xref: /netbsd-src/external/gpl3/gcc/dist/libiberty/floatformat.c (revision a24efa7dea9f1f56c3bdb15a927d3516792ace1c)
1 /* IEEE floating point support routines, for GDB, the GNU Debugger.
2    Copyright 1991, 1994, 1999, 2000, 2003, 2005, 2006, 2010, 2012
3    Free Software Foundation, Inc.
4 
5 This file is part of GDB.
6 
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11 
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
20 
21 /* This is needed to pick up the NAN macro on some systems.  */
22 #define _GNU_SOURCE
23 
24 #ifdef HAVE_CONFIG_H
25 #include "config.h"
26 #endif
27 
28 #include <math.h>
29 
30 #ifdef HAVE_STRING_H
31 #include <string.h>
32 #endif
33 
34 /* On some platforms, <float.h> provides DBL_QNAN.  */
35 #ifdef STDC_HEADERS
36 #include <float.h>
37 #endif
38 
39 #include "ansidecl.h"
40 #include "libiberty.h"
41 #include "floatformat.h"
42 
43 #ifndef INFINITY
44 #ifdef HUGE_VAL
45 #define INFINITY HUGE_VAL
46 #else
47 #define INFINITY (1.0 / 0.0)
48 #endif
49 #endif
50 
51 #ifndef NAN
52 #ifdef DBL_QNAN
53 #define NAN DBL_QNAN
54 #else
55 #define NAN (0.0 / 0.0)
56 #endif
57 #endif
58 
59 static int mant_bits_set (const struct floatformat *, const unsigned char *);
60 static unsigned long get_field (const unsigned char *,
61                                 enum floatformat_byteorders,
62                                 unsigned int,
63                                 unsigned int,
64                                 unsigned int);
65 static int floatformat_always_valid (const struct floatformat *fmt,
66                                      const void *from);
67 
68 static int
69 floatformat_always_valid (const struct floatformat *fmt ATTRIBUTE_UNUSED,
70                           const void *from ATTRIBUTE_UNUSED)
71 {
72   return 1;
73 }
74 
75 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
76    going to bother with trying to muck around with whether it is defined in
77    a system header, what we do if not, etc.  */
78 #define FLOATFORMAT_CHAR_BIT 8
79 
80 /* floatformats for IEEE half, single and double, big and little endian.  */
81 const struct floatformat floatformat_ieee_half_big =
82 {
83   floatformat_big, 16, 0, 1, 5, 15, 31, 6, 10,
84   floatformat_intbit_no,
85   "floatformat_ieee_half_big",
86   floatformat_always_valid,
87   NULL
88 };
89 const struct floatformat floatformat_ieee_half_little =
90 {
91   floatformat_little, 16, 0, 1, 5, 15, 31, 6, 10,
92   floatformat_intbit_no,
93   "floatformat_ieee_half_little",
94   floatformat_always_valid,
95   NULL
96 };
97 const struct floatformat floatformat_ieee_single_big =
98 {
99   floatformat_big, 32, 0, 1, 8, 127, 255, 9, 23,
100   floatformat_intbit_no,
101   "floatformat_ieee_single_big",
102   floatformat_always_valid,
103   NULL
104 };
105 const struct floatformat floatformat_ieee_single_little =
106 {
107   floatformat_little, 32, 0, 1, 8, 127, 255, 9, 23,
108   floatformat_intbit_no,
109   "floatformat_ieee_single_little",
110   floatformat_always_valid,
111   NULL
112 };
113 const struct floatformat floatformat_ieee_double_big =
114 {
115   floatformat_big, 64, 0, 1, 11, 1023, 2047, 12, 52,
116   floatformat_intbit_no,
117   "floatformat_ieee_double_big",
118   floatformat_always_valid,
119   NULL
120 };
121 const struct floatformat floatformat_ieee_double_little =
122 {
123   floatformat_little, 64, 0, 1, 11, 1023, 2047, 12, 52,
124   floatformat_intbit_no,
125   "floatformat_ieee_double_little",
126   floatformat_always_valid,
127   NULL
128 };
129 
130 /* floatformat for IEEE double, little endian byte order, with big endian word
131    ordering, as on the ARM.  */
132 
133 const struct floatformat floatformat_ieee_double_littlebyte_bigword =
134 {
135   floatformat_littlebyte_bigword, 64, 0, 1, 11, 1023, 2047, 12, 52,
136   floatformat_intbit_no,
137   "floatformat_ieee_double_littlebyte_bigword",
138   floatformat_always_valid,
139   NULL
140 };
141 
142 /* floatformat for VAX.  Not quite IEEE, but close enough.  */
143 
144 const struct floatformat floatformat_vax_f =
145 {
146   floatformat_vax, 32, 0, 1, 8, 129, 0, 9, 23,
147   floatformat_intbit_no,
148   "floatformat_vax_f",
149   floatformat_always_valid,
150   NULL
151 };
152 const struct floatformat floatformat_vax_d =
153 {
154   floatformat_vax, 64, 0, 1, 8, 129, 0, 9, 55,
155   floatformat_intbit_no,
156   "floatformat_vax_d",
157   floatformat_always_valid,
158   NULL
159 };
160 const struct floatformat floatformat_vax_g =
161 {
162   floatformat_vax, 64, 0, 1, 11, 1025, 0, 12, 52,
163   floatformat_intbit_no,
164   "floatformat_vax_g",
165   floatformat_always_valid,
166   NULL
167 };
168 
169 static int floatformat_i387_ext_is_valid (const struct floatformat *fmt,
170 					  const void *from);
171 
172 static int
173 floatformat_i387_ext_is_valid (const struct floatformat *fmt, const void *from)
174 {
175   /* In the i387 double-extended format, if the exponent is all ones,
176      then the integer bit must be set.  If the exponent is neither 0
177      nor ~0, the intbit must also be set.  Only if the exponent is
178      zero can it be zero, and then it must be zero.  */
179   unsigned long exponent, int_bit;
180   const unsigned char *ufrom = (const unsigned char *) from;
181 
182   exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
183 			fmt->exp_start, fmt->exp_len);
184   int_bit = get_field (ufrom, fmt->byteorder, fmt->totalsize,
185 		       fmt->man_start, 1);
186 
187   if ((exponent == 0) != (int_bit == 0))
188     return 0;
189   else
190     return 1;
191 }
192 
193 const struct floatformat floatformat_i387_ext =
194 {
195   floatformat_little, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64,
196   floatformat_intbit_yes,
197   "floatformat_i387_ext",
198   floatformat_i387_ext_is_valid,
199   NULL
200 };
201 const struct floatformat floatformat_m68881_ext =
202 {
203   /* Note that the bits from 16 to 31 are unused.  */
204   floatformat_big, 96, 0, 1, 15, 0x3fff, 0x7fff, 32, 64,
205   floatformat_intbit_yes,
206   "floatformat_m68881_ext",
207   floatformat_always_valid,
208   NULL
209 };
210 const struct floatformat floatformat_i960_ext =
211 {
212   /* Note that the bits from 0 to 15 are unused.  */
213   floatformat_little, 96, 16, 17, 15, 0x3fff, 0x7fff, 32, 64,
214   floatformat_intbit_yes,
215   "floatformat_i960_ext",
216   floatformat_always_valid,
217   NULL
218 };
219 const struct floatformat floatformat_m88110_ext =
220 {
221   floatformat_big, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64,
222   floatformat_intbit_yes,
223   "floatformat_m88110_ext",
224   floatformat_always_valid,
225   NULL
226 };
227 const struct floatformat floatformat_m88110_harris_ext =
228 {
229   /* Harris uses raw format 128 bytes long, but the number is just an ieee
230      double, and the last 64 bits are wasted. */
231   floatformat_big,128, 0, 1, 11,  0x3ff,  0x7ff, 12, 52,
232   floatformat_intbit_no,
233   "floatformat_m88110_ext_harris",
234   floatformat_always_valid,
235   NULL
236 };
237 const struct floatformat floatformat_arm_ext_big =
238 {
239   /* Bits 1 to 16 are unused.  */
240   floatformat_big, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64,
241   floatformat_intbit_yes,
242   "floatformat_arm_ext_big",
243   floatformat_always_valid,
244   NULL
245 };
246 const struct floatformat floatformat_arm_ext_littlebyte_bigword =
247 {
248   /* Bits 1 to 16 are unused.  */
249   floatformat_littlebyte_bigword, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64,
250   floatformat_intbit_yes,
251   "floatformat_arm_ext_littlebyte_bigword",
252   floatformat_always_valid,
253   NULL
254 };
255 const struct floatformat floatformat_ia64_spill_big =
256 {
257   floatformat_big, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64,
258   floatformat_intbit_yes,
259   "floatformat_ia64_spill_big",
260   floatformat_always_valid,
261   NULL
262 };
263 const struct floatformat floatformat_ia64_spill_little =
264 {
265   floatformat_little, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64,
266   floatformat_intbit_yes,
267   "floatformat_ia64_spill_little",
268   floatformat_always_valid,
269   NULL
270 };
271 const struct floatformat floatformat_ia64_quad_big =
272 {
273   floatformat_big, 128, 0, 1, 15, 16383, 0x7fff, 16, 112,
274   floatformat_intbit_no,
275   "floatformat_ia64_quad_big",
276   floatformat_always_valid,
277   NULL
278 };
279 const struct floatformat floatformat_ia64_quad_little =
280 {
281   floatformat_little, 128, 0, 1, 15, 16383, 0x7fff, 16, 112,
282   floatformat_intbit_no,
283   "floatformat_ia64_quad_little",
284   floatformat_always_valid,
285   NULL
286 };
287 
288 static int
289 floatformat_ibm_long_double_is_valid (const struct floatformat *fmt,
290 				      const void *from)
291 {
292   const unsigned char *ufrom = (const unsigned char *) from;
293   const struct floatformat *hfmt = fmt->split_half;
294   long top_exp, bot_exp;
295   int top_nan = 0;
296 
297   top_exp = get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
298 		       hfmt->exp_start, hfmt->exp_len);
299   bot_exp = get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize,
300 		       hfmt->exp_start, hfmt->exp_len);
301 
302   if ((unsigned long) top_exp == hfmt->exp_nan)
303     top_nan = mant_bits_set (hfmt, ufrom);
304 
305   /* A NaN is valid with any low part.  */
306   if (top_nan)
307     return 1;
308 
309   /* An infinity, zero or denormal requires low part 0 (positive or
310      negative).  */
311   if ((unsigned long) top_exp == hfmt->exp_nan || top_exp == 0)
312     {
313       if (bot_exp != 0)
314 	return 0;
315 
316       return !mant_bits_set (hfmt, ufrom + 8);
317     }
318 
319   /* The top part is now a finite normal value.  The long double value
320      is the sum of the two parts, and the top part must equal the
321      result of rounding the long double value to nearest double.  Thus
322      the bottom part must be <= 0.5ulp of the top part in absolute
323      value, and if it is < 0.5ulp then the long double is definitely
324      valid.  */
325   if (bot_exp < top_exp - 53)
326     return 1;
327   if (bot_exp > top_exp - 53 && bot_exp != 0)
328     return 0;
329   if (bot_exp == 0)
330     {
331       /* The bottom part is 0 or denormal.  Determine which, and if
332 	 denormal the first two set bits.  */
333       int first_bit = -1, second_bit = -1, cur_bit;
334       for (cur_bit = 0; (unsigned int) cur_bit < hfmt->man_len; cur_bit++)
335 	if (get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize,
336 		       hfmt->man_start + cur_bit, 1))
337 	  {
338 	    if (first_bit == -1)
339 	      first_bit = cur_bit;
340 	    else
341 	      {
342 		second_bit = cur_bit;
343 		break;
344 	      }
345 	  }
346       /* Bottom part 0 is OK.  */
347       if (first_bit == -1)
348 	return 1;
349       /* The real exponent of the bottom part is -first_bit.  */
350       if (-first_bit < top_exp - 53)
351 	return 1;
352       if (-first_bit > top_exp - 53)
353 	return 0;
354       /* The bottom part is at least 0.5ulp of the top part.  For this
355 	 to be OK, the bottom part must be exactly 0.5ulp (i.e. no
356 	 more bits set) and the top part must have last bit 0.  */
357       if (second_bit != -1)
358 	return 0;
359       return !get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
360 			 hfmt->man_start + hfmt->man_len - 1, 1);
361     }
362   else
363     {
364       /* The bottom part is at least 0.5ulp of the top part.  For this
365 	 to be OK, it must be exactly 0.5ulp (i.e. no explicit bits
366 	 set) and the top part must have last bit 0.  */
367       if (get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
368 		     hfmt->man_start + hfmt->man_len - 1, 1))
369 	return 0;
370       return !mant_bits_set (hfmt, ufrom + 8);
371     }
372 }
373 
374 const struct floatformat floatformat_ibm_long_double_big =
375 {
376   floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
377   floatformat_intbit_no,
378   "floatformat_ibm_long_double_big",
379   floatformat_ibm_long_double_is_valid,
380   &floatformat_ieee_double_big
381 };
382 
383 const struct floatformat floatformat_ibm_long_double_little =
384 {
385   floatformat_little, 128, 0, 1, 11, 1023, 2047, 12, 52,
386   floatformat_intbit_no,
387   "floatformat_ibm_long_double_little",
388   floatformat_ibm_long_double_is_valid,
389   &floatformat_ieee_double_little
390 };
391 
392 
393 #ifndef min
394 #define min(a, b) ((a) < (b) ? (a) : (b))
395 #endif
396 
397 /* Return 1 if any bits are explicitly set in the mantissa of UFROM,
398    format FMT, 0 otherwise.  */
399 static int
400 mant_bits_set (const struct floatformat *fmt, const unsigned char *ufrom)
401 {
402   unsigned int mant_bits, mant_off;
403   int mant_bits_left;
404 
405   mant_off = fmt->man_start;
406   mant_bits_left = fmt->man_len;
407   while (mant_bits_left > 0)
408     {
409       mant_bits = min (mant_bits_left, 32);
410 
411       if (get_field (ufrom, fmt->byteorder, fmt->totalsize,
412 		     mant_off, mant_bits) != 0)
413 	return 1;
414 
415       mant_off += mant_bits;
416       mant_bits_left -= mant_bits;
417     }
418   return 0;
419 }
420 
421 /* Extract a field which starts at START and is LEN bits long.  DATA and
422    TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER.  */
423 static unsigned long
424 get_field (const unsigned char *data, enum floatformat_byteorders order,
425            unsigned int total_len, unsigned int start, unsigned int len)
426 {
427   unsigned long result = 0;
428   unsigned int cur_byte;
429   int lo_bit, hi_bit, cur_bitshift = 0;
430   int nextbyte = (order == floatformat_little) ? 1 : -1;
431 
432   /* Start is in big-endian bit order!  Fix that first.  */
433   start = total_len - (start + len);
434 
435   /* Start at the least significant part of the field.  */
436   if (order == floatformat_little)
437     cur_byte = start / FLOATFORMAT_CHAR_BIT;
438   else
439     cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT;
440 
441   lo_bit = start % FLOATFORMAT_CHAR_BIT;
442   hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT);
443 
444   do
445     {
446       unsigned int shifted = *(data + cur_byte) >> lo_bit;
447       unsigned int bits = hi_bit - lo_bit;
448       unsigned int mask = (1 << bits) - 1;
449       result |= (shifted & mask) << cur_bitshift;
450       len -= bits;
451       cur_bitshift += bits;
452       cur_byte += nextbyte;
453       lo_bit = 0;
454       hi_bit = min (len, FLOATFORMAT_CHAR_BIT);
455     }
456   while (len != 0);
457 
458   return result;
459 }
460 
461 /* Convert from FMT to a double.
462    FROM is the address of the extended float.
463    Store the double in *TO.  */
464 
465 void
466 floatformat_to_double (const struct floatformat *fmt,
467                        const void *from, double *to)
468 {
469   const unsigned char *ufrom = (const unsigned char *) from;
470   double dto;
471   long exponent;
472   unsigned long mant;
473   unsigned int mant_bits, mant_off;
474   int mant_bits_left;
475 
476   /* Split values are not handled specially, since the top half has
477      the correctly rounded double value (in the only supported case of
478      split values).  */
479 
480   exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
481 			fmt->exp_start, fmt->exp_len);
482 
483   /* If the exponent indicates a NaN, we don't have information to
484      decide what to do.  So we handle it like IEEE, except that we
485      don't try to preserve the type of NaN.  FIXME.  */
486   if ((unsigned long) exponent == fmt->exp_nan)
487     {
488       int nan = mant_bits_set (fmt, ufrom);
489 
490       /* On certain systems (such as GNU/Linux), the use of the
491 	 INFINITY macro below may generate a warning that can not be
492 	 silenced due to a bug in GCC (PR preprocessor/11931).  The
493 	 preprocessor fails to recognise the __extension__ keyword in
494 	 conjunction with the GNU/C99 extension for hexadecimal
495 	 floating point constants and will issue a warning when
496 	 compiling with -pedantic.  */
497       if (nan)
498 	dto = NAN;
499       else
500 #ifdef __vax__
501 	dto = HUGE_VAL;
502 #else
503 	dto = INFINITY;
504 #endif
505 
506       if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
507 	dto = -dto;
508 
509       *to = dto;
510 
511       return;
512     }
513 
514   mant_bits_left = fmt->man_len;
515   mant_off = fmt->man_start;
516   dto = 0.0;
517 
518   /* Build the result algebraically.  Might go infinite, underflow, etc;
519      who cares. */
520 
521   /* For denorms use minimum exponent.  */
522   if (exponent == 0)
523     exponent = 1 - fmt->exp_bias;
524   else
525     {
526       exponent -= fmt->exp_bias;
527 
528       /* If this format uses a hidden bit, explicitly add it in now.
529 	 Otherwise, increment the exponent by one to account for the
530 	 integer bit.  */
531 
532       if (fmt->intbit == floatformat_intbit_no)
533 	dto = ldexp (1.0, exponent);
534       else
535 	exponent++;
536     }
537 
538   while (mant_bits_left > 0)
539     {
540       mant_bits = min (mant_bits_left, 32);
541 
542       mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
543 			 mant_off, mant_bits);
544 
545       dto += ldexp ((double) mant, exponent - mant_bits);
546       exponent -= mant_bits;
547       mant_off += mant_bits;
548       mant_bits_left -= mant_bits;
549     }
550 
551   /* Negate it if negative.  */
552   if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
553     dto = -dto;
554   *to = dto;
555 }
556 
557 static void put_field (unsigned char *, enum floatformat_byteorders,
558                        unsigned int,
559                        unsigned int,
560                        unsigned int,
561                        unsigned long);
562 
563 /* Set a field which starts at START and is LEN bits long.  DATA and
564    TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER.  */
565 static void
566 put_field (unsigned char *data, enum floatformat_byteorders order,
567            unsigned int total_len, unsigned int start, unsigned int len,
568            unsigned long stuff_to_put)
569 {
570   unsigned int cur_byte;
571   int lo_bit, hi_bit;
572   int nextbyte = (order == floatformat_little) ? 1 : -1;
573 
574   /* Start is in big-endian bit order!  Fix that first.  */
575   start = total_len - (start + len);
576 
577   /* Start at the least significant part of the field.  */
578   if (order == floatformat_little)
579     cur_byte = start / FLOATFORMAT_CHAR_BIT;
580   else
581     cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT;
582 
583   lo_bit = start % FLOATFORMAT_CHAR_BIT;
584   hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT);
585 
586   do
587     {
588       unsigned char *byte_ptr = data + cur_byte;
589       unsigned int bits = hi_bit - lo_bit;
590       unsigned int mask = ((1 << bits) - 1) << lo_bit;
591       *byte_ptr = (*byte_ptr & ~mask) | ((stuff_to_put << lo_bit) & mask);
592       stuff_to_put >>= bits;
593       len -= bits;
594       cur_byte += nextbyte;
595       lo_bit = 0;
596       hi_bit = min (len, FLOATFORMAT_CHAR_BIT);
597     }
598   while (len != 0);
599 }
600 
601 /* The converse: convert the double *FROM to an extended float
602    and store where TO points.  Neither FROM nor TO have any alignment
603    restrictions.  */
604 
605 void
606 floatformat_from_double (const struct floatformat *fmt,
607                          const double *from, void *to)
608 {
609   double dfrom;
610   int exponent;
611   double mant;
612   unsigned int mant_bits, mant_off;
613   int mant_bits_left;
614   unsigned char *uto = (unsigned char *) to;
615 
616   dfrom = *from;
617   memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
618 
619   /* Split values are not handled specially, since a bottom half of
620      zero is correct for any value representable as double (in the
621      only supported case of split values).  */
622 
623   /* If negative, set the sign bit.  */
624   if (dfrom < 0)
625     {
626       put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
627       dfrom = -dfrom;
628     }
629 
630   if (dfrom == 0)
631     {
632       /* 0.0.  */
633       return;
634     }
635 
636   if (dfrom != dfrom)
637     {
638       /* NaN.  */
639       put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
640 		 fmt->exp_len, fmt->exp_nan);
641       /* Be sure it's not infinity, but NaN value is irrelevant.  */
642       put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
643 		 32, 1);
644       return;
645     }
646 
647   if (dfrom + dfrom == dfrom)
648     {
649       /* This can only happen for an infinite value (or zero, which we
650 	 already handled above).  */
651       put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
652 		 fmt->exp_len, fmt->exp_nan);
653       return;
654     }
655 
656   mant = frexp (dfrom, &exponent);
657   if (exponent + fmt->exp_bias - 1 > 0)
658     put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
659 	       fmt->exp_len, exponent + fmt->exp_bias - 1);
660   else
661     {
662       /* Handle a denormalized number.  FIXME: What should we do for
663 	 non-IEEE formats?  */
664       put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
665 		 fmt->exp_len, 0);
666       mant = ldexp (mant, exponent + fmt->exp_bias - 1);
667     }
668 
669   mant_bits_left = fmt->man_len;
670   mant_off = fmt->man_start;
671   while (mant_bits_left > 0)
672     {
673       unsigned long mant_long;
674       mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
675 
676       mant *= 4294967296.0;
677       mant_long = (unsigned long)mant;
678       mant -= mant_long;
679 
680       /* If the integer bit is implicit, and we are not creating a
681 	 denormalized number, then we need to discard it.  */
682       if ((unsigned int) mant_bits_left == fmt->man_len
683 	  && fmt->intbit == floatformat_intbit_no
684 	  && exponent + fmt->exp_bias - 1 > 0)
685 	{
686 	  mant_long &= 0x7fffffff;
687 	  mant_bits -= 1;
688 	}
689       else if (mant_bits < 32)
690 	{
691 	  /* The bits we want are in the most significant MANT_BITS bits of
692 	     mant_long.  Move them to the least significant.  */
693 	  mant_long >>= 32 - mant_bits;
694 	}
695 
696       put_field (uto, fmt->byteorder, fmt->totalsize,
697 		 mant_off, mant_bits, mant_long);
698       mant_off += mant_bits;
699       mant_bits_left -= mant_bits;
700     }
701 }
702 
703 /* Return non-zero iff the data at FROM is a valid number in format FMT.  */
704 
705 int
706 floatformat_is_valid (const struct floatformat *fmt, const void *from)
707 {
708   return fmt->is_valid (fmt, from);
709 }
710 
711 
712 #ifdef IEEE_DEBUG
713 
714 #include <stdio.h>
715 
716 /* This is to be run on a host which uses IEEE floating point.  */
717 
718 void
719 ieee_test (double n)
720 {
721   double result;
722 
723   floatformat_to_double (&floatformat_ieee_double_little, &n, &result);
724   if ((n != result && (! isnan (n) || ! isnan (result)))
725       || (n < 0 && result >= 0)
726       || (n >= 0 && result < 0))
727     printf ("Differ(to): %.20g -> %.20g\n", n, result);
728 
729   floatformat_from_double (&floatformat_ieee_double_little, &n, &result);
730   if ((n != result && (! isnan (n) || ! isnan (result)))
731       || (n < 0 && result >= 0)
732       || (n >= 0 && result < 0))
733     printf ("Differ(from): %.20g -> %.20g\n", n, result);
734 
735 #if 0
736   {
737     char exten[16];
738 
739     floatformat_from_double (&floatformat_m68881_ext, &n, exten);
740     floatformat_to_double (&floatformat_m68881_ext, exten, &result);
741     if (n != result)
742       printf ("Differ(to+from): %.20g -> %.20g\n", n, result);
743   }
744 #endif
745 
746 #if IEEE_DEBUG > 1
747   /* This is to be run on a host which uses 68881 format.  */
748   {
749     long double ex = *(long double *)exten;
750     if (ex != n)
751       printf ("Differ(from vs. extended): %.20g\n", n);
752   }
753 #endif
754 }
755 
756 int
757 main (void)
758 {
759   ieee_test (0.0);
760   ieee_test (0.5);
761   ieee_test (1.1);
762   ieee_test (256.0);
763   ieee_test (0.12345);
764   ieee_test (234235.78907234);
765   ieee_test (-512.0);
766   ieee_test (-0.004321);
767   ieee_test (1.2E-70);
768   ieee_test (1.2E-316);
769   ieee_test (4.9406564584124654E-324);
770   ieee_test (- 4.9406564584124654E-324);
771   ieee_test (- 0.0);
772   ieee_test (- INFINITY);
773   ieee_test (- NAN);
774   ieee_test (INFINITY);
775   ieee_test (NAN);
776   return 0;
777 }
778 #endif
779