xref: /netbsd-src/external/gpl3/gcc.old/dist/libstdc++-v3/include/tr1/hashtable.h (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 // TR1 hashtable.h header -*- C++ -*-
2 
3 // Copyright (C) 2007, 2009, 2010 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file tr1/hashtable.h
26  *  This is an internal header file, included by other library headers.
27  *  You should not attempt to use it directly.
28  */
29 
30 #ifndef _GLIBCXX_TR1_HASHTABLE_H
31 #define _GLIBCXX_TR1_HASHTABLE_H 1
32 
33 #pragma GCC system_header
34 
35 #include <tr1/hashtable_policy.h>
36 
37 namespace std
38 {
39 namespace tr1
40 {
41   // Class template _Hashtable, class definition.
42 
43   // Meaning of class template _Hashtable's template parameters
44 
45   // _Key and _Value: arbitrary CopyConstructible types.
46 
47   // _Allocator: an allocator type ([lib.allocator.requirements]) whose
48   // value type is Value.  As a conforming extension, we allow for
49   // value type != Value.
50 
51   // _ExtractKey: function object that takes a object of type Value
52   // and returns a value of type _Key.
53 
54   // _Equal: function object that takes two objects of type k and returns
55   // a bool-like value that is true if the two objects are considered equal.
56 
57   // _H1: the hash function.  A unary function object with argument type
58   // Key and result type size_t.  Return values should be distributed
59   // over the entire range [0, numeric_limits<size_t>:::max()].
60 
61   // _H2: the range-hashing function (in the terminology of Tavori and
62   // Dreizin).  A binary function object whose argument types and result
63   // type are all size_t.  Given arguments r and N, the return value is
64   // in the range [0, N).
65 
66   // _Hash: the ranged hash function (Tavori and Dreizin). A binary function
67   // whose argument types are _Key and size_t and whose result type is
68   // size_t.  Given arguments k and N, the return value is in the range
69   // [0, N).  Default: hash(k, N) = h2(h1(k), N).  If _Hash is anything other
70   // than the default, _H1 and _H2 are ignored.
71 
72   // _RehashPolicy: Policy class with three members, all of which govern
73   // the bucket count. _M_next_bkt(n) returns a bucket count no smaller
74   // than n.  _M_bkt_for_elements(n) returns a bucket count appropriate
75   // for an element count of n.  _M_need_rehash(n_bkt, n_elt, n_ins)
76   // determines whether, if the current bucket count is n_bkt and the
77   // current element count is n_elt, we need to increase the bucket
78   // count.  If so, returns make_pair(true, n), where n is the new
79   // bucket count.  If not, returns make_pair(false, <anything>).
80 
81   // ??? Right now it is hard-wired that the number of buckets never
82   // shrinks.  Should we allow _RehashPolicy to change that?
83 
84   // __cache_hash_code: bool.  true if we store the value of the hash
85   // function along with the value.  This is a time-space tradeoff.
86   // Storing it may improve lookup speed by reducing the number of times
87   // we need to call the Equal function.
88 
89   // __constant_iterators: bool.  true if iterator and const_iterator are
90   // both constant iterator types.  This is true for unordered_set and
91   // unordered_multiset, false for unordered_map and unordered_multimap.
92 
93   // __unique_keys: bool.  true if the return value of _Hashtable::count(k)
94   // is always at most one, false if it may be an arbitrary number.  This
95   // true for unordered_set and unordered_map, false for unordered_multiset
96   // and unordered_multimap.
97 
98   template<typename _Key, typename _Value, typename _Allocator,
99 	   typename _ExtractKey, typename _Equal,
100 	   typename _H1, typename _H2, typename _Hash,
101 	   typename _RehashPolicy,
102 	   bool __cache_hash_code,
103 	   bool __constant_iterators,
104 	   bool __unique_keys>
105     class _Hashtable
106     : public __detail::_Rehash_base<_RehashPolicy,
107 				    _Hashtable<_Key, _Value, _Allocator,
108 					       _ExtractKey,
109 					       _Equal, _H1, _H2, _Hash,
110 					       _RehashPolicy,
111 					       __cache_hash_code,
112 					       __constant_iterators,
113 					       __unique_keys> >,
114       public __detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
115 				       _H1, _H2, _Hash, __cache_hash_code>,
116       public __detail::_Map_base<_Key, _Value, _ExtractKey, __unique_keys,
117 				 _Hashtable<_Key, _Value, _Allocator,
118 					    _ExtractKey,
119 					    _Equal, _H1, _H2, _Hash,
120 					    _RehashPolicy,
121 					    __cache_hash_code,
122 					    __constant_iterators,
123 					    __unique_keys> >
124     {
125     public:
126       typedef _Allocator                                  allocator_type;
127       typedef _Value                                      value_type;
128       typedef _Key                                        key_type;
129       typedef _Equal                                      key_equal;
130       // mapped_type, if present, comes from _Map_base.
131       // hasher, if present, comes from _Hash_code_base.
132       typedef typename _Allocator::difference_type        difference_type;
133       typedef typename _Allocator::size_type              size_type;
134       typedef typename _Allocator::pointer                pointer;
135       typedef typename _Allocator::const_pointer          const_pointer;
136       typedef typename _Allocator::reference              reference;
137       typedef typename _Allocator::const_reference        const_reference;
138 
139       typedef __detail::_Node_iterator<value_type, __constant_iterators,
140 				       __cache_hash_code>
141                                                           local_iterator;
142       typedef __detail::_Node_const_iterator<value_type,
143 					     __constant_iterators,
144 					     __cache_hash_code>
145                                                           const_local_iterator;
146 
147       typedef __detail::_Hashtable_iterator<value_type, __constant_iterators,
148 					    __cache_hash_code>
149                                                           iterator;
150       typedef __detail::_Hashtable_const_iterator<value_type,
151 						  __constant_iterators,
152 						  __cache_hash_code>
153                                                           const_iterator;
154 
155       template<typename _Key2, typename _Value2, typename _Ex2, bool __unique2,
156 	       typename _Hashtable2>
157         friend struct __detail::_Map_base;
158 
159     private:
160       typedef __detail::_Hash_node<_Value, __cache_hash_code> _Node;
161       typedef typename _Allocator::template rebind<_Node>::other
162                                                         _Node_allocator_type;
163       typedef typename _Allocator::template rebind<_Node*>::other
164                                                         _Bucket_allocator_type;
165 
166       typedef typename _Allocator::template rebind<_Value>::other
167                                                         _Value_allocator_type;
168 
169       _Node_allocator_type   _M_node_allocator;
170       _Node**                _M_buckets;
171       size_type              _M_bucket_count;
172       size_type              _M_element_count;
173       _RehashPolicy          _M_rehash_policy;
174 
175       _Node*
176       _M_allocate_node(const value_type& __v);
177 
178       void
179       _M_deallocate_node(_Node* __n);
180 
181       void
182       _M_deallocate_nodes(_Node**, size_type);
183 
184       _Node**
185       _M_allocate_buckets(size_type __n);
186 
187       void
188       _M_deallocate_buckets(_Node**, size_type __n);
189 
190     public:
191       // Constructor, destructor, assignment, swap
192       _Hashtable(size_type __bucket_hint,
193 		 const _H1&, const _H2&, const _Hash&,
194 		 const _Equal&, const _ExtractKey&,
195 		 const allocator_type&);
196 
197       template<typename _InputIterator>
198         _Hashtable(_InputIterator __first, _InputIterator __last,
199 		   size_type __bucket_hint,
200 		   const _H1&, const _H2&, const _Hash&,
201 		   const _Equal&, const _ExtractKey&,
202 		   const allocator_type&);
203 
204       _Hashtable(const _Hashtable&);
205 
206       _Hashtable&
207       operator=(const _Hashtable&);
208 
209       ~_Hashtable();
210 
211       void swap(_Hashtable&);
212 
213       // Basic container operations
214       iterator
215       begin()
216       {
217 	iterator __i(_M_buckets);
218 	if (!__i._M_cur_node)
219 	  __i._M_incr_bucket();
220 	return __i;
221       }
222 
223       const_iterator
224       begin() const
225       {
226 	const_iterator __i(_M_buckets);
227 	if (!__i._M_cur_node)
228 	  __i._M_incr_bucket();
229 	return __i;
230       }
231 
232       iterator
233       end()
234       { return iterator(_M_buckets + _M_bucket_count); }
235 
236       const_iterator
237       end() const
238       { return const_iterator(_M_buckets + _M_bucket_count); }
239 
240       size_type
241       size() const
242       { return _M_element_count; }
243 
244       bool
245       empty() const
246       { return size() == 0; }
247 
248       allocator_type
249       get_allocator() const
250       { return allocator_type(_M_node_allocator); }
251 
252       _Value_allocator_type
253       _M_get_Value_allocator() const
254       { return _Value_allocator_type(_M_node_allocator); }
255 
256       size_type
257       max_size() const
258       { return _M_node_allocator.max_size(); }
259 
260       // Observers
261       key_equal
262       key_eq() const
263       { return this->_M_eq; }
264 
265       // hash_function, if present, comes from _Hash_code_base.
266 
267       // Bucket operations
268       size_type
269       bucket_count() const
270       { return _M_bucket_count; }
271 
272       size_type
273       max_bucket_count() const
274       { return max_size(); }
275 
276       size_type
277       bucket_size(size_type __n) const
278       { return std::distance(begin(__n), end(__n)); }
279 
280       size_type
281       bucket(const key_type& __k) const
282       {
283 	return this->_M_bucket_index(__k, this->_M_hash_code(__k),
284 				     bucket_count());
285       }
286 
287       local_iterator
288       begin(size_type __n)
289       { return local_iterator(_M_buckets[__n]); }
290 
291       local_iterator
292       end(size_type)
293       { return local_iterator(0); }
294 
295       const_local_iterator
296       begin(size_type __n) const
297       { return const_local_iterator(_M_buckets[__n]); }
298 
299       const_local_iterator
300       end(size_type) const
301       { return const_local_iterator(0); }
302 
303       float
304       load_factor() const
305       {
306 	return static_cast<float>(size()) / static_cast<float>(bucket_count());
307       }
308 
309       // max_load_factor, if present, comes from _Rehash_base.
310 
311       // Generalization of max_load_factor.  Extension, not found in TR1.  Only
312       // useful if _RehashPolicy is something other than the default.
313       const _RehashPolicy&
314       __rehash_policy() const
315       { return _M_rehash_policy; }
316 
317       void
318       __rehash_policy(const _RehashPolicy&);
319 
320       // Lookup.
321       iterator
322       find(const key_type& __k);
323 
324       const_iterator
325       find(const key_type& __k) const;
326 
327       size_type
328       count(const key_type& __k) const;
329 
330       std::pair<iterator, iterator>
331       equal_range(const key_type& __k);
332 
333       std::pair<const_iterator, const_iterator>
334       equal_range(const key_type& __k) const;
335 
336     private:			// Find, insert and erase helper functions
337       // ??? This dispatching is a workaround for the fact that we don't
338       // have partial specialization of member templates; it would be
339       // better to just specialize insert on __unique_keys.  There may be a
340       // cleaner workaround.
341       typedef typename __gnu_cxx::__conditional_type<__unique_keys,
342 		       	    std::pair<iterator, bool>, iterator>::__type
343         _Insert_Return_Type;
344 
345       typedef typename __gnu_cxx::__conditional_type<__unique_keys,
346 					  std::_Select1st<_Insert_Return_Type>,
347 				  	  std::_Identity<_Insert_Return_Type>
348                                    >::__type
349         _Insert_Conv_Type;
350 
351       _Node*
352       _M_find_node(_Node*, const key_type&,
353 		   typename _Hashtable::_Hash_code_type) const;
354 
355       iterator
356       _M_insert_bucket(const value_type&, size_type,
357 		       typename _Hashtable::_Hash_code_type);
358 
359       std::pair<iterator, bool>
360       _M_insert(const value_type&, std::tr1::true_type);
361 
362       iterator
363       _M_insert(const value_type&, std::tr1::false_type);
364 
365       void
366       _M_erase_node(_Node*, _Node**);
367 
368     public:
369       // Insert and erase
370       _Insert_Return_Type
371       insert(const value_type& __v)
372       { return _M_insert(__v, std::tr1::integral_constant<bool,
373 			 __unique_keys>()); }
374 
375       iterator
376       insert(iterator, const value_type& __v)
377       { return iterator(_Insert_Conv_Type()(this->insert(__v))); }
378 
379       const_iterator
380       insert(const_iterator, const value_type& __v)
381       { return const_iterator(_Insert_Conv_Type()(this->insert(__v))); }
382 
383       template<typename _InputIterator>
384         void
385         insert(_InputIterator __first, _InputIterator __last);
386 
387       iterator
388       erase(iterator);
389 
390       const_iterator
391       erase(const_iterator);
392 
393       size_type
394       erase(const key_type&);
395 
396       iterator
397       erase(iterator, iterator);
398 
399       const_iterator
400       erase(const_iterator, const_iterator);
401 
402       void
403       clear();
404 
405       // Set number of buckets to be appropriate for container of n element.
406       void rehash(size_type __n);
407 
408     private:
409       // Unconditionally change size of bucket array to n.
410       void _M_rehash(size_type __n);
411     };
412 
413 
414   // Definitions of class template _Hashtable's out-of-line member functions.
415   template<typename _Key, typename _Value,
416 	   typename _Allocator, typename _ExtractKey, typename _Equal,
417 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
418 	   bool __chc, bool __cit, bool __uk>
419     typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
420 			_H1, _H2, _Hash, _RehashPolicy,
421 			__chc, __cit, __uk>::_Node*
422     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
423 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
424     _M_allocate_node(const value_type& __v)
425     {
426       _Node* __n = _M_node_allocator.allocate(1);
427       __try
428 	{
429 	  _M_get_Value_allocator().construct(&__n->_M_v, __v);
430 	  __n->_M_next = 0;
431 	  return __n;
432 	}
433       __catch(...)
434 	{
435 	  _M_node_allocator.deallocate(__n, 1);
436 	  __throw_exception_again;
437 	}
438     }
439 
440   template<typename _Key, typename _Value,
441 	   typename _Allocator, typename _ExtractKey, typename _Equal,
442 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
443 	   bool __chc, bool __cit, bool __uk>
444     void
445     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
446 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
447     _M_deallocate_node(_Node* __n)
448     {
449       _M_get_Value_allocator().destroy(&__n->_M_v);
450       _M_node_allocator.deallocate(__n, 1);
451     }
452 
453   template<typename _Key, typename _Value,
454 	   typename _Allocator, typename _ExtractKey, typename _Equal,
455 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
456 	   bool __chc, bool __cit, bool __uk>
457     void
458     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
459 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
460     _M_deallocate_nodes(_Node** __array, size_type __n)
461     {
462       for (size_type __i = 0; __i < __n; ++__i)
463 	{
464 	  _Node* __p = __array[__i];
465 	  while (__p)
466 	    {
467 	      _Node* __tmp = __p;
468 	      __p = __p->_M_next;
469 	      _M_deallocate_node(__tmp);
470 	    }
471 	  __array[__i] = 0;
472 	}
473     }
474 
475   template<typename _Key, typename _Value,
476 	   typename _Allocator, typename _ExtractKey, typename _Equal,
477 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
478 	   bool __chc, bool __cit, bool __uk>
479     typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
480 			_H1, _H2, _Hash, _RehashPolicy,
481 			__chc, __cit, __uk>::_Node**
482     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
483 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
484     _M_allocate_buckets(size_type __n)
485     {
486       _Bucket_allocator_type __alloc(_M_node_allocator);
487 
488       // We allocate one extra bucket to hold a sentinel, an arbitrary
489       // non-null pointer.  Iterator increment relies on this.
490       _Node** __p = __alloc.allocate(__n + 1);
491       std::fill(__p, __p + __n, (_Node*) 0);
492       __p[__n] = reinterpret_cast<_Node*>(0x1000);
493       return __p;
494     }
495 
496   template<typename _Key, typename _Value,
497 	   typename _Allocator, typename _ExtractKey, typename _Equal,
498 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
499 	   bool __chc, bool __cit, bool __uk>
500     void
501     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
502 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
503     _M_deallocate_buckets(_Node** __p, size_type __n)
504     {
505       _Bucket_allocator_type __alloc(_M_node_allocator);
506       __alloc.deallocate(__p, __n + 1);
507     }
508 
509   template<typename _Key, typename _Value,
510 	   typename _Allocator, typename _ExtractKey, typename _Equal,
511 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
512 	   bool __chc, bool __cit, bool __uk>
513     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
514 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
515     _Hashtable(size_type __bucket_hint,
516 	       const _H1& __h1, const _H2& __h2, const _Hash& __h,
517 	       const _Equal& __eq, const _ExtractKey& __exk,
518 	       const allocator_type& __a)
519     : __detail::_Rehash_base<_RehashPolicy, _Hashtable>(),
520       __detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
521 				_H1, _H2, _Hash, __chc>(__exk, __eq,
522 							__h1, __h2, __h),
523       __detail::_Map_base<_Key, _Value, _ExtractKey, __uk, _Hashtable>(),
524       _M_node_allocator(__a),
525       _M_bucket_count(0),
526       _M_element_count(0),
527       _M_rehash_policy()
528     {
529       _M_bucket_count = _M_rehash_policy._M_next_bkt(__bucket_hint);
530       _M_buckets = _M_allocate_buckets(_M_bucket_count);
531     }
532 
533   template<typename _Key, typename _Value,
534 	   typename _Allocator, typename _ExtractKey, typename _Equal,
535 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
536 	   bool __chc, bool __cit, bool __uk>
537     template<typename _InputIterator>
538       _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
539 		 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
540       _Hashtable(_InputIterator __f, _InputIterator __l,
541 		 size_type __bucket_hint,
542 		 const _H1& __h1, const _H2& __h2, const _Hash& __h,
543 		 const _Equal& __eq, const _ExtractKey& __exk,
544 		 const allocator_type& __a)
545       : __detail::_Rehash_base<_RehashPolicy, _Hashtable>(),
546 	__detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
547 				  _H1, _H2, _Hash, __chc>(__exk, __eq,
548 							  __h1, __h2, __h),
549 	__detail::_Map_base<_Key, _Value, _ExtractKey, __uk, _Hashtable>(),
550 	_M_node_allocator(__a),
551 	_M_bucket_count(0),
552 	_M_element_count(0),
553 	_M_rehash_policy()
554       {
555 	_M_bucket_count = std::max(_M_rehash_policy._M_next_bkt(__bucket_hint),
556 				   _M_rehash_policy.
557 				   _M_bkt_for_elements(__detail::
558 						       __distance_fw(__f,
559 								     __l)));
560 	_M_buckets = _M_allocate_buckets(_M_bucket_count);
561 	__try
562 	  {
563 	    for (; __f != __l; ++__f)
564 	      this->insert(*__f);
565 	  }
566 	__catch(...)
567 	  {
568 	    clear();
569 	    _M_deallocate_buckets(_M_buckets, _M_bucket_count);
570 	    __throw_exception_again;
571 	  }
572       }
573 
574   template<typename _Key, typename _Value,
575 	   typename _Allocator, typename _ExtractKey, typename _Equal,
576 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
577 	   bool __chc, bool __cit, bool __uk>
578     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
579 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
580     _Hashtable(const _Hashtable& __ht)
581     : __detail::_Rehash_base<_RehashPolicy, _Hashtable>(__ht),
582       __detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
583 				_H1, _H2, _Hash, __chc>(__ht),
584       __detail::_Map_base<_Key, _Value, _ExtractKey, __uk, _Hashtable>(__ht),
585       _M_node_allocator(__ht._M_node_allocator),
586       _M_bucket_count(__ht._M_bucket_count),
587       _M_element_count(__ht._M_element_count),
588       _M_rehash_policy(__ht._M_rehash_policy)
589     {
590       _M_buckets = _M_allocate_buckets(_M_bucket_count);
591       __try
592 	{
593 	  for (size_type __i = 0; __i < __ht._M_bucket_count; ++__i)
594 	    {
595 	      _Node* __n = __ht._M_buckets[__i];
596 	      _Node** __tail = _M_buckets + __i;
597 	      while (__n)
598 		{
599 		  *__tail = _M_allocate_node(__n->_M_v);
600 		  this->_M_copy_code(*__tail, __n);
601 		  __tail = &((*__tail)->_M_next);
602 		  __n = __n->_M_next;
603 		}
604 	    }
605 	}
606       __catch(...)
607 	{
608 	  clear();
609 	  _M_deallocate_buckets(_M_buckets, _M_bucket_count);
610 	  __throw_exception_again;
611 	}
612     }
613 
614   template<typename _Key, typename _Value,
615 	   typename _Allocator, typename _ExtractKey, typename _Equal,
616 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
617 	   bool __chc, bool __cit, bool __uk>
618     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
619 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>&
620     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
621 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
622     operator=(const _Hashtable& __ht)
623     {
624       _Hashtable __tmp(__ht);
625       this->swap(__tmp);
626       return *this;
627     }
628 
629   template<typename _Key, typename _Value,
630 	   typename _Allocator, typename _ExtractKey, typename _Equal,
631 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
632 	   bool __chc, bool __cit, bool __uk>
633     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
634 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
635     ~_Hashtable()
636     {
637       clear();
638       _M_deallocate_buckets(_M_buckets, _M_bucket_count);
639     }
640 
641   template<typename _Key, typename _Value,
642 	   typename _Allocator, typename _ExtractKey, typename _Equal,
643 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
644 	   bool __chc, bool __cit, bool __uk>
645     void
646     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
647 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
648     swap(_Hashtable& __x)
649     {
650       // The only base class with member variables is hash_code_base.  We
651       // define _Hash_code_base::_M_swap because different specializations
652       // have different members.
653       __detail::_Hash_code_base<_Key, _Value, _ExtractKey, _Equal,
654 	_H1, _H2, _Hash, __chc>::_M_swap(__x);
655 
656       // _GLIBCXX_RESOLVE_LIB_DEFECTS
657       // 431. Swapping containers with unequal allocators.
658       std::__alloc_swap<_Node_allocator_type>::_S_do_it(_M_node_allocator,
659 							__x._M_node_allocator);
660 
661       std::swap(_M_rehash_policy, __x._M_rehash_policy);
662       std::swap(_M_buckets, __x._M_buckets);
663       std::swap(_M_bucket_count, __x._M_bucket_count);
664       std::swap(_M_element_count, __x._M_element_count);
665     }
666 
667   template<typename _Key, typename _Value,
668 	   typename _Allocator, typename _ExtractKey, typename _Equal,
669 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
670 	   bool __chc, bool __cit, bool __uk>
671     void
672     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
673 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
674     __rehash_policy(const _RehashPolicy& __pol)
675     {
676       _M_rehash_policy = __pol;
677       size_type __n_bkt = __pol._M_bkt_for_elements(_M_element_count);
678       if (__n_bkt > _M_bucket_count)
679 	_M_rehash(__n_bkt);
680     }
681 
682   template<typename _Key, typename _Value,
683 	   typename _Allocator, typename _ExtractKey, typename _Equal,
684 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
685 	   bool __chc, bool __cit, bool __uk>
686     typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
687 			_H1, _H2, _Hash, _RehashPolicy,
688 			__chc, __cit, __uk>::iterator
689     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
690 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
691     find(const key_type& __k)
692     {
693       typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
694       std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
695       _Node* __p = _M_find_node(_M_buckets[__n], __k, __code);
696       return __p ? iterator(__p, _M_buckets + __n) : this->end();
697     }
698 
699   template<typename _Key, typename _Value,
700 	   typename _Allocator, typename _ExtractKey, typename _Equal,
701 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
702 	   bool __chc, bool __cit, bool __uk>
703     typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
704 			_H1, _H2, _Hash, _RehashPolicy,
705 			__chc, __cit, __uk>::const_iterator
706     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
707 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
708     find(const key_type& __k) const
709     {
710       typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
711       std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
712       _Node* __p = _M_find_node(_M_buckets[__n], __k, __code);
713       return __p ? const_iterator(__p, _M_buckets + __n) : this->end();
714     }
715 
716   template<typename _Key, typename _Value,
717 	   typename _Allocator, typename _ExtractKey, typename _Equal,
718 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
719 	   bool __chc, bool __cit, bool __uk>
720     typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
721 			_H1, _H2, _Hash, _RehashPolicy,
722 			__chc, __cit, __uk>::size_type
723     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
724 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
725     count(const key_type& __k) const
726     {
727       typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
728       std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
729       std::size_t __result = 0;
730       for (_Node* __p = _M_buckets[__n]; __p; __p = __p->_M_next)
731 	if (this->_M_compare(__k, __code, __p))
732 	  ++__result;
733       return __result;
734     }
735 
736   template<typename _Key, typename _Value,
737 	   typename _Allocator, typename _ExtractKey, typename _Equal,
738 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
739 	   bool __chc, bool __cit, bool __uk>
740     std::pair<typename _Hashtable<_Key, _Value, _Allocator,
741 				  _ExtractKey, _Equal, _H1,
742 				  _H2, _Hash, _RehashPolicy,
743 				  __chc, __cit, __uk>::iterator,
744 	      typename _Hashtable<_Key, _Value, _Allocator,
745 				  _ExtractKey, _Equal, _H1,
746 				  _H2, _Hash, _RehashPolicy,
747 				  __chc, __cit, __uk>::iterator>
748     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
749 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
750     equal_range(const key_type& __k)
751     {
752       typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
753       std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
754       _Node** __head = _M_buckets + __n;
755       _Node* __p = _M_find_node(*__head, __k, __code);
756 
757       if (__p)
758 	{
759 	  _Node* __p1 = __p->_M_next;
760 	  for (; __p1; __p1 = __p1->_M_next)
761 	    if (!this->_M_compare(__k, __code, __p1))
762 	      break;
763 
764 	  iterator __first(__p, __head);
765 	  iterator __last(__p1, __head);
766 	  if (!__p1)
767 	    __last._M_incr_bucket();
768 	  return std::make_pair(__first, __last);
769 	}
770       else
771 	return std::make_pair(this->end(), this->end());
772     }
773 
774   template<typename _Key, typename _Value,
775 	   typename _Allocator, typename _ExtractKey, typename _Equal,
776 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
777 	   bool __chc, bool __cit, bool __uk>
778     std::pair<typename _Hashtable<_Key, _Value, _Allocator,
779 				  _ExtractKey, _Equal, _H1,
780 				  _H2, _Hash, _RehashPolicy,
781 				  __chc, __cit, __uk>::const_iterator,
782 	      typename _Hashtable<_Key, _Value, _Allocator,
783 				  _ExtractKey, _Equal, _H1,
784 				  _H2, _Hash, _RehashPolicy,
785 				  __chc, __cit, __uk>::const_iterator>
786     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
787 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
788     equal_range(const key_type& __k) const
789     {
790       typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
791       std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
792       _Node** __head = _M_buckets + __n;
793       _Node* __p = _M_find_node(*__head, __k, __code);
794 
795       if (__p)
796 	{
797 	  _Node* __p1 = __p->_M_next;
798 	  for (; __p1; __p1 = __p1->_M_next)
799 	    if (!this->_M_compare(__k, __code, __p1))
800 	      break;
801 
802 	  const_iterator __first(__p, __head);
803 	  const_iterator __last(__p1, __head);
804 	  if (!__p1)
805 	    __last._M_incr_bucket();
806 	  return std::make_pair(__first, __last);
807 	}
808       else
809 	return std::make_pair(this->end(), this->end());
810     }
811 
812   // Find the node whose key compares equal to k, beginning the search
813   // at p (usually the head of a bucket).  Return nil if no node is found.
814   template<typename _Key, typename _Value,
815 	   typename _Allocator, typename _ExtractKey, typename _Equal,
816 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
817 	   bool __chc, bool __cit, bool __uk>
818     typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey,
819 			_Equal, _H1, _H2, _Hash, _RehashPolicy,
820 			__chc, __cit, __uk>::_Node*
821     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
822 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
823     _M_find_node(_Node* __p, const key_type& __k,
824 		typename _Hashtable::_Hash_code_type __code) const
825     {
826       for (; __p; __p = __p->_M_next)
827 	if (this->_M_compare(__k, __code, __p))
828 	  return __p;
829       return false;
830     }
831 
832   // Insert v in bucket n (assumes no element with its key already present).
833   template<typename _Key, typename _Value,
834 	   typename _Allocator, typename _ExtractKey, typename _Equal,
835 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
836 	   bool __chc, bool __cit, bool __uk>
837     typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
838 			_H1, _H2, _Hash, _RehashPolicy,
839 			__chc, __cit, __uk>::iterator
840     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
841 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
842     _M_insert_bucket(const value_type& __v, size_type __n,
843 		    typename _Hashtable::_Hash_code_type __code)
844     {
845       std::pair<bool, std::size_t> __do_rehash
846 	= _M_rehash_policy._M_need_rehash(_M_bucket_count,
847 					  _M_element_count, 1);
848 
849       // Allocate the new node before doing the rehash so that we don't
850       // do a rehash if the allocation throws.
851       _Node* __new_node = _M_allocate_node(__v);
852 
853       __try
854 	{
855 	  if (__do_rehash.first)
856 	    {
857 	      const key_type& __k = this->_M_extract(__v);
858 	      __n = this->_M_bucket_index(__k, __code, __do_rehash.second);
859 	      _M_rehash(__do_rehash.second);
860 	    }
861 
862 	  __new_node->_M_next = _M_buckets[__n];
863 	  this->_M_store_code(__new_node, __code);
864 	  _M_buckets[__n] = __new_node;
865 	  ++_M_element_count;
866 	  return iterator(__new_node, _M_buckets + __n);
867 	}
868       __catch(...)
869 	{
870 	  _M_deallocate_node(__new_node);
871 	  __throw_exception_again;
872 	}
873     }
874 
875   // Insert v if no element with its key is already present.
876   template<typename _Key, typename _Value,
877 	   typename _Allocator, typename _ExtractKey, typename _Equal,
878 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
879 	   bool __chc, bool __cit, bool __uk>
880     std::pair<typename _Hashtable<_Key, _Value, _Allocator,
881 				  _ExtractKey, _Equal, _H1,
882 				  _H2, _Hash, _RehashPolicy,
883 				  __chc, __cit, __uk>::iterator, bool>
884     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
885 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
886   _M_insert(const value_type& __v, std::tr1::true_type)
887     {
888       const key_type& __k = this->_M_extract(__v);
889       typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
890       size_type __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
891 
892       if (_Node* __p = _M_find_node(_M_buckets[__n], __k, __code))
893 	return std::make_pair(iterator(__p, _M_buckets + __n), false);
894       return std::make_pair(_M_insert_bucket(__v, __n, __code), true);
895     }
896 
897   // Insert v unconditionally.
898   template<typename _Key, typename _Value,
899 	   typename _Allocator, typename _ExtractKey, typename _Equal,
900 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
901 	   bool __chc, bool __cit, bool __uk>
902     typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
903 			_H1, _H2, _Hash, _RehashPolicy,
904 			__chc, __cit, __uk>::iterator
905     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
906 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
907     _M_insert(const value_type& __v, std::tr1::false_type)
908     {
909       std::pair<bool, std::size_t> __do_rehash
910 	= _M_rehash_policy._M_need_rehash(_M_bucket_count,
911 					  _M_element_count, 1);
912       if (__do_rehash.first)
913 	_M_rehash(__do_rehash.second);
914 
915       const key_type& __k = this->_M_extract(__v);
916       typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
917       size_type __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
918 
919       // First find the node, avoid leaking new_node if compare throws.
920       _Node* __prev = _M_find_node(_M_buckets[__n], __k, __code);
921       _Node* __new_node = _M_allocate_node(__v);
922 
923       if (__prev)
924 	{
925 	  __new_node->_M_next = __prev->_M_next;
926 	  __prev->_M_next = __new_node;
927 	}
928       else
929 	{
930 	  __new_node->_M_next = _M_buckets[__n];
931 	  _M_buckets[__n] = __new_node;
932 	}
933       this->_M_store_code(__new_node, __code);
934 
935       ++_M_element_count;
936       return iterator(__new_node, _M_buckets + __n);
937     }
938 
939   // For erase(iterator) and erase(const_iterator).
940   template<typename _Key, typename _Value,
941 	   typename _Allocator, typename _ExtractKey, typename _Equal,
942 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
943 	   bool __chc, bool __cit, bool __uk>
944     void
945     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
946 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
947     _M_erase_node(_Node* __p, _Node** __b)
948     {
949       _Node* __cur = *__b;
950       if (__cur == __p)
951 	*__b = __cur->_M_next;
952       else
953 	{
954 	  _Node* __next = __cur->_M_next;
955 	  while (__next != __p)
956 	    {
957 	      __cur = __next;
958 	      __next = __cur->_M_next;
959 	    }
960 	  __cur->_M_next = __next->_M_next;
961 	}
962 
963       _M_deallocate_node(__p);
964       --_M_element_count;
965     }
966 
967   template<typename _Key, typename _Value,
968 	   typename _Allocator, typename _ExtractKey, typename _Equal,
969 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
970 	   bool __chc, bool __cit, bool __uk>
971     template<typename _InputIterator>
972       void
973       _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
974 		 _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
975       insert(_InputIterator __first, _InputIterator __last)
976       {
977 	size_type __n_elt = __detail::__distance_fw(__first, __last);
978 	std::pair<bool, std::size_t> __do_rehash
979 	  = _M_rehash_policy._M_need_rehash(_M_bucket_count,
980 					    _M_element_count, __n_elt);
981 	if (__do_rehash.first)
982 	  _M_rehash(__do_rehash.second);
983 
984 	for (; __first != __last; ++__first)
985 	  this->insert(*__first);
986       }
987 
988   template<typename _Key, typename _Value,
989 	   typename _Allocator, typename _ExtractKey, typename _Equal,
990 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
991 	   bool __chc, bool __cit, bool __uk>
992     typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
993 			_H1, _H2, _Hash, _RehashPolicy,
994 			__chc, __cit, __uk>::iterator
995     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
996 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
997     erase(iterator __it)
998     {
999       iterator __result = __it;
1000       ++__result;
1001       _M_erase_node(__it._M_cur_node, __it._M_cur_bucket);
1002       return __result;
1003     }
1004 
1005   template<typename _Key, typename _Value,
1006 	   typename _Allocator, typename _ExtractKey, typename _Equal,
1007 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1008 	   bool __chc, bool __cit, bool __uk>
1009     typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1010 			_H1, _H2, _Hash, _RehashPolicy,
1011 			__chc, __cit, __uk>::const_iterator
1012     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1013 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
1014     erase(const_iterator __it)
1015     {
1016       const_iterator __result = __it;
1017       ++__result;
1018       _M_erase_node(__it._M_cur_node, __it._M_cur_bucket);
1019       return __result;
1020     }
1021 
1022   template<typename _Key, typename _Value,
1023 	   typename _Allocator, typename _ExtractKey, typename _Equal,
1024 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1025 	   bool __chc, bool __cit, bool __uk>
1026     typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1027 			_H1, _H2, _Hash, _RehashPolicy,
1028 			__chc, __cit, __uk>::size_type
1029     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1030 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
1031     erase(const key_type& __k)
1032     {
1033       typename _Hashtable::_Hash_code_type __code = this->_M_hash_code(__k);
1034       std::size_t __n = this->_M_bucket_index(__k, __code, _M_bucket_count);
1035       size_type __result = 0;
1036 
1037       _Node** __slot = _M_buckets + __n;
1038       while (*__slot && !this->_M_compare(__k, __code, *__slot))
1039 	__slot = &((*__slot)->_M_next);
1040 
1041       _Node** __saved_slot = 0;
1042       while (*__slot && this->_M_compare(__k, __code, *__slot))
1043 	{
1044 	  // _GLIBCXX_RESOLVE_LIB_DEFECTS
1045 	  // 526. Is it undefined if a function in the standard changes
1046 	  // in parameters?
1047 	  if (&this->_M_extract((*__slot)->_M_v) != &__k)
1048 	    {
1049               _Node* __p = *__slot;
1050               *__slot = __p->_M_next;
1051 	      _M_deallocate_node(__p);
1052 	      --_M_element_count;
1053 	      ++__result;
1054 	    }
1055 	  else
1056 	    {
1057 	      __saved_slot = __slot;
1058 	      __slot = &((*__slot)->_M_next);
1059 	    }
1060 	}
1061 
1062       if (__saved_slot)
1063 	{
1064 	  _Node* __p = *__saved_slot;
1065 	  *__saved_slot = __p->_M_next;
1066 	  _M_deallocate_node(__p);
1067 	  --_M_element_count;
1068 	  ++__result;
1069 	}
1070 
1071       return __result;
1072     }
1073 
1074   // ??? This could be optimized by taking advantage of the bucket
1075   // structure, but it's not clear that it's worth doing.  It probably
1076   // wouldn't even be an optimization unless the load factor is large.
1077   template<typename _Key, typename _Value,
1078 	   typename _Allocator, typename _ExtractKey, typename _Equal,
1079 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1080 	   bool __chc, bool __cit, bool __uk>
1081     typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1082 			_H1, _H2, _Hash, _RehashPolicy,
1083 			__chc, __cit, __uk>::iterator
1084     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1085 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
1086     erase(iterator __first, iterator __last)
1087     {
1088       while (__first != __last)
1089 	__first = this->erase(__first);
1090       return __last;
1091     }
1092 
1093   template<typename _Key, typename _Value,
1094 	   typename _Allocator, typename _ExtractKey, typename _Equal,
1095 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1096 	   bool __chc, bool __cit, bool __uk>
1097     typename _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1098 			_H1, _H2, _Hash, _RehashPolicy,
1099 			__chc, __cit, __uk>::const_iterator
1100     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1101 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
1102     erase(const_iterator __first, const_iterator __last)
1103     {
1104       while (__first != __last)
1105 	__first = this->erase(__first);
1106       return __last;
1107     }
1108 
1109   template<typename _Key, typename _Value,
1110 	   typename _Allocator, typename _ExtractKey, typename _Equal,
1111 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1112 	   bool __chc, bool __cit, bool __uk>
1113     void
1114     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1115 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
1116     clear()
1117     {
1118       _M_deallocate_nodes(_M_buckets, _M_bucket_count);
1119       _M_element_count = 0;
1120     }
1121 
1122   template<typename _Key, typename _Value,
1123 	   typename _Allocator, typename _ExtractKey, typename _Equal,
1124 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1125 	   bool __chc, bool __cit, bool __uk>
1126     void
1127     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1128 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
1129     rehash(size_type __n)
1130     {
1131       _M_rehash(std::max(_M_rehash_policy._M_next_bkt(__n),
1132 			 _M_rehash_policy._M_bkt_for_elements(_M_element_count
1133 							      + 1)));
1134     }
1135 
1136   template<typename _Key, typename _Value,
1137 	   typename _Allocator, typename _ExtractKey, typename _Equal,
1138 	   typename _H1, typename _H2, typename _Hash, typename _RehashPolicy,
1139 	   bool __chc, bool __cit, bool __uk>
1140     void
1141     _Hashtable<_Key, _Value, _Allocator, _ExtractKey, _Equal,
1142 	       _H1, _H2, _Hash, _RehashPolicy, __chc, __cit, __uk>::
1143     _M_rehash(size_type __n)
1144     {
1145       _Node** __new_array = _M_allocate_buckets(__n);
1146       __try
1147 	{
1148 	  for (size_type __i = 0; __i < _M_bucket_count; ++__i)
1149 	    while (_Node* __p = _M_buckets[__i])
1150 	      {
1151 		std::size_t __new_index = this->_M_bucket_index(__p, __n);
1152 		_M_buckets[__i] = __p->_M_next;
1153 		__p->_M_next = __new_array[__new_index];
1154 		__new_array[__new_index] = __p;
1155 	      }
1156 	  _M_deallocate_buckets(_M_buckets, _M_bucket_count);
1157 	  _M_bucket_count = __n;
1158 	  _M_buckets = __new_array;
1159 	}
1160       __catch(...)
1161 	{
1162 	  // A failure here means that a hash function threw an exception.
1163 	  // We can't restore the previous state without calling the hash
1164 	  // function again, so the only sensible recovery is to delete
1165 	  // everything.
1166 	  _M_deallocate_nodes(__new_array, __n);
1167 	  _M_deallocate_buckets(__new_array, __n);
1168 	  _M_deallocate_nodes(_M_buckets, _M_bucket_count);
1169 	  _M_element_count = 0;
1170 	  __throw_exception_again;
1171 	}
1172     }
1173 }
1174 }
1175 
1176 #endif // _GLIBCXX_TR1_HASHTABLE_H
1177