xref: /netbsd-src/external/gpl3/gcc/dist/libstdc++-v3/include/bits/stl_map.h (revision c42dbd0ed2e61fe6eda8590caa852ccf34719964)
1 // Map implementation -*- C++ -*-
2 
3 // Copyright (C) 2001-2022 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /*
26  *
27  * Copyright (c) 1994
28  * Hewlett-Packard Company
29  *
30  * Permission to use, copy, modify, distribute and sell this software
31  * and its documentation for any purpose is hereby granted without fee,
32  * provided that the above copyright notice appear in all copies and
33  * that both that copyright notice and this permission notice appear
34  * in supporting documentation.  Hewlett-Packard Company makes no
35  * representations about the suitability of this software for any
36  * purpose.  It is provided "as is" without express or implied warranty.
37  *
38  *
39  * Copyright (c) 1996,1997
40  * Silicon Graphics Computer Systems, Inc.
41  *
42  * Permission to use, copy, modify, distribute and sell this software
43  * and its documentation for any purpose is hereby granted without fee,
44  * provided that the above copyright notice appear in all copies and
45  * that both that copyright notice and this permission notice appear
46  * in supporting documentation.  Silicon Graphics makes no
47  * representations about the suitability of this software for any
48  * purpose.  It is provided "as is" without express or implied warranty.
49  */
50 
51 /** @file bits/stl_map.h
52  *  This is an internal header file, included by other library headers.
53  *  Do not attempt to use it directly. @headername{map}
54  */
55 
56 #ifndef _STL_MAP_H
57 #define _STL_MAP_H 1
58 
59 #include <bits/functexcept.h>
60 #include <bits/concept_check.h>
61 #if __cplusplus >= 201103L
62 #include <initializer_list>
63 #include <tuple>
64 #endif
65 
66 namespace std _GLIBCXX_VISIBILITY(default)
67 {
68 _GLIBCXX_BEGIN_NAMESPACE_VERSION
69 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
70 
71   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
72     class multimap;
73 
74   /**
75    *  @brief A standard container made up of (key,value) pairs, which can be
76    *  retrieved based on a key, in logarithmic time.
77    *
78    *  @ingroup associative_containers
79    *
80    *  @tparam _Key  Type of key objects.
81    *  @tparam  _Tp  Type of mapped objects.
82    *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
83    *  @tparam _Alloc  Allocator type, defaults to
84    *                  allocator<pair<const _Key, _Tp>.
85    *
86    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
87    *  <a href="tables.html#66">reversible container</a>, and an
88    *  <a href="tables.html#69">associative container</a> (using unique keys).
89    *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
90    *  value_type is std::pair<const Key,T>.
91    *
92    *  Maps support bidirectional iterators.
93    *
94    *  The private tree data is declared exactly the same way for map and
95    *  multimap; the distinction is made entirely in how the tree functions are
96    *  called (*_unique versus *_equal, same as the standard).
97   */
98   template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
99 	    typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
100     class map
101     {
102     public:
103       typedef _Key					key_type;
104       typedef _Tp					mapped_type;
105       typedef std::pair<const _Key, _Tp>		value_type;
106       typedef _Compare					key_compare;
107       typedef _Alloc					allocator_type;
108 
109     private:
110 #ifdef _GLIBCXX_CONCEPT_CHECKS
111       // concept requirements
112       typedef typename _Alloc::value_type		_Alloc_value_type;
113 # if __cplusplus < 201103L
114       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
115 # endif
116       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
117 				_BinaryFunctionConcept)
118       __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
119 #endif
120 
121 #if __cplusplus >= 201103L
122 #if __cplusplus > 201703L || defined __STRICT_ANSI__
123       static_assert(is_same<typename _Alloc::value_type, value_type>::value,
124 	  "std::map must have the same value_type as its allocator");
125 #endif
126 #endif
127 
128     public:
129 #pragma GCC diagnostic push
130 #pragma GCC diagnostic ignored "-Wdeprecated-declarations"
131       class value_compare
132       : public std::binary_function<value_type, value_type, bool>
133       {
134 	friend class map<_Key, _Tp, _Compare, _Alloc>;
135       protected:
136 	_Compare comp;
137 
138 	value_compare(_Compare __c)
139 	: comp(__c) { }
140 
141       public:
142 	bool operator()(const value_type& __x, const value_type& __y) const
143 	{ return comp(__x.first, __y.first); }
144       };
145 #pragma GCC diagnostic pop
146 
147     private:
148       /// This turns a red-black tree into a [multi]map.
149       typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
150 	rebind<value_type>::other _Pair_alloc_type;
151 
152       typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
153 		       key_compare, _Pair_alloc_type> _Rep_type;
154 
155       /// The actual tree structure.
156       _Rep_type _M_t;
157 
158       typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
159 
160 #if __cplusplus >= 201703L
161       template<typename _Up, typename _Vp = remove_reference_t<_Up>>
162 	static constexpr bool __usable_key
163 	  = __or_v<is_same<const _Vp, const _Key>,
164 		   __and_<is_scalar<_Vp>, is_scalar<_Key>>>;
165 #endif
166 
167     public:
168       // many of these are specified differently in ISO, but the following are
169       // "functionally equivalent"
170       typedef typename _Alloc_traits::pointer		 pointer;
171       typedef typename _Alloc_traits::const_pointer	 const_pointer;
172       typedef typename _Alloc_traits::reference		 reference;
173       typedef typename _Alloc_traits::const_reference	 const_reference;
174       typedef typename _Rep_type::iterator		 iterator;
175       typedef typename _Rep_type::const_iterator	 const_iterator;
176       typedef typename _Rep_type::size_type		 size_type;
177       typedef typename _Rep_type::difference_type	 difference_type;
178       typedef typename _Rep_type::reverse_iterator	 reverse_iterator;
179       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
180 
181 #if __cplusplus > 201402L
182       using node_type = typename _Rep_type::node_type;
183       using insert_return_type = typename _Rep_type::insert_return_type;
184 #endif
185 
186       // [23.3.1.1] construct/copy/destroy
187       // (get_allocator() is also listed in this section)
188 
189       /**
190        *  @brief  Default constructor creates no elements.
191        */
192 #if __cplusplus < 201103L
193       map() : _M_t() { }
194 #else
195       map() = default;
196 #endif
197 
198       /**
199        *  @brief  Creates a %map with no elements.
200        *  @param  __comp  A comparison object.
201        *  @param  __a  An allocator object.
202        */
203       explicit
204       map(const _Compare& __comp,
205 	  const allocator_type& __a = allocator_type())
206       : _M_t(__comp, _Pair_alloc_type(__a)) { }
207 
208       /**
209        *  @brief  %Map copy constructor.
210        *
211        *  Whether the allocator is copied depends on the allocator traits.
212        */
213 #if __cplusplus < 201103L
214       map(const map& __x)
215       : _M_t(__x._M_t) { }
216 #else
217       map(const map&) = default;
218 
219       /**
220        *  @brief  %Map move constructor.
221        *
222        *  The newly-created %map contains the exact contents of the moved
223        *  instance. The moved instance is a valid, but unspecified, %map.
224        */
225       map(map&&) = default;
226 
227       /**
228        *  @brief  Builds a %map from an initializer_list.
229        *  @param  __l  An initializer_list.
230        *  @param  __comp  A comparison object.
231        *  @param  __a  An allocator object.
232        *
233        *  Create a %map consisting of copies of the elements in the
234        *  initializer_list @a __l.
235        *  This is linear in N if the range is already sorted, and NlogN
236        *  otherwise (where N is @a __l.size()).
237        */
238       map(initializer_list<value_type> __l,
239 	  const _Compare& __comp = _Compare(),
240 	  const allocator_type& __a = allocator_type())
241       : _M_t(__comp, _Pair_alloc_type(__a))
242       { _M_t._M_insert_range_unique(__l.begin(), __l.end()); }
243 
244       /// Allocator-extended default constructor.
245       explicit
246       map(const allocator_type& __a)
247       : _M_t(_Pair_alloc_type(__a)) { }
248 
249       /// Allocator-extended copy constructor.
250       map(const map& __m, const __type_identity_t<allocator_type>& __a)
251       : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
252 
253       /// Allocator-extended move constructor.
254       map(map&& __m, const __type_identity_t<allocator_type>& __a)
255       noexcept(is_nothrow_copy_constructible<_Compare>::value
256 	       && _Alloc_traits::_S_always_equal())
257       : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
258 
259       /// Allocator-extended initialier-list constructor.
260       map(initializer_list<value_type> __l, const allocator_type& __a)
261       : _M_t(_Pair_alloc_type(__a))
262       { _M_t._M_insert_range_unique(__l.begin(), __l.end()); }
263 
264       /// Allocator-extended range constructor.
265       template<typename _InputIterator>
266 	map(_InputIterator __first, _InputIterator __last,
267 	    const allocator_type& __a)
268 	: _M_t(_Pair_alloc_type(__a))
269 	{ _M_t._M_insert_range_unique(__first, __last); }
270 #endif
271 
272       /**
273        *  @brief  Builds a %map from a range.
274        *  @param  __first  An input iterator.
275        *  @param  __last  An input iterator.
276        *
277        *  Create a %map consisting of copies of the elements from
278        *  [__first,__last).  This is linear in N if the range is
279        *  already sorted, and NlogN otherwise (where N is
280        *  distance(__first,__last)).
281        */
282       template<typename _InputIterator>
283 	map(_InputIterator __first, _InputIterator __last)
284 	: _M_t()
285 	{ _M_t._M_insert_range_unique(__first, __last); }
286 
287       /**
288        *  @brief  Builds a %map from a range.
289        *  @param  __first  An input iterator.
290        *  @param  __last  An input iterator.
291        *  @param  __comp  A comparison functor.
292        *  @param  __a  An allocator object.
293        *
294        *  Create a %map consisting of copies of the elements from
295        *  [__first,__last).  This is linear in N if the range is
296        *  already sorted, and NlogN otherwise (where N is
297        *  distance(__first,__last)).
298        */
299       template<typename _InputIterator>
300 	map(_InputIterator __first, _InputIterator __last,
301 	    const _Compare& __comp,
302 	    const allocator_type& __a = allocator_type())
303 	: _M_t(__comp, _Pair_alloc_type(__a))
304 	{ _M_t._M_insert_range_unique(__first, __last); }
305 
306 #if __cplusplus >= 201103L
307       /**
308        *  The dtor only erases the elements, and note that if the elements
309        *  themselves are pointers, the pointed-to memory is not touched in any
310        *  way.  Managing the pointer is the user's responsibility.
311        */
312       ~map() = default;
313 #endif
314 
315       /**
316        *  @brief  %Map assignment operator.
317        *
318        *  Whether the allocator is copied depends on the allocator traits.
319        */
320 #if __cplusplus < 201103L
321       map&
322       operator=(const map& __x)
323       {
324 	_M_t = __x._M_t;
325 	return *this;
326       }
327 #else
328       map&
329       operator=(const map&) = default;
330 
331       /// Move assignment operator.
332       map&
333       operator=(map&&) = default;
334 
335       /**
336        *  @brief  %Map list assignment operator.
337        *  @param  __l  An initializer_list.
338        *
339        *  This function fills a %map with copies of the elements in the
340        *  initializer list @a __l.
341        *
342        *  Note that the assignment completely changes the %map and
343        *  that the resulting %map's size is the same as the number
344        *  of elements assigned.
345        */
346       map&
347       operator=(initializer_list<value_type> __l)
348       {
349 	_M_t._M_assign_unique(__l.begin(), __l.end());
350 	return *this;
351       }
352 #endif
353 
354       /// Get a copy of the memory allocation object.
355       allocator_type
356       get_allocator() const _GLIBCXX_NOEXCEPT
357       { return allocator_type(_M_t.get_allocator()); }
358 
359       // iterators
360       /**
361        *  Returns a read/write iterator that points to the first pair in the
362        *  %map.
363        *  Iteration is done in ascending order according to the keys.
364        */
365       iterator
366       begin() _GLIBCXX_NOEXCEPT
367       { return _M_t.begin(); }
368 
369       /**
370        *  Returns a read-only (constant) iterator that points to the first pair
371        *  in the %map.  Iteration is done in ascending order according to the
372        *  keys.
373        */
374       const_iterator
375       begin() const _GLIBCXX_NOEXCEPT
376       { return _M_t.begin(); }
377 
378       /**
379        *  Returns a read/write iterator that points one past the last
380        *  pair in the %map.  Iteration is done in ascending order
381        *  according to the keys.
382        */
383       iterator
384       end() _GLIBCXX_NOEXCEPT
385       { return _M_t.end(); }
386 
387       /**
388        *  Returns a read-only (constant) iterator that points one past the last
389        *  pair in the %map.  Iteration is done in ascending order according to
390        *  the keys.
391        */
392       const_iterator
393       end() const _GLIBCXX_NOEXCEPT
394       { return _M_t.end(); }
395 
396       /**
397        *  Returns a read/write reverse iterator that points to the last pair in
398        *  the %map.  Iteration is done in descending order according to the
399        *  keys.
400        */
401       reverse_iterator
402       rbegin() _GLIBCXX_NOEXCEPT
403       { return _M_t.rbegin(); }
404 
405       /**
406        *  Returns a read-only (constant) reverse iterator that points to the
407        *  last pair in the %map.  Iteration is done in descending order
408        *  according to the keys.
409        */
410       const_reverse_iterator
411       rbegin() const _GLIBCXX_NOEXCEPT
412       { return _M_t.rbegin(); }
413 
414       /**
415        *  Returns a read/write reverse iterator that points to one before the
416        *  first pair in the %map.  Iteration is done in descending order
417        *  according to the keys.
418        */
419       reverse_iterator
420       rend() _GLIBCXX_NOEXCEPT
421       { return _M_t.rend(); }
422 
423       /**
424        *  Returns a read-only (constant) reverse iterator that points to one
425        *  before the first pair in the %map.  Iteration is done in descending
426        *  order according to the keys.
427        */
428       const_reverse_iterator
429       rend() const _GLIBCXX_NOEXCEPT
430       { return _M_t.rend(); }
431 
432 #if __cplusplus >= 201103L
433       /**
434        *  Returns a read-only (constant) iterator that points to the first pair
435        *  in the %map.  Iteration is done in ascending order according to the
436        *  keys.
437        */
438       const_iterator
439       cbegin() const noexcept
440       { return _M_t.begin(); }
441 
442       /**
443        *  Returns a read-only (constant) iterator that points one past the last
444        *  pair in the %map.  Iteration is done in ascending order according to
445        *  the keys.
446        */
447       const_iterator
448       cend() const noexcept
449       { return _M_t.end(); }
450 
451       /**
452        *  Returns a read-only (constant) reverse iterator that points to the
453        *  last pair in the %map.  Iteration is done in descending order
454        *  according to the keys.
455        */
456       const_reverse_iterator
457       crbegin() const noexcept
458       { return _M_t.rbegin(); }
459 
460       /**
461        *  Returns a read-only (constant) reverse iterator that points to one
462        *  before the first pair in the %map.  Iteration is done in descending
463        *  order according to the keys.
464        */
465       const_reverse_iterator
466       crend() const noexcept
467       { return _M_t.rend(); }
468 #endif
469 
470       // capacity
471       /** Returns true if the %map is empty.  (Thus begin() would equal
472        *  end().)
473       */
474       _GLIBCXX_NODISCARD bool
475       empty() const _GLIBCXX_NOEXCEPT
476       { return _M_t.empty(); }
477 
478       /** Returns the size of the %map.  */
479       size_type
480       size() const _GLIBCXX_NOEXCEPT
481       { return _M_t.size(); }
482 
483       /** Returns the maximum size of the %map.  */
484       size_type
485       max_size() const _GLIBCXX_NOEXCEPT
486       { return _M_t.max_size(); }
487 
488       // [23.3.1.2] element access
489       /**
490        *  @brief  Subscript ( @c [] ) access to %map data.
491        *  @param  __k  The key for which data should be retrieved.
492        *  @return  A reference to the data of the (key,data) %pair.
493        *
494        *  Allows for easy lookup with the subscript ( @c [] )
495        *  operator.  Returns data associated with the key specified in
496        *  subscript.  If the key does not exist, a pair with that key
497        *  is created using default values, which is then returned.
498        *
499        *  Lookup requires logarithmic time.
500        */
501       mapped_type&
502       operator[](const key_type& __k)
503       {
504 	// concept requirements
505 	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
506 
507 	iterator __i = lower_bound(__k);
508 	// __i->first is greater than or equivalent to __k.
509 	if (__i == end() || key_comp()(__k, (*__i).first))
510 #if __cplusplus >= 201103L
511 	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
512 					    std::tuple<const key_type&>(__k),
513 					    std::tuple<>());
514 #else
515 	  __i = insert(__i, value_type(__k, mapped_type()));
516 #endif
517 	return (*__i).second;
518       }
519 
520 #if __cplusplus >= 201103L
521       mapped_type&
522       operator[](key_type&& __k)
523       {
524 	// concept requirements
525 	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
526 
527 	iterator __i = lower_bound(__k);
528 	// __i->first is greater than or equivalent to __k.
529 	if (__i == end() || key_comp()(__k, (*__i).first))
530 	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
531 					std::forward_as_tuple(std::move(__k)),
532 					std::tuple<>());
533 	return (*__i).second;
534       }
535 #endif
536 
537       // _GLIBCXX_RESOLVE_LIB_DEFECTS
538       // DR 464. Suggestion for new member functions in standard containers.
539       /**
540        *  @brief  Access to %map data.
541        *  @param  __k  The key for which data should be retrieved.
542        *  @return  A reference to the data whose key is equivalent to @a __k, if
543        *           such a data is present in the %map.
544        *  @throw  std::out_of_range  If no such data is present.
545        */
546       mapped_type&
547       at(const key_type& __k)
548       {
549 	iterator __i = lower_bound(__k);
550 	if (__i == end() || key_comp()(__k, (*__i).first))
551 	  __throw_out_of_range(__N("map::at"));
552 	return (*__i).second;
553       }
554 
555       const mapped_type&
556       at(const key_type& __k) const
557       {
558 	const_iterator __i = lower_bound(__k);
559 	if (__i == end() || key_comp()(__k, (*__i).first))
560 	  __throw_out_of_range(__N("map::at"));
561 	return (*__i).second;
562       }
563 
564       // modifiers
565 #if __cplusplus >= 201103L
566       /**
567        *  @brief Attempts to build and insert a std::pair into the %map.
568        *
569        *  @param __args  Arguments used to generate a new pair instance (see
570        *	        std::piecewise_contruct for passing arguments to each
571        *	        part of the pair constructor).
572        *
573        *  @return  A pair, of which the first element is an iterator that points
574        *           to the possibly inserted pair, and the second is a bool that
575        *           is true if the pair was actually inserted.
576        *
577        *  This function attempts to build and insert a (key, value) %pair into
578        *  the %map.
579        *  A %map relies on unique keys and thus a %pair is only inserted if its
580        *  first element (the key) is not already present in the %map.
581        *
582        *  Insertion requires logarithmic time.
583        */
584       template<typename... _Args>
585 	std::pair<iterator, bool>
586 	emplace(_Args&&... __args)
587 	{
588 #if __cplusplus >= 201703L
589 	  if constexpr (sizeof...(_Args) == 2)
590 	    if constexpr (is_same_v<allocator_type, allocator<value_type>>)
591 	      {
592 		auto&& [__a, __v] = pair<_Args&...>(__args...);
593 		if constexpr (__usable_key<decltype(__a)>)
594 		  {
595 		    const key_type& __k = __a;
596 		    iterator __i = lower_bound(__k);
597 		    if (__i == end() || key_comp()(__k, (*__i).first))
598 		      {
599 			__i = emplace_hint(__i, std::forward<_Args>(__args)...);
600 			return {__i, true};
601 		      }
602 		    return {__i, false};
603 		  }
604 	      }
605 #endif
606 	  return _M_t._M_emplace_unique(std::forward<_Args>(__args)...);
607 	}
608 
609       /**
610        *  @brief Attempts to build and insert a std::pair into the %map.
611        *
612        *  @param  __pos  An iterator that serves as a hint as to where the pair
613        *                should be inserted.
614        *  @param  __args  Arguments used to generate a new pair instance (see
615        *	         std::piecewise_contruct for passing arguments to each
616        *	         part of the pair constructor).
617        *  @return An iterator that points to the element with key of the
618        *          std::pair built from @a __args (may or may not be that
619        *          std::pair).
620        *
621        *  This function is not concerned about whether the insertion took place,
622        *  and thus does not return a boolean like the single-argument emplace()
623        *  does.
624        *  Note that the first parameter is only a hint and can potentially
625        *  improve the performance of the insertion process. A bad hint would
626        *  cause no gains in efficiency.
627        *
628        *  See
629        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
630        *  for more on @a hinting.
631        *
632        *  Insertion requires logarithmic time (if the hint is not taken).
633        */
634       template<typename... _Args>
635 	iterator
636 	emplace_hint(const_iterator __pos, _Args&&... __args)
637 	{
638 	  return _M_t._M_emplace_hint_unique(__pos,
639 					     std::forward<_Args>(__args)...);
640 	}
641 #endif
642 
643 #if __cplusplus > 201402L
644       /// Extract a node.
645       node_type
646       extract(const_iterator __pos)
647       {
648 	__glibcxx_assert(__pos != end());
649 	return _M_t.extract(__pos);
650       }
651 
652       /// Extract a node.
653       node_type
654       extract(const key_type& __x)
655       { return _M_t.extract(__x); }
656 
657       /// Re-insert an extracted node.
658       insert_return_type
659       insert(node_type&& __nh)
660       { return _M_t._M_reinsert_node_unique(std::move(__nh)); }
661 
662       /// Re-insert an extracted node.
663       iterator
664       insert(const_iterator __hint, node_type&& __nh)
665       { return _M_t._M_reinsert_node_hint_unique(__hint, std::move(__nh)); }
666 
667       template<typename, typename>
668 	friend struct std::_Rb_tree_merge_helper;
669 
670       template<typename _Cmp2>
671 	void
672 	merge(map<_Key, _Tp, _Cmp2, _Alloc>& __source)
673 	{
674 	  using _Merge_helper = _Rb_tree_merge_helper<map, _Cmp2>;
675 	  _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source));
676 	}
677 
678       template<typename _Cmp2>
679 	void
680 	merge(map<_Key, _Tp, _Cmp2, _Alloc>&& __source)
681 	{ merge(__source); }
682 
683       template<typename _Cmp2>
684 	void
685 	merge(multimap<_Key, _Tp, _Cmp2, _Alloc>& __source)
686 	{
687 	  using _Merge_helper = _Rb_tree_merge_helper<map, _Cmp2>;
688 	  _M_t._M_merge_unique(_Merge_helper::_S_get_tree(__source));
689 	}
690 
691       template<typename _Cmp2>
692 	void
693 	merge(multimap<_Key, _Tp, _Cmp2, _Alloc>&& __source)
694 	{ merge(__source); }
695 #endif // C++17
696 
697 #if __cplusplus > 201402L
698 #define __cpp_lib_map_try_emplace 201411L
699       /**
700        *  @brief Attempts to build and insert a std::pair into the %map.
701        *
702        *  @param __k    Key to use for finding a possibly existing pair in
703        *                the map.
704        *  @param __args  Arguments used to generate the .second for a new pair
705        *                instance.
706        *
707        *  @return  A pair, of which the first element is an iterator that points
708        *           to the possibly inserted pair, and the second is a bool that
709        *           is true if the pair was actually inserted.
710        *
711        *  This function attempts to build and insert a (key, value) %pair into
712        *  the %map.
713        *  A %map relies on unique keys and thus a %pair is only inserted if its
714        *  first element (the key) is not already present in the %map.
715        *  If a %pair is not inserted, this function has no effect.
716        *
717        *  Insertion requires logarithmic time.
718        */
719       template <typename... _Args>
720 	pair<iterator, bool>
721 	try_emplace(const key_type& __k, _Args&&... __args)
722 	{
723 	  iterator __i = lower_bound(__k);
724 	  if (__i == end() || key_comp()(__k, (*__i).first))
725 	    {
726 	      __i = emplace_hint(__i, std::piecewise_construct,
727 				 std::forward_as_tuple(__k),
728 				 std::forward_as_tuple(
729 				   std::forward<_Args>(__args)...));
730 	      return {__i, true};
731 	    }
732 	  return {__i, false};
733 	}
734 
735       // move-capable overload
736       template <typename... _Args>
737 	pair<iterator, bool>
738 	try_emplace(key_type&& __k, _Args&&... __args)
739 	{
740 	  iterator __i = lower_bound(__k);
741 	  if (__i == end() || key_comp()(__k, (*__i).first))
742 	    {
743 	      __i = emplace_hint(__i, std::piecewise_construct,
744 				 std::forward_as_tuple(std::move(__k)),
745 				 std::forward_as_tuple(
746 				   std::forward<_Args>(__args)...));
747 	      return {__i, true};
748 	    }
749 	  return {__i, false};
750 	}
751 
752       /**
753        *  @brief Attempts to build and insert a std::pair into the %map.
754        *
755        *  @param  __hint  An iterator that serves as a hint as to where the
756        *                  pair should be inserted.
757        *  @param __k    Key to use for finding a possibly existing pair in
758        *                the map.
759        *  @param __args  Arguments used to generate the .second for a new pair
760        *                instance.
761        *  @return An iterator that points to the element with key of the
762        *          std::pair built from @a __args (may or may not be that
763        *          std::pair).
764        *
765        *  This function is not concerned about whether the insertion took place,
766        *  and thus does not return a boolean like the single-argument
767        *  try_emplace() does. However, if insertion did not take place,
768        *  this function has no effect.
769        *  Note that the first parameter is only a hint and can potentially
770        *  improve the performance of the insertion process. A bad hint would
771        *  cause no gains in efficiency.
772        *
773        *  See
774        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
775        *  for more on @a hinting.
776        *
777        *  Insertion requires logarithmic time (if the hint is not taken).
778        */
779       template <typename... _Args>
780 	iterator
781 	try_emplace(const_iterator __hint, const key_type& __k,
782 		    _Args&&... __args)
783 	{
784 	  iterator __i;
785 	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
786 	  if (__true_hint.second)
787 	    __i = emplace_hint(iterator(__true_hint.second),
788 			       std::piecewise_construct,
789 			       std::forward_as_tuple(__k),
790 			       std::forward_as_tuple(
791 				 std::forward<_Args>(__args)...));
792 	  else
793 	    __i = iterator(__true_hint.first);
794 	  return __i;
795 	}
796 
797       // move-capable overload
798       template <typename... _Args>
799 	iterator
800 	try_emplace(const_iterator __hint, key_type&& __k, _Args&&... __args)
801 	{
802 	  iterator __i;
803 	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
804 	  if (__true_hint.second)
805 	    __i = emplace_hint(iterator(__true_hint.second),
806 			       std::piecewise_construct,
807 			       std::forward_as_tuple(std::move(__k)),
808 			       std::forward_as_tuple(
809 				 std::forward<_Args>(__args)...));
810 	  else
811 	    __i = iterator(__true_hint.first);
812 	  return __i;
813 	}
814 #endif
815 
816       /**
817        *  @brief Attempts to insert a std::pair into the %map.
818        *  @param __x Pair to be inserted (see std::make_pair for easy
819        *	     creation of pairs).
820        *
821        *  @return  A pair, of which the first element is an iterator that
822        *           points to the possibly inserted pair, and the second is
823        *           a bool that is true if the pair was actually inserted.
824        *
825        *  This function attempts to insert a (key, value) %pair into the %map.
826        *  A %map relies on unique keys and thus a %pair is only inserted if its
827        *  first element (the key) is not already present in the %map.
828        *
829        *  Insertion requires logarithmic time.
830        *  @{
831        */
832       std::pair<iterator, bool>
833       insert(const value_type& __x)
834       { return _M_t._M_insert_unique(__x); }
835 
836 #if __cplusplus >= 201103L
837       // _GLIBCXX_RESOLVE_LIB_DEFECTS
838       // 2354. Unnecessary copying when inserting into maps with braced-init
839       std::pair<iterator, bool>
840       insert(value_type&& __x)
841       { return _M_t._M_insert_unique(std::move(__x)); }
842 
843       template<typename _Pair>
844 	__enable_if_t<is_constructible<value_type, _Pair>::value,
845 		      pair<iterator, bool>>
846 	insert(_Pair&& __x)
847 	{
848 #if __cplusplus >= 201703L
849 	  using _P2 = remove_reference_t<_Pair>;
850 	  if constexpr (__is_pair<_P2>)
851 	    if constexpr (is_same_v<allocator_type, allocator<value_type>>)
852 	      if constexpr (__usable_key<typename _P2::first_type>)
853 		{
854 		  const key_type& __k = __x.first;
855 		  iterator __i = lower_bound(__k);
856 		  if (__i == end() || key_comp()(__k, (*__i).first))
857 		    {
858 		      __i = emplace_hint(__i, std::forward<_Pair>(__x));
859 		      return {__i, true};
860 		    }
861 		  return {__i, false};
862 		}
863 #endif
864 	  return _M_t._M_emplace_unique(std::forward<_Pair>(__x));
865 	}
866 #endif
867       /// @}
868 
869 #if __cplusplus >= 201103L
870       /**
871        *  @brief Attempts to insert a list of std::pairs into the %map.
872        *  @param  __list  A std::initializer_list<value_type> of pairs to be
873        *                  inserted.
874        *
875        *  Complexity similar to that of the range constructor.
876        */
877       void
878       insert(std::initializer_list<value_type> __list)
879       { insert(__list.begin(), __list.end()); }
880 #endif
881 
882       /**
883        *  @brief Attempts to insert a std::pair into the %map.
884        *  @param  __position  An iterator that serves as a hint as to where the
885        *                    pair should be inserted.
886        *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
887        *               of pairs).
888        *  @return An iterator that points to the element with key of
889        *           @a __x (may or may not be the %pair passed in).
890        *
891 
892        *  This function is not concerned about whether the insertion
893        *  took place, and thus does not return a boolean like the
894        *  single-argument insert() does.  Note that the first
895        *  parameter is only a hint and can potentially improve the
896        *  performance of the insertion process.  A bad hint would
897        *  cause no gains in efficiency.
898        *
899        *  See
900        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
901        *  for more on @a hinting.
902        *
903        *  Insertion requires logarithmic time (if the hint is not taken).
904        *  @{
905        */
906       iterator
907 #if __cplusplus >= 201103L
908       insert(const_iterator __position, const value_type& __x)
909 #else
910       insert(iterator __position, const value_type& __x)
911 #endif
912       { return _M_t._M_insert_unique_(__position, __x); }
913 
914 #if __cplusplus >= 201103L
915       // _GLIBCXX_RESOLVE_LIB_DEFECTS
916       // 2354. Unnecessary copying when inserting into maps with braced-init
917       iterator
918       insert(const_iterator __position, value_type&& __x)
919       { return _M_t._M_insert_unique_(__position, std::move(__x)); }
920 
921       template<typename _Pair>
922 	__enable_if_t<is_constructible<value_type, _Pair>::value, iterator>
923 	insert(const_iterator __position, _Pair&& __x)
924 	{
925 	  return _M_t._M_emplace_hint_unique(__position,
926 					     std::forward<_Pair>(__x));
927 	}
928 #endif
929       /// @}
930 
931       /**
932        *  @brief Template function that attempts to insert a range of elements.
933        *  @param  __first  Iterator pointing to the start of the range to be
934        *                   inserted.
935        *  @param  __last  Iterator pointing to the end of the range.
936        *
937        *  Complexity similar to that of the range constructor.
938        */
939       template<typename _InputIterator>
940 	void
941 	insert(_InputIterator __first, _InputIterator __last)
942 	{ _M_t._M_insert_range_unique(__first, __last); }
943 
944 #if __cplusplus > 201402L
945       /**
946        *  @brief Attempts to insert or assign a std::pair into the %map.
947        *  @param __k    Key to use for finding a possibly existing pair in
948        *                the map.
949        *  @param __obj  Argument used to generate the .second for a pair
950        *                instance.
951        *
952        *  @return  A pair, of which the first element is an iterator that
953        *           points to the possibly inserted pair, and the second is
954        *           a bool that is true if the pair was actually inserted.
955        *
956        *  This function attempts to insert a (key, value) %pair into the %map.
957        *  A %map relies on unique keys and thus a %pair is only inserted if its
958        *  first element (the key) is not already present in the %map.
959        *  If the %pair was already in the %map, the .second of the %pair
960        *  is assigned from __obj.
961        *
962        *  Insertion requires logarithmic time.
963        */
964       template <typename _Obj>
965 	pair<iterator, bool>
966 	insert_or_assign(const key_type& __k, _Obj&& __obj)
967 	{
968 	  iterator __i = lower_bound(__k);
969 	  if (__i == end() || key_comp()(__k, (*__i).first))
970 	    {
971 	      __i = emplace_hint(__i, std::piecewise_construct,
972 				 std::forward_as_tuple(__k),
973 				 std::forward_as_tuple(
974 				   std::forward<_Obj>(__obj)));
975 	      return {__i, true};
976 	    }
977 	  (*__i).second = std::forward<_Obj>(__obj);
978 	  return {__i, false};
979 	}
980 
981       // move-capable overload
982       template <typename _Obj>
983 	pair<iterator, bool>
984 	insert_or_assign(key_type&& __k, _Obj&& __obj)
985 	{
986 	  iterator __i = lower_bound(__k);
987 	  if (__i == end() || key_comp()(__k, (*__i).first))
988 	    {
989 	      __i = emplace_hint(__i, std::piecewise_construct,
990 				 std::forward_as_tuple(std::move(__k)),
991 				 std::forward_as_tuple(
992 				   std::forward<_Obj>(__obj)));
993 	      return {__i, true};
994 	    }
995 	  (*__i).second = std::forward<_Obj>(__obj);
996 	  return {__i, false};
997 	}
998 
999       /**
1000        *  @brief Attempts to insert or assign a std::pair into the %map.
1001        *  @param  __hint  An iterator that serves as a hint as to where the
1002        *                  pair should be inserted.
1003        *  @param __k    Key to use for finding a possibly existing pair in
1004        *                the map.
1005        *  @param __obj  Argument used to generate the .second for a pair
1006        *                instance.
1007        *
1008        *  @return An iterator that points to the element with key of
1009        *           @a __x (may or may not be the %pair passed in).
1010        *
1011        *  This function attempts to insert a (key, value) %pair into the %map.
1012        *  A %map relies on unique keys and thus a %pair is only inserted if its
1013        *  first element (the key) is not already present in the %map.
1014        *  If the %pair was already in the %map, the .second of the %pair
1015        *  is assigned from __obj.
1016        *
1017        *  Insertion requires logarithmic time.
1018        */
1019       template <typename _Obj>
1020 	iterator
1021 	insert_or_assign(const_iterator __hint,
1022 			 const key_type& __k, _Obj&& __obj)
1023 	{
1024 	  iterator __i;
1025 	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
1026 	  if (__true_hint.second)
1027 	    {
1028 	      return emplace_hint(iterator(__true_hint.second),
1029 				  std::piecewise_construct,
1030 				  std::forward_as_tuple(__k),
1031 				  std::forward_as_tuple(
1032 				    std::forward<_Obj>(__obj)));
1033 	    }
1034 	  __i = iterator(__true_hint.first);
1035 	  (*__i).second = std::forward<_Obj>(__obj);
1036 	  return __i;
1037 	}
1038 
1039       // move-capable overload
1040       template <typename _Obj>
1041 	iterator
1042 	insert_or_assign(const_iterator __hint, key_type&& __k, _Obj&& __obj)
1043 	{
1044 	  iterator __i;
1045 	  auto __true_hint = _M_t._M_get_insert_hint_unique_pos(__hint, __k);
1046 	  if (__true_hint.second)
1047 	    {
1048 	      return emplace_hint(iterator(__true_hint.second),
1049 				  std::piecewise_construct,
1050 				  std::forward_as_tuple(std::move(__k)),
1051 				  std::forward_as_tuple(
1052 				    std::forward<_Obj>(__obj)));
1053 	    }
1054 	  __i = iterator(__true_hint.first);
1055 	  (*__i).second = std::forward<_Obj>(__obj);
1056 	  return __i;
1057 	}
1058 #endif
1059 
1060 #if __cplusplus >= 201103L
1061       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1062       // DR 130. Associative erase should return an iterator.
1063       /**
1064        *  @brief Erases an element from a %map.
1065        *  @param  __position  An iterator pointing to the element to be erased.
1066        *  @return An iterator pointing to the element immediately following
1067        *          @a position prior to the element being erased. If no such
1068        *          element exists, end() is returned.
1069        *
1070        *  This function erases an element, pointed to by the given
1071        *  iterator, from a %map.  Note that this function only erases
1072        *  the element, and that if the element is itself a pointer,
1073        *  the pointed-to memory is not touched in any way.  Managing
1074        *  the pointer is the user's responsibility.
1075        *
1076        *  @{
1077        */
1078       iterator
1079       erase(const_iterator __position)
1080       { return _M_t.erase(__position); }
1081 
1082       // LWG 2059
1083       _GLIBCXX_ABI_TAG_CXX11
1084       iterator
1085       erase(iterator __position)
1086       { return _M_t.erase(__position); }
1087       /// @}
1088 #else
1089       /**
1090        *  @brief Erases an element from a %map.
1091        *  @param  __position  An iterator pointing to the element to be erased.
1092        *
1093        *  This function erases an element, pointed to by the given
1094        *  iterator, from a %map.  Note that this function only erases
1095        *  the element, and that if the element is itself a pointer,
1096        *  the pointed-to memory is not touched in any way.  Managing
1097        *  the pointer is the user's responsibility.
1098        */
1099       void
1100       erase(iterator __position)
1101       { _M_t.erase(__position); }
1102 #endif
1103 
1104       /**
1105        *  @brief Erases elements according to the provided key.
1106        *  @param  __x  Key of element to be erased.
1107        *  @return  The number of elements erased.
1108        *
1109        *  This function erases all the elements located by the given key from
1110        *  a %map.
1111        *  Note that this function only erases the element, and that if
1112        *  the element is itself a pointer, the pointed-to memory is not touched
1113        *  in any way.  Managing the pointer is the user's responsibility.
1114        */
1115       size_type
1116       erase(const key_type& __x)
1117       { return _M_t.erase(__x); }
1118 
1119 #if __cplusplus >= 201103L
1120       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1121       // DR 130. Associative erase should return an iterator.
1122       /**
1123        *  @brief Erases a [first,last) range of elements from a %map.
1124        *  @param  __first  Iterator pointing to the start of the range to be
1125        *                   erased.
1126        *  @param __last Iterator pointing to the end of the range to
1127        *                be erased.
1128        *  @return The iterator @a __last.
1129        *
1130        *  This function erases a sequence of elements from a %map.
1131        *  Note that this function only erases the element, and that if
1132        *  the element is itself a pointer, the pointed-to memory is not touched
1133        *  in any way.  Managing the pointer is the user's responsibility.
1134        */
1135       iterator
1136       erase(const_iterator __first, const_iterator __last)
1137       { return _M_t.erase(__first, __last); }
1138 #else
1139       /**
1140        *  @brief Erases a [__first,__last) range of elements from a %map.
1141        *  @param  __first  Iterator pointing to the start of the range to be
1142        *                   erased.
1143        *  @param __last Iterator pointing to the end of the range to
1144        *                be erased.
1145        *
1146        *  This function erases a sequence of elements from a %map.
1147        *  Note that this function only erases the element, and that if
1148        *  the element is itself a pointer, the pointed-to memory is not touched
1149        *  in any way.  Managing the pointer is the user's responsibility.
1150        */
1151       void
1152       erase(iterator __first, iterator __last)
1153       { _M_t.erase(__first, __last); }
1154 #endif
1155 
1156       /**
1157        *  @brief  Swaps data with another %map.
1158        *  @param  __x  A %map of the same element and allocator types.
1159        *
1160        *  This exchanges the elements between two maps in constant
1161        *  time.  (It is only swapping a pointer, an integer, and an
1162        *  instance of the @c Compare type (which itself is often
1163        *  stateless and empty), so it should be quite fast.)  Note
1164        *  that the global std::swap() function is specialized such
1165        *  that std::swap(m1,m2) will feed to this function.
1166        *
1167        *  Whether the allocators are swapped depends on the allocator traits.
1168        */
1169       void
1170       swap(map& __x)
1171       _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
1172       { _M_t.swap(__x._M_t); }
1173 
1174       /**
1175        *  Erases all elements in a %map.  Note that this function only
1176        *  erases the elements, and that if the elements themselves are
1177        *  pointers, the pointed-to memory is not touched in any way.
1178        *  Managing the pointer is the user's responsibility.
1179        */
1180       void
1181       clear() _GLIBCXX_NOEXCEPT
1182       { _M_t.clear(); }
1183 
1184       // observers
1185       /**
1186        *  Returns the key comparison object out of which the %map was
1187        *  constructed.
1188        */
1189       key_compare
1190       key_comp() const
1191       { return _M_t.key_comp(); }
1192 
1193       /**
1194        *  Returns a value comparison object, built from the key comparison
1195        *  object out of which the %map was constructed.
1196        */
1197       value_compare
1198       value_comp() const
1199       { return value_compare(_M_t.key_comp()); }
1200 
1201       // [23.3.1.3] map operations
1202 
1203       ///@{
1204       /**
1205        *  @brief Tries to locate an element in a %map.
1206        *  @param  __x  Key of (key, value) %pair to be located.
1207        *  @return  Iterator pointing to sought-after element, or end() if not
1208        *           found.
1209        *
1210        *  This function takes a key and tries to locate the element with which
1211        *  the key matches.  If successful the function returns an iterator
1212        *  pointing to the sought after %pair.  If unsuccessful it returns the
1213        *  past-the-end ( @c end() ) iterator.
1214        */
1215 
1216       iterator
1217       find(const key_type& __x)
1218       { return _M_t.find(__x); }
1219 
1220 #if __cplusplus > 201103L
1221       template<typename _Kt>
1222 	auto
1223 	find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
1224 	{ return _M_t._M_find_tr(__x); }
1225 #endif
1226       ///@}
1227 
1228       ///@{
1229       /**
1230        *  @brief Tries to locate an element in a %map.
1231        *  @param  __x  Key of (key, value) %pair to be located.
1232        *  @return  Read-only (constant) iterator pointing to sought-after
1233        *           element, or end() if not found.
1234        *
1235        *  This function takes a key and tries to locate the element with which
1236        *  the key matches.  If successful the function returns a constant
1237        *  iterator pointing to the sought after %pair. If unsuccessful it
1238        *  returns the past-the-end ( @c end() ) iterator.
1239        */
1240 
1241       const_iterator
1242       find(const key_type& __x) const
1243       { return _M_t.find(__x); }
1244 
1245 #if __cplusplus > 201103L
1246       template<typename _Kt>
1247 	auto
1248 	find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
1249 	{ return _M_t._M_find_tr(__x); }
1250 #endif
1251       ///@}
1252 
1253       ///@{
1254       /**
1255        *  @brief  Finds the number of elements with given key.
1256        *  @param  __x  Key of (key, value) pairs to be located.
1257        *  @return  Number of elements with specified key.
1258        *
1259        *  This function only makes sense for multimaps; for map the result will
1260        *  either be 0 (not present) or 1 (present).
1261        */
1262       size_type
1263       count(const key_type& __x) const
1264       { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
1265 
1266 #if __cplusplus > 201103L
1267       template<typename _Kt>
1268 	auto
1269 	count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
1270 	{ return _M_t._M_count_tr(__x); }
1271 #endif
1272       ///@}
1273 
1274 #if __cplusplus > 201703L
1275       ///@{
1276       /**
1277        *  @brief  Finds whether an element with the given key exists.
1278        *  @param  __x  Key of (key, value) pairs to be located.
1279        *  @return  True if there is an element with the specified key.
1280        */
1281       bool
1282       contains(const key_type& __x) const
1283       { return _M_t.find(__x) != _M_t.end(); }
1284 
1285       template<typename _Kt>
1286 	auto
1287 	contains(const _Kt& __x) const
1288 	-> decltype(_M_t._M_find_tr(__x), void(), true)
1289 	{ return _M_t._M_find_tr(__x) != _M_t.end(); }
1290       ///@}
1291 #endif
1292 
1293       ///@{
1294       /**
1295        *  @brief Finds the beginning of a subsequence matching given key.
1296        *  @param  __x  Key of (key, value) pair to be located.
1297        *  @return  Iterator pointing to first element equal to or greater
1298        *           than key, or end().
1299        *
1300        *  This function returns the first element of a subsequence of elements
1301        *  that matches the given key.  If unsuccessful it returns an iterator
1302        *  pointing to the first element that has a greater value than given key
1303        *  or end() if no such element exists.
1304        */
1305       iterator
1306       lower_bound(const key_type& __x)
1307       { return _M_t.lower_bound(__x); }
1308 
1309 #if __cplusplus > 201103L
1310       template<typename _Kt>
1311 	auto
1312 	lower_bound(const _Kt& __x)
1313 	-> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
1314 	{ return iterator(_M_t._M_lower_bound_tr(__x)); }
1315 #endif
1316       ///@}
1317 
1318       ///@{
1319       /**
1320        *  @brief Finds the beginning of a subsequence matching given key.
1321        *  @param  __x  Key of (key, value) pair to be located.
1322        *  @return  Read-only (constant) iterator pointing to first element
1323        *           equal to or greater than key, or end().
1324        *
1325        *  This function returns the first element of a subsequence of elements
1326        *  that matches the given key.  If unsuccessful it returns an iterator
1327        *  pointing to the first element that has a greater value than given key
1328        *  or end() if no such element exists.
1329        */
1330       const_iterator
1331       lower_bound(const key_type& __x) const
1332       { return _M_t.lower_bound(__x); }
1333 
1334 #if __cplusplus > 201103L
1335       template<typename _Kt>
1336 	auto
1337 	lower_bound(const _Kt& __x) const
1338 	-> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
1339 	{ return const_iterator(_M_t._M_lower_bound_tr(__x)); }
1340 #endif
1341       ///@}
1342 
1343       ///@{
1344       /**
1345        *  @brief Finds the end of a subsequence matching given key.
1346        *  @param  __x  Key of (key, value) pair to be located.
1347        *  @return Iterator pointing to the first element
1348        *          greater than key, or end().
1349        */
1350       iterator
1351       upper_bound(const key_type& __x)
1352       { return _M_t.upper_bound(__x); }
1353 
1354 #if __cplusplus > 201103L
1355       template<typename _Kt>
1356 	auto
1357 	upper_bound(const _Kt& __x)
1358 	-> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
1359 	{ return iterator(_M_t._M_upper_bound_tr(__x)); }
1360 #endif
1361       ///@}
1362 
1363       ///@{
1364       /**
1365        *  @brief Finds the end of a subsequence matching given key.
1366        *  @param  __x  Key of (key, value) pair to be located.
1367        *  @return  Read-only (constant) iterator pointing to first iterator
1368        *           greater than key, or end().
1369        */
1370       const_iterator
1371       upper_bound(const key_type& __x) const
1372       { return _M_t.upper_bound(__x); }
1373 
1374 #if __cplusplus > 201103L
1375       template<typename _Kt>
1376 	auto
1377 	upper_bound(const _Kt& __x) const
1378 	-> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
1379 	{ return const_iterator(_M_t._M_upper_bound_tr(__x)); }
1380 #endif
1381       ///@}
1382 
1383       ///@{
1384       /**
1385        *  @brief Finds a subsequence matching given key.
1386        *  @param  __x  Key of (key, value) pairs to be located.
1387        *  @return  Pair of iterators that possibly points to the subsequence
1388        *           matching given key.
1389        *
1390        *  This function is equivalent to
1391        *  @code
1392        *    std::make_pair(c.lower_bound(val),
1393        *                   c.upper_bound(val))
1394        *  @endcode
1395        *  (but is faster than making the calls separately).
1396        *
1397        *  This function probably only makes sense for multimaps.
1398        */
1399       std::pair<iterator, iterator>
1400       equal_range(const key_type& __x)
1401       { return _M_t.equal_range(__x); }
1402 
1403 #if __cplusplus > 201103L
1404       template<typename _Kt>
1405 	auto
1406 	equal_range(const _Kt& __x)
1407 	-> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
1408 	{ return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
1409 #endif
1410       ///@}
1411 
1412       ///@{
1413       /**
1414        *  @brief Finds a subsequence matching given key.
1415        *  @param  __x  Key of (key, value) pairs to be located.
1416        *  @return  Pair of read-only (constant) iterators that possibly points
1417        *           to the subsequence matching given key.
1418        *
1419        *  This function is equivalent to
1420        *  @code
1421        *    std::make_pair(c.lower_bound(val),
1422        *                   c.upper_bound(val))
1423        *  @endcode
1424        *  (but is faster than making the calls separately).
1425        *
1426        *  This function probably only makes sense for multimaps.
1427        */
1428       std::pair<const_iterator, const_iterator>
1429       equal_range(const key_type& __x) const
1430       { return _M_t.equal_range(__x); }
1431 
1432 #if __cplusplus > 201103L
1433       template<typename _Kt>
1434 	auto
1435 	equal_range(const _Kt& __x) const
1436 	-> decltype(pair<const_iterator, const_iterator>(
1437 	      _M_t._M_equal_range_tr(__x)))
1438 	{
1439 	  return pair<const_iterator, const_iterator>(
1440 	      _M_t._M_equal_range_tr(__x));
1441 	}
1442 #endif
1443       ///@}
1444 
1445       template<typename _K1, typename _T1, typename _C1, typename _A1>
1446 	friend bool
1447 	operator==(const map<_K1, _T1, _C1, _A1>&,
1448 		   const map<_K1, _T1, _C1, _A1>&);
1449 
1450 #if __cpp_lib_three_way_comparison
1451       template<typename _K1, typename _T1, typename _C1, typename _A1>
1452 	friend __detail::__synth3way_t<pair<const _K1, _T1>>
1453 	operator<=>(const map<_K1, _T1, _C1, _A1>&,
1454 		    const map<_K1, _T1, _C1, _A1>&);
1455 #else
1456       template<typename _K1, typename _T1, typename _C1, typename _A1>
1457 	friend bool
1458 	operator<(const map<_K1, _T1, _C1, _A1>&,
1459 		  const map<_K1, _T1, _C1, _A1>&);
1460 #endif
1461     };
1462 
1463 
1464 #if __cpp_deduction_guides >= 201606
1465 
1466   template<typename _InputIterator,
1467 	   typename _Compare = less<__iter_key_t<_InputIterator>>,
1468 	   typename _Allocator = allocator<__iter_to_alloc_t<_InputIterator>>,
1469 	   typename = _RequireInputIter<_InputIterator>,
1470 	   typename = _RequireNotAllocator<_Compare>,
1471 	   typename = _RequireAllocator<_Allocator>>
1472     map(_InputIterator, _InputIterator,
1473 	_Compare = _Compare(), _Allocator = _Allocator())
1474     -> map<__iter_key_t<_InputIterator>, __iter_val_t<_InputIterator>,
1475 	   _Compare, _Allocator>;
1476 
1477   template<typename _Key, typename _Tp, typename _Compare = less<_Key>,
1478 	   typename _Allocator = allocator<pair<const _Key, _Tp>>,
1479 	   typename = _RequireNotAllocator<_Compare>,
1480 	   typename = _RequireAllocator<_Allocator>>
1481     map(initializer_list<pair<_Key, _Tp>>,
1482 	_Compare = _Compare(), _Allocator = _Allocator())
1483     -> map<_Key, _Tp, _Compare, _Allocator>;
1484 
1485   template <typename _InputIterator, typename _Allocator,
1486 	    typename = _RequireInputIter<_InputIterator>,
1487 	    typename = _RequireAllocator<_Allocator>>
1488     map(_InputIterator, _InputIterator, _Allocator)
1489     -> map<__iter_key_t<_InputIterator>, __iter_val_t<_InputIterator>,
1490 	   less<__iter_key_t<_InputIterator>>, _Allocator>;
1491 
1492   template<typename _Key, typename _Tp, typename _Allocator,
1493 	   typename = _RequireAllocator<_Allocator>>
1494     map(initializer_list<pair<_Key, _Tp>>, _Allocator)
1495     -> map<_Key, _Tp, less<_Key>, _Allocator>;
1496 
1497 #endif // deduction guides
1498 
1499   /**
1500    *  @brief  Map equality comparison.
1501    *  @param  __x  A %map.
1502    *  @param  __y  A %map of the same type as @a x.
1503    *  @return  True iff the size and elements of the maps are equal.
1504    *
1505    *  This is an equivalence relation.  It is linear in the size of the
1506    *  maps.  Maps are considered equivalent if their sizes are equal,
1507    *  and if corresponding elements compare equal.
1508   */
1509   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1510     inline bool
1511     operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1512 	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1513     { return __x._M_t == __y._M_t; }
1514 
1515 #if __cpp_lib_three_way_comparison
1516   /**
1517    *  @brief  Map ordering relation.
1518    *  @param  __x  A `map`.
1519    *  @param  __y  A `map` of the same type as `x`.
1520    *  @return  A value indicating whether `__x` is less than, equal to,
1521    *           greater than, or incomparable with `__y`.
1522    *
1523    *  This is a total ordering relation.  It is linear in the size of the
1524    *  maps.  The elements must be comparable with @c <.
1525    *
1526    *  See `std::lexicographical_compare_three_way()` for how the determination
1527    *  is made. This operator is used to synthesize relational operators like
1528    *  `<` and `>=` etc.
1529   */
1530   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1531     inline __detail::__synth3way_t<pair<const _Key, _Tp>>
1532     operator<=>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1533 		const map<_Key, _Tp, _Compare, _Alloc>& __y)
1534     { return __x._M_t <=> __y._M_t; }
1535 #else
1536   /**
1537    *  @brief  Map ordering relation.
1538    *  @param  __x  A %map.
1539    *  @param  __y  A %map of the same type as @a x.
1540    *  @return  True iff @a x is lexicographically less than @a y.
1541    *
1542    *  This is a total ordering relation.  It is linear in the size of the
1543    *  maps.  The elements must be comparable with @c <.
1544    *
1545    *  See std::lexicographical_compare() for how the determination is made.
1546   */
1547   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1548     inline bool
1549     operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1550 	      const map<_Key, _Tp, _Compare, _Alloc>& __y)
1551     { return __x._M_t < __y._M_t; }
1552 
1553   /// Based on operator==
1554   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1555     inline bool
1556     operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1557 	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1558     { return !(__x == __y); }
1559 
1560   /// Based on operator<
1561   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1562     inline bool
1563     operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1564 	      const map<_Key, _Tp, _Compare, _Alloc>& __y)
1565     { return __y < __x; }
1566 
1567   /// Based on operator<
1568   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1569     inline bool
1570     operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1571 	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1572     { return !(__y < __x); }
1573 
1574   /// Based on operator<
1575   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1576     inline bool
1577     operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1578 	       const map<_Key, _Tp, _Compare, _Alloc>& __y)
1579     { return !(__x < __y); }
1580 #endif // three-way comparison
1581 
1582   /// See std::map::swap().
1583   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1584     inline void
1585     swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
1586 	 map<_Key, _Tp, _Compare, _Alloc>& __y)
1587     _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
1588     { __x.swap(__y); }
1589 
1590 _GLIBCXX_END_NAMESPACE_CONTAINER
1591 
1592 #if __cplusplus > 201402L
1593   // Allow std::map access to internals of compatible maps.
1594   template<typename _Key, typename _Val, typename _Cmp1, typename _Alloc,
1595 	   typename _Cmp2>
1596     struct
1597     _Rb_tree_merge_helper<_GLIBCXX_STD_C::map<_Key, _Val, _Cmp1, _Alloc>,
1598 			  _Cmp2>
1599     {
1600     private:
1601       friend class _GLIBCXX_STD_C::map<_Key, _Val, _Cmp1, _Alloc>;
1602 
1603       static auto&
1604       _S_get_tree(_GLIBCXX_STD_C::map<_Key, _Val, _Cmp2, _Alloc>& __map)
1605       { return __map._M_t; }
1606 
1607       static auto&
1608       _S_get_tree(_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp2, _Alloc>& __map)
1609       { return __map._M_t; }
1610     };
1611 #endif // C++17
1612 
1613 _GLIBCXX_END_NAMESPACE_VERSION
1614 } // namespace std
1615 
1616 #endif /* _STL_MAP_H */
1617