xref: /netbsd-src/external/gpl3/gcc/dist/libstdc++-v3/include/bits/stl_multimap.h (revision d16b7486a53dcb8072b60ec6fcb4373a2d0c27b7)
1 // Multimap implementation -*- C++ -*-
2 
3 // Copyright (C) 2001-2022 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /*
26  *
27  * Copyright (c) 1994
28  * Hewlett-Packard Company
29  *
30  * Permission to use, copy, modify, distribute and sell this software
31  * and its documentation for any purpose is hereby granted without fee,
32  * provided that the above copyright notice appear in all copies and
33  * that both that copyright notice and this permission notice appear
34  * in supporting documentation.  Hewlett-Packard Company makes no
35  * representations about the suitability of this software for any
36  * purpose.  It is provided "as is" without express or implied warranty.
37  *
38  *
39  * Copyright (c) 1996,1997
40  * Silicon Graphics Computer Systems, Inc.
41  *
42  * Permission to use, copy, modify, distribute and sell this software
43  * and its documentation for any purpose is hereby granted without fee,
44  * provided that the above copyright notice appear in all copies and
45  * that both that copyright notice and this permission notice appear
46  * in supporting documentation.  Silicon Graphics makes no
47  * representations about the suitability of this software for any
48  * purpose.  It is provided "as is" without express or implied warranty.
49  */
50 
51 /** @file bits/stl_multimap.h
52  *  This is an internal header file, included by other library headers.
53  *  Do not attempt to use it directly. @headername{map}
54  */
55 
56 #ifndef _STL_MULTIMAP_H
57 #define _STL_MULTIMAP_H 1
58 
59 #include <bits/concept_check.h>
60 #if __cplusplus >= 201103L
61 #include <initializer_list>
62 #endif
63 
64 namespace std _GLIBCXX_VISIBILITY(default)
65 {
66 _GLIBCXX_BEGIN_NAMESPACE_VERSION
67 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
68 
69   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
70     class map;
71 
72   /**
73    *  @brief A standard container made up of (key,value) pairs, which can be
74    *  retrieved based on a key, in logarithmic time.
75    *
76    *  @ingroup associative_containers
77    *
78    *  @tparam _Key  Type of key objects.
79    *  @tparam  _Tp  Type of mapped objects.
80    *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
81    *  @tparam _Alloc  Allocator type, defaults to
82    *                  allocator<pair<const _Key, _Tp>.
83    *
84    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
85    *  <a href="tables.html#66">reversible container</a>, and an
86    *  <a href="tables.html#69">associative container</a> (using equivalent
87    *  keys).  For a @c multimap<Key,T> the key_type is Key, the mapped_type
88    *  is T, and the value_type is std::pair<const Key,T>.
89    *
90    *  Multimaps support bidirectional iterators.
91    *
92    *  The private tree data is declared exactly the same way for map and
93    *  multimap; the distinction is made entirely in how the tree functions are
94    *  called (*_unique versus *_equal, same as the standard).
95   */
96   template <typename _Key, typename _Tp,
97 	    typename _Compare = std::less<_Key>,
98 	    typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
99     class multimap
100     {
101     public:
102       typedef _Key					key_type;
103       typedef _Tp					mapped_type;
104       typedef std::pair<const _Key, _Tp>		value_type;
105       typedef _Compare					key_compare;
106       typedef _Alloc					allocator_type;
107 
108     private:
109 #ifdef _GLIBCXX_CONCEPT_CHECKS
110       // concept requirements
111       typedef typename _Alloc::value_type		_Alloc_value_type;
112 # if __cplusplus < 201103L
113       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
114 # endif
115       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
116 				_BinaryFunctionConcept)
117       __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
118 #endif
119 
120 #if __cplusplus >= 201103L
121 #if __cplusplus > 201703L || defined __STRICT_ANSI__
122       static_assert(is_same<typename _Alloc::value_type, value_type>::value,
123 	  "std::multimap must have the same value_type as its allocator");
124 #endif
125 #endif
126 
127     public:
128 #pragma GCC diagnostic push
129 #pragma GCC diagnostic ignored "-Wdeprecated-declarations"
130       class value_compare
131       : public std::binary_function<value_type, value_type, bool>
132       {
133 	friend class multimap<_Key, _Tp, _Compare, _Alloc>;
134       protected:
135 	_Compare comp;
136 
137 	value_compare(_Compare __c)
138 	: comp(__c) { }
139 
140       public:
141 	bool operator()(const value_type& __x, const value_type& __y) const
142 	{ return comp(__x.first, __y.first); }
143       };
144 #pragma GCC diagnostic pop
145 
146     private:
147       /// This turns a red-black tree into a [multi]map.
148       typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
149 	rebind<value_type>::other _Pair_alloc_type;
150 
151       typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
152 		       key_compare, _Pair_alloc_type> _Rep_type;
153       /// The actual tree structure.
154       _Rep_type _M_t;
155 
156       typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
157 
158     public:
159       // many of these are specified differently in ISO, but the following are
160       // "functionally equivalent"
161       typedef typename _Alloc_traits::pointer		 pointer;
162       typedef typename _Alloc_traits::const_pointer	 const_pointer;
163       typedef typename _Alloc_traits::reference		 reference;
164       typedef typename _Alloc_traits::const_reference	 const_reference;
165       typedef typename _Rep_type::iterator		 iterator;
166       typedef typename _Rep_type::const_iterator	 const_iterator;
167       typedef typename _Rep_type::size_type		 size_type;
168       typedef typename _Rep_type::difference_type	 difference_type;
169       typedef typename _Rep_type::reverse_iterator	 reverse_iterator;
170       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
171 
172 #if __cplusplus > 201402L
173       using node_type = typename _Rep_type::node_type;
174 #endif
175 
176       // [23.3.2] construct/copy/destroy
177       // (get_allocator() is also listed in this section)
178 
179       /**
180        *  @brief  Default constructor creates no elements.
181        */
182 #if __cplusplus < 201103L
183       multimap() : _M_t() { }
184 #else
185       multimap() = default;
186 #endif
187 
188       /**
189        *  @brief  Creates a %multimap with no elements.
190        *  @param  __comp  A comparison object.
191        *  @param  __a  An allocator object.
192        */
193       explicit
194       multimap(const _Compare& __comp,
195 	       const allocator_type& __a = allocator_type())
196       : _M_t(__comp, _Pair_alloc_type(__a)) { }
197 
198       /**
199        *  @brief  %Multimap copy constructor.
200        *
201        *  Whether the allocator is copied depends on the allocator traits.
202        */
203 #if __cplusplus < 201103L
204       multimap(const multimap& __x)
205       : _M_t(__x._M_t) { }
206 #else
207       multimap(const multimap&) = default;
208 
209       /**
210        *  @brief  %Multimap move constructor.
211        *
212        *  The newly-created %multimap contains the exact contents of the
213        *  moved instance. The moved instance is a valid, but unspecified
214        *  %multimap.
215        */
216       multimap(multimap&&) = default;
217 
218       /**
219        *  @brief  Builds a %multimap from an initializer_list.
220        *  @param  __l  An initializer_list.
221        *  @param  __comp  A comparison functor.
222        *  @param  __a  An allocator object.
223        *
224        *  Create a %multimap consisting of copies of the elements from
225        *  the initializer_list.  This is linear in N if the list is already
226        *  sorted, and NlogN otherwise (where N is @a __l.size()).
227        */
228       multimap(initializer_list<value_type> __l,
229 	       const _Compare& __comp = _Compare(),
230 	       const allocator_type& __a = allocator_type())
231       : _M_t(__comp, _Pair_alloc_type(__a))
232       { _M_t._M_insert_range_equal(__l.begin(), __l.end()); }
233 
234       /// Allocator-extended default constructor.
235       explicit
236       multimap(const allocator_type& __a)
237       : _M_t(_Pair_alloc_type(__a)) { }
238 
239       /// Allocator-extended copy constructor.
240       multimap(const multimap& __m,
241 	       const __type_identity_t<allocator_type>& __a)
242       : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
243 
244       /// Allocator-extended move constructor.
245       multimap(multimap&& __m, const __type_identity_t<allocator_type>& __a)
246       noexcept(is_nothrow_copy_constructible<_Compare>::value
247 	       && _Alloc_traits::_S_always_equal())
248       : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
249 
250       /// Allocator-extended initialier-list constructor.
251       multimap(initializer_list<value_type> __l, const allocator_type& __a)
252       : _M_t(_Pair_alloc_type(__a))
253       { _M_t._M_insert_range_equal(__l.begin(), __l.end()); }
254 
255       /// Allocator-extended range constructor.
256       template<typename _InputIterator>
257 	multimap(_InputIterator __first, _InputIterator __last,
258 		 const allocator_type& __a)
259 	: _M_t(_Pair_alloc_type(__a))
260 	{ _M_t._M_insert_range_equal(__first, __last); }
261 #endif
262 
263       /**
264        *  @brief  Builds a %multimap from a range.
265        *  @param  __first  An input iterator.
266        *  @param  __last  An input iterator.
267        *
268        *  Create a %multimap consisting of copies of the elements from
269        *  [__first,__last).  This is linear in N if the range is already sorted,
270        *  and NlogN otherwise (where N is distance(__first,__last)).
271        */
272       template<typename _InputIterator>
273 	multimap(_InputIterator __first, _InputIterator __last)
274 	: _M_t()
275 	{ _M_t._M_insert_range_equal(__first, __last); }
276 
277       /**
278        *  @brief  Builds a %multimap from a range.
279        *  @param  __first  An input iterator.
280        *  @param  __last  An input iterator.
281        *  @param  __comp  A comparison functor.
282        *  @param  __a  An allocator object.
283        *
284        *  Create a %multimap consisting of copies of the elements from
285        *  [__first,__last).  This is linear in N if the range is already sorted,
286        *  and NlogN otherwise (where N is distance(__first,__last)).
287        */
288       template<typename _InputIterator>
289 	multimap(_InputIterator __first, _InputIterator __last,
290 		 const _Compare& __comp,
291 		 const allocator_type& __a = allocator_type())
292 	: _M_t(__comp, _Pair_alloc_type(__a))
293 	{ _M_t._M_insert_range_equal(__first, __last); }
294 
295 #if __cplusplus >= 201103L
296       /**
297        *  The dtor only erases the elements, and note that if the elements
298        *  themselves are pointers, the pointed-to memory is not touched in any
299        *  way. Managing the pointer is the user's responsibility.
300        */
301       ~multimap() = default;
302 #endif
303 
304       /**
305        *  @brief  %Multimap assignment operator.
306        *
307        *  Whether the allocator is copied depends on the allocator traits.
308        */
309 #if __cplusplus < 201103L
310       multimap&
311       operator=(const multimap& __x)
312       {
313 	_M_t = __x._M_t;
314 	return *this;
315       }
316 #else
317       multimap&
318       operator=(const multimap&) = default;
319 
320       /// Move assignment operator.
321       multimap&
322       operator=(multimap&&) = default;
323 
324       /**
325        *  @brief  %Multimap list assignment operator.
326        *  @param  __l  An initializer_list.
327        *
328        *  This function fills a %multimap with copies of the elements
329        *  in the initializer list @a __l.
330        *
331        *  Note that the assignment completely changes the %multimap and
332        *  that the resulting %multimap's size is the same as the number
333        *  of elements assigned.
334        */
335       multimap&
336       operator=(initializer_list<value_type> __l)
337       {
338 	_M_t._M_assign_equal(__l.begin(), __l.end());
339 	return *this;
340       }
341 #endif
342 
343       /// Get a copy of the memory allocation object.
344       allocator_type
345       get_allocator() const _GLIBCXX_NOEXCEPT
346       { return allocator_type(_M_t.get_allocator()); }
347 
348       // iterators
349       /**
350        *  Returns a read/write iterator that points to the first pair in the
351        *  %multimap.  Iteration is done in ascending order according to the
352        *  keys.
353        */
354       iterator
355       begin() _GLIBCXX_NOEXCEPT
356       { return _M_t.begin(); }
357 
358       /**
359        *  Returns a read-only (constant) iterator that points to the first pair
360        *  in the %multimap.  Iteration is done in ascending order according to
361        *  the keys.
362        */
363       const_iterator
364       begin() const _GLIBCXX_NOEXCEPT
365       { return _M_t.begin(); }
366 
367       /**
368        *  Returns a read/write iterator that points one past the last pair in
369        *  the %multimap.  Iteration is done in ascending order according to the
370        *  keys.
371        */
372       iterator
373       end() _GLIBCXX_NOEXCEPT
374       { return _M_t.end(); }
375 
376       /**
377        *  Returns a read-only (constant) iterator that points one past the last
378        *  pair in the %multimap.  Iteration is done in ascending order according
379        *  to the keys.
380        */
381       const_iterator
382       end() const _GLIBCXX_NOEXCEPT
383       { return _M_t.end(); }
384 
385       /**
386        *  Returns a read/write reverse iterator that points to the last pair in
387        *  the %multimap.  Iteration is done in descending order according to the
388        *  keys.
389        */
390       reverse_iterator
391       rbegin() _GLIBCXX_NOEXCEPT
392       { return _M_t.rbegin(); }
393 
394       /**
395        *  Returns a read-only (constant) reverse iterator that points to the
396        *  last pair in the %multimap.  Iteration is done in descending order
397        *  according to the keys.
398        */
399       const_reverse_iterator
400       rbegin() const _GLIBCXX_NOEXCEPT
401       { return _M_t.rbegin(); }
402 
403       /**
404        *  Returns a read/write reverse iterator that points to one before the
405        *  first pair in the %multimap.  Iteration is done in descending order
406        *  according to the keys.
407        */
408       reverse_iterator
409       rend() _GLIBCXX_NOEXCEPT
410       { return _M_t.rend(); }
411 
412       /**
413        *  Returns a read-only (constant) reverse iterator that points to one
414        *  before the first pair in the %multimap.  Iteration is done in
415        *  descending order according to the keys.
416        */
417       const_reverse_iterator
418       rend() const _GLIBCXX_NOEXCEPT
419       { return _M_t.rend(); }
420 
421 #if __cplusplus >= 201103L
422       /**
423        *  Returns a read-only (constant) iterator that points to the first pair
424        *  in the %multimap.  Iteration is done in ascending order according to
425        *  the keys.
426        */
427       const_iterator
428       cbegin() const noexcept
429       { return _M_t.begin(); }
430 
431       /**
432        *  Returns a read-only (constant) iterator that points one past the last
433        *  pair in the %multimap.  Iteration is done in ascending order according
434        *  to the keys.
435        */
436       const_iterator
437       cend() const noexcept
438       { return _M_t.end(); }
439 
440       /**
441        *  Returns a read-only (constant) reverse iterator that points to the
442        *  last pair in the %multimap.  Iteration is done in descending order
443        *  according to the keys.
444        */
445       const_reverse_iterator
446       crbegin() const noexcept
447       { return _M_t.rbegin(); }
448 
449       /**
450        *  Returns a read-only (constant) reverse iterator that points to one
451        *  before the first pair in the %multimap.  Iteration is done in
452        *  descending order according to the keys.
453        */
454       const_reverse_iterator
455       crend() const noexcept
456       { return _M_t.rend(); }
457 #endif
458 
459       // capacity
460       /** Returns true if the %multimap is empty.  */
461       _GLIBCXX_NODISCARD bool
462       empty() const _GLIBCXX_NOEXCEPT
463       { return _M_t.empty(); }
464 
465       /** Returns the size of the %multimap.  */
466       size_type
467       size() const _GLIBCXX_NOEXCEPT
468       { return _M_t.size(); }
469 
470       /** Returns the maximum size of the %multimap.  */
471       size_type
472       max_size() const _GLIBCXX_NOEXCEPT
473       { return _M_t.max_size(); }
474 
475       // modifiers
476 #if __cplusplus >= 201103L
477       /**
478        *  @brief Build and insert a std::pair into the %multimap.
479        *
480        *  @param __args  Arguments used to generate a new pair instance (see
481        *	        std::piecewise_contruct for passing arguments to each
482        *	        part of the pair constructor).
483        *
484        *  @return An iterator that points to the inserted (key,value) pair.
485        *
486        *  This function builds and inserts a (key, value) %pair into the
487        *  %multimap.
488        *  Contrary to a std::map the %multimap does not rely on unique keys and
489        *  thus multiple pairs with the same key can be inserted.
490        *
491        *  Insertion requires logarithmic time.
492        */
493       template<typename... _Args>
494 	iterator
495 	emplace(_Args&&... __args)
496 	{ return _M_t._M_emplace_equal(std::forward<_Args>(__args)...); }
497 
498       /**
499        *  @brief Builds and inserts a std::pair into the %multimap.
500        *
501        *  @param  __pos  An iterator that serves as a hint as to where the pair
502        *                should be inserted.
503        *  @param  __args  Arguments used to generate a new pair instance (see
504        *	         std::piecewise_contruct for passing arguments to each
505        *	         part of the pair constructor).
506        *  @return An iterator that points to the inserted (key,value) pair.
507        *
508        *  This function inserts a (key, value) pair into the %multimap.
509        *  Contrary to a std::map the %multimap does not rely on unique keys and
510        *  thus multiple pairs with the same key can be inserted.
511        *  Note that the first parameter is only a hint and can potentially
512        *  improve the performance of the insertion process.  A bad hint would
513        *  cause no gains in efficiency.
514        *
515        *  For more on @a hinting, see:
516        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
517        *
518        *  Insertion requires logarithmic time (if the hint is not taken).
519        */
520       template<typename... _Args>
521 	iterator
522 	emplace_hint(const_iterator __pos, _Args&&... __args)
523 	{
524 	  return _M_t._M_emplace_hint_equal(__pos,
525 					    std::forward<_Args>(__args)...);
526 	}
527 #endif
528 
529       /**
530        *  @brief Inserts a std::pair into the %multimap.
531        *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
532        *             of pairs).
533        *  @return An iterator that points to the inserted (key,value) pair.
534        *
535        *  This function inserts a (key, value) pair into the %multimap.
536        *  Contrary to a std::map the %multimap does not rely on unique keys and
537        *  thus multiple pairs with the same key can be inserted.
538        *
539        *  Insertion requires logarithmic time.
540        *  @{
541        */
542       iterator
543       insert(const value_type& __x)
544       { return _M_t._M_insert_equal(__x); }
545 
546 #if __cplusplus >= 201103L
547       // _GLIBCXX_RESOLVE_LIB_DEFECTS
548       // 2354. Unnecessary copying when inserting into maps with braced-init
549       iterator
550       insert(value_type&& __x)
551       { return _M_t._M_insert_equal(std::move(__x)); }
552 
553       template<typename _Pair>
554 	__enable_if_t<is_constructible<value_type, _Pair>::value, iterator>
555 	insert(_Pair&& __x)
556 	{ return _M_t._M_emplace_equal(std::forward<_Pair>(__x)); }
557 #endif
558       /// @}
559 
560       /**
561        *  @brief Inserts a std::pair into the %multimap.
562        *  @param  __position  An iterator that serves as a hint as to where the
563        *                      pair should be inserted.
564        *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
565        *               of pairs).
566        *  @return An iterator that points to the inserted (key,value) pair.
567        *
568        *  This function inserts a (key, value) pair into the %multimap.
569        *  Contrary to a std::map the %multimap does not rely on unique keys and
570        *  thus multiple pairs with the same key can be inserted.
571        *  Note that the first parameter is only a hint and can potentially
572        *  improve the performance of the insertion process.  A bad hint would
573        *  cause no gains in efficiency.
574        *
575        *  For more on @a hinting, see:
576        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
577        *
578        *  Insertion requires logarithmic time (if the hint is not taken).
579        * @{
580        */
581       iterator
582 #if __cplusplus >= 201103L
583       insert(const_iterator __position, const value_type& __x)
584 #else
585       insert(iterator __position, const value_type& __x)
586 #endif
587       { return _M_t._M_insert_equal_(__position, __x); }
588 
589 #if __cplusplus >= 201103L
590       // _GLIBCXX_RESOLVE_LIB_DEFECTS
591       // 2354. Unnecessary copying when inserting into maps with braced-init
592       iterator
593       insert(const_iterator __position, value_type&& __x)
594       { return _M_t._M_insert_equal_(__position, std::move(__x)); }
595 
596       template<typename _Pair>
597 	__enable_if_t<is_constructible<value_type, _Pair&&>::value, iterator>
598 	insert(const_iterator __position, _Pair&& __x)
599 	{
600 	  return _M_t._M_emplace_hint_equal(__position,
601 					    std::forward<_Pair>(__x));
602 	}
603 #endif
604       /// @}
605 
606       /**
607        *  @brief A template function that attempts to insert a range
608        *  of elements.
609        *  @param  __first  Iterator pointing to the start of the range to be
610        *                   inserted.
611        *  @param  __last  Iterator pointing to the end of the range.
612        *
613        *  Complexity similar to that of the range constructor.
614        */
615       template<typename _InputIterator>
616 	void
617 	insert(_InputIterator __first, _InputIterator __last)
618 	{ _M_t._M_insert_range_equal(__first, __last); }
619 
620 #if __cplusplus >= 201103L
621       /**
622        *  @brief Attempts to insert a list of std::pairs into the %multimap.
623        *  @param  __l  A std::initializer_list<value_type> of pairs to be
624        *               inserted.
625        *
626        *  Complexity similar to that of the range constructor.
627        */
628       void
629       insert(initializer_list<value_type> __l)
630       { this->insert(__l.begin(), __l.end()); }
631 #endif
632 
633 #if __cplusplus > 201402L
634       /// Extract a node.
635       node_type
636       extract(const_iterator __pos)
637       {
638 	__glibcxx_assert(__pos != end());
639 	return _M_t.extract(__pos);
640       }
641 
642       /// Extract a node.
643       node_type
644       extract(const key_type& __x)
645       { return _M_t.extract(__x); }
646 
647       /// Re-insert an extracted node.
648       iterator
649       insert(node_type&& __nh)
650       { return _M_t._M_reinsert_node_equal(std::move(__nh)); }
651 
652       /// Re-insert an extracted node.
653       iterator
654       insert(const_iterator __hint, node_type&& __nh)
655       { return _M_t._M_reinsert_node_hint_equal(__hint, std::move(__nh)); }
656 
657       template<typename, typename>
658 	friend struct std::_Rb_tree_merge_helper;
659 
660       template<typename _Cmp2>
661 	void
662 	merge(multimap<_Key, _Tp, _Cmp2, _Alloc>& __source)
663 	{
664 	  using _Merge_helper = _Rb_tree_merge_helper<multimap, _Cmp2>;
665 	  _M_t._M_merge_equal(_Merge_helper::_S_get_tree(__source));
666 	}
667 
668       template<typename _Cmp2>
669 	void
670 	merge(multimap<_Key, _Tp, _Cmp2, _Alloc>&& __source)
671 	{ merge(__source); }
672 
673       template<typename _Cmp2>
674 	void
675 	merge(map<_Key, _Tp, _Cmp2, _Alloc>& __source)
676 	{
677 	  using _Merge_helper = _Rb_tree_merge_helper<multimap, _Cmp2>;
678 	  _M_t._M_merge_equal(_Merge_helper::_S_get_tree(__source));
679 	}
680 
681       template<typename _Cmp2>
682 	void
683 	merge(map<_Key, _Tp, _Cmp2, _Alloc>&& __source)
684 	{ merge(__source); }
685 #endif // C++17
686 
687 #if __cplusplus >= 201103L
688       // _GLIBCXX_RESOLVE_LIB_DEFECTS
689       // DR 130. Associative erase should return an iterator.
690       /**
691        *  @brief Erases an element from a %multimap.
692        *  @param  __position  An iterator pointing to the element to be erased.
693        *  @return An iterator pointing to the element immediately following
694        *          @a position prior to the element being erased. If no such
695        *          element exists, end() is returned.
696        *
697        *  This function erases an element, pointed to by the given iterator,
698        *  from a %multimap.  Note that this function only erases the element,
699        *  and that if the element is itself a pointer, the pointed-to memory is
700        *  not touched in any way.  Managing the pointer is the user's
701        *  responsibility.
702        *
703        * @{
704        */
705       iterator
706       erase(const_iterator __position)
707       { return _M_t.erase(__position); }
708 
709       // LWG 2059.
710       _GLIBCXX_ABI_TAG_CXX11
711       iterator
712       erase(iterator __position)
713       { return _M_t.erase(__position); }
714       /// @}
715 #else
716       /**
717        *  @brief Erases an element from a %multimap.
718        *  @param  __position  An iterator pointing to the element to be erased.
719        *
720        *  This function erases an element, pointed to by the given iterator,
721        *  from a %multimap.  Note that this function only erases the element,
722        *  and that if the element is itself a pointer, the pointed-to memory is
723        *  not touched in any way.  Managing the pointer is the user's
724        *  responsibility.
725        */
726       void
727       erase(iterator __position)
728       { _M_t.erase(__position); }
729 #endif
730 
731       /**
732        *  @brief Erases elements according to the provided key.
733        *  @param  __x  Key of element to be erased.
734        *  @return  The number of elements erased.
735        *
736        *  This function erases all elements located by the given key from a
737        *  %multimap.
738        *  Note that this function only erases the element, and that if
739        *  the element is itself a pointer, the pointed-to memory is not touched
740        *  in any way.  Managing the pointer is the user's responsibility.
741        */
742       size_type
743       erase(const key_type& __x)
744       { return _M_t.erase(__x); }
745 
746 #if __cplusplus >= 201103L
747       // _GLIBCXX_RESOLVE_LIB_DEFECTS
748       // DR 130. Associative erase should return an iterator.
749       /**
750        *  @brief Erases a [first,last) range of elements from a %multimap.
751        *  @param  __first  Iterator pointing to the start of the range to be
752        *                   erased.
753        *  @param __last Iterator pointing to the end of the range to be
754        *                erased .
755        *  @return The iterator @a __last.
756        *
757        *  This function erases a sequence of elements from a %multimap.
758        *  Note that this function only erases the elements, and that if
759        *  the elements themselves are pointers, the pointed-to memory is not
760        *  touched in any way.  Managing the pointer is the user's
761        *  responsibility.
762        */
763       iterator
764       erase(const_iterator __first, const_iterator __last)
765       { return _M_t.erase(__first, __last); }
766 #else
767       // _GLIBCXX_RESOLVE_LIB_DEFECTS
768       // DR 130. Associative erase should return an iterator.
769       /**
770        *  @brief Erases a [first,last) range of elements from a %multimap.
771        *  @param  __first  Iterator pointing to the start of the range to be
772        *                 erased.
773        *  @param __last Iterator pointing to the end of the range to
774        *                be erased.
775        *
776        *  This function erases a sequence of elements from a %multimap.
777        *  Note that this function only erases the elements, and that if
778        *  the elements themselves are pointers, the pointed-to memory is not
779        *  touched in any way.  Managing the pointer is the user's
780        *  responsibility.
781        */
782       void
783       erase(iterator __first, iterator __last)
784       { _M_t.erase(__first, __last); }
785 #endif
786 
787       /**
788        *  @brief  Swaps data with another %multimap.
789        *  @param  __x  A %multimap of the same element and allocator types.
790        *
791        *  This exchanges the elements between two multimaps in constant time.
792        *  (It is only swapping a pointer, an integer, and an instance of
793        *  the @c Compare type (which itself is often stateless and empty), so it
794        *  should be quite fast.)
795        *  Note that the global std::swap() function is specialized such that
796        *  std::swap(m1,m2) will feed to this function.
797        *
798        *  Whether the allocators are swapped depends on the allocator traits.
799        */
800       void
801       swap(multimap& __x)
802       _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
803       { _M_t.swap(__x._M_t); }
804 
805       /**
806        *  Erases all elements in a %multimap.  Note that this function only
807        *  erases the elements, and that if the elements themselves are pointers,
808        *  the pointed-to memory is not touched in any way.  Managing the pointer
809        *  is the user's responsibility.
810        */
811       void
812       clear() _GLIBCXX_NOEXCEPT
813       { _M_t.clear(); }
814 
815       // observers
816       /**
817        *  Returns the key comparison object out of which the %multimap
818        *  was constructed.
819        */
820       key_compare
821       key_comp() const
822       { return _M_t.key_comp(); }
823 
824       /**
825        *  Returns a value comparison object, built from the key comparison
826        *  object out of which the %multimap was constructed.
827        */
828       value_compare
829       value_comp() const
830       { return value_compare(_M_t.key_comp()); }
831 
832       // multimap operations
833 
834       ///@{
835       /**
836        *  @brief Tries to locate an element in a %multimap.
837        *  @param  __x  Key of (key, value) pair to be located.
838        *  @return  Iterator pointing to sought-after element,
839        *           or end() if not found.
840        *
841        *  This function takes a key and tries to locate the element with which
842        *  the key matches.  If successful the function returns an iterator
843        *  pointing to the sought after %pair.  If unsuccessful it returns the
844        *  past-the-end ( @c end() ) iterator.
845        */
846       iterator
847       find(const key_type& __x)
848       { return _M_t.find(__x); }
849 
850 #if __cplusplus > 201103L
851       template<typename _Kt>
852 	auto
853 	find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
854 	{ return _M_t._M_find_tr(__x); }
855 #endif
856       ///@}
857 
858       ///@{
859       /**
860        *  @brief Tries to locate an element in a %multimap.
861        *  @param  __x  Key of (key, value) pair to be located.
862        *  @return  Read-only (constant) iterator pointing to sought-after
863        *           element, or end() if not found.
864        *
865        *  This function takes a key and tries to locate the element with which
866        *  the key matches.  If successful the function returns a constant
867        *  iterator pointing to the sought after %pair.  If unsuccessful it
868        *  returns the past-the-end ( @c end() ) iterator.
869        */
870       const_iterator
871       find(const key_type& __x) const
872       { return _M_t.find(__x); }
873 
874 #if __cplusplus > 201103L
875       template<typename _Kt>
876 	auto
877 	find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
878 	{ return _M_t._M_find_tr(__x); }
879 #endif
880       ///@}
881 
882       ///@{
883       /**
884        *  @brief Finds the number of elements with given key.
885        *  @param  __x  Key of (key, value) pairs to be located.
886        *  @return Number of elements with specified key.
887        */
888       size_type
889       count(const key_type& __x) const
890       { return _M_t.count(__x); }
891 
892 #if __cplusplus > 201103L
893       template<typename _Kt>
894 	auto
895 	count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
896 	{ return _M_t._M_count_tr(__x); }
897 #endif
898       ///@}
899 
900 #if __cplusplus > 201703L
901       ///@{
902       /**
903        *  @brief  Finds whether an element with the given key exists.
904        *  @param  __x  Key of (key, value) pairs to be located.
905        *  @return  True if there is any element with the specified key.
906        */
907       bool
908       contains(const key_type& __x) const
909       { return _M_t.find(__x) != _M_t.end(); }
910 
911       template<typename _Kt>
912 	auto
913 	contains(const _Kt& __x) const
914 	-> decltype(_M_t._M_find_tr(__x), void(), true)
915 	{ return _M_t._M_find_tr(__x) != _M_t.end(); }
916       ///@}
917 #endif
918 
919       ///@{
920       /**
921        *  @brief Finds the beginning of a subsequence matching given key.
922        *  @param  __x  Key of (key, value) pair to be located.
923        *  @return  Iterator pointing to first element equal to or greater
924        *           than key, or end().
925        *
926        *  This function returns the first element of a subsequence of elements
927        *  that matches the given key.  If unsuccessful it returns an iterator
928        *  pointing to the first element that has a greater value than given key
929        *  or end() if no such element exists.
930        */
931       iterator
932       lower_bound(const key_type& __x)
933       { return _M_t.lower_bound(__x); }
934 
935 #if __cplusplus > 201103L
936       template<typename _Kt>
937 	auto
938 	lower_bound(const _Kt& __x)
939 	-> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
940 	{ return iterator(_M_t._M_lower_bound_tr(__x)); }
941 #endif
942       ///@}
943 
944       ///@{
945       /**
946        *  @brief Finds the beginning of a subsequence matching given key.
947        *  @param  __x  Key of (key, value) pair to be located.
948        *  @return  Read-only (constant) iterator pointing to first element
949        *           equal to or greater than key, or end().
950        *
951        *  This function returns the first element of a subsequence of
952        *  elements that matches the given key.  If unsuccessful the
953        *  iterator will point to the next greatest element or, if no
954        *  such greater element exists, to end().
955        */
956       const_iterator
957       lower_bound(const key_type& __x) const
958       { return _M_t.lower_bound(__x); }
959 
960 #if __cplusplus > 201103L
961       template<typename _Kt>
962 	auto
963 	lower_bound(const _Kt& __x) const
964 	-> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
965 	{ return const_iterator(_M_t._M_lower_bound_tr(__x)); }
966 #endif
967       ///@}
968 
969       ///@{
970       /**
971        *  @brief Finds the end of a subsequence matching given key.
972        *  @param  __x  Key of (key, value) pair to be located.
973        *  @return Iterator pointing to the first element
974        *          greater than key, or end().
975        */
976       iterator
977       upper_bound(const key_type& __x)
978       { return _M_t.upper_bound(__x); }
979 
980 #if __cplusplus > 201103L
981       template<typename _Kt>
982 	auto
983 	upper_bound(const _Kt& __x)
984 	-> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
985 	{ return iterator(_M_t._M_upper_bound_tr(__x)); }
986 #endif
987       ///@}
988 
989       ///@{
990       /**
991        *  @brief Finds the end of a subsequence matching given key.
992        *  @param  __x  Key of (key, value) pair to be located.
993        *  @return  Read-only (constant) iterator pointing to first iterator
994        *           greater than key, or end().
995        */
996       const_iterator
997       upper_bound(const key_type& __x) const
998       { return _M_t.upper_bound(__x); }
999 
1000 #if __cplusplus > 201103L
1001       template<typename _Kt>
1002 	auto
1003 	upper_bound(const _Kt& __x) const
1004 	-> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
1005 	{ return const_iterator(_M_t._M_upper_bound_tr(__x)); }
1006 #endif
1007       ///@}
1008 
1009       ///@{
1010       /**
1011        *  @brief Finds a subsequence matching given key.
1012        *  @param  __x  Key of (key, value) pairs to be located.
1013        *  @return  Pair of iterators that possibly points to the subsequence
1014        *           matching given key.
1015        *
1016        *  This function is equivalent to
1017        *  @code
1018        *    std::make_pair(c.lower_bound(val),
1019        *                   c.upper_bound(val))
1020        *  @endcode
1021        *  (but is faster than making the calls separately).
1022        */
1023       std::pair<iterator, iterator>
1024       equal_range(const key_type& __x)
1025       { return _M_t.equal_range(__x); }
1026 
1027 #if __cplusplus > 201103L
1028       template<typename _Kt>
1029 	auto
1030 	equal_range(const _Kt& __x)
1031 	-> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
1032 	{ return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
1033 #endif
1034       ///@}
1035 
1036       ///@{
1037       /**
1038        *  @brief Finds a subsequence matching given key.
1039        *  @param  __x  Key of (key, value) pairs to be located.
1040        *  @return  Pair of read-only (constant) iterators that possibly points
1041        *           to the subsequence matching given key.
1042        *
1043        *  This function is equivalent to
1044        *  @code
1045        *    std::make_pair(c.lower_bound(val),
1046        *                   c.upper_bound(val))
1047        *  @endcode
1048        *  (but is faster than making the calls separately).
1049        */
1050       std::pair<const_iterator, const_iterator>
1051       equal_range(const key_type& __x) const
1052       { return _M_t.equal_range(__x); }
1053 
1054 #if __cplusplus > 201103L
1055       template<typename _Kt>
1056 	auto
1057 	equal_range(const _Kt& __x) const
1058 	-> decltype(pair<const_iterator, const_iterator>(
1059 	      _M_t._M_equal_range_tr(__x)))
1060 	{
1061 	  return pair<const_iterator, const_iterator>(
1062 	      _M_t._M_equal_range_tr(__x));
1063 	}
1064 #endif
1065       ///@}
1066 
1067       template<typename _K1, typename _T1, typename _C1, typename _A1>
1068 	friend bool
1069 	operator==(const multimap<_K1, _T1, _C1, _A1>&,
1070 		   const multimap<_K1, _T1, _C1, _A1>&);
1071 
1072 #if __cpp_lib_three_way_comparison
1073       template<typename _K1, typename _T1, typename _C1, typename _A1>
1074 	friend __detail::__synth3way_t<pair<const _K1, _T1>>
1075 	operator<=>(const multimap<_K1, _T1, _C1, _A1>&,
1076 		    const multimap<_K1, _T1, _C1, _A1>&);
1077 #else
1078       template<typename _K1, typename _T1, typename _C1, typename _A1>
1079 	friend bool
1080 	operator<(const multimap<_K1, _T1, _C1, _A1>&,
1081 		  const multimap<_K1, _T1, _C1, _A1>&);
1082 #endif
1083   };
1084 
1085 #if __cpp_deduction_guides >= 201606
1086 
1087   template<typename _InputIterator,
1088 	   typename _Compare = less<__iter_key_t<_InputIterator>>,
1089 	   typename _Allocator = allocator<__iter_to_alloc_t<_InputIterator>>,
1090 	   typename = _RequireInputIter<_InputIterator>,
1091 	   typename = _RequireNotAllocator<_Compare>,
1092 	   typename = _RequireAllocator<_Allocator>>
1093     multimap(_InputIterator, _InputIterator,
1094 	     _Compare = _Compare(), _Allocator = _Allocator())
1095     -> multimap<__iter_key_t<_InputIterator>, __iter_val_t<_InputIterator>,
1096 		_Compare, _Allocator>;
1097 
1098   template<typename _Key, typename _Tp, typename _Compare = less<_Key>,
1099 	   typename _Allocator = allocator<pair<const _Key, _Tp>>,
1100 	   typename = _RequireNotAllocator<_Compare>,
1101 	   typename = _RequireAllocator<_Allocator>>
1102     multimap(initializer_list<pair<_Key, _Tp>>,
1103 	     _Compare = _Compare(), _Allocator = _Allocator())
1104     -> multimap<_Key, _Tp, _Compare, _Allocator>;
1105 
1106   template<typename _InputIterator, typename _Allocator,
1107 	   typename = _RequireInputIter<_InputIterator>,
1108 	   typename = _RequireAllocator<_Allocator>>
1109     multimap(_InputIterator, _InputIterator, _Allocator)
1110     -> multimap<__iter_key_t<_InputIterator>, __iter_val_t<_InputIterator>,
1111 		less<__iter_key_t<_InputIterator>>, _Allocator>;
1112 
1113   template<typename _Key, typename _Tp, typename _Allocator,
1114 	   typename = _RequireAllocator<_Allocator>>
1115     multimap(initializer_list<pair<_Key, _Tp>>, _Allocator)
1116     -> multimap<_Key, _Tp, less<_Key>, _Allocator>;
1117 
1118 #endif // deduction guides
1119 
1120   /**
1121    *  @brief  Multimap equality comparison.
1122    *  @param  __x  A %multimap.
1123    *  @param  __y  A %multimap of the same type as @a __x.
1124    *  @return  True iff the size and elements of the maps are equal.
1125    *
1126    *  This is an equivalence relation.  It is linear in the size of the
1127    *  multimaps.  Multimaps are considered equivalent if their sizes are equal,
1128    *  and if corresponding elements compare equal.
1129   */
1130   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1131     inline bool
1132     operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1133 	       const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1134     { return __x._M_t == __y._M_t; }
1135 
1136 #if __cpp_lib_three_way_comparison
1137   /**
1138    *  @brief  Multimap ordering relation.
1139    *  @param  __x  A `multimap`.
1140    *  @param  __y  A `multimap` of the same type as `x`.
1141    *  @return  A value indicating whether `__x` is less than, equal to,
1142    *           greater than, or incomparable with `__y`.
1143    *
1144    *  This is a total ordering relation.  It is linear in the size of the
1145    *  maps.  The elements must be comparable with @c <.
1146    *
1147    *  See `std::lexicographical_compare_three_way()` for how the determination
1148    *  is made. This operator is used to synthesize relational operators like
1149    *  `<` and `>=` etc.
1150   */
1151   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1152     inline __detail::__synth3way_t<pair<const _Key, _Tp>>
1153     operator<=>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1154 		const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1155     { return __x._M_t <=> __y._M_t; }
1156 #else
1157   /**
1158    *  @brief  Multimap ordering relation.
1159    *  @param  __x  A %multimap.
1160    *  @param  __y  A %multimap of the same type as @a __x.
1161    *  @return  True iff @a x is lexicographically less than @a y.
1162    *
1163    *  This is a total ordering relation.  It is linear in the size of the
1164    *  multimaps.  The elements must be comparable with @c <.
1165    *
1166    *  See std::lexicographical_compare() for how the determination is made.
1167   */
1168   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1169     inline bool
1170     operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1171 	      const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1172     { return __x._M_t < __y._M_t; }
1173 
1174   /// Based on operator==
1175   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1176     inline bool
1177     operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1178 	       const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1179     { return !(__x == __y); }
1180 
1181   /// Based on operator<
1182   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1183     inline bool
1184     operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1185 	      const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1186     { return __y < __x; }
1187 
1188   /// Based on operator<
1189   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1190     inline bool
1191     operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1192 	       const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1193     { return !(__y < __x); }
1194 
1195   /// Based on operator<
1196   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1197     inline bool
1198     operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1199 	       const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1200     { return !(__x < __y); }
1201 #endif // three-way comparison
1202 
1203   /// See std::multimap::swap().
1204   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1205     inline void
1206     swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1207 	 multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1208     _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
1209     { __x.swap(__y); }
1210 
1211 _GLIBCXX_END_NAMESPACE_CONTAINER
1212 
1213 #if __cplusplus > 201402L
1214   // Allow std::multimap access to internals of compatible maps.
1215   template<typename _Key, typename _Val, typename _Cmp1, typename _Alloc,
1216 	   typename _Cmp2>
1217     struct
1218     _Rb_tree_merge_helper<_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp1, _Alloc>,
1219 			  _Cmp2>
1220     {
1221     private:
1222       friend class _GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp1, _Alloc>;
1223 
1224       static auto&
1225       _S_get_tree(_GLIBCXX_STD_C::map<_Key, _Val, _Cmp2, _Alloc>& __map)
1226       { return __map._M_t; }
1227 
1228       static auto&
1229       _S_get_tree(_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp2, _Alloc>& __map)
1230       { return __map._M_t; }
1231     };
1232 #endif // C++17
1233 
1234 _GLIBCXX_END_NAMESPACE_VERSION
1235 } // namespace std
1236 
1237 #endif /* _STL_MULTIMAP_H */
1238