xref: /netbsd-src/external/gpl3/gcc/dist/libquadmath/math/log1pq.c (revision 181254a7b1bdde6873432bffef2d2decc4b5c22f)
1*181254a7Smrg /*							log1pq.c
2*181254a7Smrg  *
3*181254a7Smrg  *      Relative error logarithm
4*181254a7Smrg  *	Natural logarithm of 1+x, 128-bit long double precision
5*181254a7Smrg  *
6*181254a7Smrg  *
7*181254a7Smrg  *
8*181254a7Smrg  * SYNOPSIS:
9*181254a7Smrg  *
10*181254a7Smrg  * long double x, y, log1pq();
11*181254a7Smrg  *
12*181254a7Smrg  * y = log1pq( x );
13*181254a7Smrg  *
14*181254a7Smrg  *
15*181254a7Smrg  *
16*181254a7Smrg  * DESCRIPTION:
17*181254a7Smrg  *
18*181254a7Smrg  * Returns the base e (2.718...) logarithm of 1+x.
19*181254a7Smrg  *
20*181254a7Smrg  * The argument 1+x is separated into its exponent and fractional
21*181254a7Smrg  * parts.  If the exponent is between -1 and +1, the logarithm
22*181254a7Smrg  * of the fraction is approximated by
23*181254a7Smrg  *
24*181254a7Smrg  *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
25*181254a7Smrg  *
26*181254a7Smrg  * Otherwise, setting  z = 2(w-1)/(w+1),
27*181254a7Smrg  *
28*181254a7Smrg  *     log(w) = z + z^3 P(z)/Q(z).
29*181254a7Smrg  *
30*181254a7Smrg  *
31*181254a7Smrg  *
32*181254a7Smrg  * ACCURACY:
33*181254a7Smrg  *
34*181254a7Smrg  *                      Relative error:
35*181254a7Smrg  * arithmetic   domain     # trials      peak         rms
36*181254a7Smrg  *    IEEE      -1, 8       100000      1.9e-34     4.3e-35
37*181254a7Smrg  */
38*181254a7Smrg 
39*181254a7Smrg /* Copyright 2001 by Stephen L. Moshier
40*181254a7Smrg 
41*181254a7Smrg     This library is free software; you can redistribute it and/or
42*181254a7Smrg     modify it under the terms of the GNU Lesser General Public
43*181254a7Smrg     License as published by the Free Software Foundation; either
44*181254a7Smrg     version 2.1 of the License, or (at your option) any later version.
45*181254a7Smrg 
46*181254a7Smrg     This library is distributed in the hope that it will be useful,
47*181254a7Smrg     but WITHOUT ANY WARRANTY; without even the implied warranty of
48*181254a7Smrg     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
49*181254a7Smrg     Lesser General Public License for more details.
50*181254a7Smrg 
51*181254a7Smrg     You should have received a copy of the GNU Lesser General Public
52*181254a7Smrg     License along with this library; if not, see
53*181254a7Smrg     <http://www.gnu.org/licenses/>.  */
54*181254a7Smrg 
55*181254a7Smrg #include "quadmath-imp.h"
56*181254a7Smrg 
57*181254a7Smrg /* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
58*181254a7Smrg  * 1/sqrt(2) <= 1+x < sqrt(2)
59*181254a7Smrg  * Theoretical peak relative error = 5.3e-37,
60*181254a7Smrg  * relative peak error spread = 2.3e-14
61*181254a7Smrg  */
62*181254a7Smrg static const __float128
63*181254a7Smrg   P12 = 1.538612243596254322971797716843006400388E-6Q,
64*181254a7Smrg   P11 = 4.998469661968096229986658302195402690910E-1Q,
65*181254a7Smrg   P10 = 2.321125933898420063925789532045674660756E1Q,
66*181254a7Smrg   P9 = 4.114517881637811823002128927449878962058E2Q,
67*181254a7Smrg   P8 = 3.824952356185897735160588078446136783779E3Q,
68*181254a7Smrg   P7 = 2.128857716871515081352991964243375186031E4Q,
69*181254a7Smrg   P6 = 7.594356839258970405033155585486712125861E4Q,
70*181254a7Smrg   P5 = 1.797628303815655343403735250238293741397E5Q,
71*181254a7Smrg   P4 = 2.854829159639697837788887080758954924001E5Q,
72*181254a7Smrg   P3 = 3.007007295140399532324943111654767187848E5Q,
73*181254a7Smrg   P2 = 2.014652742082537582487669938141683759923E5Q,
74*181254a7Smrg   P1 = 7.771154681358524243729929227226708890930E4Q,
75*181254a7Smrg   P0 = 1.313572404063446165910279910527789794488E4Q,
76*181254a7Smrg   /* Q12 = 1.000000000000000000000000000000000000000E0L, */
77*181254a7Smrg   Q11 = 4.839208193348159620282142911143429644326E1Q,
78*181254a7Smrg   Q10 = 9.104928120962988414618126155557301584078E2Q,
79*181254a7Smrg   Q9 = 9.147150349299596453976674231612674085381E3Q,
80*181254a7Smrg   Q8 = 5.605842085972455027590989944010492125825E4Q,
81*181254a7Smrg   Q7 = 2.248234257620569139969141618556349415120E5Q,
82*181254a7Smrg   Q6 = 6.132189329546557743179177159925690841200E5Q,
83*181254a7Smrg   Q5 = 1.158019977462989115839826904108208787040E6Q,
84*181254a7Smrg   Q4 = 1.514882452993549494932585972882995548426E6Q,
85*181254a7Smrg   Q3 = 1.347518538384329112529391120390701166528E6Q,
86*181254a7Smrg   Q2 = 7.777690340007566932935753241556479363645E5Q,
87*181254a7Smrg   Q1 = 2.626900195321832660448791748036714883242E5Q,
88*181254a7Smrg   Q0 = 3.940717212190338497730839731583397586124E4Q;
89*181254a7Smrg 
90*181254a7Smrg /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
91*181254a7Smrg  * where z = 2(x-1)/(x+1)
92*181254a7Smrg  * 1/sqrt(2) <= x < sqrt(2)
93*181254a7Smrg  * Theoretical peak relative error = 1.1e-35,
94*181254a7Smrg  * relative peak error spread 1.1e-9
95*181254a7Smrg  */
96*181254a7Smrg static const __float128
97*181254a7Smrg   R5 = -8.828896441624934385266096344596648080902E-1Q,
98*181254a7Smrg   R4 = 8.057002716646055371965756206836056074715E1Q,
99*181254a7Smrg   R3 = -2.024301798136027039250415126250455056397E3Q,
100*181254a7Smrg   R2 = 2.048819892795278657810231591630928516206E4Q,
101*181254a7Smrg   R1 = -8.977257995689735303686582344659576526998E4Q,
102*181254a7Smrg   R0 = 1.418134209872192732479751274970992665513E5Q,
103*181254a7Smrg   /* S6 = 1.000000000000000000000000000000000000000E0L, */
104*181254a7Smrg   S5 = -1.186359407982897997337150403816839480438E2Q,
105*181254a7Smrg   S4 = 3.998526750980007367835804959888064681098E3Q,
106*181254a7Smrg   S3 = -5.748542087379434595104154610899551484314E4Q,
107*181254a7Smrg   S2 = 4.001557694070773974936904547424676279307E5Q,
108*181254a7Smrg   S1 = -1.332535117259762928288745111081235577029E6Q,
109*181254a7Smrg   S0 = 1.701761051846631278975701529965589676574E6Q;
110*181254a7Smrg 
111*181254a7Smrg /* C1 + C2 = ln 2 */
112*181254a7Smrg static const __float128 C1 = 6.93145751953125E-1Q;
113*181254a7Smrg static const __float128 C2 = 1.428606820309417232121458176568075500134E-6Q;
114*181254a7Smrg 
115*181254a7Smrg static const __float128 sqrth = 0.7071067811865475244008443621048490392848Q;
116*181254a7Smrg /* ln (2^16384 * (1 - 2^-113)) */
117*181254a7Smrg static const __float128 zero = 0;
118*181254a7Smrg 
119*181254a7Smrg __float128
log1pq(__float128 xm1)120*181254a7Smrg log1pq (__float128 xm1)
121*181254a7Smrg {
122*181254a7Smrg   __float128 x, y, z, r, s;
123*181254a7Smrg   ieee854_float128 u;
124*181254a7Smrg   int32_t hx;
125*181254a7Smrg   int e;
126*181254a7Smrg 
127*181254a7Smrg   /* Test for NaN or infinity input. */
128*181254a7Smrg   u.value = xm1;
129*181254a7Smrg   hx = u.words32.w0;
130*181254a7Smrg   if ((hx & 0x7fffffff) >= 0x7fff0000)
131*181254a7Smrg     return xm1 + fabsq (xm1);
132*181254a7Smrg 
133*181254a7Smrg   /* log1p(+- 0) = +- 0.  */
134*181254a7Smrg   if (((hx & 0x7fffffff) == 0)
135*181254a7Smrg       && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
136*181254a7Smrg     return xm1;
137*181254a7Smrg 
138*181254a7Smrg   if ((hx & 0x7fffffff) < 0x3f8e0000)
139*181254a7Smrg     {
140*181254a7Smrg       math_check_force_underflow (xm1);
141*181254a7Smrg       if ((int) xm1 == 0)
142*181254a7Smrg 	return xm1;
143*181254a7Smrg     }
144*181254a7Smrg 
145*181254a7Smrg   if (xm1 >= 0x1p113Q)
146*181254a7Smrg     x = xm1;
147*181254a7Smrg   else
148*181254a7Smrg     x = xm1 + 1;
149*181254a7Smrg 
150*181254a7Smrg   /* log1p(-1) = -inf */
151*181254a7Smrg   if (x <= 0)
152*181254a7Smrg     {
153*181254a7Smrg       if (x == 0)
154*181254a7Smrg 	return (-1 / zero);  /* log1p(-1) = -inf */
155*181254a7Smrg       else
156*181254a7Smrg 	return (zero / (x - x));
157*181254a7Smrg     }
158*181254a7Smrg 
159*181254a7Smrg   /* Separate mantissa from exponent.  */
160*181254a7Smrg 
161*181254a7Smrg   /* Use frexp used so that denormal numbers will be handled properly.  */
162*181254a7Smrg   x = frexpq (x, &e);
163*181254a7Smrg 
164*181254a7Smrg   /* Logarithm using log(x) = z + z^3 P(z^2)/Q(z^2),
165*181254a7Smrg      where z = 2(x-1)/x+1).  */
166*181254a7Smrg   if ((e > 2) || (e < -2))
167*181254a7Smrg     {
168*181254a7Smrg       if (x < sqrth)
169*181254a7Smrg 	{			/* 2( 2x-1 )/( 2x+1 ) */
170*181254a7Smrg 	  e -= 1;
171*181254a7Smrg 	  z = x - 0.5Q;
172*181254a7Smrg 	  y = 0.5Q * z + 0.5Q;
173*181254a7Smrg 	}
174*181254a7Smrg       else
175*181254a7Smrg 	{			/*  2 (x-1)/(x+1)   */
176*181254a7Smrg 	  z = x - 0.5Q;
177*181254a7Smrg 	  z -= 0.5Q;
178*181254a7Smrg 	  y = 0.5Q * x + 0.5Q;
179*181254a7Smrg 	}
180*181254a7Smrg       x = z / y;
181*181254a7Smrg       z = x * x;
182*181254a7Smrg       r = ((((R5 * z
183*181254a7Smrg 	      + R4) * z
184*181254a7Smrg 	     + R3) * z
185*181254a7Smrg 	    + R2) * z
186*181254a7Smrg 	   + R1) * z
187*181254a7Smrg 	+ R0;
188*181254a7Smrg       s = (((((z
189*181254a7Smrg 	       + S5) * z
190*181254a7Smrg 	      + S4) * z
191*181254a7Smrg 	     + S3) * z
192*181254a7Smrg 	    + S2) * z
193*181254a7Smrg 	   + S1) * z
194*181254a7Smrg 	+ S0;
195*181254a7Smrg       z = x * (z * r / s);
196*181254a7Smrg       z = z + e * C2;
197*181254a7Smrg       z = z + x;
198*181254a7Smrg       z = z + e * C1;
199*181254a7Smrg       return (z);
200*181254a7Smrg     }
201*181254a7Smrg 
202*181254a7Smrg 
203*181254a7Smrg   /* Logarithm using log(1+x) = x - .5x^2 + x^3 P(x)/Q(x). */
204*181254a7Smrg 
205*181254a7Smrg   if (x < sqrth)
206*181254a7Smrg     {
207*181254a7Smrg       e -= 1;
208*181254a7Smrg       if (e != 0)
209*181254a7Smrg 	x = 2 * x - 1;	/*  2x - 1  */
210*181254a7Smrg       else
211*181254a7Smrg 	x = xm1;
212*181254a7Smrg     }
213*181254a7Smrg   else
214*181254a7Smrg     {
215*181254a7Smrg       if (e != 0)
216*181254a7Smrg 	x = x - 1;
217*181254a7Smrg       else
218*181254a7Smrg 	x = xm1;
219*181254a7Smrg     }
220*181254a7Smrg   z = x * x;
221*181254a7Smrg   r = (((((((((((P12 * x
222*181254a7Smrg 		 + P11) * x
223*181254a7Smrg 		+ P10) * x
224*181254a7Smrg 	       + P9) * x
225*181254a7Smrg 	      + P8) * x
226*181254a7Smrg 	     + P7) * x
227*181254a7Smrg 	    + P6) * x
228*181254a7Smrg 	   + P5) * x
229*181254a7Smrg 	  + P4) * x
230*181254a7Smrg 	 + P3) * x
231*181254a7Smrg 	+ P2) * x
232*181254a7Smrg        + P1) * x
233*181254a7Smrg     + P0;
234*181254a7Smrg   s = (((((((((((x
235*181254a7Smrg 		 + Q11) * x
236*181254a7Smrg 		+ Q10) * x
237*181254a7Smrg 	       + Q9) * x
238*181254a7Smrg 	      + Q8) * x
239*181254a7Smrg 	     + Q7) * x
240*181254a7Smrg 	    + Q6) * x
241*181254a7Smrg 	   + Q5) * x
242*181254a7Smrg 	  + Q4) * x
243*181254a7Smrg 	 + Q3) * x
244*181254a7Smrg 	+ Q2) * x
245*181254a7Smrg        + Q1) * x
246*181254a7Smrg     + Q0;
247*181254a7Smrg   y = x * (z * r / s);
248*181254a7Smrg   y = y + e * C2;
249*181254a7Smrg   z = y - 0.5Q * z;
250*181254a7Smrg   z = z + x;
251*181254a7Smrg   z = z + e * C1;
252*181254a7Smrg   return (z);
253*181254a7Smrg }
254