1 // Set implementation -*- C++ -*- 2 3 // Copyright (C) 2001-2015 Free Software Foundation, Inc. 4 // 5 // This file is part of the GNU ISO C++ Library. This library is free 6 // software; you can redistribute it and/or modify it under the 7 // terms of the GNU General Public License as published by the 8 // Free Software Foundation; either version 3, or (at your option) 9 // any later version. 10 11 // This library is distributed in the hope that it will be useful, 12 // but WITHOUT ANY WARRANTY; without even the implied warranty of 13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 // GNU General Public License for more details. 15 16 // Under Section 7 of GPL version 3, you are granted additional 17 // permissions described in the GCC Runtime Library Exception, version 18 // 3.1, as published by the Free Software Foundation. 19 20 // You should have received a copy of the GNU General Public License and 21 // a copy of the GCC Runtime Library Exception along with this program; 22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 23 // <http://www.gnu.org/licenses/>. 24 25 /* 26 * 27 * Copyright (c) 1994 28 * Hewlett-Packard Company 29 * 30 * Permission to use, copy, modify, distribute and sell this software 31 * and its documentation for any purpose is hereby granted without fee, 32 * provided that the above copyright notice appear in all copies and 33 * that both that copyright notice and this permission notice appear 34 * in supporting documentation. Hewlett-Packard Company makes no 35 * representations about the suitability of this software for any 36 * purpose. It is provided "as is" without express or implied warranty. 37 * 38 * 39 * Copyright (c) 1996,1997 40 * Silicon Graphics Computer Systems, Inc. 41 * 42 * Permission to use, copy, modify, distribute and sell this software 43 * and its documentation for any purpose is hereby granted without fee, 44 * provided that the above copyright notice appear in all copies and 45 * that both that copyright notice and this permission notice appear 46 * in supporting documentation. Silicon Graphics makes no 47 * representations about the suitability of this software for any 48 * purpose. It is provided "as is" without express or implied warranty. 49 */ 50 51 /** @file bits/stl_set.h 52 * This is an internal header file, included by other library headers. 53 * Do not attempt to use it directly. @headername{set} 54 */ 55 56 #ifndef _STL_SET_H 57 #define _STL_SET_H 1 58 59 #include <bits/concept_check.h> 60 #if __cplusplus >= 201103L 61 #include <initializer_list> 62 #endif 63 64 namespace std _GLIBCXX_VISIBILITY(default) 65 { 66 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER 67 68 /** 69 * @brief A standard container made up of unique keys, which can be 70 * retrieved in logarithmic time. 71 * 72 * @ingroup associative_containers 73 * 74 * @tparam _Key Type of key objects. 75 * @tparam _Compare Comparison function object type, defaults to less<_Key>. 76 * @tparam _Alloc Allocator type, defaults to allocator<_Key>. 77 * 78 * Meets the requirements of a <a href="tables.html#65">container</a>, a 79 * <a href="tables.html#66">reversible container</a>, and an 80 * <a href="tables.html#69">associative container</a> (using unique keys). 81 * 82 * Sets support bidirectional iterators. 83 * 84 * The private tree data is declared exactly the same way for set and 85 * multiset; the distinction is made entirely in how the tree functions are 86 * called (*_unique versus *_equal, same as the standard). 87 */ 88 template<typename _Key, typename _Compare = std::less<_Key>, 89 typename _Alloc = std::allocator<_Key> > 90 class set 91 { 92 // concept requirements 93 typedef typename _Alloc::value_type _Alloc_value_type; 94 __glibcxx_class_requires(_Key, _SGIAssignableConcept) 95 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 96 _BinaryFunctionConcept) 97 __glibcxx_class_requires2(_Key, _Alloc_value_type, _SameTypeConcept) 98 99 public: 100 // typedefs: 101 //@{ 102 /// Public typedefs. 103 typedef _Key key_type; 104 typedef _Key value_type; 105 typedef _Compare key_compare; 106 typedef _Compare value_compare; 107 typedef _Alloc allocator_type; 108 //@} 109 110 private: 111 typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template 112 rebind<_Key>::other _Key_alloc_type; 113 114 typedef _Rb_tree<key_type, value_type, _Identity<value_type>, 115 key_compare, _Key_alloc_type> _Rep_type; 116 _Rep_type _M_t; // Red-black tree representing set. 117 118 typedef __gnu_cxx::__alloc_traits<_Key_alloc_type> _Alloc_traits; 119 120 public: 121 //@{ 122 /// Iterator-related typedefs. 123 typedef typename _Alloc_traits::pointer pointer; 124 typedef typename _Alloc_traits::const_pointer const_pointer; 125 typedef typename _Alloc_traits::reference reference; 126 typedef typename _Alloc_traits::const_reference const_reference; 127 // _GLIBCXX_RESOLVE_LIB_DEFECTS 128 // DR 103. set::iterator is required to be modifiable, 129 // but this allows modification of keys. 130 typedef typename _Rep_type::const_iterator iterator; 131 typedef typename _Rep_type::const_iterator const_iterator; 132 typedef typename _Rep_type::const_reverse_iterator reverse_iterator; 133 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 134 typedef typename _Rep_type::size_type size_type; 135 typedef typename _Rep_type::difference_type difference_type; 136 //@} 137 138 // allocation/deallocation 139 /** 140 * @brief Default constructor creates no elements. 141 */ 142 set() 143 #if __cplusplus >= 201103L 144 noexcept(is_nothrow_default_constructible<allocator_type>::value) 145 #endif 146 : _M_t() { } 147 148 /** 149 * @brief Creates a %set with no elements. 150 * @param __comp Comparator to use. 151 * @param __a An allocator object. 152 */ 153 explicit 154 set(const _Compare& __comp, 155 const allocator_type& __a = allocator_type()) 156 : _M_t(__comp, _Key_alloc_type(__a)) { } 157 158 /** 159 * @brief Builds a %set from a range. 160 * @param __first An input iterator. 161 * @param __last An input iterator. 162 * 163 * Create a %set consisting of copies of the elements from 164 * [__first,__last). This is linear in N if the range is 165 * already sorted, and NlogN otherwise (where N is 166 * distance(__first,__last)). 167 */ 168 template<typename _InputIterator> 169 set(_InputIterator __first, _InputIterator __last) 170 : _M_t() 171 { _M_t._M_insert_unique(__first, __last); } 172 173 /** 174 * @brief Builds a %set from a range. 175 * @param __first An input iterator. 176 * @param __last An input iterator. 177 * @param __comp A comparison functor. 178 * @param __a An allocator object. 179 * 180 * Create a %set consisting of copies of the elements from 181 * [__first,__last). This is linear in N if the range is 182 * already sorted, and NlogN otherwise (where N is 183 * distance(__first,__last)). 184 */ 185 template<typename _InputIterator> 186 set(_InputIterator __first, _InputIterator __last, 187 const _Compare& __comp, 188 const allocator_type& __a = allocator_type()) 189 : _M_t(__comp, _Key_alloc_type(__a)) 190 { _M_t._M_insert_unique(__first, __last); } 191 192 /** 193 * @brief %Set copy constructor. 194 * @param __x A %set of identical element and allocator types. 195 * 196 * The newly-created %set uses a copy of the allocation object used 197 * by @a __x. 198 */ 199 set(const set& __x) 200 : _M_t(__x._M_t) { } 201 202 #if __cplusplus >= 201103L 203 /** 204 * @brief %Set move constructor 205 * @param __x A %set of identical element and allocator types. 206 * 207 * The newly-created %set contains the exact contents of @a x. 208 * The contents of @a x are a valid, but unspecified %set. 209 */ 210 set(set&& __x) 211 noexcept(is_nothrow_copy_constructible<_Compare>::value) 212 : _M_t(std::move(__x._M_t)) { } 213 214 /** 215 * @brief Builds a %set from an initializer_list. 216 * @param __l An initializer_list. 217 * @param __comp A comparison functor. 218 * @param __a An allocator object. 219 * 220 * Create a %set consisting of copies of the elements in the list. 221 * This is linear in N if the list is already sorted, and NlogN 222 * otherwise (where N is @a __l.size()). 223 */ 224 set(initializer_list<value_type> __l, 225 const _Compare& __comp = _Compare(), 226 const allocator_type& __a = allocator_type()) 227 : _M_t(__comp, _Key_alloc_type(__a)) 228 { _M_t._M_insert_unique(__l.begin(), __l.end()); } 229 230 /// Allocator-extended default constructor. 231 explicit 232 set(const allocator_type& __a) 233 : _M_t(_Compare(), _Key_alloc_type(__a)) { } 234 235 /// Allocator-extended copy constructor. 236 set(const set& __x, const allocator_type& __a) 237 : _M_t(__x._M_t, _Key_alloc_type(__a)) { } 238 239 /// Allocator-extended move constructor. 240 set(set&& __x, const allocator_type& __a) 241 noexcept(is_nothrow_copy_constructible<_Compare>::value 242 && _Alloc_traits::_S_always_equal()) 243 : _M_t(std::move(__x._M_t), _Key_alloc_type(__a)) { } 244 245 /// Allocator-extended initialier-list constructor. 246 set(initializer_list<value_type> __l, const allocator_type& __a) 247 : _M_t(_Compare(), _Key_alloc_type(__a)) 248 { _M_t._M_insert_unique(__l.begin(), __l.end()); } 249 250 /// Allocator-extended range constructor. 251 template<typename _InputIterator> 252 set(_InputIterator __first, _InputIterator __last, 253 const allocator_type& __a) 254 : _M_t(_Compare(), _Key_alloc_type(__a)) 255 { _M_t._M_insert_unique(__first, __last); } 256 #endif 257 258 /** 259 * @brief %Set assignment operator. 260 * @param __x A %set of identical element and allocator types. 261 * 262 * All the elements of @a __x are copied, but unlike the copy 263 * constructor, the allocator object is not copied. 264 */ 265 set& 266 operator=(const set& __x) 267 { 268 _M_t = __x._M_t; 269 return *this; 270 } 271 272 #if __cplusplus >= 201103L 273 /// Move assignment operator. 274 set& 275 operator=(set&&) = default; 276 277 /** 278 * @brief %Set list assignment operator. 279 * @param __l An initializer_list. 280 * 281 * This function fills a %set with copies of the elements in the 282 * initializer list @a __l. 283 * 284 * Note that the assignment completely changes the %set and 285 * that the resulting %set's size is the same as the number 286 * of elements assigned. Old data may be lost. 287 */ 288 set& 289 operator=(initializer_list<value_type> __l) 290 { 291 _M_t._M_assign_unique(__l.begin(), __l.end()); 292 return *this; 293 } 294 #endif 295 296 // accessors: 297 298 /// Returns the comparison object with which the %set was constructed. 299 key_compare 300 key_comp() const 301 { return _M_t.key_comp(); } 302 /// Returns the comparison object with which the %set was constructed. 303 value_compare 304 value_comp() const 305 { return _M_t.key_comp(); } 306 /// Returns the allocator object with which the %set was constructed. 307 allocator_type 308 get_allocator() const _GLIBCXX_NOEXCEPT 309 { return allocator_type(_M_t.get_allocator()); } 310 311 /** 312 * Returns a read-only (constant) iterator that points to the first 313 * element in the %set. Iteration is done in ascending order according 314 * to the keys. 315 */ 316 iterator 317 begin() const _GLIBCXX_NOEXCEPT 318 { return _M_t.begin(); } 319 320 /** 321 * Returns a read-only (constant) iterator that points one past the last 322 * element in the %set. Iteration is done in ascending order according 323 * to the keys. 324 */ 325 iterator 326 end() const _GLIBCXX_NOEXCEPT 327 { return _M_t.end(); } 328 329 /** 330 * Returns a read-only (constant) iterator that points to the last 331 * element in the %set. Iteration is done in descending order according 332 * to the keys. 333 */ 334 reverse_iterator 335 rbegin() const _GLIBCXX_NOEXCEPT 336 { return _M_t.rbegin(); } 337 338 /** 339 * Returns a read-only (constant) reverse iterator that points to the 340 * last pair in the %set. Iteration is done in descending order 341 * according to the keys. 342 */ 343 reverse_iterator 344 rend() const _GLIBCXX_NOEXCEPT 345 { return _M_t.rend(); } 346 347 #if __cplusplus >= 201103L 348 /** 349 * Returns a read-only (constant) iterator that points to the first 350 * element in the %set. Iteration is done in ascending order according 351 * to the keys. 352 */ 353 iterator 354 cbegin() const noexcept 355 { return _M_t.begin(); } 356 357 /** 358 * Returns a read-only (constant) iterator that points one past the last 359 * element in the %set. Iteration is done in ascending order according 360 * to the keys. 361 */ 362 iterator 363 cend() const noexcept 364 { return _M_t.end(); } 365 366 /** 367 * Returns a read-only (constant) iterator that points to the last 368 * element in the %set. Iteration is done in descending order according 369 * to the keys. 370 */ 371 reverse_iterator 372 crbegin() const noexcept 373 { return _M_t.rbegin(); } 374 375 /** 376 * Returns a read-only (constant) reverse iterator that points to the 377 * last pair in the %set. Iteration is done in descending order 378 * according to the keys. 379 */ 380 reverse_iterator 381 crend() const noexcept 382 { return _M_t.rend(); } 383 #endif 384 385 /// Returns true if the %set is empty. 386 bool 387 empty() const _GLIBCXX_NOEXCEPT 388 { return _M_t.empty(); } 389 390 /// Returns the size of the %set. 391 size_type 392 size() const _GLIBCXX_NOEXCEPT 393 { return _M_t.size(); } 394 395 /// Returns the maximum size of the %set. 396 size_type 397 max_size() const _GLIBCXX_NOEXCEPT 398 { return _M_t.max_size(); } 399 400 /** 401 * @brief Swaps data with another %set. 402 * @param __x A %set of the same element and allocator types. 403 * 404 * This exchanges the elements between two sets in constant 405 * time. (It is only swapping a pointer, an integer, and an 406 * instance of the @c Compare type (which itself is often 407 * stateless and empty), so it should be quite fast.) Note 408 * that the global std::swap() function is specialized such 409 * that std::swap(s1,s2) will feed to this function. 410 */ 411 void 412 swap(set& __x) 413 #if __cplusplus >= 201103L 414 noexcept(_Alloc_traits::_S_nothrow_swap()) 415 #endif 416 { _M_t.swap(__x._M_t); } 417 418 // insert/erase 419 #if __cplusplus >= 201103L 420 /** 421 * @brief Attempts to build and insert an element into the %set. 422 * @param __args Arguments used to generate an element. 423 * @return A pair, of which the first element is an iterator that points 424 * to the possibly inserted element, and the second is a bool 425 * that is true if the element was actually inserted. 426 * 427 * This function attempts to build and insert an element into the %set. 428 * A %set relies on unique keys and thus an element is only inserted if 429 * it is not already present in the %set. 430 * 431 * Insertion requires logarithmic time. 432 */ 433 template<typename... _Args> 434 std::pair<iterator, bool> 435 emplace(_Args&&... __args) 436 { return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); } 437 438 /** 439 * @brief Attempts to insert an element into the %set. 440 * @param __pos An iterator that serves as a hint as to where the 441 * element should be inserted. 442 * @param __args Arguments used to generate the element to be 443 * inserted. 444 * @return An iterator that points to the element with key equivalent to 445 * the one generated from @a __args (may or may not be the 446 * element itself). 447 * 448 * This function is not concerned about whether the insertion took place, 449 * and thus does not return a boolean like the single-argument emplace() 450 * does. Note that the first parameter is only a hint and can 451 * potentially improve the performance of the insertion process. A bad 452 * hint would cause no gains in efficiency. 453 * 454 * For more on @a hinting, see: 455 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints 456 * 457 * Insertion requires logarithmic time (if the hint is not taken). 458 */ 459 template<typename... _Args> 460 iterator 461 emplace_hint(const_iterator __pos, _Args&&... __args) 462 { 463 return _M_t._M_emplace_hint_unique(__pos, 464 std::forward<_Args>(__args)...); 465 } 466 #endif 467 468 /** 469 * @brief Attempts to insert an element into the %set. 470 * @param __x Element to be inserted. 471 * @return A pair, of which the first element is an iterator that points 472 * to the possibly inserted element, and the second is a bool 473 * that is true if the element was actually inserted. 474 * 475 * This function attempts to insert an element into the %set. A %set 476 * relies on unique keys and thus an element is only inserted if it is 477 * not already present in the %set. 478 * 479 * Insertion requires logarithmic time. 480 */ 481 std::pair<iterator, bool> 482 insert(const value_type& __x) 483 { 484 std::pair<typename _Rep_type::iterator, bool> __p = 485 _M_t._M_insert_unique(__x); 486 return std::pair<iterator, bool>(__p.first, __p.second); 487 } 488 489 #if __cplusplus >= 201103L 490 std::pair<iterator, bool> 491 insert(value_type&& __x) 492 { 493 std::pair<typename _Rep_type::iterator, bool> __p = 494 _M_t._M_insert_unique(std::move(__x)); 495 return std::pair<iterator, bool>(__p.first, __p.second); 496 } 497 #endif 498 499 /** 500 * @brief Attempts to insert an element into the %set. 501 * @param __position An iterator that serves as a hint as to where the 502 * element should be inserted. 503 * @param __x Element to be inserted. 504 * @return An iterator that points to the element with key of 505 * @a __x (may or may not be the element passed in). 506 * 507 * This function is not concerned about whether the insertion took place, 508 * and thus does not return a boolean like the single-argument insert() 509 * does. Note that the first parameter is only a hint and can 510 * potentially improve the performance of the insertion process. A bad 511 * hint would cause no gains in efficiency. 512 * 513 * For more on @a hinting, see: 514 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints 515 * 516 * Insertion requires logarithmic time (if the hint is not taken). 517 */ 518 iterator 519 insert(const_iterator __position, const value_type& __x) 520 { return _M_t._M_insert_unique_(__position, __x); } 521 522 #if __cplusplus >= 201103L 523 iterator 524 insert(const_iterator __position, value_type&& __x) 525 { return _M_t._M_insert_unique_(__position, std::move(__x)); } 526 #endif 527 528 /** 529 * @brief A template function that attempts to insert a range 530 * of elements. 531 * @param __first Iterator pointing to the start of the range to be 532 * inserted. 533 * @param __last Iterator pointing to the end of the range. 534 * 535 * Complexity similar to that of the range constructor. 536 */ 537 template<typename _InputIterator> 538 void 539 insert(_InputIterator __first, _InputIterator __last) 540 { _M_t._M_insert_unique(__first, __last); } 541 542 #if __cplusplus >= 201103L 543 /** 544 * @brief Attempts to insert a list of elements into the %set. 545 * @param __l A std::initializer_list<value_type> of elements 546 * to be inserted. 547 * 548 * Complexity similar to that of the range constructor. 549 */ 550 void 551 insert(initializer_list<value_type> __l) 552 { this->insert(__l.begin(), __l.end()); } 553 #endif 554 555 #if __cplusplus >= 201103L 556 // _GLIBCXX_RESOLVE_LIB_DEFECTS 557 // DR 130. Associative erase should return an iterator. 558 /** 559 * @brief Erases an element from a %set. 560 * @param __position An iterator pointing to the element to be erased. 561 * @return An iterator pointing to the element immediately following 562 * @a __position prior to the element being erased. If no such 563 * element exists, end() is returned. 564 * 565 * This function erases an element, pointed to by the given iterator, 566 * from a %set. Note that this function only erases the element, and 567 * that if the element is itself a pointer, the pointed-to memory is not 568 * touched in any way. Managing the pointer is the user's 569 * responsibility. 570 */ 571 _GLIBCXX_ABI_TAG_CXX11 572 iterator 573 erase(const_iterator __position) 574 { return _M_t.erase(__position); } 575 #else 576 /** 577 * @brief Erases an element from a %set. 578 * @param position An iterator pointing to the element to be erased. 579 * 580 * This function erases an element, pointed to by the given iterator, 581 * from a %set. Note that this function only erases the element, and 582 * that if the element is itself a pointer, the pointed-to memory is not 583 * touched in any way. Managing the pointer is the user's 584 * responsibility. 585 */ 586 void 587 erase(iterator __position) 588 { _M_t.erase(__position); } 589 #endif 590 591 /** 592 * @brief Erases elements according to the provided key. 593 * @param __x Key of element to be erased. 594 * @return The number of elements erased. 595 * 596 * This function erases all the elements located by the given key from 597 * a %set. 598 * Note that this function only erases the element, and that if 599 * the element is itself a pointer, the pointed-to memory is not touched 600 * in any way. Managing the pointer is the user's responsibility. 601 */ 602 size_type 603 erase(const key_type& __x) 604 { return _M_t.erase(__x); } 605 606 #if __cplusplus >= 201103L 607 // _GLIBCXX_RESOLVE_LIB_DEFECTS 608 // DR 130. Associative erase should return an iterator. 609 /** 610 * @brief Erases a [__first,__last) range of elements from a %set. 611 * @param __first Iterator pointing to the start of the range to be 612 * erased. 613 614 * @param __last Iterator pointing to the end of the range to 615 * be erased. 616 * @return The iterator @a __last. 617 * 618 * This function erases a sequence of elements from a %set. 619 * Note that this function only erases the element, and that if 620 * the element is itself a pointer, the pointed-to memory is not touched 621 * in any way. Managing the pointer is the user's responsibility. 622 */ 623 _GLIBCXX_ABI_TAG_CXX11 624 iterator 625 erase(const_iterator __first, const_iterator __last) 626 { return _M_t.erase(__first, __last); } 627 #else 628 /** 629 * @brief Erases a [first,last) range of elements from a %set. 630 * @param __first Iterator pointing to the start of the range to be 631 * erased. 632 * @param __last Iterator pointing to the end of the range to 633 * be erased. 634 * 635 * This function erases a sequence of elements from a %set. 636 * Note that this function only erases the element, and that if 637 * the element is itself a pointer, the pointed-to memory is not touched 638 * in any way. Managing the pointer is the user's responsibility. 639 */ 640 void 641 erase(iterator __first, iterator __last) 642 { _M_t.erase(__first, __last); } 643 #endif 644 645 /** 646 * Erases all elements in a %set. Note that this function only erases 647 * the elements, and that if the elements themselves are pointers, the 648 * pointed-to memory is not touched in any way. Managing the pointer is 649 * the user's responsibility. 650 */ 651 void 652 clear() _GLIBCXX_NOEXCEPT 653 { _M_t.clear(); } 654 655 // set operations: 656 657 //@{ 658 /** 659 * @brief Finds the number of elements. 660 * @param __x Element to located. 661 * @return Number of elements with specified key. 662 * 663 * This function only makes sense for multisets; for set the result will 664 * either be 0 (not present) or 1 (present). 665 */ 666 size_type 667 count(const key_type& __x) const 668 { return _M_t.find(__x) == _M_t.end() ? 0 : 1; } 669 670 #if __cplusplus > 201103L 671 template<typename _Kt> 672 auto 673 count(const _Kt& __x) const 674 -> decltype(_M_t._M_count_tr(__x)) 675 { return _M_t._M_find_tr(__x) == _M_t.end() ? 0 : 1; } 676 #endif 677 //@} 678 679 // _GLIBCXX_RESOLVE_LIB_DEFECTS 680 // 214. set::find() missing const overload 681 //@{ 682 /** 683 * @brief Tries to locate an element in a %set. 684 * @param __x Element to be located. 685 * @return Iterator pointing to sought-after element, or end() if not 686 * found. 687 * 688 * This function takes a key and tries to locate the element with which 689 * the key matches. If successful the function returns an iterator 690 * pointing to the sought after element. If unsuccessful it returns the 691 * past-the-end ( @c end() ) iterator. 692 */ 693 iterator 694 find(const key_type& __x) 695 { return _M_t.find(__x); } 696 697 const_iterator 698 find(const key_type& __x) const 699 { return _M_t.find(__x); } 700 701 #if __cplusplus > 201103L 702 template<typename _Kt> 703 auto 704 find(const _Kt& __x) 705 -> decltype(iterator{_M_t._M_find_tr(__x)}) 706 { return iterator{_M_t._M_find_tr(__x)}; } 707 708 template<typename _Kt> 709 auto 710 find(const _Kt& __x) const 711 -> decltype(const_iterator{_M_t._M_find_tr(__x)}) 712 { return const_iterator{_M_t._M_find_tr(__x)}; } 713 #endif 714 //@} 715 716 //@{ 717 /** 718 * @brief Finds the beginning of a subsequence matching given key. 719 * @param __x Key to be located. 720 * @return Iterator pointing to first element equal to or greater 721 * than key, or end(). 722 * 723 * This function returns the first element of a subsequence of elements 724 * that matches the given key. If unsuccessful it returns an iterator 725 * pointing to the first element that has a greater value than given key 726 * or end() if no such element exists. 727 */ 728 iterator 729 lower_bound(const key_type& __x) 730 { return _M_t.lower_bound(__x); } 731 732 const_iterator 733 lower_bound(const key_type& __x) const 734 { return _M_t.lower_bound(__x); } 735 736 #if __cplusplus > 201103L 737 template<typename _Kt> 738 auto 739 lower_bound(const _Kt& __x) 740 -> decltype(_M_t._M_lower_bound_tr(__x)) 741 { return _M_t._M_lower_bound_tr(__x); } 742 743 template<typename _Kt> 744 auto 745 lower_bound(const _Kt& __x) const 746 -> decltype(_M_t._M_lower_bound_tr(__x)) 747 { return _M_t._M_lower_bound_tr(__x); } 748 #endif 749 //@} 750 751 //@{ 752 /** 753 * @brief Finds the end of a subsequence matching given key. 754 * @param __x Key to be located. 755 * @return Iterator pointing to the first element 756 * greater than key, or end(). 757 */ 758 iterator 759 upper_bound(const key_type& __x) 760 { return _M_t.upper_bound(__x); } 761 762 const_iterator 763 upper_bound(const key_type& __x) const 764 { return _M_t.upper_bound(__x); } 765 766 #if __cplusplus > 201103L 767 template<typename _Kt> 768 auto 769 upper_bound(const _Kt& __x) 770 -> decltype(_M_t._M_upper_bound_tr(__x)) 771 { return _M_t._M_upper_bound_tr(__x); } 772 773 template<typename _Kt> 774 auto 775 upper_bound(const _Kt& __x) const 776 -> decltype(_M_t._M_upper_bound_tr(__x)) 777 { return _M_t._M_upper_bound_tr(__x); } 778 #endif 779 //@} 780 781 //@{ 782 /** 783 * @brief Finds a subsequence matching given key. 784 * @param __x Key to be located. 785 * @return Pair of iterators that possibly points to the subsequence 786 * matching given key. 787 * 788 * This function is equivalent to 789 * @code 790 * std::make_pair(c.lower_bound(val), 791 * c.upper_bound(val)) 792 * @endcode 793 * (but is faster than making the calls separately). 794 * 795 * This function probably only makes sense for multisets. 796 */ 797 std::pair<iterator, iterator> 798 equal_range(const key_type& __x) 799 { return _M_t.equal_range(__x); } 800 801 std::pair<const_iterator, const_iterator> 802 equal_range(const key_type& __x) const 803 { return _M_t.equal_range(__x); } 804 805 #if __cplusplus > 201103L 806 template<typename _Kt> 807 auto 808 equal_range(const _Kt& __x) 809 -> decltype(_M_t._M_equal_range_tr(__x)) 810 { return _M_t._M_equal_range_tr(__x); } 811 812 template<typename _Kt> 813 auto 814 equal_range(const _Kt& __x) const 815 -> decltype(_M_t._M_equal_range_tr(__x)) 816 { return _M_t._M_equal_range_tr(__x); } 817 #endif 818 //@} 819 820 template<typename _K1, typename _C1, typename _A1> 821 friend bool 822 operator==(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&); 823 824 template<typename _K1, typename _C1, typename _A1> 825 friend bool 826 operator<(const set<_K1, _C1, _A1>&, const set<_K1, _C1, _A1>&); 827 }; 828 829 830 /** 831 * @brief Set equality comparison. 832 * @param __x A %set. 833 * @param __y A %set of the same type as @a x. 834 * @return True iff the size and elements of the sets are equal. 835 * 836 * This is an equivalence relation. It is linear in the size of the sets. 837 * Sets are considered equivalent if their sizes are equal, and if 838 * corresponding elements compare equal. 839 */ 840 template<typename _Key, typename _Compare, typename _Alloc> 841 inline bool 842 operator==(const set<_Key, _Compare, _Alloc>& __x, 843 const set<_Key, _Compare, _Alloc>& __y) 844 { return __x._M_t == __y._M_t; } 845 846 /** 847 * @brief Set ordering relation. 848 * @param __x A %set. 849 * @param __y A %set of the same type as @a x. 850 * @return True iff @a __x is lexicographically less than @a __y. 851 * 852 * This is a total ordering relation. It is linear in the size of the 853 * sets. The elements must be comparable with @c <. 854 * 855 * See std::lexicographical_compare() for how the determination is made. 856 */ 857 template<typename _Key, typename _Compare, typename _Alloc> 858 inline bool 859 operator<(const set<_Key, _Compare, _Alloc>& __x, 860 const set<_Key, _Compare, _Alloc>& __y) 861 { return __x._M_t < __y._M_t; } 862 863 /// Returns !(x == y). 864 template<typename _Key, typename _Compare, typename _Alloc> 865 inline bool 866 operator!=(const set<_Key, _Compare, _Alloc>& __x, 867 const set<_Key, _Compare, _Alloc>& __y) 868 { return !(__x == __y); } 869 870 /// Returns y < x. 871 template<typename _Key, typename _Compare, typename _Alloc> 872 inline bool 873 operator>(const set<_Key, _Compare, _Alloc>& __x, 874 const set<_Key, _Compare, _Alloc>& __y) 875 { return __y < __x; } 876 877 /// Returns !(y < x) 878 template<typename _Key, typename _Compare, typename _Alloc> 879 inline bool 880 operator<=(const set<_Key, _Compare, _Alloc>& __x, 881 const set<_Key, _Compare, _Alloc>& __y) 882 { return !(__y < __x); } 883 884 /// Returns !(x < y) 885 template<typename _Key, typename _Compare, typename _Alloc> 886 inline bool 887 operator>=(const set<_Key, _Compare, _Alloc>& __x, 888 const set<_Key, _Compare, _Alloc>& __y) 889 { return !(__x < __y); } 890 891 /// See std::set::swap(). 892 template<typename _Key, typename _Compare, typename _Alloc> 893 inline void 894 swap(set<_Key, _Compare, _Alloc>& __x, set<_Key, _Compare, _Alloc>& __y) 895 { __x.swap(__y); } 896 897 _GLIBCXX_END_NAMESPACE_CONTAINER 898 } //namespace std 899 #endif /* _STL_SET_H */ 900