1 /* IEEE floating point support routines, for GDB, the GNU Debugger. 2 Copyright 1991, 1994, 1999, 2000, 2003, 2005, 2006, 2010, 2012 3 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ 20 21 /* This is needed to pick up the NAN macro on some systems. */ 22 #define _GNU_SOURCE 23 24 #ifdef HAVE_CONFIG_H 25 #include "config.h" 26 #endif 27 28 #include <math.h> 29 30 #ifdef HAVE_STRING_H 31 #include <string.h> 32 #endif 33 34 /* On some platforms, <float.h> provides DBL_QNAN. */ 35 #ifdef STDC_HEADERS 36 #include <float.h> 37 #endif 38 39 #include "ansidecl.h" 40 #include "libiberty.h" 41 #include "floatformat.h" 42 43 #ifndef INFINITY 44 #ifdef HUGE_VAL 45 #define INFINITY HUGE_VAL 46 #else 47 #define INFINITY (1.0 / 0.0) 48 #endif 49 #endif 50 51 #ifndef NAN 52 #ifdef DBL_QNAN 53 #define NAN DBL_QNAN 54 #else 55 #define NAN (0.0 / 0.0) 56 #endif 57 #endif 58 59 static int mant_bits_set (const struct floatformat *, const unsigned char *); 60 static unsigned long get_field (const unsigned char *, 61 enum floatformat_byteorders, 62 unsigned int, 63 unsigned int, 64 unsigned int); 65 static int floatformat_always_valid (const struct floatformat *fmt, 66 const void *from); 67 68 static int 69 floatformat_always_valid (const struct floatformat *fmt ATTRIBUTE_UNUSED, 70 const void *from ATTRIBUTE_UNUSED) 71 { 72 return 1; 73 } 74 75 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not 76 going to bother with trying to muck around with whether it is defined in 77 a system header, what we do if not, etc. */ 78 #define FLOATFORMAT_CHAR_BIT 8 79 80 /* floatformats for IEEE half, single and double, big and little endian. */ 81 const struct floatformat floatformat_ieee_half_big = 82 { 83 floatformat_big, 16, 0, 1, 5, 15, 31, 6, 10, 84 floatformat_intbit_no, 85 "floatformat_ieee_half_big", 86 floatformat_always_valid, 87 NULL 88 }; 89 const struct floatformat floatformat_ieee_half_little = 90 { 91 floatformat_little, 16, 0, 1, 5, 15, 31, 6, 10, 92 floatformat_intbit_no, 93 "floatformat_ieee_half_little", 94 floatformat_always_valid, 95 NULL 96 }; 97 const struct floatformat floatformat_ieee_single_big = 98 { 99 floatformat_big, 32, 0, 1, 8, 127, 255, 9, 23, 100 floatformat_intbit_no, 101 "floatformat_ieee_single_big", 102 floatformat_always_valid, 103 NULL 104 }; 105 const struct floatformat floatformat_ieee_single_little = 106 { 107 floatformat_little, 32, 0, 1, 8, 127, 255, 9, 23, 108 floatformat_intbit_no, 109 "floatformat_ieee_single_little", 110 floatformat_always_valid, 111 NULL 112 }; 113 const struct floatformat floatformat_ieee_double_big = 114 { 115 floatformat_big, 64, 0, 1, 11, 1023, 2047, 12, 52, 116 floatformat_intbit_no, 117 "floatformat_ieee_double_big", 118 floatformat_always_valid, 119 NULL 120 }; 121 const struct floatformat floatformat_ieee_double_little = 122 { 123 floatformat_little, 64, 0, 1, 11, 1023, 2047, 12, 52, 124 floatformat_intbit_no, 125 "floatformat_ieee_double_little", 126 floatformat_always_valid, 127 NULL 128 }; 129 130 /* floatformat for IEEE double, little endian byte order, with big endian word 131 ordering, as on the ARM. */ 132 133 const struct floatformat floatformat_ieee_double_littlebyte_bigword = 134 { 135 floatformat_littlebyte_bigword, 64, 0, 1, 11, 1023, 2047, 12, 52, 136 floatformat_intbit_no, 137 "floatformat_ieee_double_littlebyte_bigword", 138 floatformat_always_valid, 139 NULL 140 }; 141 142 /* floatformat for VAX. Not quite IEEE, but close enough. */ 143 144 const struct floatformat floatformat_vax_f = 145 { 146 floatformat_vax, 32, 0, 1, 8, 129, 0, 9, 23, 147 floatformat_intbit_no, 148 "floatformat_vax_f", 149 floatformat_always_valid, 150 NULL 151 }; 152 const struct floatformat floatformat_vax_d = 153 { 154 floatformat_vax, 64, 0, 1, 8, 129, 0, 9, 55, 155 floatformat_intbit_no, 156 "floatformat_vax_d", 157 floatformat_always_valid, 158 NULL 159 }; 160 const struct floatformat floatformat_vax_g = 161 { 162 floatformat_vax, 64, 0, 1, 11, 1025, 0, 12, 52, 163 floatformat_intbit_no, 164 "floatformat_vax_g", 165 floatformat_always_valid, 166 NULL 167 }; 168 169 static int floatformat_i387_ext_is_valid (const struct floatformat *fmt, 170 const void *from); 171 172 static int 173 floatformat_i387_ext_is_valid (const struct floatformat *fmt, const void *from) 174 { 175 /* In the i387 double-extended format, if the exponent is all ones, 176 then the integer bit must be set. If the exponent is neither 0 177 nor ~0, the intbit must also be set. Only if the exponent is 178 zero can it be zero, and then it must be zero. */ 179 unsigned long exponent, int_bit; 180 const unsigned char *ufrom = (const unsigned char *) from; 181 182 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize, 183 fmt->exp_start, fmt->exp_len); 184 int_bit = get_field (ufrom, fmt->byteorder, fmt->totalsize, 185 fmt->man_start, 1); 186 187 if ((exponent == 0) != (int_bit == 0)) 188 return 0; 189 else 190 return 1; 191 } 192 193 const struct floatformat floatformat_i387_ext = 194 { 195 floatformat_little, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64, 196 floatformat_intbit_yes, 197 "floatformat_i387_ext", 198 floatformat_i387_ext_is_valid, 199 NULL 200 }; 201 const struct floatformat floatformat_m68881_ext = 202 { 203 /* Note that the bits from 16 to 31 are unused. */ 204 floatformat_big, 96, 0, 1, 15, 0x3fff, 0x7fff, 32, 64, 205 floatformat_intbit_yes, 206 "floatformat_m68881_ext", 207 floatformat_always_valid, 208 NULL 209 }; 210 const struct floatformat floatformat_i960_ext = 211 { 212 /* Note that the bits from 0 to 15 are unused. */ 213 floatformat_little, 96, 16, 17, 15, 0x3fff, 0x7fff, 32, 64, 214 floatformat_intbit_yes, 215 "floatformat_i960_ext", 216 floatformat_always_valid, 217 NULL 218 }; 219 const struct floatformat floatformat_m88110_ext = 220 { 221 floatformat_big, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64, 222 floatformat_intbit_yes, 223 "floatformat_m88110_ext", 224 floatformat_always_valid, 225 NULL 226 }; 227 const struct floatformat floatformat_m88110_harris_ext = 228 { 229 /* Harris uses raw format 128 bytes long, but the number is just an ieee 230 double, and the last 64 bits are wasted. */ 231 floatformat_big,128, 0, 1, 11, 0x3ff, 0x7ff, 12, 52, 232 floatformat_intbit_no, 233 "floatformat_m88110_ext_harris", 234 floatformat_always_valid, 235 NULL 236 }; 237 const struct floatformat floatformat_arm_ext_big = 238 { 239 /* Bits 1 to 16 are unused. */ 240 floatformat_big, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64, 241 floatformat_intbit_yes, 242 "floatformat_arm_ext_big", 243 floatformat_always_valid, 244 NULL 245 }; 246 const struct floatformat floatformat_arm_ext_littlebyte_bigword = 247 { 248 /* Bits 1 to 16 are unused. */ 249 floatformat_littlebyte_bigword, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64, 250 floatformat_intbit_yes, 251 "floatformat_arm_ext_littlebyte_bigword", 252 floatformat_always_valid, 253 NULL 254 }; 255 const struct floatformat floatformat_ia64_spill_big = 256 { 257 floatformat_big, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64, 258 floatformat_intbit_yes, 259 "floatformat_ia64_spill_big", 260 floatformat_always_valid, 261 NULL 262 }; 263 const struct floatformat floatformat_ia64_spill_little = 264 { 265 floatformat_little, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64, 266 floatformat_intbit_yes, 267 "floatformat_ia64_spill_little", 268 floatformat_always_valid, 269 NULL 270 }; 271 const struct floatformat floatformat_ia64_quad_big = 272 { 273 floatformat_big, 128, 0, 1, 15, 16383, 0x7fff, 16, 112, 274 floatformat_intbit_no, 275 "floatformat_ia64_quad_big", 276 floatformat_always_valid, 277 NULL 278 }; 279 const struct floatformat floatformat_ia64_quad_little = 280 { 281 floatformat_little, 128, 0, 1, 15, 16383, 0x7fff, 16, 112, 282 floatformat_intbit_no, 283 "floatformat_ia64_quad_little", 284 floatformat_always_valid, 285 NULL 286 }; 287 288 static int 289 floatformat_ibm_long_double_is_valid (const struct floatformat *fmt, 290 const void *from) 291 { 292 const unsigned char *ufrom = (const unsigned char *) from; 293 const struct floatformat *hfmt = fmt->split_half; 294 long top_exp, bot_exp; 295 int top_nan = 0; 296 297 top_exp = get_field (ufrom, hfmt->byteorder, hfmt->totalsize, 298 hfmt->exp_start, hfmt->exp_len); 299 bot_exp = get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize, 300 hfmt->exp_start, hfmt->exp_len); 301 302 if ((unsigned long) top_exp == hfmt->exp_nan) 303 top_nan = mant_bits_set (hfmt, ufrom); 304 305 /* A NaN is valid with any low part. */ 306 if (top_nan) 307 return 1; 308 309 /* An infinity, zero or denormal requires low part 0 (positive or 310 negative). */ 311 if ((unsigned long) top_exp == hfmt->exp_nan || top_exp == 0) 312 { 313 if (bot_exp != 0) 314 return 0; 315 316 return !mant_bits_set (hfmt, ufrom + 8); 317 } 318 319 /* The top part is now a finite normal value. The long double value 320 is the sum of the two parts, and the top part must equal the 321 result of rounding the long double value to nearest double. Thus 322 the bottom part must be <= 0.5ulp of the top part in absolute 323 value, and if it is < 0.5ulp then the long double is definitely 324 valid. */ 325 if (bot_exp < top_exp - 53) 326 return 1; 327 if (bot_exp > top_exp - 53 && bot_exp != 0) 328 return 0; 329 if (bot_exp == 0) 330 { 331 /* The bottom part is 0 or denormal. Determine which, and if 332 denormal the first two set bits. */ 333 int first_bit = -1, second_bit = -1, cur_bit; 334 for (cur_bit = 0; (unsigned int) cur_bit < hfmt->man_len; cur_bit++) 335 if (get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize, 336 hfmt->man_start + cur_bit, 1)) 337 { 338 if (first_bit == -1) 339 first_bit = cur_bit; 340 else 341 { 342 second_bit = cur_bit; 343 break; 344 } 345 } 346 /* Bottom part 0 is OK. */ 347 if (first_bit == -1) 348 return 1; 349 /* The real exponent of the bottom part is -first_bit. */ 350 if (-first_bit < top_exp - 53) 351 return 1; 352 if (-first_bit > top_exp - 53) 353 return 0; 354 /* The bottom part is at least 0.5ulp of the top part. For this 355 to be OK, the bottom part must be exactly 0.5ulp (i.e. no 356 more bits set) and the top part must have last bit 0. */ 357 if (second_bit != -1) 358 return 0; 359 return !get_field (ufrom, hfmt->byteorder, hfmt->totalsize, 360 hfmt->man_start + hfmt->man_len - 1, 1); 361 } 362 else 363 { 364 /* The bottom part is at least 0.5ulp of the top part. For this 365 to be OK, it must be exactly 0.5ulp (i.e. no explicit bits 366 set) and the top part must have last bit 0. */ 367 if (get_field (ufrom, hfmt->byteorder, hfmt->totalsize, 368 hfmt->man_start + hfmt->man_len - 1, 1)) 369 return 0; 370 return !mant_bits_set (hfmt, ufrom + 8); 371 } 372 } 373 374 const struct floatformat floatformat_ibm_long_double_big = 375 { 376 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52, 377 floatformat_intbit_no, 378 "floatformat_ibm_long_double_big", 379 floatformat_ibm_long_double_is_valid, 380 &floatformat_ieee_double_big 381 }; 382 383 const struct floatformat floatformat_ibm_long_double_little = 384 { 385 floatformat_little, 128, 0, 1, 11, 1023, 2047, 12, 52, 386 floatformat_intbit_no, 387 "floatformat_ibm_long_double_little", 388 floatformat_ibm_long_double_is_valid, 389 &floatformat_ieee_double_little 390 }; 391 392 393 #ifndef min 394 #define min(a, b) ((a) < (b) ? (a) : (b)) 395 #endif 396 397 /* Return 1 if any bits are explicitly set in the mantissa of UFROM, 398 format FMT, 0 otherwise. */ 399 static int 400 mant_bits_set (const struct floatformat *fmt, const unsigned char *ufrom) 401 { 402 unsigned int mant_bits, mant_off; 403 int mant_bits_left; 404 405 mant_off = fmt->man_start; 406 mant_bits_left = fmt->man_len; 407 while (mant_bits_left > 0) 408 { 409 mant_bits = min (mant_bits_left, 32); 410 411 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, 412 mant_off, mant_bits) != 0) 413 return 1; 414 415 mant_off += mant_bits; 416 mant_bits_left -= mant_bits; 417 } 418 return 0; 419 } 420 421 /* Extract a field which starts at START and is LEN bits long. DATA and 422 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ 423 static unsigned long 424 get_field (const unsigned char *data, enum floatformat_byteorders order, 425 unsigned int total_len, unsigned int start, unsigned int len) 426 { 427 unsigned long result = 0; 428 unsigned int cur_byte; 429 int lo_bit, hi_bit, cur_bitshift = 0; 430 int nextbyte = (order == floatformat_little) ? 1 : -1; 431 432 /* Start is in big-endian bit order! Fix that first. */ 433 start = total_len - (start + len); 434 435 /* Start at the least significant part of the field. */ 436 if (order == floatformat_little) 437 cur_byte = start / FLOATFORMAT_CHAR_BIT; 438 else 439 cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT; 440 441 lo_bit = start % FLOATFORMAT_CHAR_BIT; 442 hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT); 443 444 do 445 { 446 unsigned int shifted = *(data + cur_byte) >> lo_bit; 447 unsigned int bits = hi_bit - lo_bit; 448 unsigned int mask = (1 << bits) - 1; 449 result |= (shifted & mask) << cur_bitshift; 450 len -= bits; 451 cur_bitshift += bits; 452 cur_byte += nextbyte; 453 lo_bit = 0; 454 hi_bit = min (len, FLOATFORMAT_CHAR_BIT); 455 } 456 while (len != 0); 457 458 return result; 459 } 460 461 /* Convert from FMT to a double. 462 FROM is the address of the extended float. 463 Store the double in *TO. */ 464 465 void 466 floatformat_to_double (const struct floatformat *fmt, 467 const void *from, double *to) 468 { 469 const unsigned char *ufrom = (const unsigned char *) from; 470 double dto; 471 long exponent; 472 unsigned long mant; 473 unsigned int mant_bits, mant_off; 474 int mant_bits_left; 475 476 /* Split values are not handled specially, since the top half has 477 the correctly rounded double value (in the only supported case of 478 split values). */ 479 480 exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize, 481 fmt->exp_start, fmt->exp_len); 482 483 /* If the exponent indicates a NaN, we don't have information to 484 decide what to do. So we handle it like IEEE, except that we 485 don't try to preserve the type of NaN. FIXME. */ 486 if ((unsigned long) exponent == fmt->exp_nan) 487 { 488 int nan = mant_bits_set (fmt, ufrom); 489 490 /* On certain systems (such as GNU/Linux), the use of the 491 INFINITY macro below may generate a warning that can not be 492 silenced due to a bug in GCC (PR preprocessor/11931). The 493 preprocessor fails to recognise the __extension__ keyword in 494 conjunction with the GNU/C99 extension for hexadecimal 495 floating point constants and will issue a warning when 496 compiling with -pedantic. */ 497 if (nan) 498 dto = NAN; 499 else 500 #ifdef __vax__ 501 dto = HUGE_VAL; 502 #else 503 dto = INFINITY; 504 #endif 505 506 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1)) 507 dto = -dto; 508 509 *to = dto; 510 511 return; 512 } 513 514 mant_bits_left = fmt->man_len; 515 mant_off = fmt->man_start; 516 dto = 0.0; 517 518 /* Build the result algebraically. Might go infinite, underflow, etc; 519 who cares. */ 520 521 /* For denorms use minimum exponent. */ 522 if (exponent == 0) 523 exponent = 1 - fmt->exp_bias; 524 else 525 { 526 exponent -= fmt->exp_bias; 527 528 /* If this format uses a hidden bit, explicitly add it in now. 529 Otherwise, increment the exponent by one to account for the 530 integer bit. */ 531 532 if (fmt->intbit == floatformat_intbit_no) 533 dto = ldexp (1.0, exponent); 534 else 535 exponent++; 536 } 537 538 while (mant_bits_left > 0) 539 { 540 mant_bits = min (mant_bits_left, 32); 541 542 mant = get_field (ufrom, fmt->byteorder, fmt->totalsize, 543 mant_off, mant_bits); 544 545 dto += ldexp ((double) mant, exponent - mant_bits); 546 exponent -= mant_bits; 547 mant_off += mant_bits; 548 mant_bits_left -= mant_bits; 549 } 550 551 /* Negate it if negative. */ 552 if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1)) 553 dto = -dto; 554 *to = dto; 555 } 556 557 static void put_field (unsigned char *, enum floatformat_byteorders, 558 unsigned int, 559 unsigned int, 560 unsigned int, 561 unsigned long); 562 563 /* Set a field which starts at START and is LEN bits long. DATA and 564 TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER. */ 565 static void 566 put_field (unsigned char *data, enum floatformat_byteorders order, 567 unsigned int total_len, unsigned int start, unsigned int len, 568 unsigned long stuff_to_put) 569 { 570 unsigned int cur_byte; 571 int lo_bit, hi_bit; 572 int nextbyte = (order == floatformat_little) ? 1 : -1; 573 574 /* Start is in big-endian bit order! Fix that first. */ 575 start = total_len - (start + len); 576 577 /* Start at the least significant part of the field. */ 578 if (order == floatformat_little) 579 cur_byte = start / FLOATFORMAT_CHAR_BIT; 580 else 581 cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT; 582 583 lo_bit = start % FLOATFORMAT_CHAR_BIT; 584 hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT); 585 586 do 587 { 588 unsigned char *byte_ptr = data + cur_byte; 589 unsigned int bits = hi_bit - lo_bit; 590 unsigned int mask = ((1 << bits) - 1) << lo_bit; 591 *byte_ptr = (*byte_ptr & ~mask) | ((stuff_to_put << lo_bit) & mask); 592 stuff_to_put >>= bits; 593 len -= bits; 594 cur_byte += nextbyte; 595 lo_bit = 0; 596 hi_bit = min (len, FLOATFORMAT_CHAR_BIT); 597 } 598 while (len != 0); 599 } 600 601 /* The converse: convert the double *FROM to an extended float 602 and store where TO points. Neither FROM nor TO have any alignment 603 restrictions. */ 604 605 void 606 floatformat_from_double (const struct floatformat *fmt, 607 const double *from, void *to) 608 { 609 double dfrom; 610 int exponent; 611 double mant; 612 unsigned int mant_bits, mant_off; 613 int mant_bits_left; 614 unsigned char *uto = (unsigned char *) to; 615 616 dfrom = *from; 617 memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT); 618 619 /* Split values are not handled specially, since a bottom half of 620 zero is correct for any value representable as double (in the 621 only supported case of split values). */ 622 623 /* If negative, set the sign bit. */ 624 if (dfrom < 0) 625 { 626 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1); 627 dfrom = -dfrom; 628 } 629 630 if (dfrom == 0) 631 { 632 /* 0.0. */ 633 return; 634 } 635 636 if (dfrom != dfrom) 637 { 638 /* NaN. */ 639 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, 640 fmt->exp_len, fmt->exp_nan); 641 /* Be sure it's not infinity, but NaN value is irrelevant. */ 642 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start, 643 32, 1); 644 return; 645 } 646 647 if (dfrom + dfrom == dfrom) 648 { 649 /* This can only happen for an infinite value (or zero, which we 650 already handled above). */ 651 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, 652 fmt->exp_len, fmt->exp_nan); 653 return; 654 } 655 656 mant = frexp (dfrom, &exponent); 657 if (exponent + fmt->exp_bias - 1 > 0) 658 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, 659 fmt->exp_len, exponent + fmt->exp_bias - 1); 660 else 661 { 662 /* Handle a denormalized number. FIXME: What should we do for 663 non-IEEE formats? */ 664 put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start, 665 fmt->exp_len, 0); 666 mant = ldexp (mant, exponent + fmt->exp_bias - 1); 667 } 668 669 mant_bits_left = fmt->man_len; 670 mant_off = fmt->man_start; 671 while (mant_bits_left > 0) 672 { 673 unsigned long mant_long; 674 mant_bits = mant_bits_left < 32 ? mant_bits_left : 32; 675 676 mant *= 4294967296.0; 677 mant_long = (unsigned long)mant; 678 mant -= mant_long; 679 680 /* If the integer bit is implicit, and we are not creating a 681 denormalized number, then we need to discard it. */ 682 if ((unsigned int) mant_bits_left == fmt->man_len 683 && fmt->intbit == floatformat_intbit_no 684 && exponent + fmt->exp_bias - 1 > 0) 685 { 686 mant_long &= 0x7fffffff; 687 mant_bits -= 1; 688 } 689 else if (mant_bits < 32) 690 { 691 /* The bits we want are in the most significant MANT_BITS bits of 692 mant_long. Move them to the least significant. */ 693 mant_long >>= 32 - mant_bits; 694 } 695 696 put_field (uto, fmt->byteorder, fmt->totalsize, 697 mant_off, mant_bits, mant_long); 698 mant_off += mant_bits; 699 mant_bits_left -= mant_bits; 700 } 701 } 702 703 /* Return non-zero iff the data at FROM is a valid number in format FMT. */ 704 705 int 706 floatformat_is_valid (const struct floatformat *fmt, const void *from) 707 { 708 return fmt->is_valid (fmt, from); 709 } 710 711 712 #ifdef IEEE_DEBUG 713 714 #include <stdio.h> 715 716 /* This is to be run on a host which uses IEEE floating point. */ 717 718 void 719 ieee_test (double n) 720 { 721 double result; 722 723 floatformat_to_double (&floatformat_ieee_double_little, &n, &result); 724 if ((n != result && (! isnan (n) || ! isnan (result))) 725 || (n < 0 && result >= 0) 726 || (n >= 0 && result < 0)) 727 printf ("Differ(to): %.20g -> %.20g\n", n, result); 728 729 floatformat_from_double (&floatformat_ieee_double_little, &n, &result); 730 if ((n != result && (! isnan (n) || ! isnan (result))) 731 || (n < 0 && result >= 0) 732 || (n >= 0 && result < 0)) 733 printf ("Differ(from): %.20g -> %.20g\n", n, result); 734 735 #if 0 736 { 737 char exten[16]; 738 739 floatformat_from_double (&floatformat_m68881_ext, &n, exten); 740 floatformat_to_double (&floatformat_m68881_ext, exten, &result); 741 if (n != result) 742 printf ("Differ(to+from): %.20g -> %.20g\n", n, result); 743 } 744 #endif 745 746 #if IEEE_DEBUG > 1 747 /* This is to be run on a host which uses 68881 format. */ 748 { 749 long double ex = *(long double *)exten; 750 if (ex != n) 751 printf ("Differ(from vs. extended): %.20g\n", n); 752 } 753 #endif 754 } 755 756 int 757 main (void) 758 { 759 ieee_test (0.0); 760 ieee_test (0.5); 761 ieee_test (1.1); 762 ieee_test (256.0); 763 ieee_test (0.12345); 764 ieee_test (234235.78907234); 765 ieee_test (-512.0); 766 ieee_test (-0.004321); 767 ieee_test (1.2E-70); 768 ieee_test (1.2E-316); 769 ieee_test (4.9406564584124654E-324); 770 ieee_test (- 4.9406564584124654E-324); 771 ieee_test (- 0.0); 772 ieee_test (- INFINITY); 773 ieee_test (- NAN); 774 ieee_test (INFINITY); 775 ieee_test (NAN); 776 return 0; 777 } 778 #endif 779