1 /* Encoding of types for Objective C. 2 Copyright (C) 1993, 1995, 1996, 1997, 1998, 2000, 2002, 2004, 2009 3 Free Software Foundation, Inc. 4 Contributed by Kresten Krab Thorup 5 Bitfield support by Ovidiu Predescu 6 7 This file is part of GCC. 8 9 GCC is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3, or (at your option) 12 any later version. 13 14 GCC is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 Under Section 7 of GPL version 3, you are granted additional 20 permissions described in the GCC Runtime Library Exception, version 21 3.1, as published by the Free Software Foundation. 22 23 You should have received a copy of the GNU General Public License and 24 a copy of the GCC Runtime Library Exception along with this program; 25 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 26 <http://www.gnu.org/licenses/>. */ 27 28 /* FIXME: This file has no business including tm.h. */ 29 30 #include "tconfig.h" 31 #include "coretypes.h" 32 #include "tm.h" 33 #include "objc/objc-api.h" 34 #include "objc/encoding.h" 35 #include <stdlib.h> 36 37 #undef MAX 38 #define MAX(X, Y) \ 39 ({ typeof (X) __x = (X), __y = (Y); \ 40 (__x > __y ? __x : __y); }) 41 42 #undef MIN 43 #define MIN(X, Y) \ 44 ({ typeof (X) __x = (X), __y = (Y); \ 45 (__x < __y ? __x : __y); }) 46 47 #undef ROUND 48 #define ROUND(V, A) \ 49 ({ typeof (V) __v = (V); typeof (A) __a = (A); \ 50 __a * ((__v+__a - 1)/__a); }) 51 52 53 /* Various hacks for objc_layout_record. These are used by the target 54 macros. */ 55 56 #define TREE_CODE(TYPE) *(TYPE) 57 #define TREE_TYPE(TREE) (TREE) 58 59 #define RECORD_TYPE _C_STRUCT_B 60 #define UNION_TYPE _C_UNION_B 61 #define QUAL_UNION_TYPE _C_UNION_B 62 #define ARRAY_TYPE _C_ARY_B 63 64 #define REAL_TYPE _C_DBL 65 66 #define VECTOR_TYPE _C_VECTOR 67 68 #define TYPE_FIELDS(TYPE) ({const char *_field = (TYPE)+1; \ 69 while (*_field != _C_STRUCT_E && *_field != _C_STRUCT_B \ 70 && *_field != _C_UNION_B && *_field++ != '=') \ 71 /* do nothing */; \ 72 _field;}) 73 74 #define DECL_MODE(TYPE) *(TYPE) 75 #define TYPE_MODE(TYPE) *(TYPE) 76 77 #define DFmode _C_DBL 78 79 #define strip_array_types(TYPE) ({const char *_field = (TYPE); \ 80 while (*_field == _C_ARY_B)\ 81 {\ 82 while (isdigit ((unsigned char)*++_field))\ 83 ;\ 84 }\ 85 _field;}) 86 87 /* Some ports (eg ARM) allow the structure size boundary to be 88 selected at compile-time. We override the normal definition with 89 one that has a constant value for this compilation. */ 90 #ifndef BITS_PER_UNIT 91 #define BITS_PER_UNIT 8 92 #endif 93 #undef STRUCTURE_SIZE_BOUNDARY 94 #define STRUCTURE_SIZE_BOUNDARY (BITS_PER_UNIT * sizeof (struct{char a;})) 95 96 /* Some ROUND_TYPE_ALIGN macros use TARGET_foo, and consequently 97 target_flags. Define a dummy entry here to so we don't die. 98 We have to rename it because target_flags may already have been 99 declared extern. */ 100 #define target_flags not_target_flags 101 static int __attribute__ ((__unused__)) not_target_flags = 0; 102 103 /* Some ROUND_TYPE_ALIGN use ALTIVEC_VECTOR_MODE (rs6000 darwin). 104 Define a dummy ALTIVEC_VECTOR_MODE so it will not die. */ 105 #undef ALTIVEC_VECTOR_MODE 106 #define ALTIVEC_VECTOR_MODE(MODE) (0) 107 108 109 /* FIXME: while this file has no business including tm.h, this 110 definitely has no business defining this macro but it 111 is only way around without really rewritting this file, 112 should look after the branch of 3.4 to fix this. */ 113 #define rs6000_special_round_type_align(STRUCT, COMPUTED, SPECIFIED) \ 114 ({ const char *_fields = TYPE_FIELDS (STRUCT); \ 115 ((_fields != 0 \ 116 && TYPE_MODE (strip_array_types (TREE_TYPE (_fields))) == DFmode) \ 117 ? MAX (MAX (COMPUTED, SPECIFIED), 64) \ 118 : MAX (COMPUTED, SPECIFIED));}) 119 /* FIXME: The word 'fixme' is insufficient to explain the wrong-ness 120 of this next macro definition. */ 121 #define darwin_rs6000_special_round_type_align(S,C,S2) \ 122 rs6000_special_round_type_align(S,C,S2) 123 124 /* 125 return the size of an object specified by type 126 */ 127 128 int 129 objc_sizeof_type (const char *type) 130 { 131 /* Skip the variable name if any */ 132 if (*type == '"') 133 { 134 for (type++; *type++ != '"';) 135 /* do nothing */; 136 } 137 138 switch (*type) { 139 case _C_BOOL: 140 return sizeof (_Bool); 141 break; 142 143 case _C_ID: 144 return sizeof (id); 145 break; 146 147 case _C_CLASS: 148 return sizeof (Class); 149 break; 150 151 case _C_SEL: 152 return sizeof (SEL); 153 break; 154 155 case _C_CHR: 156 return sizeof (char); 157 break; 158 159 case _C_UCHR: 160 return sizeof (unsigned char); 161 break; 162 163 case _C_SHT: 164 return sizeof (short); 165 break; 166 167 case _C_USHT: 168 return sizeof (unsigned short); 169 break; 170 171 case _C_INT: 172 return sizeof (int); 173 break; 174 175 case _C_UINT: 176 return sizeof (unsigned int); 177 break; 178 179 case _C_LNG: 180 return sizeof (long); 181 break; 182 183 case _C_ULNG: 184 return sizeof (unsigned long); 185 break; 186 187 case _C_LNG_LNG: 188 return sizeof (long long); 189 break; 190 191 case _C_ULNG_LNG: 192 return sizeof (unsigned long long); 193 break; 194 195 case _C_FLT: 196 return sizeof (float); 197 break; 198 199 case _C_DBL: 200 return sizeof (double); 201 break; 202 203 case _C_VOID: 204 return sizeof (void); 205 break; 206 207 case _C_PTR: 208 case _C_ATOM: 209 case _C_CHARPTR: 210 return sizeof (char *); 211 break; 212 213 case _C_ARY_B: 214 { 215 int len = atoi (type + 1); 216 while (isdigit ((unsigned char)*++type)) 217 ; 218 return len * objc_aligned_size (type); 219 } 220 break; 221 222 case _C_BFLD: 223 { 224 /* The new encoding of bitfields is: b 'position' 'type' 'size' */ 225 int position, size; 226 int startByte, endByte; 227 228 position = atoi (type + 1); 229 while (isdigit ((unsigned char)*++type)) 230 ; 231 size = atoi (type + 1); 232 233 startByte = position / BITS_PER_UNIT; 234 endByte = (position + size) / BITS_PER_UNIT; 235 return endByte - startByte; 236 } 237 238 case _C_UNION_B: 239 case _C_STRUCT_B: 240 { 241 struct objc_struct_layout layout; 242 unsigned int size; 243 244 objc_layout_structure (type, &layout); 245 while (objc_layout_structure_next_member (&layout)) 246 /* do nothing */ ; 247 objc_layout_finish_structure (&layout, &size, NULL); 248 249 return size; 250 } 251 252 case _C_COMPLEX: 253 { 254 type++; /* Skip after the 'j'. */ 255 switch (*type) 256 { 257 case _C_CHR: 258 return sizeof (_Complex char); 259 break; 260 261 case _C_UCHR: 262 return sizeof (_Complex unsigned char); 263 break; 264 265 case _C_SHT: 266 return sizeof (_Complex short); 267 break; 268 269 case _C_USHT: 270 return sizeof (_Complex unsigned short); 271 break; 272 273 case _C_INT: 274 return sizeof (_Complex int); 275 break; 276 277 case _C_UINT: 278 return sizeof (_Complex unsigned int); 279 break; 280 281 case _C_LNG: 282 return sizeof (_Complex long); 283 break; 284 285 case _C_ULNG: 286 return sizeof (_Complex unsigned long); 287 break; 288 289 case _C_LNG_LNG: 290 return sizeof (_Complex long long); 291 break; 292 293 case _C_ULNG_LNG: 294 return sizeof (_Complex unsigned long long); 295 break; 296 297 case _C_FLT: 298 return sizeof (_Complex float); 299 break; 300 301 case _C_DBL: 302 return sizeof (_Complex double); 303 break; 304 305 default: 306 { 307 objc_error (nil, OBJC_ERR_BAD_TYPE, "unknown complex type %s\n", 308 type); 309 return 0; 310 } 311 } 312 } 313 314 default: 315 { 316 objc_error (nil, OBJC_ERR_BAD_TYPE, "unknown type %s\n", type); 317 return 0; 318 } 319 } 320 } 321 322 323 /* 324 Return the alignment of an object specified by type 325 */ 326 327 int 328 objc_alignof_type (const char *type) 329 { 330 /* Skip the variable name if any */ 331 if (*type == '"') 332 { 333 for (type++; *type++ != '"';) 334 /* do nothing */; 335 } 336 switch (*type) { 337 case _C_BOOL: 338 return __alignof__ (_Bool); 339 break; 340 341 case _C_ID: 342 return __alignof__ (id); 343 break; 344 345 case _C_CLASS: 346 return __alignof__ (Class); 347 break; 348 349 case _C_SEL: 350 return __alignof__ (SEL); 351 break; 352 353 case _C_CHR: 354 return __alignof__ (char); 355 break; 356 357 case _C_UCHR: 358 return __alignof__ (unsigned char); 359 break; 360 361 case _C_SHT: 362 return __alignof__ (short); 363 break; 364 365 case _C_USHT: 366 return __alignof__ (unsigned short); 367 break; 368 369 case _C_INT: 370 return __alignof__ (int); 371 break; 372 373 case _C_UINT: 374 return __alignof__ (unsigned int); 375 break; 376 377 case _C_LNG: 378 return __alignof__ (long); 379 break; 380 381 case _C_ULNG: 382 return __alignof__ (unsigned long); 383 break; 384 385 case _C_LNG_LNG: 386 return __alignof__ (long long); 387 break; 388 389 case _C_ULNG_LNG: 390 return __alignof__ (unsigned long long); 391 break; 392 393 case _C_FLT: 394 return __alignof__ (float); 395 break; 396 397 case _C_DBL: 398 return __alignof__ (double); 399 break; 400 401 case _C_PTR: 402 case _C_ATOM: 403 case _C_CHARPTR: 404 return __alignof__ (char *); 405 break; 406 407 case _C_ARY_B: 408 while (isdigit ((unsigned char)*++type)) 409 /* do nothing */; 410 return objc_alignof_type (type); 411 412 case _C_STRUCT_B: 413 case _C_UNION_B: 414 { 415 struct objc_struct_layout layout; 416 unsigned int align; 417 418 objc_layout_structure (type, &layout); 419 while (objc_layout_structure_next_member (&layout)) 420 /* do nothing */; 421 objc_layout_finish_structure (&layout, NULL, &align); 422 423 return align; 424 } 425 426 427 case _C_COMPLEX: 428 { 429 type++; /* Skip after the 'j'. */ 430 switch (*type) 431 { 432 case _C_CHR: 433 return __alignof__ (_Complex char); 434 break; 435 436 case _C_UCHR: 437 return __alignof__ (_Complex unsigned char); 438 break; 439 440 case _C_SHT: 441 return __alignof__ (_Complex short); 442 break; 443 444 case _C_USHT: 445 return __alignof__ (_Complex unsigned short); 446 break; 447 448 case _C_INT: 449 return __alignof__ (_Complex int); 450 break; 451 452 case _C_UINT: 453 return __alignof__ (_Complex unsigned int); 454 break; 455 456 case _C_LNG: 457 return __alignof__ (_Complex long); 458 break; 459 460 case _C_ULNG: 461 return __alignof__ (_Complex unsigned long); 462 break; 463 464 case _C_LNG_LNG: 465 return __alignof__ (_Complex long long); 466 break; 467 468 case _C_ULNG_LNG: 469 return __alignof__ (_Complex unsigned long long); 470 break; 471 472 case _C_FLT: 473 return __alignof__ (_Complex float); 474 break; 475 476 case _C_DBL: 477 return __alignof__ (_Complex double); 478 break; 479 480 default: 481 { 482 objc_error (nil, OBJC_ERR_BAD_TYPE, "unknown complex type %s\n", 483 type); 484 return 0; 485 } 486 } 487 } 488 489 default: 490 { 491 objc_error (nil, OBJC_ERR_BAD_TYPE, "unknown type %s\n", type); 492 return 0; 493 } 494 } 495 } 496 497 /* 498 The aligned size if the size rounded up to the nearest alignment. 499 */ 500 501 int 502 objc_aligned_size (const char *type) 503 { 504 int size, align; 505 506 /* Skip the variable name */ 507 if (*type == '"') 508 { 509 for (type++; *type++ != '"';) 510 /* do nothing */; 511 } 512 513 size = objc_sizeof_type (type); 514 align = objc_alignof_type (type); 515 516 return ROUND (size, align); 517 } 518 519 /* 520 The size rounded up to the nearest integral of the wordsize, taken 521 to be the size of a void *. 522 */ 523 524 int 525 objc_promoted_size (const char *type) 526 { 527 int size, wordsize; 528 529 /* Skip the variable name */ 530 if (*type == '"') 531 { 532 for (type++; *type++ != '"';) 533 /* do nothing */; 534 } 535 536 size = objc_sizeof_type (type); 537 wordsize = sizeof (void *); 538 539 return ROUND (size, wordsize); 540 } 541 542 /* 543 Skip type qualifiers. These may eventually precede typespecs 544 occurring in method prototype encodings. 545 */ 546 547 const char * 548 objc_skip_type_qualifiers (const char *type) 549 { 550 while (*type == _C_CONST 551 || *type == _C_IN 552 || *type == _C_INOUT 553 || *type == _C_OUT 554 || *type == _C_BYCOPY 555 || *type == _C_BYREF 556 || *type == _C_ONEWAY 557 || *type == _C_GCINVISIBLE) 558 { 559 type += 1; 560 } 561 return type; 562 } 563 564 565 /* 566 Skip one typespec element. If the typespec is prepended by type 567 qualifiers, these are skipped as well. 568 */ 569 570 const char * 571 objc_skip_typespec (const char *type) 572 { 573 /* Skip the variable name if any */ 574 if (*type == '"') 575 { 576 for (type++; *type++ != '"';) 577 /* do nothing */; 578 } 579 580 type = objc_skip_type_qualifiers (type); 581 582 switch (*type) { 583 584 case _C_ID: 585 /* An id may be annotated by the actual type if it is known 586 with the @"ClassName" syntax */ 587 588 if (*++type != '"') 589 return type; 590 else 591 { 592 while (*++type != '"') 593 /* do nothing */; 594 return type + 1; 595 } 596 597 /* The following are one character type codes */ 598 case _C_CLASS: 599 case _C_SEL: 600 case _C_CHR: 601 case _C_UCHR: 602 case _C_CHARPTR: 603 case _C_ATOM: 604 case _C_SHT: 605 case _C_USHT: 606 case _C_INT: 607 case _C_UINT: 608 case _C_LNG: 609 case _C_BOOL: 610 case _C_ULNG: 611 case _C_LNG_LNG: 612 case _C_ULNG_LNG: 613 case _C_FLT: 614 case _C_DBL: 615 case _C_VOID: 616 case _C_UNDEF: 617 return ++type; 618 break; 619 620 case _C_COMPLEX: 621 return type + 2; 622 break; 623 624 case _C_ARY_B: 625 /* skip digits, typespec and closing ']' */ 626 627 while (isdigit ((unsigned char)*++type)) 628 ; 629 type = objc_skip_typespec (type); 630 if (*type == _C_ARY_E) 631 return ++type; 632 else 633 { 634 objc_error (nil, OBJC_ERR_BAD_TYPE, "bad array type %s\n", type); 635 return 0; 636 } 637 638 case _C_BFLD: 639 /* The new encoding of bitfields is: b 'position' 'type' 'size' */ 640 while (isdigit ((unsigned char)*++type)) 641 ; /* skip position */ 642 while (isdigit ((unsigned char)*++type)) 643 ; /* skip type and size */ 644 return type; 645 646 case _C_STRUCT_B: 647 /* skip name, and elements until closing '}' */ 648 649 while (*type != _C_STRUCT_E && *type++ != '=') 650 ; 651 while (*type != _C_STRUCT_E) 652 { 653 type = objc_skip_typespec (type); 654 } 655 return ++type; 656 657 case _C_UNION_B: 658 /* skip name, and elements until closing ')' */ 659 660 while (*type != _C_UNION_E && *type++ != '=') 661 ; 662 while (*type != _C_UNION_E) 663 { 664 type = objc_skip_typespec (type); 665 } 666 return ++type; 667 668 case _C_PTR: 669 /* Just skip the following typespec */ 670 671 return objc_skip_typespec (++type); 672 673 default: 674 { 675 objc_error (nil, OBJC_ERR_BAD_TYPE, "unknown type %s\n", type); 676 return 0; 677 } 678 } 679 } 680 681 /* 682 Skip an offset as part of a method encoding. This is prepended by a 683 '+' if the argument is passed in registers. 684 */ 685 const char * 686 objc_skip_offset (const char *type) 687 { 688 if (*type == '+') 689 type++; 690 while (isdigit ((unsigned char) *++type)) 691 ; 692 return type; 693 } 694 695 /* 696 Skip an argument specification of a method encoding. 697 */ 698 const char * 699 objc_skip_argspec (const char *type) 700 { 701 type = objc_skip_typespec (type); 702 type = objc_skip_offset (type); 703 return type; 704 } 705 706 /* 707 Return the number of arguments that the method MTH expects. 708 Note that all methods need two implicit arguments `self' and 709 `_cmd'. 710 */ 711 int 712 method_get_number_of_arguments (struct objc_method *mth) 713 { 714 int i = 0; 715 const char *type = mth->method_types; 716 while (*type) 717 { 718 type = objc_skip_argspec (type); 719 i += 1; 720 } 721 return i - 1; 722 } 723 724 /* 725 Return the size of the argument block needed on the stack to invoke 726 the method MTH. This may be zero, if all arguments are passed in 727 registers. 728 */ 729 730 int 731 method_get_sizeof_arguments (struct objc_method *mth) 732 { 733 const char *type = objc_skip_typespec (mth->method_types); 734 return atoi (type); 735 } 736 737 /* 738 Return a pointer to the next argument of ARGFRAME. type points to 739 the last argument. Typical use of this look like: 740 741 { 742 char *datum, *type; 743 for (datum = method_get_first_argument (method, argframe, &type); 744 datum; datum = method_get_next_argument (argframe, &type)) 745 { 746 unsigned flags = objc_get_type_qualifiers (type); 747 type = objc_skip_type_qualifiers (type); 748 if (*type != _C_PTR) 749 [portal encodeData: datum ofType: type]; 750 else 751 { 752 if ((flags & _F_IN) == _F_IN) 753 [portal encodeData: *(char **) datum ofType: ++type]; 754 } 755 } 756 } 757 */ 758 759 char * 760 method_get_next_argument (arglist_t argframe, const char **type) 761 { 762 const char *t = objc_skip_argspec (*type); 763 764 if (*t == '\0') 765 return 0; 766 767 *type = t; 768 t = objc_skip_typespec (t); 769 770 if (*t == '+') 771 return argframe->arg_regs + atoi (++t); 772 else 773 return argframe->arg_ptr + atoi (t); 774 } 775 776 /* 777 Return a pointer to the value of the first argument of the method 778 described in M with the given argumentframe ARGFRAME. The type 779 is returned in TYPE. type must be passed to successive calls of 780 method_get_next_argument. 781 */ 782 char * 783 method_get_first_argument (struct objc_method *m, 784 arglist_t argframe, 785 const char **type) 786 { 787 *type = m->method_types; 788 return method_get_next_argument (argframe, type); 789 } 790 791 /* 792 Return a pointer to the ARGth argument of the method 793 M from the frame ARGFRAME. The type of the argument 794 is returned in the value-result argument TYPE 795 */ 796 797 char * 798 method_get_nth_argument (struct objc_method *m, 799 arglist_t argframe, int arg, 800 const char **type) 801 { 802 const char *t = objc_skip_argspec (m->method_types); 803 804 if (arg > method_get_number_of_arguments (m)) 805 return 0; 806 807 while (arg--) 808 t = objc_skip_argspec (t); 809 810 *type = t; 811 t = objc_skip_typespec (t); 812 813 if (*t == '+') 814 return argframe->arg_regs + atoi (++t); 815 else 816 return argframe->arg_ptr + atoi (t); 817 } 818 819 unsigned 820 objc_get_type_qualifiers (const char *type) 821 { 822 unsigned res = 0; 823 BOOL flag = YES; 824 825 while (flag) 826 switch (*type++) 827 { 828 case _C_CONST: res |= _F_CONST; break; 829 case _C_IN: res |= _F_IN; break; 830 case _C_INOUT: res |= _F_INOUT; break; 831 case _C_OUT: res |= _F_OUT; break; 832 case _C_BYCOPY: res |= _F_BYCOPY; break; 833 case _C_BYREF: res |= _F_BYREF; break; 834 case _C_ONEWAY: res |= _F_ONEWAY; break; 835 case _C_GCINVISIBLE: res |= _F_GCINVISIBLE; break; 836 default: flag = NO; 837 } 838 839 return res; 840 } 841 842 843 /* The following three functions can be used to determine how a 844 structure is laid out by the compiler. For example: 845 846 struct objc_struct_layout layout; 847 int i; 848 849 objc_layout_structure (type, &layout); 850 while (objc_layout_structure_next_member (&layout)) 851 { 852 int position, align; 853 const char *type; 854 855 objc_layout_structure_get_info (&layout, &position, &align, &type); 856 printf ("element %d has offset %d, alignment %d\n", 857 i++, position, align); 858 } 859 860 These functions are used by objc_sizeof_type and objc_alignof_type 861 functions to compute the size and alignment of structures. The 862 previous method of computing the size and alignment of a structure 863 was not working on some architectures, particulary on AIX, and in 864 the presence of bitfields inside the structure. */ 865 void 866 objc_layout_structure (const char *type, 867 struct objc_struct_layout *layout) 868 { 869 const char *ntype; 870 871 if (*type != _C_UNION_B && *type != _C_STRUCT_B) 872 { 873 objc_error (nil, OBJC_ERR_BAD_TYPE, 874 "record (or union) type expected in objc_layout_structure, got %s\n", 875 type); 876 } 877 878 type ++; 879 layout->original_type = type; 880 881 /* Skip "<name>=" if any. Avoid embedded structures and unions. */ 882 ntype = type; 883 while (*ntype != _C_STRUCT_E && *ntype != _C_STRUCT_B && *ntype != _C_UNION_B 884 && *ntype++ != '=') 885 /* do nothing */; 886 887 /* If there's a "<name>=", ntype - 1 points to '='; skip the the name */ 888 if (*(ntype - 1) == '=') 889 type = ntype; 890 891 layout->type = type; 892 layout->prev_type = NULL; 893 layout->record_size = 0; 894 layout->record_align = BITS_PER_UNIT; 895 896 layout->record_align = MAX (layout->record_align, STRUCTURE_SIZE_BOUNDARY); 897 } 898 899 900 BOOL 901 objc_layout_structure_next_member (struct objc_struct_layout *layout) 902 { 903 register int desired_align = 0; 904 905 /* The following are used only if the field is a bitfield */ 906 register const char *bfld_type = 0; 907 register int bfld_type_align = 0, bfld_field_size = 0; 908 909 /* The current type without the type qualifiers */ 910 const char *type; 911 BOOL unionp = layout->original_type[-1] == _C_UNION_B; 912 913 /* Add the size of the previous field to the size of the record. */ 914 if (layout->prev_type) 915 { 916 type = objc_skip_type_qualifiers (layout->prev_type); 917 if (unionp) 918 layout->record_size = MAX (layout->record_size, 919 objc_sizeof_type (type) * BITS_PER_UNIT); 920 921 else if (*type != _C_BFLD) 922 layout->record_size += objc_sizeof_type (type) * BITS_PER_UNIT; 923 else { 924 /* Get the bitfield's type */ 925 for (bfld_type = type + 1; 926 isdigit ((unsigned char)*bfld_type); 927 bfld_type++) 928 /* do nothing */; 929 930 bfld_type_align = objc_alignof_type (bfld_type) * BITS_PER_UNIT; 931 bfld_field_size = atoi (objc_skip_typespec (bfld_type)); 932 layout->record_size += bfld_field_size; 933 } 934 } 935 936 if ((unionp && *layout->type == _C_UNION_E) 937 || (!unionp && *layout->type == _C_STRUCT_E)) 938 return NO; 939 940 /* Skip the variable name if any */ 941 if (*layout->type == '"') 942 { 943 for (layout->type++; *layout->type++ != '"';) 944 /* do nothing */; 945 } 946 947 type = objc_skip_type_qualifiers (layout->type); 948 949 if (*type != _C_BFLD) 950 desired_align = objc_alignof_type (type) * BITS_PER_UNIT; 951 else 952 { 953 desired_align = 1; 954 /* Skip the bitfield's offset */ 955 for (bfld_type = type + 1; 956 isdigit ((unsigned char) *bfld_type); 957 bfld_type++) 958 /* do nothing */; 959 960 bfld_type_align = objc_alignof_type (bfld_type) * BITS_PER_UNIT; 961 bfld_field_size = atoi (objc_skip_typespec (bfld_type)); 962 } 963 964 #ifdef BIGGEST_FIELD_ALIGNMENT 965 desired_align = MIN (desired_align, BIGGEST_FIELD_ALIGNMENT); 966 #endif 967 #ifdef ADJUST_FIELD_ALIGN 968 desired_align = ADJUST_FIELD_ALIGN (type, desired_align); 969 #endif 970 971 /* Record must have at least as much alignment as any field. 972 Otherwise, the alignment of the field within the record 973 is meaningless. */ 974 #ifndef PCC_BITFIELD_TYPE_MATTERS 975 layout->record_align = MAX (layout->record_align, desired_align); 976 #else /* PCC_BITFIELD_TYPE_MATTERS */ 977 if (*type == _C_BFLD) 978 { 979 /* For these machines, a zero-length field does not 980 affect the alignment of the structure as a whole. 981 It does, however, affect the alignment of the next field 982 within the structure. */ 983 if (bfld_field_size) 984 layout->record_align = MAX (layout->record_align, desired_align); 985 else 986 desired_align = objc_alignof_type (bfld_type) * BITS_PER_UNIT; 987 988 /* A named bit field of declared type `int' 989 forces the entire structure to have `int' alignment. 990 Q1: How is encoded this thing and how to check for it? 991 Q2: How to determine maximum_field_alignment at runtime? */ 992 993 /* if (DECL_NAME (field) != 0) */ 994 { 995 int type_align = bfld_type_align; 996 #if 0 997 if (maximum_field_alignment != 0) 998 type_align = MIN (type_align, maximum_field_alignment); 999 else if (DECL_PACKED (field)) 1000 type_align = MIN (type_align, BITS_PER_UNIT); 1001 #endif 1002 1003 layout->record_align = MAX (layout->record_align, type_align); 1004 } 1005 } 1006 else 1007 layout->record_align = MAX (layout->record_align, desired_align); 1008 #endif /* PCC_BITFIELD_TYPE_MATTERS */ 1009 1010 /* Does this field automatically have alignment it needs 1011 by virtue of the fields that precede it and the record's 1012 own alignment? */ 1013 1014 if (*type == _C_BFLD) 1015 layout->record_size = atoi (type + 1); 1016 else if (layout->record_size % desired_align != 0) 1017 { 1018 /* No, we need to skip space before this field. 1019 Bump the cumulative size to multiple of field alignment. */ 1020 layout->record_size = ROUND (layout->record_size, desired_align); 1021 } 1022 1023 /* Jump to the next field in record. */ 1024 1025 layout->prev_type = layout->type; 1026 layout->type = objc_skip_typespec (layout->type); /* skip component */ 1027 1028 return YES; 1029 } 1030 1031 1032 void objc_layout_finish_structure (struct objc_struct_layout *layout, 1033 unsigned int *size, 1034 unsigned int *align) 1035 { 1036 BOOL unionp = layout->original_type[-1] == _C_UNION_B; 1037 if (layout->type 1038 && ((!unionp && *layout->type == _C_STRUCT_E) 1039 || (unionp && *layout->type == _C_UNION_E))) 1040 { 1041 /* Work out the alignment of the record as one expression and store 1042 in the record type. Round it up to a multiple of the record's 1043 alignment. */ 1044 #if defined (ROUND_TYPE_ALIGN) && ! defined (__sparc__) 1045 layout->record_align = ROUND_TYPE_ALIGN (layout->original_type-1, 1046 1, 1047 layout->record_align); 1048 #else 1049 layout->record_align = MAX (1, layout->record_align); 1050 #endif 1051 1052 #ifdef ROUND_TYPE_SIZE 1053 layout->record_size = ROUND_TYPE_SIZE (layout->original_type, 1054 layout->record_size, 1055 layout->record_align); 1056 #else 1057 /* Round the size up to be a multiple of the required alignment */ 1058 layout->record_size = ROUND (layout->record_size, layout->record_align); 1059 #endif 1060 1061 layout->type = NULL; 1062 } 1063 if (size) 1064 *size = layout->record_size / BITS_PER_UNIT; 1065 if (align) 1066 *align = layout->record_align / BITS_PER_UNIT; 1067 } 1068 1069 1070 void objc_layout_structure_get_info (struct objc_struct_layout *layout, 1071 unsigned int *offset, 1072 unsigned int *align, 1073 const char **type) 1074 { 1075 if (offset) 1076 *offset = layout->record_size / BITS_PER_UNIT; 1077 if (align) 1078 *align = layout->record_align / BITS_PER_UNIT; 1079 if (type) 1080 *type = layout->prev_type; 1081 } 1082