xref: /netbsd-src/external/gpl3/gcc/dist/libsanitizer/sanitizer_common/sanitizer_allocator.h (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 //===-- sanitizer_allocator.h -----------------------------------*- C++ -*-===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // Specialized memory allocator for ThreadSanitizer, MemorySanitizer, etc.
9 //
10 //===----------------------------------------------------------------------===//
11 
12 #ifndef SANITIZER_ALLOCATOR_H
13 #define SANITIZER_ALLOCATOR_H
14 
15 #include "sanitizer_internal_defs.h"
16 #include "sanitizer_common.h"
17 #include "sanitizer_libc.h"
18 #include "sanitizer_list.h"
19 #include "sanitizer_mutex.h"
20 #include "sanitizer_lfstack.h"
21 
22 namespace __sanitizer {
23 
24 // SizeClassMap maps allocation sizes into size classes and back.
25 // Class 0 corresponds to size 0.
26 // Classes 1 - 16 correspond to sizes 16 to 256 (size = class_id * 16).
27 // Next 8 classes: 256 + i * 32 (i = 1 to 8).
28 // Next 8 classes: 512 + i * 64 (i = 1 to 8).
29 // ...
30 // Next 8 classes: 2^k + i * 2^(k-3) (i = 1 to 8).
31 // Last class corresponds to kMaxSize = 1 << kMaxSizeLog.
32 //
33 // This structure of the size class map gives us:
34 //   - Efficient table-free class-to-size and size-to-class functions.
35 //   - Difference between two consequent size classes is betweed 12% and 6%
36 //
37 // This class also gives a hint to a thread-caching allocator about the amount
38 // of chunks that need to be cached per-thread:
39 //  - kMaxNumCached is the maximal number of chunks per size class.
40 //  - (1 << kMaxBytesCachedLog) is the maximal number of bytes per size class.
41 //
42 // Part of output of SizeClassMap::Print():
43 // c00 => s: 0 diff: +0 00% l 0 cached: 0 0; id 0
44 // c01 => s: 16 diff: +16 00% l 4 cached: 256 4096; id 1
45 // c02 => s: 32 diff: +16 100% l 5 cached: 256 8192; id 2
46 // c03 => s: 48 diff: +16 50% l 5 cached: 256 12288; id 3
47 // c04 => s: 64 diff: +16 33% l 6 cached: 256 16384; id 4
48 // c05 => s: 80 diff: +16 25% l 6 cached: 256 20480; id 5
49 // c06 => s: 96 diff: +16 20% l 6 cached: 256 24576; id 6
50 // c07 => s: 112 diff: +16 16% l 6 cached: 256 28672; id 7
51 //
52 // c08 => s: 128 diff: +16 14% l 7 cached: 256 32768; id 8
53 // c09 => s: 144 diff: +16 12% l 7 cached: 256 36864; id 9
54 // c10 => s: 160 diff: +16 11% l 7 cached: 256 40960; id 10
55 // c11 => s: 176 diff: +16 10% l 7 cached: 256 45056; id 11
56 // c12 => s: 192 diff: +16 09% l 7 cached: 256 49152; id 12
57 // c13 => s: 208 diff: +16 08% l 7 cached: 256 53248; id 13
58 // c14 => s: 224 diff: +16 07% l 7 cached: 256 57344; id 14
59 // c15 => s: 240 diff: +16 07% l 7 cached: 256 61440; id 15
60 //
61 // c16 => s: 256 diff: +16 06% l 8 cached: 256 65536; id 16
62 // c17 => s: 288 diff: +32 12% l 8 cached: 227 65376; id 17
63 // c18 => s: 320 diff: +32 11% l 8 cached: 204 65280; id 18
64 // c19 => s: 352 diff: +32 10% l 8 cached: 186 65472; id 19
65 // c20 => s: 384 diff: +32 09% l 8 cached: 170 65280; id 20
66 // c21 => s: 416 diff: +32 08% l 8 cached: 157 65312; id 21
67 // c22 => s: 448 diff: +32 07% l 8 cached: 146 65408; id 22
68 // c23 => s: 480 diff: +32 07% l 8 cached: 136 65280; id 23
69 //
70 // c24 => s: 512 diff: +32 06% l 9 cached: 128 65536; id 24
71 // c25 => s: 576 diff: +64 12% l 9 cached: 113 65088; id 25
72 // c26 => s: 640 diff: +64 11% l 9 cached: 102 65280; id 26
73 // c27 => s: 704 diff: +64 10% l 9 cached: 93 65472; id 27
74 // c28 => s: 768 diff: +64 09% l 9 cached: 85 65280; id 28
75 // c29 => s: 832 diff: +64 08% l 9 cached: 78 64896; id 29
76 // c30 => s: 896 diff: +64 07% l 9 cached: 73 65408; id 30
77 // c31 => s: 960 diff: +64 07% l 9 cached: 68 65280; id 31
78 //
79 // c32 => s: 1024 diff: +64 06% l 10 cached: 64 65536; id 32
80 
81 template <uptr kMaxSizeLog, uptr kMaxNumCachedT, uptr kMaxBytesCachedLog,
82           uptr kMinBatchClassT>
83 class SizeClassMap {
84   static const uptr kMinSizeLog = 4;
85   static const uptr kMidSizeLog = kMinSizeLog + 4;
86   static const uptr kMinSize = 1 << kMinSizeLog;
87   static const uptr kMidSize = 1 << kMidSizeLog;
88   static const uptr kMidClass = kMidSize / kMinSize;
89   static const uptr S = 3;
90   static const uptr M = (1 << S) - 1;
91 
92  public:
93   static const uptr kMaxNumCached = kMaxNumCachedT;
94   struct TransferBatch {
95     TransferBatch *next;
96     uptr count;
97     void *batch[kMaxNumCached];
98   };
99 
100   static const uptr kMinBatchClass = kMinBatchClassT;
101   static const uptr kMaxSize = 1 << kMaxSizeLog;
102   static const uptr kNumClasses =
103       kMidClass + ((kMaxSizeLog - kMidSizeLog) << S) + 1;
104   COMPILER_CHECK(kNumClasses >= 32 && kNumClasses <= 256);
105   static const uptr kNumClassesRounded =
106       kNumClasses == 32  ? 32 :
107       kNumClasses <= 64  ? 64 :
108       kNumClasses <= 128 ? 128 : 256;
109 
110   static uptr Size(uptr class_id) {
111     if (class_id <= kMidClass)
112       return kMinSize * class_id;
113     class_id -= kMidClass;
114     uptr t = kMidSize << (class_id >> S);
115     return t + (t >> S) * (class_id & M);
116   }
117 
118   static uptr ClassID(uptr size) {
119     if (size <= kMidSize)
120       return (size + kMinSize - 1) >> kMinSizeLog;
121     if (size > kMaxSize) return 0;
122     uptr l = MostSignificantSetBitIndex(size);
123     uptr hbits = (size >> (l - S)) & M;
124     uptr lbits = size & ((1 << (l - S)) - 1);
125     uptr l1 = l - kMidSizeLog;
126     return kMidClass + (l1 << S) + hbits + (lbits > 0);
127   }
128 
129   static uptr MaxCached(uptr class_id) {
130     if (class_id == 0) return 0;
131     uptr n = (1UL << kMaxBytesCachedLog) / Size(class_id);
132     return Max<uptr>(1, Min(kMaxNumCached, n));
133   }
134 
135   static void Print() {
136     uptr prev_s = 0;
137     uptr total_cached = 0;
138     for (uptr i = 0; i < kNumClasses; i++) {
139       uptr s = Size(i);
140       if (s >= kMidSize / 2 && (s & (s - 1)) == 0)
141         Printf("\n");
142       uptr d = s - prev_s;
143       uptr p = prev_s ? (d * 100 / prev_s) : 0;
144       uptr l = MostSignificantSetBitIndex(s);
145       uptr cached = MaxCached(i) * s;
146       Printf("c%02zd => s: %zd diff: +%zd %02zd%% l %zd "
147              "cached: %zd %zd; id %zd\n",
148              i, Size(i), d, p, l, MaxCached(i), cached, ClassID(s));
149       total_cached += cached;
150       prev_s = s;
151     }
152     Printf("Total cached: %zd\n", total_cached);
153   }
154 
155   static void Validate() {
156     for (uptr c = 1; c < kNumClasses; c++) {
157       // Printf("Validate: c%zd\n", c);
158       uptr s = Size(c);
159       CHECK_EQ(ClassID(s), c);
160       if (c != kNumClasses - 1)
161         CHECK_EQ(ClassID(s + 1), c + 1);
162       CHECK_EQ(ClassID(s - 1), c);
163       if (c)
164         CHECK_GT(Size(c), Size(c-1));
165     }
166     CHECK_EQ(ClassID(kMaxSize + 1), 0);
167 
168     for (uptr s = 1; s <= kMaxSize; s++) {
169       uptr c = ClassID(s);
170       // Printf("s%zd => c%zd\n", s, c);
171       CHECK_LT(c, kNumClasses);
172       CHECK_GE(Size(c), s);
173       if (c > 0)
174         CHECK_LT(Size(c-1), s);
175     }
176 
177     // TransferBatch for kMinBatchClass must fit into the block itself.
178     const uptr batch_size = sizeof(TransferBatch)
179         - sizeof(void*)  // NOLINT
180             * (kMaxNumCached - MaxCached(kMinBatchClass));
181     CHECK_LE(batch_size, Size(kMinBatchClass));
182     // TransferBatch for kMinBatchClass-1 must not fit into the block itself.
183     const uptr batch_size1 = sizeof(TransferBatch)
184         - sizeof(void*)  // NOLINT
185             * (kMaxNumCached - MaxCached(kMinBatchClass - 1));
186     CHECK_GT(batch_size1, Size(kMinBatchClass - 1));
187   }
188 };
189 
190 typedef SizeClassMap<17, 256, 16, FIRST_32_SECOND_64(25, 28)>
191     DefaultSizeClassMap;
192 typedef SizeClassMap<17, 64, 14, FIRST_32_SECOND_64(17, 20)>
193     CompactSizeClassMap;
194 template<class SizeClassAllocator> struct SizeClassAllocatorLocalCache;
195 
196 // Memory allocator statistics
197 enum AllocatorStat {
198   AllocatorStatMalloced,
199   AllocatorStatFreed,
200   AllocatorStatMmapped,
201   AllocatorStatUnmapped,
202   AllocatorStatCount
203 };
204 
205 typedef u64 AllocatorStatCounters[AllocatorStatCount];
206 
207 // Per-thread stats, live in per-thread cache.
208 class AllocatorStats {
209  public:
210   void Init() {
211     internal_memset(this, 0, sizeof(*this));
212   }
213 
214   void Add(AllocatorStat i, u64 v) {
215     v += atomic_load(&stats_[i], memory_order_relaxed);
216     atomic_store(&stats_[i], v, memory_order_relaxed);
217   }
218 
219   void Set(AllocatorStat i, u64 v) {
220     atomic_store(&stats_[i], v, memory_order_relaxed);
221   }
222 
223   u64 Get(AllocatorStat i) const {
224     return atomic_load(&stats_[i], memory_order_relaxed);
225   }
226 
227  private:
228   friend class AllocatorGlobalStats;
229   AllocatorStats *next_;
230   AllocatorStats *prev_;
231   atomic_uint64_t stats_[AllocatorStatCount];
232 };
233 
234 // Global stats, used for aggregation and querying.
235 class AllocatorGlobalStats : public AllocatorStats {
236  public:
237   void Init() {
238     internal_memset(this, 0, sizeof(*this));
239     next_ = this;
240     prev_ = this;
241   }
242 
243   void Register(AllocatorStats *s) {
244     SpinMutexLock l(&mu_);
245     s->next_ = next_;
246     s->prev_ = this;
247     next_->prev_ = s;
248     next_ = s;
249   }
250 
251   void Unregister(AllocatorStats *s) {
252     SpinMutexLock l(&mu_);
253     s->prev_->next_ = s->next_;
254     s->next_->prev_ = s->prev_;
255     for (int i = 0; i < AllocatorStatCount; i++)
256       Add(AllocatorStat(i), s->Get(AllocatorStat(i)));
257   }
258 
259   void Get(AllocatorStatCounters s) const {
260     internal_memset(s, 0, AllocatorStatCount * sizeof(u64));
261     SpinMutexLock l(&mu_);
262     const AllocatorStats *stats = this;
263     for (;;) {
264       for (int i = 0; i < AllocatorStatCount; i++)
265         s[i] += stats->Get(AllocatorStat(i));
266       stats = stats->next_;
267       if (stats == this)
268         break;
269     }
270   }
271 
272  private:
273   mutable SpinMutex mu_;
274 };
275 
276 // Allocators call these callbacks on mmap/munmap.
277 struct NoOpMapUnmapCallback {
278   void OnMap(uptr p, uptr size) const { }
279   void OnUnmap(uptr p, uptr size) const { }
280 };
281 
282 // SizeClassAllocator64 -- allocator for 64-bit address space.
283 //
284 // Space: a portion of address space of kSpaceSize bytes starting at
285 // a fixed address (kSpaceBeg). Both constants are powers of two and
286 // kSpaceBeg is kSpaceSize-aligned.
287 // At the beginning the entire space is mprotect-ed, then small parts of it
288 // are mapped on demand.
289 //
290 // Region: a part of Space dedicated to a single size class.
291 // There are kNumClasses Regions of equal size.
292 //
293 // UserChunk: a piece of memory returned to user.
294 // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
295 //
296 // A Region looks like this:
297 // UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1
298 template <const uptr kSpaceBeg, const uptr kSpaceSize,
299           const uptr kMetadataSize, class SizeClassMap,
300           class MapUnmapCallback = NoOpMapUnmapCallback>
301 class SizeClassAllocator64 {
302  public:
303   typedef typename SizeClassMap::TransferBatch Batch;
304   typedef SizeClassAllocator64<kSpaceBeg, kSpaceSize, kMetadataSize,
305       SizeClassMap, MapUnmapCallback> ThisT;
306   typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
307 
308   void Init() {
309     CHECK_EQ(kSpaceBeg,
310              reinterpret_cast<uptr>(Mprotect(kSpaceBeg, kSpaceSize)));
311     MapWithCallback(kSpaceEnd, AdditionalSize());
312   }
313 
314   void MapWithCallback(uptr beg, uptr size) {
315     CHECK_EQ(beg, reinterpret_cast<uptr>(MmapFixedOrDie(beg, size)));
316     MapUnmapCallback().OnMap(beg, size);
317   }
318 
319   void UnmapWithCallback(uptr beg, uptr size) {
320     MapUnmapCallback().OnUnmap(beg, size);
321     UnmapOrDie(reinterpret_cast<void *>(beg), size);
322   }
323 
324   static bool CanAllocate(uptr size, uptr alignment) {
325     return size <= SizeClassMap::kMaxSize &&
326       alignment <= SizeClassMap::kMaxSize;
327   }
328 
329   NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
330                                 uptr class_id) {
331     CHECK_LT(class_id, kNumClasses);
332     RegionInfo *region = GetRegionInfo(class_id);
333     Batch *b = region->free_list.Pop();
334     if (b == 0)
335       b = PopulateFreeList(stat, c, class_id, region);
336     region->n_allocated += b->count;
337     return b;
338   }
339 
340   NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
341     RegionInfo *region = GetRegionInfo(class_id);
342     region->free_list.Push(b);
343     region->n_freed += b->count;
344   }
345 
346   static bool PointerIsMine(void *p) {
347     return reinterpret_cast<uptr>(p) / kSpaceSize == kSpaceBeg / kSpaceSize;
348   }
349 
350   static uptr GetSizeClass(void *p) {
351     return (reinterpret_cast<uptr>(p) / kRegionSize) % kNumClassesRounded;
352   }
353 
354   void *GetBlockBegin(void *p) {
355     uptr class_id = GetSizeClass(p);
356     uptr size = SizeClassMap::Size(class_id);
357     uptr chunk_idx = GetChunkIdx((uptr)p, size);
358     uptr reg_beg = (uptr)p & ~(kRegionSize - 1);
359     uptr beg = chunk_idx * size;
360     uptr next_beg = beg + size;
361     RegionInfo *region = GetRegionInfo(class_id);
362     if (region->mapped_user >= next_beg)
363       return reinterpret_cast<void*>(reg_beg + beg);
364     return 0;
365   }
366 
367   static uptr GetActuallyAllocatedSize(void *p) {
368     CHECK(PointerIsMine(p));
369     return SizeClassMap::Size(GetSizeClass(p));
370   }
371 
372   uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
373 
374   void *GetMetaData(void *p) {
375     uptr class_id = GetSizeClass(p);
376     uptr size = SizeClassMap::Size(class_id);
377     uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
378     return reinterpret_cast<void*>(kSpaceBeg + (kRegionSize * (class_id + 1)) -
379                                    (1 + chunk_idx) * kMetadataSize);
380   }
381 
382   uptr TotalMemoryUsed() {
383     uptr res = 0;
384     for (uptr i = 0; i < kNumClasses; i++)
385       res += GetRegionInfo(i)->allocated_user;
386     return res;
387   }
388 
389   // Test-only.
390   void TestOnlyUnmap() {
391     UnmapWithCallback(kSpaceBeg, kSpaceSize + AdditionalSize());
392   }
393 
394   void PrintStats() {
395     uptr total_mapped = 0;
396     uptr n_allocated = 0;
397     uptr n_freed = 0;
398     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
399       RegionInfo *region = GetRegionInfo(class_id);
400       total_mapped += region->mapped_user;
401       n_allocated += region->n_allocated;
402       n_freed += region->n_freed;
403     }
404     Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; "
405            "remains %zd\n",
406            total_mapped >> 20, n_allocated, n_allocated - n_freed);
407     for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
408       RegionInfo *region = GetRegionInfo(class_id);
409       if (region->mapped_user == 0) continue;
410       Printf("  %02zd (%zd): total: %zd K allocs: %zd remains: %zd\n",
411              class_id,
412              SizeClassMap::Size(class_id),
413              region->mapped_user >> 10,
414              region->n_allocated,
415              region->n_allocated - region->n_freed);
416     }
417   }
418 
419   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
420   // introspection API.
421   void ForceLock() {
422     for (uptr i = 0; i < kNumClasses; i++) {
423       GetRegionInfo(i)->mutex.Lock();
424     }
425   }
426 
427   void ForceUnlock() {
428     for (int i = (int)kNumClasses - 1; i >= 0; i--) {
429       GetRegionInfo(i)->mutex.Unlock();
430     }
431   }
432 
433   typedef SizeClassMap SizeClassMapT;
434   static const uptr kNumClasses = SizeClassMap::kNumClasses;
435   static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
436 
437  private:
438   static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
439   static const uptr kSpaceEnd = kSpaceBeg + kSpaceSize;
440   COMPILER_CHECK(kSpaceBeg % kSpaceSize == 0);
441   // kRegionSize must be >= 2^32.
442   COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
443   // Populate the free list with at most this number of bytes at once
444   // or with one element if its size is greater.
445   static const uptr kPopulateSize = 1 << 14;
446   // Call mmap for user memory with at least this size.
447   static const uptr kUserMapSize = 1 << 16;
448   // Call mmap for metadata memory with at least this size.
449   static const uptr kMetaMapSize = 1 << 16;
450 
451   struct RegionInfo {
452     BlockingMutex mutex;
453     LFStack<Batch> free_list;
454     uptr allocated_user;  // Bytes allocated for user memory.
455     uptr allocated_meta;  // Bytes allocated for metadata.
456     uptr mapped_user;  // Bytes mapped for user memory.
457     uptr mapped_meta;  // Bytes mapped for metadata.
458     uptr n_allocated, n_freed;  // Just stats.
459   };
460   COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize);
461 
462   static uptr AdditionalSize() {
463     return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
464                      GetPageSizeCached());
465   }
466 
467   RegionInfo *GetRegionInfo(uptr class_id) {
468     CHECK_LT(class_id, kNumClasses);
469     RegionInfo *regions = reinterpret_cast<RegionInfo*>(kSpaceBeg + kSpaceSize);
470     return &regions[class_id];
471   }
472 
473   static uptr GetChunkIdx(uptr chunk, uptr size) {
474     u32 offset = chunk % kRegionSize;
475     // Here we divide by a non-constant. This is costly.
476     // We require that kRegionSize is at least 2^32 so that offset is 32-bit.
477     // We save 2x by using 32-bit div, but may need to use a 256-way switch.
478     return offset / (u32)size;
479   }
480 
481   NOINLINE Batch* PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
482                                    uptr class_id, RegionInfo *region) {
483     BlockingMutexLock l(&region->mutex);
484     Batch *b = region->free_list.Pop();
485     if (b)
486       return b;
487     uptr size = SizeClassMap::Size(class_id);
488     uptr count = size < kPopulateSize ? SizeClassMap::MaxCached(class_id) : 1;
489     uptr beg_idx = region->allocated_user;
490     uptr end_idx = beg_idx + count * size;
491     uptr region_beg = kSpaceBeg + kRegionSize * class_id;
492     if (end_idx + size > region->mapped_user) {
493       // Do the mmap for the user memory.
494       uptr map_size = kUserMapSize;
495       while (end_idx + size > region->mapped_user + map_size)
496         map_size += kUserMapSize;
497       CHECK_GE(region->mapped_user + map_size, end_idx);
498       MapWithCallback(region_beg + region->mapped_user, map_size);
499       stat->Add(AllocatorStatMmapped, map_size);
500       region->mapped_user += map_size;
501     }
502     uptr total_count = (region->mapped_user - beg_idx - size)
503         / size / count * count;
504     region->allocated_meta += total_count * kMetadataSize;
505     if (region->allocated_meta > region->mapped_meta) {
506       uptr map_size = kMetaMapSize;
507       while (region->allocated_meta > region->mapped_meta + map_size)
508         map_size += kMetaMapSize;
509       // Do the mmap for the metadata.
510       CHECK_GE(region->mapped_meta + map_size, region->allocated_meta);
511       MapWithCallback(region_beg + kRegionSize -
512                       region->mapped_meta - map_size, map_size);
513       region->mapped_meta += map_size;
514     }
515     CHECK_LE(region->allocated_meta, region->mapped_meta);
516     if (region->allocated_user + region->allocated_meta > kRegionSize) {
517       Printf("Out of memory. Dying.\n");
518       Printf("The process has exhausted %zuMB for size class %zu.\n",
519           kRegionSize / 1024 / 1024, size);
520       Die();
521     }
522     for (;;) {
523       if (class_id < SizeClassMap::kMinBatchClass)
524         b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
525       else
526         b = (Batch*)(region_beg + beg_idx);
527       b->count = count;
528       for (uptr i = 0; i < count; i++)
529         b->batch[i] = (void*)(region_beg + beg_idx + i * size);
530       region->allocated_user += count * size;
531       CHECK_LE(region->allocated_user, region->mapped_user);
532       beg_idx += count * size;
533       if (beg_idx + count * size + size > region->mapped_user)
534         break;
535       region->free_list.Push(b);
536     }
537     return b;
538   }
539 };
540 
541 // SizeClassAllocator32 -- allocator for 32-bit address space.
542 // This allocator can theoretically be used on 64-bit arch, but there it is less
543 // efficient than SizeClassAllocator64.
544 //
545 // [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can
546 // be returned by MmapOrDie().
547 //
548 // Region:
549 //   a result of a single call to MmapAlignedOrDie(kRegionSize, kRegionSize).
550 // Since the regions are aligned by kRegionSize, there are exactly
551 // kNumPossibleRegions possible regions in the address space and so we keep
552 // an u8 array possible_regions[kNumPossibleRegions] to store the size classes.
553 // 0 size class means the region is not used by the allocator.
554 //
555 // One Region is used to allocate chunks of a single size class.
556 // A Region looks like this:
557 // UserChunk1 .. UserChunkN <gap> MetaChunkN .. MetaChunk1
558 //
559 // In order to avoid false sharing the objects of this class should be
560 // chache-line aligned.
561 template <const uptr kSpaceBeg, const u64 kSpaceSize,
562           const uptr kMetadataSize, class SizeClassMap,
563           class MapUnmapCallback = NoOpMapUnmapCallback>
564 class SizeClassAllocator32 {
565  public:
566   typedef typename SizeClassMap::TransferBatch Batch;
567   typedef SizeClassAllocator32<kSpaceBeg, kSpaceSize, kMetadataSize,
568       SizeClassMap, MapUnmapCallback> ThisT;
569   typedef SizeClassAllocatorLocalCache<ThisT> AllocatorCache;
570 
571   void Init() {
572     state_ = reinterpret_cast<State *>(MapWithCallback(sizeof(State)));
573   }
574 
575   void *MapWithCallback(uptr size) {
576     size = RoundUpTo(size, GetPageSizeCached());
577     void *res = MmapOrDie(size, "SizeClassAllocator32");
578     MapUnmapCallback().OnMap((uptr)res, size);
579     return res;
580   }
581 
582   void UnmapWithCallback(uptr beg, uptr size) {
583     MapUnmapCallback().OnUnmap(beg, size);
584     UnmapOrDie(reinterpret_cast<void *>(beg), size);
585   }
586 
587   static bool CanAllocate(uptr size, uptr alignment) {
588     return size <= SizeClassMap::kMaxSize &&
589       alignment <= SizeClassMap::kMaxSize;
590   }
591 
592   void *GetMetaData(void *p) {
593     CHECK(PointerIsMine(p));
594     uptr mem = reinterpret_cast<uptr>(p);
595     uptr beg = ComputeRegionBeg(mem);
596     uptr size = SizeClassMap::Size(GetSizeClass(p));
597     u32 offset = mem - beg;
598     uptr n = offset / (u32)size;  // 32-bit division
599     uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize;
600     return reinterpret_cast<void*>(meta);
601   }
602 
603   NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c,
604                                 uptr class_id) {
605     CHECK_LT(class_id, kNumClasses);
606     SizeClassInfo *sci = GetSizeClassInfo(class_id);
607     SpinMutexLock l(&sci->mutex);
608     if (sci->free_list.empty())
609       PopulateFreeList(stat, c, sci, class_id);
610     CHECK(!sci->free_list.empty());
611     Batch *b = sci->free_list.front();
612     sci->free_list.pop_front();
613     return b;
614   }
615 
616   NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) {
617     CHECK_LT(class_id, kNumClasses);
618     SizeClassInfo *sci = GetSizeClassInfo(class_id);
619     SpinMutexLock l(&sci->mutex);
620     sci->free_list.push_front(b);
621   }
622 
623   bool PointerIsMine(void *p) {
624     return GetSizeClass(p) != 0;
625   }
626 
627   uptr GetSizeClass(void *p) {
628     return state_->possible_regions[ComputeRegionId(reinterpret_cast<uptr>(p))];
629   }
630 
631   void *GetBlockBegin(void *p) {
632     CHECK(PointerIsMine(p));
633     uptr mem = reinterpret_cast<uptr>(p);
634     uptr beg = ComputeRegionBeg(mem);
635     uptr size = SizeClassMap::Size(GetSizeClass(p));
636     u32 offset = mem - beg;
637     u32 n = offset / (u32)size;  // 32-bit division
638     uptr res = beg + (n * (u32)size);
639     return reinterpret_cast<void*>(res);
640   }
641 
642   uptr GetActuallyAllocatedSize(void *p) {
643     CHECK(PointerIsMine(p));
644     return SizeClassMap::Size(GetSizeClass(p));
645   }
646 
647   uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
648 
649   uptr TotalMemoryUsed() {
650     // No need to lock here.
651     uptr res = 0;
652     for (uptr i = 0; i < kNumPossibleRegions; i++)
653       if (state_->possible_regions[i])
654         res += kRegionSize;
655     return res;
656   }
657 
658   void TestOnlyUnmap() {
659     for (uptr i = 0; i < kNumPossibleRegions; i++)
660       if (state_->possible_regions[i])
661         UnmapWithCallback((i * kRegionSize), kRegionSize);
662     UnmapWithCallback(reinterpret_cast<uptr>(state_), sizeof(State));
663   }
664 
665   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
666   // introspection API.
667   void ForceLock() {
668     for (uptr i = 0; i < kNumClasses; i++) {
669       GetSizeClassInfo(i)->mutex.Lock();
670     }
671   }
672 
673   void ForceUnlock() {
674     for (int i = kNumClasses - 1; i >= 0; i--) {
675       GetSizeClassInfo(i)->mutex.Unlock();
676     }
677   }
678 
679   void PrintStats() {
680   }
681 
682   typedef SizeClassMap SizeClassMapT;
683   static const uptr kNumClasses = SizeClassMap::kNumClasses;
684 
685  private:
686   static const uptr kRegionSizeLog = SANITIZER_WORDSIZE == 64 ? 24 : 20;
687   static const uptr kRegionSize = 1 << kRegionSizeLog;
688   static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize;
689 
690   struct SizeClassInfo {
691     SpinMutex mutex;
692     IntrusiveList<Batch> free_list;
693     char padding[kCacheLineSize - sizeof(uptr) - sizeof(IntrusiveList<Batch>)];
694   };
695   COMPILER_CHECK(sizeof(SizeClassInfo) == kCacheLineSize);
696 
697   uptr ComputeRegionId(uptr mem) {
698     uptr res = mem >> kRegionSizeLog;
699     CHECK_LT(res, kNumPossibleRegions);
700     return res;
701   }
702 
703   uptr ComputeRegionBeg(uptr mem) {
704     return mem & ~(kRegionSize - 1);
705   }
706 
707   uptr AllocateRegion(AllocatorStats *stat, uptr class_id) {
708     CHECK_LT(class_id, kNumClasses);
709     uptr res = reinterpret_cast<uptr>(MmapAlignedOrDie(kRegionSize, kRegionSize,
710                                       "SizeClassAllocator32"));
711     MapUnmapCallback().OnMap(res, kRegionSize);
712     stat->Add(AllocatorStatMmapped, kRegionSize);
713     CHECK_EQ(0U, (res & (kRegionSize - 1)));
714     CHECK_EQ(0U, state_->possible_regions[ComputeRegionId(res)]);
715     state_->possible_regions[ComputeRegionId(res)] = class_id;
716     return res;
717   }
718 
719   SizeClassInfo *GetSizeClassInfo(uptr class_id) {
720     CHECK_LT(class_id, kNumClasses);
721     return &state_->size_class_info_array[class_id];
722   }
723 
724   void PopulateFreeList(AllocatorStats *stat, AllocatorCache *c,
725                         SizeClassInfo *sci, uptr class_id) {
726     uptr size = SizeClassMap::Size(class_id);
727     uptr reg = AllocateRegion(stat, class_id);
728     uptr n_chunks = kRegionSize / (size + kMetadataSize);
729     uptr max_count = SizeClassMap::MaxCached(class_id);
730     Batch *b = 0;
731     for (uptr i = reg; i < reg + n_chunks * size; i += size) {
732       if (b == 0) {
733         if (class_id < SizeClassMap::kMinBatchClass)
734           b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch)));
735         else
736           b = (Batch*)i;
737         b->count = 0;
738       }
739       b->batch[b->count++] = (void*)i;
740       if (b->count == max_count) {
741         sci->free_list.push_back(b);
742         b = 0;
743       }
744     }
745     if (b)
746       sci->free_list.push_back(b);
747   }
748 
749   struct State {
750     u8 possible_regions[kNumPossibleRegions];
751     SizeClassInfo size_class_info_array[kNumClasses];
752   };
753   State *state_;
754 };
755 
756 // Objects of this type should be used as local caches for SizeClassAllocator64
757 // or SizeClassAllocator32. Since the typical use of this class is to have one
758 // object per thread in TLS, is has to be POD.
759 template<class SizeClassAllocator>
760 struct SizeClassAllocatorLocalCache {
761   typedef SizeClassAllocator Allocator;
762   static const uptr kNumClasses = SizeClassAllocator::kNumClasses;
763 
764   void Init(AllocatorGlobalStats *s) {
765     stats_.Init();
766     if (s)
767       s->Register(&stats_);
768   }
769 
770   void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) {
771     Drain(allocator);
772     if (s)
773       s->Unregister(&stats_);
774   }
775 
776   void *Allocate(SizeClassAllocator *allocator, uptr class_id) {
777     CHECK_NE(class_id, 0UL);
778     CHECK_LT(class_id, kNumClasses);
779     stats_.Add(AllocatorStatMalloced, SizeClassMap::Size(class_id));
780     PerClass *c = &per_class_[class_id];
781     if (UNLIKELY(c->count == 0))
782       Refill(allocator, class_id);
783     void *res = c->batch[--c->count];
784     PREFETCH(c->batch[c->count - 1]);
785     return res;
786   }
787 
788   void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) {
789     CHECK_NE(class_id, 0UL);
790     CHECK_LT(class_id, kNumClasses);
791     stats_.Add(AllocatorStatFreed, SizeClassMap::Size(class_id));
792     PerClass *c = &per_class_[class_id];
793     if (UNLIKELY(c->count == c->max_count))
794       Drain(allocator, class_id);
795     c->batch[c->count++] = p;
796   }
797 
798   void Drain(SizeClassAllocator *allocator) {
799     for (uptr class_id = 0; class_id < kNumClasses; class_id++) {
800       PerClass *c = &per_class_[class_id];
801       while (c->count > 0)
802         Drain(allocator, class_id);
803     }
804   }
805 
806   // private:
807   typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap;
808   typedef typename SizeClassMap::TransferBatch Batch;
809   struct PerClass {
810     uptr count;
811     uptr max_count;
812     void *batch[2 * SizeClassMap::kMaxNumCached];
813   };
814   PerClass per_class_[kNumClasses];
815   AllocatorStats stats_;
816 
817   void InitCache() {
818     if (per_class_[0].max_count)
819       return;
820     for (uptr i = 0; i < kNumClasses; i++) {
821       PerClass *c = &per_class_[i];
822       c->max_count = 2 * SizeClassMap::MaxCached(i);
823     }
824   }
825 
826   NOINLINE void Refill(SizeClassAllocator *allocator, uptr class_id) {
827     InitCache();
828     PerClass *c = &per_class_[class_id];
829     Batch *b = allocator->AllocateBatch(&stats_, this, class_id);
830     CHECK_GT(b->count, 0);
831     for (uptr i = 0; i < b->count; i++)
832       c->batch[i] = b->batch[i];
833     c->count = b->count;
834     if (class_id < SizeClassMap::kMinBatchClass)
835       Deallocate(allocator, SizeClassMap::ClassID(sizeof(Batch)), b);
836   }
837 
838   NOINLINE void Drain(SizeClassAllocator *allocator, uptr class_id) {
839     InitCache();
840     PerClass *c = &per_class_[class_id];
841     Batch *b;
842     if (class_id < SizeClassMap::kMinBatchClass)
843       b = (Batch*)Allocate(allocator, SizeClassMap::ClassID(sizeof(Batch)));
844     else
845       b = (Batch*)c->batch[0];
846     uptr cnt = Min(c->max_count / 2, c->count);
847     for (uptr i = 0; i < cnt; i++) {
848       b->batch[i] = c->batch[i];
849       c->batch[i] = c->batch[i + c->max_count / 2];
850     }
851     b->count = cnt;
852     c->count -= cnt;
853     allocator->DeallocateBatch(&stats_, class_id, b);
854   }
855 };
856 
857 // This class can (de)allocate only large chunks of memory using mmap/unmap.
858 // The main purpose of this allocator is to cover large and rare allocation
859 // sizes not covered by more efficient allocators (e.g. SizeClassAllocator64).
860 template <class MapUnmapCallback = NoOpMapUnmapCallback>
861 class LargeMmapAllocator {
862  public:
863   void Init() {
864     internal_memset(this, 0, sizeof(*this));
865     page_size_ = GetPageSizeCached();
866   }
867 
868   void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) {
869     CHECK(IsPowerOfTwo(alignment));
870     uptr map_size = RoundUpMapSize(size);
871     if (alignment > page_size_)
872       map_size += alignment;
873     if (map_size < size) return 0;  // Overflow.
874     uptr map_beg = reinterpret_cast<uptr>(
875         MmapOrDie(map_size, "LargeMmapAllocator"));
876     MapUnmapCallback().OnMap(map_beg, map_size);
877     uptr map_end = map_beg + map_size;
878     uptr res = map_beg + page_size_;
879     if (res & (alignment - 1))  // Align.
880       res += alignment - (res & (alignment - 1));
881     CHECK_EQ(0, res & (alignment - 1));
882     CHECK_LE(res + size, map_end);
883     Header *h = GetHeader(res);
884     h->size = size;
885     h->map_beg = map_beg;
886     h->map_size = map_size;
887     uptr size_log = MostSignificantSetBitIndex(map_size);
888     CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log));
889     {
890       SpinMutexLock l(&mutex_);
891       uptr idx = n_chunks_++;
892       CHECK_LT(idx, kMaxNumChunks);
893       h->chunk_idx = idx;
894       chunks_[idx] = h;
895       stats.n_allocs++;
896       stats.currently_allocated += map_size;
897       stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated);
898       stats.by_size_log[size_log]++;
899       stat->Add(AllocatorStatMalloced, map_size);
900       stat->Add(AllocatorStatMmapped, map_size);
901     }
902     return reinterpret_cast<void*>(res);
903   }
904 
905   void Deallocate(AllocatorStats *stat, void *p) {
906     Header *h = GetHeader(p);
907     {
908       SpinMutexLock l(&mutex_);
909       uptr idx = h->chunk_idx;
910       CHECK_EQ(chunks_[idx], h);
911       CHECK_LT(idx, n_chunks_);
912       chunks_[idx] = chunks_[n_chunks_ - 1];
913       chunks_[idx]->chunk_idx = idx;
914       n_chunks_--;
915       stats.n_frees++;
916       stats.currently_allocated -= h->map_size;
917       stat->Add(AllocatorStatFreed, h->map_size);
918       stat->Add(AllocatorStatUnmapped, h->map_size);
919     }
920     MapUnmapCallback().OnUnmap(h->map_beg, h->map_size);
921     UnmapOrDie(reinterpret_cast<void*>(h->map_beg), h->map_size);
922   }
923 
924   uptr TotalMemoryUsed() {
925     SpinMutexLock l(&mutex_);
926     uptr res = 0;
927     for (uptr i = 0; i < n_chunks_; i++) {
928       Header *h = chunks_[i];
929       CHECK_EQ(h->chunk_idx, i);
930       res += RoundUpMapSize(h->size);
931     }
932     return res;
933   }
934 
935   bool PointerIsMine(void *p) {
936     return GetBlockBegin(p) != 0;
937   }
938 
939   uptr GetActuallyAllocatedSize(void *p) {
940     return RoundUpTo(GetHeader(p)->size, page_size_);
941   }
942 
943   // At least page_size_/2 metadata bytes is available.
944   void *GetMetaData(void *p) {
945     // Too slow: CHECK_EQ(p, GetBlockBegin(p));
946     CHECK(IsAligned(reinterpret_cast<uptr>(p), page_size_));
947     return GetHeader(p) + 1;
948   }
949 
950   void *GetBlockBegin(void *ptr) {
951     uptr p = reinterpret_cast<uptr>(ptr);
952     SpinMutexLock l(&mutex_);
953     uptr nearest_chunk = 0;
954     // Cache-friendly linear search.
955     for (uptr i = 0; i < n_chunks_; i++) {
956       uptr ch = reinterpret_cast<uptr>(chunks_[i]);
957       if (p < ch) continue;  // p is at left to this chunk, skip it.
958       if (p - ch < p - nearest_chunk)
959         nearest_chunk = ch;
960     }
961     if (!nearest_chunk)
962       return 0;
963     Header *h = reinterpret_cast<Header *>(nearest_chunk);
964     CHECK_GE(nearest_chunk, h->map_beg);
965     CHECK_LT(nearest_chunk, h->map_beg + h->map_size);
966     CHECK_LE(nearest_chunk, p);
967     if (h->map_beg + h->map_size < p)
968       return 0;
969     return GetUser(h);
970   }
971 
972   void PrintStats() {
973     Printf("Stats: LargeMmapAllocator: allocated %zd times, "
974            "remains %zd (%zd K) max %zd M; by size logs: ",
975            stats.n_allocs, stats.n_allocs - stats.n_frees,
976            stats.currently_allocated >> 10, stats.max_allocated >> 20);
977     for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) {
978       uptr c = stats.by_size_log[i];
979       if (!c) continue;
980       Printf("%zd:%zd; ", i, c);
981     }
982     Printf("\n");
983   }
984 
985   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
986   // introspection API.
987   void ForceLock() {
988     mutex_.Lock();
989   }
990 
991   void ForceUnlock() {
992     mutex_.Unlock();
993   }
994 
995  private:
996   static const int kMaxNumChunks = 1 << FIRST_32_SECOND_64(15, 18);
997   struct Header {
998     uptr map_beg;
999     uptr map_size;
1000     uptr size;
1001     uptr chunk_idx;
1002   };
1003 
1004   Header *GetHeader(uptr p) {
1005     CHECK_EQ(p % page_size_, 0);
1006     return reinterpret_cast<Header*>(p - page_size_);
1007   }
1008   Header *GetHeader(void *p) { return GetHeader(reinterpret_cast<uptr>(p)); }
1009 
1010   void *GetUser(Header *h) {
1011     CHECK_EQ((uptr)h % page_size_, 0);
1012     return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
1013   }
1014 
1015   uptr RoundUpMapSize(uptr size) {
1016     return RoundUpTo(size, page_size_) + page_size_;
1017   }
1018 
1019   uptr page_size_;
1020   Header *chunks_[kMaxNumChunks];
1021   uptr n_chunks_;
1022   struct Stats {
1023     uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64];
1024   } stats;
1025   SpinMutex mutex_;
1026 };
1027 
1028 // This class implements a complete memory allocator by using two
1029 // internal allocators:
1030 // PrimaryAllocator is efficient, but may not allocate some sizes (alignments).
1031 //  When allocating 2^x bytes it should return 2^x aligned chunk.
1032 // PrimaryAllocator is used via a local AllocatorCache.
1033 // SecondaryAllocator can allocate anything, but is not efficient.
1034 template <class PrimaryAllocator, class AllocatorCache,
1035           class SecondaryAllocator>  // NOLINT
1036 class CombinedAllocator {
1037  public:
1038   void Init() {
1039     primary_.Init();
1040     secondary_.Init();
1041     stats_.Init();
1042   }
1043 
1044   void *Allocate(AllocatorCache *cache, uptr size, uptr alignment,
1045                  bool cleared = false) {
1046     // Returning 0 on malloc(0) may break a lot of code.
1047     if (size == 0)
1048       size = 1;
1049     if (size + alignment < size)
1050       return 0;
1051     if (alignment > 8)
1052       size = RoundUpTo(size, alignment);
1053     void *res;
1054     if (primary_.CanAllocate(size, alignment))
1055       res = cache->Allocate(&primary_, primary_.ClassID(size));
1056     else
1057       res = secondary_.Allocate(&stats_, size, alignment);
1058     if (alignment > 8)
1059       CHECK_EQ(reinterpret_cast<uptr>(res) & (alignment - 1), 0);
1060     if (cleared && res)
1061       internal_memset(res, 0, size);
1062     return res;
1063   }
1064 
1065   void Deallocate(AllocatorCache *cache, void *p) {
1066     if (!p) return;
1067     if (primary_.PointerIsMine(p))
1068       cache->Deallocate(&primary_, primary_.GetSizeClass(p), p);
1069     else
1070       secondary_.Deallocate(&stats_, p);
1071   }
1072 
1073   void *Reallocate(AllocatorCache *cache, void *p, uptr new_size,
1074                    uptr alignment) {
1075     if (!p)
1076       return Allocate(cache, new_size, alignment);
1077     if (!new_size) {
1078       Deallocate(cache, p);
1079       return 0;
1080     }
1081     CHECK(PointerIsMine(p));
1082     uptr old_size = GetActuallyAllocatedSize(p);
1083     uptr memcpy_size = Min(new_size, old_size);
1084     void *new_p = Allocate(cache, new_size, alignment);
1085     if (new_p)
1086       internal_memcpy(new_p, p, memcpy_size);
1087     Deallocate(cache, p);
1088     return new_p;
1089   }
1090 
1091   bool PointerIsMine(void *p) {
1092     if (primary_.PointerIsMine(p))
1093       return true;
1094     return secondary_.PointerIsMine(p);
1095   }
1096 
1097   bool FromPrimary(void *p) {
1098     return primary_.PointerIsMine(p);
1099   }
1100 
1101   void *GetMetaData(void *p) {
1102     if (primary_.PointerIsMine(p))
1103       return primary_.GetMetaData(p);
1104     return secondary_.GetMetaData(p);
1105   }
1106 
1107   void *GetBlockBegin(void *p) {
1108     if (primary_.PointerIsMine(p))
1109       return primary_.GetBlockBegin(p);
1110     return secondary_.GetBlockBegin(p);
1111   }
1112 
1113   uptr GetActuallyAllocatedSize(void *p) {
1114     if (primary_.PointerIsMine(p))
1115       return primary_.GetActuallyAllocatedSize(p);
1116     return secondary_.GetActuallyAllocatedSize(p);
1117   }
1118 
1119   uptr TotalMemoryUsed() {
1120     return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed();
1121   }
1122 
1123   void TestOnlyUnmap() { primary_.TestOnlyUnmap(); }
1124 
1125   void InitCache(AllocatorCache *cache) {
1126     cache->Init(&stats_);
1127   }
1128 
1129   void DestroyCache(AllocatorCache *cache) {
1130     cache->Destroy(&primary_, &stats_);
1131   }
1132 
1133   void SwallowCache(AllocatorCache *cache) {
1134     cache->Drain(&primary_);
1135   }
1136 
1137   void GetStats(AllocatorStatCounters s) const {
1138     stats_.Get(s);
1139   }
1140 
1141   void PrintStats() {
1142     primary_.PrintStats();
1143     secondary_.PrintStats();
1144   }
1145 
1146   // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
1147   // introspection API.
1148   void ForceLock() {
1149     primary_.ForceLock();
1150     secondary_.ForceLock();
1151   }
1152 
1153   void ForceUnlock() {
1154     secondary_.ForceUnlock();
1155     primary_.ForceUnlock();
1156   }
1157 
1158  private:
1159   PrimaryAllocator primary_;
1160   SecondaryAllocator secondary_;
1161   AllocatorGlobalStats stats_;
1162 };
1163 
1164 // Returns true if calloc(size, n) should return 0 due to overflow in size*n.
1165 bool CallocShouldReturnNullDueToOverflow(uptr size, uptr n);
1166 
1167 }  // namespace __sanitizer
1168 
1169 #endif  // SANITIZER_ALLOCATOR_H
1170