xref: /netbsd-src/external/gpl3/gcc/dist/libstdc++-v3/include/bits/regex_executor.tcc (revision 4d5abbe83f525258eb479e5fca29f25cb943f379)
1 // class template regex -*- C++ -*-
2 
3 // Copyright (C) 2013-2015 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /**
26  *  @file bits/regex_executor.tcc
27  *  This is an internal header file, included by other library headers.
28  *  Do not attempt to use it directly. @headername{regex}
29  */
30 
31 namespace std _GLIBCXX_VISIBILITY(default)
32 {
33 namespace __detail
34 {
35 _GLIBCXX_BEGIN_NAMESPACE_VERSION
36 
37   template<typename _BiIter, typename _Alloc, typename _TraitsT,
38 	   bool __dfs_mode>
39     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
40     _M_search()
41     {
42       if (_M_search_from_first())
43 	return true;
44       if (_M_flags & regex_constants::match_continuous)
45 	return false;
46       _M_flags |= regex_constants::match_prev_avail;
47       while (_M_begin != _M_end)
48 	{
49 	  ++_M_begin;
50 	  if (_M_search_from_first())
51 	    return true;
52 	}
53       return false;
54     }
55 
56   // The _M_main function operates in different modes, DFS mode or BFS mode,
57   // indicated by template parameter __dfs_mode, and dispatches to one of the
58   // _M_main_dispatch overloads.
59   //
60   // ------------------------------------------------------------
61   //
62   // DFS mode:
63   //
64   // It applies a Depth-First-Search (aka backtracking) on given NFA and input
65   // string.
66   // At the very beginning the executor stands in the start state, then it
67   // tries every possible state transition in current state recursively. Some
68   // state transitions consume input string, say, a single-char-matcher or a
69   // back-reference matcher; some don't, like assertion or other anchor nodes.
70   // When the input is exhausted and/or the current state is an accepting
71   // state, the whole executor returns true.
72   //
73   // TODO: This approach is exponentially slow for certain input.
74   //       Try to compile the NFA to a DFA.
75   //
76   // Time complexity: \Omega(match_length), O(2^(_M_nfa.size()))
77   // Space complexity: \theta(match_results.size() + match_length)
78   //
79   template<typename _BiIter, typename _Alloc, typename _TraitsT,
80 	   bool __dfs_mode>
81     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
82     _M_main_dispatch(_Match_mode __match_mode, __dfs)
83     {
84       _M_has_sol = false;
85       *_M_states._M_get_sol_pos() = _BiIter();
86       _M_cur_results = _M_results;
87       _M_dfs(__match_mode, _M_states._M_start);
88       return _M_has_sol;
89     }
90 
91   // ------------------------------------------------------------
92   //
93   // BFS mode:
94   //
95   // Russ Cox's article (http://swtch.com/~rsc/regexp/regexp1.html)
96   // explained this algorithm clearly.
97   //
98   // It first computes epsilon closure (states that can be achieved without
99   // consuming characters) for every state that's still matching,
100   // using the same DFS algorithm, but doesn't re-enter states (using
101   // _M_states._M_visited to check), nor follow _S_opcode_match.
102   //
103   // Then apply DFS using every _S_opcode_match (in _M_states._M_match_queue)
104   // as the start state.
105   //
106   // It significantly reduces potential duplicate states, so has a better
107   // upper bound; but it requires more overhead.
108   //
109   // Time complexity: \Omega(match_length * match_results.size())
110   //                  O(match_length * _M_nfa.size() * match_results.size())
111   // Space complexity: \Omega(_M_nfa.size() + match_results.size())
112   //                   O(_M_nfa.size() * match_results.size())
113   template<typename _BiIter, typename _Alloc, typename _TraitsT,
114 	   bool __dfs_mode>
115     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
116     _M_main_dispatch(_Match_mode __match_mode, __bfs)
117     {
118       _M_states._M_queue(_M_states._M_start, _M_results);
119       bool __ret = false;
120       while (1)
121 	{
122 	  _M_has_sol = false;
123 	  if (_M_states._M_match_queue.empty())
124 	    break;
125 	  std::fill_n(_M_states._M_visited_states.get(), _M_nfa.size(), false);
126 	  auto __old_queue = std::move(_M_states._M_match_queue);
127 	  for (auto& __task : __old_queue)
128 	    {
129 	      _M_cur_results = std::move(__task.second);
130 	      _M_dfs(__match_mode, __task.first);
131 	    }
132 	  if (__match_mode == _Match_mode::_Prefix)
133 	    __ret |= _M_has_sol;
134 	  if (_M_current == _M_end)
135 	    break;
136 	  ++_M_current;
137 	}
138       if (__match_mode == _Match_mode::_Exact)
139 	__ret = _M_has_sol;
140       _M_states._M_match_queue.clear();
141       return __ret;
142     }
143 
144   // Return whether now match the given sub-NFA.
145   template<typename _BiIter, typename _Alloc, typename _TraitsT,
146 	   bool __dfs_mode>
147     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
148     _M_lookahead(_State<_TraitsT> __state)
149     {
150       _ResultsVec __what(_M_cur_results.size());
151       _Executor __sub(_M_current, _M_end, __what, _M_re, _M_flags);
152       __sub._M_states._M_start = __state._M_alt;
153       if (__sub._M_search_from_first())
154 	{
155 	  for (size_t __i = 0; __i < __what.size(); __i++)
156 	    if (__what[__i].matched)
157 	      _M_cur_results[__i] = __what[__i];
158 	  return true;
159 	}
160       return false;
161     }
162 
163   // __rep_count records how many times (__rep_count.second)
164   // this node is visited under certain input iterator
165   // (__rep_count.first). This prevent the executor from entering
166   // infinite loop by refusing to continue when it's already been
167   // visited more than twice. It's `twice` instead of `once` because
168   // we need to spare one more time for potential group capture.
169   template<typename _BiIter, typename _Alloc, typename _TraitsT,
170     bool __dfs_mode>
171     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
172     _M_rep_once_more(_Match_mode __match_mode, _StateIdT __i)
173     {
174       const auto& __state = _M_nfa[__i];
175       auto& __rep_count = _M_rep_count[__i];
176       if (__rep_count.second == 0 || __rep_count.first != _M_current)
177 	{
178 	  auto __back = __rep_count;
179 	  __rep_count.first = _M_current;
180 	  __rep_count.second = 1;
181 	  _M_dfs(__match_mode, __state._M_alt);
182 	  __rep_count = __back;
183 	}
184       else
185 	{
186 	  if (__rep_count.second < 2)
187 	    {
188 	      __rep_count.second++;
189 	      _M_dfs(__match_mode, __state._M_alt);
190 	      __rep_count.second--;
191 	    }
192 	}
193     };
194 
195   template<typename _BiIter, typename _Alloc, typename _TraitsT,
196 	   bool __dfs_mode>
197     void _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
198     _M_dfs(_Match_mode __match_mode, _StateIdT __i)
199     {
200       if (_M_states._M_visited(__i))
201 	return;
202 
203       const auto& __state = _M_nfa[__i];
204       // Every change on _M_cur_results and _M_current will be rolled back after
205       // finishing the recursion step.
206       switch (__state._M_opcode)
207 	{
208 	// _M_alt branch is "match once more", while _M_next is "get me out
209 	// of this quantifier". Executing _M_next first or _M_alt first don't
210 	// mean the same thing, and we need to choose the correct order under
211 	// given greedy mode.
212 	case _S_opcode_repeat:
213 	  {
214 	    // Greedy.
215 	    if (!__state._M_neg)
216 	      {
217 		_M_rep_once_more(__match_mode, __i);
218 		// If it's DFS executor and already accepted, we're done.
219 		if (!__dfs_mode || !_M_has_sol)
220 		  _M_dfs(__match_mode, __state._M_next);
221 	      }
222 	    else // Non-greedy mode
223 	      {
224 		if (__dfs_mode)
225 		  {
226 		    // vice-versa.
227 		    _M_dfs(__match_mode, __state._M_next);
228 		    if (!_M_has_sol)
229 		      _M_rep_once_more(__match_mode, __i);
230 		  }
231 		else
232 		  {
233 		    // DON'T attempt anything, because there's already another
234 		    // state with higher priority accepted. This state cannot
235 		    // be better by attempting its next node.
236 		    if (!_M_has_sol)
237 		      {
238 			_M_dfs(__match_mode, __state._M_next);
239 			// DON'T attempt anything if it's already accepted. An
240 			// accepted state *must* be better than a solution that
241 			// matches a non-greedy quantifier one more time.
242 			if (!_M_has_sol)
243 			  _M_rep_once_more(__match_mode, __i);
244 		      }
245 		  }
246 	      }
247 	    }
248 	  break;
249 	case _S_opcode_subexpr_begin:
250 	  {
251 	    auto& __res = _M_cur_results[__state._M_subexpr];
252 	    auto __back = __res.first;
253 	    __res.first = _M_current;
254 	    _M_dfs(__match_mode, __state._M_next);
255 	    __res.first = __back;
256 	  }
257 	  break;
258 	case _S_opcode_subexpr_end:
259 	  {
260 	    auto& __res = _M_cur_results[__state._M_subexpr];
261 	    auto __back = __res;
262 	    __res.second = _M_current;
263 	    __res.matched = true;
264 	    _M_dfs(__match_mode, __state._M_next);
265 	    __res = __back;
266 	  }
267 	  break;
268 	case _S_opcode_line_begin_assertion:
269 	  if (_M_at_begin())
270 	    _M_dfs(__match_mode, __state._M_next);
271 	  break;
272 	case _S_opcode_line_end_assertion:
273 	  if (_M_at_end())
274 	    _M_dfs(__match_mode, __state._M_next);
275 	  break;
276 	case _S_opcode_word_boundary:
277 	  if (_M_word_boundary() == !__state._M_neg)
278 	    _M_dfs(__match_mode, __state._M_next);
279 	  break;
280 	// Here __state._M_alt offers a single start node for a sub-NFA.
281 	// We recursively invoke our algorithm to match the sub-NFA.
282 	case _S_opcode_subexpr_lookahead:
283 	  if (_M_lookahead(__state) == !__state._M_neg)
284 	    _M_dfs(__match_mode, __state._M_next);
285 	  break;
286 	case _S_opcode_match:
287 	  if (_M_current == _M_end)
288 	    break;
289 	  if (__dfs_mode)
290 	    {
291 	      if (__state._M_matches(*_M_current))
292 		{
293 		  ++_M_current;
294 		  _M_dfs(__match_mode, __state._M_next);
295 		  --_M_current;
296 		}
297 	    }
298 	  else
299 	    if (__state._M_matches(*_M_current))
300 	      _M_states._M_queue(__state._M_next, _M_cur_results);
301 	  break;
302 	// First fetch the matched result from _M_cur_results as __submatch;
303 	// then compare it with
304 	// (_M_current, _M_current + (__submatch.second - __submatch.first)).
305 	// If matched, keep going; else just return and try another state.
306 	case _S_opcode_backref:
307 	  {
308 	    _GLIBCXX_DEBUG_ASSERT(__dfs_mode);
309 	    auto& __submatch = _M_cur_results[__state._M_backref_index];
310 	    if (!__submatch.matched)
311 	      break;
312 	    auto __last = _M_current;
313 	    for (auto __tmp = __submatch.first;
314 		 __last != _M_end && __tmp != __submatch.second;
315 		 ++__tmp)
316 	      ++__last;
317 	    if (_M_re._M_automaton->_M_traits.transform(__submatch.first,
318 							__submatch.second)
319 		== _M_re._M_automaton->_M_traits.transform(_M_current, __last))
320 	      {
321 		if (__last != _M_current)
322 		  {
323 		    auto __backup = _M_current;
324 		    _M_current = __last;
325 		    _M_dfs(__match_mode, __state._M_next);
326 		    _M_current = __backup;
327 		  }
328 		else
329 		  _M_dfs(__match_mode, __state._M_next);
330 	      }
331 	  }
332 	  break;
333 	case _S_opcode_accept:
334 	  if (__dfs_mode)
335 	    {
336 	      _GLIBCXX_DEBUG_ASSERT(!_M_has_sol);
337 	      if (__match_mode == _Match_mode::_Exact)
338 		_M_has_sol = _M_current == _M_end;
339 	      else
340 		_M_has_sol = true;
341 	      if (_M_current == _M_begin
342 		  && (_M_flags & regex_constants::match_not_null))
343 		_M_has_sol = false;
344 	      if (_M_has_sol)
345 		{
346 		  if (_M_nfa._M_flags & regex_constants::ECMAScript)
347 		    _M_results = _M_cur_results;
348 		  else // POSIX
349 		    {
350 		      _GLIBCXX_DEBUG_ASSERT(_M_states._M_get_sol_pos());
351 		      // Here's POSIX's logic: match the longest one. However
352 		      // we never know which one (lhs or rhs of "|") is longer
353 		      // unless we try both of them and compare the results.
354 		      // The member variable _M_sol_pos records the end
355 		      // position of the last successful match. It's better
356 		      // to be larger, because POSIX regex is always greedy.
357 		      // TODO: This could be slow.
358 		      if (*_M_states._M_get_sol_pos() == _BiIter()
359 			  || std::distance(_M_begin,
360 					   *_M_states._M_get_sol_pos())
361 			     < std::distance(_M_begin, _M_current))
362 			{
363 			  *_M_states._M_get_sol_pos() = _M_current;
364 			  _M_results = _M_cur_results;
365 			}
366 		    }
367 		}
368 	    }
369 	  else
370 	    {
371 	      if (_M_current == _M_begin
372 		  && (_M_flags & regex_constants::match_not_null))
373 		break;
374 	      if (__match_mode == _Match_mode::_Prefix || _M_current == _M_end)
375 		if (!_M_has_sol)
376 		  {
377 		    _M_has_sol = true;
378 		    _M_results = _M_cur_results;
379 		  }
380 	    }
381 	  break;
382 	case _S_opcode_alternative:
383 	  if (_M_nfa._M_flags & regex_constants::ECMAScript)
384 	    {
385 	      // TODO: Let BFS support ECMAScript's alternative operation.
386 	      _GLIBCXX_DEBUG_ASSERT(__dfs_mode);
387 	      _M_dfs(__match_mode, __state._M_alt);
388 	      // Pick lhs if it matches. Only try rhs if it doesn't.
389 	      if (!_M_has_sol)
390 		_M_dfs(__match_mode, __state._M_next);
391 	    }
392 	  else
393 	    {
394 	      // Try both and compare the result.
395 	      // See "case _S_opcode_accept:" handling above.
396 	      _M_dfs(__match_mode, __state._M_alt);
397 	      auto __has_sol = _M_has_sol;
398 	      _M_has_sol = false;
399 	      _M_dfs(__match_mode, __state._M_next);
400 	      _M_has_sol |= __has_sol;
401 	    }
402 	  break;
403 	default:
404 	  _GLIBCXX_DEBUG_ASSERT(false);
405 	}
406     }
407 
408   // Return whether now is at some word boundary.
409   template<typename _BiIter, typename _Alloc, typename _TraitsT,
410 	   bool __dfs_mode>
411     bool _Executor<_BiIter, _Alloc, _TraitsT, __dfs_mode>::
412     _M_word_boundary() const
413     {
414       bool __left_is_word = false;
415       if (_M_current != _M_begin
416 	  || (_M_flags & regex_constants::match_prev_avail))
417 	{
418 	  auto __prev = _M_current;
419 	  if (_M_is_word(*std::prev(__prev)))
420 	    __left_is_word = true;
421 	}
422       bool __right_is_word =
423         _M_current != _M_end && _M_is_word(*_M_current);
424 
425       if (__left_is_word == __right_is_word)
426 	return false;
427       if (__left_is_word && !(_M_flags & regex_constants::match_not_eow))
428 	return true;
429       if (__right_is_word && !(_M_flags & regex_constants::match_not_bow))
430 	return true;
431       return false;
432     }
433 
434 _GLIBCXX_END_NAMESPACE_VERSION
435 } // namespace __detail
436 } // namespace
437