1 /* Utility functions for reading gcda files into in-memory 2 gcov_info structures and offline profile processing. */ 3 /* Copyright (C) 2014-2022 Free Software Foundation, Inc. 4 Contributed by Rong Xu <xur@google.com>. 5 6 This file is part of GCC. 7 8 GCC is free software; you can redistribute it and/or modify it under 9 the terms of the GNU General Public License as published by the Free 10 Software Foundation; either version 3, or (at your option) any later 11 version. 12 13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 14 WARRANTY; without even the implied warranty of MERCHANTABILITY or 15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 16 for more details. 17 18 Under Section 7 of GPL version 3, you are granted additional 19 permissions described in the GCC Runtime Library Exception, version 20 3.1, as published by the Free Software Foundation. 21 22 You should have received a copy of the GNU General Public License and 23 a copy of the GCC Runtime Library Exception along with this program; 24 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 25 <http://www.gnu.org/licenses/>. */ 26 27 28 #define IN_GCOV_TOOL 1 29 30 #include "libgcov.h" 31 #include "intl.h" 32 #include "diagnostic.h" 33 #include "version.h" 34 #include "demangle.h" 35 #include "gcov-io.h" 36 37 /* Borrowed from basic-block.h. */ 38 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y)) 39 40 extern gcov_position_t gcov_position(); 41 extern int gcov_is_error(); 42 43 /* Verbose mode for debug. */ 44 static int verbose; 45 46 /* Set verbose flag. */ 47 void gcov_set_verbose (void) 48 { 49 verbose = 1; 50 } 51 52 /* The following part is to read Gcda and reconstruct GCOV_INFO. */ 53 54 #include "obstack.h" 55 #include <unistd.h> 56 #ifdef HAVE_FTW_H 57 #include <ftw.h> 58 #endif 59 60 static void tag_function (unsigned, int); 61 static void tag_blocks (unsigned, int); 62 static void tag_arcs (unsigned, int); 63 static void tag_lines (unsigned, int); 64 static void tag_counters (unsigned, int); 65 static void tag_summary (unsigned, int); 66 67 /* The gcov_info for the first module. */ 68 static struct gcov_info *curr_gcov_info; 69 /* The gcov_info being processed. */ 70 static struct gcov_info *gcov_info_head; 71 /* This variable contains all the functions in current module. */ 72 static struct obstack fn_info; 73 /* The function being processed. */ 74 static struct gcov_fn_info *curr_fn_info; 75 /* The number of functions seen so far. */ 76 static unsigned num_fn_info; 77 /* This variable contains all the counters for current module. */ 78 static int k_ctrs_mask[GCOV_COUNTERS]; 79 /* The kind of counters that have been seen. */ 80 static struct gcov_ctr_info k_ctrs[GCOV_COUNTERS]; 81 /* Number of kind of counters that have been seen. */ 82 static int k_ctrs_types; 83 84 /* Merge functions for counters. */ 85 #define DEF_GCOV_COUNTER(COUNTER, NAME, FN_TYPE) __gcov_merge ## FN_TYPE, 86 static gcov_merge_fn ctr_merge_functions[GCOV_COUNTERS] = { 87 #include "gcov-counter.def" 88 }; 89 #undef DEF_GCOV_COUNTER 90 91 /* Set the ctrs field in gcov_fn_info object FN_INFO. */ 92 93 static void 94 set_fn_ctrs (struct gcov_fn_info *fn_info) 95 { 96 int j = 0, i; 97 98 for (i = 0; i < GCOV_COUNTERS; i++) 99 { 100 if (k_ctrs_mask[i] == 0) 101 continue; 102 fn_info->ctrs[j].num = k_ctrs[i].num; 103 fn_info->ctrs[j].values = k_ctrs[i].values; 104 j++; 105 } 106 if (k_ctrs_types == 0) 107 k_ctrs_types = j; 108 else 109 gcc_assert (j == k_ctrs_types); 110 } 111 112 /* For each tag in gcda file, we have an entry here. 113 TAG is the tag value; NAME is the tag name; and 114 PROC is the handler function. */ 115 116 typedef struct tag_format 117 { 118 unsigned tag; 119 char const *name; 120 void (*proc) (unsigned, int); 121 } tag_format_t; 122 123 /* Handler table for various Tags. */ 124 125 static const tag_format_t tag_table[] = 126 { 127 {0, "NOP", NULL}, 128 {0, "UNKNOWN", NULL}, 129 {0, "COUNTERS", tag_counters}, 130 {GCOV_TAG_FUNCTION, "FUNCTION", tag_function}, 131 {GCOV_TAG_BLOCKS, "BLOCKS", tag_blocks}, 132 {GCOV_TAG_ARCS, "ARCS", tag_arcs}, 133 {GCOV_TAG_LINES, "LINES", tag_lines}, 134 {GCOV_TAG_OBJECT_SUMMARY, "OBJECT_SUMMARY", tag_summary}, 135 {0, NULL, NULL} 136 }; 137 138 /* Handler for reading function tag. */ 139 140 static void 141 tag_function (unsigned tag ATTRIBUTE_UNUSED, int length ATTRIBUTE_UNUSED) 142 { 143 int i; 144 145 /* write out previous fn_info. */ 146 if (num_fn_info) 147 { 148 set_fn_ctrs (curr_fn_info); 149 obstack_ptr_grow (&fn_info, curr_fn_info); 150 } 151 152 /* Here we over allocate a bit, using GCOV_COUNTERS instead of the actual active 153 counter types. */ 154 curr_fn_info = (struct gcov_fn_info *) xcalloc (sizeof (struct gcov_fn_info) 155 + GCOV_COUNTERS * sizeof (struct gcov_ctr_info), 1); 156 157 for (i = 0; i < GCOV_COUNTERS; i++) 158 k_ctrs[i].num = 0; 159 k_ctrs_types = 0; 160 161 curr_fn_info->key = curr_gcov_info; 162 curr_fn_info->ident = gcov_read_unsigned (); 163 curr_fn_info->lineno_checksum = gcov_read_unsigned (); 164 curr_fn_info->cfg_checksum = gcov_read_unsigned (); 165 num_fn_info++; 166 167 if (verbose) 168 fnotice (stdout, "tag one function id=%d\n", curr_fn_info->ident); 169 } 170 171 /* Handler for reading block tag. */ 172 173 static void 174 tag_blocks (unsigned tag ATTRIBUTE_UNUSED, int length ATTRIBUTE_UNUSED) 175 { 176 /* TBD: gcov-tool currently does not handle gcno files. Assert here. */ 177 gcc_unreachable (); 178 } 179 180 /* Handler for reading flow arc tag. */ 181 182 static void 183 tag_arcs (unsigned tag ATTRIBUTE_UNUSED, int length ATTRIBUTE_UNUSED) 184 { 185 /* TBD: gcov-tool currently does not handle gcno files. Assert here. */ 186 gcc_unreachable (); 187 } 188 189 /* Handler for reading line tag. */ 190 191 static void 192 tag_lines (unsigned tag ATTRIBUTE_UNUSED, int length ATTRIBUTE_UNUSED) 193 { 194 /* TBD: gcov-tool currently does not handle gcno files. Assert here. */ 195 gcc_unreachable (); 196 } 197 198 /* Handler for reading counters array tag with value as TAG and length of LENGTH. */ 199 200 static void 201 tag_counters (unsigned tag, int length) 202 { 203 unsigned n_counts = GCOV_TAG_COUNTER_NUM (abs (length)); 204 gcov_type *values; 205 unsigned ix; 206 unsigned tag_ix; 207 208 tag_ix = GCOV_COUNTER_FOR_TAG (tag); 209 gcc_assert (tag_ix < GCOV_COUNTERS); 210 k_ctrs_mask [tag_ix] = 1; 211 gcc_assert (k_ctrs[tag_ix].num == 0); 212 k_ctrs[tag_ix].num = n_counts; 213 214 k_ctrs[tag_ix].values = values = (gcov_type *) xcalloc (sizeof (gcov_type), 215 n_counts); 216 gcc_assert (values); 217 218 if (length > 0) 219 for (ix = 0; ix != n_counts; ix++) 220 values[ix] = gcov_read_counter (); 221 } 222 223 /* Handler for reading summary tag. */ 224 225 static void 226 tag_summary (unsigned tag ATTRIBUTE_UNUSED, int ATTRIBUTE_UNUSED) 227 { 228 gcov_read_summary (&curr_gcov_info->summary); 229 } 230 231 /* This function is called at the end of reading a gcda file. 232 It flushes the contents in curr_fn_info to gcov_info object OBJ_INFO. */ 233 234 static void 235 read_gcda_finalize (struct gcov_info *obj_info) 236 { 237 int i; 238 239 set_fn_ctrs (curr_fn_info); 240 obstack_ptr_grow (&fn_info, curr_fn_info); 241 242 /* We set the following fields: merge, n_functions, functions 243 and summary. */ 244 obj_info->n_functions = num_fn_info; 245 obj_info->functions = (struct gcov_fn_info**) obstack_finish (&fn_info); 246 247 /* wrap all the counter array. */ 248 for (i=0; i< GCOV_COUNTERS; i++) 249 { 250 if (k_ctrs_mask[i]) 251 obj_info->merge[i] = ctr_merge_functions[i]; 252 } 253 } 254 255 /* Read the content of a gcda file FILENAME, and return a gcov_info data structure. 256 Program level summary CURRENT_SUMMARY will also be updated. */ 257 258 static struct gcov_info * 259 read_gcda_file (const char *filename) 260 { 261 unsigned tags[4]; 262 unsigned depth = 0; 263 unsigned version; 264 struct gcov_info *obj_info; 265 int i; 266 267 for (i=0; i< GCOV_COUNTERS; i++) 268 k_ctrs_mask[i] = 0; 269 k_ctrs_types = 0; 270 271 if (!gcov_open (filename)) 272 { 273 fnotice (stderr, "%s:cannot open\n", filename); 274 return NULL; 275 } 276 277 /* Read magic. */ 278 if (!gcov_magic (gcov_read_unsigned (), GCOV_DATA_MAGIC)) 279 { 280 fnotice (stderr, "%s:not a gcov data file\n", filename); 281 gcov_close (); 282 return NULL; 283 } 284 285 /* Read version. */ 286 version = gcov_read_unsigned (); 287 if (version != GCOV_VERSION) 288 { 289 fnotice (stderr, "%s:incorrect gcov version %d vs %d \n", filename, version, GCOV_VERSION); 290 gcov_close (); 291 return NULL; 292 } 293 294 /* Instantiate a gcov_info object. */ 295 curr_gcov_info = obj_info = (struct gcov_info *) xcalloc (sizeof (struct gcov_info) + 296 sizeof (struct gcov_ctr_info) * GCOV_COUNTERS, 1); 297 298 obj_info->version = version; 299 obstack_init (&fn_info); 300 num_fn_info = 0; 301 curr_fn_info = 0; 302 { 303 size_t len = strlen (filename) + 1; 304 char *str_dup = (char*) xmalloc (len); 305 306 memcpy (str_dup, filename, len); 307 obj_info->filename = str_dup; 308 } 309 310 /* Read stamp. */ 311 obj_info->stamp = gcov_read_unsigned (); 312 313 /* Read checksum. */ 314 obj_info->checksum = gcov_read_unsigned (); 315 316 while (1) 317 { 318 gcov_position_t base; 319 unsigned tag, length; 320 tag_format_t const *format; 321 unsigned tag_depth; 322 int error; 323 unsigned mask; 324 325 tag = gcov_read_unsigned (); 326 if (!tag) 327 break; 328 int read_length = (int)gcov_read_unsigned (); 329 length = read_length > 0 ? read_length : 0; 330 base = gcov_position (); 331 mask = GCOV_TAG_MASK (tag) >> 1; 332 for (tag_depth = 4; mask; mask >>= 8) 333 { 334 if (((mask & 0xff) != 0xff)) 335 { 336 warning (0, "%s:tag %qx is invalid", filename, tag); 337 break; 338 } 339 tag_depth--; 340 } 341 for (format = tag_table; format->name; format++) 342 if (format->tag == tag) 343 goto found; 344 format = &tag_table[GCOV_TAG_IS_COUNTER (tag) ? 2 : 1]; 345 found:; 346 if (tag) 347 { 348 if (depth && depth < tag_depth) 349 { 350 if (!GCOV_TAG_IS_SUBTAG (tags[depth - 1], tag)) 351 warning (0, "%s:tag %qx is incorrectly nested", 352 filename, tag); 353 } 354 depth = tag_depth; 355 tags[depth - 1] = tag; 356 } 357 358 if (format->proc) 359 { 360 unsigned long actual_length; 361 362 (*format->proc) (tag, read_length); 363 364 actual_length = gcov_position () - base; 365 if (actual_length > length) 366 warning (0, "%s:record size mismatch %lu bytes overread", 367 filename, actual_length - length); 368 else if (length > actual_length) 369 warning (0, "%s:record size mismatch %lu bytes unread", 370 filename, length - actual_length); 371 } 372 373 gcov_sync (base, length); 374 if ((error = gcov_is_error ())) 375 { 376 warning (0, error < 0 ? "%s:counter overflow at %lu" : 377 "%s:read error at %lu", filename, 378 (long unsigned) gcov_position ()); 379 break; 380 } 381 } 382 383 read_gcda_finalize (obj_info); 384 gcov_close (); 385 386 return obj_info; 387 } 388 389 #ifdef HAVE_FTW_H 390 /* This will be called by ftw(). It opens and read a gcda file FILENAME. 391 Return a non-zero value to stop the tree walk. */ 392 393 static int 394 ftw_read_file (const char *filename, 395 const struct stat *status ATTRIBUTE_UNUSED, 396 int type) 397 { 398 int filename_len; 399 int suffix_len; 400 struct gcov_info *obj_info; 401 402 /* Only read regular files. */ 403 if (type != FTW_F) 404 return 0; 405 406 filename_len = strlen (filename); 407 suffix_len = strlen (GCOV_DATA_SUFFIX); 408 409 if (filename_len <= suffix_len) 410 return 0; 411 412 if (strcmp(filename + filename_len - suffix_len, GCOV_DATA_SUFFIX)) 413 return 0; 414 415 if (verbose) 416 fnotice (stderr, "reading file: %s\n", filename); 417 418 obj_info = read_gcda_file (filename); 419 if (!obj_info) 420 return 0; 421 422 obj_info->next = gcov_info_head; 423 gcov_info_head = obj_info; 424 425 return 0; 426 } 427 #endif 428 429 /* Initializer for reading a profile dir. */ 430 431 static inline void 432 read_profile_dir_init (void) 433 { 434 gcov_info_head = 0; 435 } 436 437 /* Driver for read a profile directory and convert into gcov_info list in memory. 438 Return NULL on error, 439 Return the head of gcov_info list on success. */ 440 441 struct gcov_info * 442 gcov_read_profile_dir (const char* dir_name, int recompute_summary ATTRIBUTE_UNUSED) 443 { 444 char *pwd; 445 int ret; 446 447 read_profile_dir_init (); 448 449 if (access (dir_name, R_OK) != 0) 450 { 451 fnotice (stderr, "cannot access directory %s\n", dir_name); 452 return NULL; 453 } 454 pwd = getcwd (NULL, 0); 455 gcc_assert (pwd); 456 ret = chdir (dir_name); 457 if (ret !=0) 458 { 459 fnotice (stderr, "%s is not a directory\n", dir_name); 460 return NULL; 461 } 462 #ifdef HAVE_FTW_H 463 ftw (".", ftw_read_file, 50); 464 #endif 465 chdir (pwd); 466 free (pwd); 467 468 return gcov_info_head;; 469 } 470 471 /* This part of the code is to merge profile counters. These 472 variables are set in merge_wrapper and to be used by 473 global function gcov_read_counter_mem() and gcov_get_merge_weight. */ 474 475 /* We save the counter value address to this variable. */ 476 static gcov_type *gcov_value_buf; 477 478 /* The number of counter values to be read by current merging. */ 479 static gcov_unsigned_t gcov_value_buf_size; 480 481 /* The index of counter values being read. */ 482 static gcov_unsigned_t gcov_value_buf_pos; 483 484 /* The weight of current merging. */ 485 static unsigned gcov_merge_weight; 486 487 /* Read a counter value from gcov_value_buf array. */ 488 489 gcov_type 490 gcov_read_counter_mem (void) 491 { 492 gcov_type ret; 493 gcc_assert (gcov_value_buf_pos < gcov_value_buf_size); 494 ret = *(gcov_value_buf + gcov_value_buf_pos); 495 ++gcov_value_buf_pos; 496 return ret; 497 } 498 499 /* Return the recorded merge weight. */ 500 501 unsigned 502 gcov_get_merge_weight (void) 503 { 504 return gcov_merge_weight; 505 } 506 507 /* A wrapper function for merge functions. It sets up the 508 value buffer and weights and then calls the merge function. */ 509 510 static void 511 merge_wrapper (gcov_merge_fn f, gcov_type *v1, gcov_unsigned_t n1, 512 gcov_type *v2, gcov_unsigned_t n2, unsigned w) 513 { 514 gcov_value_buf = v2; 515 gcov_value_buf_pos = 0; 516 gcov_value_buf_size = n2; 517 gcov_merge_weight = w; 518 (*f) (v1, n1); 519 } 520 521 /* Convert on disk representation of a TOPN counter to in memory representation 522 that is expected from __gcov_merge_topn function. */ 523 524 static void 525 topn_to_memory_representation (struct gcov_ctr_info *info) 526 { 527 auto_vec<gcov_type> output; 528 gcov_type *values = info->values; 529 int count = info->num; 530 531 while (count > 0) 532 { 533 output.safe_push (values[0]); 534 gcov_type n = values[1]; 535 output.safe_push (n); 536 if (n > 0) 537 { 538 struct gcov_kvp *tuples 539 = (struct gcov_kvp *)xcalloc (sizeof (struct gcov_kvp), n); 540 for (unsigned i = 0; i < n - 1; i++) 541 tuples[i].next = &tuples[i + 1]; 542 for (unsigned i = 0; i < n; i++) 543 { 544 tuples[i].value = values[2 + 2 * i]; 545 tuples[i].count = values[2 + 2 * i + 1]; 546 } 547 output.safe_push ((intptr_t)&tuples[0]); 548 } 549 else 550 output.safe_push (0); 551 552 unsigned len = 2 * n + 2; 553 values += len; 554 count -= len; 555 } 556 gcc_assert (count == 0); 557 558 /* Allocate new buffer and copy it there. */ 559 info->num = output.length (); 560 info->values = (gcov_type *)xmalloc (sizeof (gcov_type) * info->num); 561 for (unsigned i = 0; i < info->num; i++) 562 info->values[i] = output[i]; 563 } 564 565 /* Offline tool to manipulate profile data. 566 This tool targets on matched profiles. But it has some tolerance on 567 unmatched profiles. 568 When merging p1 to p2 (p2 is the dst), 569 * m.gcda in p1 but not in p2: append m.gcda to p2 with specified weight; 570 emit warning 571 * m.gcda in p2 but not in p1: keep m.gcda in p2 and multiply by 572 specified weight; emit warning. 573 * m.gcda in both p1 and p2: 574 ** p1->m.gcda->f checksum matches p2->m.gcda->f: simple merge. 575 ** p1->m.gcda->f checksum does not matches p2->m.gcda->f: keep 576 p2->m.gcda->f and 577 drop p1->m.gcda->f. A warning is emitted. */ 578 579 /* Add INFO2's counter to INFO1, multiplying by weight W. */ 580 581 static int 582 gcov_merge (struct gcov_info *info1, struct gcov_info *info2, int w) 583 { 584 unsigned f_ix; 585 unsigned n_functions = info1->n_functions; 586 int has_mismatch = 0; 587 588 gcc_assert (info2->n_functions == n_functions); 589 590 /* Merge summary. */ 591 info1->summary.runs += info2->summary.runs; 592 info1->summary.sum_max += info2->summary.sum_max; 593 594 for (f_ix = 0; f_ix < n_functions; f_ix++) 595 { 596 unsigned t_ix; 597 struct gcov_fn_info *gfi_ptr1 = info1->functions[f_ix]; 598 struct gcov_fn_info *gfi_ptr2 = info2->functions[f_ix]; 599 struct gcov_ctr_info *ci_ptr1, *ci_ptr2; 600 601 if (!gfi_ptr1 || gfi_ptr1->key != info1) 602 continue; 603 if (!gfi_ptr2 || gfi_ptr2->key != info2) 604 continue; 605 606 if (gfi_ptr1->cfg_checksum != gfi_ptr2->cfg_checksum) 607 { 608 fnotice (stderr, "in %s, cfg_checksum mismatch, skipping\n", 609 info1->filename); 610 has_mismatch = 1; 611 continue; 612 } 613 ci_ptr1 = gfi_ptr1->ctrs; 614 ci_ptr2 = gfi_ptr2->ctrs; 615 for (t_ix = 0; t_ix != GCOV_COUNTERS; t_ix++) 616 { 617 gcov_merge_fn merge1 = info1->merge[t_ix]; 618 gcov_merge_fn merge2 = info2->merge[t_ix]; 619 620 gcc_assert (merge1 == merge2); 621 if (!merge1) 622 continue; 623 624 if (merge1 == __gcov_merge_topn) 625 topn_to_memory_representation (ci_ptr1); 626 else 627 gcc_assert (ci_ptr1->num == ci_ptr2->num); 628 629 merge_wrapper (merge1, ci_ptr1->values, ci_ptr1->num, 630 ci_ptr2->values, ci_ptr2->num, w); 631 ci_ptr1++; 632 ci_ptr2++; 633 } 634 } 635 636 return has_mismatch; 637 } 638 639 /* Find and return the match gcov_info object for INFO from ARRAY. 640 SIZE is the length of ARRAY. 641 Return NULL if there is no match. */ 642 643 static struct gcov_info * 644 find_match_gcov_info (struct gcov_info **array, int size, 645 struct gcov_info *info) 646 { 647 struct gcov_info *gi_ptr; 648 struct gcov_info *ret = NULL; 649 int i; 650 651 for (i = 0; i < size; i++) 652 { 653 gi_ptr = array[i]; 654 if (gi_ptr == 0) 655 continue; 656 if (!strcmp (gi_ptr->filename, info->filename)) 657 { 658 ret = gi_ptr; 659 array[i] = 0; 660 break; 661 } 662 } 663 664 if (ret && ret->n_functions != info->n_functions) 665 { 666 fnotice (stderr, "mismatched profiles in %s (%d functions" 667 " vs %d functions)\n", 668 ret->filename, 669 ret->n_functions, 670 info->n_functions); 671 ret = NULL; 672 } 673 return ret; 674 } 675 676 /* Merge the list of gcov_info objects from SRC_PROFILE to TGT_PROFILE. 677 Return 0 on success: without mismatch. 678 Reutrn 1 on error. */ 679 680 int 681 gcov_profile_merge (struct gcov_info *tgt_profile, struct gcov_info *src_profile, 682 int w1, int w2) 683 { 684 struct gcov_info *gi_ptr; 685 struct gcov_info **tgt_infos; 686 struct gcov_info *tgt_tail; 687 struct gcov_info **in_src_not_tgt; 688 unsigned tgt_cnt = 0, src_cnt = 0; 689 unsigned unmatch_info_cnt = 0; 690 unsigned int i; 691 692 for (gi_ptr = tgt_profile; gi_ptr; gi_ptr = gi_ptr->next) 693 tgt_cnt++; 694 for (gi_ptr = src_profile; gi_ptr; gi_ptr = gi_ptr->next) 695 src_cnt++; 696 tgt_infos = (struct gcov_info **) xmalloc (sizeof (struct gcov_info *) 697 * tgt_cnt); 698 gcc_assert (tgt_infos); 699 in_src_not_tgt = (struct gcov_info **) xmalloc (sizeof (struct gcov_info *) 700 * src_cnt); 701 gcc_assert (in_src_not_tgt); 702 703 for (gi_ptr = tgt_profile, i = 0; gi_ptr; gi_ptr = gi_ptr->next, i++) 704 tgt_infos[i] = gi_ptr; 705 706 tgt_tail = tgt_infos[tgt_cnt - 1]; 707 708 /* First pass on tgt_profile, we multiply w1 to all counters. */ 709 if (w1 > 1) 710 { 711 for (i = 0; i < tgt_cnt; i++) 712 gcov_merge (tgt_infos[i], tgt_infos[i], w1-1); 713 } 714 715 /* Second pass, add src_profile to the tgt_profile. */ 716 for (gi_ptr = src_profile; gi_ptr; gi_ptr = gi_ptr->next) 717 { 718 struct gcov_info *gi_ptr1; 719 720 gi_ptr1 = find_match_gcov_info (tgt_infos, tgt_cnt, gi_ptr); 721 if (gi_ptr1 == NULL) 722 { 723 in_src_not_tgt[unmatch_info_cnt++] = gi_ptr; 724 continue; 725 } 726 gcov_merge (gi_ptr1, gi_ptr, w2); 727 } 728 729 /* For modules in src but not in tgt. We adjust the counter and append. */ 730 for (i = 0; i < unmatch_info_cnt; i++) 731 { 732 gi_ptr = in_src_not_tgt[i]; 733 gcov_merge (gi_ptr, gi_ptr, w2 - 1); 734 gi_ptr->next = NULL; 735 tgt_tail->next = gi_ptr; 736 tgt_tail = gi_ptr; 737 } 738 739 free (in_src_not_tgt); 740 free (tgt_infos); 741 742 return 0; 743 } 744 745 typedef gcov_type (*counter_op_fn) (gcov_type, void*, void*); 746 747 /* Performing FN upon arc counters. */ 748 749 static void 750 __gcov_add_counter_op (gcov_type *counters, unsigned n_counters, 751 counter_op_fn fn, void *data1, void *data2) 752 { 753 for (; n_counters; counters++, n_counters--) 754 { 755 gcov_type val = *counters; 756 *counters = fn(val, data1, data2); 757 } 758 } 759 760 /* Performing FN upon ior counters. */ 761 762 static void 763 __gcov_ior_counter_op (gcov_type *counters ATTRIBUTE_UNUSED, 764 unsigned n_counters ATTRIBUTE_UNUSED, 765 counter_op_fn fn ATTRIBUTE_UNUSED, 766 void *data1 ATTRIBUTE_UNUSED, 767 void *data2 ATTRIBUTE_UNUSED) 768 { 769 /* Do nothing. */ 770 } 771 772 /* Performing FN upon time-profile counters. */ 773 774 static void 775 __gcov_time_profile_counter_op (gcov_type *counters ATTRIBUTE_UNUSED, 776 unsigned n_counters ATTRIBUTE_UNUSED, 777 counter_op_fn fn ATTRIBUTE_UNUSED, 778 void *data1 ATTRIBUTE_UNUSED, 779 void *data2 ATTRIBUTE_UNUSED) 780 { 781 /* Do nothing. */ 782 } 783 784 /* Performing FN upon TOP N counters. */ 785 786 static void 787 __gcov_topn_counter_op (gcov_type *counters, unsigned n_counters, 788 counter_op_fn fn, void *data1, void *data2) 789 { 790 unsigned i, n_measures; 791 792 gcc_assert (!(n_counters % 3)); 793 n_measures = n_counters / 3; 794 for (i = 0; i < n_measures; i++, counters += 3) 795 { 796 counters[1] = fn (counters[1], data1, data2); 797 counters[2] = fn (counters[2], data1, data2); 798 } 799 } 800 801 /* Scaling the counter value V by multiplying *(float*) DATA1. */ 802 803 static gcov_type 804 fp_scale (gcov_type v, void *data1, void *data2 ATTRIBUTE_UNUSED) 805 { 806 float f = *(float *) data1; 807 return (gcov_type) (v * f); 808 } 809 810 /* Scaling the counter value V by multiplying DATA2/DATA1. */ 811 812 static gcov_type 813 int_scale (gcov_type v, void *data1, void *data2) 814 { 815 int n = *(int *) data1; 816 int d = *(int *) data2; 817 return (gcov_type) ( RDIV (v,d) * n); 818 } 819 820 /* Type of function used to process counters. */ 821 typedef void (*gcov_counter_fn) (gcov_type *, gcov_unsigned_t, 822 counter_op_fn, void *, void *); 823 824 /* Function array to process profile counters. */ 825 #define DEF_GCOV_COUNTER(COUNTER, NAME, FN_TYPE) \ 826 __gcov ## FN_TYPE ## _counter_op, 827 static gcov_counter_fn ctr_functions[GCOV_COUNTERS] = { 828 #include "gcov-counter.def" 829 }; 830 #undef DEF_GCOV_COUNTER 831 832 /* Driver for scaling profile counters. */ 833 834 int 835 gcov_profile_scale (struct gcov_info *profile, float scale_factor, int n, int d) 836 { 837 struct gcov_info *gi_ptr; 838 unsigned f_ix; 839 840 if (verbose) 841 fnotice (stdout, "scale_factor is %f or %d/%d\n", scale_factor, n, d); 842 843 /* Scaling the counters. */ 844 for (gi_ptr = profile; gi_ptr; gi_ptr = gi_ptr->next) 845 for (f_ix = 0; f_ix < gi_ptr->n_functions; f_ix++) 846 { 847 unsigned t_ix; 848 const struct gcov_fn_info *gfi_ptr = gi_ptr->functions[f_ix]; 849 const struct gcov_ctr_info *ci_ptr; 850 851 if (!gfi_ptr || gfi_ptr->key != gi_ptr) 852 continue; 853 854 ci_ptr = gfi_ptr->ctrs; 855 for (t_ix = 0; t_ix != GCOV_COUNTERS; t_ix++) 856 { 857 gcov_merge_fn merge = gi_ptr->merge[t_ix]; 858 859 if (!merge) 860 continue; 861 if (d == 0) 862 (*ctr_functions[t_ix]) (ci_ptr->values, ci_ptr->num, 863 fp_scale, &scale_factor, NULL); 864 else 865 (*ctr_functions[t_ix]) (ci_ptr->values, ci_ptr->num, 866 int_scale, &n, &d); 867 ci_ptr++; 868 } 869 } 870 871 return 0; 872 } 873 874 /* Driver to normalize profile counters. */ 875 876 int 877 gcov_profile_normalize (struct gcov_info *profile, gcov_type max_val) 878 { 879 struct gcov_info *gi_ptr; 880 gcov_type curr_max_val = 0; 881 unsigned f_ix; 882 unsigned int i; 883 float scale_factor; 884 885 /* Find the largest count value. */ 886 for (gi_ptr = profile; gi_ptr; gi_ptr = gi_ptr->next) 887 for (f_ix = 0; f_ix < gi_ptr->n_functions; f_ix++) 888 { 889 unsigned t_ix; 890 const struct gcov_fn_info *gfi_ptr = gi_ptr->functions[f_ix]; 891 const struct gcov_ctr_info *ci_ptr; 892 893 if (!gfi_ptr || gfi_ptr->key != gi_ptr) 894 continue; 895 896 ci_ptr = gfi_ptr->ctrs; 897 for (t_ix = 0; t_ix < 1; t_ix++) 898 { 899 for (i = 0; i < ci_ptr->num; i++) 900 if (ci_ptr->values[i] > curr_max_val) 901 curr_max_val = ci_ptr->values[i]; 902 ci_ptr++; 903 } 904 } 905 906 scale_factor = (float)max_val / curr_max_val; 907 if (verbose) 908 fnotice (stdout, "max_val is %" PRId64 "\n", curr_max_val); 909 910 return gcov_profile_scale (profile, scale_factor, 0, 0); 911 } 912 913 /* The following variables are defined in gcc/gcov-tool.c. */ 914 extern int overlap_func_level; 915 extern int overlap_obj_level; 916 extern int overlap_hot_only; 917 extern int overlap_use_fullname; 918 extern double overlap_hot_threshold; 919 920 /* Compute the overlap score of two values. The score is defined as: 921 min (V1/SUM_1, V2/SUM_2) */ 922 923 static double 924 calculate_2_entries (const unsigned long v1, const unsigned long v2, 925 const double sum_1, const double sum_2) 926 { 927 double val1 = (sum_1 == 0.0 ? 0.0 : v1/sum_1); 928 double val2 = (sum_2 == 0.0 ? 0.0 : v2/sum_2); 929 930 if (val2 < val1) 931 val1 = val2; 932 933 return val1; 934 } 935 936 /* Compute the overlap score between GCOV_INFO1 and GCOV_INFO2. 937 This function also updates cumulative score CUM_1_RESULT and 938 CUM_2_RESULT. */ 939 940 static double 941 compute_one_gcov (const struct gcov_info *gcov_info1, 942 const struct gcov_info *gcov_info2, 943 const double sum_1, const double sum_2, 944 double *cum_1_result, double *cum_2_result) 945 { 946 unsigned f_ix; 947 double ret = 0; 948 double cum_1 = 0, cum_2 = 0; 949 const struct gcov_info *gcov_info = 0; 950 double *cum_p; 951 double sum; 952 953 gcc_assert (gcov_info1 || gcov_info2); 954 if (!gcov_info1) 955 { 956 gcov_info = gcov_info2; 957 cum_p = cum_2_result; 958 sum = sum_2; 959 *cum_1_result = 0; 960 } else 961 if (!gcov_info2) 962 { 963 gcov_info = gcov_info1; 964 cum_p = cum_1_result; 965 sum = sum_1; 966 *cum_2_result = 0; 967 } 968 969 if (gcov_info) 970 { 971 for (f_ix = 0; f_ix < gcov_info->n_functions; f_ix++) 972 { 973 const struct gcov_fn_info *gfi_ptr = gcov_info->functions[f_ix]; 974 if (!gfi_ptr || gfi_ptr->key != gcov_info) 975 continue; 976 const struct gcov_ctr_info *ci_ptr = gfi_ptr->ctrs; 977 unsigned c_num; 978 for (c_num = 0; c_num < ci_ptr->num; c_num++) 979 cum_1 += ci_ptr->values[c_num] / sum; 980 } 981 *cum_p = cum_1; 982 return 0.0; 983 } 984 985 for (f_ix = 0; f_ix < gcov_info1->n_functions; f_ix++) 986 { 987 double func_cum_1 = 0.0; 988 double func_cum_2 = 0.0; 989 double func_val = 0.0; 990 int nonzero = 0; 991 int hot = 0; 992 const struct gcov_fn_info *gfi_ptr1 = gcov_info1->functions[f_ix]; 993 const struct gcov_fn_info *gfi_ptr2 = gcov_info2->functions[f_ix]; 994 995 if (!gfi_ptr1 || gfi_ptr1->key != gcov_info1) 996 continue; 997 if (!gfi_ptr2 || gfi_ptr2->key != gcov_info2) 998 continue; 999 1000 const struct gcov_ctr_info *ci_ptr1 = gfi_ptr1->ctrs; 1001 const struct gcov_ctr_info *ci_ptr2 = gfi_ptr2->ctrs; 1002 unsigned c_num; 1003 for (c_num = 0; c_num < ci_ptr1->num; c_num++) 1004 { 1005 if (ci_ptr1->values[c_num] | ci_ptr2->values[c_num]) 1006 { 1007 func_val += calculate_2_entries (ci_ptr1->values[c_num], 1008 ci_ptr2->values[c_num], 1009 sum_1, sum_2); 1010 1011 func_cum_1 += ci_ptr1->values[c_num] / sum_1; 1012 func_cum_2 += ci_ptr2->values[c_num] / sum_2; 1013 nonzero = 1; 1014 if (ci_ptr1->values[c_num] / sum_1 >= overlap_hot_threshold 1015 || ci_ptr2->values[c_num] / sum_2 >= overlap_hot_threshold) 1016 hot = 1; 1017 } 1018 } 1019 1020 ret += func_val; 1021 cum_1 += func_cum_1; 1022 cum_2 += func_cum_2; 1023 if (overlap_func_level && nonzero && (!overlap_hot_only || hot)) 1024 { 1025 printf(" \tfunc_id=%10d \toverlap =%6.5f%% (%5.5f%% %5.5f%%)\n", 1026 gfi_ptr1->ident, func_val*100, func_cum_1*100, func_cum_2*100); 1027 } 1028 } 1029 *cum_1_result = cum_1; 1030 *cum_2_result = cum_2; 1031 return ret; 1032 } 1033 1034 /* Test if all counter values in this GCOV_INFO are cold. 1035 "Cold" is defined as the counter value being less than 1036 or equal to THRESHOLD. */ 1037 1038 static bool 1039 gcov_info_count_all_cold (const struct gcov_info *gcov_info, 1040 gcov_type threshold) 1041 { 1042 unsigned f_ix; 1043 1044 for (f_ix = 0; f_ix < gcov_info->n_functions; f_ix++) 1045 { 1046 const struct gcov_fn_info *gfi_ptr = gcov_info->functions[f_ix]; 1047 1048 if (!gfi_ptr || gfi_ptr->key != gcov_info) 1049 continue; 1050 const struct gcov_ctr_info *ci_ptr = gfi_ptr->ctrs; 1051 for (unsigned c_num = 0; c_num < ci_ptr->num; c_num++) 1052 if (ci_ptr->values[c_num] > threshold) 1053 return false; 1054 } 1055 1056 return true; 1057 } 1058 1059 /* Test if all counter values in this GCOV_INFO are 0. */ 1060 1061 static bool 1062 gcov_info_count_all_zero (const struct gcov_info *gcov_info) 1063 { 1064 return gcov_info_count_all_cold (gcov_info, 0); 1065 } 1066 1067 /* A pair of matched GCOV_INFO. 1068 The flag is a bitvector: 1069 b0: obj1's all counts are 0; 1070 b1: obj1's all counts are cold (but no 0); 1071 b2: obj1 is hot; 1072 b3: no obj1 to match obj2; 1073 b4: obj2's all counts are 0; 1074 b5: obj2's all counts are cold (but no 0); 1075 b6: obj2 is hot; 1076 b7: no obj2 to match obj1; 1077 */ 1078 struct overlap_t { 1079 const struct gcov_info *obj1; 1080 const struct gcov_info *obj2; 1081 char flag; 1082 }; 1083 1084 #define FLAG_BOTH_ZERO(flag) ((flag & 0x1) && (flag & 0x10)) 1085 #define FLAG_BOTH_COLD(flag) ((flag & 0x2) && (flag & 0x20)) 1086 #define FLAG_ONE_HOT(flag) ((flag & 0x4) || (flag & 0x40)) 1087 1088 /* Cumlative overlap dscore for profile1 and profile2. */ 1089 static double overlap_sum_1, overlap_sum_2; 1090 1091 /* The number of gcda files in the profiles. */ 1092 static unsigned gcda_files[2]; 1093 1094 /* The number of unique gcda files in the profiles 1095 (not existing in the other profile). */ 1096 static unsigned unique_gcda_files[2]; 1097 1098 /* The number of gcda files that all counter values are 0. */ 1099 static unsigned zero_gcda_files[2]; 1100 1101 /* The number of gcda files that all counter values are cold (but not 0). */ 1102 static unsigned cold_gcda_files[2]; 1103 1104 /* The number of gcda files that includes hot counter values. */ 1105 static unsigned hot_gcda_files[2]; 1106 1107 /* The number of gcda files with hot count value in either profiles. */ 1108 static unsigned both_hot_cnt; 1109 1110 /* The number of gcda files with all counts cold (but not 0) in 1111 both profiles. */ 1112 static unsigned both_cold_cnt; 1113 1114 /* The number of gcda files with all counts 0 in both profiles. */ 1115 static unsigned both_zero_cnt; 1116 1117 /* Extract the basename of the filename NAME. */ 1118 1119 static char * 1120 extract_file_basename (const char *name) 1121 { 1122 char *str; 1123 int len = 0; 1124 char *path = xstrdup (name); 1125 char sep_str[2]; 1126 1127 sep_str[0] = DIR_SEPARATOR; 1128 sep_str[1] = 0; 1129 str = strstr(path, sep_str); 1130 do{ 1131 len = strlen(str) + 1; 1132 path = &path[strlen(path) - len + 2]; 1133 str = strstr(path, sep_str); 1134 } while(str); 1135 1136 return path; 1137 } 1138 1139 /* Utility function to get the filename. */ 1140 1141 static const char * 1142 get_file_basename (const char *name) 1143 { 1144 if (overlap_use_fullname) 1145 return name; 1146 return extract_file_basename (name); 1147 } 1148 1149 /* A utility function to set the flag for the gcda files. */ 1150 1151 static void 1152 set_flag (struct overlap_t *e) 1153 { 1154 char flag = 0; 1155 1156 if (!e->obj1) 1157 { 1158 unique_gcda_files[1]++; 1159 flag = 0x8; 1160 } 1161 else 1162 { 1163 gcda_files[0]++; 1164 if (gcov_info_count_all_zero (e->obj1)) 1165 { 1166 zero_gcda_files[0]++; 1167 flag = 0x1; 1168 } 1169 else 1170 if (gcov_info_count_all_cold (e->obj1, overlap_sum_1 1171 * overlap_hot_threshold)) 1172 { 1173 cold_gcda_files[0]++; 1174 flag = 0x2; 1175 } 1176 else 1177 { 1178 hot_gcda_files[0]++; 1179 flag = 0x4; 1180 } 1181 } 1182 1183 if (!e->obj2) 1184 { 1185 unique_gcda_files[0]++; 1186 flag |= (0x8 << 4); 1187 } 1188 else 1189 { 1190 gcda_files[1]++; 1191 if (gcov_info_count_all_zero (e->obj2)) 1192 { 1193 zero_gcda_files[1]++; 1194 flag |= (0x1 << 4); 1195 } 1196 else 1197 if (gcov_info_count_all_cold (e->obj2, overlap_sum_2 1198 * overlap_hot_threshold)) 1199 { 1200 cold_gcda_files[1]++; 1201 flag |= (0x2 << 4); 1202 } 1203 else 1204 { 1205 hot_gcda_files[1]++; 1206 flag |= (0x4 << 4); 1207 } 1208 } 1209 1210 gcc_assert (flag); 1211 e->flag = flag; 1212 } 1213 1214 /* Test if INFO1 and INFO2 are from the matched source file. 1215 Return 1 if they match; return 0 otherwise. */ 1216 1217 static int 1218 matched_gcov_info (const struct gcov_info *info1, const struct gcov_info *info2) 1219 { 1220 /* For FDO, we have to match the name. This can be expensive. 1221 Maybe we should use hash here. */ 1222 if (strcmp (info1->filename, info2->filename)) 1223 return 0; 1224 1225 if (info1->n_functions != info2->n_functions) 1226 { 1227 fnotice (stderr, "mismatched profiles in %s (%d functions" 1228 " vs %d functions)\n", 1229 info1->filename, 1230 info1->n_functions, 1231 info2->n_functions); 1232 return 0; 1233 } 1234 return 1; 1235 } 1236 1237 /* Compute the overlap score of two profiles with the head of GCOV_LIST1 and 1238 GCOV_LIST1. Return a number ranging from [0.0, 1.0], with 0.0 meaning no 1239 match and 1.0 meaning a perfect match. */ 1240 1241 static double 1242 calculate_overlap (struct gcov_info *gcov_list1, 1243 struct gcov_info *gcov_list2) 1244 { 1245 unsigned list1_cnt = 0, list2_cnt= 0, all_cnt; 1246 unsigned int i, j; 1247 const struct gcov_info *gi_ptr; 1248 struct overlap_t *all_infos; 1249 1250 for (gi_ptr = gcov_list1; gi_ptr; gi_ptr = gi_ptr->next) 1251 list1_cnt++; 1252 for (gi_ptr = gcov_list2; gi_ptr; gi_ptr = gi_ptr->next) 1253 list2_cnt++; 1254 all_cnt = list1_cnt + list2_cnt; 1255 all_infos = (struct overlap_t *) xmalloc (sizeof (struct overlap_t) 1256 * all_cnt * 2); 1257 gcc_assert (all_infos); 1258 1259 i = 0; 1260 for (gi_ptr = gcov_list1; gi_ptr; gi_ptr = gi_ptr->next, i++) 1261 { 1262 all_infos[i].obj1 = gi_ptr; 1263 all_infos[i].obj2 = 0; 1264 } 1265 1266 for (gi_ptr = gcov_list2; gi_ptr; gi_ptr = gi_ptr->next, i++) 1267 { 1268 all_infos[i].obj1 = 0; 1269 all_infos[i].obj2 = gi_ptr; 1270 } 1271 1272 for (i = list1_cnt; i < all_cnt; i++) 1273 { 1274 if (all_infos[i].obj2 == 0) 1275 continue; 1276 for (j = 0; j < list1_cnt; j++) 1277 { 1278 if (all_infos[j].obj2 != 0) 1279 continue; 1280 if (matched_gcov_info (all_infos[i].obj2, all_infos[j].obj1)) 1281 { 1282 all_infos[j].obj2 = all_infos[i].obj2; 1283 all_infos[i].obj2 = 0; 1284 break; 1285 } 1286 } 1287 } 1288 1289 for (i = 0; i < all_cnt; i++) 1290 if (all_infos[i].obj1 || all_infos[i].obj2) 1291 { 1292 set_flag (all_infos + i); 1293 if (FLAG_ONE_HOT (all_infos[i].flag)) 1294 both_hot_cnt++; 1295 if (FLAG_BOTH_COLD(all_infos[i].flag)) 1296 both_cold_cnt++; 1297 if (FLAG_BOTH_ZERO(all_infos[i].flag)) 1298 both_zero_cnt++; 1299 } 1300 1301 double prg_val = 0; 1302 double sum_val = 0; 1303 double sum_cum_1 = 0; 1304 double sum_cum_2 = 0; 1305 1306 for (i = 0; i < all_cnt; i++) 1307 { 1308 double val; 1309 double cum_1, cum_2; 1310 const char *filename; 1311 1312 if (all_infos[i].obj1 == 0 && all_infos[i].obj2 == 0) 1313 continue; 1314 if (FLAG_BOTH_ZERO (all_infos[i].flag)) 1315 continue; 1316 1317 if (all_infos[i].obj1) 1318 filename = get_file_basename (all_infos[i].obj1->filename); 1319 else 1320 filename = get_file_basename (all_infos[i].obj2->filename); 1321 1322 if (overlap_func_level) 1323 printf("\n processing %36s:\n", filename); 1324 1325 val = compute_one_gcov (all_infos[i].obj1, all_infos[i].obj2, 1326 overlap_sum_1, overlap_sum_2, &cum_1, &cum_2); 1327 1328 if (overlap_obj_level && (!overlap_hot_only || FLAG_ONE_HOT (all_infos[i].flag))) 1329 { 1330 printf(" obj=%36s overlap = %6.2f%% (%5.2f%% %5.2f%%)\n", 1331 filename, val*100, cum_1*100, cum_2*100); 1332 sum_val += val; 1333 sum_cum_1 += cum_1; 1334 sum_cum_2 += cum_2; 1335 } 1336 1337 prg_val += val; 1338 1339 } 1340 1341 free (all_infos); 1342 1343 if (overlap_obj_level) 1344 printf(" SUM:%36s overlap = %6.2f%% (%5.2f%% %5.2f%%)\n", 1345 "", sum_val*100, sum_cum_1*100, sum_cum_2*100); 1346 1347 printf (" Statistics:\n" 1348 " profile1_# profile2_# overlap_#\n"); 1349 printf (" gcda files: %12u\t%12u\t%12u\n", gcda_files[0], gcda_files[1], 1350 gcda_files[0]-unique_gcda_files[0]); 1351 printf (" unique files: %12u\t%12u\n", unique_gcda_files[0], 1352 unique_gcda_files[1]); 1353 printf (" hot files: %12u\t%12u\t%12u\n", hot_gcda_files[0], 1354 hot_gcda_files[1], both_hot_cnt); 1355 printf (" cold files: %12u\t%12u\t%12u\n", cold_gcda_files[0], 1356 cold_gcda_files[1], both_cold_cnt); 1357 printf (" zero files: %12u\t%12u\t%12u\n", zero_gcda_files[0], 1358 zero_gcda_files[1], both_zero_cnt); 1359 1360 return prg_val; 1361 } 1362 1363 /* Compute the overlap score of two lists of gcov_info objects PROFILE1 and 1364 PROFILE2. 1365 Return 0 on success: without mismatch. Reutrn 1 on error. */ 1366 1367 int 1368 gcov_profile_overlap (struct gcov_info *profile1, struct gcov_info *profile2) 1369 { 1370 double result; 1371 1372 result = calculate_overlap (profile1, profile2); 1373 1374 if (result > 0) 1375 { 1376 printf("\nProgram level overlap result is %3.2f%%\n\n", result*100); 1377 return 0; 1378 } 1379 return 1; 1380 } 1381