xref: /netbsd-src/external/gpl3/gcc/dist/libstdc++-v3/include/bits/stl_map.h (revision 3f4ceed98fffd10d8f2ada3ccdb32adaf619f42c)
1 // Map implementation -*- C++ -*-
2 
3 // Copyright (C) 2001-2015 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /*
26  *
27  * Copyright (c) 1994
28  * Hewlett-Packard Company
29  *
30  * Permission to use, copy, modify, distribute and sell this software
31  * and its documentation for any purpose is hereby granted without fee,
32  * provided that the above copyright notice appear in all copies and
33  * that both that copyright notice and this permission notice appear
34  * in supporting documentation.  Hewlett-Packard Company makes no
35  * representations about the suitability of this software for any
36  * purpose.  It is provided "as is" without express or implied warranty.
37  *
38  *
39  * Copyright (c) 1996,1997
40  * Silicon Graphics Computer Systems, Inc.
41  *
42  * Permission to use, copy, modify, distribute and sell this software
43  * and its documentation for any purpose is hereby granted without fee,
44  * provided that the above copyright notice appear in all copies and
45  * that both that copyright notice and this permission notice appear
46  * in supporting documentation.  Silicon Graphics makes no
47  * representations about the suitability of this software for any
48  * purpose.  It is provided "as is" without express or implied warranty.
49  */
50 
51 /** @file bits/stl_map.h
52  *  This is an internal header file, included by other library headers.
53  *  Do not attempt to use it directly. @headername{map}
54  */
55 
56 #ifndef _STL_MAP_H
57 #define _STL_MAP_H 1
58 
59 #include <bits/functexcept.h>
60 #include <bits/concept_check.h>
61 #if __cplusplus >= 201103L
62 #include <initializer_list>
63 #include <tuple>
64 #endif
65 
66 namespace std _GLIBCXX_VISIBILITY(default)
67 {
68 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
69 
70   /**
71    *  @brief A standard container made up of (key,value) pairs, which can be
72    *  retrieved based on a key, in logarithmic time.
73    *
74    *  @ingroup associative_containers
75    *
76    *  @tparam _Key  Type of key objects.
77    *  @tparam  _Tp  Type of mapped objects.
78    *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
79    *  @tparam _Alloc  Allocator type, defaults to
80    *                  allocator<pair<const _Key, _Tp>.
81    *
82    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
83    *  <a href="tables.html#66">reversible container</a>, and an
84    *  <a href="tables.html#69">associative container</a> (using unique keys).
85    *  For a @c map<Key,T> the key_type is Key, the mapped_type is T, and the
86    *  value_type is std::pair<const Key,T>.
87    *
88    *  Maps support bidirectional iterators.
89    *
90    *  The private tree data is declared exactly the same way for map and
91    *  multimap; the distinction is made entirely in how the tree functions are
92    *  called (*_unique versus *_equal, same as the standard).
93   */
94   template <typename _Key, typename _Tp, typename _Compare = std::less<_Key>,
95             typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
96     class map
97     {
98     public:
99       typedef _Key                                          key_type;
100       typedef _Tp                                           mapped_type;
101       typedef std::pair<const _Key, _Tp>                    value_type;
102       typedef _Compare                                      key_compare;
103       typedef _Alloc                                        allocator_type;
104 
105     private:
106       // concept requirements
107       typedef typename _Alloc::value_type                   _Alloc_value_type;
108       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
109       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
110 				_BinaryFunctionConcept)
111       __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
112 
113     public:
114       class value_compare
115       : public std::binary_function<value_type, value_type, bool>
116       {
117 	friend class map<_Key, _Tp, _Compare, _Alloc>;
118       protected:
119 	_Compare comp;
120 
121 	value_compare(_Compare __c)
122 	: comp(__c) { }
123 
124       public:
125 	bool operator()(const value_type& __x, const value_type& __y) const
126 	{ return comp(__x.first, __y.first); }
127       };
128 
129     private:
130       /// This turns a red-black tree into a [multi]map.
131       typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
132 	rebind<value_type>::other _Pair_alloc_type;
133 
134       typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
135 		       key_compare, _Pair_alloc_type> _Rep_type;
136 
137       /// The actual tree structure.
138       _Rep_type _M_t;
139 
140       typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
141 
142     public:
143       // many of these are specified differently in ISO, but the following are
144       // "functionally equivalent"
145       typedef typename _Alloc_traits::pointer            pointer;
146       typedef typename _Alloc_traits::const_pointer      const_pointer;
147       typedef typename _Alloc_traits::reference          reference;
148       typedef typename _Alloc_traits::const_reference    const_reference;
149       typedef typename _Rep_type::iterator               iterator;
150       typedef typename _Rep_type::const_iterator         const_iterator;
151       typedef typename _Rep_type::size_type              size_type;
152       typedef typename _Rep_type::difference_type        difference_type;
153       typedef typename _Rep_type::reverse_iterator       reverse_iterator;
154       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
155 
156       // [23.3.1.1] construct/copy/destroy
157       // (get_allocator() is also listed in this section)
158 
159       /**
160        *  @brief  Default constructor creates no elements.
161        */
162       map()
163 #if __cplusplus >= 201103L
164       noexcept(is_nothrow_default_constructible<allocator_type>::value
165                && is_nothrow_default_constructible<key_compare>::value)
166 #endif
167       : _M_t() { }
168 
169       /**
170        *  @brief  Creates a %map with no elements.
171        *  @param  __comp  A comparison object.
172        *  @param  __a  An allocator object.
173        */
174       explicit
175       map(const _Compare& __comp,
176 	  const allocator_type& __a = allocator_type())
177       : _M_t(__comp, _Pair_alloc_type(__a)) { }
178 
179       /**
180        *  @brief  %Map copy constructor.
181        *  @param  __x  A %map of identical element and allocator types.
182        *
183        *  The newly-created %map uses a copy of the allocation object
184        *  used by @a __x.
185        */
186       map(const map& __x)
187       : _M_t(__x._M_t) { }
188 
189 #if __cplusplus >= 201103L
190       /**
191        *  @brief  %Map move constructor.
192        *  @param  __x  A %map of identical element and allocator types.
193        *
194        *  The newly-created %map contains the exact contents of @a __x.
195        *  The contents of @a __x are a valid, but unspecified %map.
196        */
197       map(map&& __x)
198       noexcept(is_nothrow_copy_constructible<_Compare>::value)
199       : _M_t(std::move(__x._M_t)) { }
200 
201       /**
202        *  @brief  Builds a %map from an initializer_list.
203        *  @param  __l  An initializer_list.
204        *  @param  __comp  A comparison object.
205        *  @param  __a  An allocator object.
206        *
207        *  Create a %map consisting of copies of the elements in the
208        *  initializer_list @a __l.
209        *  This is linear in N if the range is already sorted, and NlogN
210        *  otherwise (where N is @a __l.size()).
211        */
212       map(initializer_list<value_type> __l,
213 	  const _Compare& __comp = _Compare(),
214 	  const allocator_type& __a = allocator_type())
215       : _M_t(__comp, _Pair_alloc_type(__a))
216       { _M_t._M_insert_unique(__l.begin(), __l.end()); }
217 
218       /// Allocator-extended default constructor.
219       explicit
220       map(const allocator_type& __a)
221       : _M_t(_Compare(), _Pair_alloc_type(__a)) { }
222 
223       /// Allocator-extended copy constructor.
224       map(const map& __m, const allocator_type& __a)
225       : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
226 
227       /// Allocator-extended move constructor.
228       map(map&& __m, const allocator_type& __a)
229       noexcept(is_nothrow_copy_constructible<_Compare>::value
230 	       && _Alloc_traits::_S_always_equal())
231       : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
232 
233       /// Allocator-extended initialier-list constructor.
234       map(initializer_list<value_type> __l, const allocator_type& __a)
235       : _M_t(_Compare(), _Pair_alloc_type(__a))
236       { _M_t._M_insert_unique(__l.begin(), __l.end()); }
237 
238       /// Allocator-extended range constructor.
239       template<typename _InputIterator>
240         map(_InputIterator __first, _InputIterator __last,
241 	    const allocator_type& __a)
242 	: _M_t(_Compare(), _Pair_alloc_type(__a))
243         { _M_t._M_insert_unique(__first, __last); }
244 #endif
245 
246       /**
247        *  @brief  Builds a %map from a range.
248        *  @param  __first  An input iterator.
249        *  @param  __last  An input iterator.
250        *
251        *  Create a %map consisting of copies of the elements from
252        *  [__first,__last).  This is linear in N if the range is
253        *  already sorted, and NlogN otherwise (where N is
254        *  distance(__first,__last)).
255        */
256       template<typename _InputIterator>
257         map(_InputIterator __first, _InputIterator __last)
258 	: _M_t()
259         { _M_t._M_insert_unique(__first, __last); }
260 
261       /**
262        *  @brief  Builds a %map from a range.
263        *  @param  __first  An input iterator.
264        *  @param  __last  An input iterator.
265        *  @param  __comp  A comparison functor.
266        *  @param  __a  An allocator object.
267        *
268        *  Create a %map consisting of copies of the elements from
269        *  [__first,__last).  This is linear in N if the range is
270        *  already sorted, and NlogN otherwise (where N is
271        *  distance(__first,__last)).
272        */
273       template<typename _InputIterator>
274         map(_InputIterator __first, _InputIterator __last,
275 	    const _Compare& __comp,
276 	    const allocator_type& __a = allocator_type())
277 	: _M_t(__comp, _Pair_alloc_type(__a))
278         { _M_t._M_insert_unique(__first, __last); }
279 
280       // FIXME There is no dtor declared, but we should have something
281       // generated by Doxygen.  I don't know what tags to add to this
282       // paragraph to make that happen:
283       /**
284        *  The dtor only erases the elements, and note that if the elements
285        *  themselves are pointers, the pointed-to memory is not touched in any
286        *  way.  Managing the pointer is the user's responsibility.
287        */
288 
289       /**
290        *  @brief  %Map assignment operator.
291        *  @param  __x  A %map of identical element and allocator types.
292        *
293        *  All the elements of @a __x are copied, but unlike the copy
294        *  constructor, the allocator object is not copied.
295        */
296       map&
297       operator=(const map& __x)
298       {
299 	_M_t = __x._M_t;
300 	return *this;
301       }
302 
303 #if __cplusplus >= 201103L
304       /// Move assignment operator.
305       map&
306       operator=(map&&) = default;
307 
308       /**
309        *  @brief  %Map list assignment operator.
310        *  @param  __l  An initializer_list.
311        *
312        *  This function fills a %map with copies of the elements in the
313        *  initializer list @a __l.
314        *
315        *  Note that the assignment completely changes the %map and
316        *  that the resulting %map's size is the same as the number
317        *  of elements assigned.  Old data may be lost.
318        */
319       map&
320       operator=(initializer_list<value_type> __l)
321       {
322 	_M_t._M_assign_unique(__l.begin(), __l.end());
323 	return *this;
324       }
325 #endif
326 
327       /// Get a copy of the memory allocation object.
328       allocator_type
329       get_allocator() const _GLIBCXX_NOEXCEPT
330       { return allocator_type(_M_t.get_allocator()); }
331 
332       // iterators
333       /**
334        *  Returns a read/write iterator that points to the first pair in the
335        *  %map.
336        *  Iteration is done in ascending order according to the keys.
337        */
338       iterator
339       begin() _GLIBCXX_NOEXCEPT
340       { return _M_t.begin(); }
341 
342       /**
343        *  Returns a read-only (constant) iterator that points to the first pair
344        *  in the %map.  Iteration is done in ascending order according to the
345        *  keys.
346        */
347       const_iterator
348       begin() const _GLIBCXX_NOEXCEPT
349       { return _M_t.begin(); }
350 
351       /**
352        *  Returns a read/write iterator that points one past the last
353        *  pair in the %map.  Iteration is done in ascending order
354        *  according to the keys.
355        */
356       iterator
357       end() _GLIBCXX_NOEXCEPT
358       { return _M_t.end(); }
359 
360       /**
361        *  Returns a read-only (constant) iterator that points one past the last
362        *  pair in the %map.  Iteration is done in ascending order according to
363        *  the keys.
364        */
365       const_iterator
366       end() const _GLIBCXX_NOEXCEPT
367       { return _M_t.end(); }
368 
369       /**
370        *  Returns a read/write reverse iterator that points to the last pair in
371        *  the %map.  Iteration is done in descending order according to the
372        *  keys.
373        */
374       reverse_iterator
375       rbegin() _GLIBCXX_NOEXCEPT
376       { return _M_t.rbegin(); }
377 
378       /**
379        *  Returns a read-only (constant) reverse iterator that points to the
380        *  last pair in the %map.  Iteration is done in descending order
381        *  according to the keys.
382        */
383       const_reverse_iterator
384       rbegin() const _GLIBCXX_NOEXCEPT
385       { return _M_t.rbegin(); }
386 
387       /**
388        *  Returns a read/write reverse iterator that points to one before the
389        *  first pair in the %map.  Iteration is done in descending order
390        *  according to the keys.
391        */
392       reverse_iterator
393       rend() _GLIBCXX_NOEXCEPT
394       { return _M_t.rend(); }
395 
396       /**
397        *  Returns a read-only (constant) reverse iterator that points to one
398        *  before the first pair in the %map.  Iteration is done in descending
399        *  order according to the keys.
400        */
401       const_reverse_iterator
402       rend() const _GLIBCXX_NOEXCEPT
403       { return _M_t.rend(); }
404 
405 #if __cplusplus >= 201103L
406       /**
407        *  Returns a read-only (constant) iterator that points to the first pair
408        *  in the %map.  Iteration is done in ascending order according to the
409        *  keys.
410        */
411       const_iterator
412       cbegin() const noexcept
413       { return _M_t.begin(); }
414 
415       /**
416        *  Returns a read-only (constant) iterator that points one past the last
417        *  pair in the %map.  Iteration is done in ascending order according to
418        *  the keys.
419        */
420       const_iterator
421       cend() const noexcept
422       { return _M_t.end(); }
423 
424       /**
425        *  Returns a read-only (constant) reverse iterator that points to the
426        *  last pair in the %map.  Iteration is done in descending order
427        *  according to the keys.
428        */
429       const_reverse_iterator
430       crbegin() const noexcept
431       { return _M_t.rbegin(); }
432 
433       /**
434        *  Returns a read-only (constant) reverse iterator that points to one
435        *  before the first pair in the %map.  Iteration is done in descending
436        *  order according to the keys.
437        */
438       const_reverse_iterator
439       crend() const noexcept
440       { return _M_t.rend(); }
441 #endif
442 
443       // capacity
444       /** Returns true if the %map is empty.  (Thus begin() would equal
445        *  end().)
446       */
447       bool
448       empty() const _GLIBCXX_NOEXCEPT
449       { return _M_t.empty(); }
450 
451       /** Returns the size of the %map.  */
452       size_type
453       size() const _GLIBCXX_NOEXCEPT
454       { return _M_t.size(); }
455 
456       /** Returns the maximum size of the %map.  */
457       size_type
458       max_size() const _GLIBCXX_NOEXCEPT
459       { return _M_t.max_size(); }
460 
461       // [23.3.1.2] element access
462       /**
463        *  @brief  Subscript ( @c [] ) access to %map data.
464        *  @param  __k  The key for which data should be retrieved.
465        *  @return  A reference to the data of the (key,data) %pair.
466        *
467        *  Allows for easy lookup with the subscript ( @c [] )
468        *  operator.  Returns data associated with the key specified in
469        *  subscript.  If the key does not exist, a pair with that key
470        *  is created using default values, which is then returned.
471        *
472        *  Lookup requires logarithmic time.
473        */
474       mapped_type&
475       operator[](const key_type& __k)
476       {
477 	// concept requirements
478 	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
479 
480 	iterator __i = lower_bound(__k);
481 	// __i->first is greater than or equivalent to __k.
482 	if (__i == end() || key_comp()(__k, (*__i).first))
483 #if __cplusplus >= 201103L
484 	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
485 					    std::tuple<const key_type&>(__k),
486 					    std::tuple<>());
487 #else
488           __i = insert(__i, value_type(__k, mapped_type()));
489 #endif
490 	return (*__i).second;
491       }
492 
493 #if __cplusplus >= 201103L
494       mapped_type&
495       operator[](key_type&& __k)
496       {
497 	// concept requirements
498 	__glibcxx_function_requires(_DefaultConstructibleConcept<mapped_type>)
499 
500 	iterator __i = lower_bound(__k);
501 	// __i->first is greater than or equivalent to __k.
502 	if (__i == end() || key_comp()(__k, (*__i).first))
503 	  __i = _M_t._M_emplace_hint_unique(__i, std::piecewise_construct,
504 					std::forward_as_tuple(std::move(__k)),
505 					std::tuple<>());
506 	return (*__i).second;
507       }
508 #endif
509 
510       // _GLIBCXX_RESOLVE_LIB_DEFECTS
511       // DR 464. Suggestion for new member functions in standard containers.
512       /**
513        *  @brief  Access to %map data.
514        *  @param  __k  The key for which data should be retrieved.
515        *  @return  A reference to the data whose key is equivalent to @a __k, if
516        *           such a data is present in the %map.
517        *  @throw  std::out_of_range  If no such data is present.
518        */
519       mapped_type&
520       at(const key_type& __k)
521       {
522 	iterator __i = lower_bound(__k);
523 	if (__i == end() || key_comp()(__k, (*__i).first))
524 	  __throw_out_of_range(__N("map::at"));
525 	return (*__i).second;
526       }
527 
528       const mapped_type&
529       at(const key_type& __k) const
530       {
531 	const_iterator __i = lower_bound(__k);
532 	if (__i == end() || key_comp()(__k, (*__i).first))
533 	  __throw_out_of_range(__N("map::at"));
534 	return (*__i).second;
535       }
536 
537       // modifiers
538 #if __cplusplus >= 201103L
539       /**
540        *  @brief Attempts to build and insert a std::pair into the %map.
541        *
542        *  @param __args  Arguments used to generate a new pair instance (see
543        *	        std::piecewise_contruct for passing arguments to each
544        *	        part of the pair constructor).
545        *
546        *  @return  A pair, of which the first element is an iterator that points
547        *           to the possibly inserted pair, and the second is a bool that
548        *           is true if the pair was actually inserted.
549        *
550        *  This function attempts to build and insert a (key, value) %pair into
551        *  the %map.
552        *  A %map relies on unique keys and thus a %pair is only inserted if its
553        *  first element (the key) is not already present in the %map.
554        *
555        *  Insertion requires logarithmic time.
556        */
557       template<typename... _Args>
558 	std::pair<iterator, bool>
559 	emplace(_Args&&... __args)
560 	{ return _M_t._M_emplace_unique(std::forward<_Args>(__args)...); }
561 
562       /**
563        *  @brief Attempts to build and insert a std::pair into the %map.
564        *
565        *  @param  __pos  An iterator that serves as a hint as to where the pair
566        *                should be inserted.
567        *  @param  __args  Arguments used to generate a new pair instance (see
568        *	         std::piecewise_contruct for passing arguments to each
569        *	         part of the pair constructor).
570        *  @return An iterator that points to the element with key of the
571        *          std::pair built from @a __args (may or may not be that
572        *          std::pair).
573        *
574        *  This function is not concerned about whether the insertion took place,
575        *  and thus does not return a boolean like the single-argument emplace()
576        *  does.
577        *  Note that the first parameter is only a hint and can potentially
578        *  improve the performance of the insertion process. A bad hint would
579        *  cause no gains in efficiency.
580        *
581        *  See
582        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
583        *  for more on @a hinting.
584        *
585        *  Insertion requires logarithmic time (if the hint is not taken).
586        */
587       template<typename... _Args>
588 	iterator
589 	emplace_hint(const_iterator __pos, _Args&&... __args)
590 	{
591 	  return _M_t._M_emplace_hint_unique(__pos,
592 					     std::forward<_Args>(__args)...);
593 	}
594 #endif
595 
596       /**
597        *  @brief Attempts to insert a std::pair into the %map.
598 
599        *  @param __x Pair to be inserted (see std::make_pair for easy
600        *	     creation of pairs).
601        *
602        *  @return  A pair, of which the first element is an iterator that
603        *           points to the possibly inserted pair, and the second is
604        *           a bool that is true if the pair was actually inserted.
605        *
606        *  This function attempts to insert a (key, value) %pair into the %map.
607        *  A %map relies on unique keys and thus a %pair is only inserted if its
608        *  first element (the key) is not already present in the %map.
609        *
610        *  Insertion requires logarithmic time.
611        */
612       std::pair<iterator, bool>
613       insert(const value_type& __x)
614       { return _M_t._M_insert_unique(__x); }
615 
616 #if __cplusplus >= 201103L
617       template<typename _Pair, typename = typename
618 	       std::enable_if<std::is_constructible<value_type,
619 						    _Pair&&>::value>::type>
620         std::pair<iterator, bool>
621         insert(_Pair&& __x)
622         { return _M_t._M_insert_unique(std::forward<_Pair>(__x)); }
623 #endif
624 
625 #if __cplusplus >= 201103L
626       /**
627        *  @brief Attempts to insert a list of std::pairs into the %map.
628        *  @param  __list  A std::initializer_list<value_type> of pairs to be
629        *                  inserted.
630        *
631        *  Complexity similar to that of the range constructor.
632        */
633       void
634       insert(std::initializer_list<value_type> __list)
635       { insert(__list.begin(), __list.end()); }
636 #endif
637 
638       /**
639        *  @brief Attempts to insert a std::pair into the %map.
640        *  @param  __position  An iterator that serves as a hint as to where the
641        *                    pair should be inserted.
642        *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
643        *               of pairs).
644        *  @return An iterator that points to the element with key of
645        *           @a __x (may or may not be the %pair passed in).
646        *
647 
648        *  This function is not concerned about whether the insertion
649        *  took place, and thus does not return a boolean like the
650        *  single-argument insert() does.  Note that the first
651        *  parameter is only a hint and can potentially improve the
652        *  performance of the insertion process.  A bad hint would
653        *  cause no gains in efficiency.
654        *
655        *  See
656        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
657        *  for more on @a hinting.
658        *
659        *  Insertion requires logarithmic time (if the hint is not taken).
660        */
661       iterator
662 #if __cplusplus >= 201103L
663       insert(const_iterator __position, const value_type& __x)
664 #else
665       insert(iterator __position, const value_type& __x)
666 #endif
667       { return _M_t._M_insert_unique_(__position, __x); }
668 
669 #if __cplusplus >= 201103L
670       template<typename _Pair, typename = typename
671 	       std::enable_if<std::is_constructible<value_type,
672 						    _Pair&&>::value>::type>
673         iterator
674         insert(const_iterator __position, _Pair&& __x)
675         { return _M_t._M_insert_unique_(__position,
676 					std::forward<_Pair>(__x)); }
677 #endif
678 
679       /**
680        *  @brief Template function that attempts to insert a range of elements.
681        *  @param  __first  Iterator pointing to the start of the range to be
682        *                   inserted.
683        *  @param  __last  Iterator pointing to the end of the range.
684        *
685        *  Complexity similar to that of the range constructor.
686        */
687       template<typename _InputIterator>
688         void
689         insert(_InputIterator __first, _InputIterator __last)
690         { _M_t._M_insert_unique(__first, __last); }
691 
692 #if __cplusplus >= 201103L
693       // _GLIBCXX_RESOLVE_LIB_DEFECTS
694       // DR 130. Associative erase should return an iterator.
695       /**
696        *  @brief Erases an element from a %map.
697        *  @param  __position  An iterator pointing to the element to be erased.
698        *  @return An iterator pointing to the element immediately following
699        *          @a position prior to the element being erased. If no such
700        *          element exists, end() is returned.
701        *
702        *  This function erases an element, pointed to by the given
703        *  iterator, from a %map.  Note that this function only erases
704        *  the element, and that if the element is itself a pointer,
705        *  the pointed-to memory is not touched in any way.  Managing
706        *  the pointer is the user's responsibility.
707        */
708       iterator
709       erase(const_iterator __position)
710       { return _M_t.erase(__position); }
711 
712       // LWG 2059
713       _GLIBCXX_ABI_TAG_CXX11
714       iterator
715       erase(iterator __position)
716       { return _M_t.erase(__position); }
717 #else
718       /**
719        *  @brief Erases an element from a %map.
720        *  @param  __position  An iterator pointing to the element to be erased.
721        *
722        *  This function erases an element, pointed to by the given
723        *  iterator, from a %map.  Note that this function only erases
724        *  the element, and that if the element is itself a pointer,
725        *  the pointed-to memory is not touched in any way.  Managing
726        *  the pointer is the user's responsibility.
727        */
728       void
729       erase(iterator __position)
730       { _M_t.erase(__position); }
731 #endif
732 
733       /**
734        *  @brief Erases elements according to the provided key.
735        *  @param  __x  Key of element to be erased.
736        *  @return  The number of elements erased.
737        *
738        *  This function erases all the elements located by the given key from
739        *  a %map.
740        *  Note that this function only erases the element, and that if
741        *  the element is itself a pointer, the pointed-to memory is not touched
742        *  in any way.  Managing the pointer is the user's responsibility.
743        */
744       size_type
745       erase(const key_type& __x)
746       { return _M_t.erase(__x); }
747 
748 #if __cplusplus >= 201103L
749       // _GLIBCXX_RESOLVE_LIB_DEFECTS
750       // DR 130. Associative erase should return an iterator.
751       /**
752        *  @brief Erases a [first,last) range of elements from a %map.
753        *  @param  __first  Iterator pointing to the start of the range to be
754        *                   erased.
755        *  @param __last Iterator pointing to the end of the range to
756        *                be erased.
757        *  @return The iterator @a __last.
758        *
759        *  This function erases a sequence of elements from a %map.
760        *  Note that this function only erases the element, and that if
761        *  the element is itself a pointer, the pointed-to memory is not touched
762        *  in any way.  Managing the pointer is the user's responsibility.
763        */
764       iterator
765       erase(const_iterator __first, const_iterator __last)
766       { return _M_t.erase(__first, __last); }
767 #else
768       /**
769        *  @brief Erases a [__first,__last) range of elements from a %map.
770        *  @param  __first  Iterator pointing to the start of the range to be
771        *                   erased.
772        *  @param __last Iterator pointing to the end of the range to
773        *                be erased.
774        *
775        *  This function erases a sequence of elements from a %map.
776        *  Note that this function only erases the element, and that if
777        *  the element is itself a pointer, the pointed-to memory is not touched
778        *  in any way.  Managing the pointer is the user's responsibility.
779        */
780       void
781       erase(iterator __first, iterator __last)
782       { _M_t.erase(__first, __last); }
783 #endif
784 
785       /**
786        *  @brief  Swaps data with another %map.
787        *  @param  __x  A %map of the same element and allocator types.
788        *
789        *  This exchanges the elements between two maps in constant
790        *  time.  (It is only swapping a pointer, an integer, and an
791        *  instance of the @c Compare type (which itself is often
792        *  stateless and empty), so it should be quite fast.)  Note
793        *  that the global std::swap() function is specialized such
794        *  that std::swap(m1,m2) will feed to this function.
795        */
796       void
797       swap(map& __x)
798 #if __cplusplus >= 201103L
799       noexcept(_Alloc_traits::_S_nothrow_swap())
800 #endif
801       { _M_t.swap(__x._M_t); }
802 
803       /**
804        *  Erases all elements in a %map.  Note that this function only
805        *  erases the elements, and that if the elements themselves are
806        *  pointers, the pointed-to memory is not touched in any way.
807        *  Managing the pointer is the user's responsibility.
808        */
809       void
810       clear() _GLIBCXX_NOEXCEPT
811       { _M_t.clear(); }
812 
813       // observers
814       /**
815        *  Returns the key comparison object out of which the %map was
816        *  constructed.
817        */
818       key_compare
819       key_comp() const
820       { return _M_t.key_comp(); }
821 
822       /**
823        *  Returns a value comparison object, built from the key comparison
824        *  object out of which the %map was constructed.
825        */
826       value_compare
827       value_comp() const
828       { return value_compare(_M_t.key_comp()); }
829 
830       // [23.3.1.3] map operations
831 
832       //@{
833       /**
834        *  @brief Tries to locate an element in a %map.
835        *  @param  __x  Key of (key, value) %pair to be located.
836        *  @return  Iterator pointing to sought-after element, or end() if not
837        *           found.
838        *
839        *  This function takes a key and tries to locate the element with which
840        *  the key matches.  If successful the function returns an iterator
841        *  pointing to the sought after %pair.  If unsuccessful it returns the
842        *  past-the-end ( @c end() ) iterator.
843        */
844 
845       iterator
846       find(const key_type& __x)
847       { return _M_t.find(__x); }
848 
849 #if __cplusplus > 201103L
850       template<typename _Kt>
851 	auto
852 	find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
853 	{ return _M_t._M_find_tr(__x); }
854 #endif
855       //@}
856 
857       //@{
858       /**
859        *  @brief Tries to locate an element in a %map.
860        *  @param  __x  Key of (key, value) %pair to be located.
861        *  @return  Read-only (constant) iterator pointing to sought-after
862        *           element, or end() if not found.
863        *
864        *  This function takes a key and tries to locate the element with which
865        *  the key matches.  If successful the function returns a constant
866        *  iterator pointing to the sought after %pair. If unsuccessful it
867        *  returns the past-the-end ( @c end() ) iterator.
868        */
869 
870       const_iterator
871       find(const key_type& __x) const
872       { return _M_t.find(__x); }
873 
874 #if __cplusplus > 201103L
875       template<typename _Kt>
876 	auto
877 	find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
878 	{ return _M_t._M_find_tr(__x); }
879 #endif
880       //@}
881 
882       //@{
883       /**
884        *  @brief  Finds the number of elements with given key.
885        *  @param  __x  Key of (key, value) pairs to be located.
886        *  @return  Number of elements with specified key.
887        *
888        *  This function only makes sense for multimaps; for map the result will
889        *  either be 0 (not present) or 1 (present).
890        */
891       size_type
892       count(const key_type& __x) const
893       { return _M_t.find(__x) == _M_t.end() ? 0 : 1; }
894 
895 #if __cplusplus > 201103L
896       template<typename _Kt>
897 	auto
898 	count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
899 	{ return _M_t._M_count_tr(__x); }
900 #endif
901       //@}
902 
903       //@{
904       /**
905        *  @brief Finds the beginning of a subsequence matching given key.
906        *  @param  __x  Key of (key, value) pair to be located.
907        *  @return  Iterator pointing to first element equal to or greater
908        *           than key, or end().
909        *
910        *  This function returns the first element of a subsequence of elements
911        *  that matches the given key.  If unsuccessful it returns an iterator
912        *  pointing to the first element that has a greater value than given key
913        *  or end() if no such element exists.
914        */
915       iterator
916       lower_bound(const key_type& __x)
917       { return _M_t.lower_bound(__x); }
918 
919 #if __cplusplus > 201103L
920       template<typename _Kt>
921 	auto
922 	lower_bound(const _Kt& __x)
923 	-> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
924 	{ return iterator(_M_t._M_lower_bound_tr(__x)); }
925 #endif
926       //@}
927 
928       //@{
929       /**
930        *  @brief Finds the beginning of a subsequence matching given key.
931        *  @param  __x  Key of (key, value) pair to be located.
932        *  @return  Read-only (constant) iterator pointing to first element
933        *           equal to or greater than key, or end().
934        *
935        *  This function returns the first element of a subsequence of elements
936        *  that matches the given key.  If unsuccessful it returns an iterator
937        *  pointing to the first element that has a greater value than given key
938        *  or end() if no such element exists.
939        */
940       const_iterator
941       lower_bound(const key_type& __x) const
942       { return _M_t.lower_bound(__x); }
943 
944 #if __cplusplus > 201103L
945       template<typename _Kt>
946 	auto
947 	lower_bound(const _Kt& __x) const
948 	-> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
949 	{ return const_iterator(_M_t._M_lower_bound_tr(__x)); }
950 #endif
951       //@}
952 
953       //@{
954       /**
955        *  @brief Finds the end of a subsequence matching given key.
956        *  @param  __x  Key of (key, value) pair to be located.
957        *  @return Iterator pointing to the first element
958        *          greater than key, or end().
959        */
960       iterator
961       upper_bound(const key_type& __x)
962       { return _M_t.upper_bound(__x); }
963 
964 #if __cplusplus > 201103L
965       template<typename _Kt>
966 	auto
967 	upper_bound(const _Kt& __x)
968 	-> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
969 	{ return iterator(_M_t._M_upper_bound_tr(__x)); }
970 #endif
971       //@}
972 
973       //@{
974       /**
975        *  @brief Finds the end of a subsequence matching given key.
976        *  @param  __x  Key of (key, value) pair to be located.
977        *  @return  Read-only (constant) iterator pointing to first iterator
978        *           greater than key, or end().
979        */
980       const_iterator
981       upper_bound(const key_type& __x) const
982       { return _M_t.upper_bound(__x); }
983 
984 #if __cplusplus > 201103L
985       template<typename _Kt>
986 	auto
987 	upper_bound(const _Kt& __x) const
988 	-> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
989 	{ return const_iterator(_M_t._M_upper_bound_tr(__x)); }
990 #endif
991       //@}
992 
993       //@{
994       /**
995        *  @brief Finds a subsequence matching given key.
996        *  @param  __x  Key of (key, value) pairs to be located.
997        *  @return  Pair of iterators that possibly points to the subsequence
998        *           matching given key.
999        *
1000        *  This function is equivalent to
1001        *  @code
1002        *    std::make_pair(c.lower_bound(val),
1003        *                   c.upper_bound(val))
1004        *  @endcode
1005        *  (but is faster than making the calls separately).
1006        *
1007        *  This function probably only makes sense for multimaps.
1008        */
1009       std::pair<iterator, iterator>
1010       equal_range(const key_type& __x)
1011       { return _M_t.equal_range(__x); }
1012 
1013 #if __cplusplus > 201103L
1014       template<typename _Kt>
1015 	auto
1016 	equal_range(const _Kt& __x)
1017 	-> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
1018 	{ return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
1019 #endif
1020       //@}
1021 
1022       //@{
1023       /**
1024        *  @brief Finds a subsequence matching given key.
1025        *  @param  __x  Key of (key, value) pairs to be located.
1026        *  @return  Pair of read-only (constant) iterators that possibly points
1027        *           to the subsequence matching given key.
1028        *
1029        *  This function is equivalent to
1030        *  @code
1031        *    std::make_pair(c.lower_bound(val),
1032        *                   c.upper_bound(val))
1033        *  @endcode
1034        *  (but is faster than making the calls separately).
1035        *
1036        *  This function probably only makes sense for multimaps.
1037        */
1038       std::pair<const_iterator, const_iterator>
1039       equal_range(const key_type& __x) const
1040       { return _M_t.equal_range(__x); }
1041 
1042 #if __cplusplus > 201103L
1043       template<typename _Kt>
1044 	auto
1045 	equal_range(const _Kt& __x) const
1046 	-> decltype(pair<const_iterator, const_iterator>(
1047 	      _M_t._M_equal_range_tr(__x)))
1048 	{
1049 	  return pair<const_iterator, const_iterator>(
1050 	      _M_t._M_equal_range_tr(__x));
1051 	}
1052 #endif
1053       //@}
1054 
1055       template<typename _K1, typename _T1, typename _C1, typename _A1>
1056         friend bool
1057         operator==(const map<_K1, _T1, _C1, _A1>&,
1058 		   const map<_K1, _T1, _C1, _A1>&);
1059 
1060       template<typename _K1, typename _T1, typename _C1, typename _A1>
1061         friend bool
1062         operator<(const map<_K1, _T1, _C1, _A1>&,
1063 		  const map<_K1, _T1, _C1, _A1>&);
1064     };
1065 
1066   /**
1067    *  @brief  Map equality comparison.
1068    *  @param  __x  A %map.
1069    *  @param  __y  A %map of the same type as @a x.
1070    *  @return  True iff the size and elements of the maps are equal.
1071    *
1072    *  This is an equivalence relation.  It is linear in the size of the
1073    *  maps.  Maps are considered equivalent if their sizes are equal,
1074    *  and if corresponding elements compare equal.
1075   */
1076   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1077     inline bool
1078     operator==(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1079                const map<_Key, _Tp, _Compare, _Alloc>& __y)
1080     { return __x._M_t == __y._M_t; }
1081 
1082   /**
1083    *  @brief  Map ordering relation.
1084    *  @param  __x  A %map.
1085    *  @param  __y  A %map of the same type as @a x.
1086    *  @return  True iff @a x is lexicographically less than @a y.
1087    *
1088    *  This is a total ordering relation.  It is linear in the size of the
1089    *  maps.  The elements must be comparable with @c <.
1090    *
1091    *  See std::lexicographical_compare() for how the determination is made.
1092   */
1093   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1094     inline bool
1095     operator<(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1096               const map<_Key, _Tp, _Compare, _Alloc>& __y)
1097     { return __x._M_t < __y._M_t; }
1098 
1099   /// Based on operator==
1100   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1101     inline bool
1102     operator!=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1103                const map<_Key, _Tp, _Compare, _Alloc>& __y)
1104     { return !(__x == __y); }
1105 
1106   /// Based on operator<
1107   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1108     inline bool
1109     operator>(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1110               const map<_Key, _Tp, _Compare, _Alloc>& __y)
1111     { return __y < __x; }
1112 
1113   /// Based on operator<
1114   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1115     inline bool
1116     operator<=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1117                const map<_Key, _Tp, _Compare, _Alloc>& __y)
1118     { return !(__y < __x); }
1119 
1120   /// Based on operator<
1121   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1122     inline bool
1123     operator>=(const map<_Key, _Tp, _Compare, _Alloc>& __x,
1124                const map<_Key, _Tp, _Compare, _Alloc>& __y)
1125     { return !(__x < __y); }
1126 
1127   /// See std::map::swap().
1128   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1129     inline void
1130     swap(map<_Key, _Tp, _Compare, _Alloc>& __x,
1131 	 map<_Key, _Tp, _Compare, _Alloc>& __y)
1132     { __x.swap(__y); }
1133 
1134 _GLIBCXX_END_NAMESPACE_CONTAINER
1135 } // namespace std
1136 
1137 #endif /* _STL_MAP_H */
1138