1 /* Copyright (C) 1989-2022 Free Software Foundation, Inc. 2 3 This file is part of GCC. 4 5 GCC is free software; you can redistribute it and/or modify it under 6 the terms of the GNU General Public License as published by the Free 7 Software Foundation; either version 3, or (at your option) any later 8 version. 9 10 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 11 WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 for more details. 14 15 Under Section 7 of GPL version 3, you are granted additional 16 permissions described in the GCC Runtime Library Exception, version 17 3.1, as published by the Free Software Foundation. 18 19 You should have received a copy of the GNU General Public License and 20 a copy of the GCC Runtime Library Exception along with this program; 21 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 22 <http://www.gnu.org/licenses/>. */ 23 24 /* This is a temporary specialization of code from libgcc/libgcc2.c. */ 25 26 #include "soft-fp.h" 27 #include "quad-float128.h" 28 29 #define COPYSIGN(x,y) __builtin_copysignf128 (x, y) 30 #define INFINITY __builtin_inff128 () 31 #define FABS __builtin_fabsf128 32 #define isnan __builtin_isnan 33 #define isinf __builtin_isinf 34 #define isfinite __builtin_isfinite 35 36 #if defined(FLOAT128_HW_INSNS) && !defined(__divkc3) 37 #define __divkc3 __divkc3_sw 38 #endif 39 40 #ifndef __LONG_DOUBLE_IEEE128__ 41 #define RBIG (__LIBGCC_KF_MAX__ / 2) 42 #define RMIN (__LIBGCC_KF_MIN__) 43 #define RMIN2 (__LIBGCC_KF_EPSILON__) 44 #define RMINSCAL (1 / __LIBGCC_KF_EPSILON__) 45 #define RMAX2 (RBIG * RMIN2) 46 #else 47 #define RBIG (__LIBGCC_TF_MAX__ / 2) 48 #define RMIN (__LIBGCC_TF_MIN__) 49 #define RMIN2 (__LIBGCC_TF_EPSILON__) 50 #define RMINSCAL (1 / __LIBGCC_TF_EPSILON__) 51 #define RMAX2 (RBIG * RMIN2) 52 #endif 53 54 TCtype 55 __divkc3 (TFtype a, TFtype b, TFtype c, TFtype d) 56 { 57 TFtype denom, ratio, x, y; 58 TCtype res; 59 60 /* long double has significant potential underflow/overflow errors that 61 can be greatly reduced with a limited number of tests and adjustments. 62 */ 63 64 /* Scale by max(c,d) to reduce chances of denominator overflowing. */ 65 if (FABS (c) < FABS (d)) 66 { 67 /* Prevent underflow when denominator is near max representable. */ 68 if (FABS (d) >= RBIG) 69 { 70 a = a / 2; 71 b = b / 2; 72 c = c / 2; 73 d = d / 2; 74 } 75 /* Avoid overflow/underflow issues when c and d are small. 76 Scaling up helps avoid some underflows. 77 No new overflow possible since c&d < RMIN2. */ 78 if (FABS (d) < RMIN2) 79 { 80 a = a * RMINSCAL; 81 b = b * RMINSCAL; 82 c = c * RMINSCAL; 83 d = d * RMINSCAL; 84 } 85 else 86 { 87 if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (d) < RMAX2)) 88 || ((FABS (b) < RMIN) && (FABS (a) < RMAX2) 89 && (FABS (d) < RMAX2))) 90 { 91 a = a * RMINSCAL; 92 b = b * RMINSCAL; 93 c = c * RMINSCAL; 94 d = d * RMINSCAL; 95 } 96 } 97 ratio = c / d; 98 denom = (c * ratio) + d; 99 /* Choose alternate order of computation if ratio is subnormal. */ 100 if (FABS (ratio) > RMIN) 101 { 102 x = ((a * ratio) + b) / denom; 103 y = ((b * ratio) - a) / denom; 104 } 105 else 106 { 107 x = ((c * (a / d)) + b) / denom; 108 y = ((c * (b / d)) - a) / denom; 109 } 110 } 111 else 112 { 113 /* Prevent underflow when denominator is near max representable. */ 114 if (FABS (c) >= RBIG) 115 { 116 a = a / 2; 117 b = b / 2; 118 c = c / 2; 119 d = d / 2; 120 } 121 /* Avoid overflow/underflow issues when both c and d are small. 122 Scaling up helps avoid some underflows. 123 No new overflow possible since both c&d are less than RMIN2. */ 124 if (FABS (c) < RMIN2) 125 { 126 a = a * RMINSCAL; 127 b = b * RMINSCAL; 128 c = c * RMINSCAL; 129 d = d * RMINSCAL; 130 } 131 else 132 { 133 if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (c) < RMAX2)) 134 || ((FABS (b) < RMIN) && (FABS (a) < RMAX2) 135 && (FABS (c) < RMAX2))) 136 { 137 a = a * RMINSCAL; 138 b = b * RMINSCAL; 139 c = c * RMINSCAL; 140 d = d * RMINSCAL; 141 } 142 } 143 ratio = d / c; 144 denom = (d * ratio) + c; 145 /* Choose alternate order of computation if ratio is subnormal. */ 146 if (FABS (ratio) > RMIN) 147 { 148 x = ((b * ratio) + a) / denom; 149 y = (b - (a * ratio)) / denom; 150 } 151 else 152 { 153 x = (a + (d * (b / c))) / denom; 154 y = (b - (d * (a / c))) / denom; 155 } 156 } 157 158 /* Recover infinities and zeros that computed as NaN+iNaN; the only cases 159 are nonzero/zero, infinite/finite, and finite/infinite. */ 160 if (isnan (x) && isnan (y)) 161 { 162 if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b))) 163 { 164 x = COPYSIGN (INFINITY, c) * a; 165 y = COPYSIGN (INFINITY, c) * b; 166 } 167 else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d)) 168 { 169 a = COPYSIGN (isinf (a) ? 1 : 0, a); 170 b = COPYSIGN (isinf (b) ? 1 : 0, b); 171 x = INFINITY * (a * c + b * d); 172 y = INFINITY * (b * c - a * d); 173 } 174 else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b)) 175 { 176 c = COPYSIGN (isinf (c) ? 1 : 0, c); 177 d = COPYSIGN (isinf (d) ? 1 : 0, d); 178 x = 0.0 * (a * c + b * d); 179 y = 0.0 * (b * c - a * d); 180 } 181 } 182 183 __real__ res = x; 184 __imag__ res = y; 185 return res; 186 } 187