xref: /netbsd-src/external/gpl3/gcc/dist/libstdc++-v3/include/bits/hashtable.h (revision c42dbd0ed2e61fe6eda8590caa852ccf34719964)
1 // hashtable.h header -*- C++ -*-
2 
3 // Copyright (C) 2007-2022 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable.h
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28  */
29 
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32 
33 #pragma GCC system_header
34 
35 #include <bits/hashtable_policy.h>
36 #include <bits/enable_special_members.h>
37 #if __cplusplus > 201402L
38 # include <bits/node_handle.h>
39 #endif
40 #include <bits/functional_hash.h>
41 #include <bits/stl_function.h> // equal_to, _Identity, _Select1st
42 
43 namespace std _GLIBCXX_VISIBILITY(default)
44 {
45 _GLIBCXX_BEGIN_NAMESPACE_VERSION
46 /// @cond undocumented
47 
48   template<typename _Tp, typename _Hash>
49     using __cache_default
50       =  __not_<__and_<// Do not cache for fast hasher.
51 		       __is_fast_hash<_Hash>,
52 		       // Mandatory to have erase not throwing.
53 		       __is_nothrow_invocable<const _Hash&, const _Tp&>>>;
54 
55   // Helper to conditionally delete the default constructor.
56   // The _Hash_node_base type is used to distinguish this specialization
57   // from any other potentially-overlapping subobjects of the hashtable.
58   template<typename _Equal, typename _Hash, typename _Allocator>
59     using _Hashtable_enable_default_ctor
60       = _Enable_default_constructor<__and_<is_default_constructible<_Equal>,
61 				       is_default_constructible<_Hash>,
62 				       is_default_constructible<_Allocator>>{},
63 				    __detail::_Hash_node_base>;
64 
65   /**
66    *  Primary class template _Hashtable.
67    *
68    *  @ingroup hashtable-detail
69    *
70    *  @tparam _Value  CopyConstructible type.
71    *
72    *  @tparam _Key    CopyConstructible type.
73    *
74    *  @tparam _Alloc  An allocator type
75    *  ([lib.allocator.requirements]) whose _Alloc::value_type is
76    *  _Value.  As a conforming extension, we allow for
77    *  _Alloc::value_type != _Value.
78    *
79    *  @tparam _ExtractKey  Function object that takes an object of type
80    *  _Value and returns a value of type _Key.
81    *
82    *  @tparam _Equal  Function object that takes two objects of type k
83    *  and returns a bool-like value that is true if the two objects
84    *  are considered equal.
85    *
86    *  @tparam _Hash  The hash function. A unary function object with
87    *  argument type _Key and result type size_t. Return values should
88    *  be distributed over the entire range [0, numeric_limits<size_t>:::max()].
89    *
90    *  @tparam _RangeHash  The range-hashing function (in the terminology of
91    *  Tavori and Dreizin).  A binary function object whose argument
92    *  types and result type are all size_t.  Given arguments r and N,
93    *  the return value is in the range [0, N).
94    *
95    *  @tparam _Unused  Not used.
96    *
97    *  @tparam _RehashPolicy  Policy class with three members, all of
98    *  which govern the bucket count. _M_next_bkt(n) returns a bucket
99    *  count no smaller than n.  _M_bkt_for_elements(n) returns a
100    *  bucket count appropriate for an element count of n.
101    *  _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
102    *  current bucket count is n_bkt and the current element count is
103    *  n_elt, we need to increase the bucket count for n_ins insertions.
104    *  If so, returns make_pair(true, n), where n is the new bucket count. If
105    *  not, returns make_pair(false, <anything>)
106    *
107    *  @tparam _Traits  Compile-time class with three boolean
108    *  std::integral_constant members:  __cache_hash_code, __constant_iterators,
109    *   __unique_keys.
110    *
111    *  Each _Hashtable data structure has:
112    *
113    *  - _Bucket[]       _M_buckets
114    *  - _Hash_node_base _M_before_begin
115    *  - size_type       _M_bucket_count
116    *  - size_type       _M_element_count
117    *
118    *  with _Bucket being _Hash_node_base* and _Hash_node containing:
119    *
120    *  - _Hash_node*   _M_next
121    *  - Tp            _M_value
122    *  - size_t        _M_hash_code if cache_hash_code is true
123    *
124    *  In terms of Standard containers the hashtable is like the aggregation of:
125    *
126    *  - std::forward_list<_Node> containing the elements
127    *  - std::vector<std::forward_list<_Node>::iterator> representing the buckets
128    *
129    *  The non-empty buckets contain the node before the first node in the
130    *  bucket. This design makes it possible to implement something like a
131    *  std::forward_list::insert_after on container insertion and
132    *  std::forward_list::erase_after on container erase
133    *  calls. _M_before_begin is equivalent to
134    *  std::forward_list::before_begin. Empty buckets contain
135    *  nullptr.  Note that one of the non-empty buckets contains
136    *  &_M_before_begin which is not a dereferenceable node so the
137    *  node pointer in a bucket shall never be dereferenced, only its
138    *  next node can be.
139    *
140    *  Walking through a bucket's nodes requires a check on the hash code to
141    *  see if each node is still in the bucket. Such a design assumes a
142    *  quite efficient hash functor and is one of the reasons it is
143    *  highly advisable to set __cache_hash_code to true.
144    *
145    *  The container iterators are simply built from nodes. This way
146    *  incrementing the iterator is perfectly efficient independent of
147    *  how many empty buckets there are in the container.
148    *
149    *  On insert we compute the element's hash code and use it to find the
150    *  bucket index. If the element must be inserted in an empty bucket
151    *  we add it at the beginning of the singly linked list and make the
152    *  bucket point to _M_before_begin. The bucket that used to point to
153    *  _M_before_begin, if any, is updated to point to its new before
154    *  begin node.
155    *
156    *  On erase, the simple iterator design requires using the hash
157    *  functor to get the index of the bucket to update. For this
158    *  reason, when __cache_hash_code is set to false the hash functor must
159    *  not throw and this is enforced by a static assertion.
160    *
161    *  Functionality is implemented by decomposition into base classes,
162    *  where the derived _Hashtable class is used in _Map_base,
163    *  _Insert, _Rehash_base, and _Equality base classes to access the
164    *  "this" pointer. _Hashtable_base is used in the base classes as a
165    *  non-recursive, fully-completed-type so that detailed nested type
166    *  information, such as iterator type and node type, can be
167    *  used. This is similar to the "Curiously Recurring Template
168    *  Pattern" (CRTP) technique, but uses a reconstructed, not
169    *  explicitly passed, template pattern.
170    *
171    *  Base class templates are:
172    *    - __detail::_Hashtable_base
173    *    - __detail::_Map_base
174    *    - __detail::_Insert
175    *    - __detail::_Rehash_base
176    *    - __detail::_Equality
177    */
178   template<typename _Key, typename _Value, typename _Alloc,
179 	   typename _ExtractKey, typename _Equal,
180 	   typename _Hash, typename _RangeHash, typename _Unused,
181 	   typename _RehashPolicy, typename _Traits>
182     class _Hashtable
183     : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
184 				       _Hash, _RangeHash, _Unused, _Traits>,
185       public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
186 				 _Hash, _RangeHash, _Unused,
187 				 _RehashPolicy, _Traits>,
188       public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
189 			       _Hash, _RangeHash, _Unused,
190 			       _RehashPolicy, _Traits>,
191       public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
192 				    _Hash, _RangeHash, _Unused,
193 				    _RehashPolicy, _Traits>,
194       public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
195 				 _Hash, _RangeHash, _Unused,
196 				 _RehashPolicy, _Traits>,
197       private __detail::_Hashtable_alloc<
198 	__alloc_rebind<_Alloc,
199 		       __detail::_Hash_node<_Value,
200 					    _Traits::__hash_cached::value>>>,
201       private _Hashtable_enable_default_ctor<_Equal, _Hash, _Alloc>
202     {
203       static_assert(is_same<typename remove_cv<_Value>::type, _Value>::value,
204 	  "unordered container must have a non-const, non-volatile value_type");
205 #if __cplusplus > 201703L || defined __STRICT_ANSI__
206       static_assert(is_same<typename _Alloc::value_type, _Value>{},
207 	  "unordered container must have the same value_type as its allocator");
208 #endif
209 
210       using __traits_type = _Traits;
211       using __hash_cached = typename __traits_type::__hash_cached;
212       using __constant_iterators = typename __traits_type::__constant_iterators;
213       using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
214       using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
215 
216       using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
217 
218       using __node_value_type =
219 	__detail::_Hash_node_value<_Value, __hash_cached::value>;
220       using __node_ptr = typename __hashtable_alloc::__node_ptr;
221       using __value_alloc_traits =
222 	typename __hashtable_alloc::__value_alloc_traits;
223       using __node_alloc_traits =
224 	typename __hashtable_alloc::__node_alloc_traits;
225       using __node_base = typename __hashtable_alloc::__node_base;
226       using __node_base_ptr = typename __hashtable_alloc::__node_base_ptr;
227       using __buckets_ptr = typename __hashtable_alloc::__buckets_ptr;
228 
229       using __insert_base = __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey,
230 					      _Equal, _Hash,
231 					      _RangeHash, _Unused,
232 					      _RehashPolicy, _Traits>;
233       using __enable_default_ctor
234 	= _Hashtable_enable_default_ctor<_Equal, _Hash, _Alloc>;
235 
236     public:
237       typedef _Key						key_type;
238       typedef _Value						value_type;
239       typedef _Alloc						allocator_type;
240       typedef _Equal						key_equal;
241 
242       // mapped_type, if present, comes from _Map_base.
243       // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
244       typedef typename __value_alloc_traits::pointer		pointer;
245       typedef typename __value_alloc_traits::const_pointer	const_pointer;
246       typedef value_type&					reference;
247       typedef const value_type&					const_reference;
248 
249       using iterator = typename __insert_base::iterator;
250 
251       using const_iterator = typename __insert_base::const_iterator;
252 
253       using local_iterator = __detail::_Local_iterator<key_type, _Value,
254 			_ExtractKey, _Hash, _RangeHash, _Unused,
255 					     __constant_iterators::value,
256 					     __hash_cached::value>;
257 
258       using const_local_iterator = __detail::_Local_const_iterator<
259 			key_type, _Value,
260 			_ExtractKey, _Hash, _RangeHash, _Unused,
261 			__constant_iterators::value, __hash_cached::value>;
262 
263     private:
264       using __rehash_type = _RehashPolicy;
265       using __rehash_state = typename __rehash_type::_State;
266 
267       using __unique_keys = typename __traits_type::__unique_keys;
268 
269       using __hashtable_base = __detail::
270 	_Hashtable_base<_Key, _Value, _ExtractKey,
271 			_Equal, _Hash, _RangeHash, _Unused, _Traits>;
272 
273       using __hash_code_base =  typename __hashtable_base::__hash_code_base;
274       using __hash_code =  typename __hashtable_base::__hash_code;
275       using __ireturn_type = typename __insert_base::__ireturn_type;
276 
277       using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
278 					     _Equal, _Hash, _RangeHash, _Unused,
279 					     _RehashPolicy, _Traits>;
280 
281       using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
282 						   _ExtractKey, _Equal,
283 						   _Hash, _RangeHash, _Unused,
284 						   _RehashPolicy, _Traits>;
285 
286       using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
287 					    _Equal, _Hash, _RangeHash, _Unused,
288 					    _RehashPolicy, _Traits>;
289 
290       using __reuse_or_alloc_node_gen_t =
291 	__detail::_ReuseOrAllocNode<__node_alloc_type>;
292       using __alloc_node_gen_t =
293 	__detail::_AllocNode<__node_alloc_type>;
294       using __node_builder_t =
295 	__detail::_NodeBuilder<_ExtractKey>;
296 
297       // Simple RAII type for managing a node containing an element
298       struct _Scoped_node
299       {
300 	// Take ownership of a node with a constructed element.
301 	_Scoped_node(__node_ptr __n, __hashtable_alloc* __h)
302 	: _M_h(__h), _M_node(__n) { }
303 
304 	// Allocate a node and construct an element within it.
305 	template<typename... _Args>
306 	  _Scoped_node(__hashtable_alloc* __h, _Args&&... __args)
307 	  : _M_h(__h),
308 	    _M_node(__h->_M_allocate_node(std::forward<_Args>(__args)...))
309 	  { }
310 
311 	// Destroy element and deallocate node.
312 	~_Scoped_node() { if (_M_node) _M_h->_M_deallocate_node(_M_node); };
313 
314 	_Scoped_node(const _Scoped_node&) = delete;
315 	_Scoped_node& operator=(const _Scoped_node&) = delete;
316 
317 	__hashtable_alloc* _M_h;
318 	__node_ptr _M_node;
319       };
320 
321       template<typename _Ht>
322 	static constexpr
323 	__conditional_t<std::is_lvalue_reference<_Ht>::value,
324 			const value_type&, value_type&&>
325 	__fwd_value_for(value_type& __val) noexcept
326 	{ return std::move(__val); }
327 
328       // Compile-time diagnostics.
329 
330       // _Hash_code_base has everything protected, so use this derived type to
331       // access it.
332       struct __hash_code_base_access : __hash_code_base
333       { using __hash_code_base::_M_bucket_index; };
334 
335       // To get bucket index we need _RangeHash not to throw.
336       static_assert(is_nothrow_default_constructible<_RangeHash>::value,
337 		    "Functor used to map hash code to bucket index"
338 		    " must be nothrow default constructible");
339       static_assert(noexcept(
340 	std::declval<const _RangeHash&>()((std::size_t)0, (std::size_t)0)),
341 		    "Functor used to map hash code to bucket index must be"
342 		    " noexcept");
343 
344       // To compute bucket index we also need _ExtratKey not to throw.
345       static_assert(is_nothrow_default_constructible<_ExtractKey>::value,
346 		    "_ExtractKey must be nothrow default constructible");
347       static_assert(noexcept(
348 	std::declval<const _ExtractKey&>()(std::declval<_Value>())),
349 		    "_ExtractKey functor must be noexcept invocable");
350 
351       template<typename _Keya, typename _Valuea, typename _Alloca,
352 	       typename _ExtractKeya, typename _Equala,
353 	       typename _Hasha, typename _RangeHasha, typename _Unuseda,
354 	       typename _RehashPolicya, typename _Traitsa,
355 	       bool _Unique_keysa>
356 	friend struct __detail::_Map_base;
357 
358       template<typename _Keya, typename _Valuea, typename _Alloca,
359 	       typename _ExtractKeya, typename _Equala,
360 	       typename _Hasha, typename _RangeHasha, typename _Unuseda,
361 	       typename _RehashPolicya, typename _Traitsa>
362 	friend struct __detail::_Insert_base;
363 
364       template<typename _Keya, typename _Valuea, typename _Alloca,
365 	       typename _ExtractKeya, typename _Equala,
366 	       typename _Hasha, typename _RangeHasha, typename _Unuseda,
367 	       typename _RehashPolicya, typename _Traitsa,
368 	       bool _Constant_iteratorsa>
369 	friend struct __detail::_Insert;
370 
371       template<typename _Keya, typename _Valuea, typename _Alloca,
372 	       typename _ExtractKeya, typename _Equala,
373 	       typename _Hasha, typename _RangeHasha, typename _Unuseda,
374 	       typename _RehashPolicya, typename _Traitsa,
375 	       bool _Unique_keysa>
376 	friend struct __detail::_Equality;
377 
378     public:
379       using size_type = typename __hashtable_base::size_type;
380       using difference_type = typename __hashtable_base::difference_type;
381 
382 #if __cplusplus > 201402L
383       using node_type = _Node_handle<_Key, _Value, __node_alloc_type>;
384       using insert_return_type = _Node_insert_return<iterator, node_type>;
385 #endif
386 
387     private:
388       __buckets_ptr		_M_buckets		= &_M_single_bucket;
389       size_type			_M_bucket_count		= 1;
390       __node_base		_M_before_begin;
391       size_type			_M_element_count	= 0;
392       _RehashPolicy		_M_rehash_policy;
393 
394       // A single bucket used when only need for 1 bucket. Especially
395       // interesting in move semantic to leave hashtable with only 1 bucket
396       // which is not allocated so that we can have those operations noexcept
397       // qualified.
398       // Note that we can't leave hashtable with 0 bucket without adding
399       // numerous checks in the code to avoid 0 modulus.
400       __node_base_ptr		_M_single_bucket	= nullptr;
401 
402       void
403       _M_update_bbegin()
404       {
405 	if (_M_begin())
406 	  _M_buckets[_M_bucket_index(*_M_begin())] = &_M_before_begin;
407       }
408 
409       void
410       _M_update_bbegin(__node_ptr __n)
411       {
412 	_M_before_begin._M_nxt = __n;
413 	_M_update_bbegin();
414       }
415 
416       bool
417       _M_uses_single_bucket(__buckets_ptr __bkts) const
418       { return __builtin_expect(__bkts == &_M_single_bucket, false); }
419 
420       bool
421       _M_uses_single_bucket() const
422       { return _M_uses_single_bucket(_M_buckets); }
423 
424       static constexpr size_t
425       __small_size_threshold() noexcept
426       {
427 	return
428 	  __detail::_Hashtable_hash_traits<_Hash>::__small_size_threshold();
429       }
430 
431       __hashtable_alloc&
432       _M_base_alloc() { return *this; }
433 
434       __buckets_ptr
435       _M_allocate_buckets(size_type __bkt_count)
436       {
437 	if (__builtin_expect(__bkt_count == 1, false))
438 	  {
439 	    _M_single_bucket = nullptr;
440 	    return &_M_single_bucket;
441 	  }
442 
443 	return __hashtable_alloc::_M_allocate_buckets(__bkt_count);
444       }
445 
446       void
447       _M_deallocate_buckets(__buckets_ptr __bkts, size_type __bkt_count)
448       {
449 	if (_M_uses_single_bucket(__bkts))
450 	  return;
451 
452 	__hashtable_alloc::_M_deallocate_buckets(__bkts, __bkt_count);
453       }
454 
455       void
456       _M_deallocate_buckets()
457       { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
458 
459       // Gets bucket begin, deals with the fact that non-empty buckets contain
460       // their before begin node.
461       __node_ptr
462       _M_bucket_begin(size_type __bkt) const;
463 
464       __node_ptr
465       _M_begin() const
466       { return static_cast<__node_ptr>(_M_before_begin._M_nxt); }
467 
468       // Assign *this using another _Hashtable instance. Whether elements
469       // are copied or moved depends on the _Ht reference.
470       template<typename _Ht>
471 	void
472 	_M_assign_elements(_Ht&&);
473 
474       template<typename _Ht, typename _NodeGenerator>
475 	void
476 	_M_assign(_Ht&&, const _NodeGenerator&);
477 
478       void
479       _M_move_assign(_Hashtable&&, true_type);
480 
481       void
482       _M_move_assign(_Hashtable&&, false_type);
483 
484       void
485       _M_reset() noexcept;
486 
487       _Hashtable(const _Hash& __h, const _Equal& __eq,
488 		 const allocator_type& __a)
489       : __hashtable_base(__h, __eq),
490 	__hashtable_alloc(__node_alloc_type(__a)),
491 	__enable_default_ctor(_Enable_default_constructor_tag{})
492       { }
493 
494       template<bool _No_realloc = true>
495 	static constexpr bool
496 	_S_nothrow_move()
497 	{
498 #if __cplusplus <= 201402L
499 	  return __and_<__bool_constant<_No_realloc>,
500 			is_nothrow_copy_constructible<_Hash>,
501 			is_nothrow_copy_constructible<_Equal>>::value;
502 #else
503 	  if constexpr (_No_realloc)
504 	    if constexpr (is_nothrow_copy_constructible<_Hash>())
505 	      return is_nothrow_copy_constructible<_Equal>();
506 	  return false;
507 #endif
508 	}
509 
510       _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
511 		 true_type /* alloc always equal */)
512 	noexcept(_S_nothrow_move());
513 
514       _Hashtable(_Hashtable&&, __node_alloc_type&&,
515 		 false_type /* alloc always equal */);
516 
517       template<typename _InputIterator>
518 	_Hashtable(_InputIterator __first, _InputIterator __last,
519 		   size_type __bkt_count_hint,
520 		   const _Hash&, const _Equal&, const allocator_type&,
521 		   true_type __uks);
522 
523       template<typename _InputIterator>
524 	_Hashtable(_InputIterator __first, _InputIterator __last,
525 		   size_type __bkt_count_hint,
526 		   const _Hash&, const _Equal&, const allocator_type&,
527 		   false_type __uks);
528 
529     public:
530       // Constructor, destructor, assignment, swap
531       _Hashtable() = default;
532 
533       _Hashtable(const _Hashtable&);
534 
535       _Hashtable(const _Hashtable&, const allocator_type&);
536 
537       explicit
538       _Hashtable(size_type __bkt_count_hint,
539 		 const _Hash& __hf = _Hash(),
540 		 const key_equal& __eql = key_equal(),
541 		 const allocator_type& __a = allocator_type());
542 
543       // Use delegating constructors.
544       _Hashtable(_Hashtable&& __ht)
545 	noexcept(_S_nothrow_move())
546       : _Hashtable(std::move(__ht), std::move(__ht._M_node_allocator()),
547 		   true_type{})
548       { }
549 
550       _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
551 	noexcept(_S_nothrow_move<__node_alloc_traits::_S_always_equal()>())
552       : _Hashtable(std::move(__ht), __node_alloc_type(__a),
553 		   typename __node_alloc_traits::is_always_equal{})
554       { }
555 
556       explicit
557       _Hashtable(const allocator_type& __a)
558       : __hashtable_alloc(__node_alloc_type(__a)),
559 	__enable_default_ctor(_Enable_default_constructor_tag{})
560       { }
561 
562       template<typename _InputIterator>
563 	_Hashtable(_InputIterator __f, _InputIterator __l,
564 		   size_type __bkt_count_hint = 0,
565 		   const _Hash& __hf = _Hash(),
566 		   const key_equal& __eql = key_equal(),
567 		   const allocator_type& __a = allocator_type())
568 	: _Hashtable(__f, __l, __bkt_count_hint, __hf, __eql, __a,
569 		     __unique_keys{})
570 	{ }
571 
572       _Hashtable(initializer_list<value_type> __l,
573 		 size_type __bkt_count_hint = 0,
574 		 const _Hash& __hf = _Hash(),
575 		 const key_equal& __eql = key_equal(),
576 		 const allocator_type& __a = allocator_type())
577       : _Hashtable(__l.begin(), __l.end(), __bkt_count_hint,
578 		   __hf, __eql, __a, __unique_keys{})
579       { }
580 
581       _Hashtable&
582       operator=(const _Hashtable& __ht);
583 
584       _Hashtable&
585       operator=(_Hashtable&& __ht)
586       noexcept(__node_alloc_traits::_S_nothrow_move()
587 	       && is_nothrow_move_assignable<_Hash>::value
588 	       && is_nothrow_move_assignable<_Equal>::value)
589       {
590 	constexpr bool __move_storage =
591 	  __node_alloc_traits::_S_propagate_on_move_assign()
592 	  || __node_alloc_traits::_S_always_equal();
593 	_M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
594 	return *this;
595       }
596 
597       _Hashtable&
598       operator=(initializer_list<value_type> __l)
599       {
600 	__reuse_or_alloc_node_gen_t __roan(_M_begin(), *this);
601 	_M_before_begin._M_nxt = nullptr;
602 	clear();
603 
604 	// We consider that all elements of __l are going to be inserted.
605 	auto __l_bkt_count = _M_rehash_policy._M_bkt_for_elements(__l.size());
606 
607 	// Do not shrink to keep potential user reservation.
608 	if (_M_bucket_count < __l_bkt_count)
609 	  rehash(__l_bkt_count);
610 
611 	this->_M_insert_range(__l.begin(), __l.end(), __roan, __unique_keys{});
612 	return *this;
613       }
614 
615       ~_Hashtable() noexcept;
616 
617       void
618       swap(_Hashtable&)
619       noexcept(__and_<__is_nothrow_swappable<_Hash>,
620 		      __is_nothrow_swappable<_Equal>>::value);
621 
622       // Basic container operations
623       iterator
624       begin() noexcept
625       { return iterator(_M_begin()); }
626 
627       const_iterator
628       begin() const noexcept
629       { return const_iterator(_M_begin()); }
630 
631       iterator
632       end() noexcept
633       { return iterator(nullptr); }
634 
635       const_iterator
636       end() const noexcept
637       { return const_iterator(nullptr); }
638 
639       const_iterator
640       cbegin() const noexcept
641       { return const_iterator(_M_begin()); }
642 
643       const_iterator
644       cend() const noexcept
645       { return const_iterator(nullptr); }
646 
647       size_type
648       size() const noexcept
649       { return _M_element_count; }
650 
651       _GLIBCXX_NODISCARD bool
652       empty() const noexcept
653       { return size() == 0; }
654 
655       allocator_type
656       get_allocator() const noexcept
657       { return allocator_type(this->_M_node_allocator()); }
658 
659       size_type
660       max_size() const noexcept
661       { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
662 
663       // Observers
664       key_equal
665       key_eq() const
666       { return this->_M_eq(); }
667 
668       // hash_function, if present, comes from _Hash_code_base.
669 
670       // Bucket operations
671       size_type
672       bucket_count() const noexcept
673       { return _M_bucket_count; }
674 
675       size_type
676       max_bucket_count() const noexcept
677       { return max_size(); }
678 
679       size_type
680       bucket_size(size_type __bkt) const
681       { return std::distance(begin(__bkt), end(__bkt)); }
682 
683       size_type
684       bucket(const key_type& __k) const
685       { return _M_bucket_index(this->_M_hash_code(__k)); }
686 
687       local_iterator
688       begin(size_type __bkt)
689       {
690 	return local_iterator(*this, _M_bucket_begin(__bkt),
691 			      __bkt, _M_bucket_count);
692       }
693 
694       local_iterator
695       end(size_type __bkt)
696       { return local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
697 
698       const_local_iterator
699       begin(size_type __bkt) const
700       {
701 	return const_local_iterator(*this, _M_bucket_begin(__bkt),
702 				    __bkt, _M_bucket_count);
703       }
704 
705       const_local_iterator
706       end(size_type __bkt) const
707       { return const_local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
708 
709       // DR 691.
710       const_local_iterator
711       cbegin(size_type __bkt) const
712       {
713 	return const_local_iterator(*this, _M_bucket_begin(__bkt),
714 				    __bkt, _M_bucket_count);
715       }
716 
717       const_local_iterator
718       cend(size_type __bkt) const
719       { return const_local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
720 
721       float
722       load_factor() const noexcept
723       {
724 	return static_cast<float>(size()) / static_cast<float>(bucket_count());
725       }
726 
727       // max_load_factor, if present, comes from _Rehash_base.
728 
729       // Generalization of max_load_factor.  Extension, not found in
730       // TR1.  Only useful if _RehashPolicy is something other than
731       // the default.
732       const _RehashPolicy&
733       __rehash_policy() const
734       { return _M_rehash_policy; }
735 
736       void
737       __rehash_policy(const _RehashPolicy& __pol)
738       { _M_rehash_policy = __pol; }
739 
740       // Lookup.
741       iterator
742       find(const key_type& __k);
743 
744       const_iterator
745       find(const key_type& __k) const;
746 
747       size_type
748       count(const key_type& __k) const;
749 
750       std::pair<iterator, iterator>
751       equal_range(const key_type& __k);
752 
753       std::pair<const_iterator, const_iterator>
754       equal_range(const key_type& __k) const;
755 
756 #if __cplusplus >= 202002L
757 #define __cpp_lib_generic_unordered_lookup 201811L
758 
759       template<typename _Kt,
760 	       typename = __has_is_transparent_t<_Hash, _Kt>,
761 	       typename = __has_is_transparent_t<_Equal, _Kt>>
762 	iterator
763 	_M_find_tr(const _Kt& __k);
764 
765       template<typename _Kt,
766 	       typename = __has_is_transparent_t<_Hash, _Kt>,
767 	       typename = __has_is_transparent_t<_Equal, _Kt>>
768 	const_iterator
769 	_M_find_tr(const _Kt& __k) const;
770 
771       template<typename _Kt,
772 	       typename = __has_is_transparent_t<_Hash, _Kt>,
773 	       typename = __has_is_transparent_t<_Equal, _Kt>>
774 	size_type
775 	_M_count_tr(const _Kt& __k) const;
776 
777       template<typename _Kt,
778 	       typename = __has_is_transparent_t<_Hash, _Kt>,
779 	       typename = __has_is_transparent_t<_Equal, _Kt>>
780 	pair<iterator, iterator>
781 	_M_equal_range_tr(const _Kt& __k);
782 
783       template<typename _Kt,
784 	       typename = __has_is_transparent_t<_Hash, _Kt>,
785 	       typename = __has_is_transparent_t<_Equal, _Kt>>
786 	pair<const_iterator, const_iterator>
787 	_M_equal_range_tr(const _Kt& __k) const;
788 #endif // C++20
789 
790     private:
791       // Bucket index computation helpers.
792       size_type
793       _M_bucket_index(const __node_value_type& __n) const noexcept
794       { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
795 
796       size_type
797       _M_bucket_index(__hash_code __c) const
798       { return __hash_code_base::_M_bucket_index(__c, _M_bucket_count); }
799 
800       __node_base_ptr
801       _M_find_before_node(const key_type&);
802 
803       // Find and insert helper functions and types
804       // Find the node before the one matching the criteria.
805       __node_base_ptr
806       _M_find_before_node(size_type, const key_type&, __hash_code) const;
807 
808       template<typename _Kt>
809 	__node_base_ptr
810 	_M_find_before_node_tr(size_type, const _Kt&, __hash_code) const;
811 
812       __node_ptr
813       _M_find_node(size_type __bkt, const key_type& __key,
814 		   __hash_code __c) const
815       {
816 	__node_base_ptr __before_n = _M_find_before_node(__bkt, __key, __c);
817 	if (__before_n)
818 	  return static_cast<__node_ptr>(__before_n->_M_nxt);
819 	return nullptr;
820       }
821 
822       template<typename _Kt>
823 	__node_ptr
824 	_M_find_node_tr(size_type __bkt, const _Kt& __key,
825 			__hash_code __c) const
826 	{
827 	  auto __before_n = _M_find_before_node_tr(__bkt, __key, __c);
828 	  if (__before_n)
829 	    return static_cast<__node_ptr>(__before_n->_M_nxt);
830 	  return nullptr;
831 	}
832 
833       // Insert a node at the beginning of a bucket.
834       void
835       _M_insert_bucket_begin(size_type, __node_ptr);
836 
837       // Remove the bucket first node
838       void
839       _M_remove_bucket_begin(size_type __bkt, __node_ptr __next_n,
840 			     size_type __next_bkt);
841 
842       // Get the node before __n in the bucket __bkt
843       __node_base_ptr
844       _M_get_previous_node(size_type __bkt, __node_ptr __n);
845 
846       pair<const_iterator, __hash_code>
847       _M_compute_hash_code(const_iterator __hint, const key_type& __k) const;
848 
849       // Insert node __n with hash code __code, in bucket __bkt if no
850       // rehash (assumes no element with same key already present).
851       // Takes ownership of __n if insertion succeeds, throws otherwise.
852       iterator
853       _M_insert_unique_node(size_type __bkt, __hash_code,
854 			    __node_ptr __n, size_type __n_elt = 1);
855 
856       // Insert node __n with key __k and hash code __code.
857       // Takes ownership of __n if insertion succeeds, throws otherwise.
858       iterator
859       _M_insert_multi_node(__node_ptr __hint,
860 			   __hash_code __code, __node_ptr __n);
861 
862       template<typename... _Args>
863 	std::pair<iterator, bool>
864 	_M_emplace(true_type __uks, _Args&&... __args);
865 
866       template<typename... _Args>
867 	iterator
868 	_M_emplace(false_type __uks, _Args&&... __args)
869 	{ return _M_emplace(cend(), __uks, std::forward<_Args>(__args)...); }
870 
871       // Emplace with hint, useless when keys are unique.
872       template<typename... _Args>
873 	iterator
874 	_M_emplace(const_iterator, true_type __uks, _Args&&... __args)
875 	{ return _M_emplace(__uks, std::forward<_Args>(__args)...).first; }
876 
877       template<typename... _Args>
878 	iterator
879 	_M_emplace(const_iterator, false_type __uks, _Args&&... __args);
880 
881       template<typename _Kt, typename _Arg, typename _NodeGenerator>
882 	std::pair<iterator, bool>
883 	_M_insert_unique(_Kt&&, _Arg&&, const _NodeGenerator&);
884 
885       template<typename _Kt>
886 	static __conditional_t<
887 	  __and_<__is_nothrow_invocable<_Hash&, const key_type&>,
888 		 __not_<__is_nothrow_invocable<_Hash&, _Kt>>>::value,
889 	  key_type, _Kt&&>
890 	_S_forward_key(_Kt&& __k)
891 	{ return std::forward<_Kt>(__k); }
892 
893       static const key_type&
894       _S_forward_key(const key_type& __k)
895       { return __k; }
896 
897       static key_type&&
898       _S_forward_key(key_type&& __k)
899       { return std::move(__k); }
900 
901       template<typename _Arg, typename _NodeGenerator>
902 	std::pair<iterator, bool>
903 	_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
904 		  true_type /* __uks */)
905 	{
906 	  return _M_insert_unique(
907 	    _S_forward_key(_ExtractKey{}(std::forward<_Arg>(__arg))),
908 	    std::forward<_Arg>(__arg), __node_gen);
909 	}
910 
911       template<typename _Arg, typename _NodeGenerator>
912 	iterator
913 	_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
914 		  false_type __uks)
915 	{
916 	  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
917 			   __uks);
918 	}
919 
920       // Insert with hint, not used when keys are unique.
921       template<typename _Arg, typename _NodeGenerator>
922 	iterator
923 	_M_insert(const_iterator, _Arg&& __arg,
924 		  const _NodeGenerator& __node_gen, true_type __uks)
925 	{
926 	  return
927 	    _M_insert(std::forward<_Arg>(__arg), __node_gen, __uks).first;
928 	}
929 
930       // Insert with hint when keys are not unique.
931       template<typename _Arg, typename _NodeGenerator>
932 	iterator
933 	_M_insert(const_iterator, _Arg&&,
934 		  const _NodeGenerator&, false_type __uks);
935 
936       size_type
937       _M_erase(true_type __uks, const key_type&);
938 
939       size_type
940       _M_erase(false_type __uks, const key_type&);
941 
942       iterator
943       _M_erase(size_type __bkt, __node_base_ptr __prev_n, __node_ptr __n);
944 
945     public:
946       // Emplace
947       template<typename... _Args>
948 	__ireturn_type
949 	emplace(_Args&&... __args)
950 	{ return _M_emplace(__unique_keys{}, std::forward<_Args>(__args)...); }
951 
952       template<typename... _Args>
953 	iterator
954 	emplace_hint(const_iterator __hint, _Args&&... __args)
955 	{
956 	  return _M_emplace(__hint, __unique_keys{},
957 			    std::forward<_Args>(__args)...);
958 	}
959 
960       // Insert member functions via inheritance.
961 
962       // Erase
963       iterator
964       erase(const_iterator);
965 
966       // LWG 2059.
967       iterator
968       erase(iterator __it)
969       { return erase(const_iterator(__it)); }
970 
971       size_type
972       erase(const key_type& __k)
973       { return _M_erase(__unique_keys{}, __k); }
974 
975       iterator
976       erase(const_iterator, const_iterator);
977 
978       void
979       clear() noexcept;
980 
981       // Set number of buckets keeping it appropriate for container's number
982       // of elements.
983       void rehash(size_type __bkt_count);
984 
985       // DR 1189.
986       // reserve, if present, comes from _Rehash_base.
987 
988 #if __cplusplus > 201402L
989       /// Re-insert an extracted node into a container with unique keys.
990       insert_return_type
991       _M_reinsert_node(node_type&& __nh)
992       {
993 	insert_return_type __ret;
994 	if (__nh.empty())
995 	  __ret.position = end();
996 	else
997 	  {
998 	    __glibcxx_assert(get_allocator() == __nh.get_allocator());
999 
1000 	    const key_type& __k = __nh._M_key();
1001 	    __hash_code __code = this->_M_hash_code(__k);
1002 	    size_type __bkt = _M_bucket_index(__code);
1003 	    if (__node_ptr __n = _M_find_node(__bkt, __k, __code))
1004 	      {
1005 		__ret.node = std::move(__nh);
1006 		__ret.position = iterator(__n);
1007 		__ret.inserted = false;
1008 	      }
1009 	    else
1010 	      {
1011 		__ret.position
1012 		  = _M_insert_unique_node(__bkt, __code, __nh._M_ptr);
1013 		__nh._M_ptr = nullptr;
1014 		__ret.inserted = true;
1015 	      }
1016 	  }
1017 	return __ret;
1018       }
1019 
1020       /// Re-insert an extracted node into a container with equivalent keys.
1021       iterator
1022       _M_reinsert_node_multi(const_iterator __hint, node_type&& __nh)
1023       {
1024 	if (__nh.empty())
1025 	  return end();
1026 
1027 	__glibcxx_assert(get_allocator() == __nh.get_allocator());
1028 
1029 	const key_type& __k = __nh._M_key();
1030 	auto __code = this->_M_hash_code(__k);
1031 	auto __ret
1032 	  = _M_insert_multi_node(__hint._M_cur, __code, __nh._M_ptr);
1033 	__nh._M_ptr = nullptr;
1034 	return __ret;
1035       }
1036 
1037     private:
1038       node_type
1039       _M_extract_node(size_t __bkt, __node_base_ptr __prev_n)
1040       {
1041 	__node_ptr __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
1042 	if (__prev_n == _M_buckets[__bkt])
1043 	  _M_remove_bucket_begin(__bkt, __n->_M_next(),
1044 	     __n->_M_nxt ? _M_bucket_index(*__n->_M_next()) : 0);
1045 	else if (__n->_M_nxt)
1046 	  {
1047 	    size_type __next_bkt = _M_bucket_index(*__n->_M_next());
1048 	    if (__next_bkt != __bkt)
1049 	      _M_buckets[__next_bkt] = __prev_n;
1050 	  }
1051 
1052 	__prev_n->_M_nxt = __n->_M_nxt;
1053 	__n->_M_nxt = nullptr;
1054 	--_M_element_count;
1055 	return { __n, this->_M_node_allocator() };
1056       }
1057 
1058     public:
1059       // Extract a node.
1060       node_type
1061       extract(const_iterator __pos)
1062       {
1063 	size_t __bkt = _M_bucket_index(*__pos._M_cur);
1064 	return _M_extract_node(__bkt,
1065 			       _M_get_previous_node(__bkt, __pos._M_cur));
1066       }
1067 
1068       /// Extract a node.
1069       node_type
1070       extract(const _Key& __k)
1071       {
1072 	node_type __nh;
1073 	__hash_code __code = this->_M_hash_code(__k);
1074 	std::size_t __bkt = _M_bucket_index(__code);
1075 	if (__node_base_ptr __prev_node = _M_find_before_node(__bkt, __k, __code))
1076 	  __nh = _M_extract_node(__bkt, __prev_node);
1077 	return __nh;
1078       }
1079 
1080       /// Merge from a compatible container into one with unique keys.
1081       template<typename _Compatible_Hashtable>
1082 	void
1083 	_M_merge_unique(_Compatible_Hashtable& __src)
1084 	{
1085 	  static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
1086 	      node_type>, "Node types are compatible");
1087 	  __glibcxx_assert(get_allocator() == __src.get_allocator());
1088 
1089 	  auto __n_elt = __src.size();
1090 	  for (auto __i = __src.cbegin(), __end = __src.cend(); __i != __end;)
1091 	    {
1092 	      auto __pos = __i++;
1093 	      const key_type& __k = _ExtractKey{}(*__pos);
1094 	      __hash_code __code
1095 		= this->_M_hash_code(__src.hash_function(), *__pos._M_cur);
1096 	      size_type __bkt = _M_bucket_index(__code);
1097 	      if (_M_find_node(__bkt, __k, __code) == nullptr)
1098 		{
1099 		  auto __nh = __src.extract(__pos);
1100 		  _M_insert_unique_node(__bkt, __code, __nh._M_ptr, __n_elt);
1101 		  __nh._M_ptr = nullptr;
1102 		  __n_elt = 1;
1103 		}
1104 	      else if (__n_elt != 1)
1105 		--__n_elt;
1106 	    }
1107 	}
1108 
1109       /// Merge from a compatible container into one with equivalent keys.
1110       template<typename _Compatible_Hashtable>
1111 	void
1112 	_M_merge_multi(_Compatible_Hashtable& __src)
1113 	{
1114 	  static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
1115 	      node_type>, "Node types are compatible");
1116 	  __glibcxx_assert(get_allocator() == __src.get_allocator());
1117 
1118 	  __node_ptr __hint = nullptr;
1119 	  this->reserve(size() + __src.size());
1120 	  for (auto __i = __src.cbegin(), __end = __src.cend(); __i != __end;)
1121 	    {
1122 	      auto __pos = __i++;
1123 	      __hash_code __code
1124 		= this->_M_hash_code(__src.hash_function(), *__pos._M_cur);
1125 	      auto __nh = __src.extract(__pos);
1126 	      __hint = _M_insert_multi_node(__hint, __code, __nh._M_ptr)._M_cur;
1127 	      __nh._M_ptr = nullptr;
1128 	    }
1129 	}
1130 #endif // C++17
1131 
1132     private:
1133       // Helper rehash method used when keys are unique.
1134       void _M_rehash_aux(size_type __bkt_count, true_type __uks);
1135 
1136       // Helper rehash method used when keys can be non-unique.
1137       void _M_rehash_aux(size_type __bkt_count, false_type __uks);
1138 
1139       // Unconditionally change size of bucket array to n, restore
1140       // hash policy state to __state on exception.
1141       void _M_rehash(size_type __bkt_count, const __rehash_state& __state);
1142     };
1143 
1144   // Definitions of class template _Hashtable's out-of-line member functions.
1145   template<typename _Key, typename _Value, typename _Alloc,
1146 	   typename _ExtractKey, typename _Equal,
1147 	   typename _Hash, typename _RangeHash, typename _Unused,
1148 	   typename _RehashPolicy, typename _Traits>
1149     auto
1150     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1151 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1152     _M_bucket_begin(size_type __bkt) const
1153     -> __node_ptr
1154     {
1155       __node_base_ptr __n = _M_buckets[__bkt];
1156       return __n ? static_cast<__node_ptr>(__n->_M_nxt) : nullptr;
1157     }
1158 
1159   template<typename _Key, typename _Value, typename _Alloc,
1160 	   typename _ExtractKey, typename _Equal,
1161 	   typename _Hash, typename _RangeHash, typename _Unused,
1162 	   typename _RehashPolicy, typename _Traits>
1163     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1164 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1165     _Hashtable(size_type __bkt_count_hint,
1166 	       const _Hash& __h, const _Equal& __eq, const allocator_type& __a)
1167     : _Hashtable(__h, __eq, __a)
1168     {
1169       auto __bkt_count = _M_rehash_policy._M_next_bkt(__bkt_count_hint);
1170       if (__bkt_count > _M_bucket_count)
1171 	{
1172 	  _M_buckets = _M_allocate_buckets(__bkt_count);
1173 	  _M_bucket_count = __bkt_count;
1174 	}
1175     }
1176 
1177   template<typename _Key, typename _Value, typename _Alloc,
1178 	   typename _ExtractKey, typename _Equal,
1179 	   typename _Hash, typename _RangeHash, typename _Unused,
1180 	   typename _RehashPolicy, typename _Traits>
1181     template<typename _InputIterator>
1182       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1183 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1184       _Hashtable(_InputIterator __f, _InputIterator __l,
1185 		 size_type __bkt_count_hint,
1186 		 const _Hash& __h, const _Equal& __eq,
1187 		 const allocator_type& __a, true_type /* __uks */)
1188       : _Hashtable(__bkt_count_hint, __h, __eq, __a)
1189       {
1190 	for (; __f != __l; ++__f)
1191 	  this->insert(*__f);
1192       }
1193 
1194   template<typename _Key, typename _Value, typename _Alloc,
1195 	   typename _ExtractKey, typename _Equal,
1196 	   typename _Hash, typename _RangeHash, typename _Unused,
1197 	   typename _RehashPolicy, typename _Traits>
1198     template<typename _InputIterator>
1199       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1200 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1201       _Hashtable(_InputIterator __f, _InputIterator __l,
1202 		 size_type __bkt_count_hint,
1203 		 const _Hash& __h, const _Equal& __eq,
1204 		 const allocator_type& __a, false_type /* __uks */)
1205       : _Hashtable(__h, __eq, __a)
1206       {
1207 	auto __nb_elems = __detail::__distance_fw(__f, __l);
1208 	auto __bkt_count =
1209 	  _M_rehash_policy._M_next_bkt(
1210 	    std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
1211 		     __bkt_count_hint));
1212 
1213 	if (__bkt_count > _M_bucket_count)
1214 	  {
1215 	    _M_buckets = _M_allocate_buckets(__bkt_count);
1216 	    _M_bucket_count = __bkt_count;
1217 	  }
1218 
1219 	for (; __f != __l; ++__f)
1220 	  this->insert(*__f);
1221       }
1222 
1223   template<typename _Key, typename _Value, typename _Alloc,
1224 	   typename _ExtractKey, typename _Equal,
1225 	   typename _Hash, typename _RangeHash, typename _Unused,
1226 	   typename _RehashPolicy, typename _Traits>
1227     auto
1228     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1229 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1230     operator=(const _Hashtable& __ht)
1231     -> _Hashtable&
1232     {
1233       if (&__ht == this)
1234 	return *this;
1235 
1236       if (__node_alloc_traits::_S_propagate_on_copy_assign())
1237 	{
1238 	  auto& __this_alloc = this->_M_node_allocator();
1239 	  auto& __that_alloc = __ht._M_node_allocator();
1240 	  if (!__node_alloc_traits::_S_always_equal()
1241 	      && __this_alloc != __that_alloc)
1242 	    {
1243 	      // Replacement allocator cannot free existing storage.
1244 	      this->_M_deallocate_nodes(_M_begin());
1245 	      _M_before_begin._M_nxt = nullptr;
1246 	      _M_deallocate_buckets();
1247 	      _M_buckets = nullptr;
1248 	      std::__alloc_on_copy(__this_alloc, __that_alloc);
1249 	      __hashtable_base::operator=(__ht);
1250 	      _M_bucket_count = __ht._M_bucket_count;
1251 	      _M_element_count = __ht._M_element_count;
1252 	      _M_rehash_policy = __ht._M_rehash_policy;
1253 	      __alloc_node_gen_t __alloc_node_gen(*this);
1254 	      __try
1255 		{
1256 		  _M_assign(__ht, __alloc_node_gen);
1257 		}
1258 	      __catch(...)
1259 		{
1260 		  // _M_assign took care of deallocating all memory. Now we
1261 		  // must make sure this instance remains in a usable state.
1262 		  _M_reset();
1263 		  __throw_exception_again;
1264 		}
1265 	      return *this;
1266 	    }
1267 	  std::__alloc_on_copy(__this_alloc, __that_alloc);
1268 	}
1269 
1270       // Reuse allocated buckets and nodes.
1271       _M_assign_elements(__ht);
1272       return *this;
1273     }
1274 
1275   template<typename _Key, typename _Value, typename _Alloc,
1276 	   typename _ExtractKey, typename _Equal,
1277 	   typename _Hash, typename _RangeHash, typename _Unused,
1278 	   typename _RehashPolicy, typename _Traits>
1279     template<typename _Ht>
1280       void
1281       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1282 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1283       _M_assign_elements(_Ht&& __ht)
1284       {
1285 	__buckets_ptr __former_buckets = nullptr;
1286 	std::size_t __former_bucket_count = _M_bucket_count;
1287 	const __rehash_state& __former_state = _M_rehash_policy._M_state();
1288 
1289 	if (_M_bucket_count != __ht._M_bucket_count)
1290 	  {
1291 	    __former_buckets = _M_buckets;
1292 	    _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1293 	    _M_bucket_count = __ht._M_bucket_count;
1294 	  }
1295 	else
1296 	  __builtin_memset(_M_buckets, 0,
1297 			   _M_bucket_count * sizeof(__node_base_ptr));
1298 
1299 	__try
1300 	  {
1301 	    __hashtable_base::operator=(std::forward<_Ht>(__ht));
1302 	    _M_element_count = __ht._M_element_count;
1303 	    _M_rehash_policy = __ht._M_rehash_policy;
1304 	    __reuse_or_alloc_node_gen_t __roan(_M_begin(), *this);
1305 	    _M_before_begin._M_nxt = nullptr;
1306 	    _M_assign(std::forward<_Ht>(__ht), __roan);
1307 	    if (__former_buckets)
1308 	      _M_deallocate_buckets(__former_buckets, __former_bucket_count);
1309 	  }
1310 	__catch(...)
1311 	  {
1312 	    if (__former_buckets)
1313 	      {
1314 		// Restore previous buckets.
1315 		_M_deallocate_buckets();
1316 		_M_rehash_policy._M_reset(__former_state);
1317 		_M_buckets = __former_buckets;
1318 		_M_bucket_count = __former_bucket_count;
1319 	      }
1320 	    __builtin_memset(_M_buckets, 0,
1321 			     _M_bucket_count * sizeof(__node_base_ptr));
1322 	    __throw_exception_again;
1323 	  }
1324       }
1325 
1326   template<typename _Key, typename _Value, typename _Alloc,
1327 	   typename _ExtractKey, typename _Equal,
1328 	   typename _Hash, typename _RangeHash, typename _Unused,
1329 	   typename _RehashPolicy, typename _Traits>
1330     template<typename _Ht, typename _NodeGenerator>
1331       void
1332       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1333 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1334       _M_assign(_Ht&& __ht, const _NodeGenerator& __node_gen)
1335       {
1336 	__buckets_ptr __buckets = nullptr;
1337 	if (!_M_buckets)
1338 	  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
1339 
1340 	__try
1341 	  {
1342 	    if (!__ht._M_before_begin._M_nxt)
1343 	      return;
1344 
1345 	    // First deal with the special first node pointed to by
1346 	    // _M_before_begin.
1347 	    __node_ptr __ht_n = __ht._M_begin();
1348 	    __node_ptr __this_n
1349 	      = __node_gen(__fwd_value_for<_Ht>(__ht_n->_M_v()));
1350 	    this->_M_copy_code(*__this_n, *__ht_n);
1351 	    _M_update_bbegin(__this_n);
1352 
1353 	    // Then deal with other nodes.
1354 	    __node_ptr __prev_n = __this_n;
1355 	    for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
1356 	      {
1357 		__this_n = __node_gen(__fwd_value_for<_Ht>(__ht_n->_M_v()));
1358 		__prev_n->_M_nxt = __this_n;
1359 		this->_M_copy_code(*__this_n, *__ht_n);
1360 		size_type __bkt = _M_bucket_index(*__this_n);
1361 		if (!_M_buckets[__bkt])
1362 		  _M_buckets[__bkt] = __prev_n;
1363 		__prev_n = __this_n;
1364 	      }
1365 	  }
1366 	__catch(...)
1367 	  {
1368 	    clear();
1369 	    if (__buckets)
1370 	      _M_deallocate_buckets();
1371 	    __throw_exception_again;
1372 	  }
1373       }
1374 
1375   template<typename _Key, typename _Value, typename _Alloc,
1376 	   typename _ExtractKey, typename _Equal,
1377 	   typename _Hash, typename _RangeHash, typename _Unused,
1378 	   typename _RehashPolicy, typename _Traits>
1379     void
1380     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1381 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1382     _M_reset() noexcept
1383     {
1384       _M_rehash_policy._M_reset();
1385       _M_bucket_count = 1;
1386       _M_single_bucket = nullptr;
1387       _M_buckets = &_M_single_bucket;
1388       _M_before_begin._M_nxt = nullptr;
1389       _M_element_count = 0;
1390     }
1391 
1392   template<typename _Key, typename _Value, typename _Alloc,
1393 	   typename _ExtractKey, typename _Equal,
1394 	   typename _Hash, typename _RangeHash, typename _Unused,
1395 	   typename _RehashPolicy, typename _Traits>
1396     void
1397     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1398 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1399     _M_move_assign(_Hashtable&& __ht, true_type)
1400     {
1401       if (__builtin_expect(std::__addressof(__ht) == this, false))
1402 	return;
1403 
1404       this->_M_deallocate_nodes(_M_begin());
1405       _M_deallocate_buckets();
1406       __hashtable_base::operator=(std::move(__ht));
1407       _M_rehash_policy = __ht._M_rehash_policy;
1408       if (!__ht._M_uses_single_bucket())
1409 	_M_buckets = __ht._M_buckets;
1410       else
1411 	{
1412 	  _M_buckets = &_M_single_bucket;
1413 	  _M_single_bucket = __ht._M_single_bucket;
1414 	}
1415 
1416       _M_bucket_count = __ht._M_bucket_count;
1417       _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1418       _M_element_count = __ht._M_element_count;
1419       std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1420 
1421       // Fix bucket containing the _M_before_begin pointer that can't be moved.
1422       _M_update_bbegin();
1423       __ht._M_reset();
1424     }
1425 
1426   template<typename _Key, typename _Value, typename _Alloc,
1427 	   typename _ExtractKey, typename _Equal,
1428 	   typename _Hash, typename _RangeHash, typename _Unused,
1429 	   typename _RehashPolicy, typename _Traits>
1430     void
1431     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1432 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1433     _M_move_assign(_Hashtable&& __ht, false_type)
1434     {
1435       if (__ht._M_node_allocator() == this->_M_node_allocator())
1436 	_M_move_assign(std::move(__ht), true_type{});
1437       else
1438 	{
1439 	  // Can't move memory, move elements then.
1440 	  _M_assign_elements(std::move(__ht));
1441 	  __ht.clear();
1442 	}
1443     }
1444 
1445   template<typename _Key, typename _Value, typename _Alloc,
1446 	   typename _ExtractKey, typename _Equal,
1447 	   typename _Hash, typename _RangeHash, typename _Unused,
1448 	   typename _RehashPolicy, typename _Traits>
1449     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1450 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1451     _Hashtable(const _Hashtable& __ht)
1452     : __hashtable_base(__ht),
1453       __map_base(__ht),
1454       __rehash_base(__ht),
1455       __hashtable_alloc(
1456 	__node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1457       __enable_default_ctor(__ht),
1458       _M_buckets(nullptr),
1459       _M_bucket_count(__ht._M_bucket_count),
1460       _M_element_count(__ht._M_element_count),
1461       _M_rehash_policy(__ht._M_rehash_policy)
1462     {
1463       __alloc_node_gen_t __alloc_node_gen(*this);
1464       _M_assign(__ht, __alloc_node_gen);
1465     }
1466 
1467   template<typename _Key, typename _Value, typename _Alloc,
1468 	   typename _ExtractKey, typename _Equal,
1469 	   typename _Hash, typename _RangeHash, typename _Unused,
1470 	   typename _RehashPolicy, typename _Traits>
1471     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1472 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1473     _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
1474 	       true_type /* alloc always equal */)
1475     noexcept(_S_nothrow_move())
1476     : __hashtable_base(__ht),
1477       __map_base(__ht),
1478       __rehash_base(__ht),
1479       __hashtable_alloc(std::move(__a)),
1480       __enable_default_ctor(__ht),
1481       _M_buckets(__ht._M_buckets),
1482       _M_bucket_count(__ht._M_bucket_count),
1483       _M_before_begin(__ht._M_before_begin._M_nxt),
1484       _M_element_count(__ht._M_element_count),
1485       _M_rehash_policy(__ht._M_rehash_policy)
1486     {
1487       // Update buckets if __ht is using its single bucket.
1488       if (__ht._M_uses_single_bucket())
1489 	{
1490 	  _M_buckets = &_M_single_bucket;
1491 	  _M_single_bucket = __ht._M_single_bucket;
1492 	}
1493 
1494       // Fix bucket containing the _M_before_begin pointer that can't be moved.
1495       _M_update_bbegin();
1496 
1497       __ht._M_reset();
1498     }
1499 
1500   template<typename _Key, typename _Value, typename _Alloc,
1501 	   typename _ExtractKey, typename _Equal,
1502 	   typename _Hash, typename _RangeHash, typename _Unused,
1503 	   typename _RehashPolicy, typename _Traits>
1504     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1505 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1506     _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1507     : __hashtable_base(__ht),
1508       __map_base(__ht),
1509       __rehash_base(__ht),
1510       __hashtable_alloc(__node_alloc_type(__a)),
1511       __enable_default_ctor(__ht),
1512       _M_buckets(),
1513       _M_bucket_count(__ht._M_bucket_count),
1514       _M_element_count(__ht._M_element_count),
1515       _M_rehash_policy(__ht._M_rehash_policy)
1516     {
1517       __alloc_node_gen_t __alloc_node_gen(*this);
1518       _M_assign(__ht, __alloc_node_gen);
1519     }
1520 
1521   template<typename _Key, typename _Value, typename _Alloc,
1522 	   typename _ExtractKey, typename _Equal,
1523 	   typename _Hash, typename _RangeHash, typename _Unused,
1524 	   typename _RehashPolicy, typename _Traits>
1525     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1526 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1527     _Hashtable(_Hashtable&& __ht, __node_alloc_type&& __a,
1528 	       false_type /* alloc always equal */)
1529     : __hashtable_base(__ht),
1530       __map_base(__ht),
1531       __rehash_base(__ht),
1532       __hashtable_alloc(std::move(__a)),
1533       __enable_default_ctor(__ht),
1534       _M_buckets(nullptr),
1535       _M_bucket_count(__ht._M_bucket_count),
1536       _M_element_count(__ht._M_element_count),
1537       _M_rehash_policy(__ht._M_rehash_policy)
1538     {
1539       if (__ht._M_node_allocator() == this->_M_node_allocator())
1540 	{
1541 	  if (__ht._M_uses_single_bucket())
1542 	    {
1543 	      _M_buckets = &_M_single_bucket;
1544 	      _M_single_bucket = __ht._M_single_bucket;
1545 	    }
1546 	  else
1547 	    _M_buckets = __ht._M_buckets;
1548 
1549 	  // Fix bucket containing the _M_before_begin pointer that can't be
1550 	  // moved.
1551 	  _M_update_bbegin(__ht._M_begin());
1552 
1553 	  __ht._M_reset();
1554 	}
1555       else
1556 	{
1557 	  __alloc_node_gen_t __alloc_gen(*this);
1558 
1559 	  using _Fwd_Ht = __conditional_t<
1560 	    __move_if_noexcept_cond<value_type>::value,
1561 	    const _Hashtable&, _Hashtable&&>;
1562 	  _M_assign(std::forward<_Fwd_Ht>(__ht), __alloc_gen);
1563 	  __ht.clear();
1564 	}
1565     }
1566 
1567   template<typename _Key, typename _Value, typename _Alloc,
1568 	   typename _ExtractKey, typename _Equal,
1569 	   typename _Hash, typename _RangeHash, typename _Unused,
1570 	   typename _RehashPolicy, typename _Traits>
1571     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1572 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1573     ~_Hashtable() noexcept
1574     {
1575       // Getting a bucket index from a node shall not throw because it is used
1576       // in methods (erase, swap...) that shall not throw. Need a complete
1577       // type to check this, so do it in the destructor not at class scope.
1578       static_assert(noexcept(declval<const __hash_code_base_access&>()
1579 			._M_bucket_index(declval<const __node_value_type&>(),
1580 					 (std::size_t)0)),
1581 		    "Cache the hash code or qualify your functors involved"
1582 		    " in hash code and bucket index computation with noexcept");
1583 
1584       clear();
1585       _M_deallocate_buckets();
1586     }
1587 
1588   template<typename _Key, typename _Value, typename _Alloc,
1589 	   typename _ExtractKey, typename _Equal,
1590 	   typename _Hash, typename _RangeHash, typename _Unused,
1591 	   typename _RehashPolicy, typename _Traits>
1592     void
1593     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1594 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1595     swap(_Hashtable& __x)
1596     noexcept(__and_<__is_nothrow_swappable<_Hash>,
1597 			__is_nothrow_swappable<_Equal>>::value)
1598     {
1599       // The only base class with member variables is hash_code_base.
1600       // We define _Hash_code_base::_M_swap because different
1601       // specializations have different members.
1602       this->_M_swap(__x);
1603 
1604       std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1605       std::swap(_M_rehash_policy, __x._M_rehash_policy);
1606 
1607       // Deal properly with potentially moved instances.
1608       if (this->_M_uses_single_bucket())
1609 	{
1610 	  if (!__x._M_uses_single_bucket())
1611 	    {
1612 	      _M_buckets = __x._M_buckets;
1613 	      __x._M_buckets = &__x._M_single_bucket;
1614 	    }
1615 	}
1616       else if (__x._M_uses_single_bucket())
1617 	{
1618 	  __x._M_buckets = _M_buckets;
1619 	  _M_buckets = &_M_single_bucket;
1620 	}
1621       else
1622 	std::swap(_M_buckets, __x._M_buckets);
1623 
1624       std::swap(_M_bucket_count, __x._M_bucket_count);
1625       std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1626       std::swap(_M_element_count, __x._M_element_count);
1627       std::swap(_M_single_bucket, __x._M_single_bucket);
1628 
1629       // Fix buckets containing the _M_before_begin pointers that can't be
1630       // swapped.
1631       _M_update_bbegin();
1632       __x._M_update_bbegin();
1633     }
1634 
1635   template<typename _Key, typename _Value, typename _Alloc,
1636 	   typename _ExtractKey, typename _Equal,
1637 	   typename _Hash, typename _RangeHash, typename _Unused,
1638 	   typename _RehashPolicy, typename _Traits>
1639     auto
1640     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1641 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1642     find(const key_type& __k)
1643     -> iterator
1644     {
1645       if (size() <= __small_size_threshold())
1646 	{
1647 	  for (auto __it = begin(); __it != end(); ++__it)
1648 	    if (this->_M_key_equals(__k, *__it._M_cur))
1649 	      return __it;
1650 	  return end();
1651 	}
1652 
1653       __hash_code __code = this->_M_hash_code(__k);
1654       std::size_t __bkt = _M_bucket_index(__code);
1655       return iterator(_M_find_node(__bkt, __k, __code));
1656     }
1657 
1658   template<typename _Key, typename _Value, typename _Alloc,
1659 	   typename _ExtractKey, typename _Equal,
1660 	   typename _Hash, typename _RangeHash, typename _Unused,
1661 	   typename _RehashPolicy, typename _Traits>
1662     auto
1663     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1664 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1665     find(const key_type& __k) const
1666     -> const_iterator
1667     {
1668       if (size() <= __small_size_threshold())
1669 	{
1670 	  for (auto __it = begin(); __it != end(); ++__it)
1671 	    if (this->_M_key_equals(__k, *__it._M_cur))
1672 	      return __it;
1673 	  return end();
1674 	}
1675 
1676       __hash_code __code = this->_M_hash_code(__k);
1677       std::size_t __bkt = _M_bucket_index(__code);
1678       return const_iterator(_M_find_node(__bkt, __k, __code));
1679     }
1680 
1681 #if __cplusplus > 201703L
1682   template<typename _Key, typename _Value, typename _Alloc,
1683 	   typename _ExtractKey, typename _Equal,
1684 	   typename _Hash, typename _RangeHash, typename _Unused,
1685 	   typename _RehashPolicy, typename _Traits>
1686     template<typename _Kt, typename, typename>
1687       auto
1688       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1689 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1690       _M_find_tr(const _Kt& __k)
1691       -> iterator
1692       {
1693 	__hash_code __code = this->_M_hash_code_tr(__k);
1694 	std::size_t __bkt = _M_bucket_index(__code);
1695 	return iterator(_M_find_node_tr(__bkt, __k, __code));
1696       }
1697 
1698   template<typename _Key, typename _Value, typename _Alloc,
1699 	   typename _ExtractKey, typename _Equal,
1700 	   typename _Hash, typename _RangeHash, typename _Unused,
1701 	   typename _RehashPolicy, typename _Traits>
1702     template<typename _Kt, typename, typename>
1703       auto
1704       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1705 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1706       _M_find_tr(const _Kt& __k) const
1707       -> const_iterator
1708       {
1709 	__hash_code __code = this->_M_hash_code_tr(__k);
1710 	std::size_t __bkt = _M_bucket_index(__code);
1711 	return const_iterator(_M_find_node_tr(__bkt, __k, __code));
1712       }
1713 #endif
1714 
1715   template<typename _Key, typename _Value, typename _Alloc,
1716 	   typename _ExtractKey, typename _Equal,
1717 	   typename _Hash, typename _RangeHash, typename _Unused,
1718 	   typename _RehashPolicy, typename _Traits>
1719     auto
1720     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1721 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1722     count(const key_type& __k) const
1723     -> size_type
1724     {
1725       auto __it = find(__k);
1726       if (!__it._M_cur)
1727 	return 0;
1728 
1729       if (__unique_keys::value)
1730 	return 1;
1731 
1732       // All equivalent values are next to each other, if we find a
1733       // non-equivalent value after an equivalent one it means that we won't
1734       // find any new equivalent value.
1735       size_type __result = 1;
1736       for (auto __ref = __it++;
1737 	   __it._M_cur && this->_M_node_equals(*__ref._M_cur, *__it._M_cur);
1738 	   ++__it)
1739 	++__result;
1740 
1741       return __result;
1742     }
1743 
1744 #if __cplusplus > 201703L
1745   template<typename _Key, typename _Value, typename _Alloc,
1746 	   typename _ExtractKey, typename _Equal,
1747 	   typename _Hash, typename _RangeHash, typename _Unused,
1748 	   typename _RehashPolicy, typename _Traits>
1749     template<typename _Kt, typename, typename>
1750       auto
1751       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1752 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1753       _M_count_tr(const _Kt& __k) const
1754       -> size_type
1755       {
1756 	__hash_code __code = this->_M_hash_code_tr(__k);
1757 	std::size_t __bkt = _M_bucket_index(__code);
1758 	auto __n = _M_find_node_tr(__bkt, __k, __code);
1759 	if (!__n)
1760 	  return 0;
1761 
1762 	// All equivalent values are next to each other, if we find a
1763 	// non-equivalent value after an equivalent one it means that we won't
1764 	// find any new equivalent value.
1765 	iterator __it(__n);
1766 	size_type __result = 1;
1767 	for (++__it;
1768 	     __it._M_cur && this->_M_equals_tr(__k, __code, *__it._M_cur);
1769 	     ++__it)
1770 	  ++__result;
1771 
1772 	return __result;
1773       }
1774 #endif
1775 
1776   template<typename _Key, typename _Value, typename _Alloc,
1777 	   typename _ExtractKey, typename _Equal,
1778 	   typename _Hash, typename _RangeHash, typename _Unused,
1779 	   typename _RehashPolicy, typename _Traits>
1780     auto
1781     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1782 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1783     equal_range(const key_type& __k)
1784     -> pair<iterator, iterator>
1785     {
1786       auto __ite = find(__k);
1787       if (!__ite._M_cur)
1788 	return { __ite, __ite };
1789 
1790       auto __beg = __ite++;
1791       if (__unique_keys::value)
1792 	return { __beg, __ite };
1793 
1794       // All equivalent values are next to each other, if we find a
1795       // non-equivalent value after an equivalent one it means that we won't
1796       // find any new equivalent value.
1797       while (__ite._M_cur && this->_M_node_equals(*__beg._M_cur, *__ite._M_cur))
1798 	++__ite;
1799 
1800       return { __beg, __ite };
1801     }
1802 
1803   template<typename _Key, typename _Value, typename _Alloc,
1804 	   typename _ExtractKey, typename _Equal,
1805 	   typename _Hash, typename _RangeHash, typename _Unused,
1806 	   typename _RehashPolicy, typename _Traits>
1807     auto
1808     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1809 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1810     equal_range(const key_type& __k) const
1811     -> pair<const_iterator, const_iterator>
1812     {
1813       auto __ite = find(__k);
1814       if (!__ite._M_cur)
1815 	return { __ite, __ite };
1816 
1817       auto __beg = __ite++;
1818       if (__unique_keys::value)
1819 	return { __beg, __ite };
1820 
1821       // All equivalent values are next to each other, if we find a
1822       // non-equivalent value after an equivalent one it means that we won't
1823       // find any new equivalent value.
1824       while (__ite._M_cur && this->_M_node_equals(*__beg._M_cur, *__ite._M_cur))
1825 	++__ite;
1826 
1827       return { __beg, __ite };
1828     }
1829 
1830 #if __cplusplus > 201703L
1831   template<typename _Key, typename _Value, typename _Alloc,
1832 	   typename _ExtractKey, typename _Equal,
1833 	   typename _Hash, typename _RangeHash, typename _Unused,
1834 	   typename _RehashPolicy, typename _Traits>
1835     template<typename _Kt, typename, typename>
1836       auto
1837       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1838 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1839       _M_equal_range_tr(const _Kt& __k)
1840       -> pair<iterator, iterator>
1841       {
1842 	__hash_code __code = this->_M_hash_code_tr(__k);
1843 	std::size_t __bkt = _M_bucket_index(__code);
1844 	auto __n = _M_find_node_tr(__bkt, __k, __code);
1845 	iterator __ite(__n);
1846 	if (!__n)
1847 	  return { __ite, __ite };
1848 
1849 	// All equivalent values are next to each other, if we find a
1850 	// non-equivalent value after an equivalent one it means that we won't
1851 	// find any new equivalent value.
1852 	auto __beg = __ite++;
1853 	while (__ite._M_cur && this->_M_equals_tr(__k, __code, *__ite._M_cur))
1854 	  ++__ite;
1855 
1856 	return { __beg, __ite };
1857       }
1858 
1859   template<typename _Key, typename _Value, typename _Alloc,
1860 	   typename _ExtractKey, typename _Equal,
1861 	   typename _Hash, typename _RangeHash, typename _Unused,
1862 	   typename _RehashPolicy, typename _Traits>
1863     template<typename _Kt, typename, typename>
1864       auto
1865       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1866 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1867       _M_equal_range_tr(const _Kt& __k) const
1868       -> pair<const_iterator, const_iterator>
1869       {
1870 	__hash_code __code = this->_M_hash_code_tr(__k);
1871 	std::size_t __bkt = _M_bucket_index(__code);
1872 	auto __n = _M_find_node_tr(__bkt, __k, __code);
1873 	const_iterator __ite(__n);
1874 	if (!__n)
1875 	  return { __ite, __ite };
1876 
1877 	// All equivalent values are next to each other, if we find a
1878 	// non-equivalent value after an equivalent one it means that we won't
1879 	// find any new equivalent value.
1880 	auto __beg = __ite++;
1881 	while (__ite._M_cur && this->_M_equals_tr(__k, __code, *__ite._M_cur))
1882 	  ++__ite;
1883 
1884 	return { __beg, __ite };
1885       }
1886 #endif
1887 
1888   // Find the node before the one whose key compares equal to k.
1889   // Return nullptr if no node is found.
1890   template<typename _Key, typename _Value, typename _Alloc,
1891 	   typename _ExtractKey, typename _Equal,
1892 	   typename _Hash, typename _RangeHash, typename _Unused,
1893 	   typename _RehashPolicy, typename _Traits>
1894     auto
1895     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1896 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1897     _M_find_before_node(const key_type& __k)
1898     -> __node_base_ptr
1899     {
1900       __node_base_ptr __prev_p = &_M_before_begin;
1901       if (!__prev_p->_M_nxt)
1902 	return nullptr;
1903 
1904       for (__node_ptr __p = static_cast<__node_ptr>(__prev_p->_M_nxt);
1905 	   __p != nullptr;
1906 	   __p = __p->_M_next())
1907 	{
1908 	  if (this->_M_key_equals(__k, *__p))
1909 	    return __prev_p;
1910 
1911 	  __prev_p = __p;
1912 	}
1913 
1914       return nullptr;
1915     }
1916 
1917   // Find the node before the one whose key compares equal to k in the bucket
1918   // bkt. Return nullptr if no node is found.
1919   template<typename _Key, typename _Value, typename _Alloc,
1920 	   typename _ExtractKey, typename _Equal,
1921 	   typename _Hash, typename _RangeHash, typename _Unused,
1922 	   typename _RehashPolicy, typename _Traits>
1923     auto
1924     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1925 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1926     _M_find_before_node(size_type __bkt, const key_type& __k,
1927 			__hash_code __code) const
1928     -> __node_base_ptr
1929     {
1930       __node_base_ptr __prev_p = _M_buckets[__bkt];
1931       if (!__prev_p)
1932 	return nullptr;
1933 
1934       for (__node_ptr __p = static_cast<__node_ptr>(__prev_p->_M_nxt);;
1935 	   __p = __p->_M_next())
1936 	{
1937 	  if (this->_M_equals(__k, __code, *__p))
1938 	    return __prev_p;
1939 
1940 	  if (!__p->_M_nxt || _M_bucket_index(*__p->_M_next()) != __bkt)
1941 	    break;
1942 	  __prev_p = __p;
1943 	}
1944 
1945       return nullptr;
1946     }
1947 
1948   template<typename _Key, typename _Value, typename _Alloc,
1949 	   typename _ExtractKey, typename _Equal,
1950 	   typename _Hash, typename _RangeHash, typename _Unused,
1951 	   typename _RehashPolicy, typename _Traits>
1952     template<typename _Kt>
1953       auto
1954       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1955 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1956       _M_find_before_node_tr(size_type __bkt, const _Kt& __k,
1957 			     __hash_code __code) const
1958       -> __node_base_ptr
1959       {
1960 	__node_base_ptr __prev_p = _M_buckets[__bkt];
1961 	if (!__prev_p)
1962 	  return nullptr;
1963 
1964 	for (__node_ptr __p = static_cast<__node_ptr>(__prev_p->_M_nxt);;
1965 	     __p = __p->_M_next())
1966 	  {
1967 	    if (this->_M_equals_tr(__k, __code, *__p))
1968 	      return __prev_p;
1969 
1970 	    if (!__p->_M_nxt || _M_bucket_index(*__p->_M_next()) != __bkt)
1971 	      break;
1972 	    __prev_p = __p;
1973 	  }
1974 
1975 	return nullptr;
1976       }
1977 
1978   template<typename _Key, typename _Value, typename _Alloc,
1979 	   typename _ExtractKey, typename _Equal,
1980 	   typename _Hash, typename _RangeHash, typename _Unused,
1981 	   typename _RehashPolicy, typename _Traits>
1982     void
1983     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1984 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
1985     _M_insert_bucket_begin(size_type __bkt, __node_ptr __node)
1986     {
1987       if (_M_buckets[__bkt])
1988 	{
1989 	  // Bucket is not empty, we just need to insert the new node
1990 	  // after the bucket before begin.
1991 	  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1992 	  _M_buckets[__bkt]->_M_nxt = __node;
1993 	}
1994       else
1995 	{
1996 	  // The bucket is empty, the new node is inserted at the
1997 	  // beginning of the singly-linked list and the bucket will
1998 	  // contain _M_before_begin pointer.
1999 	  __node->_M_nxt = _M_before_begin._M_nxt;
2000 	  _M_before_begin._M_nxt = __node;
2001 
2002 	  if (__node->_M_nxt)
2003 	    // We must update former begin bucket that is pointing to
2004 	    // _M_before_begin.
2005 	    _M_buckets[_M_bucket_index(*__node->_M_next())] = __node;
2006 
2007 	  _M_buckets[__bkt] = &_M_before_begin;
2008 	}
2009     }
2010 
2011   template<typename _Key, typename _Value, typename _Alloc,
2012 	   typename _ExtractKey, typename _Equal,
2013 	   typename _Hash, typename _RangeHash, typename _Unused,
2014 	   typename _RehashPolicy, typename _Traits>
2015     void
2016     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2017 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2018     _M_remove_bucket_begin(size_type __bkt, __node_ptr __next,
2019 			   size_type __next_bkt)
2020     {
2021       if (!__next || __next_bkt != __bkt)
2022 	{
2023 	  // Bucket is now empty
2024 	  // First update next bucket if any
2025 	  if (__next)
2026 	    _M_buckets[__next_bkt] = _M_buckets[__bkt];
2027 
2028 	  // Second update before begin node if necessary
2029 	  if (&_M_before_begin == _M_buckets[__bkt])
2030 	    _M_before_begin._M_nxt = __next;
2031 	  _M_buckets[__bkt] = nullptr;
2032 	}
2033     }
2034 
2035   template<typename _Key, typename _Value, typename _Alloc,
2036 	   typename _ExtractKey, typename _Equal,
2037 	   typename _Hash, typename _RangeHash, typename _Unused,
2038 	   typename _RehashPolicy, typename _Traits>
2039     auto
2040     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2041 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2042     _M_get_previous_node(size_type __bkt, __node_ptr __n)
2043     -> __node_base_ptr
2044     {
2045       __node_base_ptr __prev_n = _M_buckets[__bkt];
2046       while (__prev_n->_M_nxt != __n)
2047 	__prev_n = __prev_n->_M_nxt;
2048       return __prev_n;
2049     }
2050 
2051   template<typename _Key, typename _Value, typename _Alloc,
2052 	   typename _ExtractKey, typename _Equal,
2053 	   typename _Hash, typename _RangeHash, typename _Unused,
2054 	   typename _RehashPolicy, typename _Traits>
2055     template<typename... _Args>
2056       auto
2057       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2058 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2059       _M_emplace(true_type /* __uks */, _Args&&... __args)
2060       -> pair<iterator, bool>
2061       {
2062 	// First build the node to get access to the hash code
2063 	_Scoped_node __node { this, std::forward<_Args>(__args)...  };
2064 	const key_type& __k = _ExtractKey{}(__node._M_node->_M_v());
2065 	if (size() <= __small_size_threshold())
2066 	  {
2067 	    for (auto __it = begin(); __it != end(); ++__it)
2068 	      if (this->_M_key_equals(__k, *__it._M_cur))
2069 		// There is already an equivalent node, no insertion
2070 		return { __it, false };
2071 	  }
2072 
2073 	__hash_code __code = this->_M_hash_code(__k);
2074 	size_type __bkt = _M_bucket_index(__code);
2075 	if (size() > __small_size_threshold())
2076 	  if (__node_ptr __p = _M_find_node(__bkt, __k, __code))
2077 	    // There is already an equivalent node, no insertion
2078 	    return { iterator(__p), false };
2079 
2080 	// Insert the node
2081 	auto __pos = _M_insert_unique_node(__bkt, __code, __node._M_node);
2082 	__node._M_node = nullptr;
2083 	return { __pos, true };
2084       }
2085 
2086   template<typename _Key, typename _Value, typename _Alloc,
2087 	   typename _ExtractKey, typename _Equal,
2088 	   typename _Hash, typename _RangeHash, typename _Unused,
2089 	   typename _RehashPolicy, typename _Traits>
2090     template<typename... _Args>
2091       auto
2092       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2093 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2094       _M_emplace(const_iterator __hint, false_type /* __uks */,
2095 		 _Args&&... __args)
2096       -> iterator
2097       {
2098 	// First build the node to get its hash code.
2099 	_Scoped_node __node { this, std::forward<_Args>(__args)...  };
2100 	const key_type& __k = _ExtractKey{}(__node._M_node->_M_v());
2101 
2102 	auto __res = this->_M_compute_hash_code(__hint, __k);
2103 	auto __pos
2104 	  = _M_insert_multi_node(__res.first._M_cur, __res.second,
2105 				 __node._M_node);
2106 	__node._M_node = nullptr;
2107 	return __pos;
2108       }
2109 
2110   template<typename _Key, typename _Value, typename _Alloc,
2111 	   typename _ExtractKey, typename _Equal,
2112 	   typename _Hash, typename _RangeHash, typename _Unused,
2113 	   typename _RehashPolicy, typename _Traits>
2114     auto
2115     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2116 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2117     _M_compute_hash_code(const_iterator __hint, const key_type& __k) const
2118     -> pair<const_iterator, __hash_code>
2119     {
2120       if (size() <= __small_size_threshold())
2121 	{
2122 	  if (__hint != cend())
2123 	    {
2124 	      for (auto __it = __hint; __it != cend(); ++__it)
2125 		if (this->_M_key_equals(__k, *__it._M_cur))
2126 		  return { __it, this->_M_hash_code(*__it._M_cur) };
2127 	    }
2128 
2129 	  for (auto __it = cbegin(); __it != __hint; ++__it)
2130 	    if (this->_M_key_equals(__k, *__it._M_cur))
2131 	      return { __it, this->_M_hash_code(*__it._M_cur) };
2132 	}
2133 
2134       return { __hint, this->_M_hash_code(__k) };
2135     }
2136 
2137   template<typename _Key, typename _Value, typename _Alloc,
2138 	   typename _ExtractKey, typename _Equal,
2139 	   typename _Hash, typename _RangeHash, typename _Unused,
2140 	   typename _RehashPolicy, typename _Traits>
2141     auto
2142     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2143 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2144     _M_insert_unique_node(size_type __bkt, __hash_code __code,
2145 			  __node_ptr __node, size_type __n_elt)
2146     -> iterator
2147     {
2148       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
2149       std::pair<bool, std::size_t> __do_rehash
2150 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count,
2151 					  __n_elt);
2152 
2153       if (__do_rehash.first)
2154 	{
2155 	  _M_rehash(__do_rehash.second, __saved_state);
2156 	  __bkt = _M_bucket_index(__code);
2157 	}
2158 
2159       this->_M_store_code(*__node, __code);
2160 
2161       // Always insert at the beginning of the bucket.
2162       _M_insert_bucket_begin(__bkt, __node);
2163       ++_M_element_count;
2164       return iterator(__node);
2165     }
2166 
2167   template<typename _Key, typename _Value, typename _Alloc,
2168 	   typename _ExtractKey, typename _Equal,
2169 	   typename _Hash, typename _RangeHash, typename _Unused,
2170 	   typename _RehashPolicy, typename _Traits>
2171     auto
2172     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2173 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2174     _M_insert_multi_node(__node_ptr __hint,
2175 			 __hash_code __code, __node_ptr __node)
2176     -> iterator
2177     {
2178       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
2179       std::pair<bool, std::size_t> __do_rehash
2180 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
2181 
2182       if (__do_rehash.first)
2183 	_M_rehash(__do_rehash.second, __saved_state);
2184 
2185       this->_M_store_code(*__node, __code);
2186       const key_type& __k = _ExtractKey{}(__node->_M_v());
2187       size_type __bkt = _M_bucket_index(__code);
2188 
2189       // Find the node before an equivalent one or use hint if it exists and
2190       // if it is equivalent.
2191       __node_base_ptr __prev
2192 	= __builtin_expect(__hint != nullptr, false)
2193 	  && this->_M_equals(__k, __code, *__hint)
2194 	    ? __hint
2195 	    : _M_find_before_node(__bkt, __k, __code);
2196 
2197       if (__prev)
2198 	{
2199 	  // Insert after the node before the equivalent one.
2200 	  __node->_M_nxt = __prev->_M_nxt;
2201 	  __prev->_M_nxt = __node;
2202 	  if (__builtin_expect(__prev == __hint, false))
2203 	    // hint might be the last bucket node, in this case we need to
2204 	    // update next bucket.
2205 	    if (__node->_M_nxt
2206 		&& !this->_M_equals(__k, __code, *__node->_M_next()))
2207 	      {
2208 		size_type __next_bkt = _M_bucket_index(*__node->_M_next());
2209 		if (__next_bkt != __bkt)
2210 		  _M_buckets[__next_bkt] = __node;
2211 	      }
2212 	}
2213       else
2214 	// The inserted node has no equivalent in the hashtable. We must
2215 	// insert the new node at the beginning of the bucket to preserve
2216 	// equivalent elements' relative positions.
2217 	_M_insert_bucket_begin(__bkt, __node);
2218       ++_M_element_count;
2219       return iterator(__node);
2220     }
2221 
2222   // Insert v if no element with its key is already present.
2223   template<typename _Key, typename _Value, typename _Alloc,
2224 	   typename _ExtractKey, typename _Equal,
2225 	   typename _Hash, typename _RangeHash, typename _Unused,
2226 	   typename _RehashPolicy, typename _Traits>
2227     template<typename _Kt, typename _Arg, typename _NodeGenerator>
2228       auto
2229       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2230 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2231       _M_insert_unique(_Kt&& __k, _Arg&& __v,
2232 		       const _NodeGenerator& __node_gen)
2233       -> pair<iterator, bool>
2234       {
2235 	if (size() <= __small_size_threshold())
2236 	  for (auto __it = begin(); __it != end(); ++__it)
2237 	    if (this->_M_key_equals_tr(__k, *__it._M_cur))
2238 	      return { __it, false };
2239 
2240 	__hash_code __code = this->_M_hash_code_tr(__k);
2241 	size_type __bkt = _M_bucket_index(__code);
2242 
2243 	if (size() > __small_size_threshold())
2244 	  if (__node_ptr __node = _M_find_node_tr(__bkt, __k, __code))
2245 	    return { iterator(__node), false };
2246 
2247 	_Scoped_node __node {
2248 	  __node_builder_t::_S_build(std::forward<_Kt>(__k),
2249 				     std::forward<_Arg>(__v),
2250 				     __node_gen),
2251 	  this
2252 	};
2253 	auto __pos
2254 	  = _M_insert_unique_node(__bkt, __code, __node._M_node);
2255 	__node._M_node = nullptr;
2256 	return { __pos, true };
2257       }
2258 
2259   // Insert v unconditionally.
2260   template<typename _Key, typename _Value, typename _Alloc,
2261 	   typename _ExtractKey, typename _Equal,
2262 	   typename _Hash, typename _RangeHash, typename _Unused,
2263 	   typename _RehashPolicy, typename _Traits>
2264     template<typename _Arg, typename _NodeGenerator>
2265       auto
2266       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2267 		 _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2268       _M_insert(const_iterator __hint, _Arg&& __v,
2269 		const _NodeGenerator& __node_gen,
2270 		false_type /* __uks */)
2271       -> iterator
2272       {
2273 	// First allocate new node so that we don't do anything if it throws.
2274 	_Scoped_node __node{ __node_gen(std::forward<_Arg>(__v)), this };
2275 
2276 	// Second compute the hash code so that we don't rehash if it throws.
2277 	auto __res = this->_M_compute_hash_code(
2278 	  __hint, _ExtractKey{}(__node._M_node->_M_v()));
2279 
2280 	auto __pos
2281 	  = _M_insert_multi_node(__res.first._M_cur, __res.second,
2282 				 __node._M_node);
2283 	__node._M_node = nullptr;
2284 	return __pos;
2285       }
2286 
2287   template<typename _Key, typename _Value, typename _Alloc,
2288 	   typename _ExtractKey, typename _Equal,
2289 	   typename _Hash, typename _RangeHash, typename _Unused,
2290 	   typename _RehashPolicy, typename _Traits>
2291     auto
2292     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2293 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2294     erase(const_iterator __it)
2295     -> iterator
2296     {
2297       __node_ptr __n = __it._M_cur;
2298       std::size_t __bkt = _M_bucket_index(*__n);
2299 
2300       // Look for previous node to unlink it from the erased one, this
2301       // is why we need buckets to contain the before begin to make
2302       // this search fast.
2303       __node_base_ptr __prev_n = _M_get_previous_node(__bkt, __n);
2304       return _M_erase(__bkt, __prev_n, __n);
2305     }
2306 
2307   template<typename _Key, typename _Value, typename _Alloc,
2308 	   typename _ExtractKey, typename _Equal,
2309 	   typename _Hash, typename _RangeHash, typename _Unused,
2310 	   typename _RehashPolicy, typename _Traits>
2311     auto
2312     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2313 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2314     _M_erase(size_type __bkt, __node_base_ptr __prev_n, __node_ptr __n)
2315     -> iterator
2316     {
2317       if (__prev_n == _M_buckets[__bkt])
2318 	_M_remove_bucket_begin(__bkt, __n->_M_next(),
2319 	  __n->_M_nxt ? _M_bucket_index(*__n->_M_next()) : 0);
2320       else if (__n->_M_nxt)
2321 	{
2322 	  size_type __next_bkt = _M_bucket_index(*__n->_M_next());
2323 	  if (__next_bkt != __bkt)
2324 	    _M_buckets[__next_bkt] = __prev_n;
2325 	}
2326 
2327       __prev_n->_M_nxt = __n->_M_nxt;
2328       iterator __result(__n->_M_next());
2329       this->_M_deallocate_node(__n);
2330       --_M_element_count;
2331 
2332       return __result;
2333     }
2334 
2335   template<typename _Key, typename _Value, typename _Alloc,
2336 	   typename _ExtractKey, typename _Equal,
2337 	   typename _Hash, typename _RangeHash, typename _Unused,
2338 	   typename _RehashPolicy, typename _Traits>
2339     auto
2340     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2341 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2342     _M_erase(true_type /* __uks */, const key_type& __k)
2343     -> size_type
2344     {
2345       __node_base_ptr __prev_n;
2346       __node_ptr __n;
2347       std::size_t __bkt;
2348       if (size() <= __small_size_threshold())
2349 	{
2350 	  __prev_n = _M_find_before_node(__k);
2351 	  if (!__prev_n)
2352 	    return 0;
2353 
2354 	  // We found a matching node, erase it.
2355 	  __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
2356 	  __bkt = _M_bucket_index(*__n);
2357 	}
2358       else
2359 	{
2360 	  __hash_code __code = this->_M_hash_code(__k);
2361 	  __bkt = _M_bucket_index(__code);
2362 
2363 	  // Look for the node before the first matching node.
2364 	  __prev_n = _M_find_before_node(__bkt, __k, __code);
2365 	  if (!__prev_n)
2366 	    return 0;
2367 
2368 	  // We found a matching node, erase it.
2369 	  __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
2370 	}
2371 
2372       _M_erase(__bkt, __prev_n, __n);
2373       return 1;
2374     }
2375 
2376   template<typename _Key, typename _Value, typename _Alloc,
2377 	   typename _ExtractKey, typename _Equal,
2378 	   typename _Hash, typename _RangeHash, typename _Unused,
2379 	   typename _RehashPolicy, typename _Traits>
2380     auto
2381     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2382 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2383     _M_erase(false_type /* __uks */, const key_type& __k)
2384     -> size_type
2385     {
2386       std::size_t __bkt;
2387       __node_base_ptr __prev_n;
2388       __node_ptr __n;
2389       if (size() <= __small_size_threshold())
2390 	{
2391 	  __prev_n = _M_find_before_node(__k);
2392 	  if (!__prev_n)
2393 	    return 0;
2394 
2395 	  // We found a matching node, erase it.
2396 	  __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
2397 	  __bkt = _M_bucket_index(*__n);
2398 	}
2399       else
2400 	{
2401 	  __hash_code __code = this->_M_hash_code(__k);
2402 	  __bkt = _M_bucket_index(__code);
2403 
2404 	  // Look for the node before the first matching node.
2405 	  __prev_n = _M_find_before_node(__bkt, __k, __code);
2406 	  if (!__prev_n)
2407 	    return 0;
2408 
2409 	  __n = static_cast<__node_ptr>(__prev_n->_M_nxt);
2410 	}
2411 
2412       // _GLIBCXX_RESOLVE_LIB_DEFECTS
2413       // 526. Is it undefined if a function in the standard changes
2414       // in parameters?
2415       // We use one loop to find all matching nodes and another to deallocate
2416       // them so that the key stays valid during the first loop. It might be
2417       // invalidated indirectly when destroying nodes.
2418       __node_ptr __n_last = __n->_M_next();
2419       while (__n_last && this->_M_node_equals(*__n, *__n_last))
2420 	__n_last = __n_last->_M_next();
2421 
2422       std::size_t __n_last_bkt = __n_last ? _M_bucket_index(*__n_last) : __bkt;
2423 
2424       // Deallocate nodes.
2425       size_type __result = 0;
2426       do
2427 	{
2428 	  __node_ptr __p = __n->_M_next();
2429 	  this->_M_deallocate_node(__n);
2430 	  __n = __p;
2431 	  ++__result;
2432 	}
2433       while (__n != __n_last);
2434 
2435       _M_element_count -= __result;
2436       if (__prev_n == _M_buckets[__bkt])
2437 	_M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
2438       else if (__n_last_bkt != __bkt)
2439 	_M_buckets[__n_last_bkt] = __prev_n;
2440       __prev_n->_M_nxt = __n_last;
2441       return __result;
2442     }
2443 
2444   template<typename _Key, typename _Value, typename _Alloc,
2445 	   typename _ExtractKey, typename _Equal,
2446 	   typename _Hash, typename _RangeHash, typename _Unused,
2447 	   typename _RehashPolicy, typename _Traits>
2448     auto
2449     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2450 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2451     erase(const_iterator __first, const_iterator __last)
2452     -> iterator
2453     {
2454       __node_ptr __n = __first._M_cur;
2455       __node_ptr __last_n = __last._M_cur;
2456       if (__n == __last_n)
2457 	return iterator(__n);
2458 
2459       std::size_t __bkt = _M_bucket_index(*__n);
2460 
2461       __node_base_ptr __prev_n = _M_get_previous_node(__bkt, __n);
2462       bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
2463       std::size_t __n_bkt = __bkt;
2464       for (;;)
2465 	{
2466 	  do
2467 	    {
2468 	      __node_ptr __tmp = __n;
2469 	      __n = __n->_M_next();
2470 	      this->_M_deallocate_node(__tmp);
2471 	      --_M_element_count;
2472 	      if (!__n)
2473 		break;
2474 	      __n_bkt = _M_bucket_index(*__n);
2475 	    }
2476 	  while (__n != __last_n && __n_bkt == __bkt);
2477 	  if (__is_bucket_begin)
2478 	    _M_remove_bucket_begin(__bkt, __n, __n_bkt);
2479 	  if (__n == __last_n)
2480 	    break;
2481 	  __is_bucket_begin = true;
2482 	  __bkt = __n_bkt;
2483 	}
2484 
2485       if (__n && (__n_bkt != __bkt || __is_bucket_begin))
2486 	_M_buckets[__n_bkt] = __prev_n;
2487       __prev_n->_M_nxt = __n;
2488       return iterator(__n);
2489     }
2490 
2491   template<typename _Key, typename _Value, typename _Alloc,
2492 	   typename _ExtractKey, typename _Equal,
2493 	   typename _Hash, typename _RangeHash, typename _Unused,
2494 	   typename _RehashPolicy, typename _Traits>
2495     void
2496     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2497 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2498     clear() noexcept
2499     {
2500       this->_M_deallocate_nodes(_M_begin());
2501       __builtin_memset(_M_buckets, 0,
2502 		       _M_bucket_count * sizeof(__node_base_ptr));
2503       _M_element_count = 0;
2504       _M_before_begin._M_nxt = nullptr;
2505     }
2506 
2507   template<typename _Key, typename _Value, typename _Alloc,
2508 	   typename _ExtractKey, typename _Equal,
2509 	   typename _Hash, typename _RangeHash, typename _Unused,
2510 	   typename _RehashPolicy, typename _Traits>
2511     void
2512     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2513 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2514     rehash(size_type __bkt_count)
2515     {
2516       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
2517       __bkt_count
2518 	= std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
2519 		   __bkt_count);
2520       __bkt_count = _M_rehash_policy._M_next_bkt(__bkt_count);
2521 
2522       if (__bkt_count != _M_bucket_count)
2523 	_M_rehash(__bkt_count, __saved_state);
2524       else
2525 	// No rehash, restore previous state to keep it consistent with
2526 	// container state.
2527 	_M_rehash_policy._M_reset(__saved_state);
2528     }
2529 
2530   template<typename _Key, typename _Value, typename _Alloc,
2531 	   typename _ExtractKey, typename _Equal,
2532 	   typename _Hash, typename _RangeHash, typename _Unused,
2533 	   typename _RehashPolicy, typename _Traits>
2534     void
2535     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2536 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2537     _M_rehash(size_type __bkt_count, const __rehash_state& __state)
2538     {
2539       __try
2540 	{
2541 	  _M_rehash_aux(__bkt_count, __unique_keys{});
2542 	}
2543       __catch(...)
2544 	{
2545 	  // A failure here means that buckets allocation failed.  We only
2546 	  // have to restore hash policy previous state.
2547 	  _M_rehash_policy._M_reset(__state);
2548 	  __throw_exception_again;
2549 	}
2550     }
2551 
2552   // Rehash when there is no equivalent elements.
2553   template<typename _Key, typename _Value, typename _Alloc,
2554 	   typename _ExtractKey, typename _Equal,
2555 	   typename _Hash, typename _RangeHash, typename _Unused,
2556 	   typename _RehashPolicy, typename _Traits>
2557     void
2558     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2559 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2560     _M_rehash_aux(size_type __bkt_count, true_type /* __uks */)
2561     {
2562       __buckets_ptr __new_buckets = _M_allocate_buckets(__bkt_count);
2563       __node_ptr __p = _M_begin();
2564       _M_before_begin._M_nxt = nullptr;
2565       std::size_t __bbegin_bkt = 0;
2566       while (__p)
2567 	{
2568 	  __node_ptr __next = __p->_M_next();
2569 	  std::size_t __bkt
2570 	    = __hash_code_base::_M_bucket_index(*__p, __bkt_count);
2571 	  if (!__new_buckets[__bkt])
2572 	    {
2573 	      __p->_M_nxt = _M_before_begin._M_nxt;
2574 	      _M_before_begin._M_nxt = __p;
2575 	      __new_buckets[__bkt] = &_M_before_begin;
2576 	      if (__p->_M_nxt)
2577 		__new_buckets[__bbegin_bkt] = __p;
2578 	      __bbegin_bkt = __bkt;
2579 	    }
2580 	  else
2581 	    {
2582 	      __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2583 	      __new_buckets[__bkt]->_M_nxt = __p;
2584 	    }
2585 
2586 	  __p = __next;
2587 	}
2588 
2589       _M_deallocate_buckets();
2590       _M_bucket_count = __bkt_count;
2591       _M_buckets = __new_buckets;
2592     }
2593 
2594   // Rehash when there can be equivalent elements, preserve their relative
2595   // order.
2596   template<typename _Key, typename _Value, typename _Alloc,
2597 	   typename _ExtractKey, typename _Equal,
2598 	   typename _Hash, typename _RangeHash, typename _Unused,
2599 	   typename _RehashPolicy, typename _Traits>
2600     void
2601     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2602 	       _Hash, _RangeHash, _Unused, _RehashPolicy, _Traits>::
2603     _M_rehash_aux(size_type __bkt_count, false_type /* __uks */)
2604     {
2605       __buckets_ptr __new_buckets = _M_allocate_buckets(__bkt_count);
2606       __node_ptr __p = _M_begin();
2607       _M_before_begin._M_nxt = nullptr;
2608       std::size_t __bbegin_bkt = 0;
2609       std::size_t __prev_bkt = 0;
2610       __node_ptr __prev_p = nullptr;
2611       bool __check_bucket = false;
2612 
2613       while (__p)
2614 	{
2615 	  __node_ptr __next = __p->_M_next();
2616 	  std::size_t __bkt
2617 	    = __hash_code_base::_M_bucket_index(*__p, __bkt_count);
2618 
2619 	  if (__prev_p && __prev_bkt == __bkt)
2620 	    {
2621 	      // Previous insert was already in this bucket, we insert after
2622 	      // the previously inserted one to preserve equivalent elements
2623 	      // relative order.
2624 	      __p->_M_nxt = __prev_p->_M_nxt;
2625 	      __prev_p->_M_nxt = __p;
2626 
2627 	      // Inserting after a node in a bucket require to check that we
2628 	      // haven't change the bucket last node, in this case next
2629 	      // bucket containing its before begin node must be updated. We
2630 	      // schedule a check as soon as we move out of the sequence of
2631 	      // equivalent nodes to limit the number of checks.
2632 	      __check_bucket = true;
2633 	    }
2634 	  else
2635 	    {
2636 	      if (__check_bucket)
2637 		{
2638 		  // Check if we shall update the next bucket because of
2639 		  // insertions into __prev_bkt bucket.
2640 		  if (__prev_p->_M_nxt)
2641 		    {
2642 		      std::size_t __next_bkt
2643 			= __hash_code_base::_M_bucket_index(
2644 			  *__prev_p->_M_next(), __bkt_count);
2645 		      if (__next_bkt != __prev_bkt)
2646 			__new_buckets[__next_bkt] = __prev_p;
2647 		    }
2648 		  __check_bucket = false;
2649 		}
2650 
2651 	      if (!__new_buckets[__bkt])
2652 		{
2653 		  __p->_M_nxt = _M_before_begin._M_nxt;
2654 		  _M_before_begin._M_nxt = __p;
2655 		  __new_buckets[__bkt] = &_M_before_begin;
2656 		  if (__p->_M_nxt)
2657 		    __new_buckets[__bbegin_bkt] = __p;
2658 		  __bbegin_bkt = __bkt;
2659 		}
2660 	      else
2661 		{
2662 		  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2663 		  __new_buckets[__bkt]->_M_nxt = __p;
2664 		}
2665 	    }
2666 	  __prev_p = __p;
2667 	  __prev_bkt = __bkt;
2668 	  __p = __next;
2669 	}
2670 
2671       if (__check_bucket && __prev_p->_M_nxt)
2672 	{
2673 	  std::size_t __next_bkt
2674 	    = __hash_code_base::_M_bucket_index(*__prev_p->_M_next(),
2675 						__bkt_count);
2676 	  if (__next_bkt != __prev_bkt)
2677 	    __new_buckets[__next_bkt] = __prev_p;
2678 	}
2679 
2680       _M_deallocate_buckets();
2681       _M_bucket_count = __bkt_count;
2682       _M_buckets = __new_buckets;
2683     }
2684 
2685 #if __cplusplus > 201402L
2686   template<typename, typename, typename> class _Hash_merge_helper { };
2687 #endif // C++17
2688 
2689 #if __cpp_deduction_guides >= 201606
2690   // Used to constrain deduction guides
2691   template<typename _Hash>
2692     using _RequireNotAllocatorOrIntegral
2693       = __enable_if_t<!__or_<is_integral<_Hash>, __is_allocator<_Hash>>::value>;
2694 #endif
2695 
2696 /// @endcond
2697 _GLIBCXX_END_NAMESPACE_VERSION
2698 } // namespace std
2699 
2700 #endif // _HASHTABLE_H
2701