xref: /netbsd-src/external/gpl3/gcc/dist/libstdc++-v3/include/bits/hashtable.h (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 // hashtable.h header -*- C++ -*-
2 
3 // Copyright (C) 2007-2016 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable.h
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28  */
29 
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32 
33 #pragma GCC system_header
34 
35 #include <bits/hashtable_policy.h>
36 
37 namespace std _GLIBCXX_VISIBILITY(default)
38 {
39 _GLIBCXX_BEGIN_NAMESPACE_VERSION
40 
41   template<typename _Tp, typename _Hash>
42     using __cache_default
43       =  __not_<__and_<// Do not cache for fast hasher.
44 		       __is_fast_hash<_Hash>,
45 		       // Mandatory to have erase not throwing.
46 		       __detail::__is_noexcept_hash<_Tp, _Hash>>>;
47 
48   /**
49    *  Primary class template _Hashtable.
50    *
51    *  @ingroup hashtable-detail
52    *
53    *  @tparam _Value  CopyConstructible type.
54    *
55    *  @tparam _Key    CopyConstructible type.
56    *
57    *  @tparam _Alloc  An allocator type
58    *  ([lib.allocator.requirements]) whose _Alloc::value_type is
59    *  _Value.  As a conforming extension, we allow for
60    *  _Alloc::value_type != _Value.
61    *
62    *  @tparam _ExtractKey  Function object that takes an object of type
63    *  _Value and returns a value of type _Key.
64    *
65    *  @tparam _Equal  Function object that takes two objects of type k
66    *  and returns a bool-like value that is true if the two objects
67    *  are considered equal.
68    *
69    *  @tparam _H1  The hash function. A unary function object with
70    *  argument type _Key and result type size_t. Return values should
71    *  be distributed over the entire range [0, numeric_limits<size_t>:::max()].
72    *
73    *  @tparam _H2  The range-hashing function (in the terminology of
74    *  Tavori and Dreizin).  A binary function object whose argument
75    *  types and result type are all size_t.  Given arguments r and N,
76    *  the return value is in the range [0, N).
77    *
78    *  @tparam _Hash  The ranged hash function (Tavori and Dreizin). A
79    *  binary function whose argument types are _Key and size_t and
80    *  whose result type is size_t.  Given arguments k and N, the
81    *  return value is in the range [0, N).  Default: hash(k, N) =
82    *  h2(h1(k), N).  If _Hash is anything other than the default, _H1
83    *  and _H2 are ignored.
84    *
85    *  @tparam _RehashPolicy  Policy class with three members, all of
86    *  which govern the bucket count. _M_next_bkt(n) returns a bucket
87    *  count no smaller than n.  _M_bkt_for_elements(n) returns a
88    *  bucket count appropriate for an element count of n.
89    *  _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
90    *  current bucket count is n_bkt and the current element count is
91    *  n_elt, we need to increase the bucket count.  If so, returns
92    *  make_pair(true, n), where n is the new bucket count.  If not,
93    *  returns make_pair(false, <anything>)
94    *
95    *  @tparam _Traits  Compile-time class with three boolean
96    *  std::integral_constant members:  __cache_hash_code, __constant_iterators,
97    *   __unique_keys.
98    *
99    *  Each _Hashtable data structure has:
100    *
101    *  - _Bucket[]       _M_buckets
102    *  - _Hash_node_base _M_before_begin
103    *  - size_type       _M_bucket_count
104    *  - size_type       _M_element_count
105    *
106    *  with _Bucket being _Hash_node* and _Hash_node containing:
107    *
108    *  - _Hash_node*   _M_next
109    *  - Tp            _M_value
110    *  - size_t        _M_hash_code if cache_hash_code is true
111    *
112    *  In terms of Standard containers the hashtable is like the aggregation of:
113    *
114    *  - std::forward_list<_Node> containing the elements
115    *  - std::vector<std::forward_list<_Node>::iterator> representing the buckets
116    *
117    *  The non-empty buckets contain the node before the first node in the
118    *  bucket. This design makes it possible to implement something like a
119    *  std::forward_list::insert_after on container insertion and
120    *  std::forward_list::erase_after on container erase
121    *  calls. _M_before_begin is equivalent to
122    *  std::forward_list::before_begin. Empty buckets contain
123    *  nullptr.  Note that one of the non-empty buckets contains
124    *  &_M_before_begin which is not a dereferenceable node so the
125    *  node pointer in a bucket shall never be dereferenced, only its
126    *  next node can be.
127    *
128    *  Walking through a bucket's nodes requires a check on the hash code to
129    *  see if each node is still in the bucket. Such a design assumes a
130    *  quite efficient hash functor and is one of the reasons it is
131    *  highly advisable to set __cache_hash_code to true.
132    *
133    *  The container iterators are simply built from nodes. This way
134    *  incrementing the iterator is perfectly efficient independent of
135    *  how many empty buckets there are in the container.
136    *
137    *  On insert we compute the element's hash code and use it to find the
138    *  bucket index. If the element must be inserted in an empty bucket
139    *  we add it at the beginning of the singly linked list and make the
140    *  bucket point to _M_before_begin. The bucket that used to point to
141    *  _M_before_begin, if any, is updated to point to its new before
142    *  begin node.
143    *
144    *  On erase, the simple iterator design requires using the hash
145    *  functor to get the index of the bucket to update. For this
146    *  reason, when __cache_hash_code is set to false the hash functor must
147    *  not throw and this is enforced by a static assertion.
148    *
149    *  Functionality is implemented by decomposition into base classes,
150    *  where the derived _Hashtable class is used in _Map_base,
151    *  _Insert, _Rehash_base, and _Equality base classes to access the
152    *  "this" pointer. _Hashtable_base is used in the base classes as a
153    *  non-recursive, fully-completed-type so that detailed nested type
154    *  information, such as iterator type and node type, can be
155    *  used. This is similar to the "Curiously Recurring Template
156    *  Pattern" (CRTP) technique, but uses a reconstructed, not
157    *  explicitly passed, template pattern.
158    *
159    *  Base class templates are:
160    *    - __detail::_Hashtable_base
161    *    - __detail::_Map_base
162    *    - __detail::_Insert
163    *    - __detail::_Rehash_base
164    *    - __detail::_Equality
165    */
166   template<typename _Key, typename _Value, typename _Alloc,
167 	   typename _ExtractKey, typename _Equal,
168 	   typename _H1, typename _H2, typename _Hash,
169 	   typename _RehashPolicy, typename _Traits>
170     class _Hashtable
171     : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
172 				       _H1, _H2, _Hash, _Traits>,
173       public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
174 				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
175       public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
176 			       _H1, _H2, _Hash, _RehashPolicy, _Traits>,
177       public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
178 				    _H1, _H2, _Hash, _RehashPolicy, _Traits>,
179       public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
180 				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
181       private __detail::_Hashtable_alloc<
182 	__alloc_rebind<_Alloc,
183 		       __detail::_Hash_node<_Value,
184 					    _Traits::__hash_cached::value>>>
185     {
186       using __traits_type = _Traits;
187       using __hash_cached = typename __traits_type::__hash_cached;
188       using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
189       using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
190 
191       using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
192 
193       using __value_alloc_traits =
194 	typename __hashtable_alloc::__value_alloc_traits;
195       using __node_alloc_traits =
196 	typename __hashtable_alloc::__node_alloc_traits;
197       using __node_base = typename __hashtable_alloc::__node_base;
198       using __bucket_type = typename __hashtable_alloc::__bucket_type;
199 
200     public:
201       typedef _Key						key_type;
202       typedef _Value						value_type;
203       typedef _Alloc						allocator_type;
204       typedef _Equal						key_equal;
205 
206       // mapped_type, if present, comes from _Map_base.
207       // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
208       typedef typename __value_alloc_traits::pointer		pointer;
209       typedef typename __value_alloc_traits::const_pointer	const_pointer;
210       typedef value_type&					reference;
211       typedef const value_type&					const_reference;
212 
213     private:
214       using __rehash_type = _RehashPolicy;
215       using __rehash_state = typename __rehash_type::_State;
216 
217       using __constant_iterators = typename __traits_type::__constant_iterators;
218       using __unique_keys = typename __traits_type::__unique_keys;
219 
220       using __key_extract = typename std::conditional<
221 					     __constant_iterators::value,
222 				       	     __detail::_Identity,
223 					     __detail::_Select1st>::type;
224 
225       using __hashtable_base = __detail::
226 			       _Hashtable_base<_Key, _Value, _ExtractKey,
227 					      _Equal, _H1, _H2, _Hash, _Traits>;
228 
229       using __hash_code_base =  typename __hashtable_base::__hash_code_base;
230       using __hash_code =  typename __hashtable_base::__hash_code;
231       using __ireturn_type = typename __hashtable_base::__ireturn_type;
232 
233       using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
234 					     _Equal, _H1, _H2, _Hash,
235 					     _RehashPolicy, _Traits>;
236 
237       using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
238 						   _ExtractKey, _Equal,
239 						   _H1, _H2, _Hash,
240 						   _RehashPolicy, _Traits>;
241 
242       using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
243 					    _Equal, _H1, _H2, _Hash,
244 					    _RehashPolicy, _Traits>;
245 
246       using __reuse_or_alloc_node_type =
247 	__detail::_ReuseOrAllocNode<__node_alloc_type>;
248 
249       // Metaprogramming for picking apart hash caching.
250       template<typename _Cond>
251 	using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
252 
253       template<typename _Cond>
254 	using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
255 
256       // Compile-time diagnostics.
257 
258       // _Hash_code_base has everything protected, so use this derived type to
259       // access it.
260       struct __hash_code_base_access : __hash_code_base
261       { using __hash_code_base::_M_bucket_index; };
262 
263       // Getting a bucket index from a node shall not throw because it is used
264       // in methods (erase, swap...) that shall not throw.
265       static_assert(noexcept(declval<const __hash_code_base_access&>()
266 			     ._M_bucket_index((const __node_type*)nullptr,
267 					      (std::size_t)0)),
268 		    "Cache the hash code or qualify your functors involved"
269 		    " in hash code and bucket index computation with noexcept");
270 
271       // Following two static assertions are necessary to guarantee
272       // that local_iterator will be default constructible.
273 
274       // When hash codes are cached local iterator inherits from H2 functor
275       // which must then be default constructible.
276       static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
277 		    "Functor used to map hash code to bucket index"
278 		    " must be default constructible");
279 
280       template<typename _Keya, typename _Valuea, typename _Alloca,
281 	       typename _ExtractKeya, typename _Equala,
282 	       typename _H1a, typename _H2a, typename _Hasha,
283 	       typename _RehashPolicya, typename _Traitsa,
284 	       bool _Unique_keysa>
285 	friend struct __detail::_Map_base;
286 
287       template<typename _Keya, typename _Valuea, typename _Alloca,
288 	       typename _ExtractKeya, typename _Equala,
289 	       typename _H1a, typename _H2a, typename _Hasha,
290 	       typename _RehashPolicya, typename _Traitsa>
291 	friend struct __detail::_Insert_base;
292 
293       template<typename _Keya, typename _Valuea, typename _Alloca,
294 	       typename _ExtractKeya, typename _Equala,
295 	       typename _H1a, typename _H2a, typename _Hasha,
296 	       typename _RehashPolicya, typename _Traitsa,
297 	       bool _Constant_iteratorsa, bool _Unique_keysa>
298 	friend struct __detail::_Insert;
299 
300     public:
301       using size_type = typename __hashtable_base::size_type;
302       using difference_type = typename __hashtable_base::difference_type;
303 
304       using iterator = typename __hashtable_base::iterator;
305       using const_iterator = typename __hashtable_base::const_iterator;
306 
307       using local_iterator = typename __hashtable_base::local_iterator;
308       using const_local_iterator = typename __hashtable_base::
309 				   const_local_iterator;
310 
311     private:
312       __bucket_type*		_M_buckets		= &_M_single_bucket;
313       size_type			_M_bucket_count		= 1;
314       __node_base		_M_before_begin;
315       size_type			_M_element_count	= 0;
316       _RehashPolicy		_M_rehash_policy;
317 
318       // A single bucket used when only need for 1 bucket. Especially
319       // interesting in move semantic to leave hashtable with only 1 buckets
320       // which is not allocated so that we can have those operations noexcept
321       // qualified.
322       // Note that we can't leave hashtable with 0 bucket without adding
323       // numerous checks in the code to avoid 0 modulus.
324       __bucket_type		_M_single_bucket	= nullptr;
325 
326       bool
327       _M_uses_single_bucket(__bucket_type* __bkts) const
328       { return __builtin_expect(__bkts == &_M_single_bucket, false); }
329 
330       bool
331       _M_uses_single_bucket() const
332       { return _M_uses_single_bucket(_M_buckets); }
333 
334       __hashtable_alloc&
335       _M_base_alloc() { return *this; }
336 
337       __bucket_type*
338       _M_allocate_buckets(size_type __n)
339       {
340 	if (__builtin_expect(__n == 1, false))
341 	  {
342 	    _M_single_bucket = nullptr;
343 	    return &_M_single_bucket;
344 	  }
345 
346 	return __hashtable_alloc::_M_allocate_buckets(__n);
347       }
348 
349       void
350       _M_deallocate_buckets(__bucket_type* __bkts, size_type __n)
351       {
352 	if (_M_uses_single_bucket(__bkts))
353 	  return;
354 
355 	__hashtable_alloc::_M_deallocate_buckets(__bkts, __n);
356       }
357 
358       void
359       _M_deallocate_buckets()
360       { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
361 
362       // Gets bucket begin, deals with the fact that non-empty buckets contain
363       // their before begin node.
364       __node_type*
365       _M_bucket_begin(size_type __bkt) const;
366 
367       __node_type*
368       _M_begin() const
369       { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
370 
371       template<typename _NodeGenerator>
372 	void
373 	_M_assign(const _Hashtable&, const _NodeGenerator&);
374 
375       void
376       _M_move_assign(_Hashtable&&, std::true_type);
377 
378       void
379       _M_move_assign(_Hashtable&&, std::false_type);
380 
381       void
382       _M_reset() noexcept;
383 
384       _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
385 		 const _Equal& __eq, const _ExtractKey& __exk,
386 		 const allocator_type& __a)
387 	: __hashtable_base(__exk, __h1, __h2, __h, __eq),
388 	  __hashtable_alloc(__node_alloc_type(__a))
389       { }
390 
391     public:
392       // Constructor, destructor, assignment, swap
393       _Hashtable() = default;
394       _Hashtable(size_type __bucket_hint,
395 		 const _H1&, const _H2&, const _Hash&,
396 		 const _Equal&, const _ExtractKey&,
397 		 const allocator_type&);
398 
399       template<typename _InputIterator>
400 	_Hashtable(_InputIterator __first, _InputIterator __last,
401 		   size_type __bucket_hint,
402 		   const _H1&, const _H2&, const _Hash&,
403 		   const _Equal&, const _ExtractKey&,
404 		   const allocator_type&);
405 
406       _Hashtable(const _Hashtable&);
407 
408       _Hashtable(_Hashtable&&) noexcept;
409 
410       _Hashtable(const _Hashtable&, const allocator_type&);
411 
412       _Hashtable(_Hashtable&&, const allocator_type&);
413 
414       // Use delegating constructors.
415       explicit
416       _Hashtable(const allocator_type& __a)
417 	: __hashtable_alloc(__node_alloc_type(__a))
418       { }
419 
420       explicit
421       _Hashtable(size_type __n,
422 		 const _H1& __hf = _H1(),
423 		 const key_equal& __eql = key_equal(),
424 		 const allocator_type& __a = allocator_type())
425       : _Hashtable(__n, __hf, _H2(), _Hash(), __eql,
426 		   __key_extract(), __a)
427       { }
428 
429       template<typename _InputIterator>
430 	_Hashtable(_InputIterator __f, _InputIterator __l,
431 		   size_type __n = 0,
432 		   const _H1& __hf = _H1(),
433 		   const key_equal& __eql = key_equal(),
434 		   const allocator_type& __a = allocator_type())
435 	: _Hashtable(__f, __l, __n, __hf, _H2(), _Hash(), __eql,
436 		     __key_extract(), __a)
437 	{ }
438 
439       _Hashtable(initializer_list<value_type> __l,
440 		 size_type __n = 0,
441 		 const _H1& __hf = _H1(),
442 		 const key_equal& __eql = key_equal(),
443 		 const allocator_type& __a = allocator_type())
444       : _Hashtable(__l.begin(), __l.end(), __n, __hf, _H2(), _Hash(), __eql,
445 		   __key_extract(), __a)
446       { }
447 
448       _Hashtable&
449       operator=(const _Hashtable& __ht);
450 
451       _Hashtable&
452       operator=(_Hashtable&& __ht)
453       noexcept(__node_alloc_traits::_S_nothrow_move()
454 	       && is_nothrow_move_assignable<_H1>::value
455 	       && is_nothrow_move_assignable<_Equal>::value)
456       {
457         constexpr bool __move_storage =
458 	  __node_alloc_traits::_S_propagate_on_move_assign()
459 	  || __node_alloc_traits::_S_always_equal();
460 	_M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
461 	return *this;
462       }
463 
464       _Hashtable&
465       operator=(initializer_list<value_type> __l)
466       {
467 	__reuse_or_alloc_node_type __roan(_M_begin(), *this);
468 	_M_before_begin._M_nxt = nullptr;
469 	clear();
470 	this->_M_insert_range(__l.begin(), __l.end(), __roan);
471 	return *this;
472       }
473 
474       ~_Hashtable() noexcept;
475 
476       void
477       swap(_Hashtable&)
478       noexcept(__is_nothrow_swappable<_H1>::value
479 	       && __is_nothrow_swappable<_Equal>::value);
480 
481       // Basic container operations
482       iterator
483       begin() noexcept
484       { return iterator(_M_begin()); }
485 
486       const_iterator
487       begin() const noexcept
488       { return const_iterator(_M_begin()); }
489 
490       iterator
491       end() noexcept
492       { return iterator(nullptr); }
493 
494       const_iterator
495       end() const noexcept
496       { return const_iterator(nullptr); }
497 
498       const_iterator
499       cbegin() const noexcept
500       { return const_iterator(_M_begin()); }
501 
502       const_iterator
503       cend() const noexcept
504       { return const_iterator(nullptr); }
505 
506       size_type
507       size() const noexcept
508       { return _M_element_count; }
509 
510       bool
511       empty() const noexcept
512       { return size() == 0; }
513 
514       allocator_type
515       get_allocator() const noexcept
516       { return allocator_type(this->_M_node_allocator()); }
517 
518       size_type
519       max_size() const noexcept
520       { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
521 
522       // Observers
523       key_equal
524       key_eq() const
525       { return this->_M_eq(); }
526 
527       // hash_function, if present, comes from _Hash_code_base.
528 
529       // Bucket operations
530       size_type
531       bucket_count() const noexcept
532       { return _M_bucket_count; }
533 
534       size_type
535       max_bucket_count() const noexcept
536       { return max_size(); }
537 
538       size_type
539       bucket_size(size_type __n) const
540       { return std::distance(begin(__n), end(__n)); }
541 
542       size_type
543       bucket(const key_type& __k) const
544       { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
545 
546       local_iterator
547       begin(size_type __n)
548       {
549 	return local_iterator(*this, _M_bucket_begin(__n),
550 			      __n, _M_bucket_count);
551       }
552 
553       local_iterator
554       end(size_type __n)
555       { return local_iterator(*this, nullptr, __n, _M_bucket_count); }
556 
557       const_local_iterator
558       begin(size_type __n) const
559       {
560 	return const_local_iterator(*this, _M_bucket_begin(__n),
561 				    __n, _M_bucket_count);
562       }
563 
564       const_local_iterator
565       end(size_type __n) const
566       { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
567 
568       // DR 691.
569       const_local_iterator
570       cbegin(size_type __n) const
571       {
572 	return const_local_iterator(*this, _M_bucket_begin(__n),
573 				    __n, _M_bucket_count);
574       }
575 
576       const_local_iterator
577       cend(size_type __n) const
578       { return const_local_iterator(*this, nullptr, __n, _M_bucket_count); }
579 
580       float
581       load_factor() const noexcept
582       {
583 	return static_cast<float>(size()) / static_cast<float>(bucket_count());
584       }
585 
586       // max_load_factor, if present, comes from _Rehash_base.
587 
588       // Generalization of max_load_factor.  Extension, not found in
589       // TR1.  Only useful if _RehashPolicy is something other than
590       // the default.
591       const _RehashPolicy&
592       __rehash_policy() const
593       { return _M_rehash_policy; }
594 
595       void
596       __rehash_policy(const _RehashPolicy& __pol)
597       { _M_rehash_policy = __pol; }
598 
599       // Lookup.
600       iterator
601       find(const key_type& __k);
602 
603       const_iterator
604       find(const key_type& __k) const;
605 
606       size_type
607       count(const key_type& __k) const;
608 
609       std::pair<iterator, iterator>
610       equal_range(const key_type& __k);
611 
612       std::pair<const_iterator, const_iterator>
613       equal_range(const key_type& __k) const;
614 
615     protected:
616       // Bucket index computation helpers.
617       size_type
618       _M_bucket_index(__node_type* __n) const noexcept
619       { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
620 
621       size_type
622       _M_bucket_index(const key_type& __k, __hash_code __c) const
623       { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
624 
625       // Find and insert helper functions and types
626       // Find the node before the one matching the criteria.
627       __node_base*
628       _M_find_before_node(size_type, const key_type&, __hash_code) const;
629 
630       __node_type*
631       _M_find_node(size_type __bkt, const key_type& __key,
632 		   __hash_code __c) const
633       {
634 	__node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
635 	if (__before_n)
636 	  return static_cast<__node_type*>(__before_n->_M_nxt);
637 	return nullptr;
638       }
639 
640       // Insert a node at the beginning of a bucket.
641       void
642       _M_insert_bucket_begin(size_type, __node_type*);
643 
644       // Remove the bucket first node
645       void
646       _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
647 			     size_type __next_bkt);
648 
649       // Get the node before __n in the bucket __bkt
650       __node_base*
651       _M_get_previous_node(size_type __bkt, __node_base* __n);
652 
653       // Insert node with hash code __code, in bucket bkt if no rehash (assumes
654       // no element with its key already present). Take ownership of the node,
655       // deallocate it on exception.
656       iterator
657       _M_insert_unique_node(size_type __bkt, __hash_code __code,
658 			    __node_type* __n);
659 
660       // Insert node with hash code __code. Take ownership of the node,
661       // deallocate it on exception.
662       iterator
663       _M_insert_multi_node(__node_type* __hint,
664 			   __hash_code __code, __node_type* __n);
665 
666       template<typename... _Args>
667 	std::pair<iterator, bool>
668 	_M_emplace(std::true_type, _Args&&... __args);
669 
670       template<typename... _Args>
671 	iterator
672 	_M_emplace(std::false_type __uk, _Args&&... __args)
673 	{ return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
674 
675       // Emplace with hint, useless when keys are unique.
676       template<typename... _Args>
677 	iterator
678 	_M_emplace(const_iterator, std::true_type __uk, _Args&&... __args)
679 	{ return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
680 
681       template<typename... _Args>
682 	iterator
683 	_M_emplace(const_iterator, std::false_type, _Args&&... __args);
684 
685       template<typename _Arg, typename _NodeGenerator>
686 	std::pair<iterator, bool>
687 	_M_insert(_Arg&&, const _NodeGenerator&, std::true_type);
688 
689       template<typename _Arg, typename _NodeGenerator>
690 	iterator
691 	_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
692 		  std::false_type __uk)
693 	{
694 	  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
695 			   __uk);
696 	}
697 
698       // Insert with hint, not used when keys are unique.
699       template<typename _Arg, typename _NodeGenerator>
700 	iterator
701 	_M_insert(const_iterator, _Arg&& __arg,
702 		  const _NodeGenerator& __node_gen, std::true_type __uk)
703 	{
704 	  return
705 	    _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
706 	}
707 
708       // Insert with hint when keys are not unique.
709       template<typename _Arg, typename _NodeGenerator>
710 	iterator
711 	_M_insert(const_iterator, _Arg&&,
712 		  const _NodeGenerator&, std::false_type);
713 
714       size_type
715       _M_erase(std::true_type, const key_type&);
716 
717       size_type
718       _M_erase(std::false_type, const key_type&);
719 
720       iterator
721       _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
722 
723     public:
724       // Emplace
725       template<typename... _Args>
726 	__ireturn_type
727 	emplace(_Args&&... __args)
728 	{ return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
729 
730       template<typename... _Args>
731 	iterator
732 	emplace_hint(const_iterator __hint, _Args&&... __args)
733 	{
734 	  return _M_emplace(__hint, __unique_keys(),
735 			    std::forward<_Args>(__args)...);
736 	}
737 
738       // Insert member functions via inheritance.
739 
740       // Erase
741       iterator
742       erase(const_iterator);
743 
744       // LWG 2059.
745       iterator
746       erase(iterator __it)
747       { return erase(const_iterator(__it)); }
748 
749       size_type
750       erase(const key_type& __k)
751       { return _M_erase(__unique_keys(), __k); }
752 
753       iterator
754       erase(const_iterator, const_iterator);
755 
756       void
757       clear() noexcept;
758 
759       // Set number of buckets to be appropriate for container of n element.
760       void rehash(size_type __n);
761 
762       // DR 1189.
763       // reserve, if present, comes from _Rehash_base.
764 
765     private:
766       // Helper rehash method used when keys are unique.
767       void _M_rehash_aux(size_type __n, std::true_type);
768 
769       // Helper rehash method used when keys can be non-unique.
770       void _M_rehash_aux(size_type __n, std::false_type);
771 
772       // Unconditionally change size of bucket array to n, restore
773       // hash policy state to __state on exception.
774       void _M_rehash(size_type __n, const __rehash_state& __state);
775     };
776 
777 
778   // Definitions of class template _Hashtable's out-of-line member functions.
779   template<typename _Key, typename _Value,
780 	   typename _Alloc, typename _ExtractKey, typename _Equal,
781 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
782 	   typename _Traits>
783     auto
784     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
785 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
786     _M_bucket_begin(size_type __bkt) const
787     -> __node_type*
788     {
789       __node_base* __n = _M_buckets[__bkt];
790       return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
791     }
792 
793   template<typename _Key, typename _Value,
794 	   typename _Alloc, typename _ExtractKey, typename _Equal,
795 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
796 	   typename _Traits>
797     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
798 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
799     _Hashtable(size_type __bucket_hint,
800 	       const _H1& __h1, const _H2& __h2, const _Hash& __h,
801 	       const _Equal& __eq, const _ExtractKey& __exk,
802 	       const allocator_type& __a)
803       : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
804     {
805       auto __bkt = _M_rehash_policy._M_next_bkt(__bucket_hint);
806       if (__bkt > _M_bucket_count)
807 	{
808 	  _M_buckets = _M_allocate_buckets(__bkt);
809 	  _M_bucket_count = __bkt;
810 	}
811     }
812 
813   template<typename _Key, typename _Value,
814 	   typename _Alloc, typename _ExtractKey, typename _Equal,
815 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
816 	   typename _Traits>
817     template<typename _InputIterator>
818       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
819 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
820       _Hashtable(_InputIterator __f, _InputIterator __l,
821 		 size_type __bucket_hint,
822 		 const _H1& __h1, const _H2& __h2, const _Hash& __h,
823 		 const _Equal& __eq, const _ExtractKey& __exk,
824 		 const allocator_type& __a)
825 	: _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
826       {
827 	auto __nb_elems = __detail::__distance_fw(__f, __l);
828 	auto __bkt_count =
829 	  _M_rehash_policy._M_next_bkt(
830 	    std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
831 		     __bucket_hint));
832 
833 	if (__bkt_count > _M_bucket_count)
834 	  {
835 	    _M_buckets = _M_allocate_buckets(__bkt_count);
836 	    _M_bucket_count = __bkt_count;
837 	  }
838 
839 	__try
840 	  {
841 	    for (; __f != __l; ++__f)
842 	      this->insert(*__f);
843 	  }
844 	__catch(...)
845 	  {
846 	    clear();
847 	    _M_deallocate_buckets();
848 	    __throw_exception_again;
849 	  }
850       }
851 
852   template<typename _Key, typename _Value,
853 	   typename _Alloc, typename _ExtractKey, typename _Equal,
854 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
855 	   typename _Traits>
856     auto
857     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
858 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
859     operator=(const _Hashtable& __ht)
860     -> _Hashtable&
861     {
862       if (&__ht == this)
863 	return *this;
864 
865       if (__node_alloc_traits::_S_propagate_on_copy_assign())
866 	{
867 	  auto& __this_alloc = this->_M_node_allocator();
868 	  auto& __that_alloc = __ht._M_node_allocator();
869 	  if (!__node_alloc_traits::_S_always_equal()
870 	      && __this_alloc != __that_alloc)
871 	    {
872 	      // Replacement allocator cannot free existing storage.
873 	      this->_M_deallocate_nodes(_M_begin());
874 	      _M_before_begin._M_nxt = nullptr;
875 	      _M_deallocate_buckets();
876 	      _M_buckets = nullptr;
877 	      std::__alloc_on_copy(__this_alloc, __that_alloc);
878 	      __hashtable_base::operator=(__ht);
879 	      _M_bucket_count = __ht._M_bucket_count;
880 	      _M_element_count = __ht._M_element_count;
881 	      _M_rehash_policy = __ht._M_rehash_policy;
882 	      __try
883 		{
884 		  _M_assign(__ht,
885 			    [this](const __node_type* __n)
886 			    { return this->_M_allocate_node(__n->_M_v()); });
887 		}
888 	      __catch(...)
889 		{
890 		  // _M_assign took care of deallocating all memory. Now we
891 		  // must make sure this instance remains in a usable state.
892 		  _M_reset();
893 		  __throw_exception_again;
894 		}
895 	      return *this;
896 	    }
897 	  std::__alloc_on_copy(__this_alloc, __that_alloc);
898 	}
899 
900       // Reuse allocated buckets and nodes.
901       __bucket_type* __former_buckets = nullptr;
902       std::size_t __former_bucket_count = _M_bucket_count;
903       const __rehash_state& __former_state = _M_rehash_policy._M_state();
904 
905       if (_M_bucket_count != __ht._M_bucket_count)
906 	{
907 	  __former_buckets = _M_buckets;
908 	  _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
909 	  _M_bucket_count = __ht._M_bucket_count;
910 	}
911       else
912 	__builtin_memset(_M_buckets, 0,
913 			 _M_bucket_count * sizeof(__bucket_type));
914 
915       __try
916 	{
917 	  __hashtable_base::operator=(__ht);
918 	  _M_element_count = __ht._M_element_count;
919 	  _M_rehash_policy = __ht._M_rehash_policy;
920 	  __reuse_or_alloc_node_type __roan(_M_begin(), *this);
921 	  _M_before_begin._M_nxt = nullptr;
922 	  _M_assign(__ht,
923 		    [&__roan](const __node_type* __n)
924 		    { return __roan(__n->_M_v()); });
925 	  if (__former_buckets)
926 	    _M_deallocate_buckets(__former_buckets, __former_bucket_count);
927 	}
928       __catch(...)
929 	{
930 	  if (__former_buckets)
931 	    {
932 	      // Restore previous buckets.
933 	      _M_deallocate_buckets();
934 	      _M_rehash_policy._M_reset(__former_state);
935 	      _M_buckets = __former_buckets;
936 	      _M_bucket_count = __former_bucket_count;
937 	    }
938 	  __builtin_memset(_M_buckets, 0,
939 			   _M_bucket_count * sizeof(__bucket_type));
940 	  __throw_exception_again;
941 	}
942       return *this;
943     }
944 
945   template<typename _Key, typename _Value,
946 	   typename _Alloc, typename _ExtractKey, typename _Equal,
947 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
948 	   typename _Traits>
949     template<typename _NodeGenerator>
950       void
951       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
952 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
953       _M_assign(const _Hashtable& __ht, const _NodeGenerator& __node_gen)
954       {
955 	__bucket_type* __buckets = nullptr;
956 	if (!_M_buckets)
957 	  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
958 
959 	__try
960 	  {
961 	    if (!__ht._M_before_begin._M_nxt)
962 	      return;
963 
964 	    // First deal with the special first node pointed to by
965 	    // _M_before_begin.
966 	    __node_type* __ht_n = __ht._M_begin();
967 	    __node_type* __this_n = __node_gen(__ht_n);
968 	    this->_M_copy_code(__this_n, __ht_n);
969 	    _M_before_begin._M_nxt = __this_n;
970 	    _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
971 
972 	    // Then deal with other nodes.
973 	    __node_base* __prev_n = __this_n;
974 	    for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
975 	      {
976 		__this_n = __node_gen(__ht_n);
977 		__prev_n->_M_nxt = __this_n;
978 		this->_M_copy_code(__this_n, __ht_n);
979 		size_type __bkt = _M_bucket_index(__this_n);
980 		if (!_M_buckets[__bkt])
981 		  _M_buckets[__bkt] = __prev_n;
982 		__prev_n = __this_n;
983 	      }
984 	  }
985 	__catch(...)
986 	  {
987 	    clear();
988 	    if (__buckets)
989 	      _M_deallocate_buckets();
990 	    __throw_exception_again;
991 	  }
992       }
993 
994   template<typename _Key, typename _Value,
995 	   typename _Alloc, typename _ExtractKey, typename _Equal,
996 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
997 	   typename _Traits>
998     void
999     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1000 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1001     _M_reset() noexcept
1002     {
1003       _M_rehash_policy._M_reset();
1004       _M_bucket_count = 1;
1005       _M_single_bucket = nullptr;
1006       _M_buckets = &_M_single_bucket;
1007       _M_before_begin._M_nxt = nullptr;
1008       _M_element_count = 0;
1009     }
1010 
1011   template<typename _Key, typename _Value,
1012 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1013 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1014 	   typename _Traits>
1015     void
1016     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1017 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1018     _M_move_assign(_Hashtable&& __ht, std::true_type)
1019     {
1020       this->_M_deallocate_nodes(_M_begin());
1021       _M_deallocate_buckets();
1022       __hashtable_base::operator=(std::move(__ht));
1023       _M_rehash_policy = __ht._M_rehash_policy;
1024       if (!__ht._M_uses_single_bucket())
1025 	_M_buckets = __ht._M_buckets;
1026       else
1027 	{
1028 	  _M_buckets = &_M_single_bucket;
1029 	  _M_single_bucket = __ht._M_single_bucket;
1030 	}
1031       _M_bucket_count = __ht._M_bucket_count;
1032       _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1033       _M_element_count = __ht._M_element_count;
1034       std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1035 
1036       // Fix buckets containing the _M_before_begin pointers that can't be
1037       // moved.
1038       if (_M_begin())
1039 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1040       __ht._M_reset();
1041     }
1042 
1043   template<typename _Key, typename _Value,
1044 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1045 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1046 	   typename _Traits>
1047     void
1048     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1049 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1050     _M_move_assign(_Hashtable&& __ht, std::false_type)
1051     {
1052       if (__ht._M_node_allocator() == this->_M_node_allocator())
1053 	_M_move_assign(std::move(__ht), std::true_type());
1054       else
1055 	{
1056 	  // Can't move memory, move elements then.
1057 	  __bucket_type* __former_buckets = nullptr;
1058 	  size_type __former_bucket_count = _M_bucket_count;
1059 	  const __rehash_state& __former_state = _M_rehash_policy._M_state();
1060 
1061 	  if (_M_bucket_count != __ht._M_bucket_count)
1062 	    {
1063 	      __former_buckets = _M_buckets;
1064 	      _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1065 	      _M_bucket_count = __ht._M_bucket_count;
1066 	    }
1067 	  else
1068 	    __builtin_memset(_M_buckets, 0,
1069 			     _M_bucket_count * sizeof(__bucket_type));
1070 
1071 	  __try
1072 	    {
1073 	      __hashtable_base::operator=(std::move(__ht));
1074 	      _M_element_count = __ht._M_element_count;
1075 	      _M_rehash_policy = __ht._M_rehash_policy;
1076 	      __reuse_or_alloc_node_type __roan(_M_begin(), *this);
1077 	      _M_before_begin._M_nxt = nullptr;
1078 	      _M_assign(__ht,
1079 			[&__roan](__node_type* __n)
1080 			{ return __roan(std::move_if_noexcept(__n->_M_v())); });
1081 	      __ht.clear();
1082 	    }
1083 	  __catch(...)
1084 	    {
1085 	      if (__former_buckets)
1086 		{
1087 		  _M_deallocate_buckets();
1088 		  _M_rehash_policy._M_reset(__former_state);
1089 		  _M_buckets = __former_buckets;
1090 		  _M_bucket_count = __former_bucket_count;
1091 		}
1092 	      __builtin_memset(_M_buckets, 0,
1093 			       _M_bucket_count * sizeof(__bucket_type));
1094 	      __throw_exception_again;
1095 	    }
1096 	}
1097     }
1098 
1099   template<typename _Key, typename _Value,
1100 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1101 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1102 	   typename _Traits>
1103     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1104 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1105     _Hashtable(const _Hashtable& __ht)
1106     : __hashtable_base(__ht),
1107       __map_base(__ht),
1108       __rehash_base(__ht),
1109       __hashtable_alloc(
1110 	__node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1111       _M_buckets(nullptr),
1112       _M_bucket_count(__ht._M_bucket_count),
1113       _M_element_count(__ht._M_element_count),
1114       _M_rehash_policy(__ht._M_rehash_policy)
1115     {
1116       _M_assign(__ht,
1117 		[this](const __node_type* __n)
1118 		{ return this->_M_allocate_node(__n->_M_v()); });
1119     }
1120 
1121   template<typename _Key, typename _Value,
1122 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1123 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1124 	   typename _Traits>
1125     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1126 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1127     _Hashtable(_Hashtable&& __ht) noexcept
1128     : __hashtable_base(__ht),
1129       __map_base(__ht),
1130       __rehash_base(__ht),
1131       __hashtable_alloc(std::move(__ht._M_base_alloc())),
1132       _M_buckets(__ht._M_buckets),
1133       _M_bucket_count(__ht._M_bucket_count),
1134       _M_before_begin(__ht._M_before_begin._M_nxt),
1135       _M_element_count(__ht._M_element_count),
1136       _M_rehash_policy(__ht._M_rehash_policy)
1137     {
1138       // Update, if necessary, buckets if __ht is using its single bucket.
1139       if (__ht._M_uses_single_bucket())
1140 	{
1141 	  _M_buckets = &_M_single_bucket;
1142 	  _M_single_bucket = __ht._M_single_bucket;
1143 	}
1144 
1145       // Update, if necessary, bucket pointing to before begin that hasn't
1146       // moved.
1147       if (_M_begin())
1148 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1149 
1150       __ht._M_reset();
1151     }
1152 
1153   template<typename _Key, typename _Value,
1154 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1155 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1156 	   typename _Traits>
1157     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1158 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1159     _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1160     : __hashtable_base(__ht),
1161       __map_base(__ht),
1162       __rehash_base(__ht),
1163       __hashtable_alloc(__node_alloc_type(__a)),
1164       _M_buckets(),
1165       _M_bucket_count(__ht._M_bucket_count),
1166       _M_element_count(__ht._M_element_count),
1167       _M_rehash_policy(__ht._M_rehash_policy)
1168     {
1169       _M_assign(__ht,
1170 		[this](const __node_type* __n)
1171 		{ return this->_M_allocate_node(__n->_M_v()); });
1172     }
1173 
1174   template<typename _Key, typename _Value,
1175 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1176 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1177 	   typename _Traits>
1178     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1179 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1180     _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1181     : __hashtable_base(__ht),
1182       __map_base(__ht),
1183       __rehash_base(__ht),
1184       __hashtable_alloc(__node_alloc_type(__a)),
1185       _M_buckets(nullptr),
1186       _M_bucket_count(__ht._M_bucket_count),
1187       _M_element_count(__ht._M_element_count),
1188       _M_rehash_policy(__ht._M_rehash_policy)
1189     {
1190       if (__ht._M_node_allocator() == this->_M_node_allocator())
1191 	{
1192 	  if (__ht._M_uses_single_bucket())
1193 	    {
1194 	      _M_buckets = &_M_single_bucket;
1195 	      _M_single_bucket = __ht._M_single_bucket;
1196 	    }
1197 	  else
1198 	    _M_buckets = __ht._M_buckets;
1199 
1200 	  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1201 	  // Update, if necessary, bucket pointing to before begin that hasn't
1202 	  // moved.
1203 	  if (_M_begin())
1204 	    _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1205 	  __ht._M_reset();
1206 	}
1207       else
1208 	{
1209 	  _M_assign(__ht,
1210 		    [this](__node_type* __n)
1211 		    {
1212 		      return this->_M_allocate_node(
1213 					std::move_if_noexcept(__n->_M_v()));
1214 		    });
1215 	  __ht.clear();
1216 	}
1217     }
1218 
1219   template<typename _Key, typename _Value,
1220 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1221 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1222 	   typename _Traits>
1223     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1224 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1225     ~_Hashtable() noexcept
1226     {
1227       clear();
1228       _M_deallocate_buckets();
1229     }
1230 
1231   template<typename _Key, typename _Value,
1232 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1233 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1234 	   typename _Traits>
1235     void
1236     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1237 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1238     swap(_Hashtable& __x)
1239     noexcept(__is_nothrow_swappable<_H1>::value
1240 	     && __is_nothrow_swappable<_Equal>::value)
1241     {
1242       // The only base class with member variables is hash_code_base.
1243       // We define _Hash_code_base::_M_swap because different
1244       // specializations have different members.
1245       this->_M_swap(__x);
1246 
1247       std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1248       std::swap(_M_rehash_policy, __x._M_rehash_policy);
1249 
1250       // Deal properly with potentially moved instances.
1251       if (this->_M_uses_single_bucket())
1252 	{
1253 	  if (!__x._M_uses_single_bucket())
1254 	    {
1255 	      _M_buckets = __x._M_buckets;
1256 	      __x._M_buckets = &__x._M_single_bucket;
1257 	    }
1258 	}
1259       else if (__x._M_uses_single_bucket())
1260 	{
1261 	  __x._M_buckets = _M_buckets;
1262 	  _M_buckets = &_M_single_bucket;
1263 	}
1264       else
1265 	std::swap(_M_buckets, __x._M_buckets);
1266 
1267       std::swap(_M_bucket_count, __x._M_bucket_count);
1268       std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1269       std::swap(_M_element_count, __x._M_element_count);
1270       std::swap(_M_single_bucket, __x._M_single_bucket);
1271 
1272       // Fix buckets containing the _M_before_begin pointers that can't be
1273       // swapped.
1274       if (_M_begin())
1275 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1276 
1277       if (__x._M_begin())
1278 	__x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1279 	  = &__x._M_before_begin;
1280     }
1281 
1282   template<typename _Key, typename _Value,
1283 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1284 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1285 	   typename _Traits>
1286     auto
1287     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1288 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1289     find(const key_type& __k)
1290     -> iterator
1291     {
1292       __hash_code __code = this->_M_hash_code(__k);
1293       std::size_t __n = _M_bucket_index(__k, __code);
1294       __node_type* __p = _M_find_node(__n, __k, __code);
1295       return __p ? iterator(__p) : end();
1296     }
1297 
1298   template<typename _Key, typename _Value,
1299 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1300 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1301 	   typename _Traits>
1302     auto
1303     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1304 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1305     find(const key_type& __k) const
1306     -> const_iterator
1307     {
1308       __hash_code __code = this->_M_hash_code(__k);
1309       std::size_t __n = _M_bucket_index(__k, __code);
1310       __node_type* __p = _M_find_node(__n, __k, __code);
1311       return __p ? const_iterator(__p) : end();
1312     }
1313 
1314   template<typename _Key, typename _Value,
1315 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1316 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1317 	   typename _Traits>
1318     auto
1319     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1320 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1321     count(const key_type& __k) const
1322     -> size_type
1323     {
1324       __hash_code __code = this->_M_hash_code(__k);
1325       std::size_t __n = _M_bucket_index(__k, __code);
1326       __node_type* __p = _M_bucket_begin(__n);
1327       if (!__p)
1328 	return 0;
1329 
1330       std::size_t __result = 0;
1331       for (;; __p = __p->_M_next())
1332 	{
1333 	  if (this->_M_equals(__k, __code, __p))
1334 	    ++__result;
1335 	  else if (__result)
1336 	    // All equivalent values are next to each other, if we
1337 	    // found a non-equivalent value after an equivalent one it
1338 	    // means that we won't find any new equivalent value.
1339 	    break;
1340 	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1341 	    break;
1342 	}
1343       return __result;
1344     }
1345 
1346   template<typename _Key, typename _Value,
1347 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1348 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1349 	   typename _Traits>
1350     auto
1351     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1352 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1353     equal_range(const key_type& __k)
1354     -> pair<iterator, iterator>
1355     {
1356       __hash_code __code = this->_M_hash_code(__k);
1357       std::size_t __n = _M_bucket_index(__k, __code);
1358       __node_type* __p = _M_find_node(__n, __k, __code);
1359 
1360       if (__p)
1361 	{
1362 	  __node_type* __p1 = __p->_M_next();
1363 	  while (__p1 && _M_bucket_index(__p1) == __n
1364 		 && this->_M_equals(__k, __code, __p1))
1365 	    __p1 = __p1->_M_next();
1366 
1367 	  return std::make_pair(iterator(__p), iterator(__p1));
1368 	}
1369       else
1370 	return std::make_pair(end(), end());
1371     }
1372 
1373   template<typename _Key, typename _Value,
1374 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1375 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1376 	   typename _Traits>
1377     auto
1378     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1379 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1380     equal_range(const key_type& __k) const
1381     -> pair<const_iterator, const_iterator>
1382     {
1383       __hash_code __code = this->_M_hash_code(__k);
1384       std::size_t __n = _M_bucket_index(__k, __code);
1385       __node_type* __p = _M_find_node(__n, __k, __code);
1386 
1387       if (__p)
1388 	{
1389 	  __node_type* __p1 = __p->_M_next();
1390 	  while (__p1 && _M_bucket_index(__p1) == __n
1391 		 && this->_M_equals(__k, __code, __p1))
1392 	    __p1 = __p1->_M_next();
1393 
1394 	  return std::make_pair(const_iterator(__p), const_iterator(__p1));
1395 	}
1396       else
1397 	return std::make_pair(end(), end());
1398     }
1399 
1400   // Find the node whose key compares equal to k in the bucket n.
1401   // Return nullptr if no node is found.
1402   template<typename _Key, typename _Value,
1403 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1404 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1405 	   typename _Traits>
1406     auto
1407     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1408 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1409     _M_find_before_node(size_type __n, const key_type& __k,
1410 			__hash_code __code) const
1411     -> __node_base*
1412     {
1413       __node_base* __prev_p = _M_buckets[__n];
1414       if (!__prev_p)
1415 	return nullptr;
1416 
1417       for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1418 	   __p = __p->_M_next())
1419 	{
1420 	  if (this->_M_equals(__k, __code, __p))
1421 	    return __prev_p;
1422 
1423 	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __n)
1424 	    break;
1425 	  __prev_p = __p;
1426 	}
1427       return nullptr;
1428     }
1429 
1430   template<typename _Key, typename _Value,
1431 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1432 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1433 	   typename _Traits>
1434     void
1435     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1436 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1437     _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1438     {
1439       if (_M_buckets[__bkt])
1440 	{
1441 	  // Bucket is not empty, we just need to insert the new node
1442 	  // after the bucket before begin.
1443 	  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1444 	  _M_buckets[__bkt]->_M_nxt = __node;
1445 	}
1446       else
1447 	{
1448 	  // The bucket is empty, the new node is inserted at the
1449 	  // beginning of the singly-linked list and the bucket will
1450 	  // contain _M_before_begin pointer.
1451 	  __node->_M_nxt = _M_before_begin._M_nxt;
1452 	  _M_before_begin._M_nxt = __node;
1453 	  if (__node->_M_nxt)
1454 	    // We must update former begin bucket that is pointing to
1455 	    // _M_before_begin.
1456 	    _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1457 	  _M_buckets[__bkt] = &_M_before_begin;
1458 	}
1459     }
1460 
1461   template<typename _Key, typename _Value,
1462 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1463 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1464 	   typename _Traits>
1465     void
1466     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1467 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1468     _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1469 			   size_type __next_bkt)
1470     {
1471       if (!__next || __next_bkt != __bkt)
1472 	{
1473 	  // Bucket is now empty
1474 	  // First update next bucket if any
1475 	  if (__next)
1476 	    _M_buckets[__next_bkt] = _M_buckets[__bkt];
1477 
1478 	  // Second update before begin node if necessary
1479 	  if (&_M_before_begin == _M_buckets[__bkt])
1480 	    _M_before_begin._M_nxt = __next;
1481 	  _M_buckets[__bkt] = nullptr;
1482 	}
1483     }
1484 
1485   template<typename _Key, typename _Value,
1486 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1487 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1488 	   typename _Traits>
1489     auto
1490     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1491 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1492     _M_get_previous_node(size_type __bkt, __node_base* __n)
1493     -> __node_base*
1494     {
1495       __node_base* __prev_n = _M_buckets[__bkt];
1496       while (__prev_n->_M_nxt != __n)
1497 	__prev_n = __prev_n->_M_nxt;
1498       return __prev_n;
1499     }
1500 
1501   template<typename _Key, typename _Value,
1502 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1503 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1504 	   typename _Traits>
1505     template<typename... _Args>
1506       auto
1507       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1508 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1509       _M_emplace(std::true_type, _Args&&... __args)
1510       -> pair<iterator, bool>
1511       {
1512 	// First build the node to get access to the hash code
1513 	__node_type* __node = this->_M_allocate_node(std::forward<_Args>(__args)...);
1514 	const key_type& __k = this->_M_extract()(__node->_M_v());
1515 	__hash_code __code;
1516 	__try
1517 	  {
1518 	    __code = this->_M_hash_code(__k);
1519 	  }
1520 	__catch(...)
1521 	  {
1522 	    this->_M_deallocate_node(__node);
1523 	    __throw_exception_again;
1524 	  }
1525 
1526 	size_type __bkt = _M_bucket_index(__k, __code);
1527 	if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1528 	  {
1529 	    // There is already an equivalent node, no insertion
1530 	    this->_M_deallocate_node(__node);
1531 	    return std::make_pair(iterator(__p), false);
1532 	  }
1533 
1534 	// Insert the node
1535 	return std::make_pair(_M_insert_unique_node(__bkt, __code, __node),
1536 			      true);
1537       }
1538 
1539   template<typename _Key, typename _Value,
1540 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1541 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1542 	   typename _Traits>
1543     template<typename... _Args>
1544       auto
1545       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1546 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1547       _M_emplace(const_iterator __hint, std::false_type, _Args&&... __args)
1548       -> iterator
1549       {
1550 	// First build the node to get its hash code.
1551 	__node_type* __node =
1552 	  this->_M_allocate_node(std::forward<_Args>(__args)...);
1553 
1554 	__hash_code __code;
1555 	__try
1556 	  {
1557 	    __code = this->_M_hash_code(this->_M_extract()(__node->_M_v()));
1558 	  }
1559 	__catch(...)
1560 	  {
1561 	    this->_M_deallocate_node(__node);
1562 	    __throw_exception_again;
1563 	  }
1564 
1565 	return _M_insert_multi_node(__hint._M_cur, __code, __node);
1566       }
1567 
1568   template<typename _Key, typename _Value,
1569 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1570 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1571 	   typename _Traits>
1572     auto
1573     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1574 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1575     _M_insert_unique_node(size_type __bkt, __hash_code __code,
1576 			  __node_type* __node)
1577     -> iterator
1578     {
1579       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1580       std::pair<bool, std::size_t> __do_rehash
1581 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1582 
1583       __try
1584 	{
1585 	  if (__do_rehash.first)
1586 	    {
1587 	      _M_rehash(__do_rehash.second, __saved_state);
1588 	      __bkt = _M_bucket_index(this->_M_extract()(__node->_M_v()), __code);
1589 	    }
1590 
1591 	  this->_M_store_code(__node, __code);
1592 
1593 	  // Always insert at the beginning of the bucket.
1594 	  _M_insert_bucket_begin(__bkt, __node);
1595 	  ++_M_element_count;
1596 	  return iterator(__node);
1597 	}
1598       __catch(...)
1599 	{
1600 	  this->_M_deallocate_node(__node);
1601 	  __throw_exception_again;
1602 	}
1603     }
1604 
1605   // Insert node, in bucket bkt if no rehash (assumes no element with its key
1606   // already present). Take ownership of the node, deallocate it on exception.
1607   template<typename _Key, typename _Value,
1608 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1609 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1610 	   typename _Traits>
1611     auto
1612     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1613 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1614     _M_insert_multi_node(__node_type* __hint, __hash_code __code,
1615 			 __node_type* __node)
1616     -> iterator
1617     {
1618       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1619       std::pair<bool, std::size_t> __do_rehash
1620 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1621 
1622       __try
1623 	{
1624 	  if (__do_rehash.first)
1625 	    _M_rehash(__do_rehash.second, __saved_state);
1626 
1627 	  this->_M_store_code(__node, __code);
1628 	  const key_type& __k = this->_M_extract()(__node->_M_v());
1629 	  size_type __bkt = _M_bucket_index(__k, __code);
1630 
1631 	  // Find the node before an equivalent one or use hint if it exists and
1632 	  // if it is equivalent.
1633 	  __node_base* __prev
1634 	    = __builtin_expect(__hint != nullptr, false)
1635 	      && this->_M_equals(__k, __code, __hint)
1636 		? __hint
1637 		: _M_find_before_node(__bkt, __k, __code);
1638 	  if (__prev)
1639 	    {
1640 	      // Insert after the node before the equivalent one.
1641 	      __node->_M_nxt = __prev->_M_nxt;
1642 	      __prev->_M_nxt = __node;
1643 	      if (__builtin_expect(__prev == __hint, false))
1644 	      	// hint might be the last bucket node, in this case we need to
1645 	      	// update next bucket.
1646 	      	if (__node->_M_nxt
1647 	      	    && !this->_M_equals(__k, __code, __node->_M_next()))
1648 	      	  {
1649 	      	    size_type __next_bkt = _M_bucket_index(__node->_M_next());
1650 	      	    if (__next_bkt != __bkt)
1651 	      	      _M_buckets[__next_bkt] = __node;
1652 	      	  }
1653 	    }
1654 	  else
1655 	    // The inserted node has no equivalent in the
1656 	    // hashtable. We must insert the new node at the
1657 	    // beginning of the bucket to preserve equivalent
1658 	    // elements' relative positions.
1659 	    _M_insert_bucket_begin(__bkt, __node);
1660 	  ++_M_element_count;
1661 	  return iterator(__node);
1662 	}
1663       __catch(...)
1664 	{
1665 	  this->_M_deallocate_node(__node);
1666 	  __throw_exception_again;
1667 	}
1668     }
1669 
1670   // Insert v if no element with its key is already present.
1671   template<typename _Key, typename _Value,
1672 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1673 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1674 	   typename _Traits>
1675     template<typename _Arg, typename _NodeGenerator>
1676       auto
1677       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1678 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1679       _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, std::true_type)
1680       -> pair<iterator, bool>
1681       {
1682 	const key_type& __k = this->_M_extract()(__v);
1683 	__hash_code __code = this->_M_hash_code(__k);
1684 	size_type __bkt = _M_bucket_index(__k, __code);
1685 
1686 	__node_type* __n = _M_find_node(__bkt, __k, __code);
1687 	if (__n)
1688 	  return std::make_pair(iterator(__n), false);
1689 
1690 	__n = __node_gen(std::forward<_Arg>(__v));
1691 	return std::make_pair(_M_insert_unique_node(__bkt, __code, __n), true);
1692       }
1693 
1694   // Insert v unconditionally.
1695   template<typename _Key, typename _Value,
1696 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1697 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1698 	   typename _Traits>
1699     template<typename _Arg, typename _NodeGenerator>
1700       auto
1701       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1702 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1703       _M_insert(const_iterator __hint, _Arg&& __v,
1704 		const _NodeGenerator& __node_gen, std::false_type)
1705       -> iterator
1706       {
1707 	// First compute the hash code so that we don't do anything if it
1708 	// throws.
1709 	__hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1710 
1711 	// Second allocate new node so that we don't rehash if it throws.
1712 	__node_type* __node = __node_gen(std::forward<_Arg>(__v));
1713 
1714 	return _M_insert_multi_node(__hint._M_cur, __code, __node);
1715       }
1716 
1717   template<typename _Key, typename _Value,
1718 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1719 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1720 	   typename _Traits>
1721     auto
1722     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1723 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1724     erase(const_iterator __it)
1725     -> iterator
1726     {
1727       __node_type* __n = __it._M_cur;
1728       std::size_t __bkt = _M_bucket_index(__n);
1729 
1730       // Look for previous node to unlink it from the erased one, this
1731       // is why we need buckets to contain the before begin to make
1732       // this search fast.
1733       __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1734       return _M_erase(__bkt, __prev_n, __n);
1735     }
1736 
1737   template<typename _Key, typename _Value,
1738 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1739 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1740 	   typename _Traits>
1741     auto
1742     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1743 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1744     _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1745     -> iterator
1746     {
1747       if (__prev_n == _M_buckets[__bkt])
1748 	_M_remove_bucket_begin(__bkt, __n->_M_next(),
1749 	   __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1750       else if (__n->_M_nxt)
1751 	{
1752 	  size_type __next_bkt = _M_bucket_index(__n->_M_next());
1753 	  if (__next_bkt != __bkt)
1754 	    _M_buckets[__next_bkt] = __prev_n;
1755 	}
1756 
1757       __prev_n->_M_nxt = __n->_M_nxt;
1758       iterator __result(__n->_M_next());
1759       this->_M_deallocate_node(__n);
1760       --_M_element_count;
1761 
1762       return __result;
1763     }
1764 
1765   template<typename _Key, typename _Value,
1766 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1767 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1768 	   typename _Traits>
1769     auto
1770     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1771 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1772     _M_erase(std::true_type, const key_type& __k)
1773     -> size_type
1774     {
1775       __hash_code __code = this->_M_hash_code(__k);
1776       std::size_t __bkt = _M_bucket_index(__k, __code);
1777 
1778       // Look for the node before the first matching node.
1779       __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1780       if (!__prev_n)
1781 	return 0;
1782 
1783       // We found a matching node, erase it.
1784       __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1785       _M_erase(__bkt, __prev_n, __n);
1786       return 1;
1787     }
1788 
1789   template<typename _Key, typename _Value,
1790 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1791 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1792 	   typename _Traits>
1793     auto
1794     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1795 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1796     _M_erase(std::false_type, const key_type& __k)
1797     -> size_type
1798     {
1799       __hash_code __code = this->_M_hash_code(__k);
1800       std::size_t __bkt = _M_bucket_index(__k, __code);
1801 
1802       // Look for the node before the first matching node.
1803       __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1804       if (!__prev_n)
1805 	return 0;
1806 
1807       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1808       // 526. Is it undefined if a function in the standard changes
1809       // in parameters?
1810       // We use one loop to find all matching nodes and another to deallocate
1811       // them so that the key stays valid during the first loop. It might be
1812       // invalidated indirectly when destroying nodes.
1813       __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1814       __node_type* __n_last = __n;
1815       std::size_t __n_last_bkt = __bkt;
1816       do
1817 	{
1818 	  __n_last = __n_last->_M_next();
1819 	  if (!__n_last)
1820 	    break;
1821 	  __n_last_bkt = _M_bucket_index(__n_last);
1822 	}
1823       while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1824 
1825       // Deallocate nodes.
1826       size_type __result = 0;
1827       do
1828 	{
1829 	  __node_type* __p = __n->_M_next();
1830 	  this->_M_deallocate_node(__n);
1831 	  __n = __p;
1832 	  ++__result;
1833 	  --_M_element_count;
1834 	}
1835       while (__n != __n_last);
1836 
1837       if (__prev_n == _M_buckets[__bkt])
1838 	_M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1839       else if (__n_last && __n_last_bkt != __bkt)
1840 	_M_buckets[__n_last_bkt] = __prev_n;
1841       __prev_n->_M_nxt = __n_last;
1842       return __result;
1843     }
1844 
1845   template<typename _Key, typename _Value,
1846 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1847 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1848 	   typename _Traits>
1849     auto
1850     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1851 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1852     erase(const_iterator __first, const_iterator __last)
1853     -> iterator
1854     {
1855       __node_type* __n = __first._M_cur;
1856       __node_type* __last_n = __last._M_cur;
1857       if (__n == __last_n)
1858 	return iterator(__n);
1859 
1860       std::size_t __bkt = _M_bucket_index(__n);
1861 
1862       __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1863       bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1864       std::size_t __n_bkt = __bkt;
1865       for (;;)
1866 	{
1867 	  do
1868 	    {
1869 	      __node_type* __tmp = __n;
1870 	      __n = __n->_M_next();
1871 	      this->_M_deallocate_node(__tmp);
1872 	      --_M_element_count;
1873 	      if (!__n)
1874 		break;
1875 	      __n_bkt = _M_bucket_index(__n);
1876 	    }
1877 	  while (__n != __last_n && __n_bkt == __bkt);
1878 	  if (__is_bucket_begin)
1879 	    _M_remove_bucket_begin(__bkt, __n, __n_bkt);
1880 	  if (__n == __last_n)
1881 	    break;
1882 	  __is_bucket_begin = true;
1883 	  __bkt = __n_bkt;
1884 	}
1885 
1886       if (__n && (__n_bkt != __bkt || __is_bucket_begin))
1887 	_M_buckets[__n_bkt] = __prev_n;
1888       __prev_n->_M_nxt = __n;
1889       return iterator(__n);
1890     }
1891 
1892   template<typename _Key, typename _Value,
1893 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1894 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1895 	   typename _Traits>
1896     void
1897     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1898 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1899     clear() noexcept
1900     {
1901       this->_M_deallocate_nodes(_M_begin());
1902       __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
1903       _M_element_count = 0;
1904       _M_before_begin._M_nxt = nullptr;
1905     }
1906 
1907   template<typename _Key, typename _Value,
1908 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1909 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1910 	   typename _Traits>
1911     void
1912     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1913 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1914     rehash(size_type __n)
1915     {
1916       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1917       std::size_t __buckets
1918 	= std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
1919 		   __n);
1920       __buckets = _M_rehash_policy._M_next_bkt(__buckets);
1921 
1922       if (__buckets != _M_bucket_count)
1923 	_M_rehash(__buckets, __saved_state);
1924       else
1925 	// No rehash, restore previous state to keep a consistent state.
1926 	_M_rehash_policy._M_reset(__saved_state);
1927     }
1928 
1929   template<typename _Key, typename _Value,
1930 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1931 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1932 	   typename _Traits>
1933     void
1934     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1935 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1936     _M_rehash(size_type __n, const __rehash_state& __state)
1937     {
1938       __try
1939 	{
1940 	  _M_rehash_aux(__n, __unique_keys());
1941 	}
1942       __catch(...)
1943 	{
1944 	  // A failure here means that buckets allocation failed.  We only
1945 	  // have to restore hash policy previous state.
1946 	  _M_rehash_policy._M_reset(__state);
1947 	  __throw_exception_again;
1948 	}
1949     }
1950 
1951   // Rehash when there is no equivalent elements.
1952   template<typename _Key, typename _Value,
1953 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1954 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1955 	   typename _Traits>
1956     void
1957     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1958 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1959     _M_rehash_aux(size_type __n, std::true_type)
1960     {
1961       __bucket_type* __new_buckets = _M_allocate_buckets(__n);
1962       __node_type* __p = _M_begin();
1963       _M_before_begin._M_nxt = nullptr;
1964       std::size_t __bbegin_bkt = 0;
1965       while (__p)
1966 	{
1967 	  __node_type* __next = __p->_M_next();
1968 	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
1969 	  if (!__new_buckets[__bkt])
1970 	    {
1971 	      __p->_M_nxt = _M_before_begin._M_nxt;
1972 	      _M_before_begin._M_nxt = __p;
1973 	      __new_buckets[__bkt] = &_M_before_begin;
1974 	      if (__p->_M_nxt)
1975 		__new_buckets[__bbegin_bkt] = __p;
1976 	      __bbegin_bkt = __bkt;
1977 	    }
1978 	  else
1979 	    {
1980 	      __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
1981 	      __new_buckets[__bkt]->_M_nxt = __p;
1982 	    }
1983 	  __p = __next;
1984 	}
1985 
1986       _M_deallocate_buckets();
1987       _M_bucket_count = __n;
1988       _M_buckets = __new_buckets;
1989     }
1990 
1991   // Rehash when there can be equivalent elements, preserve their relative
1992   // order.
1993   template<typename _Key, typename _Value,
1994 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1995 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1996 	   typename _Traits>
1997     void
1998     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1999 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2000     _M_rehash_aux(size_type __n, std::false_type)
2001     {
2002       __bucket_type* __new_buckets = _M_allocate_buckets(__n);
2003 
2004       __node_type* __p = _M_begin();
2005       _M_before_begin._M_nxt = nullptr;
2006       std::size_t __bbegin_bkt = 0;
2007       std::size_t __prev_bkt = 0;
2008       __node_type* __prev_p = nullptr;
2009       bool __check_bucket = false;
2010 
2011       while (__p)
2012 	{
2013 	  __node_type* __next = __p->_M_next();
2014 	  std::size_t __bkt = __hash_code_base::_M_bucket_index(__p, __n);
2015 
2016 	  if (__prev_p && __prev_bkt == __bkt)
2017 	    {
2018 	      // Previous insert was already in this bucket, we insert after
2019 	      // the previously inserted one to preserve equivalent elements
2020 	      // relative order.
2021 	      __p->_M_nxt = __prev_p->_M_nxt;
2022 	      __prev_p->_M_nxt = __p;
2023 
2024 	      // Inserting after a node in a bucket require to check that we
2025 	      // haven't change the bucket last node, in this case next
2026 	      // bucket containing its before begin node must be updated. We
2027 	      // schedule a check as soon as we move out of the sequence of
2028 	      // equivalent nodes to limit the number of checks.
2029 	      __check_bucket = true;
2030 	    }
2031 	  else
2032 	    {
2033 	      if (__check_bucket)
2034 		{
2035 		  // Check if we shall update the next bucket because of
2036 		  // insertions into __prev_bkt bucket.
2037 		  if (__prev_p->_M_nxt)
2038 		    {
2039 		      std::size_t __next_bkt
2040 			= __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2041 							    __n);
2042 		      if (__next_bkt != __prev_bkt)
2043 			__new_buckets[__next_bkt] = __prev_p;
2044 		    }
2045 		  __check_bucket = false;
2046 		}
2047 
2048 	      if (!__new_buckets[__bkt])
2049 		{
2050 		  __p->_M_nxt = _M_before_begin._M_nxt;
2051 		  _M_before_begin._M_nxt = __p;
2052 		  __new_buckets[__bkt] = &_M_before_begin;
2053 		  if (__p->_M_nxt)
2054 		    __new_buckets[__bbegin_bkt] = __p;
2055 		  __bbegin_bkt = __bkt;
2056 		}
2057 	      else
2058 		{
2059 		  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2060 		  __new_buckets[__bkt]->_M_nxt = __p;
2061 		}
2062 	    }
2063 	  __prev_p = __p;
2064 	  __prev_bkt = __bkt;
2065 	  __p = __next;
2066 	}
2067 
2068       if (__check_bucket && __prev_p->_M_nxt)
2069 	{
2070 	  std::size_t __next_bkt
2071 	    = __hash_code_base::_M_bucket_index(__prev_p->_M_next(), __n);
2072 	  if (__next_bkt != __prev_bkt)
2073 	    __new_buckets[__next_bkt] = __prev_p;
2074 	}
2075 
2076       _M_deallocate_buckets();
2077       _M_bucket_count = __n;
2078       _M_buckets = __new_buckets;
2079     }
2080 
2081 _GLIBCXX_END_NAMESPACE_VERSION
2082 } // namespace std
2083 
2084 #endif // _HASHTABLE_H
2085