xref: /netbsd-src/external/gpl3/gcc/dist/libstdc++-v3/include/bits/stl_map.h (revision f9a78e0e885f664fa1b5fd1637673b39c1aa53b3)
1 // Map implementation -*- C++ -*-
2 
3 // Copyright (C) 2001-2016 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /*
26  *
27  * Copyright (c) 1994
28  * Hewlett-Packard Company
29  *
30  * Permission to use, copy, modify, distribute and sell this software
31  * and its documentation for any purpose is hereby granted without fee,
32  * provided that the above copyright notice appear in all copies and
33  * that both that copyright notice and this permission notice appear
34  * in supporting documentation.  Hewlett-Packard Company makes no
35  * representations about the suitability of this software for any
36  * purpose.  It is provided "as is" without express or implied warranty.
37  *
38  *
39  * Copyright (c) 1996,1997
40  * Silicon Graphics Computer Systems, Inc.
41  *
42  * Permission to use, copy, modify, distribute and sell this software
43  * and its documentation for any purpose is hereby granted without fee,
44  * provided that the above copyright notice appear in all copies and
45  * that both that copyright notice and this permission notice appear
46  * in supporting documentation.  Silicon Graphics makes no
47  * representations about the suitability of this software for any
48  * purpose.  It is provided "as is" without express or implied warranty.
49  */
50 
51 /** @file bits/stl_map.h
52  *  This is an internal header file, included by other library headers.
53  *  Do not attempt to use it directly. @headername{map}
54  */
55 
56 #ifndef _STL_MAP_H
57 #define _STL_MAP_H 1
58 
59 #include <bits/functexcept.h>
60 #include <bits/concept_check.h>
61 #if __cplusplus >= 201103L
62 #include <initializer_list>
63 #include <tuple>
64 #endif
65 
66 namespace std _GLIBCXX_VISIBILITY(default)
67 {
68 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
69 
70   /**
71    *  @brief A standard container made up of (key,value) pairs, which can be
72    *  retrieved based on a key, in logarithmic time.
73    *
74    *  @ingroup associative_containers
75    *
76    *  @tparam _Key  Type of key objects.
77    *  @tparam  _Tp  Type of mapped objects.
78    *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
79    *  @tparam _Alloc  Allocator type, defaults to
80    *                  allocator<pair<const _Key, _Tp>.
81    *
82    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
83    *  <a href="tables.html#66">reversible container</a>, and an
84    *  <a href="tables.html#69">associative container</a> (using unique keys).
85    *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
86    *  value_type is std::pair<const Key,T>.
87    *
88    *  Maps support bidirectional iterators.
89    *
90    *  The private tree data is declared exactly the same way for map and
91    *  multimap; the distinction is made entirely in how the tree functions are
92    *  called (*_unique versus *_equal, same as the standard).
93   */
94   template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
95             typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
96     class map
97     {
98     public:
99       typedef _Key                                          key_type;
100       typedef _Tp                                           mapped_type;
101       typedef std::pair<const _Key, _Tp>                    value_type;
102       typedef _Compare                                      key_compare;
103       typedef _Alloc                                        allocator_type;
104 
105     private:
106       // concept requirements
107       typedef typename _Alloc::value_type                   _Alloc_value_type;
108       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
109       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
110 				_BinaryFunctionConcept)
111       __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
112 
113     public:
114       class value_compare
115       : public std::binary_function<value_type, value_type, bool>
116       {
117 	friend class map<_Key, _Tp, _Compare, _Alloc>;
118       protected:
119 	_Compare comp;
120 
121 	value_compare(_Compare __c)
122 	: comp(__c) { }
123 
124       public:
125 	bool operator()(const value_type& __x, const value_type& __y) const
126 	{ return comp(__x.first, __y.first); }
127       };
128 
129     private:
130       /// This turns a red-black tree into a [multi]map.
131       typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
132 	rebind<value_type>::other _Pair_alloc_type;
133 
134       typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
135 		       key_compare, _Pair_alloc_type> _Rep_type;
136 
137       /// The actual tree structure.
138       _Rep_type _M_t;
139 
140       typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
141 
142     public:
143       // many of these are specified differently in ISO, but the following are
144       // "functionally equivalent"
145       typedef typename _Alloc_traits::pointer            pointer;
146       typedef typename _Alloc_traits::const_pointer      const_pointer;
147       typedef typename _Alloc_traits::reference          reference;
148       typedef typename _Alloc_traits::const_reference    const_reference;
149       typedef typename _Rep_type::iterator               iterator;
150       typedef typename _Rep_type::const_iterator         const_iterator;
151       typedef typename _Rep_type::size_type              size_type;
152       typedef typename _Rep_type::difference_type        difference_type;
153       typedef typename _Rep_type::reverse_iterator       reverse_iterator;
154       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
155 
156       // [23.3.1.1] construct/copy/destroy
157       // (get_allocator() is also listed in this section)
158 
159       /**
160        *  @brief  Default constructor creates no elements.
161        */
162       map()
163       _GLIBCXX_NOEXCEPT_IF(
164 	  is_nothrow_default_constructible<allocator_type>::value
165 	  && is_nothrow_default_constructible<key_compare>::value)
166       : _M_t() { }
167 
168       /**
169        *  @brief  Creates a %map with no elements.
170        *  @param  __comp  A comparison object.
171        *  @param  __a  An allocator object.
172        */
173       explicit
174       map(const _Compare& __comp,
175 	  const allocator_type& __a = allocator_type())
176       : _M_t(__comp, _Pair_alloc_type(__a)) { }
177 
178       /**
179        *  @brief  %Map copy constructor.
180        *  @param  __x  A %map of identical element and allocator types.
181        *
182        *  The newly-created %map uses a copy of the allocation object
183        *  used by @a __x.
184        */
185       map(const map& __x)
186       : _M_t(__x._M_t) { }
187 
188 #if __cplusplus >= 201103L
189       /**
190        *  @brief  %Map move constructor.
191        *  @param  __x  A %map of identical element and allocator types.
192        *
193        *  The newly-created %map contains the exact contents of @a __x.
194        *  The contents of @a __x are a valid, but unspecified %map.
195        */
196       map(map&& __x)
197       noexcept(is_nothrow_copy_constructible<_Compare>::value)
198       : _M_t(std::move(__x._M_t)) { }
199 
200       /**
201        *  @brief  Builds a %map from an initializer_list.
202        *  @param  __l  An initializer_list.
203        *  @param  __comp  A comparison object.
204        *  @param  __a  An allocator object.
205        *
206        *  Create a %map consisting of copies of the elements in the
207        *  initializer_list @a __l.
208        *  This is linear in N if the range is already sorted, and NlogN
209        *  otherwise (where N is @a __l.size()).
210        */
211       map(initializer_list<value_type> __l,
212 	  const _Compare& __comp = _Compare(),
213 	  const allocator_type& __a = allocator_type())
214       : _M_t(__comp, _Pair_alloc_type(__a))
215       { _M_t._M_insert_unique(__l.begin(), __l.end()); }
216 
217       /// Allocator-extended default constructor.
218       explicit
219       map(const allocator_type& __a)
220       : _M_t(_Compare(), _Pair_alloc_type(__a)) { }
221 
222       /// Allocator-extended copy constructor.
223       map(const map& __m, const allocator_type& __a)
224       : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
225 
226       /// Allocator-extended move constructor.
227       map(map&& __m, const allocator_type& __a)
228       noexcept(is_nothrow_copy_constructible<_Compare>::value
229 	       && _Alloc_traits::_S_always_equal())
230       : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
231 
232       /// Allocator-extended initialier-list constructor.
233       map(initializer_list<value_type> __l, const allocator_type& __a)
234       : _M_t(_Compare(), _Pair_alloc_type(__a))
235       { _M_t._M_insert_unique(__l.begin(), __l.end()); }
236 
237       /// Allocator-extended range constructor.
238       template<typename _InputIterator>
239         map(_InputIterator __first, _InputIterator __last,
240 	    const allocator_type& __a)
241 	: _M_t(_Compare(), _Pair_alloc_type(__a))
242         { _M_t._M_insert_unique(__first, __last); }
243 #endif
244 
245       /**
246        *  @brief  Builds a %map from a range.
247        *  @param  __first  An input iterator.
248        *  @param  __last  An input iterator.
249        *
250        *  Create a %map consisting of copies of the elements from
251        *  [__first,__last).  This is linear in N if the range is
252        *  already sorted, and NlogN otherwise (where N is
253        *  distance(__first,__last)).
254        */
255       template<typename _InputIterator>
256         map(_InputIterator __first, _InputIterator __last)
257 	: _M_t()
258         { _M_t._M_insert_unique(__first, __last); }
259 
260       /**
261        *  @brief  Builds a %map from a range.
262        *  @param  __first  An input iterator.
263        *  @param  __last  An input iterator.
264        *  @param  __comp  A comparison functor.
265        *  @param  __a  An allocator object.
266        *
267        *  Create a %map consisting of copies of the elements from
268        *  [__first,__last).  This is linear in N if the range is
269        *  already sorted, and NlogN otherwise (where N is
270        *  distance(__first,__last)).
271        */
272       template<typename _InputIterator>
273         map(_InputIterator __first, _InputIterator __last,
274 	    const _Compare& __comp,
275 	    const allocator_type& __a = allocator_type())
276 	: _M_t(__comp, _Pair_alloc_type(__a))
277         { _M_t._M_insert_unique(__first, __last); }
278 
279       // FIXME There is no dtor declared, but we should have something
280       // generated by Doxygen.  I don't know what tags to add to this
281       // paragraph to make that happen:
282       /**
283        *  The dtor only erases the elements, and note that if the elements
284        *  themselves are pointers, the pointed-to memory is not touched in any
285        *  way.  Managing the pointer is the user's responsibility.
286        */
287 
288       /**
289        *  @brief  %Map assignment operator.
290        *  @param  __x  A %map of identical element and allocator types.
291        *
292        *  All the elements of @a __x are copied, but unlike the copy
293        *  constructor, the allocator object is not copied.
294        */
295       map&
296       operator=(const map& __x)
297       {
298 	_M_t = __x._M_t;
299 	return *this;
300       }
301 
302 #if __cplusplus >= 201103L
303       /// Move assignment operator.
304       map&
305       operator=(map&&) = default;
306 
307       /**
308        *  @brief  %Map list assignment operator.
309        *  @param  __l  An initializer_list.
310        *
311        *  This function fills a %map with copies of the elements in the
312        *  initializer list @a __l.
313        *
314        *  Note that the assignment completely changes the %map and
315        *  that the resulting %map's size is the same as the number
316        *  of elements assigned.  Old data may be lost.
317        */
318       map&
319       operator=(initializer_list<value_type> __l)
320       {
321 	_M_t._M_assign_unique(__l.begin(), __l.end());
322 	return *this;
323       }
324 #endif
325 
326       /// Get a copy of the memory allocation object.
327       allocator_type
328       get_allocator() const _GLIBCXX_NOEXCEPT
329       { return allocator_type(_M_t.get_allocator()); }
330 
331       // iterators
332       /**
333        *  Returns a read/write iterator that points to the first pair in the
334        *  %map.
335        *  Iteration is done in ascending order according to the keys.
336        */
337       iterator
338       begin() _GLIBCXX_NOEXCEPT
339       { return _M_t.begin(); }
340 
341       /**
342        *  Returns a read-only (constant) iterator that points to the first pair
343        *  in the %map.  Iteration is done in ascending order according to the
344        *  keys.
345        */
346       const_iterator
347       begin() const _GLIBCXX_NOEXCEPT
348       { return _M_t.begin(); }
349 
350       /**
351        *  Returns a read/write iterator that points one past the last
352        *  pair in the %map.  Iteration is done in ascending order
353        *  according to the keys.
354        */
355       iterator
356       end() _GLIBCXX_NOEXCEPT
357       { return _M_t.end(); }
358 
359       /**
360        *  Returns a read-only (constant) iterator that points one past the last
361        *  pair in the %map.  Iteration is done in ascending order according to
362        *  the keys.
363        */
364       const_iterator
365       end() const _GLIBCXX_NOEXCEPT
366       { return _M_t.end(); }
367 
368       /**
369        *  Returns a read/write reverse iterator that points to the last pair in
370        *  the %map.  Iteration is done in descending order according to the
371        *  keys.
372        */
373       reverse_iterator
374       rbegin() _GLIBCXX_NOEXCEPT
375       { return _M_t.rbegin(); }
376 
377       /**
378        *  Returns a read-only (constant) reverse iterator that points to the
379        *  last pair in the %map.  Iteration is done in descending order
380        *  according to the keys.
381        */
382       const_reverse_iterator
383       rbegin() const _GLIBCXX_NOEXCEPT
384       { return _M_t.rbegin(); }
385 
386       /**
387        *  Returns a read/write reverse iterator that points to one before the
388        *  first pair in the %map.  Iteration is done in descending order
389        *  according to the keys.
390        */
391       reverse_iterator
392       rend() _GLIBCXX_NOEXCEPT
393       { return _M_t.rend(); }
394 
395       /**
396        *  Returns a read-only (constant) reverse iterator that points to one
397        *  before the first pair in the %map.  Iteration is done in descending
398        *  order according to the keys.
399        */
400       const_reverse_iterator
401       rend() const _GLIBCXX_NOEXCEPT
402       { return _M_t.rend(); }
403 
404 #if __cplusplus >= 201103L
405       /**
406        *  Returns a read-only (constant) iterator that points to the first pair
407        *  in the %map.  Iteration is done in ascending order according to the
408        *  keys.
409        */
410       const_iterator
411       cbegin() const noexcept
412       { return _M_t.begin(); }
413 
414       /**
415        *  Returns a read-only (constant) iterator that points one past the last
416        *  pair in the %map.  Iteration is done in ascending order according to
417        *  the keys.
418        */
419       const_iterator
420       cend() const noexcept
421       { return _M_t.end(); }
422 
423       /**
424        *  Returns a read-only (constant) reverse iterator that points to the
425        *  last pair in the %map.  Iteration is done in descending order
426        *  according to the keys.
427        */
428       const_reverse_iterator
429       crbegin() const noexcept
430       { return _M_t.rbegin(); }
431 
432       /**
433        *  Returns a read-only (constant) reverse iterator that points to one
434        *  before the first pair in the %map.  Iteration is done in descending
435        *  order according to the keys.
436        */
437       const_reverse_iterator
438       crend() const noexcept
439       { return _M_t.rend(); }
440 #endif
441 
442       // capacity
443       /** Returns true if the %map is empty.  (Thus begin() would equal
444        *  end().)
445       */
446       bool
447       empty() const _GLIBCXX_NOEXCEPT
448       { return _M_t.empty(); }
449 
450       /** Returns the size of the %map.  */
451       size_type
452       size() const _GLIBCXX_NOEXCEPT
453       { return _M_t.size(); }
454 
455       /** Returns the maximum size of the %map.  */
456       size_type
457       max_size() const _GLIBCXX_NOEXCEPT
458       { return _M_t.max_size(); }
459 
460       // [23.3.1.2] element access
461       /**
462        *  @brief  Subscript ( @c [] ) access to %map data.
463        *  @param  __k  The key for which data should be retrieved.
464        *  @return  A reference to the data of the (key,data) %pair.
465        *
466        *  Allows for easy lookup with the subscript ( @c [] )
467        *  operator.  Returns data associated with the key specified in
468        *  subscript.  If the key does not exist, a pair with that key
469        *  is created using default values, which is then returned.
470        *
471        *  Lookup requires logarithmic time.
472        */
473       mapped_type&
474       operator[](const key_type& __k)
475       {
476 	// concept requirements
477 	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
478 
479 	iterator __i = lower_bound(__k);
480 	// __i->first is greater than or equivalent to __k.
481 	if (__i == end() || key_comp()(__k, (*__i).first))
482 #if __cplusplus >= 201103L
483 	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
484 					    std::tuple<const key_type&>(__k),
485 					    std::tuple<>());
486 #else
487           __i = insert(__i, value_type(__k, mapped_type()));
488 #endif
489 	return (*__i).second;
490       }
491 
492 #if __cplusplus >= 201103L
493       mapped_type&
494       operator[](key_type&& __k)
495       {
496 	// concept requirements
497 	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
498 
499 	iterator __i = lower_bound(__k);
500 	// __i->first is greater than or equivalent to __k.
501 	if (__i == end() || key_comp()(__k, (*__i).first))
502 	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
503 					std::forward_as_tuple(std::move(__k)),
504 					std::tuple<>());
505 	return (*__i).second;
506       }
507 #endif
508 
509       // _GLIBCXX_RESOLVE_LIB_DEFECTS
510       // DR 464. Suggestion for new member functions in standard containers.
511       /**
512        *  @brief  Access to %map data.
513        *  @param  __k  The key for which data should be retrieved.
514        *  @return  A reference to the data whose key is equivalent to @a __k, if
515        *           such a data is present in the %map.
516        *  @throw  std::out_of_range  If no such data is present.
517        */
518       mapped_type&
519       at(const key_type& __k)
520       {
521 	iterator __i = lower_bound(__k);
522 	if (__i == end() || key_comp()(__k, (*__i).first))
523 	  __throw_out_of_range(__N("map::at"));
524 	return (*__i).second;
525       }
526 
527       const mapped_type&
528       at(const key_type& __k) const
529       {
530 	const_iterator __i = lower_bound(__k);
531 	if (__i == end() || key_comp()(__k, (*__i).first))
532 	  __throw_out_of_range(__N("map::at"));
533 	return (*__i).second;
534       }
535 
536       // modifiers
537 #if __cplusplus >= 201103L
538       /**
539        *  @brief Attempts to build and insert a std::pair into the %map.
540        *
541        *  @param __args  Arguments used to generate a new pair instance (see
542        *	        std::piecewise_contruct for passing arguments to each
543        *	        part of the pair constructor).
544        *
545        *  @return  A pair, of which the first element is an iterator that points
546        *           to the possibly inserted pair, and the second is a bool that
547        *           is true if the pair was actually inserted.
548        *
549        *  This function attempts to build and insert a (key, value) %pair into
550        *  the %map.
551        *  A %map relies on unique keys and thus a %pair is only inserted if its
552        *  first element (the key) is not already present in the %map.
553        *
554        *  Insertion requires logarithmic time.
555        */
556       template<typename... _Args>
557 	std::pair<iterator, bool>
558 	emplace(_Args&&... __args)
559 	{ return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); }
560 
561       /**
562        *  @brief Attempts to build and insert a std::pair into the %map.
563        *
564        *  @param  __pos  An iterator that serves as a hint as to where the pair
565        *                should be inserted.
566        *  @param  __args  Arguments used to generate a new pair instance (see
567        *	         std::piecewise_contruct for passing arguments to each
568        *	         part of the pair constructor).
569        *  @return An iterator that points to the element with key of the
570        *          std::pair built from @a __args (may or may not be that
571        *          std::pair).
572        *
573        *  This function is not concerned about whether the insertion took place,
574        *  and thus does not return a boolean like the single-argument emplace()
575        *  does.
576        *  Note that the first parameter is only a hint and can potentially
577        *  improve the performance of the insertion process. A bad hint would
578        *  cause no gains in efficiency.
579        *
580        *  See
581        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
582        *  for more on @a hinting.
583        *
584        *  Insertion requires logarithmic time (if the hint is not taken).
585        */
586       template<typename... _Args>
587 	iterator
588 	emplace_hint(const_iterator __pos, _Args&&... __args)
589 	{
590 	  return _M_t._M_emplace_hint_unique(__pos,
591 					     std::forward<_Args>(__args)...);
592 	}
593 #endif
594 
595 #if __cplusplus > 201402L
596 #define __cpp_lib_map_try_emplace 201411
597       /**
598        *  @brief Attempts to build and insert a std::pair into the %map.
599        *
600        *  @param __k    Key to use for finding a possibly existing pair in
601        *                the map.
602        *  @param __args  Arguments used to generate the .second for a new pair
603        *                instance.
604        *
605        *  @return  A pair, of which the first element is an iterator that points
606        *           to the possibly inserted pair, and the second is a bool that
607        *           is true if the pair was actually inserted.
608        *
609        *  This function attempts to build and insert a (key, value) %pair into
610        *  the %map.
611        *  A %map relies on unique keys and thus a %pair is only inserted if its
612        *  first element (the key) is not already present in the %map.
613        *  If a %pair is not inserted, this function has no effect.
614        *
615        *  Insertion requires logarithmic time.
616        */
617       template <typename... _Args>
618         pair<iterator, bool>
619         try_emplace(const key_type& __k, _Args&&... __args)
620         {
621           iterator __i = lower_bound(__k);
622           if (__i == end() || key_comp()(__k, (*__i).first))
623             {
624               __i = emplace_hint(__i, std::piecewise_construct,
625                                  std::forward_as_tuple(__k),
626                                  std::forward_as_tuple(
627                                    std::forward<_Args>(__args)...));
628               return {__i, true};
629             }
630           return {__i, false};
631         }
632 
633       // move-capable overload
634       template <typename... _Args>
635         pair<iterator, bool>
636         try_emplace(key_type&& __k, _Args&&... __args)
637         {
638           iterator __i = lower_bound(__k);
639           if (__i == end() || key_comp()(__k, (*__i).first))
640             {
641               __i = emplace_hint(__i, std::piecewise_construct,
642                                  std::forward_as_tuple(std::move(__k)),
643                                  std::forward_as_tuple(
644                                    std::forward<_Args>(__args)...));
645               return {__i, true};
646             }
647           return {__i, false};
648         }
649 
650       /**
651        *  @brief Attempts to build and insert a std::pair into the %map.
652        *
653        *  @param  __hint  An iterator that serves as a hint as to where the
654        *                  pair should be inserted.
655        *  @param __k    Key to use for finding a possibly existing pair in
656        *                the map.
657        *  @param __args  Arguments used to generate the .second for a new pair
658        *                instance.
659        *  @return An iterator that points to the element with key of the
660        *          std::pair built from @a __args (may or may not be that
661        *          std::pair).
662        *
663        *  This function is not concerned about whether the insertion took place,
664        *  and thus does not return a boolean like the single-argument
665        *  try_emplace() does. However, if insertion did not take place,
666        *  this function has no effect.
667        *  Note that the first parameter is only a hint and can potentially
668        *  improve the performance of the insertion process. A bad hint would
669        *  cause no gains in efficiency.
670        *
671        *  See
672        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
673        *  for more on @a hinting.
674        *
675        *  Insertion requires logarithmic time (if the hint is not taken).
676        */
677       template <typename... _Args>
678         iterator
679         try_emplace(const_iterator __hint, const key_type& __k,
680                     _Args&&... __args)
681         {
682           iterator __i;
683           auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
684           if (__true_hint.second)
685             __i = emplace_hint(iterator(__true_hint.second),
686                                std::piecewise_construct,
687                                std::forward_as_tuple(__k),
688                                std::forward_as_tuple(
689                                  std::forward<_Args>(__args)...));
690           else
691             __i = iterator(__true_hint.first);
692           return __i;
693         }
694 
695       // move-capable overload
696       template <typename... _Args>
697         iterator
698         try_emplace(const_iterator __hint, key_type&& __k, _Args&&... __args)
699         {
700           iterator __i;
701           auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
702           if (__true_hint.second)
703             __i = emplace_hint(iterator(__true_hint.second),
704                                std::piecewise_construct,
705                                std::forward_as_tuple(std::move(__k)),
706                                std::forward_as_tuple(
707                                  std::forward<_Args>(__args)...));
708           else
709             __i = iterator(__true_hint.first);
710           return __i;
711         }
712 #endif
713 
714       /**
715        *  @brief Attempts to insert a std::pair into the %map.
716 
717        *  @param __x Pair to be inserted (see std::make_pair for easy
718        *	     creation of pairs).
719        *
720        *  @return  A pair, of which the first element is an iterator that
721        *           points to the possibly inserted pair, and the second is
722        *           a bool that is true if the pair was actually inserted.
723        *
724        *  This function attempts to insert a (key, value) %pair into the %map.
725        *  A %map relies on unique keys and thus a %pair is only inserted if its
726        *  first element (the key) is not already present in the %map.
727        *
728        *  Insertion requires logarithmic time.
729        */
730       std::pair<iterator, bool>
731       insert(const value_type& __x)
732       { return _M_t._M_insert_unique(__x); }
733 
734 #if __cplusplus >= 201103L
735       template<typename _Pair, typename = typename
736 	       std::enable_if<std::is_constructible<value_type,
737 						    _Pair&&>::value>::type>
738         std::pair<iterator, bool>
739         insert(_Pair&& __x)
740         { return _M_t._M_insert_unique(std::forward<_Pair>(__x)); }
741 #endif
742 
743 #if __cplusplus >= 201103L
744       /**
745        *  @brief Attempts to insert a list of std::pairs into the %map.
746        *  @param  __list  A std::initializer_list<value_type> of pairs to be
747        *                  inserted.
748        *
749        *  Complexity similar to that of the range constructor.
750        */
751       void
752       insert(std::initializer_list<value_type> __list)
753       { insert(__list.begin(), __list.end()); }
754 #endif
755 
756       /**
757        *  @brief Attempts to insert a std::pair into the %map.
758        *  @param  __position  An iterator that serves as a hint as to where the
759        *                    pair should be inserted.
760        *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
761        *               of pairs).
762        *  @return An iterator that points to the element with key of
763        *           @a __x (may or may not be the %pair passed in).
764        *
765 
766        *  This function is not concerned about whether the insertion
767        *  took place, and thus does not return a boolean like the
768        *  single-argument insert() does.  Note that the first
769        *  parameter is only a hint and can potentially improve the
770        *  performance of the insertion process.  A bad hint would
771        *  cause no gains in efficiency.
772        *
773        *  See
774        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
775        *  for more on @a hinting.
776        *
777        *  Insertion requires logarithmic time (if the hint is not taken).
778        */
779       iterator
780 #if __cplusplus >= 201103L
781       insert(const_iterator __position, const value_type& __x)
782 #else
783       insert(iterator __position, const value_type& __x)
784 #endif
785       { return _M_t._M_insert_unique_(__position, __x); }
786 
787 #if __cplusplus >= 201103L
788       template<typename _Pair, typename = typename
789 	       std::enable_if<std::is_constructible<value_type,
790 						    _Pair&&>::value>::type>
791         iterator
792         insert(const_iterator __position, _Pair&& __x)
793         { return _M_t._M_insert_unique_(__position,
794 					std::forward<_Pair>(__x)); }
795 #endif
796 
797       /**
798        *  @brief Template function that attempts to insert a range of elements.
799        *  @param  __first  Iterator pointing to the start of the range to be
800        *                   inserted.
801        *  @param  __last  Iterator pointing to the end of the range.
802        *
803        *  Complexity similar to that of the range constructor.
804        */
805       template<typename _InputIterator>
806         void
807         insert(_InputIterator __first, _InputIterator __last)
808         { _M_t._M_insert_unique(__first, __last); }
809 
810 #if __cplusplus > 201402L
811 #define __cpp_lib_map_insertion 201411
812       /**
813        *  @brief Attempts to insert or assign a std::pair into the %map.
814        *  @param __k    Key to use for finding a possibly existing pair in
815        *                the map.
816        *  @param __obj  Argument used to generate the .second for a pair
817        *                instance.
818        *
819        *  @return  A pair, of which the first element is an iterator that
820        *           points to the possibly inserted pair, and the second is
821        *           a bool that is true if the pair was actually inserted.
822        *
823        *  This function attempts to insert a (key, value) %pair into the %map.
824        *  A %map relies on unique keys and thus a %pair is only inserted if its
825        *  first element (the key) is not already present in the %map.
826        *  If the %pair was already in the %map, the .second of the %pair
827        *  is assigned from __obj.
828        *
829        *  Insertion requires logarithmic time.
830        */
831       template <typename _Obj>
832         pair<iterator, bool>
833         insert_or_assign(const key_type& __k, _Obj&& __obj)
834         {
835           iterator __i = lower_bound(__k);
836           if (__i == end() || key_comp()(__k, (*__i).first))
837             {
838               __i = emplace_hint(__i, std::piecewise_construct,
839                                  std::forward_as_tuple(__k),
840                                  std::forward_as_tuple(
841                                    std::forward<_Obj>(__obj)));
842               return {__i, true};
843             }
844           (*__i).second = std::forward<_Obj>(__obj);
845           return {__i, false};
846         }
847 
848       // move-capable overload
849       template <typename _Obj>
850         pair<iterator, bool>
851         insert_or_assign(key_type&& __k, _Obj&& __obj)
852         {
853           iterator __i = lower_bound(__k);
854           if (__i == end() || key_comp()(__k, (*__i).first))
855             {
856               __i = emplace_hint(__i, std::piecewise_construct,
857                                  std::forward_as_tuple(std::move(__k)),
858                                  std::forward_as_tuple(
859                                    std::forward<_Obj>(__obj)));
860               return {__i, true};
861             }
862           (*__i).second = std::forward<_Obj>(__obj);
863           return {__i, false};
864         }
865 
866       /**
867        *  @brief Attempts to insert or assign a std::pair into the %map.
868        *  @param  __hint  An iterator that serves as a hint as to where the
869        *                  pair should be inserted.
870        *  @param __k    Key to use for finding a possibly existing pair in
871        *                the map.
872        *  @param __obj  Argument used to generate the .second for a pair
873        *                instance.
874        *
875        *  @return An iterator that points to the element with key of
876        *           @a __x (may or may not be the %pair passed in).
877        *
878        *  This function attempts to insert a (key, value) %pair into the %map.
879        *  A %map relies on unique keys and thus a %pair is only inserted if its
880        *  first element (the key) is not already present in the %map.
881        *  If the %pair was already in the %map, the .second of the %pair
882        *  is assigned from __obj.
883        *
884        *  Insertion requires logarithmic time.
885        */
886       template <typename _Obj>
887         iterator
888         insert_or_assign(const_iterator __hint,
889                          const key_type& __k, _Obj&& __obj)
890         {
891           iterator __i;
892           auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
893           if (__true_hint.second)
894             {
895               return emplace_hint(iterator(__true_hint.second),
896                                   std::piecewise_construct,
897                                   std::forward_as_tuple(__k),
898                                   std::forward_as_tuple(
899                                     std::forward<_Obj>(__obj)));
900             }
901           __i = iterator(__true_hint.first);
902           (*__i).second = std::forward<_Obj>(__obj);
903           return __i;
904         }
905 
906       // move-capable overload
907       template <typename _Obj>
908         iterator
909         insert_or_assign(const_iterator __hint, key_type&& __k, _Obj&& __obj)
910         {
911           iterator __i;
912           auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
913           if (__true_hint.second)
914             {
915               return emplace_hint(iterator(__true_hint.second),
916                                   std::piecewise_construct,
917                                   std::forward_as_tuple(std::move(__k)),
918                                   std::forward_as_tuple(
919                                     std::forward<_Obj>(__obj)));
920             }
921           __i = iterator(__true_hint.first);
922           (*__i).second = std::forward<_Obj>(__obj);
923           return __i;
924         }
925 #endif
926 
927 #if __cplusplus >= 201103L
928       // _GLIBCXX_RESOLVE_LIB_DEFECTS
929       // DR 130. Associative erase should return an iterator.
930       /**
931        *  @brief Erases an element from a %map.
932        *  @param  __position  An iterator pointing to the element to be erased.
933        *  @return An iterator pointing to the element immediately following
934        *          @a position prior to the element being erased. If no such
935        *          element exists, end() is returned.
936        *
937        *  This function erases an element, pointed to by the given
938        *  iterator, from a %map.  Note that this function only erases
939        *  the element, and that if the element is itself a pointer,
940        *  the pointed-to memory is not touched in any way.  Managing
941        *  the pointer is the user's responsibility.
942        */
943       iterator
944       erase(const_iterator __position)
945       { return _M_t.erase(__position); }
946 
947       // LWG 2059
948       _GLIBCXX_ABI_TAG_CXX11
949       iterator
950       erase(iterator __position)
951       { return _M_t.erase(__position); }
952 #else
953       /**
954        *  @brief Erases an element from a %map.
955        *  @param  __position  An iterator pointing to the element to be erased.
956        *
957        *  This function erases an element, pointed to by the given
958        *  iterator, from a %map.  Note that this function only erases
959        *  the element, and that if the element is itself a pointer,
960        *  the pointed-to memory is not touched in any way.  Managing
961        *  the pointer is the user's responsibility.
962        */
963       void
964       erase(iterator __position)
965       { _M_t.erase(__position); }
966 #endif
967 
968       /**
969        *  @brief Erases elements according to the provided key.
970        *  @param  __x  Key of element to be erased.
971        *  @return  The number of elements erased.
972        *
973        *  This function erases all the elements located by the given key from
974        *  a %map.
975        *  Note that this function only erases the element, and that if
976        *  the element is itself a pointer, the pointed-to memory is not touched
977        *  in any way.  Managing the pointer is the user's responsibility.
978        */
979       size_type
980       erase(const key_type& __x)
981       { return _M_t.erase(__x); }
982 
983 #if __cplusplus >= 201103L
984       // _GLIBCXX_RESOLVE_LIB_DEFECTS
985       // DR 130. Associative erase should return an iterator.
986       /**
987        *  @brief Erases a [first,last) range of elements from a %map.
988        *  @param  __first  Iterator pointing to the start of the range to be
989        *                   erased.
990        *  @param __last Iterator pointing to the end of the range to
991        *                be erased.
992        *  @return The iterator @a __last.
993        *
994        *  This function erases a sequence of elements from a %map.
995        *  Note that this function only erases the element, and that if
996        *  the element is itself a pointer, the pointed-to memory is not touched
997        *  in any way.  Managing the pointer is the user's responsibility.
998        */
999       iterator
1000       erase(const_iterator __first, const_iterator __last)
1001       { return _M_t.erase(__first, __last); }
1002 #else
1003       /**
1004        *  @brief Erases a [__first,__last) range of elements from a %map.
1005        *  @param  __first  Iterator pointing to the start of the range to be
1006        *                   erased.
1007        *  @param __last Iterator pointing to the end of the range to
1008        *                be erased.
1009        *
1010        *  This function erases a sequence of elements from a %map.
1011        *  Note that this function only erases the element, and that if
1012        *  the element is itself a pointer, the pointed-to memory is not touched
1013        *  in any way.  Managing the pointer is the user's responsibility.
1014        */
1015       void
1016       erase(iterator __first, iterator __last)
1017       { _M_t.erase(__first, __last); }
1018 #endif
1019 
1020       /**
1021        *  @brief  Swaps data with another %map.
1022        *  @param  __x  A %map of the same element and allocator types.
1023        *
1024        *  This exchanges the elements between two maps in constant
1025        *  time.  (It is only swapping a pointer, an integer, and an
1026        *  instance of the @c Compare type (which itself is often
1027        *  stateless and empty), so it should be quite fast.)  Note
1028        *  that the global std::swap() function is specialized such
1029        *  that std::swap(m1,m2) will feed to this function.
1030        */
1031       void
1032       swap(map& __x)
1033       _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
1034       { _M_t.swap(__x._M_t); }
1035 
1036       /**
1037        *  Erases all elements in a %map.  Note that this function only
1038        *  erases the elements, and that if the elements themselves are
1039        *  pointers, the pointed-to memory is not touched in any way.
1040        *  Managing the pointer is the user's responsibility.
1041        */
1042       void
1043       clear() _GLIBCXX_NOEXCEPT
1044       { _M_t.clear(); }
1045 
1046       // observers
1047       /**
1048        *  Returns the key comparison object out of which the %map was
1049        *  constructed.
1050        */
1051       key_compare
1052       key_comp() const
1053       { return _M_t.key_comp(); }
1054 
1055       /**
1056        *  Returns a value comparison object, built from the key comparison
1057        *  object out of which the %map was constructed.
1058        */
1059       value_compare
1060       value_comp() const
1061       { return value_compare(_M_t.key_comp()); }
1062 
1063       // [23.3.1.3] map operations
1064 
1065       //@{
1066       /**
1067        *  @brief Tries to locate an element in a %map.
1068        *  @param  __x  Key of (key, value) %pair to be located.
1069        *  @return  Iterator pointing to sought-after element, or end() if not
1070        *           found.
1071        *
1072        *  This function takes a key and tries to locate the element with which
1073        *  the key matches.  If successful the function returns an iterator
1074        *  pointing to the sought after %pair.  If unsuccessful it returns the
1075        *  past-the-end ( @c end() ) iterator.
1076        */
1077 
1078       iterator
1079       find(const key_type& __x)
1080       { return _M_t.find(__x); }
1081 
1082 #if __cplusplus > 201103L
1083       template<typename _Kt>
1084 	auto
1085 	find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
1086 	{ return _M_t._M_find_tr(__x); }
1087 #endif
1088       //@}
1089 
1090       //@{
1091       /**
1092        *  @brief Tries to locate an element in a %map.
1093        *  @param  __x  Key of (key, value) %pair to be located.
1094        *  @return  Read-only (constant) iterator pointing to sought-after
1095        *           element, or end() if not found.
1096        *
1097        *  This function takes a key and tries to locate the element with which
1098        *  the key matches.  If successful the function returns a constant
1099        *  iterator pointing to the sought after %pair. If unsuccessful it
1100        *  returns the past-the-end ( @c end() ) iterator.
1101        */
1102 
1103       const_iterator
1104       find(const key_type& __x) const
1105       { return _M_t.find(__x); }
1106 
1107 #if __cplusplus > 201103L
1108       template<typename _Kt>
1109 	auto
1110 	find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
1111 	{ return _M_t._M_find_tr(__x); }
1112 #endif
1113       //@}
1114 
1115       //@{
1116       /**
1117        *  @brief  Finds the number of elements with given key.
1118        *  @param  __x  Key of (key, value) pairs to be located.
1119        *  @return  Number of elements with specified key.
1120        *
1121        *  This function only makes sense for multimaps; for map the result will
1122        *  either be 0 (not present) or 1 (present).
1123        */
1124       size_type
1125       count(const key_type& __x) const
1126       { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
1127 
1128 #if __cplusplus > 201103L
1129       template<typename _Kt>
1130 	auto
1131 	count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
1132 	{ return _M_t._M_count_tr(__x); }
1133 #endif
1134       //@}
1135 
1136       //@{
1137       /**
1138        *  @brief Finds the beginning of a subsequence matching given key.
1139        *  @param  __x  Key of (key, value) pair to be located.
1140        *  @return  Iterator pointing to first element equal to or greater
1141        *           than key, or end().
1142        *
1143        *  This function returns the first element of a subsequence of elements
1144        *  that matches the given key.  If unsuccessful it returns an iterator
1145        *  pointing to the first element that has a greater value than given key
1146        *  or end() if no such element exists.
1147        */
1148       iterator
1149       lower_bound(const key_type& __x)
1150       { return _M_t.lower_bound(__x); }
1151 
1152 #if __cplusplus > 201103L
1153       template<typename _Kt>
1154 	auto
1155 	lower_bound(const _Kt& __x)
1156 	-> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
1157 	{ return iterator(_M_t._M_lower_bound_tr(__x)); }
1158 #endif
1159       //@}
1160 
1161       //@{
1162       /**
1163        *  @brief Finds the beginning of a subsequence matching given key.
1164        *  @param  __x  Key of (key, value) pair to be located.
1165        *  @return  Read-only (constant) iterator pointing to first element
1166        *           equal to or greater than key, or end().
1167        *
1168        *  This function returns the first element of a subsequence of elements
1169        *  that matches the given key.  If unsuccessful it returns an iterator
1170        *  pointing to the first element that has a greater value than given key
1171        *  or end() if no such element exists.
1172        */
1173       const_iterator
1174       lower_bound(const key_type& __x) const
1175       { return _M_t.lower_bound(__x); }
1176 
1177 #if __cplusplus > 201103L
1178       template<typename _Kt>
1179 	auto
1180 	lower_bound(const _Kt& __x) const
1181 	-> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
1182 	{ return const_iterator(_M_t._M_lower_bound_tr(__x)); }
1183 #endif
1184       //@}
1185 
1186       //@{
1187       /**
1188        *  @brief Finds the end of a subsequence matching given key.
1189        *  @param  __x  Key of (key, value) pair to be located.
1190        *  @return Iterator pointing to the first element
1191        *          greater than key, or end().
1192        */
1193       iterator
1194       upper_bound(const key_type& __x)
1195       { return _M_t.upper_bound(__x); }
1196 
1197 #if __cplusplus > 201103L
1198       template<typename _Kt>
1199 	auto
1200 	upper_bound(const _Kt& __x)
1201 	-> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
1202 	{ return iterator(_M_t._M_upper_bound_tr(__x)); }
1203 #endif
1204       //@}
1205 
1206       //@{
1207       /**
1208        *  @brief Finds the end of a subsequence matching given key.
1209        *  @param  __x  Key of (key, value) pair to be located.
1210        *  @return  Read-only (constant) iterator pointing to first iterator
1211        *           greater than key, or end().
1212        */
1213       const_iterator
1214       upper_bound(const key_type& __x) const
1215       { return _M_t.upper_bound(__x); }
1216 
1217 #if __cplusplus > 201103L
1218       template<typename _Kt>
1219 	auto
1220 	upper_bound(const _Kt& __x) const
1221 	-> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
1222 	{ return const_iterator(_M_t._M_upper_bound_tr(__x)); }
1223 #endif
1224       //@}
1225 
1226       //@{
1227       /**
1228        *  @brief Finds a subsequence matching given key.
1229        *  @param  __x  Key of (key, value) pairs to be located.
1230        *  @return  Pair of iterators that possibly points to the subsequence
1231        *           matching given key.
1232        *
1233        *  This function is equivalent to
1234        *  @code
1235        *    std::make_pair(c.lower_bound(val),
1236        *                   c.upper_bound(val))
1237        *  @endcode
1238        *  (but is faster than making the calls separately).
1239        *
1240        *  This function probably only makes sense for multimaps.
1241        */
1242       std::pair<iterator, iterator>
1243       equal_range(const key_type& __x)
1244       { return _M_t.equal_range(__x); }
1245 
1246 #if __cplusplus > 201103L
1247       template<typename _Kt>
1248 	auto
1249 	equal_range(const _Kt& __x)
1250 	-> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
1251 	{ return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
1252 #endif
1253       //@}
1254 
1255       //@{
1256       /**
1257        *  @brief Finds a subsequence matching given key.
1258        *  @param  __x  Key of (key, value) pairs to be located.
1259        *  @return  Pair of read-only (constant) iterators that possibly points
1260        *           to the subsequence matching given key.
1261        *
1262        *  This function is equivalent to
1263        *  @code
1264        *    std::make_pair(c.lower_bound(val),
1265        *                   c.upper_bound(val))
1266        *  @endcode
1267        *  (but is faster than making the calls separately).
1268        *
1269        *  This function probably only makes sense for multimaps.
1270        */
1271       std::pair<const_iterator, const_iterator>
1272       equal_range(const key_type& __x) const
1273       { return _M_t.equal_range(__x); }
1274 
1275 #if __cplusplus > 201103L
1276       template<typename _Kt>
1277 	auto
1278 	equal_range(const _Kt& __x) const
1279 	-> decltype(pair<const_iterator, const_iterator>(
1280 	      _M_t._M_equal_range_tr(__x)))
1281 	{
1282 	  return pair<const_iterator, const_iterator>(
1283 	      _M_t._M_equal_range_tr(__x));
1284 	}
1285 #endif
1286       //@}
1287 
1288       template<typename _K1, typename _T1, typename _C1, typename _A1>
1289         friend bool
1290         operator==(const map<_K1, _T1, _C1, _A1>&,
1291 		   const map<_K1, _T1, _C1, _A1>&);
1292 
1293       template<typename _K1, typename _T1, typename _C1, typename _A1>
1294         friend bool
1295         operator<(const map<_K1, _T1, _C1, _A1>&,
1296 		  const map<_K1, _T1, _C1, _A1>&);
1297     };
1298 
1299   /**
1300    *  @brief  Map equality comparison.
1301    *  @param  __x  A %map.
1302    *  @param  __y  A %map of the same type as @a x.
1303    *  @return  True iff the size and elements of the maps are equal.
1304    *
1305    *  This is an equivalence relation.  It is linear in the size of the
1306    *  maps.  Maps are considered equivalent if their sizes are equal,
1307    *  and if corresponding elements compare equal.
1308   */
1309   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1310     inline bool
1311     operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1312                const map<_Key, _Tp, _Compare, _Alloc>& __y)
1313     { return __x._M_t == __y._M_t; }
1314 
1315   /**
1316    *  @brief  Map ordering relation.
1317    *  @param  __x  A %map.
1318    *  @param  __y  A %map of the same type as @a x.
1319    *  @return  True iff @a x is lexicographically less than @a y.
1320    *
1321    *  This is a total ordering relation.  It is linear in the size of the
1322    *  maps.  The elements must be comparable with @c <.
1323    *
1324    *  See std::lexicographical_compare() for how the determination is made.
1325   */
1326   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1327     inline bool
1328     operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1329               const map<_Key, _Tp, _Compare, _Alloc>& __y)
1330     { return __x._M_t < __y._M_t; }
1331 
1332   /// Based on operator==
1333   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1334     inline bool
1335     operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1336                const map<_Key, _Tp, _Compare, _Alloc>& __y)
1337     { return !(__x == __y); }
1338 
1339   /// Based on operator<
1340   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1341     inline bool
1342     operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1343               const map<_Key, _Tp, _Compare, _Alloc>& __y)
1344     { return __y < __x; }
1345 
1346   /// Based on operator<
1347   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1348     inline bool
1349     operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1350                const map<_Key, _Tp, _Compare, _Alloc>& __y)
1351     { return !(__y < __x); }
1352 
1353   /// Based on operator<
1354   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1355     inline bool
1356     operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1357                const map<_Key, _Tp, _Compare, _Alloc>& __y)
1358     { return !(__x < __y); }
1359 
1360   /// See std::map::swap().
1361   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1362     inline void
1363     swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
1364 	 map<_Key, _Tp, _Compare, _Alloc>& __y)
1365     _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
1366     { __x.swap(__y); }
1367 
1368 _GLIBCXX_END_NAMESPACE_CONTAINER
1369 } // namespace std
1370 
1371 #endif /* _STL_MAP_H */
1372