1*181254a7Smrg /* log2l.c
2*181254a7Smrg * Base 2 logarithm, 128-bit long double precision
3*181254a7Smrg *
4*181254a7Smrg *
5*181254a7Smrg *
6*181254a7Smrg * SYNOPSIS:
7*181254a7Smrg *
8*181254a7Smrg * long double x, y, log2l();
9*181254a7Smrg *
10*181254a7Smrg * y = log2l( x );
11*181254a7Smrg *
12*181254a7Smrg *
13*181254a7Smrg *
14*181254a7Smrg * DESCRIPTION:
15*181254a7Smrg *
16*181254a7Smrg * Returns the base 2 logarithm of x.
17*181254a7Smrg *
18*181254a7Smrg * The argument is separated into its exponent and fractional
19*181254a7Smrg * parts. If the exponent is between -1 and +1, the (natural)
20*181254a7Smrg * logarithm of the fraction is approximated by
21*181254a7Smrg *
22*181254a7Smrg * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
23*181254a7Smrg *
24*181254a7Smrg * Otherwise, setting z = 2(x-1)/x+1),
25*181254a7Smrg *
26*181254a7Smrg * log(x) = z + z^3 P(z)/Q(z).
27*181254a7Smrg *
28*181254a7Smrg *
29*181254a7Smrg *
30*181254a7Smrg * ACCURACY:
31*181254a7Smrg *
32*181254a7Smrg * Relative error:
33*181254a7Smrg * arithmetic domain # trials peak rms
34*181254a7Smrg * IEEE 0.5, 2.0 100,000 2.6e-34 4.9e-35
35*181254a7Smrg * IEEE exp(+-10000) 100,000 9.6e-35 4.0e-35
36*181254a7Smrg *
37*181254a7Smrg * In the tests over the interval exp(+-10000), the logarithms
38*181254a7Smrg * of the random arguments were uniformly distributed over
39*181254a7Smrg * [-10000, +10000].
40*181254a7Smrg *
41*181254a7Smrg */
42*181254a7Smrg
43*181254a7Smrg /*
44*181254a7Smrg Cephes Math Library Release 2.2: January, 1991
45*181254a7Smrg Copyright 1984, 1991 by Stephen L. Moshier
46*181254a7Smrg Adapted for glibc November, 2001
47*181254a7Smrg
48*181254a7Smrg This library is free software; you can redistribute it and/or
49*181254a7Smrg modify it under the terms of the GNU Lesser General Public
50*181254a7Smrg License as published by the Free Software Foundation; either
51*181254a7Smrg version 2.1 of the License, or (at your option) any later version.
52*181254a7Smrg
53*181254a7Smrg This library is distributed in the hope that it will be useful,
54*181254a7Smrg but WITHOUT ANY WARRANTY; without even the implied warranty of
55*181254a7Smrg MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
56*181254a7Smrg Lesser General Public License for more details.
57*181254a7Smrg
58*181254a7Smrg You should have received a copy of the GNU Lesser General Public
59*181254a7Smrg License along with this library; if not, see <http://www.gnu.org/licenses/>.
60*181254a7Smrg */
61*181254a7Smrg
62*181254a7Smrg #include "quadmath-imp.h"
63*181254a7Smrg
64*181254a7Smrg /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
65*181254a7Smrg * 1/sqrt(2) <= x < sqrt(2)
66*181254a7Smrg * Theoretical peak relative error = 5.3e-37,
67*181254a7Smrg * relative peak error spread = 2.3e-14
68*181254a7Smrg */
69*181254a7Smrg static const __float128 P[13] =
70*181254a7Smrg {
71*181254a7Smrg 1.313572404063446165910279910527789794488E4Q,
72*181254a7Smrg 7.771154681358524243729929227226708890930E4Q,
73*181254a7Smrg 2.014652742082537582487669938141683759923E5Q,
74*181254a7Smrg 3.007007295140399532324943111654767187848E5Q,
75*181254a7Smrg 2.854829159639697837788887080758954924001E5Q,
76*181254a7Smrg 1.797628303815655343403735250238293741397E5Q,
77*181254a7Smrg 7.594356839258970405033155585486712125861E4Q,
78*181254a7Smrg 2.128857716871515081352991964243375186031E4Q,
79*181254a7Smrg 3.824952356185897735160588078446136783779E3Q,
80*181254a7Smrg 4.114517881637811823002128927449878962058E2Q,
81*181254a7Smrg 2.321125933898420063925789532045674660756E1Q,
82*181254a7Smrg 4.998469661968096229986658302195402690910E-1Q,
83*181254a7Smrg 1.538612243596254322971797716843006400388E-6Q
84*181254a7Smrg };
85*181254a7Smrg static const __float128 Q[12] =
86*181254a7Smrg {
87*181254a7Smrg 3.940717212190338497730839731583397586124E4Q,
88*181254a7Smrg 2.626900195321832660448791748036714883242E5Q,
89*181254a7Smrg 7.777690340007566932935753241556479363645E5Q,
90*181254a7Smrg 1.347518538384329112529391120390701166528E6Q,
91*181254a7Smrg 1.514882452993549494932585972882995548426E6Q,
92*181254a7Smrg 1.158019977462989115839826904108208787040E6Q,
93*181254a7Smrg 6.132189329546557743179177159925690841200E5Q,
94*181254a7Smrg 2.248234257620569139969141618556349415120E5Q,
95*181254a7Smrg 5.605842085972455027590989944010492125825E4Q,
96*181254a7Smrg 9.147150349299596453976674231612674085381E3Q,
97*181254a7Smrg 9.104928120962988414618126155557301584078E2Q,
98*181254a7Smrg 4.839208193348159620282142911143429644326E1Q
99*181254a7Smrg /* 1.000000000000000000000000000000000000000E0L, */
100*181254a7Smrg };
101*181254a7Smrg
102*181254a7Smrg /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
103*181254a7Smrg * where z = 2(x-1)/(x+1)
104*181254a7Smrg * 1/sqrt(2) <= x < sqrt(2)
105*181254a7Smrg * Theoretical peak relative error = 1.1e-35,
106*181254a7Smrg * relative peak error spread 1.1e-9
107*181254a7Smrg */
108*181254a7Smrg static const __float128 R[6] =
109*181254a7Smrg {
110*181254a7Smrg 1.418134209872192732479751274970992665513E5Q,
111*181254a7Smrg -8.977257995689735303686582344659576526998E4Q,
112*181254a7Smrg 2.048819892795278657810231591630928516206E4Q,
113*181254a7Smrg -2.024301798136027039250415126250455056397E3Q,
114*181254a7Smrg 8.057002716646055371965756206836056074715E1Q,
115*181254a7Smrg -8.828896441624934385266096344596648080902E-1Q
116*181254a7Smrg };
117*181254a7Smrg static const __float128 S[6] =
118*181254a7Smrg {
119*181254a7Smrg 1.701761051846631278975701529965589676574E6Q,
120*181254a7Smrg -1.332535117259762928288745111081235577029E6Q,
121*181254a7Smrg 4.001557694070773974936904547424676279307E5Q,
122*181254a7Smrg -5.748542087379434595104154610899551484314E4Q,
123*181254a7Smrg 3.998526750980007367835804959888064681098E3Q,
124*181254a7Smrg -1.186359407982897997337150403816839480438E2Q
125*181254a7Smrg /* 1.000000000000000000000000000000000000000E0L, */
126*181254a7Smrg };
127*181254a7Smrg
128*181254a7Smrg static const __float128
129*181254a7Smrg /* log2(e) - 1 */
130*181254a7Smrg LOG2EA = 4.4269504088896340735992468100189213742664595E-1Q,
131*181254a7Smrg /* sqrt(2)/2 */
132*181254a7Smrg SQRTH = 7.071067811865475244008443621048490392848359E-1Q;
133*181254a7Smrg
134*181254a7Smrg
135*181254a7Smrg /* Evaluate P[n] x^n + P[n-1] x^(n-1) + ... + P[0] */
136*181254a7Smrg
137*181254a7Smrg static __float128
neval(__float128 x,const __float128 * p,int n)138*181254a7Smrg neval (__float128 x, const __float128 *p, int n)
139*181254a7Smrg {
140*181254a7Smrg __float128 y;
141*181254a7Smrg
142*181254a7Smrg p += n;
143*181254a7Smrg y = *p--;
144*181254a7Smrg do
145*181254a7Smrg {
146*181254a7Smrg y = y * x + *p--;
147*181254a7Smrg }
148*181254a7Smrg while (--n > 0);
149*181254a7Smrg return y;
150*181254a7Smrg }
151*181254a7Smrg
152*181254a7Smrg
153*181254a7Smrg /* Evaluate x^n+1 + P[n] x^(n) + P[n-1] x^(n-1) + ... + P[0] */
154*181254a7Smrg
155*181254a7Smrg static __float128
deval(__float128 x,const __float128 * p,int n)156*181254a7Smrg deval (__float128 x, const __float128 *p, int n)
157*181254a7Smrg {
158*181254a7Smrg __float128 y;
159*181254a7Smrg
160*181254a7Smrg p += n;
161*181254a7Smrg y = x + *p--;
162*181254a7Smrg do
163*181254a7Smrg {
164*181254a7Smrg y = y * x + *p--;
165*181254a7Smrg }
166*181254a7Smrg while (--n > 0);
167*181254a7Smrg return y;
168*181254a7Smrg }
169*181254a7Smrg
170*181254a7Smrg
171*181254a7Smrg
172*181254a7Smrg __float128
log2q(__float128 x)173*181254a7Smrg log2q (__float128 x)
174*181254a7Smrg {
175*181254a7Smrg __float128 z;
176*181254a7Smrg __float128 y;
177*181254a7Smrg int e;
178*181254a7Smrg int64_t hx, lx;
179*181254a7Smrg
180*181254a7Smrg /* Test for domain */
181*181254a7Smrg GET_FLT128_WORDS64 (hx, lx, x);
182*181254a7Smrg if (((hx & 0x7fffffffffffffffLL) | lx) == 0)
183*181254a7Smrg return (-1 / fabsq (x)); /* log2l(+-0)=-inf */
184*181254a7Smrg if (hx < 0)
185*181254a7Smrg return (x - x) / (x - x);
186*181254a7Smrg if (hx >= 0x7fff000000000000LL)
187*181254a7Smrg return (x + x);
188*181254a7Smrg
189*181254a7Smrg if (x == 1)
190*181254a7Smrg return 0;
191*181254a7Smrg
192*181254a7Smrg /* separate mantissa from exponent */
193*181254a7Smrg
194*181254a7Smrg /* Note, frexp is used so that denormal numbers
195*181254a7Smrg * will be handled properly.
196*181254a7Smrg */
197*181254a7Smrg x = frexpq (x, &e);
198*181254a7Smrg
199*181254a7Smrg
200*181254a7Smrg /* logarithm using log(x) = z + z**3 P(z)/Q(z),
201*181254a7Smrg * where z = 2(x-1)/x+1)
202*181254a7Smrg */
203*181254a7Smrg if ((e > 2) || (e < -2))
204*181254a7Smrg {
205*181254a7Smrg if (x < SQRTH)
206*181254a7Smrg { /* 2( 2x-1 )/( 2x+1 ) */
207*181254a7Smrg e -= 1;
208*181254a7Smrg z = x - 0.5Q;
209*181254a7Smrg y = 0.5Q * z + 0.5Q;
210*181254a7Smrg }
211*181254a7Smrg else
212*181254a7Smrg { /* 2 (x-1)/(x+1) */
213*181254a7Smrg z = x - 0.5Q;
214*181254a7Smrg z -= 0.5Q;
215*181254a7Smrg y = 0.5Q * x + 0.5Q;
216*181254a7Smrg }
217*181254a7Smrg x = z / y;
218*181254a7Smrg z = x * x;
219*181254a7Smrg y = x * (z * neval (z, R, 5) / deval (z, S, 5));
220*181254a7Smrg goto done;
221*181254a7Smrg }
222*181254a7Smrg
223*181254a7Smrg
224*181254a7Smrg /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
225*181254a7Smrg
226*181254a7Smrg if (x < SQRTH)
227*181254a7Smrg {
228*181254a7Smrg e -= 1;
229*181254a7Smrg x = 2.0 * x - 1; /* 2x - 1 */
230*181254a7Smrg }
231*181254a7Smrg else
232*181254a7Smrg {
233*181254a7Smrg x = x - 1;
234*181254a7Smrg }
235*181254a7Smrg z = x * x;
236*181254a7Smrg y = x * (z * neval (x, P, 12) / deval (x, Q, 11));
237*181254a7Smrg y = y - 0.5 * z;
238*181254a7Smrg
239*181254a7Smrg done:
240*181254a7Smrg
241*181254a7Smrg /* Multiply log of fraction by log2(e)
242*181254a7Smrg * and base 2 exponent by 1
243*181254a7Smrg */
244*181254a7Smrg z = y * LOG2EA;
245*181254a7Smrg z += x * LOG2EA;
246*181254a7Smrg z += y;
247*181254a7Smrg z += x;
248*181254a7Smrg z += e;
249*181254a7Smrg return (z);
250*181254a7Smrg }
251