xref: /netbsd-src/external/gpl3/gcc/dist/libstdc++-v3/include/bits/hashtable.h (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 // hashtable.h header -*- C++ -*-
2 
3 // Copyright (C) 2007-2020 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable.h
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly. @headername{unordered_map, unordered_set}
28  */
29 
30 #ifndef _HASHTABLE_H
31 #define _HASHTABLE_H 1
32 
33 #pragma GCC system_header
34 
35 #include <bits/hashtable_policy.h>
36 #if __cplusplus > 201402L
37 # include <bits/node_handle.h>
38 #endif
39 
40 namespace std _GLIBCXX_VISIBILITY(default)
41 {
42 _GLIBCXX_BEGIN_NAMESPACE_VERSION
43 
44   template<typename _Tp, typename _Hash>
45     using __cache_default
46       =  __not_<__and_<// Do not cache for fast hasher.
47 		       __is_fast_hash<_Hash>,
48 		       // Mandatory to have erase not throwing.
49 		       __is_nothrow_invocable<const _Hash&, const _Tp&>>>;
50 
51   /**
52    *  Primary class template _Hashtable.
53    *
54    *  @ingroup hashtable-detail
55    *
56    *  @tparam _Value  CopyConstructible type.
57    *
58    *  @tparam _Key    CopyConstructible type.
59    *
60    *  @tparam _Alloc  An allocator type
61    *  ([lib.allocator.requirements]) whose _Alloc::value_type is
62    *  _Value.  As a conforming extension, we allow for
63    *  _Alloc::value_type != _Value.
64    *
65    *  @tparam _ExtractKey  Function object that takes an object of type
66    *  _Value and returns a value of type _Key.
67    *
68    *  @tparam _Equal  Function object that takes two objects of type k
69    *  and returns a bool-like value that is true if the two objects
70    *  are considered equal.
71    *
72    *  @tparam _H1  The hash function. A unary function object with
73    *  argument type _Key and result type size_t. Return values should
74    *  be distributed over the entire range [0, numeric_limits<size_t>:::max()].
75    *
76    *  @tparam _H2  The range-hashing function (in the terminology of
77    *  Tavori and Dreizin).  A binary function object whose argument
78    *  types and result type are all size_t.  Given arguments r and N,
79    *  the return value is in the range [0, N).
80    *
81    *  @tparam _Hash  The ranged hash function (Tavori and Dreizin). A
82    *  binary function whose argument types are _Key and size_t and
83    *  whose result type is size_t.  Given arguments k and N, the
84    *  return value is in the range [0, N).  Default: hash(k, N) =
85    *  h2(h1(k), N).  If _Hash is anything other than the default, _H1
86    *  and _H2 are ignored.
87    *
88    *  @tparam _RehashPolicy  Policy class with three members, all of
89    *  which govern the bucket count. _M_next_bkt(n) returns a bucket
90    *  count no smaller than n.  _M_bkt_for_elements(n) returns a
91    *  bucket count appropriate for an element count of n.
92    *  _M_need_rehash(n_bkt, n_elt, n_ins) determines whether, if the
93    *  current bucket count is n_bkt and the current element count is
94    *  n_elt, we need to increase the bucket count.  If so, returns
95    *  make_pair(true, n), where n is the new bucket count.  If not,
96    *  returns make_pair(false, <anything>)
97    *
98    *  @tparam _Traits  Compile-time class with three boolean
99    *  std::integral_constant members:  __cache_hash_code, __constant_iterators,
100    *   __unique_keys.
101    *
102    *  Each _Hashtable data structure has:
103    *
104    *  - _Bucket[]       _M_buckets
105    *  - _Hash_node_base _M_before_begin
106    *  - size_type       _M_bucket_count
107    *  - size_type       _M_element_count
108    *
109    *  with _Bucket being _Hash_node* and _Hash_node containing:
110    *
111    *  - _Hash_node*   _M_next
112    *  - Tp            _M_value
113    *  - size_t        _M_hash_code if cache_hash_code is true
114    *
115    *  In terms of Standard containers the hashtable is like the aggregation of:
116    *
117    *  - std::forward_list<_Node> containing the elements
118    *  - std::vector<std::forward_list<_Node>::iterator> representing the buckets
119    *
120    *  The non-empty buckets contain the node before the first node in the
121    *  bucket. This design makes it possible to implement something like a
122    *  std::forward_list::insert_after on container insertion and
123    *  std::forward_list::erase_after on container erase
124    *  calls. _M_before_begin is equivalent to
125    *  std::forward_list::before_begin. Empty buckets contain
126    *  nullptr.  Note that one of the non-empty buckets contains
127    *  &_M_before_begin which is not a dereferenceable node so the
128    *  node pointer in a bucket shall never be dereferenced, only its
129    *  next node can be.
130    *
131    *  Walking through a bucket's nodes requires a check on the hash code to
132    *  see if each node is still in the bucket. Such a design assumes a
133    *  quite efficient hash functor and is one of the reasons it is
134    *  highly advisable to set __cache_hash_code to true.
135    *
136    *  The container iterators are simply built from nodes. This way
137    *  incrementing the iterator is perfectly efficient independent of
138    *  how many empty buckets there are in the container.
139    *
140    *  On insert we compute the element's hash code and use it to find the
141    *  bucket index. If the element must be inserted in an empty bucket
142    *  we add it at the beginning of the singly linked list and make the
143    *  bucket point to _M_before_begin. The bucket that used to point to
144    *  _M_before_begin, if any, is updated to point to its new before
145    *  begin node.
146    *
147    *  On erase, the simple iterator design requires using the hash
148    *  functor to get the index of the bucket to update. For this
149    *  reason, when __cache_hash_code is set to false the hash functor must
150    *  not throw and this is enforced by a static assertion.
151    *
152    *  Functionality is implemented by decomposition into base classes,
153    *  where the derived _Hashtable class is used in _Map_base,
154    *  _Insert, _Rehash_base, and _Equality base classes to access the
155    *  "this" pointer. _Hashtable_base is used in the base classes as a
156    *  non-recursive, fully-completed-type so that detailed nested type
157    *  information, such as iterator type and node type, can be
158    *  used. This is similar to the "Curiously Recurring Template
159    *  Pattern" (CRTP) technique, but uses a reconstructed, not
160    *  explicitly passed, template pattern.
161    *
162    *  Base class templates are:
163    *    - __detail::_Hashtable_base
164    *    - __detail::_Map_base
165    *    - __detail::_Insert
166    *    - __detail::_Rehash_base
167    *    - __detail::_Equality
168    */
169   template<typename _Key, typename _Value, typename _Alloc,
170 	   typename _ExtractKey, typename _Equal,
171 	   typename _H1, typename _H2, typename _Hash,
172 	   typename _RehashPolicy, typename _Traits>
173     class _Hashtable
174     : public __detail::_Hashtable_base<_Key, _Value, _ExtractKey, _Equal,
175 				       _H1, _H2, _Hash, _Traits>,
176       public __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
177 				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
178       public __detail::_Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal,
179 			       _H1, _H2, _Hash, _RehashPolicy, _Traits>,
180       public __detail::_Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
181 				    _H1, _H2, _Hash, _RehashPolicy, _Traits>,
182       public __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
183 				 _H1, _H2, _Hash, _RehashPolicy, _Traits>,
184       private __detail::_Hashtable_alloc<
185 	__alloc_rebind<_Alloc,
186 		       __detail::_Hash_node<_Value,
187 					    _Traits::__hash_cached::value>>>
188     {
189       static_assert(is_same<typename remove_cv<_Value>::type, _Value>::value,
190 	  "unordered container must have a non-const, non-volatile value_type");
191 #if __cplusplus > 201703L || defined __STRICT_ANSI__
192       static_assert(is_same<typename _Alloc::value_type, _Value>{},
193 	  "unordered container must have the same value_type as its allocator");
194 #endif
195 
196       using __traits_type = _Traits;
197       using __hash_cached = typename __traits_type::__hash_cached;
198       using __node_type = __detail::_Hash_node<_Value, __hash_cached::value>;
199       using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
200 
201       using __hashtable_alloc = __detail::_Hashtable_alloc<__node_alloc_type>;
202 
203       using __value_alloc_traits =
204 	typename __hashtable_alloc::__value_alloc_traits;
205       using __node_alloc_traits =
206 	typename __hashtable_alloc::__node_alloc_traits;
207       using __node_base = typename __hashtable_alloc::__node_base;
208       using __bucket_type = typename __hashtable_alloc::__bucket_type;
209 
210     public:
211       typedef _Key						key_type;
212       typedef _Value						value_type;
213       typedef _Alloc						allocator_type;
214       typedef _Equal						key_equal;
215 
216       // mapped_type, if present, comes from _Map_base.
217       // hasher, if present, comes from _Hash_code_base/_Hashtable_base.
218       typedef typename __value_alloc_traits::pointer		pointer;
219       typedef typename __value_alloc_traits::const_pointer	const_pointer;
220       typedef value_type&					reference;
221       typedef const value_type&					const_reference;
222 
223     private:
224       using __rehash_type = _RehashPolicy;
225       using __rehash_state = typename __rehash_type::_State;
226 
227       using __constant_iterators = typename __traits_type::__constant_iterators;
228       using __unique_keys = typename __traits_type::__unique_keys;
229 
230       using __key_extract = typename std::conditional<
231 					     __constant_iterators::value,
232 				       	     __detail::_Identity,
233 					     __detail::_Select1st>::type;
234 
235       using __hashtable_base = __detail::
236 			       _Hashtable_base<_Key, _Value, _ExtractKey,
237 					      _Equal, _H1, _H2, _Hash, _Traits>;
238 
239       using __hash_code_base =  typename __hashtable_base::__hash_code_base;
240       using __hash_code =  typename __hashtable_base::__hash_code;
241       using __ireturn_type = typename __hashtable_base::__ireturn_type;
242 
243       using __map_base = __detail::_Map_base<_Key, _Value, _Alloc, _ExtractKey,
244 					     _Equal, _H1, _H2, _Hash,
245 					     _RehashPolicy, _Traits>;
246 
247       using __rehash_base = __detail::_Rehash_base<_Key, _Value, _Alloc,
248 						   _ExtractKey, _Equal,
249 						   _H1, _H2, _Hash,
250 						   _RehashPolicy, _Traits>;
251 
252       using __eq_base = __detail::_Equality<_Key, _Value, _Alloc, _ExtractKey,
253 					    _Equal, _H1, _H2, _Hash,
254 					    _RehashPolicy, _Traits>;
255 
256       using __reuse_or_alloc_node_gen_t =
257 	__detail::_ReuseOrAllocNode<__node_alloc_type>;
258       using __alloc_node_gen_t =
259 	__detail::_AllocNode<__node_alloc_type>;
260 
261       // Simple RAII type for managing a node containing an element
262       struct _Scoped_node
263       {
264 	// Take ownership of a node with a constructed element.
265 	_Scoped_node(__node_type* __n, __hashtable_alloc* __h)
266 	: _M_h(__h), _M_node(__n) { }
267 
268 	// Allocate a node and construct an element within it.
269 	template<typename... _Args>
270 	  _Scoped_node(__hashtable_alloc* __h, _Args&&... __args)
271 	  : _M_h(__h),
272 	    _M_node(__h->_M_allocate_node(std::forward<_Args>(__args)...))
273 	  { }
274 
275 	// Destroy element and deallocate node.
276 	~_Scoped_node() { if (_M_node) _M_h->_M_deallocate_node(_M_node); };
277 
278 	_Scoped_node(const _Scoped_node&) = delete;
279 	_Scoped_node& operator=(const _Scoped_node&) = delete;
280 
281 	__hashtable_alloc* _M_h;
282 	__node_type* _M_node;
283       };
284 
285       template<typename _Ht>
286 	static constexpr
287 	typename conditional<std::is_lvalue_reference<_Ht>::value,
288 			     const value_type&, value_type&&>::type
289 	__fwd_value_for(value_type& __val) noexcept
290 	{ return std::move(__val); }
291 
292       // Metaprogramming for picking apart hash caching.
293       template<typename _Cond>
294 	using __if_hash_cached = __or_<__not_<__hash_cached>, _Cond>;
295 
296       template<typename _Cond>
297 	using __if_hash_not_cached = __or_<__hash_cached, _Cond>;
298 
299       // Compile-time diagnostics.
300 
301       // _Hash_code_base has everything protected, so use this derived type to
302       // access it.
303       struct __hash_code_base_access : __hash_code_base
304       { using __hash_code_base::_M_bucket_index; };
305 
306       // Getting a bucket index from a node shall not throw because it is used
307       // in methods (erase, swap...) that shall not throw.
308       static_assert(noexcept(declval<const __hash_code_base_access&>()
309 			     ._M_bucket_index((const __node_type*)nullptr,
310 					      (std::size_t)0)),
311 		    "Cache the hash code or qualify your functors involved"
312 		    " in hash code and bucket index computation with noexcept");
313 
314       // When hash codes are cached local iterator inherits from H2 functor
315       // which must then be default constructible.
316       static_assert(__if_hash_cached<is_default_constructible<_H2>>::value,
317 		    "Functor used to map hash code to bucket index"
318 		    " must be default constructible");
319 
320       template<typename _Keya, typename _Valuea, typename _Alloca,
321 	       typename _ExtractKeya, typename _Equala,
322 	       typename _H1a, typename _H2a, typename _Hasha,
323 	       typename _RehashPolicya, typename _Traitsa,
324 	       bool _Unique_keysa>
325 	friend struct __detail::_Map_base;
326 
327       template<typename _Keya, typename _Valuea, typename _Alloca,
328 	       typename _ExtractKeya, typename _Equala,
329 	       typename _H1a, typename _H2a, typename _Hasha,
330 	       typename _RehashPolicya, typename _Traitsa>
331 	friend struct __detail::_Insert_base;
332 
333       template<typename _Keya, typename _Valuea, typename _Alloca,
334 	       typename _ExtractKeya, typename _Equala,
335 	       typename _H1a, typename _H2a, typename _Hasha,
336 	       typename _RehashPolicya, typename _Traitsa,
337 	       bool _Constant_iteratorsa>
338 	friend struct __detail::_Insert;
339 
340       template<typename _Keya, typename _Valuea, typename _Alloca,
341 	       typename _ExtractKeya, typename _Equala,
342 	       typename _H1a, typename _H2a, typename _Hasha,
343 	       typename _RehashPolicya, typename _Traitsa,
344 	       bool _Unique_keysa>
345 	friend struct __detail::_Equality;
346 
347     public:
348       using size_type = typename __hashtable_base::size_type;
349       using difference_type = typename __hashtable_base::difference_type;
350 
351       using iterator = typename __hashtable_base::iterator;
352       using const_iterator = typename __hashtable_base::const_iterator;
353 
354       using local_iterator = typename __hashtable_base::local_iterator;
355       using const_local_iterator = typename __hashtable_base::
356 				   const_local_iterator;
357 
358 #if __cplusplus > 201402L
359       using node_type = _Node_handle<_Key, _Value, __node_alloc_type>;
360       using insert_return_type = _Node_insert_return<iterator, node_type>;
361 #endif
362 
363     private:
364       __bucket_type*		_M_buckets		= &_M_single_bucket;
365       size_type			_M_bucket_count		= 1;
366       __node_base		_M_before_begin;
367       size_type			_M_element_count	= 0;
368       _RehashPolicy		_M_rehash_policy;
369 
370       // A single bucket used when only need for 1 bucket. Especially
371       // interesting in move semantic to leave hashtable with only 1 bucket
372       // which is not allocated so that we can have those operations noexcept
373       // qualified.
374       // Note that we can't leave hashtable with 0 bucket without adding
375       // numerous checks in the code to avoid 0 modulus.
376       __bucket_type		_M_single_bucket	= nullptr;
377 
378       bool
379       _M_uses_single_bucket(__bucket_type* __bkts) const
380       { return __builtin_expect(__bkts == &_M_single_bucket, false); }
381 
382       bool
383       _M_uses_single_bucket() const
384       { return _M_uses_single_bucket(_M_buckets); }
385 
386       __hashtable_alloc&
387       _M_base_alloc() { return *this; }
388 
389       __bucket_type*
390       _M_allocate_buckets(size_type __bkt_count)
391       {
392 	if (__builtin_expect(__bkt_count == 1, false))
393 	  {
394 	    _M_single_bucket = nullptr;
395 	    return &_M_single_bucket;
396 	  }
397 
398 	return __hashtable_alloc::_M_allocate_buckets(__bkt_count);
399       }
400 
401       void
402       _M_deallocate_buckets(__bucket_type* __bkts, size_type __bkt_count)
403       {
404 	if (_M_uses_single_bucket(__bkts))
405 	  return;
406 
407 	__hashtable_alloc::_M_deallocate_buckets(__bkts, __bkt_count);
408       }
409 
410       void
411       _M_deallocate_buckets()
412       { _M_deallocate_buckets(_M_buckets, _M_bucket_count); }
413 
414       // Gets bucket begin, deals with the fact that non-empty buckets contain
415       // their before begin node.
416       __node_type*
417       _M_bucket_begin(size_type __bkt) const;
418 
419       __node_type*
420       _M_begin() const
421       { return static_cast<__node_type*>(_M_before_begin._M_nxt); }
422 
423       // Assign *this using another _Hashtable instance. Whether elements
424       // are copied or moved depends on the _Ht reference.
425       template<typename _Ht>
426 	void
427 	_M_assign_elements(_Ht&&);
428 
429       template<typename _Ht, typename _NodeGenerator>
430 	void
431 	_M_assign(_Ht&&, const _NodeGenerator&);
432 
433       void
434       _M_move_assign(_Hashtable&&, true_type);
435 
436       void
437       _M_move_assign(_Hashtable&&, false_type);
438 
439       void
440       _M_reset() noexcept;
441 
442       _Hashtable(const _H1& __h1, const _H2& __h2, const _Hash& __h,
443 		 const _Equal& __eq, const _ExtractKey& __exk,
444 		 const allocator_type& __a)
445       : __hashtable_base(__exk, __h1, __h2, __h, __eq),
446 	__hashtable_alloc(__node_alloc_type(__a))
447       { }
448 
449     public:
450       // Constructor, destructor, assignment, swap
451       _Hashtable() = default;
452       _Hashtable(size_type __bkt_count_hint,
453 		 const _H1&, const _H2&, const _Hash&,
454 		 const _Equal&, const _ExtractKey&,
455 		 const allocator_type&);
456 
457       template<typename _InputIterator>
458 	_Hashtable(_InputIterator __first, _InputIterator __last,
459 		   size_type __bkt_count_hint,
460 		   const _H1&, const _H2&, const _Hash&,
461 		   const _Equal&, const _ExtractKey&,
462 		   const allocator_type&);
463 
464       _Hashtable(const _Hashtable&);
465 
466       _Hashtable(_Hashtable&&) noexcept;
467 
468       _Hashtable(const _Hashtable&, const allocator_type&);
469 
470       _Hashtable(_Hashtable&&, const allocator_type&);
471 
472       // Use delegating constructors.
473       explicit
474       _Hashtable(const allocator_type& __a)
475       : __hashtable_alloc(__node_alloc_type(__a))
476       { }
477 
478       explicit
479       _Hashtable(size_type __bkt_count_hint,
480 		 const _H1& __hf = _H1(),
481 		 const key_equal& __eql = key_equal(),
482 		 const allocator_type& __a = allocator_type())
483       : _Hashtable(__bkt_count_hint, __hf, _H2(), _Hash(), __eql,
484 		   __key_extract(), __a)
485       { }
486 
487       template<typename _InputIterator>
488 	_Hashtable(_InputIterator __f, _InputIterator __l,
489 		   size_type __bkt_count_hint = 0,
490 		   const _H1& __hf = _H1(),
491 		   const key_equal& __eql = key_equal(),
492 		   const allocator_type& __a = allocator_type())
493 	: _Hashtable(__f, __l, __bkt_count_hint, __hf, _H2(), _Hash(), __eql,
494 		     __key_extract(), __a)
495 	{ }
496 
497       _Hashtable(initializer_list<value_type> __l,
498 		 size_type __bkt_count_hint = 0,
499 		 const _H1& __hf = _H1(),
500 		 const key_equal& __eql = key_equal(),
501 		 const allocator_type& __a = allocator_type())
502       : _Hashtable(__l.begin(), __l.end(), __bkt_count_hint,
503 		   __hf, _H2(), _Hash(), __eql,
504 		   __key_extract(), __a)
505       { }
506 
507       _Hashtable&
508       operator=(const _Hashtable& __ht);
509 
510       _Hashtable&
511       operator=(_Hashtable&& __ht)
512       noexcept(__node_alloc_traits::_S_nothrow_move()
513 	       && is_nothrow_move_assignable<_H1>::value
514 	       && is_nothrow_move_assignable<_Equal>::value)
515       {
516         constexpr bool __move_storage =
517 	  __node_alloc_traits::_S_propagate_on_move_assign()
518 	  || __node_alloc_traits::_S_always_equal();
519 	_M_move_assign(std::move(__ht), __bool_constant<__move_storage>());
520 	return *this;
521       }
522 
523       _Hashtable&
524       operator=(initializer_list<value_type> __l)
525       {
526 	__reuse_or_alloc_node_gen_t __roan(_M_begin(), *this);
527 	_M_before_begin._M_nxt = nullptr;
528 	clear();
529 	this->_M_insert_range(__l.begin(), __l.end(), __roan, __unique_keys());
530 	return *this;
531       }
532 
533       ~_Hashtable() noexcept;
534 
535       void
536       swap(_Hashtable&)
537       noexcept(__and_<__is_nothrow_swappable<_H1>,
538 	                  __is_nothrow_swappable<_Equal>>::value);
539 
540       // Basic container operations
541       iterator
542       begin() noexcept
543       { return iterator(_M_begin()); }
544 
545       const_iterator
546       begin() const noexcept
547       { return const_iterator(_M_begin()); }
548 
549       iterator
550       end() noexcept
551       { return iterator(nullptr); }
552 
553       const_iterator
554       end() const noexcept
555       { return const_iterator(nullptr); }
556 
557       const_iterator
558       cbegin() const noexcept
559       { return const_iterator(_M_begin()); }
560 
561       const_iterator
562       cend() const noexcept
563       { return const_iterator(nullptr); }
564 
565       size_type
566       size() const noexcept
567       { return _M_element_count; }
568 
569       _GLIBCXX_NODISCARD bool
570       empty() const noexcept
571       { return size() == 0; }
572 
573       allocator_type
574       get_allocator() const noexcept
575       { return allocator_type(this->_M_node_allocator()); }
576 
577       size_type
578       max_size() const noexcept
579       { return __node_alloc_traits::max_size(this->_M_node_allocator()); }
580 
581       // Observers
582       key_equal
583       key_eq() const
584       { return this->_M_eq(); }
585 
586       // hash_function, if present, comes from _Hash_code_base.
587 
588       // Bucket operations
589       size_type
590       bucket_count() const noexcept
591       { return _M_bucket_count; }
592 
593       size_type
594       max_bucket_count() const noexcept
595       { return max_size(); }
596 
597       size_type
598       bucket_size(size_type __bkt) const
599       { return std::distance(begin(__bkt), end(__bkt)); }
600 
601       size_type
602       bucket(const key_type& __k) const
603       { return _M_bucket_index(__k, this->_M_hash_code(__k)); }
604 
605       local_iterator
606       begin(size_type __bkt)
607       {
608 	return local_iterator(*this, _M_bucket_begin(__bkt),
609 			      __bkt, _M_bucket_count);
610       }
611 
612       local_iterator
613       end(size_type __bkt)
614       { return local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
615 
616       const_local_iterator
617       begin(size_type __bkt) const
618       {
619 	return const_local_iterator(*this, _M_bucket_begin(__bkt),
620 				    __bkt, _M_bucket_count);
621       }
622 
623       const_local_iterator
624       end(size_type __bkt) const
625       { return const_local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
626 
627       // DR 691.
628       const_local_iterator
629       cbegin(size_type __bkt) const
630       {
631 	return const_local_iterator(*this, _M_bucket_begin(__bkt),
632 				    __bkt, _M_bucket_count);
633       }
634 
635       const_local_iterator
636       cend(size_type __bkt) const
637       { return const_local_iterator(*this, nullptr, __bkt, _M_bucket_count); }
638 
639       float
640       load_factor() const noexcept
641       {
642 	return static_cast<float>(size()) / static_cast<float>(bucket_count());
643       }
644 
645       // max_load_factor, if present, comes from _Rehash_base.
646 
647       // Generalization of max_load_factor.  Extension, not found in
648       // TR1.  Only useful if _RehashPolicy is something other than
649       // the default.
650       const _RehashPolicy&
651       __rehash_policy() const
652       { return _M_rehash_policy; }
653 
654       void
655       __rehash_policy(const _RehashPolicy& __pol)
656       { _M_rehash_policy = __pol; }
657 
658       // Lookup.
659       iterator
660       find(const key_type& __k);
661 
662       const_iterator
663       find(const key_type& __k) const;
664 
665       size_type
666       count(const key_type& __k) const;
667 
668       std::pair<iterator, iterator>
669       equal_range(const key_type& __k);
670 
671       std::pair<const_iterator, const_iterator>
672       equal_range(const key_type& __k) const;
673 
674     protected:
675       // Bucket index computation helpers.
676       size_type
677       _M_bucket_index(__node_type* __n) const noexcept
678       { return __hash_code_base::_M_bucket_index(__n, _M_bucket_count); }
679 
680       size_type
681       _M_bucket_index(const key_type& __k, __hash_code __c) const
682       { return __hash_code_base::_M_bucket_index(__k, __c, _M_bucket_count); }
683 
684       // Find and insert helper functions and types
685       // Find the node before the one matching the criteria.
686       __node_base*
687       _M_find_before_node(size_type, const key_type&, __hash_code) const;
688 
689       __node_type*
690       _M_find_node(size_type __bkt, const key_type& __key,
691 		   __hash_code __c) const
692       {
693 	__node_base* __before_n = _M_find_before_node(__bkt, __key, __c);
694 	if (__before_n)
695 	  return static_cast<__node_type*>(__before_n->_M_nxt);
696 	return nullptr;
697       }
698 
699       // Insert a node at the beginning of a bucket.
700       void
701       _M_insert_bucket_begin(size_type, __node_type*);
702 
703       // Remove the bucket first node
704       void
705       _M_remove_bucket_begin(size_type __bkt, __node_type* __next_n,
706 			     size_type __next_bkt);
707 
708       // Get the node before __n in the bucket __bkt
709       __node_base*
710       _M_get_previous_node(size_type __bkt, __node_base* __n);
711 
712       // Insert node __n with key __k and hash code __code, in bucket __bkt
713       // if no rehash (assumes no element with same key already present).
714       // Takes ownership of __n if insertion succeeds, throws otherwise.
715       iterator
716       _M_insert_unique_node(const key_type& __k, size_type __bkt,
717 			    __hash_code __code, __node_type* __n,
718 			    size_type __n_elt = 1);
719 
720       // Insert node __n with key __k and hash code __code.
721       // Takes ownership of __n if insertion succeeds, throws otherwise.
722       iterator
723       _M_insert_multi_node(__node_type* __hint, const key_type& __k,
724 			   __hash_code __code, __node_type* __n);
725 
726       template<typename... _Args>
727 	std::pair<iterator, bool>
728 	_M_emplace(true_type, _Args&&... __args);
729 
730       template<typename... _Args>
731 	iterator
732 	_M_emplace(false_type __uk, _Args&&... __args)
733 	{ return _M_emplace(cend(), __uk, std::forward<_Args>(__args)...); }
734 
735       // Emplace with hint, useless when keys are unique.
736       template<typename... _Args>
737 	iterator
738 	_M_emplace(const_iterator, true_type __uk, _Args&&... __args)
739 	{ return _M_emplace(__uk, std::forward<_Args>(__args)...).first; }
740 
741       template<typename... _Args>
742 	iterator
743 	_M_emplace(const_iterator, false_type, _Args&&... __args);
744 
745       template<typename _Arg, typename _NodeGenerator>
746 	std::pair<iterator, bool>
747 	_M_insert(_Arg&&, const _NodeGenerator&, true_type, size_type = 1);
748 
749       template<typename _Arg, typename _NodeGenerator>
750 	iterator
751 	_M_insert(_Arg&& __arg, const _NodeGenerator& __node_gen,
752 		  false_type __uk)
753 	{
754 	  return _M_insert(cend(), std::forward<_Arg>(__arg), __node_gen,
755 			   __uk);
756 	}
757 
758       // Insert with hint, not used when keys are unique.
759       template<typename _Arg, typename _NodeGenerator>
760 	iterator
761 	_M_insert(const_iterator, _Arg&& __arg,
762 		  const _NodeGenerator& __node_gen, true_type __uk)
763 	{
764 	  return
765 	    _M_insert(std::forward<_Arg>(__arg), __node_gen, __uk).first;
766 	}
767 
768       // Insert with hint when keys are not unique.
769       template<typename _Arg, typename _NodeGenerator>
770 	iterator
771 	_M_insert(const_iterator, _Arg&&,
772 		  const _NodeGenerator&, false_type);
773 
774       size_type
775       _M_erase(true_type, const key_type&);
776 
777       size_type
778       _M_erase(false_type, const key_type&);
779 
780       iterator
781       _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n);
782 
783     public:
784       // Emplace
785       template<typename... _Args>
786 	__ireturn_type
787 	emplace(_Args&&... __args)
788 	{ return _M_emplace(__unique_keys(), std::forward<_Args>(__args)...); }
789 
790       template<typename... _Args>
791 	iterator
792 	emplace_hint(const_iterator __hint, _Args&&... __args)
793 	{
794 	  return _M_emplace(__hint, __unique_keys(),
795 			    std::forward<_Args>(__args)...);
796 	}
797 
798       // Insert member functions via inheritance.
799 
800       // Erase
801       iterator
802       erase(const_iterator);
803 
804       // LWG 2059.
805       iterator
806       erase(iterator __it)
807       { return erase(const_iterator(__it)); }
808 
809       size_type
810       erase(const key_type& __k)
811       { return _M_erase(__unique_keys(), __k); }
812 
813       iterator
814       erase(const_iterator, const_iterator);
815 
816       void
817       clear() noexcept;
818 
819       // Set number of buckets keeping it appropriate for container's number
820       // of elements.
821       void rehash(size_type __bkt_count);
822 
823       // DR 1189.
824       // reserve, if present, comes from _Rehash_base.
825 
826 #if __cplusplus > 201402L
827       /// Re-insert an extracted node into a container with unique keys.
828       insert_return_type
829       _M_reinsert_node(node_type&& __nh)
830       {
831 	insert_return_type __ret;
832 	if (__nh.empty())
833 	  __ret.position = end();
834 	else
835 	  {
836 	    __glibcxx_assert(get_allocator() == __nh.get_allocator());
837 
838 	    const key_type& __k = __nh._M_key();
839 	    __hash_code __code = this->_M_hash_code(__k);
840 	    size_type __bkt = _M_bucket_index(__k, __code);
841 	    if (__node_type* __n = _M_find_node(__bkt, __k, __code))
842 	      {
843 		__ret.node = std::move(__nh);
844 		__ret.position = iterator(__n);
845 		__ret.inserted = false;
846 	      }
847 	    else
848 	      {
849 		__ret.position
850 		  = _M_insert_unique_node(__k, __bkt, __code, __nh._M_ptr);
851 		__nh._M_ptr = nullptr;
852 		__ret.inserted = true;
853 	      }
854 	  }
855 	return __ret;
856       }
857 
858       /// Re-insert an extracted node into a container with equivalent keys.
859       iterator
860       _M_reinsert_node_multi(const_iterator __hint, node_type&& __nh)
861       {
862 	if (__nh.empty())
863 	  return end();
864 
865 	__glibcxx_assert(get_allocator() == __nh.get_allocator());
866 
867 	const key_type& __k = __nh._M_key();
868 	auto __code = this->_M_hash_code(__k);
869 	auto __ret
870 	  = _M_insert_multi_node(__hint._M_cur, __k, __code, __nh._M_ptr);
871 	__nh._M_ptr = nullptr;
872 	return __ret;
873       }
874 
875     private:
876       node_type
877       _M_extract_node(size_t __bkt, __node_base* __prev_n)
878       {
879 	__node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
880 	if (__prev_n == _M_buckets[__bkt])
881 	  _M_remove_bucket_begin(__bkt, __n->_M_next(),
882 	     __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
883 	else if (__n->_M_nxt)
884 	  {
885 	    size_type __next_bkt = _M_bucket_index(__n->_M_next());
886 	    if (__next_bkt != __bkt)
887 	      _M_buckets[__next_bkt] = __prev_n;
888 	  }
889 
890 	__prev_n->_M_nxt = __n->_M_nxt;
891 	__n->_M_nxt = nullptr;
892 	--_M_element_count;
893 	return { __n, this->_M_node_allocator() };
894       }
895 
896     public:
897       // Extract a node.
898       node_type
899       extract(const_iterator __pos)
900       {
901 	size_t __bkt = _M_bucket_index(__pos._M_cur);
902 	return _M_extract_node(__bkt,
903 			       _M_get_previous_node(__bkt, __pos._M_cur));
904       }
905 
906       /// Extract a node.
907       node_type
908       extract(const _Key& __k)
909       {
910 	node_type __nh;
911 	__hash_code __code = this->_M_hash_code(__k);
912 	std::size_t __bkt = _M_bucket_index(__k, __code);
913 	if (__node_base* __prev_node = _M_find_before_node(__bkt, __k, __code))
914 	  __nh = _M_extract_node(__bkt, __prev_node);
915 	return __nh;
916       }
917 
918       /// Merge from a compatible container into one with unique keys.
919       template<typename _Compatible_Hashtable>
920 	void
921 	_M_merge_unique(_Compatible_Hashtable& __src) noexcept
922 	{
923 	  static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
924 	      node_type>, "Node types are compatible");
925 	  __glibcxx_assert(get_allocator() == __src.get_allocator());
926 
927 	  auto __n_elt = __src.size();
928 	  for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
929 	    {
930 	      auto __pos = __i++;
931 	      const key_type& __k = this->_M_extract()(*__pos);
932 	      __hash_code __code = this->_M_hash_code(__k);
933 	      size_type __bkt = _M_bucket_index(__k, __code);
934 	      if (_M_find_node(__bkt, __k, __code) == nullptr)
935 		{
936 		  auto __nh = __src.extract(__pos);
937 		  _M_insert_unique_node(__k, __bkt, __code, __nh._M_ptr,
938 					__n_elt);
939 		  __nh._M_ptr = nullptr;
940 		  __n_elt = 1;
941 		}
942 	      else if (__n_elt != 1)
943 		--__n_elt;
944 	    }
945 	}
946 
947       /// Merge from a compatible container into one with equivalent keys.
948       template<typename _Compatible_Hashtable>
949 	void
950 	_M_merge_multi(_Compatible_Hashtable& __src) noexcept
951 	{
952 	  static_assert(is_same_v<typename _Compatible_Hashtable::node_type,
953 	      node_type>, "Node types are compatible");
954 	  __glibcxx_assert(get_allocator() == __src.get_allocator());
955 
956 	  this->reserve(size() + __src.size());
957 	  for (auto __i = __src.begin(), __end = __src.end(); __i != __end;)
958 	    _M_reinsert_node_multi(cend(), __src.extract(__i++));
959 	}
960 #endif // C++17
961 
962     private:
963       // Helper rehash method used when keys are unique.
964       void _M_rehash_aux(size_type __bkt_count, true_type);
965 
966       // Helper rehash method used when keys can be non-unique.
967       void _M_rehash_aux(size_type __bkt_count, false_type);
968 
969       // Unconditionally change size of bucket array to n, restore
970       // hash policy state to __state on exception.
971       void _M_rehash(size_type __bkt_count, const __rehash_state& __state);
972     };
973 
974 
975   // Definitions of class template _Hashtable's out-of-line member functions.
976   template<typename _Key, typename _Value,
977 	   typename _Alloc, typename _ExtractKey, typename _Equal,
978 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
979 	   typename _Traits>
980     auto
981     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
982 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
983     _M_bucket_begin(size_type __bkt) const
984     -> __node_type*
985     {
986       __node_base* __n = _M_buckets[__bkt];
987       return __n ? static_cast<__node_type*>(__n->_M_nxt) : nullptr;
988     }
989 
990   template<typename _Key, typename _Value,
991 	   typename _Alloc, typename _ExtractKey, typename _Equal,
992 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
993 	   typename _Traits>
994     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
995 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
996     _Hashtable(size_type __bkt_count_hint,
997 	       const _H1& __h1, const _H2& __h2, const _Hash& __h,
998 	       const _Equal& __eq, const _ExtractKey& __exk,
999 	       const allocator_type& __a)
1000     : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
1001     {
1002       auto __bkt_count = _M_rehash_policy._M_next_bkt(__bkt_count_hint);
1003       if (__bkt_count > _M_bucket_count)
1004 	{
1005 	  _M_buckets = _M_allocate_buckets(__bkt_count);
1006 	  _M_bucket_count = __bkt_count;
1007 	}
1008     }
1009 
1010   template<typename _Key, typename _Value,
1011 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1012 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1013 	   typename _Traits>
1014     template<typename _InputIterator>
1015       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1016 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1017       _Hashtable(_InputIterator __f, _InputIterator __l,
1018 		 size_type __bkt_count_hint,
1019 		 const _H1& __h1, const _H2& __h2, const _Hash& __h,
1020 		 const _Equal& __eq, const _ExtractKey& __exk,
1021 		 const allocator_type& __a)
1022       : _Hashtable(__h1, __h2, __h, __eq, __exk, __a)
1023       {
1024 	auto __nb_elems = __detail::__distance_fw(__f, __l);
1025 	auto __bkt_count =
1026 	  _M_rehash_policy._M_next_bkt(
1027 	    std::max(_M_rehash_policy._M_bkt_for_elements(__nb_elems),
1028 		     __bkt_count_hint));
1029 
1030 	if (__bkt_count > _M_bucket_count)
1031 	  {
1032 	    _M_buckets = _M_allocate_buckets(__bkt_count);
1033 	    _M_bucket_count = __bkt_count;
1034 	  }
1035 
1036 	for (; __f != __l; ++__f)
1037 	  this->insert(*__f);
1038       }
1039 
1040   template<typename _Key, typename _Value,
1041 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1042 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1043 	   typename _Traits>
1044     auto
1045     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1046 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1047     operator=(const _Hashtable& __ht)
1048     -> _Hashtable&
1049     {
1050       if (&__ht == this)
1051 	return *this;
1052 
1053       if (__node_alloc_traits::_S_propagate_on_copy_assign())
1054 	{
1055 	  auto& __this_alloc = this->_M_node_allocator();
1056 	  auto& __that_alloc = __ht._M_node_allocator();
1057 	  if (!__node_alloc_traits::_S_always_equal()
1058 	      && __this_alloc != __that_alloc)
1059 	    {
1060 	      // Replacement allocator cannot free existing storage.
1061 	      this->_M_deallocate_nodes(_M_begin());
1062 	      _M_before_begin._M_nxt = nullptr;
1063 	      _M_deallocate_buckets();
1064 	      _M_buckets = nullptr;
1065 	      std::__alloc_on_copy(__this_alloc, __that_alloc);
1066 	      __hashtable_base::operator=(__ht);
1067 	      _M_bucket_count = __ht._M_bucket_count;
1068 	      _M_element_count = __ht._M_element_count;
1069 	      _M_rehash_policy = __ht._M_rehash_policy;
1070 	      __alloc_node_gen_t __alloc_node_gen(*this);
1071 	      __try
1072 		{
1073 		  _M_assign(__ht, __alloc_node_gen);
1074 		}
1075 	      __catch(...)
1076 		{
1077 		  // _M_assign took care of deallocating all memory. Now we
1078 		  // must make sure this instance remains in a usable state.
1079 		  _M_reset();
1080 		  __throw_exception_again;
1081 		}
1082 	      return *this;
1083 	    }
1084 	  std::__alloc_on_copy(__this_alloc, __that_alloc);
1085 	}
1086 
1087       // Reuse allocated buckets and nodes.
1088       _M_assign_elements(__ht);
1089       return *this;
1090     }
1091 
1092   template<typename _Key, typename _Value,
1093 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1094 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1095 	   typename _Traits>
1096     template<typename _Ht>
1097       void
1098       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1099 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1100       _M_assign_elements(_Ht&& __ht)
1101       {
1102 	__bucket_type* __former_buckets = nullptr;
1103 	std::size_t __former_bucket_count = _M_bucket_count;
1104 	const __rehash_state& __former_state = _M_rehash_policy._M_state();
1105 
1106 	if (_M_bucket_count != __ht._M_bucket_count)
1107 	  {
1108 	    __former_buckets = _M_buckets;
1109 	    _M_buckets = _M_allocate_buckets(__ht._M_bucket_count);
1110 	    _M_bucket_count = __ht._M_bucket_count;
1111 	  }
1112 	else
1113 	  __builtin_memset(_M_buckets, 0,
1114 			   _M_bucket_count * sizeof(__bucket_type));
1115 
1116 	__try
1117 	  {
1118 	    __hashtable_base::operator=(std::forward<_Ht>(__ht));
1119 	    _M_element_count = __ht._M_element_count;
1120 	    _M_rehash_policy = __ht._M_rehash_policy;
1121 	    __reuse_or_alloc_node_gen_t __roan(_M_begin(), *this);
1122 	    _M_before_begin._M_nxt = nullptr;
1123 	    _M_assign(std::forward<_Ht>(__ht), __roan);
1124 	    if (__former_buckets)
1125 	      _M_deallocate_buckets(__former_buckets, __former_bucket_count);
1126 	  }
1127 	__catch(...)
1128 	  {
1129 	    if (__former_buckets)
1130 	      {
1131 		// Restore previous buckets.
1132 		_M_deallocate_buckets();
1133 		_M_rehash_policy._M_reset(__former_state);
1134 		_M_buckets = __former_buckets;
1135 		_M_bucket_count = __former_bucket_count;
1136 	      }
1137 	    __builtin_memset(_M_buckets, 0,
1138 			     _M_bucket_count * sizeof(__bucket_type));
1139 	    __throw_exception_again;
1140 	  }
1141       }
1142 
1143   template<typename _Key, typename _Value,
1144 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1145 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1146 	   typename _Traits>
1147     template<typename _Ht, typename _NodeGenerator>
1148       void
1149       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1150 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1151       _M_assign(_Ht&& __ht, const _NodeGenerator& __node_gen)
1152       {
1153 	__bucket_type* __buckets = nullptr;
1154 	if (!_M_buckets)
1155 	  _M_buckets = __buckets = _M_allocate_buckets(_M_bucket_count);
1156 
1157 	__try
1158 	  {
1159 	    if (!__ht._M_before_begin._M_nxt)
1160 	      return;
1161 
1162 	    // First deal with the special first node pointed to by
1163 	    // _M_before_begin.
1164 	    __node_type* __ht_n = __ht._M_begin();
1165 	    __node_type* __this_n
1166 	      = __node_gen(__fwd_value_for<_Ht>(__ht_n->_M_v()));
1167 	    this->_M_copy_code(__this_n, __ht_n);
1168 	    _M_before_begin._M_nxt = __this_n;
1169 	    _M_buckets[_M_bucket_index(__this_n)] = &_M_before_begin;
1170 
1171 	    // Then deal with other nodes.
1172 	    __node_base* __prev_n = __this_n;
1173 	    for (__ht_n = __ht_n->_M_next(); __ht_n; __ht_n = __ht_n->_M_next())
1174 	      {
1175 		__this_n = __node_gen(__fwd_value_for<_Ht>(__ht_n->_M_v()));
1176 		__prev_n->_M_nxt = __this_n;
1177 		this->_M_copy_code(__this_n, __ht_n);
1178 		size_type __bkt = _M_bucket_index(__this_n);
1179 		if (!_M_buckets[__bkt])
1180 		  _M_buckets[__bkt] = __prev_n;
1181 		__prev_n = __this_n;
1182 	      }
1183 	  }
1184 	__catch(...)
1185 	  {
1186 	    clear();
1187 	    if (__buckets)
1188 	      _M_deallocate_buckets();
1189 	    __throw_exception_again;
1190 	  }
1191       }
1192 
1193   template<typename _Key, typename _Value,
1194 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1195 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1196 	   typename _Traits>
1197     void
1198     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1199 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1200     _M_reset() noexcept
1201     {
1202       _M_rehash_policy._M_reset();
1203       _M_bucket_count = 1;
1204       _M_single_bucket = nullptr;
1205       _M_buckets = &_M_single_bucket;
1206       _M_before_begin._M_nxt = nullptr;
1207       _M_element_count = 0;
1208     }
1209 
1210   template<typename _Key, typename _Value,
1211 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1212 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1213 	   typename _Traits>
1214     void
1215     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1216 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1217     _M_move_assign(_Hashtable&& __ht, true_type)
1218     {
1219       this->_M_deallocate_nodes(_M_begin());
1220       _M_deallocate_buckets();
1221       __hashtable_base::operator=(std::move(__ht));
1222       _M_rehash_policy = __ht._M_rehash_policy;
1223       if (!__ht._M_uses_single_bucket())
1224 	_M_buckets = __ht._M_buckets;
1225       else
1226 	{
1227 	  _M_buckets = &_M_single_bucket;
1228 	  _M_single_bucket = __ht._M_single_bucket;
1229 	}
1230       _M_bucket_count = __ht._M_bucket_count;
1231       _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1232       _M_element_count = __ht._M_element_count;
1233       std::__alloc_on_move(this->_M_node_allocator(), __ht._M_node_allocator());
1234 
1235       // Fix buckets containing the _M_before_begin pointers that can't be
1236       // moved.
1237       if (_M_begin())
1238 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1239       __ht._M_reset();
1240     }
1241 
1242   template<typename _Key, typename _Value,
1243 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1244 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1245 	   typename _Traits>
1246     void
1247     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1248 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1249     _M_move_assign(_Hashtable&& __ht, false_type)
1250     {
1251       if (__ht._M_node_allocator() == this->_M_node_allocator())
1252 	_M_move_assign(std::move(__ht), true_type());
1253       else
1254 	{
1255 	  // Can't move memory, move elements then.
1256 	  _M_assign_elements(std::move(__ht));
1257 	  __ht.clear();
1258 	}
1259     }
1260 
1261   template<typename _Key, typename _Value,
1262 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1263 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1264 	   typename _Traits>
1265     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1266 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1267     _Hashtable(const _Hashtable& __ht)
1268     : __hashtable_base(__ht),
1269       __map_base(__ht),
1270       __rehash_base(__ht),
1271       __hashtable_alloc(
1272 	__node_alloc_traits::_S_select_on_copy(__ht._M_node_allocator())),
1273       _M_buckets(nullptr),
1274       _M_bucket_count(__ht._M_bucket_count),
1275       _M_element_count(__ht._M_element_count),
1276       _M_rehash_policy(__ht._M_rehash_policy)
1277     {
1278       __alloc_node_gen_t __alloc_node_gen(*this);
1279       _M_assign(__ht, __alloc_node_gen);
1280     }
1281 
1282   template<typename _Key, typename _Value,
1283 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1284 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1285 	   typename _Traits>
1286     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1287 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1288     _Hashtable(_Hashtable&& __ht) noexcept
1289     : __hashtable_base(__ht),
1290       __map_base(__ht),
1291       __rehash_base(__ht),
1292       __hashtable_alloc(std::move(__ht._M_base_alloc())),
1293       _M_buckets(__ht._M_buckets),
1294       _M_bucket_count(__ht._M_bucket_count),
1295       _M_before_begin(__ht._M_before_begin._M_nxt),
1296       _M_element_count(__ht._M_element_count),
1297       _M_rehash_policy(__ht._M_rehash_policy)
1298     {
1299       // Update, if necessary, buckets if __ht is using its single bucket.
1300       if (__ht._M_uses_single_bucket())
1301 	{
1302 	  _M_buckets = &_M_single_bucket;
1303 	  _M_single_bucket = __ht._M_single_bucket;
1304 	}
1305 
1306       // Update, if necessary, bucket pointing to before begin that hasn't
1307       // moved.
1308       if (_M_begin())
1309 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1310 
1311       __ht._M_reset();
1312     }
1313 
1314   template<typename _Key, typename _Value,
1315 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1316 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1317 	   typename _Traits>
1318     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1319 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1320     _Hashtable(const _Hashtable& __ht, const allocator_type& __a)
1321     : __hashtable_base(__ht),
1322       __map_base(__ht),
1323       __rehash_base(__ht),
1324       __hashtable_alloc(__node_alloc_type(__a)),
1325       _M_buckets(),
1326       _M_bucket_count(__ht._M_bucket_count),
1327       _M_element_count(__ht._M_element_count),
1328       _M_rehash_policy(__ht._M_rehash_policy)
1329     {
1330       __alloc_node_gen_t __alloc_node_gen(*this);
1331       _M_assign(__ht, __alloc_node_gen);
1332     }
1333 
1334   template<typename _Key, typename _Value,
1335 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1336 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1337 	   typename _Traits>
1338     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1339 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1340     _Hashtable(_Hashtable&& __ht, const allocator_type& __a)
1341     : __hashtable_base(__ht),
1342       __map_base(__ht),
1343       __rehash_base(__ht),
1344       __hashtable_alloc(__node_alloc_type(__a)),
1345       _M_buckets(nullptr),
1346       _M_bucket_count(__ht._M_bucket_count),
1347       _M_element_count(__ht._M_element_count),
1348       _M_rehash_policy(__ht._M_rehash_policy)
1349     {
1350       if (__ht._M_node_allocator() == this->_M_node_allocator())
1351 	{
1352 	  if (__ht._M_uses_single_bucket())
1353 	    {
1354 	      _M_buckets = &_M_single_bucket;
1355 	      _M_single_bucket = __ht._M_single_bucket;
1356 	    }
1357 	  else
1358 	    _M_buckets = __ht._M_buckets;
1359 
1360 	  _M_before_begin._M_nxt = __ht._M_before_begin._M_nxt;
1361 	  // Update, if necessary, bucket pointing to before begin that hasn't
1362 	  // moved.
1363 	  if (_M_begin())
1364 	    _M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1365 	  __ht._M_reset();
1366 	}
1367       else
1368 	{
1369 	  __alloc_node_gen_t __alloc_gen(*this);
1370 
1371 	  using _Fwd_Ht = typename
1372 	    conditional<__move_if_noexcept_cond<value_type>::value,
1373 			const _Hashtable&, _Hashtable&&>::type;
1374 	  _M_assign(std::forward<_Fwd_Ht>(__ht), __alloc_gen);
1375 	  __ht.clear();
1376 	}
1377     }
1378 
1379   template<typename _Key, typename _Value,
1380 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1381 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1382 	   typename _Traits>
1383     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1384 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1385     ~_Hashtable() noexcept
1386     {
1387       clear();
1388       _M_deallocate_buckets();
1389     }
1390 
1391   template<typename _Key, typename _Value,
1392 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1393 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1394 	   typename _Traits>
1395     void
1396     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1397 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1398     swap(_Hashtable& __x)
1399     noexcept(__and_<__is_nothrow_swappable<_H1>,
1400 	                __is_nothrow_swappable<_Equal>>::value)
1401     {
1402       // The only base class with member variables is hash_code_base.
1403       // We define _Hash_code_base::_M_swap because different
1404       // specializations have different members.
1405       this->_M_swap(__x);
1406 
1407       std::__alloc_on_swap(this->_M_node_allocator(), __x._M_node_allocator());
1408       std::swap(_M_rehash_policy, __x._M_rehash_policy);
1409 
1410       // Deal properly with potentially moved instances.
1411       if (this->_M_uses_single_bucket())
1412 	{
1413 	  if (!__x._M_uses_single_bucket())
1414 	    {
1415 	      _M_buckets = __x._M_buckets;
1416 	      __x._M_buckets = &__x._M_single_bucket;
1417 	    }
1418 	}
1419       else if (__x._M_uses_single_bucket())
1420 	{
1421 	  __x._M_buckets = _M_buckets;
1422 	  _M_buckets = &_M_single_bucket;
1423 	}
1424       else
1425 	std::swap(_M_buckets, __x._M_buckets);
1426 
1427       std::swap(_M_bucket_count, __x._M_bucket_count);
1428       std::swap(_M_before_begin._M_nxt, __x._M_before_begin._M_nxt);
1429       std::swap(_M_element_count, __x._M_element_count);
1430       std::swap(_M_single_bucket, __x._M_single_bucket);
1431 
1432       // Fix buckets containing the _M_before_begin pointers that can't be
1433       // swapped.
1434       if (_M_begin())
1435 	_M_buckets[_M_bucket_index(_M_begin())] = &_M_before_begin;
1436 
1437       if (__x._M_begin())
1438 	__x._M_buckets[__x._M_bucket_index(__x._M_begin())]
1439 	  = &__x._M_before_begin;
1440     }
1441 
1442   template<typename _Key, typename _Value,
1443 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1444 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1445 	   typename _Traits>
1446     auto
1447     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1448 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1449     find(const key_type& __k)
1450     -> iterator
1451     {
1452       __hash_code __code = this->_M_hash_code(__k);
1453       std::size_t __bkt = _M_bucket_index(__k, __code);
1454       __node_type* __p = _M_find_node(__bkt, __k, __code);
1455       return __p ? iterator(__p) : end();
1456     }
1457 
1458   template<typename _Key, typename _Value,
1459 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1460 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1461 	   typename _Traits>
1462     auto
1463     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1464 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1465     find(const key_type& __k) const
1466     -> const_iterator
1467     {
1468       __hash_code __code = this->_M_hash_code(__k);
1469       std::size_t __bkt = _M_bucket_index(__k, __code);
1470       __node_type* __p = _M_find_node(__bkt, __k, __code);
1471       return __p ? const_iterator(__p) : end();
1472     }
1473 
1474   template<typename _Key, typename _Value,
1475 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1476 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1477 	   typename _Traits>
1478     auto
1479     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1480 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1481     count(const key_type& __k) const
1482     -> size_type
1483     {
1484       __hash_code __code = this->_M_hash_code(__k);
1485       std::size_t __bkt = _M_bucket_index(__k, __code);
1486       __node_type* __p = _M_bucket_begin(__bkt);
1487       if (!__p)
1488 	return 0;
1489 
1490       std::size_t __result = 0;
1491       for (;; __p = __p->_M_next())
1492 	{
1493 	  if (this->_M_equals(__k, __code, __p))
1494 	    ++__result;
1495 	  else if (__result)
1496 	    // All equivalent values are next to each other, if we
1497 	    // found a non-equivalent value after an equivalent one it
1498 	    // means that we won't find any new equivalent value.
1499 	    break;
1500 	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __bkt)
1501 	    break;
1502 	}
1503       return __result;
1504     }
1505 
1506   template<typename _Key, typename _Value,
1507 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1508 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1509 	   typename _Traits>
1510     auto
1511     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1512 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1513     equal_range(const key_type& __k)
1514     -> pair<iterator, iterator>
1515     {
1516       __hash_code __code = this->_M_hash_code(__k);
1517       std::size_t __bkt = _M_bucket_index(__k, __code);
1518       __node_type* __p = _M_find_node(__bkt, __k, __code);
1519 
1520       if (__p)
1521 	{
1522 	  __node_type* __p1 = __p->_M_next();
1523 	  while (__p1 && _M_bucket_index(__p1) == __bkt
1524 		 && this->_M_equals(__k, __code, __p1))
1525 	    __p1 = __p1->_M_next();
1526 
1527 	  return std::make_pair(iterator(__p), iterator(__p1));
1528 	}
1529       else
1530 	return std::make_pair(end(), end());
1531     }
1532 
1533   template<typename _Key, typename _Value,
1534 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1535 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1536 	   typename _Traits>
1537     auto
1538     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1539 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1540     equal_range(const key_type& __k) const
1541     -> pair<const_iterator, const_iterator>
1542     {
1543       __hash_code __code = this->_M_hash_code(__k);
1544       std::size_t __bkt = _M_bucket_index(__k, __code);
1545       __node_type* __p = _M_find_node(__bkt, __k, __code);
1546 
1547       if (__p)
1548 	{
1549 	  __node_type* __p1 = __p->_M_next();
1550 	  while (__p1 && _M_bucket_index(__p1) == __bkt
1551 		 && this->_M_equals(__k, __code, __p1))
1552 	    __p1 = __p1->_M_next();
1553 
1554 	  return std::make_pair(const_iterator(__p), const_iterator(__p1));
1555 	}
1556       else
1557 	return std::make_pair(end(), end());
1558     }
1559 
1560   // Find the node whose key compares equal to k in the bucket bkt.
1561   // Return nullptr if no node is found.
1562   template<typename _Key, typename _Value,
1563 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1564 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1565 	   typename _Traits>
1566     auto
1567     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1568 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1569     _M_find_before_node(size_type __bkt, const key_type& __k,
1570 			__hash_code __code) const
1571     -> __node_base*
1572     {
1573       __node_base* __prev_p = _M_buckets[__bkt];
1574       if (!__prev_p)
1575 	return nullptr;
1576 
1577       for (__node_type* __p = static_cast<__node_type*>(__prev_p->_M_nxt);;
1578 	   __p = __p->_M_next())
1579 	{
1580 	  if (this->_M_equals(__k, __code, __p))
1581 	    return __prev_p;
1582 
1583 	  if (!__p->_M_nxt || _M_bucket_index(__p->_M_next()) != __bkt)
1584 	    break;
1585 	  __prev_p = __p;
1586 	}
1587       return nullptr;
1588     }
1589 
1590   template<typename _Key, typename _Value,
1591 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1592 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1593 	   typename _Traits>
1594     void
1595     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1596 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1597     _M_insert_bucket_begin(size_type __bkt, __node_type* __node)
1598     {
1599       if (_M_buckets[__bkt])
1600 	{
1601 	  // Bucket is not empty, we just need to insert the new node
1602 	  // after the bucket before begin.
1603 	  __node->_M_nxt = _M_buckets[__bkt]->_M_nxt;
1604 	  _M_buckets[__bkt]->_M_nxt = __node;
1605 	}
1606       else
1607 	{
1608 	  // The bucket is empty, the new node is inserted at the
1609 	  // beginning of the singly-linked list and the bucket will
1610 	  // contain _M_before_begin pointer.
1611 	  __node->_M_nxt = _M_before_begin._M_nxt;
1612 	  _M_before_begin._M_nxt = __node;
1613 	  if (__node->_M_nxt)
1614 	    // We must update former begin bucket that is pointing to
1615 	    // _M_before_begin.
1616 	    _M_buckets[_M_bucket_index(__node->_M_next())] = __node;
1617 	  _M_buckets[__bkt] = &_M_before_begin;
1618 	}
1619     }
1620 
1621   template<typename _Key, typename _Value,
1622 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1623 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1624 	   typename _Traits>
1625     void
1626     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1627 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1628     _M_remove_bucket_begin(size_type __bkt, __node_type* __next,
1629 			   size_type __next_bkt)
1630     {
1631       if (!__next || __next_bkt != __bkt)
1632 	{
1633 	  // Bucket is now empty
1634 	  // First update next bucket if any
1635 	  if (__next)
1636 	    _M_buckets[__next_bkt] = _M_buckets[__bkt];
1637 
1638 	  // Second update before begin node if necessary
1639 	  if (&_M_before_begin == _M_buckets[__bkt])
1640 	    _M_before_begin._M_nxt = __next;
1641 	  _M_buckets[__bkt] = nullptr;
1642 	}
1643     }
1644 
1645   template<typename _Key, typename _Value,
1646 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1647 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1648 	   typename _Traits>
1649     auto
1650     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1651 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1652     _M_get_previous_node(size_type __bkt, __node_base* __n)
1653     -> __node_base*
1654     {
1655       __node_base* __prev_n = _M_buckets[__bkt];
1656       while (__prev_n->_M_nxt != __n)
1657 	__prev_n = __prev_n->_M_nxt;
1658       return __prev_n;
1659     }
1660 
1661   template<typename _Key, typename _Value,
1662 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1663 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1664 	   typename _Traits>
1665     template<typename... _Args>
1666       auto
1667       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1668 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1669       _M_emplace(true_type, _Args&&... __args)
1670       -> pair<iterator, bool>
1671       {
1672 	// First build the node to get access to the hash code
1673 	_Scoped_node __node { this, std::forward<_Args>(__args)...  };
1674 	const key_type& __k = this->_M_extract()(__node._M_node->_M_v());
1675 	__hash_code __code = this->_M_hash_code(__k);
1676 	size_type __bkt = _M_bucket_index(__k, __code);
1677 	if (__node_type* __p = _M_find_node(__bkt, __k, __code))
1678 	  // There is already an equivalent node, no insertion
1679 	  return std::make_pair(iterator(__p), false);
1680 
1681 	// Insert the node
1682 	auto __pos = _M_insert_unique_node(__k, __bkt, __code, __node._M_node);
1683 	__node._M_node = nullptr;
1684 	return { __pos, true };
1685       }
1686 
1687   template<typename _Key, typename _Value,
1688 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1689 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1690 	   typename _Traits>
1691     template<typename... _Args>
1692       auto
1693       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1694 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1695       _M_emplace(const_iterator __hint, false_type, _Args&&... __args)
1696       -> iterator
1697       {
1698 	// First build the node to get its hash code.
1699 	_Scoped_node __node { this, std::forward<_Args>(__args)...  };
1700 	const key_type& __k = this->_M_extract()(__node._M_node->_M_v());
1701 
1702 	__hash_code __code = this->_M_hash_code(__k);
1703 	auto __pos
1704 	  = _M_insert_multi_node(__hint._M_cur, __k, __code, __node._M_node);
1705 	__node._M_node = nullptr;
1706 	return __pos;
1707       }
1708 
1709   template<typename _Key, typename _Value,
1710 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1711 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1712 	   typename _Traits>
1713     auto
1714     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1715 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1716     _M_insert_unique_node(const key_type& __k, size_type __bkt,
1717 			  __hash_code __code, __node_type* __node,
1718 			  size_type __n_elt)
1719     -> iterator
1720     {
1721       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1722       std::pair<bool, std::size_t> __do_rehash
1723 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count,
1724 					  __n_elt);
1725 
1726       if (__do_rehash.first)
1727 	{
1728 	  _M_rehash(__do_rehash.second, __saved_state);
1729 	  __bkt = _M_bucket_index(__k, __code);
1730 	}
1731 
1732       this->_M_store_code(__node, __code);
1733 
1734       // Always insert at the beginning of the bucket.
1735       _M_insert_bucket_begin(__bkt, __node);
1736       ++_M_element_count;
1737       return iterator(__node);
1738     }
1739 
1740   template<typename _Key, typename _Value,
1741 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1742 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1743 	   typename _Traits>
1744     auto
1745     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1746 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1747     _M_insert_multi_node(__node_type* __hint, const key_type& __k,
1748 			 __hash_code __code, __node_type* __node)
1749     -> iterator
1750     {
1751       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
1752       std::pair<bool, std::size_t> __do_rehash
1753 	= _M_rehash_policy._M_need_rehash(_M_bucket_count, _M_element_count, 1);
1754 
1755       if (__do_rehash.first)
1756 	_M_rehash(__do_rehash.second, __saved_state);
1757 
1758       this->_M_store_code(__node, __code);
1759       size_type __bkt = _M_bucket_index(__k, __code);
1760 
1761       // Find the node before an equivalent one or use hint if it exists and
1762       // if it is equivalent.
1763       __node_base* __prev
1764 	= __builtin_expect(__hint != nullptr, false)
1765 	  && this->_M_equals(__k, __code, __hint)
1766 	    ? __hint
1767 	    : _M_find_before_node(__bkt, __k, __code);
1768       if (__prev)
1769 	{
1770 	  // Insert after the node before the equivalent one.
1771 	  __node->_M_nxt = __prev->_M_nxt;
1772 	  __prev->_M_nxt = __node;
1773 	  if (__builtin_expect(__prev == __hint, false))
1774 	    // hint might be the last bucket node, in this case we need to
1775 	    // update next bucket.
1776 	    if (__node->_M_nxt
1777 		&& !this->_M_equals(__k, __code, __node->_M_next()))
1778 	      {
1779 		size_type __next_bkt = _M_bucket_index(__node->_M_next());
1780 		if (__next_bkt != __bkt)
1781 		  _M_buckets[__next_bkt] = __node;
1782 	      }
1783 	}
1784       else
1785 	// The inserted node has no equivalent in the hashtable. We must
1786 	// insert the new node at the beginning of the bucket to preserve
1787 	// equivalent elements' relative positions.
1788 	_M_insert_bucket_begin(__bkt, __node);
1789       ++_M_element_count;
1790       return iterator(__node);
1791     }
1792 
1793   // Insert v if no element with its key is already present.
1794   template<typename _Key, typename _Value,
1795 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1796 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1797 	   typename _Traits>
1798     template<typename _Arg, typename _NodeGenerator>
1799       auto
1800       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1801 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1802       _M_insert(_Arg&& __v, const _NodeGenerator& __node_gen, true_type,
1803 		size_type __n_elt)
1804       -> pair<iterator, bool>
1805       {
1806 	const key_type& __k = this->_M_extract()(__v);
1807 	__hash_code __code = this->_M_hash_code(__k);
1808 	size_type __bkt = _M_bucket_index(__k, __code);
1809 
1810 	if (__node_type* __node = _M_find_node(__bkt, __k, __code))
1811 	  return { iterator(__node), false };
1812 
1813 	_Scoped_node __node{ __node_gen(std::forward<_Arg>(__v)), this };
1814 	auto __pos
1815 	  = _M_insert_unique_node(__k, __bkt, __code, __node._M_node, __n_elt);
1816 	__node._M_node = nullptr;
1817 	return { __pos, true };
1818       }
1819 
1820   // Insert v unconditionally.
1821   template<typename _Key, typename _Value,
1822 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1823 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1824 	   typename _Traits>
1825     template<typename _Arg, typename _NodeGenerator>
1826       auto
1827       _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1828 		 _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1829       _M_insert(const_iterator __hint, _Arg&& __v,
1830 		const _NodeGenerator& __node_gen, false_type)
1831       -> iterator
1832       {
1833 	// First compute the hash code so that we don't do anything if it
1834 	// throws.
1835 	__hash_code __code = this->_M_hash_code(this->_M_extract()(__v));
1836 
1837 	// Second allocate new node so that we don't rehash if it throws.
1838 	_Scoped_node __node{ __node_gen(std::forward<_Arg>(__v)), this };
1839 	const key_type& __k = this->_M_extract()(__node._M_node->_M_v());
1840 	auto __pos
1841 	  = _M_insert_multi_node(__hint._M_cur, __k, __code, __node._M_node);
1842 	__node._M_node = nullptr;
1843 	return __pos;
1844       }
1845 
1846   template<typename _Key, typename _Value,
1847 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1848 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1849 	   typename _Traits>
1850     auto
1851     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1852 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1853     erase(const_iterator __it)
1854     -> iterator
1855     {
1856       __node_type* __n = __it._M_cur;
1857       std::size_t __bkt = _M_bucket_index(__n);
1858 
1859       // Look for previous node to unlink it from the erased one, this
1860       // is why we need buckets to contain the before begin to make
1861       // this search fast.
1862       __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1863       return _M_erase(__bkt, __prev_n, __n);
1864     }
1865 
1866   template<typename _Key, typename _Value,
1867 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1868 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1869 	   typename _Traits>
1870     auto
1871     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1872 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1873     _M_erase(size_type __bkt, __node_base* __prev_n, __node_type* __n)
1874     -> iterator
1875     {
1876       if (__prev_n == _M_buckets[__bkt])
1877 	_M_remove_bucket_begin(__bkt, __n->_M_next(),
1878 	   __n->_M_nxt ? _M_bucket_index(__n->_M_next()) : 0);
1879       else if (__n->_M_nxt)
1880 	{
1881 	  size_type __next_bkt = _M_bucket_index(__n->_M_next());
1882 	  if (__next_bkt != __bkt)
1883 	    _M_buckets[__next_bkt] = __prev_n;
1884 	}
1885 
1886       __prev_n->_M_nxt = __n->_M_nxt;
1887       iterator __result(__n->_M_next());
1888       this->_M_deallocate_node(__n);
1889       --_M_element_count;
1890 
1891       return __result;
1892     }
1893 
1894   template<typename _Key, typename _Value,
1895 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1896 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1897 	   typename _Traits>
1898     auto
1899     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1900 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1901     _M_erase(true_type, const key_type& __k)
1902     -> size_type
1903     {
1904       __hash_code __code = this->_M_hash_code(__k);
1905       std::size_t __bkt = _M_bucket_index(__k, __code);
1906 
1907       // Look for the node before the first matching node.
1908       __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1909       if (!__prev_n)
1910 	return 0;
1911 
1912       // We found a matching node, erase it.
1913       __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1914       _M_erase(__bkt, __prev_n, __n);
1915       return 1;
1916     }
1917 
1918   template<typename _Key, typename _Value,
1919 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1920 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1921 	   typename _Traits>
1922     auto
1923     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1924 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1925     _M_erase(false_type, const key_type& __k)
1926     -> size_type
1927     {
1928       __hash_code __code = this->_M_hash_code(__k);
1929       std::size_t __bkt = _M_bucket_index(__k, __code);
1930 
1931       // Look for the node before the first matching node.
1932       __node_base* __prev_n = _M_find_before_node(__bkt, __k, __code);
1933       if (!__prev_n)
1934 	return 0;
1935 
1936       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1937       // 526. Is it undefined if a function in the standard changes
1938       // in parameters?
1939       // We use one loop to find all matching nodes and another to deallocate
1940       // them so that the key stays valid during the first loop. It might be
1941       // invalidated indirectly when destroying nodes.
1942       __node_type* __n = static_cast<__node_type*>(__prev_n->_M_nxt);
1943       __node_type* __n_last = __n;
1944       std::size_t __n_last_bkt = __bkt;
1945       do
1946 	{
1947 	  __n_last = __n_last->_M_next();
1948 	  if (!__n_last)
1949 	    break;
1950 	  __n_last_bkt = _M_bucket_index(__n_last);
1951 	}
1952       while (__n_last_bkt == __bkt && this->_M_equals(__k, __code, __n_last));
1953 
1954       // Deallocate nodes.
1955       size_type __result = 0;
1956       do
1957 	{
1958 	  __node_type* __p = __n->_M_next();
1959 	  this->_M_deallocate_node(__n);
1960 	  __n = __p;
1961 	  ++__result;
1962 	  --_M_element_count;
1963 	}
1964       while (__n != __n_last);
1965 
1966       if (__prev_n == _M_buckets[__bkt])
1967 	_M_remove_bucket_begin(__bkt, __n_last, __n_last_bkt);
1968       else if (__n_last && __n_last_bkt != __bkt)
1969 	_M_buckets[__n_last_bkt] = __prev_n;
1970       __prev_n->_M_nxt = __n_last;
1971       return __result;
1972     }
1973 
1974   template<typename _Key, typename _Value,
1975 	   typename _Alloc, typename _ExtractKey, typename _Equal,
1976 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1977 	   typename _Traits>
1978     auto
1979     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1980 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
1981     erase(const_iterator __first, const_iterator __last)
1982     -> iterator
1983     {
1984       __node_type* __n = __first._M_cur;
1985       __node_type* __last_n = __last._M_cur;
1986       if (__n == __last_n)
1987 	return iterator(__n);
1988 
1989       std::size_t __bkt = _M_bucket_index(__n);
1990 
1991       __node_base* __prev_n = _M_get_previous_node(__bkt, __n);
1992       bool __is_bucket_begin = __n == _M_bucket_begin(__bkt);
1993       std::size_t __n_bkt = __bkt;
1994       for (;;)
1995 	{
1996 	  do
1997 	    {
1998 	      __node_type* __tmp = __n;
1999 	      __n = __n->_M_next();
2000 	      this->_M_deallocate_node(__tmp);
2001 	      --_M_element_count;
2002 	      if (!__n)
2003 		break;
2004 	      __n_bkt = _M_bucket_index(__n);
2005 	    }
2006 	  while (__n != __last_n && __n_bkt == __bkt);
2007 	  if (__is_bucket_begin)
2008 	    _M_remove_bucket_begin(__bkt, __n, __n_bkt);
2009 	  if (__n == __last_n)
2010 	    break;
2011 	  __is_bucket_begin = true;
2012 	  __bkt = __n_bkt;
2013 	}
2014 
2015       if (__n && (__n_bkt != __bkt || __is_bucket_begin))
2016 	_M_buckets[__n_bkt] = __prev_n;
2017       __prev_n->_M_nxt = __n;
2018       return iterator(__n);
2019     }
2020 
2021   template<typename _Key, typename _Value,
2022 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2023 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2024 	   typename _Traits>
2025     void
2026     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2027 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2028     clear() noexcept
2029     {
2030       this->_M_deallocate_nodes(_M_begin());
2031       __builtin_memset(_M_buckets, 0, _M_bucket_count * sizeof(__bucket_type));
2032       _M_element_count = 0;
2033       _M_before_begin._M_nxt = nullptr;
2034     }
2035 
2036   template<typename _Key, typename _Value,
2037 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2038 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2039 	   typename _Traits>
2040     void
2041     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2042 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2043     rehash(size_type __bkt_count)
2044     {
2045       const __rehash_state& __saved_state = _M_rehash_policy._M_state();
2046       __bkt_count
2047 	= std::max(_M_rehash_policy._M_bkt_for_elements(_M_element_count + 1),
2048 		   __bkt_count);
2049       __bkt_count = _M_rehash_policy._M_next_bkt(__bkt_count);
2050 
2051       if (__bkt_count != _M_bucket_count)
2052 	_M_rehash(__bkt_count, __saved_state);
2053       else
2054 	// No rehash, restore previous state to keep it consistent with
2055 	// container state.
2056 	_M_rehash_policy._M_reset(__saved_state);
2057     }
2058 
2059   template<typename _Key, typename _Value,
2060 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2061 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2062 	   typename _Traits>
2063     void
2064     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2065 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2066     _M_rehash(size_type __bkt_count, const __rehash_state& __state)
2067     {
2068       __try
2069 	{
2070 	  _M_rehash_aux(__bkt_count, __unique_keys());
2071 	}
2072       __catch(...)
2073 	{
2074 	  // A failure here means that buckets allocation failed.  We only
2075 	  // have to restore hash policy previous state.
2076 	  _M_rehash_policy._M_reset(__state);
2077 	  __throw_exception_again;
2078 	}
2079     }
2080 
2081   // Rehash when there is no equivalent elements.
2082   template<typename _Key, typename _Value,
2083 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2084 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2085 	   typename _Traits>
2086     void
2087     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2088 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2089     _M_rehash_aux(size_type __bkt_count, true_type)
2090     {
2091       __bucket_type* __new_buckets = _M_allocate_buckets(__bkt_count);
2092       __node_type* __p = _M_begin();
2093       _M_before_begin._M_nxt = nullptr;
2094       std::size_t __bbegin_bkt = 0;
2095       while (__p)
2096 	{
2097 	  __node_type* __next = __p->_M_next();
2098 	  std::size_t __bkt
2099 	    = __hash_code_base::_M_bucket_index(__p, __bkt_count);
2100 	  if (!__new_buckets[__bkt])
2101 	    {
2102 	      __p->_M_nxt = _M_before_begin._M_nxt;
2103 	      _M_before_begin._M_nxt = __p;
2104 	      __new_buckets[__bkt] = &_M_before_begin;
2105 	      if (__p->_M_nxt)
2106 		__new_buckets[__bbegin_bkt] = __p;
2107 	      __bbegin_bkt = __bkt;
2108 	    }
2109 	  else
2110 	    {
2111 	      __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2112 	      __new_buckets[__bkt]->_M_nxt = __p;
2113 	    }
2114 	  __p = __next;
2115 	}
2116 
2117       _M_deallocate_buckets();
2118       _M_bucket_count = __bkt_count;
2119       _M_buckets = __new_buckets;
2120     }
2121 
2122   // Rehash when there can be equivalent elements, preserve their relative
2123   // order.
2124   template<typename _Key, typename _Value,
2125 	   typename _Alloc, typename _ExtractKey, typename _Equal,
2126 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
2127 	   typename _Traits>
2128     void
2129     _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
2130 	       _H1, _H2, _Hash, _RehashPolicy, _Traits>::
2131     _M_rehash_aux(size_type __bkt_count, false_type)
2132     {
2133       __bucket_type* __new_buckets = _M_allocate_buckets(__bkt_count);
2134 
2135       __node_type* __p = _M_begin();
2136       _M_before_begin._M_nxt = nullptr;
2137       std::size_t __bbegin_bkt = 0;
2138       std::size_t __prev_bkt = 0;
2139       __node_type* __prev_p = nullptr;
2140       bool __check_bucket = false;
2141 
2142       while (__p)
2143 	{
2144 	  __node_type* __next = __p->_M_next();
2145 	  std::size_t __bkt
2146 	    = __hash_code_base::_M_bucket_index(__p, __bkt_count);
2147 
2148 	  if (__prev_p && __prev_bkt == __bkt)
2149 	    {
2150 	      // Previous insert was already in this bucket, we insert after
2151 	      // the previously inserted one to preserve equivalent elements
2152 	      // relative order.
2153 	      __p->_M_nxt = __prev_p->_M_nxt;
2154 	      __prev_p->_M_nxt = __p;
2155 
2156 	      // Inserting after a node in a bucket require to check that we
2157 	      // haven't change the bucket last node, in this case next
2158 	      // bucket containing its before begin node must be updated. We
2159 	      // schedule a check as soon as we move out of the sequence of
2160 	      // equivalent nodes to limit the number of checks.
2161 	      __check_bucket = true;
2162 	    }
2163 	  else
2164 	    {
2165 	      if (__check_bucket)
2166 		{
2167 		  // Check if we shall update the next bucket because of
2168 		  // insertions into __prev_bkt bucket.
2169 		  if (__prev_p->_M_nxt)
2170 		    {
2171 		      std::size_t __next_bkt
2172 			= __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2173 							    __bkt_count);
2174 		      if (__next_bkt != __prev_bkt)
2175 			__new_buckets[__next_bkt] = __prev_p;
2176 		    }
2177 		  __check_bucket = false;
2178 		}
2179 
2180 	      if (!__new_buckets[__bkt])
2181 		{
2182 		  __p->_M_nxt = _M_before_begin._M_nxt;
2183 		  _M_before_begin._M_nxt = __p;
2184 		  __new_buckets[__bkt] = &_M_before_begin;
2185 		  if (__p->_M_nxt)
2186 		    __new_buckets[__bbegin_bkt] = __p;
2187 		  __bbegin_bkt = __bkt;
2188 		}
2189 	      else
2190 		{
2191 		  __p->_M_nxt = __new_buckets[__bkt]->_M_nxt;
2192 		  __new_buckets[__bkt]->_M_nxt = __p;
2193 		}
2194 	    }
2195 	  __prev_p = __p;
2196 	  __prev_bkt = __bkt;
2197 	  __p = __next;
2198 	}
2199 
2200       if (__check_bucket && __prev_p->_M_nxt)
2201 	{
2202 	  std::size_t __next_bkt
2203 	    = __hash_code_base::_M_bucket_index(__prev_p->_M_next(),
2204 						__bkt_count);
2205 	  if (__next_bkt != __prev_bkt)
2206 	    __new_buckets[__next_bkt] = __prev_p;
2207 	}
2208 
2209       _M_deallocate_buckets();
2210       _M_bucket_count = __bkt_count;
2211       _M_buckets = __new_buckets;
2212     }
2213 
2214 #if __cplusplus > 201402L
2215   template<typename, typename, typename> class _Hash_merge_helper { };
2216 #endif // C++17
2217 
2218 #if __cpp_deduction_guides >= 201606
2219   // Used to constrain deduction guides
2220   template<typename _Hash>
2221     using _RequireNotAllocatorOrIntegral
2222       = __enable_if_t<!__or_<is_integral<_Hash>, __is_allocator<_Hash>>::value>;
2223 #endif
2224 
2225 _GLIBCXX_END_NAMESPACE_VERSION
2226 } // namespace std
2227 
2228 #endif // _HASHTABLE_H
2229