloc_undefined; 1066 1067 if (bfd_is_com_section (symbol->section)) 1068 relocation = 0; 1069 else 1070 relocation = symbol->value; 1071 relocation += symbol->section->output_section->vma; 1072 relocation += symbol->section->output_offset; 1073 relocation += rel->addend; 1074 1075 if (tos == 0) 1076 abort (); 1077 1078 stack[tos - 1] >>= relocation; 1079 } 1080 break; 1081 1082 case ALPHA_R_GPVALUE: 1083 /* I really don't know if this does the right thing. */ 1084 gp = rel->addend; 1085 gp_undefined = FALSE; 1086 break; 1087 1088 default: 1089 abort (); 1090 } 1091 1092 if (relocatable) 1093 { 1094 asection *os = input_section->output_section; 1095 1096 /* A partial link, so keep the relocs. */ 1097 os->orelocation[os->reloc_count] = rel; 1098 os->reloc_count++; 1099 } 1100 1101 if (r != bfd_reloc_ok) 1102 { 1103 switch (r) 1104 { 1105 case bfd_reloc_undefined: 1106 if (! ((*link_info->callbacks->undefined_symbol) 1107 (link_info, bfd_asymbol_name (*rel->sym_ptr_ptr), 1108 input_bfd, input_section, rel->address, TRUE))) 1109 goto error_return; 1110 break; 1111 case bfd_reloc_dangerous: 1112 if (! ((*link_info->callbacks->reloc_dangerous) 1113 (link_info, err, input_bfd, input_section, 1114 rel->address))) 1115 goto error_return; 1116 break; 1117 case bfd_reloc_overflow: 1118 if (! ((*link_info->callbacks->reloc_overflow) 1119 (link_info, NULL, 1120 bfd_asymbol_name (*rel->sym_ptr_ptr), 1121 rel->howto->name, rel->addend, input_bfd, 1122 input_section, rel->address))) 1123 goto error_return; 1124 break; 1125 case bfd_reloc_outofrange: 1126 default: 1127 abort (); 1128 break; 1129 } 1130 } 1131 } 1132 1133 if (tos != 0) 1134 abort (); 1135 1136 successful_return: 1137 if (reloc_vector != NULL) 1138 free (reloc_vector); 1139 return data; 1140 1141 error_return: 1142 if (reloc_vector != NULL) 1143 free (reloc_vector); 1144 return NULL; 1145 } 1146 1147 /* Get the howto structure for a generic reloc type. */ 1148 1149 static reloc_howto_type * 1150 alpha_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 1151 bfd_reloc_code_real_type code) 1152 { 1153 int alpha_type; 1154 1155 switch (code) 1156 { 1157 case BFD_RELOC_32: 1158 alpha_type = ALPHA_R_REFLONG; 1159 break; 1160 case BFD_RELOC_64: 1161 case BFD_RELOC_CTOR: 1162 alpha_type = ALPHA_R_REFQUAD; 1163 break; 1164 case BFD_RELOC_GPREL32: 1165 alpha_type = ALPHA_R_GPREL32; 1166 break; 1167 case BFD_RELOC_ALPHA_LITERAL: 1168 alpha_type = ALPHA_R_LITERAL; 1169 break; 1170 case BFD_RELOC_ALPHA_LITUSE: 1171 alpha_type = ALPHA_R_LITUSE; 1172 break; 1173 case BFD_RELOC_ALPHA_GPDISP_HI16: 1174 alpha_type = ALPHA_R_GPDISP; 1175 break; 1176 case BFD_RELOC_ALPHA_GPDISP_LO16: 1177 alpha_type = ALPHA_R_IGNORE; 1178 break; 1179 case BFD_RELOC_23_PCREL_S2: 1180 alpha_type = ALPHA_R_BRADDR; 1181 break; 1182 case BFD_RELOC_ALPHA_HINT: 1183 alpha_type = ALPHA_R_HINT; 1184 break; 1185 case BFD_RELOC_16_PCREL: 1186 alpha_type = ALPHA_R_SREL16; 1187 break; 1188 case BFD_RELOC_32_PCREL: 1189 alpha_type = ALPHA_R_SREL32; 1190 break; 1191 case BFD_RELOC_64_PCREL: 1192 alpha_type = ALPHA_R_SREL64; 1193 break; 1194 default: 1195 return (reloc_howto_type *) NULL; 1196 } 1197 1198 return &alpha_howto_table[alpha_type]; 1199 } 1200 1201 static reloc_howto_type * 1202 alpha_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 1203 const char *r_name) 1204 { 1205 unsigned int i; 1206 1207 for (i = 0; 1208 i < sizeof (alpha_howto_table) / sizeof (alpha_howto_table[0]); 1209 i++) 1210 if (alpha_howto_table[i].name != NULL 1211 && strcasecmp (alpha_howto_table[i].name, r_name) == 0) 1212 return &alpha_howto_table[i]; 1213 1214 return NULL; 1215 } 1216 1217 /* A helper routine for alpha_relocate_section which converts an 1218 external reloc when generating relocatable output. Returns the 1219 relocation amount. */ 1220 1221 static bfd_vma 1222 alpha_convert_external_reloc (bfd *output_bfd ATTRIBUTE_UNUSED, 1223 struct bfd_link_info *info, 1224 bfd *input_bfd, 1225 struct external_reloc *ext_rel, 1226 struct ecoff_link_hash_entry *h) 1227 { 1228 unsigned long r_symndx; 1229 bfd_vma relocation; 1230 1231 BFD_ASSERT (info->relocatable); 1232 1233 if (h->root.type == bfd_link_hash_defined 1234 || h->root.type == bfd_link_hash_defweak) 1235 { 1236 asection *hsec; 1237 const char *name; 1238 1239 /* This symbol is defined in the output. Convert the reloc from 1240 being against the symbol to being against the section. */ 1241 1242 /* Clear the r_extern bit. */ 1243 ext_rel->r_bits[1] &=~ RELOC_BITS1_EXTERN_LITTLE; 1244 1245 /* Compute a new r_symndx value. */ 1246 hsec = h->root.u.def.section; 1247 name = bfd_get_section_name (output_bfd, hsec->output_section); 1248 1249 r_symndx = (unsigned long) -1; 1250 switch (name[1]) 1251 { 1252 case 'A': 1253 if (strcmp (name, "*ABS*") == 0) 1254 r_symndx = RELOC_SECTION_ABS; 1255 break; 1256 case 'b': 1257 if (strcmp (name, ".bss") == 0) 1258 r_symndx = RELOC_SECTION_BSS; 1259 break; 1260 case 'd': 1261 if (strcmp (name, ".data") == 0) 1262 r_symndx = RELOC_SECTION_DATA; 1263 break; 1264 case 'f': 1265 if (strcmp (name, ".fini") == 0) 1266 r_symndx = RELOC_SECTION_FINI; 1267 break; 1268 case 'i': 1269 if (strcmp (name, ".init") == 0) 1270 r_symndx = RELOC_SECTION_INIT; 1271 break; 1272 case 'l': 1273 if (strcmp (name, ".lita") == 0) 1274 r_symndx = RELOC_SECTION_LITA; 1275 else if (strcmp (name, ".lit8") == 0) 1276 r_symndx = RELOC_SECTION_LIT8; 1277 else if (strcmp (name, ".lit4") == 0) 1278 r_symndx = RELOC_SECTION_LIT4; 1279 break; 1280 case 'p': 1281 if (strcmp (name, ".pdata") == 0) 1282 r_symndx = RELOC_SECTION_PDATA; 1283 break; 1284 case 'r': 1285 if (strcmp (name, ".rdata") == 0) 1286 r_symndx = RELOC_SECTION_RDATA; 1287 else if (strcmp (name, ".rconst") == 0) 1288 r_symndx = RELOC_SECTION_RCONST; 1289 break; 1290 case 's': 1291 if (strcmp (name, ".sdata") == 0) 1292 r_symndx = RELOC_SECTION_SDATA; 1293 else if (strcmp (name, ".sbss") == 0) 1294 r_symndx = RELOC_SECTION_SBSS; 1295 break; 1296 case 't': 1297 if (strcmp (name, ".text") == 0) 1298 r_symndx = RELOC_SECTION_TEXT; 1299 break; 1300 case 'x': 1301 if (strcmp (name, ".xdata") == 0) 1302 r_symndx = RELOC_SECTION_XDATA; 1303 break; 1304 } 1305 1306 if (r_symndx == (unsigned long) -1) 1307 abort (); 1308 1309 /* Add the section VMA and the symbol value. */ 1310 relocation = (h->root.u.def.value 1311 + hsec->output_section->vma 1312 + hsec->output_offset); 1313 } 1314 else 1315 { 1316 /* Change the symndx value to the right one for 1317 the output BFD. */ 1318 r_symndx = h->indx; 1319 if (r_symndx == (unsigned long) -1) 1320 { 1321 /* Caller must give an error. */ 1322 r_symndx = 0; 1323 } 1324 relocation = 0; 1325 } 1326 1327 /* Write out the new r_symndx value. */ 1328 H_PUT_32 (input_bfd, r_symndx, ext_rel->r_symndx); 1329 1330 return relocation; 1331 } 1332 1333 /* Relocate a section while linking an Alpha ECOFF file. This is 1334 quite similar to get_relocated_section_contents. Perhaps they 1335 could be combined somehow. */ 1336 1337 static bfd_boolean 1338 alpha_relocate_section (bfd *output_bfd, 1339 struct bfd_link_info *info, 1340 bfd *input_bfd, 1341 asection *input_section, 1342 bfd_byte *contents, 1343 void * external_relocs) 1344 { 1345 asection **symndx_to_section, *lita_sec; 1346 struct ecoff_link_hash_entry **sym_hashes; 1347 bfd_vma gp; 1348 bfd_boolean gp_undefined; 1349 bfd_vma stack[RELOC_STACKSIZE]; 1350 int tos = 0; 1351 struct external_reloc *ext_rel; 1352 struct external_reloc *ext_rel_end; 1353 bfd_size_type amt; 1354 1355 /* We keep a table mapping the symndx found in an internal reloc to 1356 the appropriate section. This is faster than looking up the 1357 section by name each time. */ 1358 symndx_to_section = ecoff_data (input_bfd)->symndx_to_section; 1359 if (symndx_to_section == (asection **) NULL) 1360 { 1361 amt = NUM_RELOC_SECTIONS * sizeof (asection *); 1362 symndx_to_section = (asection **) bfd_alloc (input_bfd, amt); 1363 if (!symndx_to_section) 1364 return FALSE; 1365 1366 symndx_to_section[RELOC_SECTION_NONE] = NULL; 1367 symndx_to_section[RELOC_SECTION_TEXT] = 1368 bfd_get_section_by_name (input_bfd, ".text"); 1369 symndx_to_section[RELOC_SECTION_RDATA] = 1370 bfd_get_section_by_name (input_bfd, ".rdata"); 1371 symndx_to_section[RELOC_SECTION_DATA] = 1372 bfd_get_section_by_name (input_bfd, ".data"); 1373 symndx_to_section[RELOC_SECTION_SDATA] = 1374 bfd_get_section_by_name (input_bfd, ".sdata"); 1375 symndx_to_section[RELOC_SECTION_SBSS] = 1376 bfd_get_section_by_name (input_bfd, ".sbss"); 1377 symndx_to_section[RELOC_SECTION_BSS] = 1378 bfd_get_section_by_name (input_bfd, ".bss"); 1379 symndx_to_section[RELOC_SECTION_INIT] = 1380 bfd_get_section_by_name (input_bfd, ".init"); 1381 symndx_to_section[RELOC_SECTION_LIT8] = 1382 bfd_get_section_by_name (input_bfd, ".lit8"); 1383 symndx_to_section[RELOC_SECTION_LIT4] = 1384 bfd_get_section_by_name (input_bfd, ".lit4"); 1385 symndx_to_section[RELOC_SECTION_XDATA] = 1386 bfd_get_section_by_name (input_bfd, ".xdata"); 1387 symndx_to_section[RELOC_SECTION_PDATA] = 1388 bfd_get_section_by_name (input_bfd, ".pdata"); 1389 symndx_to_section[RELOC_SECTION_FINI] = 1390 bfd_get_section_by_name (input_bfd, ".fini"); 1391 symndx_to_section[RELOC_SECTION_LITA] = 1392 bfd_get_section_by_name (input_bfd, ".lita"); 1393 symndx_to_section[RELOC_SECTION_ABS] = bfd_abs_section_ptr; 1394 symndx_to_section[RELOC_SECTION_RCONST] = 1395 bfd_get_section_by_name (input_bfd, ".rconst"); 1396 1397 ecoff_data (input_bfd)->symndx_to_section = symndx_to_section; 1398 } 1399 1400 sym_hashes = ecoff_data (input_bfd)->sym_hashes; 1401 1402 /* On the Alpha, the .lita section must be addressable by the global 1403 pointer. To support large programs, we need to allow multiple 1404 global pointers. This works as long as each input .lita section 1405 is <64KB big. This implies that when producing relocatable 1406 output, the .lita section is limited to 64KB. . */ 1407 1408 lita_sec = symndx_to_section[RELOC_SECTION_LITA]; 1409 gp = _bfd_get_gp_value (output_bfd); 1410 if (! info->relocatable && lita_sec != NULL) 1411 { 1412 struct ecoff_section_tdata *lita_sec_data; 1413 1414 /* Make sure we have a section data structure to which we can 1415 hang on to the gp value we pick for the section. */ 1416 lita_sec_data = ecoff_section_data (input_bfd, lita_sec); 1417 if (lita_sec_data == NULL) 1418 { 1419 amt = sizeof (struct ecoff_section_tdata); 1420 lita_sec_data = ((struct ecoff_section_tdata *) 1421 bfd_zalloc (input_bfd, amt)); 1422 lita_sec->used_by_bfd = lita_sec_data; 1423 } 1424 1425 if (lita_sec_data->gp != 0) 1426 { 1427 /* If we already assigned a gp to this section, we better 1428 stick with that value. */ 1429 gp = lita_sec_data->gp; 1430 } 1431 else 1432 { 1433 bfd_vma lita_vma; 1434 bfd_size_type lita_size; 1435 1436 lita_vma = lita_sec->output_offset + lita_sec->output_section->vma; 1437 lita_size = lita_sec->size; 1438 1439 if (gp == 0 1440 || lita_vma < gp - 0x8000 1441 || lita_vma + lita_size >= gp + 0x8000) 1442 { 1443 /* Either gp hasn't been set at all or the current gp 1444 cannot address this .lita section. In both cases we 1445 reset the gp to point into the "middle" of the 1446 current input .lita section. */ 1447 if (gp && !ecoff_data (output_bfd)->issued_multiple_gp_warning) 1448 { 1449 (*info->callbacks->warning) (info, 1450 _("using multiple gp values"), 1451 (char *) NULL, output_bfd, 1452 (asection *) NULL, (bfd_vma) 0); 1453 ecoff_data (output_bfd)->issued_multiple_gp_warning = TRUE; 1454 } 1455 if (lita_vma < gp - 0x8000) 1456 gp = lita_vma + lita_size - 0x8000; 1457 else 1458 gp = lita_vma + 0x8000; 1459 1460 } 1461 1462 lita_sec_data->gp = gp; 1463 } 1464 1465 _bfd_set_gp_value (output_bfd, gp); 1466 } 1467 1468 gp_undefined = (gp == 0); 1469 1470 BFD_ASSERT (bfd_header_little_endian (output_bfd)); 1471 BFD_ASSERT (bfd_header_little_endian (input_bfd)); 1472 1473 ext_rel = (struct external_reloc *) external_relocs; 1474 ext_rel_end = ext_rel + input_section->reloc_count; 1475 for (; ext_rel < ext_rel_end; ext_rel++) 1476 { 1477 bfd_vma r_vaddr; 1478 unsigned long r_symndx; 1479 int r_type; 1480 int r_extern; 1481 int r_offset; 1482 int r_size; 1483 bfd_boolean relocatep; 1484 bfd_boolean adjust_addrp; 1485 bfd_boolean gp_usedp; 1486 bfd_vma addend; 1487 1488 r_vaddr = H_GET_64 (input_bfd, ext_rel->r_vaddr); 1489 r_symndx = H_GET_32 (input_bfd, ext_rel->r_symndx); 1490 1491 r_type = ((ext_rel->r_bits[0] & RELOC_BITS0_TYPE_LITTLE) 1492 >> RELOC_BITS0_TYPE_SH_LITTLE); 1493 r_extern = (ext_rel->r_bits[1] & RELOC_BITS1_EXTERN_LITTLE) != 0; 1494 r_offset = ((ext_rel->r_bits[1] & RELOC_BITS1_OFFSET_LITTLE) 1495 >> RELOC_BITS1_OFFSET_SH_LITTLE); 1496 /* Ignored the reserved bits. */ 1497 r_size = ((ext_rel->r_bits[3] & RELOC_BITS3_SIZE_LITTLE) 1498 >> RELOC_BITS3_SIZE_SH_LITTLE); 1499 1500 relocatep = FALSE; 1501 adjust_addrp = TRUE; 1502 gp_usedp = FALSE; 1503 addend = 0; 1504 1505 switch (r_type) 1506 { 1507 case ALPHA_R_GPRELHIGH: 1508 (*_bfd_error_handler) 1509 (_("%B: unsupported relocation: ALPHA_R_GPRELHIGH"), 1510 input_bfd); 1511 bfd_set_error (bfd_error_bad_value); 1512 continue; 1513 1514 case ALPHA_R_GPRELLOW: 1515 (*_bfd_error_handler) 1516 (_("%B: unsupported relocation: ALPHA_R_GPRELLOW"), 1517 input_bfd); 1518 bfd_set_error (bfd_error_bad_value); 1519 continue; 1520 1521 default: 1522 (*_bfd_error_handler) 1523 (_("%B: unknown relocation type %d"), 1524 input_bfd, (int) r_type); 1525 bfd_set_error (bfd_error_bad_value); 1526 continue; 1527 1528 case ALPHA_R_IGNORE: 1529 /* This reloc appears after a GPDISP reloc. On earlier 1530 versions of OSF/1, It marked the position of the second 1531 instruction to be altered by the GPDISP reloc, but it is 1532 not otherwise used for anything. For some reason, the 1533 address of the relocation does not appear to include the 1534 section VMA, unlike the other relocation types. */ 1535 if (info->relocatable) 1536 H_PUT_64 (input_bfd, input_section->output_offset + r_vaddr, 1537 ext_rel->r_vaddr); 1538 adjust_addrp = FALSE; 1539 break; 1540 1541 case ALPHA_R_REFLONG: 1542 case ALPHA_R_REFQUAD: 1543 case ALPHA_R_HINT: 1544 relocatep = TRUE; 1545 break; 1546 1547 case ALPHA_R_BRADDR: 1548 case ALPHA_R_SREL16: 1549 case ALPHA_R_SREL32: 1550 case ALPHA_R_SREL64: 1551 if (r_extern) 1552 addend += - (r_vaddr + 4); 1553 relocatep = TRUE; 1554 break; 1555 1556 case ALPHA_R_GPREL32: 1557 /* This relocation is used in a switch table. It is a 32 1558 bit offset from the current GP value. We must adjust it 1559 by the different between the original GP value and the 1560 current GP value. */ 1561 relocatep = TRUE; 1562 addend = ecoff_data (input_bfd)->gp - gp; 1563 gp_usedp = TRUE; 1564 break; 1565 1566 case ALPHA_R_LITERAL: 1567 /* This is a reference to a literal value, generally 1568 (always?) in the .lita section. This is a 16 bit GP 1569 relative relocation. Sometimes the subsequent reloc is a 1570 LITUSE reloc, which indicates how this reloc is used. 1571 This sometimes permits rewriting the two instructions 1572 referred to by the LITERAL and the LITUSE into different 1573 instructions which do not refer to .lita. This can save 1574 a memory reference, and permits removing a value from 1575 .lita thus saving GP relative space. 1576 1577 We do not these optimizations. To do them we would need 1578 to arrange to link the .lita section first, so that by 1579 the time we got here we would know the final values to 1580 use. This would not be particularly difficult, but it is 1581 not currently implemented. */ 1582 1583 /* I believe that the LITERAL reloc will only apply to a ldq 1584 or ldl instruction, so check my assumption. */ 1585 { 1586 unsigned long insn; 1587 1588 insn = bfd_get_32 (input_bfd, 1589 contents + r_vaddr - input_section->vma); 1590 BFD_ASSERT (((insn >> 26) & 0x3f) == 0x29 1591 || ((insn >> 26) & 0x3f) == 0x28); 1592 } 1593 1594 relocatep = TRUE; 1595 addend = ecoff_data (input_bfd)->gp - gp; 1596 gp_usedp = TRUE; 1597 break; 1598 1599 case ALPHA_R_LITUSE: 1600 /* See ALPHA_R_LITERAL above for the uses of this reloc. It 1601 does not cause anything to happen, itself. */ 1602 break; 1603 1604 case ALPHA_R_GPDISP: 1605 /* This marks the ldah of an ldah/lda pair which loads the 1606 gp register with the difference of the gp value and the 1607 current location. The second of the pair is r_symndx 1608 bytes ahead. It used to be marked with an ALPHA_R_IGNORE 1609 reloc, but OSF/1 3.2 no longer does that. */ 1610 { 1611 unsigned long insn1, insn2; 1612 1613 /* Get the two instructions. */ 1614 insn1 = bfd_get_32 (input_bfd, 1615 contents + r_vaddr - input_section->vma); 1616 insn2 = bfd_get_32 (input_bfd, 1617 (contents 1618 + r_vaddr 1619 - input_section->vma 1620 + r_symndx)); 1621 1622 BFD_ASSERT (((insn1 >> 26) & 0x3f) == 0x09); /* ldah */ 1623 BFD_ASSERT (((insn2 >> 26) & 0x3f) == 0x08); /* lda */ 1624 1625 /* Get the existing addend. We must account for the sign 1626 extension done by lda and ldah. */ 1627 addend = ((insn1 & 0xffff) << 16) + (insn2 & 0xffff); 1628 if (insn1 & 0x8000) 1629 { 1630 /* This is addend -= 0x100000000 without causing an 1631 integer overflow on a 32 bit host. */ 1632 addend -= 0x80000000; 1633 addend -= 0x80000000; 1634 } 1635 if (insn2 & 0x8000) 1636 addend -= 0x10000; 1637 1638 /* The existing addend includes the difference between the 1639 gp of the input BFD and the address in the input BFD. 1640 We want to change this to the difference between the 1641 final GP and the final address. */ 1642 addend += (gp 1643 - ecoff_data (input_bfd)->gp 1644 + input_section->vma 1645 - (input_section->output_section->vma 1646 + input_section->output_offset)); 1647 1648 /* Change the instructions, accounting for the sign 1649 extension, and write them out. */ 1650 if (addend & 0x8000) 1651 addend += 0x10000; 1652 insn1 = (insn1 & 0xffff0000) | ((addend >> 16) & 0xffff); 1653 insn2 = (insn2 & 0xffff0000) | (addend & 0xffff); 1654 1655 bfd_put_32 (input_bfd, (bfd_vma) insn1, 1656 contents + r_vaddr - input_section->vma); 1657 bfd_put_32 (input_bfd, (bfd_vma) insn2, 1658 contents + r_vaddr - input_section->vma + r_symndx); 1659 1660 gp_usedp = TRUE; 1661 } 1662 break; 1663 1664 case ALPHA_R_OP_PUSH: 1665 case ALPHA_R_OP_PSUB: 1666 case ALPHA_R_OP_PRSHIFT: 1667 /* Manipulate values on the reloc evaluation stack. The 1668 r_vaddr field is not an address in input_section, it is 1669 the current value (including any addend) of the object 1670 being used. */ 1671 if (! r_extern) 1672 { 1673 asection *s; 1674 1675 s = symndx_to_section[r_symndx]; 1676 if (s == (asection *) NULL) 1677 abort (); 1678 addend = s->output_section->vma + s->output_offset - s->vma; 1679 } 1680 else 1681 { 1682 struct ecoff_link_hash_entry *h; 1683 1684 h = sym_hashes[r_symndx]; 1685 if (h == (struct ecoff_link_hash_entry *) NULL) 1686 abort (); 1687 1688 if (! info->relocatable) 1689 { 1690 if (h->root.type == bfd_link_hash_defined 1691 || h->root.type == bfd_link_hash_defweak) 1692 addend = (h->root.u.def.value 1693 + h->root.u.def.section->output_section->vma 1694 + h->root.u.def.section->output_offset); 1695 else 1696 { 1697 /* Note that we pass the address as 0, since we 1698 do not have a meaningful number for the 1699 location within the section that is being 1700 relocated. */ 1701 if (! ((*info->callbacks->undefined_symbol) 1702 (info, h->root.root.string, input_bfd, 1703 input_section, (bfd_vma) 0, TRUE))) 1704 return FALSE; 1705 addend = 0; 1706 } 1707 } 1708 else 1709 { 1710 if (h->root.type != bfd_link_hash_defined 1711 && h->root.type != bfd_link_hash_defweak 1712 && h->indx == -1) 1713 { 1714 /* This symbol is not being written out. Pass 1715 the address as 0, as with undefined_symbol, 1716 above. */ 1717 if (! ((*info->callbacks->unattached_reloc) 1718 (info, h->root.root.string, input_bfd, 1719 input_section, (bfd_vma) 0))) 1720 return FALSE; 1721 } 1722 1723 addend = alpha_convert_external_reloc (output_bfd, info, 1724 input_bfd, 1725 ext_rel, h); 1726 } 1727 } 1728 1729 addend += r_vaddr; 1730 1731 if (info->relocatable) 1732 { 1733 /* Adjust r_vaddr by the addend. */ 1734 H_PUT_64 (input_bfd, addend, ext_rel->r_vaddr); 1735 } 1736 else 1737 { 1738 switch (r_type) 1739 { 1740 case ALPHA_R_OP_PUSH: 1741 if (tos >= RELOC_STACKSIZE) 1742 abort (); 1743 stack[tos++] = addend; 1744 break; 1745 1746 case ALPHA_R_OP_PSUB: 1747 if (tos == 0) 1748 abort (); 1749 stack[tos - 1] -= addend; 1750 break; 1751 1752 case ALPHA_R_OP_PRSHIFT: 1753 if (tos == 0) 1754 abort (); 1755 stack[tos - 1] >>= addend; 1756 break; 1757 } 1758 } 1759 1760 adjust_addrp = FALSE; 1761 break; 1762 1763 case ALPHA_R_OP_STORE: 1764 /* Store a value from the reloc stack into a bitfield. If 1765 we are generating relocatable output, all we do is 1766 adjust the address of the reloc. */ 1767 if (! info->relocatable) 1768 { 1769 bfd_vma mask; 1770 bfd_vma val; 1771 1772 if (tos == 0) 1773 abort (); 1774 1775 /* Get the relocation mask. The separate steps and the 1776 casts to bfd_vma are attempts to avoid a bug in the 1777 Alpha OSF 1.3 C compiler. See reloc.c for more 1778 details. */ 1779 mask = 1; 1780 mask <<= (bfd_vma) r_size; 1781 mask -= 1; 1782 1783 /* FIXME: I don't know what kind of overflow checking, 1784 if any, should be done here. */ 1785 val = bfd_get_64 (input_bfd, 1786 contents + r_vaddr - input_section->vma); 1787 val &=~ mask << (bfd_vma) r_offset; 1788 val |= (stack[--tos] & mask) << (bfd_vma) r_offset; 1789 bfd_put_64 (input_bfd, val, 1790 contents + r_vaddr - input_section->vma); 1791 } 1792 break; 1793 1794 case ALPHA_R_GPVALUE: 1795 /* I really don't know if this does the right thing. */ 1796 gp = ecoff_data (input_bfd)->gp + r_symndx; 1797 gp_undefined = FALSE; 1798 break; 1799 } 1800 1801 if (relocatep) 1802 { 1803 reloc_howto_type *howto; 1804 struct ecoff_link_hash_entry *h = NULL; 1805 asection *s = NULL; 1806 bfd_vma relocation; 1807 bfd_reloc_status_type r; 1808 1809 /* Perform a relocation. */ 1810 1811 howto = &alpha_howto_table[r_type]; 1812 1813 if (r_extern) 1814 { 1815 h = sym_hashes[r_symndx]; 1816 /* If h is NULL, that means that there is a reloc 1817 against an external symbol which we thought was just 1818 a debugging symbol. This should not happen. */ 1819 if (h == (struct ecoff_link_hash_entry *) NULL) 1820 abort (); 1821 } 1822 else 1823 { 1824 if (r_symndx >= NUM_RELOC_SECTIONS) 1825 s = NULL; 1826 else 1827 s = symndx_to_section[r_symndx]; 1828 1829 if (s == (asection *) NULL) 1830 abort (); 1831 } 1832 1833 if (info->relocatable) 1834 { 1835 /* We are generating relocatable output, and must 1836 convert the existing reloc. */ 1837 if (r_extern) 1838 { 1839 if (h->root.type != bfd_link_hash_defined 1840 && h->root.type != bfd_link_hash_defweak 1841 && h->indx == -1) 1842 { 1843 /* This symbol is not being written out. */ 1844 if (! ((*info->callbacks->unattached_reloc) 1845 (info, h->root.root.string, input_bfd, 1846 input_section, r_vaddr - input_section->vma))) 1847 return FALSE; 1848 } 1849 1850 relocation = alpha_convert_external_reloc (output_bfd, 1851 info, 1852 input_bfd, 1853 ext_rel, 1854 h); 1855 } 1856 else 1857 { 1858 /* This is a relocation against a section. Adjust 1859 the value by the amount the section moved. */ 1860 relocation = (s->output_section->vma 1861 + s->output_offset 1862 - s->vma); 1863 } 1864 1865 /* If this is PC relative, the existing object file 1866 appears to already have the reloc worked out. We 1867 must subtract out the old value and add in the new 1868 one. */ 1869 if (howto->pc_relative) 1870 relocation -= (input_section->output_section->vma 1871 + input_section->output_offset 1872 - input_section->vma); 1873 1874 /* Put in any addend. */ 1875 relocation += addend; 1876 1877 /* Adjust the contents. */ 1878 r = _bfd_relocate_contents (howto, input_bfd, relocation, 1879 (contents 1880 + r_vaddr 1881 - input_section->vma)); 1882 } 1883 else 1884 { 1885 /* We are producing a final executable. */ 1886 if (r_extern) 1887 { 1888 /* This is a reloc against a symbol. */ 1889 if (h->root.type == bfd_link_hash_defined 1890 || h->root.type == bfd_link_hash_defweak) 1891 { 1892 asection *hsec; 1893 1894 hsec = h->root.u.def.section; 1895 relocation = (h->root.u.def.value 1896 + hsec->output_section->vma 1897 + hsec->output_offset); 1898 } 1899 else 1900 { 1901 if (! ((*info->callbacks->undefined_symbol) 1902 (info, h->root.root.string, input_bfd, 1903 input_section, 1904 r_vaddr - input_section->vma, TRUE))) 1905 return FALSE; 1906 relocation = 0; 1907 } 1908 } 1909 else 1910 { 1911 /* This is a reloc against a section. */ 1912 relocation = (s->output_section->vma 1913 + s->output_offset 1914 - s->vma); 1915 1916 /* Adjust a PC relative relocation by removing the 1917 reference to the original source section. */ 1918 if (howto->pc_relative) 1919 relocation += input_section->vma; 1920 } 1921 1922 r = _bfd_final_link_relocate (howto, 1923 input_bfd, 1924 input_section, 1925 contents, 1926 r_vaddr - input_section->vma, 1927 relocation, 1928 addend); 1929 } 1930 1931 if (r != bfd_reloc_ok) 1932 { 1933 switch (r) 1934 { 1935 default: 1936 case bfd_reloc_outofrange: 1937 abort (); 1938 case bfd_reloc_overflow: 1939 { 1940 const char *name; 1941 1942 if (r_extern) 1943 name = sym_hashes[r_symndx]->root.root.string; 1944 else 1945 name = bfd_section_name (input_bfd, 1946 symndx_to_section[r_symndx]); 1947 if (! ((*info->callbacks->reloc_overflow) 1948 (info, NULL, name, 1949 alpha_howto_table[r_type].name, 1950 (bfd_vma) 0, input_bfd, input_section, 1951 r_vaddr - input_section->vma))) 1952 return FALSE; 1953 } 1954 break; 1955 } 1956 } 1957 } 1958 1959 if (info->relocatable && adjust_addrp) 1960 { 1961 /* Change the address of the relocation. */ 1962 H_PUT_64 (input_bfd, 1963 (input_section->output_section->vma 1964 + input_section->output_offset 1965 - input_section->vma 1966 + r_vaddr), 1967 ext_rel->r_vaddr); 1968 } 1969 1970 if (gp_usedp && gp_undefined) 1971 { 1972 if (! ((*info->callbacks->reloc_dangerous) 1973 (info, _("GP relative relocation used when GP not defined"), 1974 input_bfd, input_section, r_vaddr - input_section->vma))) 1975 return FALSE; 1976 /* Only give the error once per link. */ 1977 gp = 4; 1978 _bfd_set_gp_value (output_bfd, gp); 1979 gp_undefined = FALSE; 1980 } 1981 } 1982 1983 if (tos != 0) 1984 abort (); 1985 1986 return TRUE; 1987 } 1988 1989 /* Do final adjustments to the filehdr and the aouthdr. This routine 1990 sets the dynamic bits in the file header. */ 1991 1992 static bfd_boolean 1993 alpha_adjust_headers (bfd *abfd, 1994 struct internal_filehdr *fhdr, 1995 struct internal_aouthdr *ahdr ATTRIBUTE_UNUSED) 1996 { 1997 if ((abfd->flags & (DYNAMIC | EXEC_P)) == (DYNAMIC | EXEC_P)) 1998 fhdr->f_flags |= F_ALPHA_CALL_SHARED; 1999 else if ((abfd->flags & DYNAMIC) != 0) 2000 fhdr->f_flags |= F_ALPHA_SHARABLE; 2001 return TRUE; 2002 } 2003 2004 /* Archive handling. In OSF/1 (or Digital Unix) v3.2, Digital 2005 introduced archive packing, in which the elements in an archive are 2006 optionally compressed using a simple dictionary scheme. We know 2007 how to read such archives, but we don't write them. */ 2008 2009 #define alpha_ecoff_slurp_armap _bfd_ecoff_slurp_armap 2010 #define alpha_ecoff_slurp_extended_name_table \ 2011 _bfd_ecoff_slurp_extended_name_table 2012 #define alpha_ecoff_construct_extended_name_table \ 2013 _bfd_ecoff_construct_extended_name_table 2014 #define alpha_ecoff_truncate_arname _bfd_ecoff_truncate_arname 2015 #define alpha_ecoff_write_armap _bfd_ecoff_write_armap 2016 #define alpha_ecoff_write_ar_hdr _bfd_generic_write_ar_hdr 2017 #define alpha_ecoff_generic_stat_arch_elt _bfd_ecoff_generic_stat_arch_elt 2018 #define alpha_ecoff_update_armap_timestamp _bfd_ecoff_update_armap_timestamp 2019 2020 /* A compressed file uses this instead of ARFMAG. */ 2021 2022 #define ARFZMAG "Z\012" 2023 2024 /* Read an archive header. This is like the standard routine, but it 2025 also accepts ARFZMAG. */ 2026 2027 static void * 2028 alpha_ecoff_read_ar_hdr (bfd *abfd) 2029 { 2030 struct areltdata *ret; 2031 struct ar_hdr *h; 2032 2033 ret = (struct areltdata *) _bfd_generic_read_ar_hdr_mag (abfd, ARFZMAG); 2034 if (ret == NULL) 2035 return NULL; 2036 2037 h = (struct ar_hdr *) ret->arch_header; 2038 if (strncmp (h->ar_fmag, ARFZMAG, 2) == 0) 2039 { 2040 bfd_byte ab[8]; 2041 2042 /* This is a compressed file. We must set the size correctly. 2043 The size is the eight bytes after the dummy file header. */ 2044 if (bfd_seek (abfd, (file_ptr) FILHSZ, SEEK_CUR) != 0 2045 || bfd_bread (ab, (bfd_size_type) 8, abfd) != 8 2046 || bfd_seek (abfd, (file_ptr) (- (FILHSZ + 8)), SEEK_CUR) != 0) 2047 return NULL; 2048 2049 ret->parsed_size = H_GET_64 (abfd, ab); 2050 } 2051 2052 return ret; 2053 } 2054 2055 /* Get an archive element at a specified file position. This is where 2056 we uncompress the archive element if necessary. */ 2057 2058 static bfd * 2059 alpha_ecoff_get_elt_at_filepos (bfd *archive, file_ptr filepos) 2060 { 2061 bfd *nbfd = NULL; 2062 struct areltdata *tdata; 2063 struct ar_hdr *hdr; 2064 bfd_byte ab[8]; 2065 bfd_size_type size; 2066 bfd_byte *buf, *p; 2067 struct bfd_in_memory *bim; 2068 2069 buf = NULL; 2070 nbfd = _bfd_get_elt_at_filepos (archive, filepos); 2071 if (nbfd == NULL) 2072 goto error_return; 2073 2074 if ((nbfd->flags & BFD_IN_MEMORY) != 0) 2075 { 2076 /* We have already expanded this BFD. */ 2077 return nbfd; 2078 } 2079 2080 tdata = (struct areltdata *) nbfd->arelt_data; 2081 hdr = (struct ar_hdr *) tdata->arch_header; 2082 if (strncmp (hdr->ar_fmag, ARFZMAG, 2) != 0) 2083 return nbfd; 2084 2085 /* We must uncompress this element. We do this by copying it into a 2086 memory buffer, and making bfd_bread and bfd_seek use that buffer. 2087 This can use a lot of memory, but it's simpler than getting a 2088 temporary file, making that work with the file descriptor caching 2089 code, and making sure that it is deleted at all appropriate 2090 times. It can be changed if it ever becomes important. */ 2091 2092 /* The compressed file starts with a dummy ECOFF file header. */ 2093 if (bfd_seek (nbfd, (file_ptr) FILHSZ, SEEK_SET) != 0) 2094 goto error_return; 2095 2096 /* The next eight bytes are the real file size. */ 2097 if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8) 2098 goto error_return; 2099 size = H_GET_64 (nbfd, ab); 2100 2101 if (size != 0) 2102 { 2103 bfd_size_type left; 2104 bfd_byte dict[4096]; 2105 unsigned int h; 2106 bfd_byte b; 2107 2108 buf = (bfd_byte *) bfd_malloc (size); 2109 if (buf == NULL) 2110 goto error_return; 2111 p = buf; 2112 2113 left = size; 2114 2115 /* I don't know what the next eight bytes are for. */ 2116 if (bfd_bread (ab, (bfd_size_type) 8, nbfd) != 8) 2117 goto error_return; 2118 2119 /* This is the uncompression algorithm. It's a simple 2120 dictionary based scheme in which each character is predicted 2121 by a hash of the previous three characters. A control byte 2122 indicates whether the character is predicted or whether it 2123 appears in the input stream; each control byte manages the 2124 next eight bytes in the output stream. */ 2125 memset (dict, 0, sizeof dict); 2126 h = 0; 2127 while (bfd_bread (&b, (bfd_size_type) 1, nbfd) == 1) 2128 { 2129 unsigned int i; 2130 2131 for (i = 0; i < 8; i++, b >>= 1) 2132 { 2133 bfd_byte n; 2134 2135 if ((b & 1) == 0) 2136 n = dict[h]; 2137 else 2138 { 2139 if (! bfd_bread (&n, (bfd_size_type) 1, nbfd)) 2140 goto error_return; 2141 dict[h] = n; 2142 } 2143 2144 *p++ = n; 2145 2146 --left; 2147 if (left == 0) 2148 break; 2149 2150 h <<= 4; 2151 h ^= n; 2152 h &= sizeof dict - 1; 2153 } 2154 2155 if (left == 0) 2156 break; 2157 } 2158 } 2159 2160 /* Now the uncompressed file contents are in buf. */ 2161 bim = ((struct bfd_in_memory *) 2162 bfd_malloc ((bfd_size_type) sizeof (struct bfd_in_memory))); 2163 if (bim == NULL) 2164 goto error_return; 2165 bim->size = size; 2166 bim->buffer = buf; 2167 2168 nbfd->mtime_set = TRUE; 2169 nbfd->mtime = strtol (hdr->ar_date, (char **) NULL, 10); 2170 2171 nbfd->flags |= BFD_IN_MEMORY; 2172 nbfd->iostream = bim; 2173 nbfd->iovec = &_bfd_memory_iovec; 2174 nbfd->origin = 0; 2175 BFD_ASSERT (! nbfd->cacheable); 2176 2177 return nbfd; 2178 2179 error_return: 2180 if (buf != NULL) 2181 free (buf); 2182 if (nbfd != NULL) 2183 bfd_close (nbfd); 2184 return NULL; 2185 } 2186 2187 /* Open the next archived file. */ 2188 2189 static bfd * 2190 alpha_ecoff_openr_next_archived_file (bfd *archive, bfd *last_file) 2191 { 2192 file_ptr filestart; 2193 2194 if (last_file == NULL) 2195 filestart = bfd_ardata (archive)->first_file_filepos; 2196 else 2197 { 2198 struct areltdata *t; 2199 struct ar_hdr *h; 2200 bfd_size_type size; 2201 2202 /* We can't use arelt_size here, because that uses parsed_size, 2203 which is the uncompressed size. We need the compressed size. */ 2204 t = (struct areltdata *) last_file->arelt_data; 2205 h = (struct ar_hdr *) t->arch_header; 2206 size = strtol (h->ar_size, (char **) NULL, 10); 2207 2208 /* Pad to an even boundary... 2209 Note that last_file->origin can be odd in the case of 2210 BSD-4.4-style element with a long odd size. */ 2211 filestart = last_file->proxy_origin + size; 2212 filestart += filestart % 2; 2213 } 2214 2215 return alpha_ecoff_get_elt_at_filepos (archive, filestart); 2216 } 2217 2218 /* Open the archive file given an index into the armap. */ 2219 2220 static bfd * 2221 alpha_ecoff_get_elt_at_index (bfd *abfd, symindex sym_index) 2222 { 2223 carsym *entry; 2224 2225 entry = bfd_ardata (abfd)->symdefs + sym_index; 2226 return alpha_ecoff_get_elt_at_filepos (abfd, entry->file_offset); 2227 } 2228 2229 /* This is the ECOFF backend structure. The backend field of the 2230 target vector points to this. */ 2231 2232 static const struct ecoff_backend_data alpha_ecoff_backend_data = 2233 { 2234 /* COFF backend structure. */ 2235 { 2236 (void (*) (bfd *,void *,int,int,int,int,void *)) bfd_void, /* aux_in */ 2237 (void (*) (bfd *,void *,void *)) bfd_void, /* sym_in */ 2238 (void (*) (bfd *,void *,void *)) bfd_void, /* lineno_in */ 2239 (unsigned (*) (bfd *,void *,int,int,int,int,void *)) bfd_void,/*aux_out*/ 2240 (unsigned (*) (bfd *,void *,void *)) bfd_void, /* sym_out */ 2241 (unsigned (*) (bfd *,void *,void *)) bfd_void, /* lineno_out */ 2242 (unsigned (*) (bfd *,void *,void *)) bfd_void, /* reloc_out */ 2243 alpha_ecoff_swap_filehdr_out, alpha_ecoff_swap_aouthdr_out, 2244 alpha_ecoff_swap_scnhdr_out, 2245 FILHSZ, AOUTSZ, SCNHSZ, 0, 0, 0, 0, FILNMLEN, TRUE, 2246 ECOFF_NO_LONG_SECTION_NAMES, 4, FALSE, 2, 2247 alpha_ecoff_swap_filehdr_in, alpha_ecoff_swap_aouthdr_in, 2248 alpha_ecoff_swap_scnhdr_in, NULL, 2249 alpha_ecoff_bad_format_hook, _bfd_ecoff_set_arch_mach_hook, 2250 alpha_ecoff_mkobject_hook, _bfd_ecoff_styp_to_sec_flags, 2251 _bfd_ecoff_set_alignment_hook, _bfd_ecoff_slurp_symbol_table, 2252 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 2253 NULL, NULL, NULL, NULL 2254 }, 2255 /* Supported architecture. */ 2256 bfd_arch_alpha, 2257 /* Initial portion of armap string. */ 2258 "________64", 2259 /* The page boundary used to align sections in a demand-paged 2260 executable file. E.g., 0x1000. */ 2261 0x2000, 2262 /* TRUE if the .rdata section is part of the text segment, as on the 2263 Alpha. FALSE if .rdata is part of the data segment, as on the 2264 MIPS. */ 2265 TRUE, 2266 /* Bitsize of constructor entries. */ 2267 64, 2268 /* Reloc to use for constructor entries. */ 2269 &alpha_howto_table[ALPHA_R_REFQUAD], 2270 { 2271 /* Symbol table magic number. */ 2272 magicSym2, 2273 /* Alignment of debugging information. E.g., 4. */ 2274 8, 2275 /* Sizes of external symbolic information. */ 2276 sizeof (struct hdr_ext), 2277 sizeof (struct dnr_ext), 2278 sizeof (struct pdr_ext), 2279 sizeof (struct sym_ext), 2280 sizeof (struct opt_ext), 2281 sizeof (struct fdr_ext), 2282 sizeof (struct rfd_ext), 2283 sizeof (struct ext_ext), 2284 /* Functions to swap in external symbolic data. */ 2285 ecoff_swap_hdr_in, 2286 ecoff_swap_dnr_in, 2287 ecoff_swap_pdr_in, 2288 ecoff_swap_sym_in, 2289 ecoff_swap_opt_in, 2290 ecoff_swap_fdr_in, 2291 ecoff_swap_rfd_in, 2292 ecoff_swap_ext_in, 2293 _bfd_ecoff_swap_tir_in, 2294 _bfd_ecoff_swap_rndx_in, 2295 /* Functions to swap out external symbolic data. */ 2296 ecoff_swap_hdr_out, 2297 ecoff_swap_dnr_out, 2298 ecoff_swap_pdr_out, 2299 ecoff_swap_sym_out, 2300 ecoff_swap_opt_out, 2301 ecoff_swap_fdr_out, 2302 ecoff_swap_rfd_out, 2303 ecoff_swap_ext_out, 2304 _bfd_ecoff_swap_tir_out, 2305 _bfd_ecoff_swap_rndx_out, 2306 /* Function to read in symbolic data. */ 2307 _bfd_ecoff_slurp_symbolic_info 2308 }, 2309 /* External reloc size. */ 2310 RELSZ, 2311 /* Reloc swapping functions. */ 2312 alpha_ecoff_swap_reloc_in, 2313 alpha_ecoff_swap_reloc_out, 2314 /* Backend reloc tweaking. */ 2315 alpha_adjust_reloc_in, 2316 alpha_adjust_reloc_out, 2317 /* Relocate section contents while linking. */ 2318 alpha_relocate_section, 2319 /* Do final adjustments to filehdr and aouthdr. */ 2320 alpha_adjust_headers, 2321 /* Read an element from an archive at a given file position. */ 2322 alpha_ecoff_get_elt_at_filepos 2323 }; 2324 2325 /* Looking up a reloc type is Alpha specific. */ 2326 #define _bfd_ecoff_bfd_reloc_type_lookup alpha_bfd_reloc_type_lookup 2327 #define _bfd_ecoff_bfd_reloc_name_lookup \ 2328 alpha_bfd_reloc_name_lookup 2329 2330 /* So is getting relocated section contents. */ 2331 #define _bfd_ecoff_bfd_get_relocated_section_contents \ 2332 alpha_ecoff_get_relocated_section_contents 2333 2334 /* Handling file windows is generic. */ 2335 #define _bfd_ecoff_get_section_contents_in_window \ 2336 _bfd_generic_get_section_contents_in_window 2337 2338 /* Input section flag lookup is generic. */ 2339 #define _bfd_ecoff_bfd_lookup_section_flags bfd_generic_lookup_section_flags 2340 2341 /* Relaxing sections is generic. */ 2342 #define _bfd_ecoff_bfd_relax_section bfd_generic_relax_section 2343 #define _bfd_ecoff_bfd_gc_sections bfd_generic_gc_sections 2344 #define _bfd_ecoff_bfd_merge_sections bfd_generic_merge_sections 2345 #define _bfd_ecoff_bfd_is_group_section bfd_generic_is_group_section 2346 #define _bfd_ecoff_bfd_discard_group bfd_generic_discard_group 2347 #define _bfd_ecoff_section_already_linked \ 2348 _bfd_coff_section_already_linked 2349 #define _bfd_ecoff_bfd_define_common_symbol bfd_generic_define_common_symbol 2350 2351 const bfd_target ecoffalpha_little_vec = 2352 { 2353 "ecoff-littlealpha", /* name */ 2354 bfd_target_ecoff_flavour, 2355 BFD_ENDIAN_LITTLE, /* data byte order is little */ 2356 BFD_ENDIAN_LITTLE, /* header byte order is little */ 2357 2358 (HAS_RELOC | EXEC_P | /* object flags */ 2359 HAS_LINENO | HAS_DEBUG | 2360 HAS_SYMS | HAS_LOCALS | DYNAMIC | WP_TEXT | D_PAGED), 2361 2362 (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_RELOC | SEC_CODE | SEC_DATA), 2363 0, /* leading underscore */ 2364 ' ', /* ar_pad_char */ 2365 15, /* ar_max_namelen */ 2366 0, /* match priority. */ 2367 bfd_getl64, bfd_getl_signed_64, bfd_putl64, 2368 bfd_getl32, bfd_getl_signed_32, bfd_putl32, 2369 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* data */ 2370 bfd_getl64, bfd_getl_signed_64, bfd_putl64, 2371 bfd_getl32, bfd_getl_signed_32, bfd_putl32, 2372 bfd_getl16, bfd_getl_signed_16, bfd_putl16, /* hdrs */ 2373 2374 {_bfd_dummy_target, alpha_ecoff_object_p, /* bfd_check_format */ 2375 bfd_generic_archive_p, _bfd_dummy_target}, 2376 {bfd_false, _bfd_ecoff_mkobject, /* bfd_set_format */ 2377 _bfd_generic_mkarchive, bfd_false}, 2378 {bfd_false, _bfd_ecoff_write_object_contents, /* bfd_write_contents */ 2379 _bfd_write_archive_contents, bfd_false}, 2380 2381 BFD_JUMP_TABLE_GENERIC (_bfd_ecoff), 2382 BFD_JUMP_TABLE_COPY (_bfd_ecoff), 2383 BFD_JUMP_TABLE_CORE (_bfd_nocore), 2384 BFD_JUMP_TABLE_ARCHIVE (alpha_ecoff), 2385 BFD_JUMP_TABLE_SYMBOLS (_bfd_ecoff), 2386 BFD_JUMP_TABLE_RELOCS (_bfd_ecoff), 2387 BFD_JUMP_TABLE_WRITE (_bfd_ecoff), 2388 BFD_JUMP_TABLE_LINK (_bfd_ecoff), 2389 BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), 2390 2391 NULL, 2392 2393 & alpha_ecoff_backend_data 2394 }; 2395