xref: /netbsd-src/external/gpl3/gcc/dist/gcc/config/visium/visium.h (revision 154bfe8e089c1a0a4e9ed8414f08d3da90949162)
1 /* Definitions of target machine for Visium.
2    Copyright (C) 2002-2019 Free Software Foundation, Inc.
3    Contributed by C.Nettleton, J.P.Parkes and P.Garbett.
4 
5    This file is part of GCC.
6 
7    GCC is free software; you can redistribute it and/or modify it
8    under the terms of the GNU General Public License as published
9    by the Free Software Foundation; either version 3, or (at your
10    option) any later version.
11 
12    GCC is distributed in the hope that it will be useful, but WITHOUT
13    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
15    License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with GCC; see the file COPYING3.  If not see
19    <http://www.gnu.org/licenses/>.  */
20 
21 
22 /* Controlling the Compilation Driver, `gcc'  */
23 
24 /* Pass -mtune=* options to the assembler */
25 #undef ASM_SPEC
26 #define ASM_SPEC "%{mcpu=gr6:-mtune=gr6; :-mtune=mcm}"
27 
28 /* Define symbols for the preprocessor.  */
29 #define CPP_SPEC "%{mcpu=gr6:-D__gr6__; :-D__gr5__}"
30 
31 /* Targets of a link */
32 #define LIB_SPEC \
33   "--start-group -lc %{msim:-lsim; mdebug:-ldebug; :-lserial} --end-group"
34 
35 #define ENDFILE_SPEC "crtend.o%s crtn.o%s"
36 #define STARTFILE_SPEC "crti.o%s crtbegin.o%s crt0.o%s"
37 
38 /* Run-time Target Specification */
39 
40 /* TARGET_CPU_CPP_BUILTINS() This function-like macro expands to a
41    block of code that defines built-in preprocessor macros and
42    assertions for the target cpu, using the functions builtin_define,
43    builtin_define_std and builtin_assert. When the front end calls
44    this macro it provides a trailing semicolon, and since it has
45    finished command line option processing your code can use those
46    results freely.  builtin_assert takes a string in the form you pass
47    to the command-line option -A, such as cpu=mips, and creates the
48    assertion. builtin_define takes a string in the form accepted by
49    option -D and unconditionally defines the macro.
50 
51    builtin_define_std takes a string representing the name of an
52    object-like macro. If it doesn't lie in the user's namespace,
53    builtin_define_std defines it unconditionally. Otherwise, it
54    defines a version with two leading underscores, and another version
55    with two leading and trailing underscores, and defines the original
56    only if an ISO standard was not requested on the command line. For
57    example, passing unix defines __unix, __unix__ and possibly unix;
58    passing _mips defines __mips, __mips__ and possibly _mips, and
59    passing _ABI64 defines only _ABI64.
60 
61    You can also test for the C dialect being compiled. The variable
62    c_language is set to one of clk_c, clk_cplusplus or
63    clk_objective_c. Note that if we are preprocessing assembler, this
64    variable will be clk_c but the function-like macro
65    preprocessing_asm_p() will return true, so you might want to check
66    for that first.  If you need to check for strict ANSI, the variable
67    flag_iso can be used. The function-like macro
68    preprocessing_trad_p() can be used to check for traditional
69    preprocessing.  */
70 #define TARGET_CPU_CPP_BUILTINS()			\
71   do							\
72     {							\
73       builtin_define ("__VISIUM__");			\
74       if (TARGET_MCM)					\
75 	builtin_define ("__VISIUM_ARCH_MCM__");		\
76       if (TARGET_BMI)					\
77 	builtin_define ("__VISIUM_ARCH_BMI__");		\
78       if (TARGET_FPU_IEEE)				\
79 	builtin_define ("__VISIUM_ARCH_FPU_IEEE__");	\
80     }							\
81   while (0)
82 
83 /* Recast the cpu class to be the cpu attribute.
84    Every file includes us, but not every file includes insn-attr.h.  */
85 #define visium_cpu_attr ((enum attr_cpu) visium_cpu)
86 
87 /* Defining data structures for per-function information.
88 
89    If the target needs to store information on a per-function basis,
90    GCC provides a macro and a couple of variables to allow this. Note,
91    just using statics to store the information is a bad idea, since
92    GCC supports nested functions, so you can be halfway through
93    encoding one function when another one comes along.
94 
95    GCC defines a data structure called struct function which contains
96    all of the data specific to an individual function. This structure
97    contains a field called machine whose type is struct
98    machine_function *, which can be used by targets to point to their
99    own specific data.
100 
101    If a target needs per-function specific data it should define the
102    type struct machine_function and also the macro
103    INIT_EXPANDERS. This macro should be used to initialize the
104    function pointer init_machine_status.  This pointer is explained
105    below.
106 
107    One typical use of per-function, target specific data is to create
108    an RTX to hold the register containing the function's return
109    address.  This RTX can then be used to implement the
110    __builtin_return_address function, for level 0.
111 
112    Note--earlier implementations of GCC used a single data area to
113    hold all of the per-function information. Thus when processing of a
114    nested function began the old per-function data had to be pushed
115    onto a stack, and when the processing was finished, it had to be
116    popped off the stack.  GCC used to provide function pointers called
117    save_machine_status and restore_machine_status to handle the saving
118    and restoring of the target specific information. Since the single
119    data area approach is no longer used, these pointers are no longer
120    supported.
121 
122    The macro and function pointers are described below.
123 
124    INIT_EXPANDERS:
125 
126    Macro called to initialize any target specific information. This
127    macro is called once per function, before generation of any RTL has
128    begun.  The intention of this macro is to allow the initialization
129    of the function pointers below.
130 
131    init_machine_status:
132    This is a void (*)(struct function *) function pointer. If this
133    pointer is non-NULL it will be called once per function, before
134    function compilation starts, in order to allow the target to
135    perform any target specific initialization of the struct function
136    structure. It is intended that this would be used to initialize the
137    machine of that structure.  struct machine_function structures are
138    expected to be freed by GC.  Generally, any memory that they
139    reference must be allocated by using ggc_alloc, including the
140    structure itself. */
141 
142 #define INIT_EXPANDERS visium_init_expanders ()
143 
144 /* Storage Layout
145 
146    Note that the definitions of the macros in this table which are
147    sizes or alignments measured in bits do not need to be constant.
148    They can be C expressions that refer to static variables, such as
149    the `target_flags'.
150 
151    `BITS_BIG_ENDIAN'
152 
153    Define this macro to have the value 1 if the most significant bit
154    in a byte has the lowest number; otherwise define it to have the
155    value zero.  This means that bit-field instructions count from the
156    most significant bit.  If the machine has no bit-field
157    instructions, then this must still be defined, but it doesn't
158    matter which value it is defined to.  This macro need not be a
159    constant.
160 
161    This macro does not affect the way structure fields are packed into
162    bytes or words; that is controlled by `BYTES_BIG_ENDIAN'. */
163 #define BITS_BIG_ENDIAN 1
164 
165 /* `BYTES_BIG_ENDIAN'
166 
167    Define this macro to have the value 1 if the most significant byte
168    in a word has the lowest number.  This macro need not be a
169    constant.*/
170 #define BYTES_BIG_ENDIAN 1
171 
172 /* `WORDS_BIG_ENDIAN'
173 
174    Define this macro to have the value 1 if, in a multiword object,
175    the most significant word has the lowest number.  This applies to
176    both memory locations and registers; GNU CC fundamentally assumes
177    that the order of words in memory is the same as the order in
178    registers.  This macro need not be a constant.  */
179 #define WORDS_BIG_ENDIAN 1
180 
181 /* `BITS_PER_WORD'
182 
183    Number of bits in a word; normally 32. */
184 #define BITS_PER_WORD 32
185 
186 /* `UNITS_PER_WORD'
187 
188    Number of storage units in a word; normally 4. */
189 #define UNITS_PER_WORD 4
190 
191 /* `POINTER_SIZE'
192 
193    Width of a pointer, in bits.  You must specify a value no wider
194    than the width of `Pmode'.  If it is not equal to the width of
195    `Pmode', you must define `POINTERS_EXTEND_UNSIGNED'.  */
196 #define POINTER_SIZE 32
197 
198 /* `PARM_BOUNDARY'
199 
200    Normal alignment required for function parameters on the stack, in
201    bits.  All stack parameters receive at least this much alignment
202    regardless of data type.  On most machines, this is the same as the
203    size of an integer. */
204 #define PARM_BOUNDARY 32
205 
206 /* `STACK_BOUNDARY'
207 
208    Define this macro if you wish to preserve a certain alignment for
209    the stack pointer.  The definition is a C expression for the
210    desired alignment (measured in bits).
211 
212    If `PUSH_ROUNDING' is not defined, the stack will always be aligned
213    to the specified boundary.  If `PUSH_ROUNDING' is defined and
214    specifies a less strict alignment than `STACK_BOUNDARY', the stack
215    may be momentarily unaligned while pushing arguments. */
216 #define STACK_BOUNDARY 32
217 
218 #define VISIUM_STACK_ALIGN(LOC) (((LOC) + 3) & ~3)
219 
220 /* `FUNCTION_BOUNDARY'
221 
222    Alignment required for a function entry point, in bits. */
223 #define FUNCTION_BOUNDARY 32
224 
225 /* `BIGGEST_ALIGNMENT'
226 
227    Biggest alignment that any data type can require on this machine,
228    in bits. */
229 #define BIGGEST_ALIGNMENT 32
230 
231 /* `DATA_ALIGNMENT (TYPE, BASIC-ALIGN)`
232 
233    If defined, a C expression to compute the alignment for a variable
234    in the static store.  TYPE is the data type, and BASIC-ALIGN is
235    the alignment that the object would ordinarily have.  The value of
236    this macro is used instead of that alignment to align the object. */
237 #define DATA_ALIGNMENT(TYPE,ALIGN) visium_data_alignment (TYPE, ALIGN)
238 
239 /* `LOCAL_ALIGNMENT (TYPE, BASIC-ALIGN)`
240 
241    If defined, a C expression to compute the alignment for a variable
242    in the local store.  TYPE is the data type, and BASIC-ALIGN is the
243    alignment that the object would ordinarily have.  The value of this
244    macro is used instead of that alignment to align the object. */
245 #define LOCAL_ALIGNMENT(TYPE,ALIGN) visium_data_alignment (TYPE, ALIGN)
246 
247 /* `EMPTY_FIELD_BOUNDARY'
248 
249    Alignment in bits to be given to a structure bit field that follows
250    an empty field such as `int : 0;'.
251 
252    Note that `PCC_BITFIELD_TYPE_MATTERS' also affects the alignment
253    that results from an empty field. */
254 #define EMPTY_FIELD_BOUNDARY 32
255 
256 /* `STRICT_ALIGNMENT'
257 
258    Define this macro to be the value 1 if instructions will fail to
259    work if given data not on the nominal alignment.  If instructions
260    will merely go slower in that case, define this macro as 0. */
261 #define STRICT_ALIGNMENT 1
262 
263 /* `TARGET_FLOAT_FORMAT'
264 
265    A code distinguishing the floating point format of the target
266    machine.  There are three defined values:
267 
268    `IEEE_FLOAT_FORMAT'
269           This code indicates IEEE floating point.  It is the default;
270           there is no need to define this macro when the format is IEEE.
271 
272     `VAX_FLOAT_FORMAT'
273           This code indicates the peculiar format used on the Vax.
274 
275     `UNKNOWN_FLOAT_FORMAT'
276           This code indicates any other format.
277 
278     The value of this macro is compared with `HOST_FLOAT_FORMAT' to
279     determine whether the target machine has the same format as the
280     host machine.  If any other formats are actually in use on
281     supported machines, new codes should be defined for them.
282 
283     The ordering of the component words of floating point values
284     stored in memory is controlled by `FLOAT_WORDS_BIG_ENDIAN' for the
285     target machine and `HOST_FLOAT_WORDS_BIG_ENDIAN' for the host. */
286 #define TARGET_FLOAT_FORMAT IEEE_FLOAT_FORMAT
287 #define UNITS_PER_HWFPVALUE 4
288 
289 /* Layout of Source Language Data Types
290 
291    These macros define the sizes and other characteristics of the
292    standard basic data types used in programs being compiled.  Unlike
293    the macros in the previous section, these apply to specific
294    features of C and related languages, rather than to fundamental
295    aspects of storage layout. */
296 
297 /* `INT_TYPE_SIZE'
298 
299    A C expression for the size in bits of the type `int' on the target
300    machine.  If you don't define this, the default is one word. */
301 #define INT_TYPE_SIZE  32
302 
303 /* `SHORT_TYPE_SIZE'
304 
305    A C expression for the size in bits of the type `short' on the
306    target machine.  If you don't define this, the default is half a
307    word.  (If this would be less than one storage unit, it is rounded
308    up to one unit.) */
309 #define SHORT_TYPE_SIZE 16
310 
311 /* `LONG_TYPE_SIZE'
312 
313    A C expression for the size in bits of the type `long' on the
314    target machine.  If you don't define this, the default is one word. */
315 #define LONG_TYPE_SIZE  32
316 
317 /* `LONG_LONG_TYPE_SIZE'
318 
319    A C expression for the size in bits of the type `long long' on the
320    target machine.  If you don't define this, the default is two
321    words.  If you want to support GNU Ada on your machine, the value
322    of macro must be at least 64. */
323 #define LONG_LONG_TYPE_SIZE  64
324 
325 /* `CHAR_TYPE_SIZE'
326 
327    A C expression for the size in bits of the type `char' on the
328    target machine.  If you don't define this, the default is one
329    quarter of a word.  (If this would be less than one storage unit,
330    it is rounded up to one unit.) */
331 #define CHAR_TYPE_SIZE  8
332 
333 /* `FLOAT_TYPE_SIZE'
334 
335    A C expression for the size in bits of the type `float' on the
336    target machine.  If you don't define this, the default is one word. */
337 #define FLOAT_TYPE_SIZE  32
338 
339 /* `DOUBLE_TYPE_SIZE'
340 
341    A C expression for the size in bits of the type `double' on the
342    target machine.  If you don't define this, the default is two
343    words. */
344 #define DOUBLE_TYPE_SIZE  64
345 
346 /* `LONG_DOUBLE_TYPE_SIZE'
347 
348    A C expression for the size in bits of the type `long double' on
349    the target machine.  If you don't define this, the default is two
350    words. */
351 #define LONG_DOUBLE_TYPE_SIZE   DOUBLE_TYPE_SIZE
352 
353 /* `WIDEST_HARDWARE_FP_SIZE'
354 
355    A C expression for the size in bits of the widest floating-point
356    format supported by the hardware.  If you define this macro, you
357    must specify a value less than or equal to the value of
358    `LONG_DOUBLE_TYPE_SIZE'.  If you do not define this macro, the
359    value of `LONG_DOUBLE_TYPE_SIZE' is the default. */
360 
361 /* `DEFAULT_SIGNED_CHAR'
362 
363    An expression whose value is 1 or 0, according to whether the type
364    `char' should be signed or unsigned by default.  The user can
365    always override this default with the options `-fsigned-char' and
366    `-funsigned-char'. */
367 #define DEFAULT_SIGNED_CHAR 0
368 
369 /* `SIZE_TYPE'
370 
371    A C expression for a string describing the name of the data type to
372    use for size values.  The typedef name `size_t' is defined using
373    the contents of the string.
374 
375    The string can contain more than one keyword.  If so, separate them
376    with spaces, and write first any length keyword, then `unsigned' if
377    appropriate, and finally `int'.  The string must exactly match one
378    of the data type names defined in the function
379    `init_decl_processing' in the file `c-decl.c'.  You may not omit
380    `int' or change the order--that would cause the compiler to crash
381    on startup.
382 
383    If you don't define this macro, the default is `"long unsigned
384    int"'. */
385 #define SIZE_TYPE "unsigned int"
386 
387 /* `PTRDIFF_TYPE'
388 
389    A C expression for a string describing the name of the data type to
390    use for the result of subtracting two pointers.  The typedef name
391    `ptrdiff_t' is defined using the contents of the string.  See
392    `SIZE_TYPE' above for more information.
393 
394    If you don't define this macro, the default is `"long int"'. */
395 #define PTRDIFF_TYPE "long int"
396 
397 /* Newlib uses the unsigned type corresponding to ptrdiff_t for
398    uintptr_t; this is the same as size_t for most newlib-using
399    targets, but not for us.  */
400 #define UINTPTR_TYPE "long unsigned int"
401 
402 /* `WCHAR_TYPE'
403 
404    A C expression for a string describing the name of the data type to
405    use for wide characters.  The typedef name `wchar_t' is defined
406    using the contents of the string.  See `SIZE_TYPE' above for more
407    information.
408 
409    If you don't define this macro, the default is `"int"'. */
410 #define WCHAR_TYPE "short int"
411 
412 /* `WCHAR_TYPE_SIZE'
413 
414    A C expression for the size in bits of the data type for wide
415    characters.  This is used in `cpp', which cannot make use of
416    `WCHAR_TYPE'. */
417 #define WCHAR_TYPE_SIZE 16
418 
419 /* Register Usage
420 
421    This section explains how to describe what registers the target
422    machine has, and how (in general) they can be used.  */
423 
424 /* `FIRST_PSEUDO_REGISTER'
425 
426    Number of actual hardware registers.
427    The hardware registers are assigned numbers for the compiler
428    from 0 to just below FIRST_PSEUDO_REGISTER.
429    All registers that the compiler knows about must be given numbers,
430    even those that are not normally considered general registers.
431 
432    Register 51 is used as the argument pointer register.
433    Register 52 is used as the soft frame pointer register.  */
434 #define FIRST_PSEUDO_REGISTER 53
435 
436 #define RETURN_REGNUM        1
437 #define PROLOGUE_TMP_REGNUM  9
438 #define LINK_REGNUM         21
439 #define GP_LAST_REGNUM      31
440 #define GP_REGISTER_P(REGNO) \
441   (((unsigned) (REGNO)) <= GP_LAST_REGNUM)
442 
443 #define MDB_REGNUM          32
444 #define MDC_REGNUM          33
445 
446 #define FP_FIRST_REGNUM     34
447 #define FP_LAST_REGNUM      49
448 #define FP_RETURN_REGNUM    (FP_FIRST_REGNUM + 1)
449 #define FP_REGISTER_P(REGNO) \
450   (FP_FIRST_REGNUM <= (REGNO) && (REGNO) <= FP_LAST_REGNUM)
451 
452 #define FLAGS_REGNUM        50
453 
454 /* `FIXED_REGISTERS'
455 
456    An initializer that says which registers are used for fixed
457    purposes all throughout the compiled code and are therefore not
458    available for general allocation.  These would include the stack
459    pointer, the frame pointer (except on machines where that can be
460    used as a general register when no frame pointer is needed), the
461    program counter on machines where that is considered one of the
462    addressable registers, and any other numbered register with a
463    standard use.
464 
465    This information is expressed as a sequence of numbers, separated
466    by commas and surrounded by braces.  The Nth number is 1 if
467    register N is fixed, 0 otherwise.
468 
469    The table initialized from this macro, and the table initialized by
470    the following one, may be overridden at run time either
471    automatically, by the actions of the macro
472    `CONDITIONAL_REGISTER_USAGE', or by the user with the command
473    options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'.
474 
475    r0 and f0 are immutable registers hardwired to 0.
476    r21 is the link register used for procedure linkage.
477    r23 is the stack pointer register.
478    r29 and r30 hold the interrupt context.
479    mdc is a read-only register because the writemdc instruction
480    terminates all the operations of the EAM on the GR6.  */
481 #define FIXED_REGISTERS  \
482  { 1, 0, 0, 0, 0, 0, 0, 0, /* r0 .. r7 */      \
483    0, 0, 0, 0, 0, 0, 0, 0, /* r8 .. r15 */     \
484    0, 0, 0, 0, 0, 1, 0, 1, /* r16 .. r23 */    \
485    0, 0, 0, 0, 0, 1, 1, 0, /* r24 .. r31 */    \
486    0, 1,                   /* mdb, mdc */      \
487    1, 0, 0, 0, 0, 0, 0, 0, /* f0 .. f7 */      \
488    0, 0, 0, 0, 0, 0, 0, 0, /* f8 .. f15 */     \
489    1, 1, 1 }               /* flags, arg, frame */
490 
491 /* `CALL_USED_REGISTERS'
492 
493    Like `FIXED_REGISTERS' but has 1 for each register that is
494    clobbered (in general) by function calls as well as for fixed
495    registers.  This macro therefore identifies the registers that are
496    not available for general allocation of values that must live
497    across function calls.
498 
499    If a register has 0 in `CALL_USED_REGISTERS', the compiler
500    automatically saves it on function entry and restores it on
501    function exit, if the register is used within the function.  */
502 #define CALL_USED_REGISTERS \
503  { 1, 1, 1, 1, 1, 1, 1, 1, /* r0 .. r7 */      \
504    1, 1, 1, 0, 0, 0, 0, 0, /* r8 .. r15 */     \
505    0, 0, 0, 0, 1, 1, 0, 1, /* r16 .. r23 */    \
506    1, 1, 1, 1, 1, 1, 1, 1, /* r24 .. r31 */    \
507    1, 1,                   /* mdb, mdc */      \
508    1, 1, 1, 1, 1, 1, 1, 1, /* f0 .. f7 */      \
509    1, 0, 0, 0, 0, 0, 0, 0, /* f8 .. f15 */     \
510    1, 1, 1 }               /* flags, arg, frame */
511 
512 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
513    the entire set of `FIXED_REGISTERS' be included.
514    (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
515    This macro is optional.  If not specified, it defaults to the value
516    of `CALL_USED_REGISTERS'.  */
517 #define CALL_REALLY_USED_REGISTERS  \
518  { 0, 1, 1, 1, 1, 1, 1, 1, /* r0 .. r7 */      \
519    1, 1, 1, 0, 0, 0, 0, 0, /* r8 .. r15 */     \
520    0, 0, 0, 0, 1, 0, 0, 0, /* r16 .. r23 */    \
521    1, 1, 1, 1, 1, 0, 0, 1, /* r24 .. r31 */    \
522    1, 1,                   /* mdb, mdc */      \
523    1, 1, 1, 1, 1, 1, 1, 1, /* f0 .. f7 */      \
524    1, 0, 0, 0, 0, 0, 0, 0, /* f8 .. f15 */     \
525    1, 0, 0 }               /* flags, arg, frame */
526 
527 /* `REG_ALLOC_ORDER'
528 
529    If defined, an initializer for a vector of integers, containing the
530    numbers of hard registers in the order in which GCC should prefer
531    to use them (from most preferred to least).
532 
533    If this macro is not defined, registers are used lowest numbered
534    first (all else being equal).  */
535 #define REG_ALLOC_ORDER \
536  { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1,          /* r10 .. r1 */   \
537    11, 12, 13, 14, 15, 16, 17, 18, 19, 20, /* r11 .. r20 */  \
538    22,                                     /* fp */          \
539    24, 25, 26, 27, 28,                     /* r24 .. r28 */  \
540    31,                                     /* r31 */         \
541    32, 33,                                 /* mdb, mdc */    \
542    42, 41, 40, 39, 38, 37, 36, 35,         /* f8 .. f1 */    \
543    43, 44, 45, 46, 47, 48, 49,             /* f9 .. f15 */   \
544    21, 23,                                 /* lr, sp */      \
545    29, 30,                                 /* r29, r30 */    \
546    50, 51, 52,                             /* flags, arg, frame */ \
547    0, 34 }                                 /* r0, f0 */
548 
549 /* `HARD_REGNO_RENAME_OK (OLD_REG, NEW_REG)'
550 
551    A C expression which is nonzero if hard register NEW_REG can be
552    considered for use as a rename register for hard register OLD_REG. */
553 #define HARD_REGNO_RENAME_OK(OLD_REG, NEW_REG) \
554   visium_hard_regno_rename_ok (OLD_REG, NEW_REG)
555 
556 /* Register Classes
557 
558    On many machines, the numbered registers are not all equivalent.
559    For example, certain registers may not be allowed for indexed
560    addressing; certain registers may not be allowed in some
561    instructions.  These machine restrictions are described to the
562    compiler using "register classes".
563 
564    `enum reg_class'
565 
566    An enumeral type that must be defined with all the register class
567    names as enumeral values.  `NO_REGS' must be first.  `ALL_REGS'
568    must be the last register class, followed by one more enumeral
569    value, `LIM_REG_CLASSES', which is not a register class but rather
570    tells how many classes there are.
571 
572    Each register class has a number, which is the value of casting the
573    class name to type `int'.  The number serves as an index in many of
574    the tables described below. */
575 
576 enum reg_class
577 {
578   NO_REGS,
579   MDB,
580   MDC,
581   FP_REGS,
582   FLAGS,
583   R1,
584   R2,
585   R3,
586   SIBCALL_REGS,
587   LOW_REGS,
588   GENERAL_REGS,
589   ALL_REGS,
590   LIM_REG_CLASSES
591 };
592 
593 /* `N_REG_CLASSES'
594 
595    The number of distinct register classes, defined as follows.  */
596 #define N_REG_CLASSES (int) LIM_REG_CLASSES
597 
598 /* `REG_CLASS_NAMES'
599 
600    An initializer containing the names of the register classes as C
601    string constants.  These names are used in writing some of the
602    debugging dumps. */
603 #define REG_CLASS_NAMES \
604  {"NO_REGS", "MDB", "MDC", "FP_REGS", "FLAGS", "R1", "R2", "R3", \
605   "SIBCALL_REGS", "LOW_REGS", "GENERAL_REGS", "ALL_REGS"}
606 
607 /* `REG_CLASS_CONTENTS'
608 
609    An initializer containing the contents of the register classes, as
610    integers which are bit masks.  The Nth integer specifies the
611    contents of class N.  The way the integer MASK is interpreted is
612    that register R is in the class if `MASK & (1 << R)' is 1.
613 
614    When the machine has more than 32 registers, an integer does not
615    suffice.  Then the integers are replaced by sub-initializers,
616    braced groupings containing several integers.  Each sub-initializer
617    must be suitable as an initializer for the type `HARD_REG_SET'
618    which is defined in `hard-reg-set.h'. */
619 #define REG_CLASS_CONTENTS {                     \
620     {0x00000000, 0x00000000}, /* NO_REGS */      \
621     {0x00000000, 0x00000001}, /* MDB */          \
622     {0x00000000, 0x00000002}, /* MDC */          \
623     {0x00000000, 0x0003fffc}, /* FP_REGS */      \
624     {0x00000000, 0x00040000}, /* FLAGS */        \
625     {0x00000002, 0x00000000}, /* R1 */           \
626     {0x00000004, 0x00000000}, /* R2 */           \
627     {0x00000008, 0x00000000}, /* R3 */           \
628     {0x000005ff, 0x00000000}, /* SIBCALL_REGS */ \
629     {0x1fffffff, 0x00000000}, /* LOW_REGS */     \
630     {0xffffffff, 0x00180000}, /* GENERAL_REGS */ \
631     {0xffffffff, 0x001fffff}} /* ALL_REGS */
632 
633 /* `REGNO_REG_CLASS (REGNO)'
634 
635    A C expression whose value is a register class containing hard
636    register REGNO.  In general there is more than one such class;
637    choose a class which is "minimal", meaning that no smaller class
638    also contains the register. */
639 #define REGNO_REG_CLASS(REGNO)                    \
640   ((REGNO) == MDB_REGNUM ? MDB :                  \
641    (REGNO) == MDC_REGNUM ? MDC :                  \
642    FP_REGISTER_P (REGNO) ? FP_REGS :              \
643    (REGNO) == FLAGS_REGNUM ? FLAGS :              \
644    (REGNO) == 1 ? R1 :                            \
645    (REGNO) == 2 ? R2 :                            \
646    (REGNO) == 3 ? R3 :                            \
647    (REGNO) <= 8 || (REGNO) == 10 ? SIBCALL_REGS : \
648    (REGNO) <= 28 ? LOW_REGS :                     \
649    GENERAL_REGS)
650 
651 /* `BASE_REG_CLASS'
652 
653    A macro whose definition is the name of the class to which a valid
654    base register must belong.  A base register is one used in an
655    address which is the register value plus a displacement. */
656 #define BASE_REG_CLASS GENERAL_REGS
657 
658 #define BASE_REGISTER_P(REGNO)        \
659   (GP_REGISTER_P (REGNO)              \
660    || (REGNO) == ARG_POINTER_REGNUM   \
661    || (REGNO) == FRAME_POINTER_REGNUM)
662 
663 /* `INDEX_REG_CLASS'
664 
665    A macro whose definition is the name of the class to which a valid
666    index register must belong.  An index register is one used in an
667    address where its value is either multiplied by a scale factor or
668    added to another register (as well as added to a displacement). */
669 #define INDEX_REG_CLASS NO_REGS
670 
671 /* `REGNO_OK_FOR_BASE_P (NUM)'
672 
673    A C expression which is nonzero if register number NUM is suitable
674    for use as a base register in operand addresses.  It may be either
675    a suitable hard register or a pseudo register that has been
676    allocated such a hard register. */
677 #define REGNO_OK_FOR_BASE_P(REGNO) \
678   (BASE_REGISTER_P (REGNO) || BASE_REGISTER_P ((unsigned)reg_renumber[REGNO]))
679 
680 /* `REGNO_OK_FOR_INDEX_P (NUM)'
681 
682    A C expression which is nonzero if register number NUM is suitable
683    for use as an index register in operand addresses.  It may be
684    either a suitable hard register or a pseudo register that has been
685    allocated such a hard register.
686 
687    The difference between an index register and a base register is
688    that the index register may be scaled.  If an address involves the
689    sum of two registers, neither one of them scaled, then either one
690    may be labeled the "base" and the other the "index"; but whichever
691    labeling is used must fit the machine's constraints of which
692    registers may serve in each capacity.  The compiler will try both
693    labelings, looking for one that is valid, and will reload one or
694    both registers only if neither labeling works. */
695 #define REGNO_OK_FOR_INDEX_P(REGNO) 0
696 
697 /* `PREFERRED_RELOAD_CLASS (X, CLASS)'
698 
699    A C expression that places additional restrictions on the register
700    class to use when it is necessary to copy value X into a register
701    in class CLASS.  The value is a register class; perhaps CLASS, or
702    perhaps another, smaller class.
703 
704    Sometimes returning a more restrictive class makes better code.
705    For example, on the 68000, when X is an integer constant that is in
706    range for a `moveq' instruction, the value of this macro is always
707    `DATA_REGS' as long as CLASS includes the data registers.
708    Requiring a data register guarantees that a `moveq' will be used.
709 
710    If X is a `const_double', by returning `NO_REGS' you can force X
711    into a memory constant.  This is useful on certain machines where
712    immediate floating values cannot be loaded into certain kinds of
713    registers. */
714 #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
715 
716 #define CLASS_MAX_NREGS(CLASS, MODE)    \
717   ((CLASS) == MDB ?                     \
718   ((GET_MODE_SIZE (MODE) + 2 * UNITS_PER_WORD - 1) / (2 * UNITS_PER_WORD)) \
719   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
720 
721 /* Stack Layout and Calling Conventions
722 
723    Basic Stack Layout
724 
725    `STACK_GROWS_DOWNWARD'
726    Define this macro if pushing a word onto the stack moves the stack
727    pointer to a smaller address.  */
728 #define STACK_GROWS_DOWNWARD 1
729 
730 /* `FIRST_PARM_OFFSET (FUNDECL)'
731 
732    Offset from the argument pointer register to the first argument's
733    address.  On some machines it may depend on the data type of the
734    function.
735 
736    If `ARGS_GROW_DOWNWARD', this is the offset to the location above
737    the first argument's address. */
738 #define FIRST_PARM_OFFSET(FNDECL) 0
739 
740 /* `DYNAMIC_CHAIN_ADDRESS (FRAMEADDR)'
741 
742    A C expression whose value is RTL representing the address in a
743    stack frame where the pointer to the caller's frame is stored.
744    Assume that FRAMEADDR is an RTL expression for the address of the
745    stack frame itself.
746 
747    If you don't define this macro, the default is to return the value
748    of FRAMEADDR--that is, the stack frame address is also the address
749    of the stack word that points to the previous frame. */
750 #define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) \
751   visium_dynamic_chain_address (FRAMEADDR)
752 
753 /* `RETURN_ADDR_RTX (COUNT, FRAMEADDR)'
754 
755    A C expression whose value is RTL representing the value of the
756    return address for the frame COUNT steps up from the current frame,
757    after the prologue.  FRAMEADDR is the frame pointer of the COUNT
758    frame, or the frame pointer of the COUNT - 1 frame if
759    `RETURN_ADDR_IN_PREVIOUS_FRAME' is defined.
760 
761    The value of the expression must always be the correct address when
762    COUNT is zero, but may be `NULL_RTX' if there is not way to
763    determine the return address of other frames.  */
764 #define RETURN_ADDR_RTX(COUNT,FRAMEADDR) \
765   visium_return_addr_rtx (COUNT, FRAMEADDR)
766 
767 /* Exception Handling
768 
769    `EH_RETURN_DATA_REGNO'
770 
771    A C expression whose value is the Nth register number used for data
772    by exception handlers or INVALID_REGNUM if fewer than N registers
773    are available.
774 
775    The exception handling library routines communicate with the
776    exception handlers via a set of agreed upon registers. */
777 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 11 : INVALID_REGNUM)
778 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, 8)
779 #define EH_RETURN_HANDLER_RTX visium_eh_return_handler_rtx ()
780 
781 /* Registers That Address the Stack Frame
782 
783    This discusses registers that address the stack frame.
784 
785    `STACK_POINTER_REGNUM'
786 
787    The register number of the stack pointer register, which must also
788    be a fixed register according to `FIXED_REGISTERS'.  On most
789    machines, the hardware determines which register this is. */
790 #define STACK_POINTER_REGNUM 23
791 
792 /* `FRAME_POINTER_REGNUM'
793 
794    The register number of the frame pointer register, which is used to
795    access automatic variables in the stack frame.  On some machines,
796    the hardware determines which register this is.  On other machines,
797    you can choose any register you wish for this purpose. */
798 #define FRAME_POINTER_REGNUM 52
799 
800 /* `HARD_FRAME_POINTER_REGNUM'
801 
802    On some machines the offset between the frame pointer and starting
803    offset of the automatic variables is not known until after register
804    allocation has been done (for example, because the saved registers
805    are between these two locations).  On those machines, define
806    `FRAME_POINTER_REGNUM' the number of a special, fixed register to
807    be used internally until the offset is known, and define
808    `HARD_FRAME_POINTER_REGNUM' to be the actual hard register number
809    used for the frame pointer.  */
810 #define HARD_FRAME_POINTER_REGNUM 22
811 
812 /* `ARG_POINTER_REGNUM'
813 
814    The register number of the arg pointer register, which is used to
815    access the function's argument list.  On some machines, this is the
816    same as the frame pointer register.  On some machines, the hardware
817    determines which register this is.  On other machines, you can
818    choose any register you wish for this purpose.  If this is not the
819    same register as the frame pointer register, then you must mark it
820    as a fixed register according to `FIXED_REGISTERS', or arrange to
821    be able to eliminate it (*note Elimination::.).  */
822 #define ARG_POINTER_REGNUM 51
823 
824 /* `STATIC_CHAIN_REGNUM'
825    `STATIC_CHAIN_INCOMING_REGNUM'
826 
827    Register numbers used for passing a function's static chain
828    pointer.  If register windows are used, the register number as seen
829    by the called function is `STATIC_CHAIN_INCOMING_REGNUM', while the
830    register number as seen by the calling function is
831    `STATIC_CHAIN_REGNUM'.  If these registers are the same,
832    `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
833 
834    The static chain register need not be a fixed register.
835 
836    If the static chain is passed in memory, these macros should not be
837    defined; instead, the next two macros should be defined. */
838 #define STATIC_CHAIN_REGNUM 20
839 
840 /* `ELIMINABLE_REGS'
841 
842    If defined, this macro specifies a table of register pairs used to
843    eliminate unneeded registers that point into the stack frame.  If
844    it is not defined, the only elimination attempted by the compiler
845    is to replace references to the frame pointer with references to
846    the stack pointer.
847 
848    The definition of this macro is a list of structure
849    initializations, each of which specifies an original and
850    replacement register.
851 
852    On some machines, the position of the argument pointer is not known
853    until the compilation is completed.  In such a case, a separate
854    hard register must be used for the argument pointer.  This register
855    can be eliminated by replacing it with either the frame pointer or
856    the argument pointer, depending on whether or not the frame pointer
857    has been eliminated.
858 
859    Note that the elimination of the argument pointer with the stack
860    pointer is specified first since that is the preferred elimination.  */
861 #define ELIMINABLE_REGS				     \
862 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM},	     \
863  { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM},   \
864  { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM},	     \
865  { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
866 
867 /* `INITIAL_ELIMINATION_OFFSET (FROM-REG, TO-REG, OFFSET-VAR)'
868 
869    This macro returns the initial difference between the specified pair
870    of registers.  */
871 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
872   (OFFSET = visium_initial_elimination_offset (FROM, TO))
873 
874 /* Passing Function Arguments on the Stack
875 
876    The macros in this section control how arguments are passed on the
877    stack.  See the following section for other macros that control
878    passing certain arguments in registers.
879 
880    Passing Arguments in Registers
881 
882    This section describes the macros which let you control how various
883    types of arguments are passed in registers or how they are arranged
884    in the stack.
885 
886    Define the general purpose, and floating point registers used for
887    passing arguments */
888 #define MAX_ARGS_IN_GP_REGISTERS 8
889 #define GP_ARG_FIRST 1
890 #define GP_ARG_LAST (GP_ARG_FIRST + MAX_ARGS_IN_GP_REGISTERS - 1)
891 #define MAX_ARGS_IN_FP_REGISTERS 8
892 #define FP_ARG_FIRST (FP_FIRST_REGNUM + 1)
893 #define FP_ARG_LAST (FP_ARG_FIRST + MAX_ARGS_IN_FP_REGISTERS - 1)
894 
895 /* Define a data type for recording info about an argument list during the
896 processing of that argument list. */
897 
898 struct visium_args
899 {
900   /* The count of general registers used */
901   int grcount;
902   /* The count of floating registers used */
903   int frcount;
904   /* The number of stack words used by named arguments */
905   int stack_words;
906 };
907 
908 /* `CUMULATIVE_ARGS'
909 
910    A C type for declaring a variable that is used as the first
911    argument of `FUNCTION_ARG' and other related values.  For some
912    target machines, the type `int' suffices and can hold the number of
913    bytes of argument so far.
914 
915    There is no need to record in `CUMULATIVE_ARGS' anything about the
916    arguments that have been passed on the stack.  The compiler has
917    other variables to keep track of that.  For target machines on
918    which all arguments are passed on the stack, there is no need to
919    store anything in `CUMULATIVE_ARGS'; however, the data structure
920    must exist and should not be empty, so use `int'. */
921 #define CUMULATIVE_ARGS struct visium_args
922 
923 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,FNDECL,N_NAMED_ARGS) \
924   do {                        \
925        (CUM).grcount = 0;     \
926        (CUM).frcount = 0;     \
927        (CUM).stack_words = 0; \
928      } while (0)
929 
930 /* `FUNCTION_ARG_REGNO_P (REGNO)'
931 
932    A C expression that is nonzero if REGNO is the number of a hard
933    register in which function arguments are sometimes passed.  This
934    does *not* include implicit arguments such as the static chain and
935    the structure-value address.  On many machines, no registers can be
936    used for this purpose since all function arguments are pushed on
937    the stack. */
938 #define FUNCTION_ARG_REGNO_P(N)               	\
939   ((GP_ARG_FIRST <= (N) && (N) <= GP_ARG_LAST)	\
940    || (TARGET_FPU && FP_ARG_FIRST <= (N) && (N) <= FP_ARG_LAST))
941 
942 /* `FUNCTION_VALUE_REGNO_P (REGNO)'
943 
944    A C expression that is nonzero if REGNO is the number of a hard
945    register in which the values of called function may come back.
946 
947    A register whose use for returning values is limited to serving as
948    the second of a pair (for a value of type `double', say) need not
949    be recognized by this macro. If the machine has register windows,
950    so that the caller and the called function use different registers
951    for the return value, this macro should recognize only the caller's
952    register numbers. */
953 #define FUNCTION_VALUE_REGNO_P(N) \
954   ((N) == RETURN_REGNUM || (TARGET_FPU && (N) == FP_RETURN_REGNUM))
955 
956 /* How Large Values Are Returned
957 
958    When a function value's mode is `BLKmode' (and in some other
959    cases), the value is not returned according to `FUNCTION_VALUE'.
960    Instead, the caller passes the address of a block of memory in
961    which the value should be stored.  This address is called the
962    "structure value address".
963 
964    This section describes how to control returning structure values in
965    memory.
966 
967    `DEFAULT_PCC_STRUCT_RETURN'
968 
969    Define this macro to be 1 if all structure and union return values
970    must be in memory.  Since this results in slower code, this should
971    be defined only if needed for compatibility with other compilers or
972    with an ABI.  If you define this macro to be 0, then the
973    conventions used for structure and union return values are decided
974    by the `RETURN_IN_MEMORY' macro.
975 
976    If not defined, this defaults to the value 1. */
977 #define DEFAULT_PCC_STRUCT_RETURN 0
978 
979 /* Caller-Saves Register Allocation
980 
981    If you enable it, GNU CC can save registers around function calls.
982    This makes it possible to use call-clobbered registers to hold
983    variables that must live across calls.
984 
985    Function Entry and Exit
986 
987    This section describes the macros that output function entry
988    ("prologue") and exit ("epilogue") code.
989 
990    `EXIT_IGNORE_STACK'
991 
992    Define this macro as a C expression that is nonzero if the return
993    instruction or the function epilogue ignores the value of the stack
994    pointer; in other words, if it is safe to delete an instruction to
995    adjust the stack pointer before a return from the function.
996 
997    Note that this macro's value is relevant only for functions for
998    which frame pointers are maintained.  It is never safe to delete a
999    final stack adjustment in a function that has no frame pointer, and
1000    the compiler knows this regardless of `EXIT_IGNORE_STACK'. */
1001 #define EXIT_IGNORE_STACK 1
1002 
1003 /* `EPILOGUE_USES (REGNO)'
1004 
1005    Define this macro as a C expression that is nonzero for registers
1006    are used by the epilogue or the `return' pattern.  The stack and
1007    frame pointer registers are already be assumed to be used as
1008    needed. */
1009 #define EPILOGUE_USES(REGNO) visium_epilogue_uses (REGNO)
1010 
1011 /* Generating Code for Profiling
1012 
1013    These macros will help you generate code for profiling. */
1014 
1015 #define PROFILE_HOOK(LABEL) visium_profile_hook ()
1016 #define FUNCTION_PROFILER(FILE, LABELNO) do {} while (0)
1017 #define NO_PROFILE_COUNTERS 1
1018 
1019 /* Trampolines for Nested Functions
1020 
1021    A trampoline is a small piece of code that is created at run time
1022    when the address of a nested function is taken. It normally resides
1023    on the stack, in the stack frame of the containing function. These
1024    macros tell GCC how to generate code to allocate and initialize a
1025    trampoline.
1026 
1027    The instructions in the trampoline must do two things: load a
1028    constant address into the static chain register, and jump to the
1029    real address of the nested function. On CISC machines such as the
1030    m68k, this requires two instructions, a move immediate and a
1031    jump. Then the two addresses exist in the trampoline as word-long
1032    immediate operands. On RISC machines, it is often necessary to load
1033    each address into a register in two parts. Then pieces of each
1034    address form separate immediate operands.
1035 
1036    The code generated to initialize the trampoline must store the
1037    variable parts--the static chain value and the function
1038    address--into the immediate operands of the instructions. On a CISC
1039    machine, this is simply a matter of copying each address to a
1040    memory reference at the proper offset from the start of the
1041    trampoline. On a RISC machine, it may be necessary to take out
1042    pieces of the address and store them separately.
1043 
1044    On the Visium, the trampoline is
1045 
1046 	moviu	r9,%u FUNCTION
1047 	movil	r9,%l FUNCTION
1048 	[nop]
1049 	moviu	r20,%u STATIC
1050 	bra	tr,r9,r0
1051 	 movil	r20,%l STATIC
1052 
1053     A difficulty is setting the correct instruction parity at run time.
1054 
1055 
1056     TRAMPOLINE_SIZE
1057     A C expression for the size in bytes of the trampoline, as an integer. */
1058 #define TRAMPOLINE_SIZE (visium_cpu == PROCESSOR_GR6 ? 24 : 20)
1059 
1060 /* Alignment required for trampolines, in bits.  */
1061 #define TRAMPOLINE_ALIGNMENT (visium_cpu == PROCESSOR_GR6 ? 64 : 32)
1062 
1063 /* Implicit calls to library routines
1064 
1065    Avoid calling library routines (sqrtf) just to set `errno' to EDOM */
1066 #define TARGET_EDOM 33
1067 
1068 /* Addressing Modes
1069 
1070    `MAX_REGS_PER_ADDRESS'
1071 
1072    A number, the maximum number of registers that can appear in a
1073    valid memory address.  Note that it is up to you to specify a value
1074    equal to the maximum number that `TARGET_LEGITIMATE_ADDRESS_P' would
1075    ever accept.  */
1076 #define MAX_REGS_PER_ADDRESS 1
1077 
1078 /* `LEGITIMIZE_RELOAD_ADDRESS (X, MODE, OPNUM, TYPE, IND_LEVELS, WIN)'
1079 
1080    A C compound statement that attempts to replace X, which is an
1081    address that needs reloading, with a valid memory address for an
1082    operand of mode MODE.  WIN will be a C statement label elsewhere
1083    in the code.  It is not necessary to define this macro, but it
1084    might be useful for performance reasons.  */
1085 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) 	\
1086 do									\
1087 {									\
1088   rtx new_x = visium_legitimize_reload_address ((AD), (MODE), (OPNUM),	\
1089 					(int) (TYPE), (IND));		\
1090   if (new_x)								\
1091     {									\
1092       (AD) = new_x;							\
1093       goto WIN;								\
1094     }									\
1095 } while (0)
1096 
1097 /* Given a comparison code (EQ, NE, etc.) and the operands of a COMPARE,
1098    return the mode to be used for the comparison.  */
1099 #define SELECT_CC_MODE(OP,X,Y) visium_select_cc_mode ((OP), (X), (Y))
1100 
1101 /* Return nonzero if MODE implies a floating point inequality can be
1102    reversed.  For Visium this is always true because we have a full
1103    compliment of ordered and unordered comparisons, but until generic
1104    code knows how to reverse it correctly we keep the old definition.  */
1105 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode && (MODE) != CCFPmode)
1106 
1107 /* `BRANCH_COST'
1108 
1109    A C expression for the cost of a branch instruction.  A value of 1
1110    is the default; other values are interpreted relative to that.  */
1111 #define BRANCH_COST(A,B)  10
1112 
1113 /* Override BRANCH_COST heuristics for complex logical ops.  */
1114 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1115 
1116 /* `SLOW_BYTE_ACCESS'
1117 
1118    Define this macro as a C expression which is nonzero if accessing
1119    less than a word of memory (i.e. a `char' or a `short') is no
1120    faster than accessing a word of memory, i.e., if such access
1121    require more than one instruction or if there is no difference in
1122    cost between byte and (aligned) word loads.
1123 
1124    When this macro is not defined, the compiler will access a field by
1125    finding the smallest containing object; when it is defined, a
1126    fullword load will be used if alignment permits.  Unless bytes
1127    accesses are faster than word accesses, using word accesses is
1128    preferable since it may eliminate subsequent memory access if
1129    subsequent accesses occur to other fields in the same word of the
1130    structure, but to different bytes. */
1131 #define SLOW_BYTE_ACCESS 0
1132 
1133 /* `MOVE_RATIO (SPEED)`
1134 
1135    The threshold of number of scalar memory-to-memory move insns,
1136    _below_ which a sequence of insns should be generated instead of a
1137    string move insn or a library call.  Increasing the value will
1138    always make code faster, but eventually incurs high cost in
1139    increased code size.
1140 
1141    Since we have a movmemsi pattern, the default MOVE_RATIO is 2, which
1142    is too low given that movmemsi will invoke a libcall.  */
1143 #define MOVE_RATIO(speed) ((speed) ? 9 : 3)
1144 
1145 /* `CLEAR_RATIO (SPEED)`
1146 
1147    The threshold of number of scalar move insns, _below_ which a
1148    sequence of insns should be generated to clear memory instead of a
1149    string clear insn or a library call.  Increasing the value will
1150    always make code faster, but eventually incurs high cost in
1151    increased code size.
1152 
1153    Since we have a setmemsi pattern, the default CLEAR_RATIO is 2, which
1154    is too low given that setmemsi will invoke a libcall.  */
1155 #define CLEAR_RATIO(speed) ((speed) ? 13 : 5)
1156 
1157 /* `MOVE_MAX'
1158 
1159    The maximum number of bytes that a single instruction can move
1160    quickly between memory and registers or between two memory
1161    locations. */
1162 #define MOVE_MAX 4
1163 
1164 /* `MAX_MOVE_MAX'
1165 
1166    The maximum number of bytes that a single instruction can move
1167    quickly between memory and registers or between two memory
1168    locations.  If this is undefined, the default is `MOVE_MAX'.
1169    Otherwise, it is the constant value that is the largest value that
1170    `MOVE_MAX' can have at run-time. */
1171 #define MAX_MOVE_MAX 4
1172 
1173 /* `SHIFT_COUNT_TRUNCATED'
1174 
1175    A C expression that is nonzero if on this machine the number of
1176    bits actually used for the count of a shift operation is equal to
1177    the number of bits needed to represent the size of the object being
1178    shifted.  When this macro is non-zero, the compiler will assume
1179    that it is safe to omit a sign-extend, zero-extend, and certain
1180    bitwise `and' instructions that truncates the count of a shift
1181    operation.  On machines that have instructions that act on
1182    bitfields at variable positions, which may include `bit test'
1183    instructions, a nonzero `SHIFT_COUNT_TRUNCATED' also enables
1184    deletion of truncations of the values that serve as arguments to
1185    bitfield instructions. */
1186 #define SHIFT_COUNT_TRUNCATED 0
1187 
1188 /* `STORE_FLAG_VALUE'
1189 
1190    A C expression describing the value returned by a comparison
1191    operator with an integral mode and stored by a store-flag
1192    instruction (`sCOND') when the condition is true.  This description
1193    must apply to *all* the `sCOND' patterns and all the comparison
1194    operators whose results have a `MODE_INT' mode. */
1195 #define STORE_FLAG_VALUE 1
1196 
1197 /* `Pmode'
1198 
1199    An alias for the machine mode for pointers.  On most machines,
1200    define this to be the integer mode corresponding to the width of a
1201    hardware pointer; `SImode' on 32-bit machine or `DImode' on 64-bit
1202    machines.  On some machines you must define this to be one of the
1203    partial integer modes, such as `PSImode'.
1204 
1205    The width of `Pmode' must be at least as large as the value of
1206    `POINTER_SIZE'.  If it is not equal, you must define the macro
1207    `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to
1208    `Pmode'. */
1209 #define Pmode SImode
1210 
1211 /* `FUNCTION_MODE'
1212 
1213    An alias for the machine mode used for memory references to
1214    functions being called, in `call' RTL expressions.  On most
1215    machines this should be `QImode'. */
1216 #define FUNCTION_MODE SImode
1217 
1218 /* Dividing the Output into Sections (Texts, Data, ...)
1219 
1220    An object file is divided into sections containing different types
1221    of data.  In the most common case, there are three sections: the
1222    "text section", which holds instructions and read-only data; the
1223    "data section", which holds initialized writable data; and the "bss
1224    section", which holds uninitialized data.  Some systems have other
1225    kinds of sections.
1226 
1227    `TEXT_SECTION_ASM_OP'
1228 
1229    A C expression whose value is a string containing the assembler
1230    operation that should precede instructions and read-only data.
1231    Normally `".text"' is right. */
1232 #define TEXT_SECTION_ASM_OP "\t.text"
1233 
1234 /* `DATA_SECTION_ASM_OP'
1235 
1236    A C expression whose value is a string containing the assembler
1237    operation to identify the following data as writable initialized
1238    data.  Normally `".data"' is right. */
1239 #define DATA_SECTION_ASM_OP "\t.data"
1240 
1241 /* `BSS_SECTION_ASM_OP'
1242 
1243    If defined, a C expression whose value is a string containing the
1244    assembler operation to identify the following data as uninitialized
1245    global data.  If not defined, and neither `ASM_OUTPUT_BSS' nor
1246    `ASM_OUTPUT_ALIGNED_BSS' are defined, uninitialized global data
1247    will be output in the data section if `-fno-common' is passed,
1248    otherwise `ASM_OUTPUT_COMMON' will be used.
1249 
1250    `EXTRA_SECTIONS'
1251 
1252    A list of names for sections other than the standard two, which are
1253    `in_text' and `in_data'.  You need not define this macro on a
1254    system with no other sections (that GCC needs to use).
1255 
1256    `EXTRA_SECTION_FUNCTIONS'
1257 
1258    One or more functions to be defined in `varasm.c'.  These functions
1259    should do jobs analogous to those of `text_section' and
1260    `data_section', for your additional sections.  Do not define this
1261    macro if you do not define `EXTRA_SECTIONS'.
1262 
1263    `JUMP_TABLES_IN_TEXT_SECTION' Define this macro if jump tables (for
1264    `tablejump' insns) should be output in the text section, along with
1265    the assembler instructions.  Otherwise, the readonly data section
1266    is used.
1267 
1268    This macro is irrelevant if there is no separate readonly data
1269    section. */
1270 #undef JUMP_TABLES_IN_TEXT_SECTION
1271 
1272 
1273 /* The Overall Framework of an Assembler File
1274 
1275    This describes the overall framework of an assembler file.
1276 
1277    `ASM_COMMENT_START'
1278 
1279    A C string constant describing how to begin a comment in the target
1280    assembler language.  The compiler assumes that the comment will end
1281    at the end of the line. */
1282 #define ASM_COMMENT_START ";"
1283 
1284 /* `ASM_APP_ON'
1285 
1286    A C string constant for text to be output before each `asm'
1287    statement or group of consecutive ones.  Normally this is `"#APP"',
1288    which is a comment that has no effect on most assemblers but tells
1289    the GNU assembler that it must check the lines that follow for all
1290    valid assembler constructs. */
1291 #define ASM_APP_ON "#APP\n"
1292 
1293 /* `ASM_APP_OFF'
1294 
1295    A C string constant for text to be output after each `asm'
1296    statement or group of consecutive ones.  Normally this is
1297    `"#NO_APP"', which tells the GNU assembler to resume making the
1298    time-saving assumptions that are valid for ordinary compiler
1299    output. */
1300 #define ASM_APP_OFF "#NO_APP\n"
1301 
1302 /* Output of Data
1303 
1304    This describes data output.
1305 
1306    Output and Generation of Labels
1307 
1308    This is about outputting labels.
1309 
1310    `ASM_OUTPUT_LABEL (STREAM, NAME)'
1311 
1312    A C statement (sans semicolon) to output to the stdio stream STREAM
1313    the assembler definition of a label named NAME.  Use the expression
1314    `assemble_name (STREAM, NAME)' to output the name itself; before
1315    and after that, output the additional assembler syntax for defining
1316    the name, and a newline. */
1317 #define ASM_OUTPUT_LABEL(STREAM,NAME)     \
1318   do { assemble_name (STREAM, NAME); fputs (":\n", STREAM); } while (0)
1319 
1320 /* Globalizing directive for a label */
1321 #define GLOBAL_ASM_OP "\t.global "
1322 
1323 /* `ASM_OUTPUT_LABELREF (STREAM, NAME)'
1324 
1325    A C statement (sans semicolon) to output to the stdio stream STREAM
1326    a reference in assembler syntax to a label named NAME.  This should
1327    add `_' to the front of the name, if that is customary on your
1328    operating system, as it is in most Berkeley Unix systems.  This
1329    macro is used in `assemble_name'. */
1330 #define ASM_OUTPUT_LABELREF(STREAM,NAME)  \
1331   asm_fprintf (STREAM, "%U%s", NAME)
1332 
1333 /* Output of Assembler Instructions
1334 
1335    This describes assembler instruction output.
1336 
1337    `REGISTER_NAMES'
1338 
1339    A C initializer containing the assembler's names for the machine
1340    registers, each one as a C string constant.  This is what
1341    translates register numbers in the compiler into assembler
1342    language. */
1343 #define REGISTER_NAMES \
1344  {"r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",  \
1345   "r8",  "r9",  "r10", "r11", "r12", "r13", "r14", "r15", \
1346   "r16", "r17", "r18", "r19", "r20", "r21", "fp",  "sp",  \
1347   "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
1348   "mdb", "mdc",                                           \
1349   "f0",  "f1",  "f2",  "f3",  "f4",  "f5",  "f6",  "f7",  \
1350   "f8",  "f9",  "f10", "f11", "f12", "f13", "f14", "f15", \
1351   "flags","argp","sfp" }
1352 
1353 /* `ADDITIONAL_REGISTER_NAMES`
1354 
1355    If defined, a C initializer for an array of structures containing
1356    a name and a register number.  This macro defines additional names
1357    for hard registers, thus allowing the `asm' option in declarations
1358    to refer to registers using alternate names.  */
1359 #define ADDITIONAL_REGISTER_NAMES \
1360   {{"r22", HARD_FRAME_POINTER_REGNUM}, {"r23", STACK_POINTER_REGNUM}}
1361 
1362 /* `REGISTER_PREFIX'
1363    `LOCAL_LABEL_PREFIX'
1364    `USER_LABEL_PREFIX'
1365    `IMMEDIATE_PREFIX'
1366 
1367    If defined, C string expressions to be used for the `%R', `%L',
1368    `%U', and `%I' options of `asm_fprintf' (see `final.c').  These are
1369    useful when a single `md' file must support multiple assembler
1370    formats.  In that case, the various `tm.h' files can define these
1371    macros differently. */
1372 #define REGISTER_PREFIX ""
1373 #define LOCAL_LABEL_PREFIX "."
1374 #define IMMEDIATE_PREFIX "#"
1375 
1376 /* `ASM_OUTPUT_REG_PUSH (STREAM, REGNO)'
1377 
1378    A C expression to output to STREAM some assembler code which will
1379    push hard register number REGNO onto the stack.  The code need not
1380    be optimal, since this macro is used only when profiling. */
1381 #define ASM_OUTPUT_REG_PUSH(STREAM,REGNO)  \
1382   asm_fprintf (STREAM, "\tsubi    sp,4\n\twrite.l (sp),%s\n", \
1383                reg_names[REGNO])
1384 
1385 /* `ASM_OUTPUT_REG_POP (STREAM, REGNO)'
1386 
1387    A C expression to output to STREAM some assembler code which will
1388    pop hard register number REGNO off of the stack.  The code need not
1389    be optimal, since this macro is used only when profiling. */
1390 #define ASM_OUTPUT_REG_POP(STREAM,REGNO)  \
1391   asm_fprintf (STREAM, "\tread.l  %s,(sp)\n\taddi    sp,4\n", \
1392                reg_names[REGNO])
1393 
1394 
1395 /* Output of Dispatch Tables
1396 
1397    This concerns dispatch tables.
1398 
1399    `ASM_OUTPUT_ADDR_DIFF_ELT (STREAM, VALUE, REL)'
1400 
1401    A C statement to output to the stdio stream STREAM an assembler
1402    pseudo-instruction to generate a difference between two labels.
1403    VALUE and REL are the numbers of two internal labels.  The
1404    definitions of these labels are output using
1405    `ASM_OUTPUT_INTERNAL_LABEL', and they must be printed in the same
1406    way here.
1407 
1408    You must provide this macro on machines where the addresses in a
1409    dispatch table are relative to the table's own address.  If
1410    defined, GNU CC will also use this macro on all machines when
1411    producing PIC. */
1412 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM,BODY,VALUE,REL)  		\
1413   switch (GET_MODE (BODY))						\
1414     {									\
1415     case E_SImode:							\
1416       asm_fprintf ((STREAM), "\t.long\t%LL%d-%LL%d\n", (VALUE),(REL));	\
1417       break;								\
1418     case E_HImode:							\
1419       asm_fprintf ((STREAM), "\t.word\t%LL%d-%LL%d\n", (VALUE),(REL));	\
1420       break;								\
1421     case E_QImode:							\
1422       asm_fprintf ((STREAM), "\t.byte\t%LL%d-%LL%d\n", (VALUE),(REL));	\
1423       break;								\
1424     default:								\
1425       break;								\
1426     }
1427 
1428 /* `ASM_OUTPUT_ADDR_VEC_ELT (STREAM, VALUE)'
1429 
1430    This macro should be provided on machines where the addresses in a
1431    dispatch table are absolute.
1432 
1433    The definition should be a C statement to output to the stdio
1434    stream STREAM an assembler pseudo-instruction to generate a
1435    reference to a label.  VALUE is the number of an internal label
1436    whose definition is output using `ASM_OUTPUT_INTERNAL_LABEL'. */
1437 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE)  \
1438   asm_fprintf (STREAM, "\t.long   %LL%d\n", VALUE)
1439 
1440 /* `ASM_OUTPUT_CASE_END (STREAM, NUM, TABLE)'
1441 
1442    Define this if something special must be output at the end of a
1443    jump-table. The definition should be a C statement to be executed
1444    after the assembler code for the table is written. It should write
1445    the appropriate code to stdio stream STREAM. The argument TABLE is
1446    the jump-table insn, and NUM is the label-number of the preceding
1447    label.
1448 
1449    If this macro is not defined, nothing special is output at the end
1450    of a jump table.
1451 
1452    Here we output a word of zero so that jump-tables can be seperated
1453    in reverse assembly. */
1454 #define ASM_OUTPUT_CASE_END(STREAM, NUM, TABLE) \
1455   asm_fprintf (STREAM, "\t.long   0\n")
1456 
1457 /* Support subalignment values.  */
1458 
1459 #define SUBALIGN_LOG 3
1460 
1461 /* Assembler Commands for Alignment
1462 
1463    This describes commands for alignment.
1464 
1465    `ASM_OUTPUT_ALIGN_CODE (STREAM)'
1466 
1467    A C expression to output text to align the location counter in the
1468    way that is desirable at a point in the code that is reached only
1469    by jumping.
1470 
1471    This macro need not be defined if you don't want any special
1472    alignment to be done at such a time.  Most machine descriptions do
1473    not currently define the macro. */
1474 #undef ASM_OUTPUT_ALIGN_CODE
1475 
1476 /* `ASM_OUTPUT_LOOP_ALIGN (STREAM)'
1477 
1478    A C expression to output text to align the location counter in the
1479    way that is desirable at the beginning of a loop.
1480 
1481    This macro need not be defined if you don't want any special
1482    alignment to be done at such a time.  Most machine descriptions do
1483    not currently define the macro. */
1484 #undef ASM_OUTPUT_LOOP_ALIGN
1485 
1486 /* `ASM_OUTPUT_ALIGN (STREAM, POWER)'
1487 
1488    A C statement to output to the stdio stream STREAM an assembler
1489    command to advance the location counter to a multiple of 2 to the
1490    POWER bytes.  POWER will be a C expression of type `int'. */
1491 #define ASM_OUTPUT_ALIGN(STREAM,LOG)      \
1492   if ((LOG) != 0)                       \
1493     fprintf (STREAM, "\t.align  %d\n", (1 << (LOG)))
1494 
1495 /* `ASM_OUTPUT_MAX_SKIP_ALIGN (STREAM, POWER, MAX_SKIP)`
1496 
1497    A C statement to output to the stdio stream STREAM an assembler
1498    command to advance the location counter to a multiple of 2 to the
1499    POWER bytes, but only if MAX_SKIP or fewer bytes are needed to
1500    satisfy the alignment request.  POWER and MAX_SKIP will be a C
1501    expression of type `int'. */
1502 #define ASM_OUTPUT_MAX_SKIP_ALIGN(STREAM,LOG,MAX_SKIP)			\
1503   if ((LOG) != 0) {							\
1504     if ((MAX_SKIP) == 0 || (MAX_SKIP) >= (1 << (LOG)) - 1)		\
1505       fprintf ((STREAM), "\t.p2align %d\n", (LOG));			\
1506     else								\
1507       fprintf ((STREAM), "\t.p2align %d,,%d\n", (LOG), (MAX_SKIP));	\
1508   }
1509 
1510 /* Controlling Debugging Information Format
1511 
1512    This describes how to specify debugging information.
1513 
1514     mda is known to GDB, but not to GCC. */
1515 #define DBX_REGISTER_NUMBER(REGNO) \
1516   ((REGNO) > MDB_REGNUM ? (REGNO) + 1 : (REGNO))
1517 
1518 /* `DEBUGGER_AUTO_OFFSET (X)'
1519 
1520    A C expression that returns the integer offset value for an
1521    automatic variable having address X (an RTL expression).  The
1522    default computation assumes that X is based on the frame-pointer
1523    and gives the offset from the frame-pointer.  This is required for
1524    targets that produce debugging output for DBX and allow the frame-pointer
1525    to be eliminated when the `-g' options is used. */
1526 #define DEBUGGER_AUTO_OFFSET(X) \
1527   (GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0)
1528 
1529 /* Miscellaneous Parameters
1530 
1531    `CASE_VECTOR_MODE'
1532 
1533    An alias for a machine mode name.  This is the machine mode that
1534    elements of a jump-table should have. */
1535 #define CASE_VECTOR_MODE SImode
1536 
1537 /* `CASE_VECTOR_PC_RELATIVE'
1538    Define this macro if jump-tables should contain relative addresses. */
1539 #undef CASE_VECTOR_PC_RELATIVE
1540 
1541 /* This says how to output assembler code to declare an
1542    unitialised external linkage data object. */
1543 #define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED)      \
1544 ( fputs ("\n\t.comm  ", (STREAM)),                        \
1545   assemble_name ((STREAM), (NAME)),                         \
1546   fprintf ((STREAM), "," HOST_WIDE_INT_PRINT_UNSIGNED"\n", ROUNDED))
1547 
1548 /* This says how to output assembler code to declare an
1549    unitialised internal linkage data object. */
1550 #define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED)     \
1551 ( fputs ("\n\t.lcomm ", (STREAM)),                      \
1552   assemble_name ((STREAM), (NAME)),                     \
1553   fprintf ((STREAM), "," HOST_WIDE_INT_PRINT_UNSIGNED"\n", ROUNDED))
1554 
1555 /* Prettify the assembly.  */
1556 extern int visium_indent_opcode;
1557 
1558 #define ASM_OUTPUT_OPCODE(FILE, PTR)	\
1559   do {					\
1560     if (visium_indent_opcode)		\
1561       {					\
1562 	putc (' ', FILE);		\
1563 	visium_indent_opcode = 0;	\
1564       }					\
1565   } while (0)
1566 
1567 /* Configure-time default values for common options.  */
1568 #define OPTION_DEFAULT_SPECS { "cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }
1569 
1570 /* Values of TARGET_CPU_DEFAULT specified via --with-cpu.  */
1571 #define TARGET_CPU_gr5	0
1572 #define TARGET_CPU_gr6	1
1573 
1574 /* Default -mcpu multilib for above values.  */
1575 #if TARGET_CPU_DEFAULT == TARGET_CPU_gr5
1576 #define MULTILIB_DEFAULTS { "mcpu=gr5" }
1577 #elif TARGET_CPU_DEFAULT == TARGET_CPU_gr6
1578 #define MULTILIB_DEFAULTS { "mcpu=gr6" }
1579 #else
1580 #error Unrecognized value in TARGET_CPU_DEFAULT
1581 #endif
1582