xref: /netbsd-src/external/gpl3/gcc.old/dist/libstdc++-v3/include/ext/rc_string_base.h (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 // Reference-counted versatile string base -*- C++ -*-
2 
3 // Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library.  This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 3, or (at your option)
10 // any later version.
11 
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 // GNU General Public License for more details.
16 
17 // Under Section 7 of GPL version 3, you are granted additional
18 // permissions described in the GCC Runtime Library Exception, version
19 // 3.1, as published by the Free Software Foundation.
20 
21 // You should have received a copy of the GNU General Public License and
22 // a copy of the GCC Runtime Library Exception along with this program;
23 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
24 // <http://www.gnu.org/licenses/>.
25 
26 /** @file ext/rc_string_base.h
27  *  This file is a GNU extension to the Standard C++ Library.
28  *  This is an internal header file, included by other library headers.
29  *  You should not attempt to use it directly.
30  */
31 
32 #ifndef _RC_STRING_BASE_H
33 #define _RC_STRING_BASE_H 1
34 
35 #include <ext/atomicity.h>
36 #include <bits/stl_iterator_base_funcs.h>
37 
38 _GLIBCXX_BEGIN_NAMESPACE(__gnu_cxx)
39 
40   /**
41    *  Documentation?  What's that?
42    *  Nathan Myers <ncm@cantrip.org>.
43    *
44    *  A string looks like this:
45    *
46    *  @code
47    *                                        [_Rep]
48    *                                        _M_length
49    *   [__rc_string_base<char_type>]        _M_capacity
50    *   _M_dataplus                          _M_refcount
51    *   _M_p ---------------->               unnamed array of char_type
52    *  @endcode
53    *
54    *  Where the _M_p points to the first character in the string, and
55    *  you cast it to a pointer-to-_Rep and subtract 1 to get a
56    *  pointer to the header.
57    *
58    *  This approach has the enormous advantage that a string object
59    *  requires only one allocation.  All the ugliness is confined
60    *  within a single pair of inline functions, which each compile to
61    *  a single @a add instruction: _Rep::_M_refdata(), and
62    *  __rc_string_base::_M_rep(); and the allocation function which gets a
63    *  block of raw bytes and with room enough and constructs a _Rep
64    *  object at the front.
65    *
66    *  The reason you want _M_data pointing to the character array and
67    *  not the _Rep is so that the debugger can see the string
68    *  contents. (Probably we should add a non-inline member to get
69    *  the _Rep for the debugger to use, so users can check the actual
70    *  string length.)
71    *
72    *  Note that the _Rep object is a POD so that you can have a
73    *  static <em>empty string</em> _Rep object already @a constructed before
74    *  static constructors have run.  The reference-count encoding is
75    *  chosen so that a 0 indicates one reference, so you never try to
76    *  destroy the empty-string _Rep object.
77    *
78    *  All but the last paragraph is considered pretty conventional
79    *  for a C++ string implementation.
80   */
81  template<typename _CharT, typename _Traits, typename _Alloc>
82     class __rc_string_base
83     : protected __vstring_utility<_CharT, _Traits, _Alloc>
84     {
85     public:
86       typedef _Traits					    traits_type;
87       typedef typename _Traits::char_type		    value_type;
88       typedef _Alloc					    allocator_type;
89 
90       typedef __vstring_utility<_CharT, _Traits, _Alloc>    _Util_Base;
91       typedef typename _Util_Base::_CharT_alloc_type        _CharT_alloc_type;
92       typedef typename _CharT_alloc_type::size_type	    size_type;
93 
94     private:
95       // _Rep: string representation
96       //   Invariants:
97       //   1. String really contains _M_length + 1 characters: due to 21.3.4
98       //      must be kept null-terminated.
99       //   2. _M_capacity >= _M_length
100       //      Allocated memory is always (_M_capacity + 1) * sizeof(_CharT).
101       //   3. _M_refcount has three states:
102       //      -1: leaked, one reference, no ref-copies allowed, non-const.
103       //       0: one reference, non-const.
104       //     n>0: n + 1 references, operations require a lock, const.
105       //   4. All fields == 0 is an empty string, given the extra storage
106       //      beyond-the-end for a null terminator; thus, the shared
107       //      empty string representation needs no constructor.
108       struct _Rep
109       {
110 	union
111 	{
112 	  struct
113 	  {
114 	    size_type	    _M_length;
115 	    size_type	    _M_capacity;
116 	    _Atomic_word    _M_refcount;
117 	  }                 _M_info;
118 
119 	  // Only for alignment purposes.
120 	  _CharT            _M_align;
121 	};
122 
123 	typedef typename _Alloc::template rebind<_Rep>::other _Rep_alloc_type;
124 
125  	_CharT*
126 	_M_refdata() throw()
127 	{ return reinterpret_cast<_CharT*>(this + 1); }
128 
129 	_CharT*
130 	_M_refcopy() throw()
131 	{
132 	  __atomic_add_dispatch(&_M_info._M_refcount, 1);
133 	  return _M_refdata();
134 	}  // XXX MT
135 
136 	void
137 	_M_set_length(size_type __n)
138 	{
139 	  _M_info._M_refcount = 0;  // One reference.
140 	  _M_info._M_length = __n;
141 	  // grrr. (per 21.3.4)
142 	  // You cannot leave those LWG people alone for a second.
143 	  traits_type::assign(_M_refdata()[__n], _CharT());
144 	}
145 
146 	// Create & Destroy
147 	static _Rep*
148 	_S_create(size_type, size_type, const _Alloc&);
149 
150 	void
151 	_M_destroy(const _Alloc&) throw();
152 
153 	_CharT*
154 	_M_clone(const _Alloc&, size_type __res = 0);
155       };
156 
157       struct _Rep_empty
158       : public _Rep
159       {
160 	_CharT              _M_terminal;
161       };
162 
163       static _Rep_empty     _S_empty_rep;
164 
165       // The maximum number of individual char_type elements of an
166       // individual string is determined by _S_max_size. This is the
167       // value that will be returned by max_size().  (Whereas npos
168       // is the maximum number of bytes the allocator can allocate.)
169       // If one was to divvy up the theoretical largest size string,
170       // with a terminating character and m _CharT elements, it'd
171       // look like this:
172       // npos = sizeof(_Rep) + (m * sizeof(_CharT)) + sizeof(_CharT)
173       //        + sizeof(_Rep) - 1
174       // (NB: last two terms for rounding reasons, see _M_create below)
175       // Solving for m:
176       // m = ((npos - 2 * sizeof(_Rep) + 1) / sizeof(_CharT)) - 1
177       // In addition, this implementation halves this amount.
178       enum { _S_max_size = (((static_cast<size_type>(-1) - 2 * sizeof(_Rep)
179 			      + 1) / sizeof(_CharT)) - 1) / 2 };
180 
181       // Data Member (private):
182       mutable typename _Util_Base::template _Alloc_hider<_Alloc>  _M_dataplus;
183 
184       void
185       _M_data(_CharT* __p)
186       { _M_dataplus._M_p = __p; }
187 
188       _Rep*
189       _M_rep() const
190       { return &((reinterpret_cast<_Rep*>(_M_data()))[-1]); }
191 
192       _CharT*
193       _M_grab(const _Alloc& __alloc) const
194       {
195 	return (!_M_is_leaked() && _M_get_allocator() == __alloc)
196 	        ? _M_rep()->_M_refcopy() : _M_rep()->_M_clone(__alloc);
197       }
198 
199       void
200       _M_dispose()
201       {
202 	if (__exchange_and_add_dispatch(&_M_rep()->_M_info._M_refcount,
203 					-1) <= 0)
204 	  _M_rep()->_M_destroy(_M_get_allocator());
205       }  // XXX MT
206 
207       bool
208       _M_is_leaked() const
209       { return _M_rep()->_M_info._M_refcount < 0; }
210 
211       void
212       _M_set_sharable()
213       { _M_rep()->_M_info._M_refcount = 0; }
214 
215       void
216       _M_leak_hard();
217 
218       // _S_construct_aux is used to implement the 21.3.1 para 15 which
219       // requires special behaviour if _InIterator is an integral type
220       template<typename _InIterator>
221         static _CharT*
222         _S_construct_aux(_InIterator __beg, _InIterator __end,
223 			 const _Alloc& __a, std::__false_type)
224 	{
225           typedef typename iterator_traits<_InIterator>::iterator_category _Tag;
226           return _S_construct(__beg, __end, __a, _Tag());
227 	}
228 
229       // _GLIBCXX_RESOLVE_LIB_DEFECTS
230       // 438. Ambiguity in the "do the right thing" clause
231       template<typename _Integer>
232         static _CharT*
233         _S_construct_aux(_Integer __beg, _Integer __end,
234 			 const _Alloc& __a, std::__true_type)
235 	{ return _S_construct_aux_2(static_cast<size_type>(__beg),
236 				    __end, __a); }
237 
238       static _CharT*
239       _S_construct_aux_2(size_type __req, _CharT __c, const _Alloc& __a)
240       { return _S_construct(__req, __c, __a); }
241 
242       template<typename _InIterator>
243         static _CharT*
244         _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a)
245 	{
246 	  typedef typename std::__is_integer<_InIterator>::__type _Integral;
247 	  return _S_construct_aux(__beg, __end, __a, _Integral());
248         }
249 
250       // For Input Iterators, used in istreambuf_iterators, etc.
251       template<typename _InIterator>
252         static _CharT*
253          _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a,
254 		      std::input_iterator_tag);
255 
256       // For forward_iterators up to random_access_iterators, used for
257       // string::iterator, _CharT*, etc.
258       template<typename _FwdIterator>
259         static _CharT*
260         _S_construct(_FwdIterator __beg, _FwdIterator __end, const _Alloc& __a,
261 		     std::forward_iterator_tag);
262 
263       static _CharT*
264       _S_construct(size_type __req, _CharT __c, const _Alloc& __a);
265 
266     public:
267       size_type
268       _M_max_size() const
269       { return size_type(_S_max_size); }
270 
271       _CharT*
272       _M_data() const
273       { return _M_dataplus._M_p; }
274 
275       size_type
276       _M_length() const
277       { return _M_rep()->_M_info._M_length; }
278 
279       size_type
280       _M_capacity() const
281       { return _M_rep()->_M_info._M_capacity; }
282 
283       bool
284       _M_is_shared() const
285       { return _M_rep()->_M_info._M_refcount > 0; }
286 
287       void
288       _M_set_leaked()
289       { _M_rep()->_M_info._M_refcount = -1; }
290 
291       void
292       _M_leak()    // for use in begin() & non-const op[]
293       {
294 	if (!_M_is_leaked())
295 	  _M_leak_hard();
296       }
297 
298       void
299       _M_set_length(size_type __n)
300       { _M_rep()->_M_set_length(__n); }
301 
302       __rc_string_base()
303       : _M_dataplus(_S_empty_rep._M_refcopy()) { }
304 
305       __rc_string_base(const _Alloc& __a);
306 
307       __rc_string_base(const __rc_string_base& __rcs);
308 
309 #ifdef __GXX_EXPERIMENTAL_CXX0X__
310       __rc_string_base(__rc_string_base&& __rcs)
311       : _M_dataplus(__rcs._M_dataplus)
312       { __rcs._M_data(_S_empty_rep._M_refcopy()); }
313 #endif
314 
315       __rc_string_base(size_type __n, _CharT __c, const _Alloc& __a);
316 
317       template<typename _InputIterator>
318         __rc_string_base(_InputIterator __beg, _InputIterator __end,
319 			 const _Alloc& __a);
320 
321       ~__rc_string_base()
322       { _M_dispose(); }
323 
324       allocator_type&
325       _M_get_allocator()
326       { return _M_dataplus; }
327 
328       const allocator_type&
329       _M_get_allocator() const
330       { return _M_dataplus; }
331 
332       void
333       _M_swap(__rc_string_base& __rcs);
334 
335       void
336       _M_assign(const __rc_string_base& __rcs);
337 
338       void
339       _M_reserve(size_type __res);
340 
341       void
342       _M_mutate(size_type __pos, size_type __len1, const _CharT* __s,
343 		size_type __len2);
344 
345       void
346       _M_erase(size_type __pos, size_type __n);
347 
348       void
349       _M_clear()
350       { _M_erase(size_type(0), _M_length()); }
351 
352       bool
353       _M_compare(const __rc_string_base&) const
354       { return false; }
355     };
356 
357   template<typename _CharT, typename _Traits, typename _Alloc>
358     typename __rc_string_base<_CharT, _Traits, _Alloc>::_Rep_empty
359     __rc_string_base<_CharT, _Traits, _Alloc>::_S_empty_rep;
360 
361   template<typename _CharT, typename _Traits, typename _Alloc>
362     typename __rc_string_base<_CharT, _Traits, _Alloc>::_Rep*
363     __rc_string_base<_CharT, _Traits, _Alloc>::_Rep::
364     _S_create(size_type __capacity, size_type __old_capacity,
365 	      const _Alloc& __alloc)
366     {
367       // _GLIBCXX_RESOLVE_LIB_DEFECTS
368       // 83.  String::npos vs. string::max_size()
369       if (__capacity > size_type(_S_max_size))
370 	std::__throw_length_error(__N("__rc_string_base::_Rep::_S_create"));
371 
372       // The standard places no restriction on allocating more memory
373       // than is strictly needed within this layer at the moment or as
374       // requested by an explicit application call to reserve().
375 
376       // Many malloc implementations perform quite poorly when an
377       // application attempts to allocate memory in a stepwise fashion
378       // growing each allocation size by only 1 char.  Additionally,
379       // it makes little sense to allocate less linear memory than the
380       // natural blocking size of the malloc implementation.
381       // Unfortunately, we would need a somewhat low-level calculation
382       // with tuned parameters to get this perfect for any particular
383       // malloc implementation.  Fortunately, generalizations about
384       // common features seen among implementations seems to suffice.
385 
386       // __pagesize need not match the actual VM page size for good
387       // results in practice, thus we pick a common value on the low
388       // side.  __malloc_header_size is an estimate of the amount of
389       // overhead per memory allocation (in practice seen N * sizeof
390       // (void*) where N is 0, 2 or 4).  According to folklore,
391       // picking this value on the high side is better than
392       // low-balling it (especially when this algorithm is used with
393       // malloc implementations that allocate memory blocks rounded up
394       // to a size which is a power of 2).
395       const size_type __pagesize = 4096;
396       const size_type __malloc_header_size = 4 * sizeof(void*);
397 
398       // The below implements an exponential growth policy, necessary to
399       // meet amortized linear time requirements of the library: see
400       // http://gcc.gnu.org/ml/libstdc++/2001-07/msg00085.html.
401       if (__capacity > __old_capacity && __capacity < 2 * __old_capacity)
402 	{
403 	  __capacity = 2 * __old_capacity;
404 	  // Never allocate a string bigger than _S_max_size.
405 	  if (__capacity > size_type(_S_max_size))
406 	    __capacity = size_type(_S_max_size);
407 	}
408 
409       // NB: Need an array of char_type[__capacity], plus a terminating
410       // null char_type() element, plus enough for the _Rep data structure,
411       // plus sizeof(_Rep) - 1 to upper round to a size multiple of
412       // sizeof(_Rep).
413       // Whew. Seemingly so needy, yet so elemental.
414       size_type __size = ((__capacity + 1) * sizeof(_CharT)
415 			  + 2 * sizeof(_Rep) - 1);
416 
417       const size_type __adj_size = __size + __malloc_header_size;
418       if (__adj_size > __pagesize && __capacity > __old_capacity)
419 	{
420 	  const size_type __extra = __pagesize - __adj_size % __pagesize;
421 	  __capacity += __extra / sizeof(_CharT);
422 	  if (__capacity > size_type(_S_max_size))
423 	    __capacity = size_type(_S_max_size);
424 	  __size = (__capacity + 1) * sizeof(_CharT) + 2 * sizeof(_Rep) - 1;
425 	}
426 
427       // NB: Might throw, but no worries about a leak, mate: _Rep()
428       // does not throw.
429       _Rep* __place = _Rep_alloc_type(__alloc).allocate(__size / sizeof(_Rep));
430       _Rep* __p = new (__place) _Rep;
431       __p->_M_info._M_capacity = __capacity;
432       return __p;
433     }
434 
435   template<typename _CharT, typename _Traits, typename _Alloc>
436     void
437     __rc_string_base<_CharT, _Traits, _Alloc>::_Rep::
438     _M_destroy(const _Alloc& __a) throw ()
439     {
440       const size_type __size = ((_M_info._M_capacity + 1) * sizeof(_CharT)
441 				+ 2 * sizeof(_Rep) - 1);
442       _Rep_alloc_type(__a).deallocate(this, __size / sizeof(_Rep));
443     }
444 
445   template<typename _CharT, typename _Traits, typename _Alloc>
446     _CharT*
447     __rc_string_base<_CharT, _Traits, _Alloc>::_Rep::
448     _M_clone(const _Alloc& __alloc, size_type __res)
449     {
450       // Requested capacity of the clone.
451       const size_type __requested_cap = _M_info._M_length + __res;
452       _Rep* __r = _Rep::_S_create(__requested_cap, _M_info._M_capacity,
453 				  __alloc);
454 
455       if (_M_info._M_length)
456 	_S_copy(__r->_M_refdata(), _M_refdata(), _M_info._M_length);
457 
458       __r->_M_set_length(_M_info._M_length);
459       return __r->_M_refdata();
460     }
461 
462   template<typename _CharT, typename _Traits, typename _Alloc>
463     __rc_string_base<_CharT, _Traits, _Alloc>::
464     __rc_string_base(const _Alloc& __a)
465     : _M_dataplus(__a, _S_construct(size_type(), _CharT(), __a)) { }
466 
467   template<typename _CharT, typename _Traits, typename _Alloc>
468     __rc_string_base<_CharT, _Traits, _Alloc>::
469     __rc_string_base(const __rc_string_base& __rcs)
470     : _M_dataplus(__rcs._M_get_allocator(),
471 		  __rcs._M_grab(__rcs._M_get_allocator())) { }
472 
473   template<typename _CharT, typename _Traits, typename _Alloc>
474     __rc_string_base<_CharT, _Traits, _Alloc>::
475     __rc_string_base(size_type __n, _CharT __c, const _Alloc& __a)
476     : _M_dataplus(__a, _S_construct(__n, __c, __a)) { }
477 
478   template<typename _CharT, typename _Traits, typename _Alloc>
479     template<typename _InputIterator>
480     __rc_string_base<_CharT, _Traits, _Alloc>::
481     __rc_string_base(_InputIterator __beg, _InputIterator __end,
482 		     const _Alloc& __a)
483     : _M_dataplus(__a, _S_construct(__beg, __end, __a)) { }
484 
485   template<typename _CharT, typename _Traits, typename _Alloc>
486     void
487     __rc_string_base<_CharT, _Traits, _Alloc>::
488     _M_leak_hard()
489     {
490       if (_M_is_shared())
491 	_M_erase(0, 0);
492       _M_set_leaked();
493     }
494 
495   // NB: This is the special case for Input Iterators, used in
496   // istreambuf_iterators, etc.
497   // Input Iterators have a cost structure very different from
498   // pointers, calling for a different coding style.
499   template<typename _CharT, typename _Traits, typename _Alloc>
500     template<typename _InIterator>
501       _CharT*
502       __rc_string_base<_CharT, _Traits, _Alloc>::
503       _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a,
504 		   std::input_iterator_tag)
505       {
506 	if (__beg == __end && __a == _Alloc())
507 	  return _S_empty_rep._M_refcopy();
508 
509 	// Avoid reallocation for common case.
510 	_CharT __buf[128];
511 	size_type __len = 0;
512 	while (__beg != __end && __len < sizeof(__buf) / sizeof(_CharT))
513 	  {
514 	    __buf[__len++] = *__beg;
515 	    ++__beg;
516 	  }
517 	_Rep* __r = _Rep::_S_create(__len, size_type(0), __a);
518 	_S_copy(__r->_M_refdata(), __buf, __len);
519 	__try
520 	  {
521 	    while (__beg != __end)
522 	      {
523 		if (__len == __r->_M_info._M_capacity)
524 		  {
525 		    // Allocate more space.
526 		    _Rep* __another = _Rep::_S_create(__len + 1, __len, __a);
527 		    _S_copy(__another->_M_refdata(), __r->_M_refdata(), __len);
528 		    __r->_M_destroy(__a);
529 		    __r = __another;
530 		  }
531 		__r->_M_refdata()[__len++] = *__beg;
532 		++__beg;
533 	      }
534 	  }
535 	__catch(...)
536 	  {
537 	    __r->_M_destroy(__a);
538 	    __throw_exception_again;
539 	  }
540 	__r->_M_set_length(__len);
541 	return __r->_M_refdata();
542       }
543 
544   template<typename _CharT, typename _Traits, typename _Alloc>
545     template<typename _InIterator>
546       _CharT*
547       __rc_string_base<_CharT, _Traits, _Alloc>::
548       _S_construct(_InIterator __beg, _InIterator __end, const _Alloc& __a,
549 		   std::forward_iterator_tag)
550       {
551 	if (__beg == __end && __a == _Alloc())
552 	  return _S_empty_rep._M_refcopy();
553 
554 	// NB: Not required, but considered best practice.
555 	if (__is_null_pointer(__beg) && __beg != __end)
556 	  std::__throw_logic_error(__N("__rc_string_base::"
557 				       "_S_construct NULL not valid"));
558 
559 	const size_type __dnew = static_cast<size_type>(std::distance(__beg,
560 								      __end));
561 	// Check for out_of_range and length_error exceptions.
562 	_Rep* __r = _Rep::_S_create(__dnew, size_type(0), __a);
563 	__try
564 	  { _S_copy_chars(__r->_M_refdata(), __beg, __end); }
565 	__catch(...)
566 	  {
567 	    __r->_M_destroy(__a);
568 	    __throw_exception_again;
569 	  }
570 	__r->_M_set_length(__dnew);
571 	return __r->_M_refdata();
572       }
573 
574   template<typename _CharT, typename _Traits, typename _Alloc>
575     _CharT*
576     __rc_string_base<_CharT, _Traits, _Alloc>::
577     _S_construct(size_type __n, _CharT __c, const _Alloc& __a)
578     {
579       if (__n == 0 && __a == _Alloc())
580 	return _S_empty_rep._M_refcopy();
581 
582       // Check for out_of_range and length_error exceptions.
583       _Rep* __r = _Rep::_S_create(__n, size_type(0), __a);
584       if (__n)
585 	_S_assign(__r->_M_refdata(), __n, __c);
586 
587       __r->_M_set_length(__n);
588       return __r->_M_refdata();
589     }
590 
591   template<typename _CharT, typename _Traits, typename _Alloc>
592     void
593     __rc_string_base<_CharT, _Traits, _Alloc>::
594     _M_swap(__rc_string_base& __rcs)
595     {
596       if (_M_is_leaked())
597 	_M_set_sharable();
598       if (__rcs._M_is_leaked())
599 	__rcs._M_set_sharable();
600 
601       _CharT* __tmp = _M_data();
602       _M_data(__rcs._M_data());
603       __rcs._M_data(__tmp);
604 
605       // _GLIBCXX_RESOLVE_LIB_DEFECTS
606       // 431. Swapping containers with unequal allocators.
607       std::__alloc_swap<allocator_type>::_S_do_it(_M_get_allocator(),
608 						  __rcs._M_get_allocator());
609     }
610 
611   template<typename _CharT, typename _Traits, typename _Alloc>
612     void
613     __rc_string_base<_CharT, _Traits, _Alloc>::
614     _M_assign(const __rc_string_base& __rcs)
615     {
616       if (_M_rep() != __rcs._M_rep())
617 	{
618 	  _CharT* __tmp = __rcs._M_grab(_M_get_allocator());
619 	  _M_dispose();
620 	  _M_data(__tmp);
621 	}
622     }
623 
624   template<typename _CharT, typename _Traits, typename _Alloc>
625     void
626     __rc_string_base<_CharT, _Traits, _Alloc>::
627     _M_reserve(size_type __res)
628     {
629       // Make sure we don't shrink below the current size.
630       if (__res < _M_length())
631 	__res = _M_length();
632 
633       if (__res != _M_capacity() || _M_is_shared())
634 	{
635 	  _CharT* __tmp = _M_rep()->_M_clone(_M_get_allocator(),
636 					     __res - _M_length());
637 	  _M_dispose();
638 	  _M_data(__tmp);
639 	}
640     }
641 
642   template<typename _CharT, typename _Traits, typename _Alloc>
643     void
644     __rc_string_base<_CharT, _Traits, _Alloc>::
645     _M_mutate(size_type __pos, size_type __len1, const _CharT* __s,
646 	      size_type __len2)
647     {
648       const size_type __how_much = _M_length() - __pos - __len1;
649 
650       _Rep* __r = _Rep::_S_create(_M_length() + __len2 - __len1,
651 				  _M_capacity(), _M_get_allocator());
652 
653       if (__pos)
654 	_S_copy(__r->_M_refdata(), _M_data(), __pos);
655       if (__s && __len2)
656 	_S_copy(__r->_M_refdata() + __pos, __s, __len2);
657       if (__how_much)
658 	_S_copy(__r->_M_refdata() + __pos + __len2,
659 		_M_data() + __pos + __len1, __how_much);
660 
661       _M_dispose();
662       _M_data(__r->_M_refdata());
663     }
664 
665   template<typename _CharT, typename _Traits, typename _Alloc>
666     void
667     __rc_string_base<_CharT, _Traits, _Alloc>::
668     _M_erase(size_type __pos, size_type __n)
669     {
670       const size_type __new_size = _M_length() - __n;
671       const size_type __how_much = _M_length() - __pos - __n;
672 
673       if (_M_is_shared())
674 	{
675 	  // Must reallocate.
676 	  _Rep* __r = _Rep::_S_create(__new_size, _M_capacity(),
677 				      _M_get_allocator());
678 
679 	  if (__pos)
680 	    _S_copy(__r->_M_refdata(), _M_data(), __pos);
681 	  if (__how_much)
682 	    _S_copy(__r->_M_refdata() + __pos,
683 		    _M_data() + __pos + __n, __how_much);
684 
685 	  _M_dispose();
686 	  _M_data(__r->_M_refdata());
687 	}
688       else if (__how_much && __n)
689 	{
690 	  // Work in-place.
691 	  _S_move(_M_data() + __pos,
692 		  _M_data() + __pos + __n, __how_much);
693 	}
694 
695       _M_rep()->_M_set_length(__new_size);
696     }
697 
698   template<>
699     inline bool
700     __rc_string_base<char, std::char_traits<char>,
701 		     std::allocator<char> >::
702     _M_compare(const __rc_string_base& __rcs) const
703     {
704       if (_M_rep() == __rcs._M_rep())
705 	return true;
706       return false;
707     }
708 
709 #ifdef _GLIBCXX_USE_WCHAR_T
710   template<>
711     inline bool
712     __rc_string_base<wchar_t, std::char_traits<wchar_t>,
713 		     std::allocator<wchar_t> >::
714     _M_compare(const __rc_string_base& __rcs) const
715     {
716       if (_M_rep() == __rcs._M_rep())
717 	return true;
718       return false;
719     }
720 #endif
721 
722 _GLIBCXX_END_NAMESPACE
723 
724 #endif /* _RC_STRING_BASE_H */
725