1 /* Simple garbage collection for the GNU compiler. 2 Copyright (C) 1999-2022 Free Software Foundation, Inc. 3 4 This file is part of GCC. 5 6 GCC is free software; you can redistribute it and/or modify it under 7 the terms of the GNU General Public License as published by the Free 8 Software Foundation; either version 3, or (at your option) any later 9 version. 10 11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY 12 WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with GCC; see the file COPYING3. If not see 18 <http://www.gnu.org/licenses/>. */ 19 20 /* Generic garbage collection (GC) functions and data, not specific to 21 any particular GC implementation. */ 22 23 #include "config.h" 24 #define INCLUDE_MALLOC_H 25 #include "system.h" 26 #include "coretypes.h" 27 #include "timevar.h" 28 #include "diagnostic-core.h" 29 #include "ggc-internal.h" 30 #include "hosthooks.h" 31 #include "plugin.h" 32 #include "options.h" 33 34 /* When true, protect the contents of the identifier hash table. */ 35 bool ggc_protect_identifiers = true; 36 37 /* Statistics about the allocation. */ 38 static ggc_statistics *ggc_stats; 39 40 struct traversal_state; 41 42 static int compare_ptr_data (const void *, const void *); 43 static void relocate_ptrs (void *, void *, void *); 44 static void write_pch_globals (const struct ggc_root_tab * const *tab, 45 struct traversal_state *state); 46 47 /* Maintain global roots that are preserved during GC. */ 48 49 /* This extra vector of dynamically registered root_tab-s is used by 50 ggc_mark_roots and gives the ability to dynamically add new GGC root 51 tables, for instance from some plugins; this vector is on the heap 52 since it is used by GGC internally. */ 53 typedef const struct ggc_root_tab *const_ggc_root_tab_t; 54 static vec<const_ggc_root_tab_t> extra_root_vec; 55 56 /* Dynamically register a new GGC root table RT. This is useful for 57 plugins. */ 58 59 void 60 ggc_register_root_tab (const struct ggc_root_tab* rt) 61 { 62 if (rt) 63 extra_root_vec.safe_push (rt); 64 } 65 66 /* Mark all the roots in the table RT. */ 67 68 static void 69 ggc_mark_root_tab (const_ggc_root_tab_t rt) 70 { 71 size_t i; 72 73 for ( ; rt->base != NULL; rt++) 74 for (i = 0; i < rt->nelt; i++) 75 (*rt->cb) (*(void **) ((char *)rt->base + rt->stride * i)); 76 } 77 78 /* Iterate through all registered roots and mark each element. */ 79 80 void 81 ggc_mark_roots (void) 82 { 83 const struct ggc_root_tab *const *rt; 84 const_ggc_root_tab_t rtp, rti; 85 size_t i; 86 87 for (rt = gt_ggc_deletable_rtab; *rt; rt++) 88 for (rti = *rt; rti->base != NULL; rti++) 89 memset (rti->base, 0, rti->stride); 90 91 for (rt = gt_ggc_rtab; *rt; rt++) 92 ggc_mark_root_tab (*rt); 93 94 FOR_EACH_VEC_ELT (extra_root_vec, i, rtp) 95 ggc_mark_root_tab (rtp); 96 97 if (ggc_protect_identifiers) 98 ggc_mark_stringpool (); 99 100 gt_clear_caches (); 101 102 if (! ggc_protect_identifiers) 103 ggc_purge_stringpool (); 104 105 /* Some plugins may call ggc_set_mark from here. */ 106 invoke_plugin_callbacks (PLUGIN_GGC_MARKING, NULL); 107 } 108 109 /* Allocate a block of memory, then clear it. */ 110 void * 111 ggc_internal_cleared_alloc (size_t size, void (*f)(void *), size_t s, size_t n 112 MEM_STAT_DECL) 113 { 114 void *buf = ggc_internal_alloc (size, f, s, n PASS_MEM_STAT); 115 memset (buf, 0, size); 116 return buf; 117 } 118 119 /* Resize a block of memory, possibly re-allocating it. */ 120 void * 121 ggc_realloc (void *x, size_t size MEM_STAT_DECL) 122 { 123 void *r; 124 size_t old_size; 125 126 if (x == NULL) 127 return ggc_internal_alloc (size PASS_MEM_STAT); 128 129 old_size = ggc_get_size (x); 130 131 if (size <= old_size) 132 { 133 /* Mark the unwanted memory as unaccessible. We also need to make 134 the "new" size accessible, since ggc_get_size returns the size of 135 the pool, not the size of the individually allocated object, the 136 size which was previously made accessible. Unfortunately, we 137 don't know that previously allocated size. Without that 138 knowledge we have to lose some initialization-tracking for the 139 old parts of the object. An alternative is to mark the whole 140 old_size as reachable, but that would lose tracking of writes 141 after the end of the object (by small offsets). Discard the 142 handle to avoid handle leak. */ 143 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) x + size, 144 old_size - size)); 145 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, size)); 146 return x; 147 } 148 149 r = ggc_internal_alloc (size PASS_MEM_STAT); 150 151 /* Since ggc_get_size returns the size of the pool, not the size of the 152 individually allocated object, we'd access parts of the old object 153 that were marked invalid with the memcpy below. We lose a bit of the 154 initialization-tracking since some of it may be uninitialized. */ 155 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (x, old_size)); 156 157 memcpy (r, x, old_size); 158 159 /* The old object is not supposed to be used anymore. */ 160 ggc_free (x); 161 162 return r; 163 } 164 165 void * 166 ggc_cleared_alloc_htab_ignore_args (size_t c ATTRIBUTE_UNUSED, 167 size_t n ATTRIBUTE_UNUSED) 168 { 169 gcc_assert (c * n == sizeof (struct htab)); 170 return ggc_cleared_alloc<htab> (); 171 } 172 173 /* TODO: once we actually use type information in GGC, create a new tag 174 gt_gcc_ptr_array and use it for pointer arrays. */ 175 void * 176 ggc_cleared_alloc_ptr_array_two_args (size_t c, size_t n) 177 { 178 gcc_assert (sizeof (PTR *) == n); 179 return ggc_cleared_vec_alloc<PTR *> (c); 180 } 181 182 /* These are for splay_tree_new_ggc. */ 183 void * 184 ggc_splay_alloc (int sz, void *nl) 185 { 186 gcc_assert (!nl); 187 return ggc_internal_alloc (sz); 188 } 189 190 void 191 ggc_splay_dont_free (void * x ATTRIBUTE_UNUSED, void *nl) 192 { 193 gcc_assert (!nl); 194 } 195 196 void 197 ggc_print_common_statistics (FILE *stream ATTRIBUTE_UNUSED, 198 ggc_statistics *stats) 199 { 200 /* Set the pointer so that during collection we will actually gather 201 the statistics. */ 202 ggc_stats = stats; 203 204 /* Then do one collection to fill in the statistics. */ 205 ggc_collect (); 206 207 /* At present, we don't really gather any interesting statistics. */ 208 209 /* Don't gather statistics any more. */ 210 ggc_stats = NULL; 211 } 212 213 /* Functions for saving and restoring GCable memory to disk. */ 214 215 struct ptr_data 216 { 217 void *obj; 218 void *note_ptr_cookie; 219 gt_note_pointers note_ptr_fn; 220 gt_handle_reorder reorder_fn; 221 size_t size; 222 void *new_addr; 223 }; 224 225 #define POINTER_HASH(x) (hashval_t)((intptr_t)x >> 3) 226 227 /* Helper for hashing saving_htab. */ 228 229 struct saving_hasher : free_ptr_hash <ptr_data> 230 { 231 typedef void *compare_type; 232 static inline hashval_t hash (const ptr_data *); 233 static inline bool equal (const ptr_data *, const void *); 234 }; 235 236 inline hashval_t 237 saving_hasher::hash (const ptr_data *p) 238 { 239 return POINTER_HASH (p->obj); 240 } 241 242 inline bool 243 saving_hasher::equal (const ptr_data *p1, const void *p2) 244 { 245 return p1->obj == p2; 246 } 247 248 static hash_table<saving_hasher> *saving_htab; 249 static vec<void *> callback_vec; 250 static vec<void *> reloc_addrs_vec; 251 252 /* Register an object in the hash table. */ 253 254 int 255 gt_pch_note_object (void *obj, void *note_ptr_cookie, 256 gt_note_pointers note_ptr_fn) 257 { 258 struct ptr_data **slot; 259 260 if (obj == NULL || obj == (void *) 1) 261 return 0; 262 263 slot = (struct ptr_data **) 264 saving_htab->find_slot_with_hash (obj, POINTER_HASH (obj), INSERT); 265 if (*slot != NULL) 266 { 267 gcc_assert ((*slot)->note_ptr_fn == note_ptr_fn 268 && (*slot)->note_ptr_cookie == note_ptr_cookie); 269 return 0; 270 } 271 272 *slot = XCNEW (struct ptr_data); 273 (*slot)->obj = obj; 274 (*slot)->note_ptr_fn = note_ptr_fn; 275 (*slot)->note_ptr_cookie = note_ptr_cookie; 276 if (note_ptr_fn == gt_pch_p_S) 277 (*slot)->size = strlen ((const char *)obj) + 1; 278 else 279 (*slot)->size = ggc_get_size (obj); 280 return 1; 281 } 282 283 /* Register address of a callback pointer. */ 284 void 285 gt_pch_note_callback (void *obj, void *base) 286 { 287 void *ptr; 288 memcpy (&ptr, obj, sizeof (void *)); 289 if (ptr != NULL) 290 { 291 struct ptr_data *data 292 = (struct ptr_data *) 293 saving_htab->find_with_hash (base, POINTER_HASH (base)); 294 gcc_assert (data); 295 callback_vec.safe_push ((char *) data->new_addr 296 + ((char *) obj - (char *) base)); 297 } 298 } 299 300 /* Register an object in the hash table. */ 301 302 void 303 gt_pch_note_reorder (void *obj, void *note_ptr_cookie, 304 gt_handle_reorder reorder_fn) 305 { 306 struct ptr_data *data; 307 308 if (obj == NULL || obj == (void *) 1) 309 return; 310 311 data = (struct ptr_data *) 312 saving_htab->find_with_hash (obj, POINTER_HASH (obj)); 313 gcc_assert (data && data->note_ptr_cookie == note_ptr_cookie); 314 315 data->reorder_fn = reorder_fn; 316 } 317 318 /* Handy state for the traversal functions. */ 319 320 struct traversal_state 321 { 322 FILE *f; 323 struct ggc_pch_data *d; 324 size_t count; 325 struct ptr_data **ptrs; 326 size_t ptrs_i; 327 }; 328 329 /* Callbacks for htab_traverse. */ 330 331 int 332 ggc_call_count (ptr_data **slot, traversal_state *state) 333 { 334 struct ptr_data *d = *slot; 335 336 ggc_pch_count_object (state->d, d->obj, d->size, 337 d->note_ptr_fn == gt_pch_p_S); 338 state->count++; 339 return 1; 340 } 341 342 int 343 ggc_call_alloc (ptr_data **slot, traversal_state *state) 344 { 345 struct ptr_data *d = *slot; 346 347 d->new_addr = ggc_pch_alloc_object (state->d, d->obj, d->size, 348 d->note_ptr_fn == gt_pch_p_S); 349 state->ptrs[state->ptrs_i++] = d; 350 return 1; 351 } 352 353 /* Callback for qsort. */ 354 355 static int 356 compare_ptr_data (const void *p1_p, const void *p2_p) 357 { 358 const struct ptr_data *const p1 = *(const struct ptr_data *const *)p1_p; 359 const struct ptr_data *const p2 = *(const struct ptr_data *const *)p2_p; 360 return (((size_t)p1->new_addr > (size_t)p2->new_addr) 361 - ((size_t)p1->new_addr < (size_t)p2->new_addr)); 362 } 363 364 /* Callbacks for note_ptr_fn. */ 365 366 static void 367 relocate_ptrs (void *ptr_p, void *real_ptr_p, void *state_p) 368 { 369 void **ptr = (void **)ptr_p; 370 struct traversal_state *state 371 = (struct traversal_state *)state_p; 372 struct ptr_data *result; 373 374 if (*ptr == NULL || *ptr == (void *)1) 375 return; 376 377 result = (struct ptr_data *) 378 saving_htab->find_with_hash (*ptr, POINTER_HASH (*ptr)); 379 gcc_assert (result); 380 *ptr = result->new_addr; 381 if (ptr_p == real_ptr_p) 382 return; 383 if (real_ptr_p == NULL) 384 real_ptr_p = ptr_p; 385 gcc_assert (real_ptr_p >= state->ptrs[state->ptrs_i]->obj 386 && ((char *) real_ptr_p + sizeof (void *) 387 <= ((char *) state->ptrs[state->ptrs_i]->obj 388 + state->ptrs[state->ptrs_i]->size))); 389 void *addr 390 = (void *) ((char *) state->ptrs[state->ptrs_i]->new_addr 391 + ((char *) real_ptr_p 392 - (char *) state->ptrs[state->ptrs_i]->obj)); 393 reloc_addrs_vec.safe_push (addr); 394 } 395 396 /* Write out, after relocation, the pointers in TAB. */ 397 static void 398 write_pch_globals (const struct ggc_root_tab * const *tab, 399 struct traversal_state *state) 400 { 401 const struct ggc_root_tab *const *rt; 402 const struct ggc_root_tab *rti; 403 size_t i; 404 405 for (rt = tab; *rt; rt++) 406 for (rti = *rt; rti->base != NULL; rti++) 407 for (i = 0; i < rti->nelt; i++) 408 { 409 void *ptr = *(void **)((char *)rti->base + rti->stride * i); 410 struct ptr_data *new_ptr; 411 if (ptr == NULL || ptr == (void *)1) 412 { 413 if (fwrite (&ptr, sizeof (void *), 1, state->f) 414 != 1) 415 fatal_error (input_location, "cannot write PCH file: %m"); 416 } 417 else 418 { 419 new_ptr = (struct ptr_data *) 420 saving_htab->find_with_hash (ptr, POINTER_HASH (ptr)); 421 if (fwrite (&new_ptr->new_addr, sizeof (void *), 1, state->f) 422 != 1) 423 fatal_error (input_location, "cannot write PCH file: %m"); 424 } 425 } 426 } 427 428 /* Callback for qsort. */ 429 430 static int 431 compare_ptr (const void *p1_p, const void *p2_p) 432 { 433 void *p1 = *(void *const *)p1_p; 434 void *p2 = *(void *const *)p2_p; 435 return (((uintptr_t)p1 > (uintptr_t)p2) 436 - ((uintptr_t)p1 < (uintptr_t)p2)); 437 } 438 439 /* Decode one uleb128 from P, return first byte after it, store 440 decoded value into *VAL. */ 441 442 static unsigned char * 443 read_uleb128 (unsigned char *p, size_t *val) 444 { 445 unsigned int shift = 0; 446 unsigned char byte; 447 size_t result; 448 449 result = 0; 450 do 451 { 452 byte = *p++; 453 result |= ((size_t) byte & 0x7f) << shift; 454 shift += 7; 455 } 456 while (byte & 0x80); 457 458 *val = result; 459 return p; 460 } 461 462 /* Store VAL as uleb128 at P, return length in bytes. */ 463 464 static size_t 465 write_uleb128 (unsigned char *p, size_t val) 466 { 467 size_t len = 0; 468 do 469 { 470 unsigned char byte = (val & 0x7f); 471 val >>= 7; 472 if (val != 0) 473 /* More bytes to follow. */ 474 byte |= 0x80; 475 476 *p++ = byte; 477 ++len; 478 } 479 while (val != 0); 480 return len; 481 } 482 483 /* Hold the information we need to mmap the file back in. */ 484 485 struct mmap_info 486 { 487 size_t offset; 488 size_t size; 489 void *preferred_base; 490 }; 491 492 /* Write out the state of the compiler to F. */ 493 494 void 495 gt_pch_save (FILE *f) 496 { 497 const struct ggc_root_tab *const *rt; 498 const struct ggc_root_tab *rti; 499 size_t i; 500 struct traversal_state state; 501 char *this_object = NULL; 502 size_t this_object_size = 0; 503 struct mmap_info mmi; 504 const size_t mmap_offset_alignment = host_hooks.gt_pch_alloc_granularity (); 505 506 gt_pch_save_stringpool (); 507 508 timevar_push (TV_PCH_PTR_REALLOC); 509 saving_htab = new hash_table<saving_hasher> (50000); 510 511 for (rt = gt_ggc_rtab; *rt; rt++) 512 for (rti = *rt; rti->base != NULL; rti++) 513 for (i = 0; i < rti->nelt; i++) 514 (*rti->pchw)(*(void **)((char *)rti->base + rti->stride * i)); 515 516 /* Prepare the objects for writing, determine addresses and such. */ 517 state.f = f; 518 state.d = init_ggc_pch (); 519 state.count = 0; 520 saving_htab->traverse <traversal_state *, ggc_call_count> (&state); 521 522 mmi.size = ggc_pch_total_size (state.d); 523 524 /* Try to arrange things so that no relocation is necessary, but 525 don't try very hard. On most platforms, this will always work, 526 and on the rest it's a lot of work to do better. 527 (The extra work goes in HOST_HOOKS_GT_PCH_GET_ADDRESS and 528 HOST_HOOKS_GT_PCH_USE_ADDRESS.) */ 529 mmi.preferred_base = host_hooks.gt_pch_get_address (mmi.size, fileno (f)); 530 /* If the host cannot supply any suitable address for this, we are stuck. */ 531 if (mmi.preferred_base == NULL) 532 fatal_error (input_location, 533 "cannot write PCH file: required memory segment unavailable"); 534 535 ggc_pch_this_base (state.d, mmi.preferred_base); 536 537 state.ptrs = XNEWVEC (struct ptr_data *, state.count); 538 state.ptrs_i = 0; 539 540 saving_htab->traverse <traversal_state *, ggc_call_alloc> (&state); 541 timevar_pop (TV_PCH_PTR_REALLOC); 542 543 timevar_push (TV_PCH_PTR_SORT); 544 qsort (state.ptrs, state.count, sizeof (*state.ptrs), compare_ptr_data); 545 timevar_pop (TV_PCH_PTR_SORT); 546 547 /* Write out all the scalar variables. */ 548 for (rt = gt_pch_scalar_rtab; *rt; rt++) 549 for (rti = *rt; rti->base != NULL; rti++) 550 if (fwrite (rti->base, rti->stride, 1, f) != 1) 551 fatal_error (input_location, "cannot write PCH file: %m"); 552 553 /* Write out all the global pointers, after translation. */ 554 write_pch_globals (gt_ggc_rtab, &state); 555 556 /* Pad the PCH file so that the mmapped area starts on an allocation 557 granularity (usually page) boundary. */ 558 { 559 long o; 560 o = ftell (state.f) + sizeof (mmi); 561 if (o == -1) 562 fatal_error (input_location, "cannot get position in PCH file: %m"); 563 mmi.offset = mmap_offset_alignment - o % mmap_offset_alignment; 564 if (mmi.offset == mmap_offset_alignment) 565 mmi.offset = 0; 566 mmi.offset += o; 567 } 568 if (fwrite (&mmi, sizeof (mmi), 1, state.f) != 1) 569 fatal_error (input_location, "cannot write PCH file: %m"); 570 if (mmi.offset != 0 571 && fseek (state.f, mmi.offset, SEEK_SET) != 0) 572 fatal_error (input_location, "cannot write padding to PCH file: %m"); 573 574 ggc_pch_prepare_write (state.d, state.f); 575 576 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS 577 vec<char> vbits = vNULL; 578 #endif 579 580 /* Actually write out the objects. */ 581 for (i = 0; i < state.count; i++) 582 { 583 state.ptrs_i = i; 584 if (this_object_size < state.ptrs[i]->size) 585 { 586 this_object_size = state.ptrs[i]->size; 587 this_object = XRESIZEVAR (char, this_object, this_object_size); 588 } 589 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS 590 /* obj might contain uninitialized bytes, e.g. in the trailing 591 padding of the object. Avoid warnings by making the memory 592 temporarily defined and then restoring previous state. */ 593 int get_vbits = 0; 594 size_t valid_size = state.ptrs[i]->size; 595 if (__builtin_expect (RUNNING_ON_VALGRIND, 0)) 596 { 597 if (vbits.length () < valid_size) 598 vbits.safe_grow (valid_size, true); 599 get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj, 600 vbits.address (), valid_size); 601 if (get_vbits == 3) 602 { 603 /* We assume that first part of obj is addressable, and 604 the rest is unaddressable. Find out where the boundary is 605 using binary search. */ 606 size_t lo = 0, hi = valid_size; 607 while (hi > lo) 608 { 609 size_t mid = (lo + hi) / 2; 610 get_vbits = VALGRIND_GET_VBITS ((char *) state.ptrs[i]->obj 611 + mid, vbits.address (), 612 1); 613 if (get_vbits == 3) 614 hi = mid; 615 else if (get_vbits == 1) 616 lo = mid + 1; 617 else 618 break; 619 } 620 if (get_vbits == 1 || get_vbits == 3) 621 { 622 valid_size = lo; 623 get_vbits = VALGRIND_GET_VBITS (state.ptrs[i]->obj, 624 vbits.address (), 625 valid_size); 626 } 627 } 628 if (get_vbits == 1) 629 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_DEFINED (state.ptrs[i]->obj, 630 state.ptrs[i]->size)); 631 } 632 #endif 633 memcpy (this_object, state.ptrs[i]->obj, state.ptrs[i]->size); 634 if (state.ptrs[i]->reorder_fn != NULL) 635 state.ptrs[i]->reorder_fn (state.ptrs[i]->obj, 636 state.ptrs[i]->note_ptr_cookie, 637 relocate_ptrs, &state); 638 state.ptrs[i]->note_ptr_fn (state.ptrs[i]->obj, 639 state.ptrs[i]->note_ptr_cookie, 640 relocate_ptrs, &state); 641 ggc_pch_write_object (state.d, state.f, state.ptrs[i]->obj, 642 state.ptrs[i]->new_addr, state.ptrs[i]->size, 643 state.ptrs[i]->note_ptr_fn == gt_pch_p_S); 644 if (state.ptrs[i]->note_ptr_fn != gt_pch_p_S) 645 memcpy (state.ptrs[i]->obj, this_object, state.ptrs[i]->size); 646 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS 647 if (__builtin_expect (get_vbits == 1, 0)) 648 { 649 (void) VALGRIND_SET_VBITS (state.ptrs[i]->obj, vbits.address (), 650 valid_size); 651 if (valid_size != state.ptrs[i]->size) 652 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) 653 state.ptrs[i]->obj 654 + valid_size, 655 state.ptrs[i]->size 656 - valid_size)); 657 } 658 #endif 659 } 660 #if defined ENABLE_VALGRIND_ANNOTATIONS && defined VALGRIND_GET_VBITS 661 vbits.release (); 662 #endif 663 664 reloc_addrs_vec.qsort (compare_ptr); 665 666 size_t reloc_addrs_size = 0; 667 void *last_addr = NULL; 668 unsigned char uleb128_buf[sizeof (size_t) * 2]; 669 for (void *addr : reloc_addrs_vec) 670 { 671 gcc_assert ((uintptr_t) addr >= (uintptr_t) mmi.preferred_base 672 && ((uintptr_t) addr + sizeof (void *) 673 <= (uintptr_t) mmi.preferred_base + mmi.size)); 674 if (addr == last_addr) 675 continue; 676 if (last_addr == NULL) 677 last_addr = mmi.preferred_base; 678 size_t diff = (uintptr_t) addr - (uintptr_t) last_addr; 679 reloc_addrs_size += write_uleb128 (uleb128_buf, diff); 680 last_addr = addr; 681 } 682 if (fwrite (&reloc_addrs_size, sizeof (reloc_addrs_size), 1, f) != 1) 683 fatal_error (input_location, "cannot write PCH file: %m"); 684 last_addr = NULL; 685 for (void *addr : reloc_addrs_vec) 686 { 687 if (addr == last_addr) 688 continue; 689 if (last_addr == NULL) 690 last_addr = mmi.preferred_base; 691 size_t diff = (uintptr_t) addr - (uintptr_t) last_addr; 692 reloc_addrs_size = write_uleb128 (uleb128_buf, diff); 693 if (fwrite (uleb128_buf, 1, reloc_addrs_size, f) != reloc_addrs_size) 694 fatal_error (input_location, "cannot write PCH file: %m"); 695 last_addr = addr; 696 } 697 698 ggc_pch_finish (state.d, state.f); 699 700 gt_pch_fixup_stringpool (); 701 702 unsigned num_callbacks = callback_vec.length (); 703 void (*pch_save) (FILE *) = >_pch_save; 704 if (fwrite (&pch_save, sizeof (pch_save), 1, f) != 1 705 || fwrite (&num_callbacks, sizeof (num_callbacks), 1, f) != 1 706 || (num_callbacks 707 && fwrite (callback_vec.address (), sizeof (void *), num_callbacks, 708 f) != num_callbacks)) 709 fatal_error (input_location, "cannot write PCH file: %m"); 710 711 XDELETE (state.ptrs); 712 XDELETE (this_object); 713 delete saving_htab; 714 saving_htab = NULL; 715 callback_vec.release (); 716 reloc_addrs_vec.release (); 717 } 718 719 /* Read the state of the compiler back in from F. */ 720 721 void 722 gt_pch_restore (FILE *f) 723 { 724 const struct ggc_root_tab *const *rt; 725 const struct ggc_root_tab *rti; 726 size_t i; 727 struct mmap_info mmi; 728 int result; 729 struct line_maps * old_line_table = line_table; 730 location_t old_input_loc = input_location; 731 732 /* We are about to reload the line maps along with the rest of the PCH 733 data, which means that the (loaded) ones cannot be guaranteed to be 734 in any valid state for reporting diagnostics that happen during the 735 load. Save the current table (and use it during the loading process 736 below). */ 737 class line_maps *save_line_table = line_table; 738 739 /* Delete any deletable objects. This makes ggc_pch_read much 740 faster, as it can be sure that no GCable objects remain other 741 than the ones just read in. */ 742 for (rt = gt_ggc_deletable_rtab; *rt; rt++) 743 for (rti = *rt; rti->base != NULL; rti++) 744 memset (rti->base, 0, rti->stride); 745 746 /* Read in all the scalar variables. */ 747 for (rt = gt_pch_scalar_rtab; *rt; rt++) 748 for (rti = *rt; rti->base != NULL; rti++) 749 if (fread (rti->base, rti->stride, 1, f) != 1) 750 { 751 line_table = old_line_table; 752 input_location = old_input_loc; 753 fatal_error (input_location, "cannot read PCH file: %m"); 754 } 755 756 /* Read in all the global pointers, in 6 easy loops. */ 757 bool error_reading_pointers = false; 758 for (rt = gt_ggc_rtab; *rt; rt++) 759 for (rti = *rt; rti->base != NULL; rti++) 760 for (i = 0; i < rti->nelt; i++) 761 if (fread ((char *)rti->base + rti->stride * i, 762 sizeof (void *), 1, f) != 1) 763 error_reading_pointers = true; 764 765 /* Stash the newly read-in line table pointer - it does not point to 766 anything meaningful yet, so swap the old one back in. */ 767 class line_maps *new_line_table = line_table; 768 line_table = save_line_table; 769 if (error_reading_pointers) 770 fatal_error (input_location, "cannot read PCH file: %m"); 771 772 if (fread (&mmi, sizeof (mmi), 1, f) != 1) 773 { 774 line_table = old_line_table; 775 input_location = old_input_loc; 776 fatal_error (input_location, "cannot read PCH file: %m"); 777 } 778 779 void *orig_preferred_base = mmi.preferred_base; 780 result = host_hooks.gt_pch_use_address (mmi.preferred_base, mmi.size, 781 fileno (f), mmi.offset); 782 783 /* We could not mmap or otherwise allocate the required memory at the 784 address needed. */ 785 if (result < 0) 786 { 787 line_table = old_line_table; 788 input_location = old_input_loc; 789 sorry_at (input_location, "PCH allocation failure"); 790 /* There is no point in continuing from here, we will only end up 791 with a crashed (most likely hanging) compiler. */ 792 exit (-1); 793 } 794 795 /* (0) We allocated memory, but did not mmap the file, so we need to read 796 the data in manually. (>0) Otherwise the mmap succeed for the address 797 we wanted. */ 798 if (result == 0) 799 { 800 if (fseek (f, mmi.offset, SEEK_SET) != 0 801 || fread (mmi.preferred_base, mmi.size, 1, f) != 1) 802 { 803 line_table = old_line_table; 804 input_location = old_input_loc; 805 fatal_error (input_location, "cannot read PCH file: %m"); 806 } 807 } 808 else if (fseek (f, mmi.offset + mmi.size, SEEK_SET) != 0) 809 { 810 line_table = old_line_table; 811 input_location = old_input_loc; 812 fatal_error (input_location, "cannot read PCH file: %m"); 813 } 814 815 size_t reloc_addrs_size; 816 if (fread (&reloc_addrs_size, sizeof (reloc_addrs_size), 1, f) != 1) 817 { 818 line_table = old_line_table; 819 input_location = old_input_loc; 820 fatal_error (input_location, "cannot read PCH file: %m"); 821 } 822 823 if (orig_preferred_base != mmi.preferred_base) 824 { 825 uintptr_t bias 826 = (uintptr_t) mmi.preferred_base - (uintptr_t) orig_preferred_base; 827 828 /* Adjust all the global pointers by bias. */ 829 line_table = new_line_table; 830 for (rt = gt_ggc_rtab; *rt; rt++) 831 for (rti = *rt; rti->base != NULL; rti++) 832 for (i = 0; i < rti->nelt; i++) 833 { 834 char *addr = (char *)rti->base + rti->stride * i; 835 char *p; 836 memcpy (&p, addr, sizeof (void *)); 837 if ((uintptr_t) p >= (uintptr_t) orig_preferred_base 838 && (uintptr_t) p < (uintptr_t) orig_preferred_base + mmi.size) 839 { 840 p = (char *) ((uintptr_t) p + bias); 841 memcpy (addr, &p, sizeof (void *)); 842 } 843 } 844 new_line_table = line_table; 845 line_table = save_line_table; 846 847 /* And adjust all the pointers in the image by bias too. */ 848 char *addr = (char *) mmi.preferred_base; 849 unsigned char uleb128_buf[4096], *uleb128_ptr = uleb128_buf; 850 while (reloc_addrs_size != 0) 851 { 852 size_t this_size 853 = MIN (reloc_addrs_size, 854 (size_t) (4096 - (uleb128_ptr - uleb128_buf))); 855 if (fread (uleb128_ptr, 1, this_size, f) != this_size) 856 { 857 line_table = old_line_table; 858 input_location = old_input_loc; 859 fatal_error (input_location, "cannot read PCH file: %m"); 860 } 861 unsigned char *uleb128_end = uleb128_ptr + this_size; 862 if (this_size != reloc_addrs_size) 863 uleb128_end -= 2 * sizeof (size_t); 864 uleb128_ptr = uleb128_buf; 865 while (uleb128_ptr < uleb128_end) 866 { 867 size_t diff; 868 uleb128_ptr = read_uleb128 (uleb128_ptr, &diff); 869 addr = (char *) ((uintptr_t) addr + diff); 870 871 char *p; 872 memcpy (&p, addr, sizeof (void *)); 873 gcc_assert ((uintptr_t) p >= (uintptr_t) orig_preferred_base 874 && ((uintptr_t) p 875 < (uintptr_t) orig_preferred_base + mmi.size)); 876 p = (char *) ((uintptr_t) p + bias); 877 memcpy (addr, &p, sizeof (void *)); 878 } 879 reloc_addrs_size -= this_size; 880 if (reloc_addrs_size == 0) 881 break; 882 this_size = uleb128_end + 2 * sizeof (size_t) - uleb128_ptr; 883 memcpy (uleb128_buf, uleb128_ptr, this_size); 884 uleb128_ptr = uleb128_buf + this_size; 885 } 886 } 887 else if (fseek (f, (mmi.offset + mmi.size + sizeof (reloc_addrs_size) 888 + reloc_addrs_size), SEEK_SET) != 0) 889 fatal_error (input_location, "cannot read PCH file: %m"); 890 891 ggc_pch_read (f, mmi.preferred_base); 892 893 void (*pch_save) (FILE *); 894 unsigned num_callbacks; 895 if (fread (&pch_save, sizeof (pch_save), 1, f) != 1 896 || fread (&num_callbacks, sizeof (num_callbacks), 1, f) != 1) 897 { 898 line_table = old_line_table; 899 input_location = old_input_loc; 900 fatal_error (input_location, "cannot read PCH file: %m"); 901 } 902 if (pch_save != >_pch_save) 903 { 904 uintptr_t binbias = (uintptr_t) >_pch_save - (uintptr_t) pch_save; 905 void **ptrs = XNEWVEC (void *, num_callbacks); 906 unsigned i; 907 uintptr_t bias 908 = (uintptr_t) mmi.preferred_base - (uintptr_t) orig_preferred_base; 909 910 if (fread (ptrs, sizeof (void *), num_callbacks, f) != num_callbacks) 911 { 912 line_table = old_line_table; 913 input_location = old_input_loc; 914 fatal_error (input_location, "cannot read PCH file: %m"); 915 } 916 for (i = 0; i < num_callbacks; ++i) 917 { 918 void *ptr = (void *) ((uintptr_t) ptrs[i] + bias); 919 memcpy (&pch_save, ptr, sizeof (pch_save)); 920 pch_save = (void (*) (FILE *)) ((uintptr_t) pch_save + binbias); 921 memcpy (ptr, &pch_save, sizeof (pch_save)); 922 } 923 XDELETE (ptrs); 924 } 925 else if (fseek (f, num_callbacks * sizeof (void *), SEEK_CUR) != 0) 926 fatal_error (input_location, "cannot read PCH file: %m"); 927 928 gt_pch_restore_stringpool (); 929 930 /* Barring corruption of the PCH file, the restored line table should be 931 complete and usable. */ 932 line_table = new_line_table; 933 } 934 935 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is not present. 936 Select no address whatsoever, and let gt_pch_save choose what it will with 937 malloc, presumably. */ 938 939 void * 940 default_gt_pch_get_address (size_t size ATTRIBUTE_UNUSED, 941 int fd ATTRIBUTE_UNUSED) 942 { 943 return NULL; 944 } 945 946 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is not present. 947 Allocate SIZE bytes with malloc. Return 0 if the address we got is the 948 same as base, indicating that the memory has been allocated but needs to 949 be read in from the file. Return -1 if the address differs, to relocation 950 of the PCH file would be required. */ 951 952 int 953 default_gt_pch_use_address (void *&base, size_t size, int fd ATTRIBUTE_UNUSED, 954 size_t offset ATTRIBUTE_UNUSED) 955 { 956 void *addr = xmalloc (size); 957 return (addr == base) - 1; 958 } 959 960 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS. Return the 961 alignment required for allocating virtual memory. Usually this is the 962 same as pagesize. */ 963 964 size_t 965 default_gt_pch_alloc_granularity (void) 966 { 967 return getpagesize (); 968 } 969 970 #if HAVE_MMAP_FILE 971 /* Default version of HOST_HOOKS_GT_PCH_GET_ADDRESS when mmap is present. 972 We temporarily allocate SIZE bytes, and let the kernel place the data 973 wherever it will. If it worked, that's our spot, if not we're likely 974 to be in trouble. */ 975 976 void * 977 mmap_gt_pch_get_address (size_t size, int fd) 978 { 979 void *ret; 980 981 ret = mmap (NULL, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); 982 if (ret == (void *) MAP_FAILED) 983 ret = NULL; 984 else 985 munmap ((caddr_t) ret, size); 986 987 return ret; 988 } 989 990 /* Default version of HOST_HOOKS_GT_PCH_USE_ADDRESS when mmap is present. 991 Map SIZE bytes of FD+OFFSET at BASE. Return 1 if we succeeded at 992 mapping the data at BASE, -1 if we couldn't. 993 994 This version assumes that the kernel honors the START operand of mmap 995 even without MAP_FIXED if START through START+SIZE are not currently 996 mapped with something. */ 997 998 int 999 mmap_gt_pch_use_address (void *&base, size_t size, int fd, size_t offset) 1000 { 1001 void *addr; 1002 1003 /* We're called with size == 0 if we're not planning to load a PCH 1004 file at all. This allows the hook to free any static space that 1005 we might have allocated at link time. */ 1006 if (size == 0) 1007 return -1; 1008 1009 addr = mmap ((caddr_t) base, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, 1010 fd, offset); 1011 1012 return addr == base ? 1 : -1; 1013 } 1014 #endif /* HAVE_MMAP_FILE */ 1015 1016 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT 1017 1018 /* Modify the bound based on rlimits. */ 1019 static double 1020 ggc_rlimit_bound (double limit) 1021 { 1022 #if defined(HAVE_GETRLIMIT) 1023 struct rlimit rlim; 1024 # if defined (RLIMIT_AS) 1025 /* RLIMIT_AS is what POSIX says is the limit on mmap. Presumably 1026 any OS which has RLIMIT_AS also has a working mmap that GCC will use. */ 1027 if (getrlimit (RLIMIT_AS, &rlim) == 0 1028 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY 1029 && rlim.rlim_cur < limit) 1030 limit = rlim.rlim_cur; 1031 # elif defined (RLIMIT_DATA) 1032 /* ... but some older OSs bound mmap based on RLIMIT_DATA, or we 1033 might be on an OS that has a broken mmap. (Others don't bound 1034 mmap at all, apparently.) */ 1035 if (getrlimit (RLIMIT_DATA, &rlim) == 0 1036 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY 1037 && rlim.rlim_cur < limit 1038 /* Darwin has this horribly bogus default setting of 1039 RLIMIT_DATA, to 6144Kb. No-one notices because RLIMIT_DATA 1040 appears to be ignored. Ignore such silliness. If a limit 1041 this small was actually effective for mmap, GCC wouldn't even 1042 start up. */ 1043 && rlim.rlim_cur >= 8 * ONE_M) 1044 limit = rlim.rlim_cur; 1045 # endif /* RLIMIT_AS or RLIMIT_DATA */ 1046 #endif /* HAVE_GETRLIMIT */ 1047 1048 return limit; 1049 } 1050 1051 /* Heuristic to set a default for GGC_MIN_EXPAND. */ 1052 static int 1053 ggc_min_expand_heuristic (void) 1054 { 1055 double min_expand = physmem_total (); 1056 1057 /* Adjust for rlimits. */ 1058 min_expand = ggc_rlimit_bound (min_expand); 1059 1060 /* The heuristic is a percentage equal to 30% + 70%*(RAM/1GB), yielding 1061 a lower bound of 30% and an upper bound of 100% (when RAM >= 1GB). */ 1062 min_expand /= ONE_G; 1063 min_expand *= 70; 1064 min_expand = MIN (min_expand, 70); 1065 min_expand += 30; 1066 1067 return min_expand; 1068 } 1069 1070 /* Heuristic to set a default for GGC_MIN_HEAPSIZE. */ 1071 static int 1072 ggc_min_heapsize_heuristic (void) 1073 { 1074 double phys_kbytes = physmem_total (); 1075 double limit_kbytes = ggc_rlimit_bound (phys_kbytes * 2); 1076 1077 phys_kbytes /= ONE_K; /* Convert to Kbytes. */ 1078 limit_kbytes /= ONE_K; 1079 1080 /* The heuristic is RAM/8, with a lower bound of 4M and an upper 1081 bound of 128M (when RAM >= 1GB). */ 1082 phys_kbytes /= 8; 1083 1084 #if defined(HAVE_GETRLIMIT) && defined (RLIMIT_RSS) 1085 /* Try not to overrun the RSS limit while doing garbage collection. 1086 The RSS limit is only advisory, so no margin is subtracted. */ 1087 { 1088 struct rlimit rlim; 1089 if (getrlimit (RLIMIT_RSS, &rlim) == 0 1090 && rlim.rlim_cur != (rlim_t) RLIM_INFINITY) 1091 phys_kbytes = MIN (phys_kbytes, rlim.rlim_cur / ONE_K); 1092 } 1093 # endif 1094 1095 /* Don't blindly run over our data limit; do GC at least when the 1096 *next* GC would be within 20Mb of the limit or within a quarter of 1097 the limit, whichever is larger. If GCC does hit the data limit, 1098 compilation will fail, so this tries to be conservative. */ 1099 limit_kbytes = MAX (0, limit_kbytes - MAX (limit_kbytes / 4, 20 * ONE_K)); 1100 limit_kbytes = (limit_kbytes * 100) / (110 + ggc_min_expand_heuristic ()); 1101 phys_kbytes = MIN (phys_kbytes, limit_kbytes); 1102 1103 phys_kbytes = MAX (phys_kbytes, 4 * ONE_K); 1104 phys_kbytes = MIN (phys_kbytes, 128 * ONE_K); 1105 1106 return phys_kbytes; 1107 } 1108 #endif 1109 1110 void 1111 init_ggc_heuristics (void) 1112 { 1113 #if !defined ENABLE_GC_CHECKING && !defined ENABLE_GC_ALWAYS_COLLECT 1114 param_ggc_min_expand = ggc_min_expand_heuristic (); 1115 param_ggc_min_heapsize = ggc_min_heapsize_heuristic (); 1116 #endif 1117 } 1118 1119 /* GGC memory usage. */ 1120 class ggc_usage: public mem_usage 1121 { 1122 public: 1123 /* Default constructor. */ 1124 ggc_usage (): m_freed (0), m_collected (0), m_overhead (0) {} 1125 /* Constructor. */ 1126 ggc_usage (size_t allocated, size_t times, size_t peak, 1127 size_t freed, size_t collected, size_t overhead) 1128 : mem_usage (allocated, times, peak), 1129 m_freed (freed), m_collected (collected), m_overhead (overhead) {} 1130 1131 /* Equality operator. */ 1132 inline bool 1133 operator== (const ggc_usage &second) const 1134 { 1135 return (get_balance () == second.get_balance () 1136 && m_peak == second.m_peak 1137 && m_times == second.m_times); 1138 } 1139 1140 /* Comparison operator. */ 1141 inline bool 1142 operator< (const ggc_usage &second) const 1143 { 1144 if (*this == second) 1145 return false; 1146 1147 return (get_balance () == second.get_balance () ? 1148 (m_peak == second.m_peak ? m_times < second.m_times 1149 : m_peak < second.m_peak) 1150 : get_balance () < second.get_balance ()); 1151 } 1152 1153 /* Register overhead of ALLOCATED and OVERHEAD bytes. */ 1154 inline void 1155 register_overhead (size_t allocated, size_t overhead) 1156 { 1157 m_allocated += allocated; 1158 m_overhead += overhead; 1159 m_times++; 1160 } 1161 1162 /* Release overhead of SIZE bytes. */ 1163 inline void 1164 release_overhead (size_t size) 1165 { 1166 m_freed += size; 1167 } 1168 1169 /* Sum the usage with SECOND usage. */ 1170 ggc_usage 1171 operator+ (const ggc_usage &second) 1172 { 1173 return ggc_usage (m_allocated + second.m_allocated, 1174 m_times + second.m_times, 1175 m_peak + second.m_peak, 1176 m_freed + second.m_freed, 1177 m_collected + second.m_collected, 1178 m_overhead + second.m_overhead); 1179 } 1180 1181 /* Dump usage with PREFIX, where TOTAL is sum of all rows. */ 1182 inline void 1183 dump (const char *prefix, ggc_usage &total) const 1184 { 1185 size_t balance = get_balance (); 1186 fprintf (stderr, 1187 "%-48s " PRsa (9) ":%5.1f%%" PRsa (9) ":%5.1f%%" 1188 PRsa (9) ":%5.1f%%" PRsa (9) ":%5.1f%%" PRsa (9) "\n", 1189 prefix, 1190 SIZE_AMOUNT (balance), get_percent (balance, total.get_balance ()), 1191 SIZE_AMOUNT (m_collected), 1192 get_percent (m_collected, total.m_collected), 1193 SIZE_AMOUNT (m_freed), get_percent (m_freed, total.m_freed), 1194 SIZE_AMOUNT (m_overhead), 1195 get_percent (m_overhead, total.m_overhead), 1196 SIZE_AMOUNT (m_times)); 1197 } 1198 1199 /* Dump usage coupled to LOC location, where TOTAL is sum of all rows. */ 1200 inline void 1201 dump (mem_location *loc, ggc_usage &total) const 1202 { 1203 char *location_string = loc->to_string (); 1204 1205 dump (location_string, total); 1206 1207 free (location_string); 1208 } 1209 1210 /* Dump footer. */ 1211 inline void 1212 dump_footer () 1213 { 1214 dump ("Total", *this); 1215 } 1216 1217 /* Get balance which is GGC allocation leak. */ 1218 inline size_t 1219 get_balance () const 1220 { 1221 return m_allocated + m_overhead - m_collected - m_freed; 1222 } 1223 1224 typedef std::pair<mem_location *, ggc_usage *> mem_pair_t; 1225 1226 /* Compare wrapper used by qsort method. */ 1227 static int 1228 compare (const void *first, const void *second) 1229 { 1230 const mem_pair_t mem1 = *(const mem_pair_t *) first; 1231 const mem_pair_t mem2 = *(const mem_pair_t *) second; 1232 1233 size_t balance1 = mem1.second->get_balance (); 1234 size_t balance2 = mem2.second->get_balance (); 1235 1236 return balance1 == balance2 ? 0 : (balance1 < balance2 ? 1 : -1); 1237 } 1238 1239 /* Dump header with NAME. */ 1240 static inline void 1241 dump_header (const char *name) 1242 { 1243 fprintf (stderr, "%-48s %11s%17s%17s%16s%17s\n", name, "Leak", "Garbage", 1244 "Freed", "Overhead", "Times"); 1245 } 1246 1247 /* Freed memory in bytes. */ 1248 size_t m_freed; 1249 /* Collected memory in bytes. */ 1250 size_t m_collected; 1251 /* Overhead memory in bytes. */ 1252 size_t m_overhead; 1253 }; 1254 1255 /* GCC memory description. */ 1256 static mem_alloc_description<ggc_usage> ggc_mem_desc; 1257 1258 /* Dump per-site memory statistics. */ 1259 1260 void 1261 dump_ggc_loc_statistics () 1262 { 1263 if (! GATHER_STATISTICS) 1264 return; 1265 1266 ggc_collect (GGC_COLLECT_FORCE); 1267 1268 ggc_mem_desc.dump (GGC_ORIGIN); 1269 } 1270 1271 /* Record ALLOCATED and OVERHEAD bytes to descriptor NAME:LINE (FUNCTION). */ 1272 void 1273 ggc_record_overhead (size_t allocated, size_t overhead, void *ptr MEM_STAT_DECL) 1274 { 1275 ggc_usage *usage = ggc_mem_desc.register_descriptor (ptr, GGC_ORIGIN, false 1276 FINAL_PASS_MEM_STAT); 1277 1278 ggc_mem_desc.register_object_overhead (usage, allocated + overhead, ptr); 1279 usage->register_overhead (allocated, overhead); 1280 } 1281 1282 /* Notice that the pointer has been freed. */ 1283 void 1284 ggc_free_overhead (void *ptr) 1285 { 1286 ggc_mem_desc.release_object_overhead (ptr); 1287 } 1288 1289 /* After live values has been marked, walk all recorded pointers and see if 1290 they are still live. */ 1291 void 1292 ggc_prune_overhead_list (void) 1293 { 1294 typedef hash_map<const void *, std::pair<ggc_usage *, size_t > > map_t; 1295 1296 map_t::iterator it = ggc_mem_desc.m_reverse_object_map->begin (); 1297 1298 for (; it != ggc_mem_desc.m_reverse_object_map->end (); ++it) 1299 if (!ggc_marked_p ((*it).first)) 1300 { 1301 (*it).second.first->m_collected += (*it).second.second; 1302 ggc_mem_desc.m_reverse_object_map->remove ((*it).first); 1303 } 1304 } 1305 1306 /* Print memory used by heap if this info is available. */ 1307 1308 void 1309 report_heap_memory_use () 1310 { 1311 #if defined(HAVE_MALLINFO) || defined(HAVE_MALLINFO2) 1312 #ifdef HAVE_MALLINFO2 1313 #define MALLINFO_FN mallinfo2 1314 #else 1315 #define MALLINFO_FN mallinfo 1316 #endif 1317 if (!quiet_flag) 1318 fprintf (stderr, " {heap " PRsa (0) "}", 1319 SIZE_AMOUNT (MALLINFO_FN ().arena)); 1320 #endif 1321 } 1322