xref: /netbsd-src/external/gpl3/gcc.old/dist/libstdc++-v3/include/bits/stl_vector.h (revision f78a39098a724dc9cf9de2015260a6c3ffa0f8d7)
1 // Vector implementation -*- C++ -*-
2 
3 // Copyright (C) 2001-2013 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /*
26  *
27  * Copyright (c) 1994
28  * Hewlett-Packard Company
29  *
30  * Permission to use, copy, modify, distribute and sell this software
31  * and its documentation for any purpose is hereby granted without fee,
32  * provided that the above copyright notice appear in all copies and
33  * that both that copyright notice and this permission notice appear
34  * in supporting documentation.  Hewlett-Packard Company makes no
35  * representations about the suitability of this software for any
36  * purpose.  It is provided "as is" without express or implied warranty.
37  *
38  *
39  * Copyright (c) 1996
40  * Silicon Graphics Computer Systems, Inc.
41  *
42  * Permission to use, copy, modify, distribute and sell this software
43  * and its documentation for any purpose is hereby granted without fee,
44  * provided that the above copyright notice appear in all copies and
45  * that both that copyright notice and this permission notice appear
46  * in supporting documentation.  Silicon Graphics makes no
47  * representations about the suitability of this  software for any
48  * purpose.  It is provided "as is" without express or implied warranty.
49  */
50 
51 /** @file bits/stl_vector.h
52  *  This is an internal header file, included by other library headers.
53  *  Do not attempt to use it directly. @headername{vector}
54  */
55 
56 #ifndef _STL_VECTOR_H
57 #define _STL_VECTOR_H 1
58 
59 #include <bits/stl_iterator_base_funcs.h>
60 #include <bits/functexcept.h>
61 #include <bits/concept_check.h>
62 #if __cplusplus >= 201103L
63 #include <initializer_list>
64 #endif
65 
66 namespace std _GLIBCXX_VISIBILITY(default)
67 {
68 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
69 
70   /// See bits/stl_deque.h's _Deque_base for an explanation.
71   template<typename _Tp, typename _Alloc>
72     struct _Vector_base
73     {
74       typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
75         rebind<_Tp>::other _Tp_alloc_type;
76       typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>::pointer
77        	pointer;
78 
79       struct _Vector_impl
80       : public _Tp_alloc_type
81       {
82 	pointer _M_start;
83 	pointer _M_finish;
84 	pointer _M_end_of_storage;
85 
86 	_Vector_impl()
87 	: _Tp_alloc_type(), _M_start(0), _M_finish(0), _M_end_of_storage(0)
88 	{ }
89 
90 	_Vector_impl(_Tp_alloc_type const& __a)
91 	: _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
92 	{ }
93 
94 #if __cplusplus >= 201103L
95 	_Vector_impl(_Tp_alloc_type&& __a)
96 	: _Tp_alloc_type(std::move(__a)),
97 	  _M_start(0), _M_finish(0), _M_end_of_storage(0)
98 	{ }
99 #endif
100 
101 	void _M_swap_data(_Vector_impl& __x)
102 	{
103 	  std::swap(_M_start, __x._M_start);
104 	  std::swap(_M_finish, __x._M_finish);
105 	  std::swap(_M_end_of_storage, __x._M_end_of_storage);
106 	}
107       };
108 
109     public:
110       typedef _Alloc allocator_type;
111 
112       _Tp_alloc_type&
113       _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
114       { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
115 
116       const _Tp_alloc_type&
117       _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
118       { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
119 
120       allocator_type
121       get_allocator() const _GLIBCXX_NOEXCEPT
122       { return allocator_type(_M_get_Tp_allocator()); }
123 
124       _Vector_base()
125       : _M_impl() { }
126 
127       _Vector_base(const allocator_type& __a)
128       : _M_impl(__a) { }
129 
130       _Vector_base(size_t __n)
131       : _M_impl()
132       { _M_create_storage(__n); }
133 
134       _Vector_base(size_t __n, const allocator_type& __a)
135       : _M_impl(__a)
136       { _M_create_storage(__n); }
137 
138 #if __cplusplus >= 201103L
139       _Vector_base(_Tp_alloc_type&& __a)
140       : _M_impl(std::move(__a)) { }
141 
142       _Vector_base(_Vector_base&& __x)
143       : _M_impl(std::move(__x._M_get_Tp_allocator()))
144       { this->_M_impl._M_swap_data(__x._M_impl); }
145 
146       _Vector_base(_Vector_base&& __x, const allocator_type& __a)
147       : _M_impl(__a)
148       {
149 	if (__x.get_allocator() == __a)
150 	  this->_M_impl._M_swap_data(__x._M_impl);
151 	else
152 	  {
153 	    size_t __n = __x._M_impl._M_finish - __x._M_impl._M_start;
154 	    _M_create_storage(__n);
155 	  }
156       }
157 #endif
158 
159       ~_Vector_base()
160       { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
161 		      - this->_M_impl._M_start); }
162 
163     public:
164       _Vector_impl _M_impl;
165 
166       pointer
167       _M_allocate(size_t __n)
168       { return __n != 0 ? _M_impl.allocate(__n) : 0; }
169 
170       void
171       _M_deallocate(pointer __p, size_t __n)
172       {
173 	if (__p)
174 	  _M_impl.deallocate(__p, __n);
175       }
176 
177     private:
178       void
179       _M_create_storage(size_t __n)
180       {
181 	this->_M_impl._M_start = this->_M_allocate(__n);
182 	this->_M_impl._M_finish = this->_M_impl._M_start;
183 	this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
184       }
185     };
186 
187 
188   /**
189    *  @brief A standard container which offers fixed time access to
190    *  individual elements in any order.
191    *
192    *  @ingroup sequences
193    *
194    *  @tparam _Tp  Type of element.
195    *  @tparam _Alloc  Allocator type, defaults to allocator<_Tp>.
196    *
197    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
198    *  <a href="tables.html#66">reversible container</a>, and a
199    *  <a href="tables.html#67">sequence</a>, including the
200    *  <a href="tables.html#68">optional sequence requirements</a> with the
201    *  %exception of @c push_front and @c pop_front.
202    *
203    *  In some terminology a %vector can be described as a dynamic
204    *  C-style array, it offers fast and efficient access to individual
205    *  elements in any order and saves the user from worrying about
206    *  memory and size allocation.  Subscripting ( @c [] ) access is
207    *  also provided as with C-style arrays.
208   */
209   template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
210     class vector : protected _Vector_base<_Tp, _Alloc>
211     {
212       // Concept requirements.
213       typedef typename _Alloc::value_type                _Alloc_value_type;
214       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
215       __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
216 
217       typedef _Vector_base<_Tp, _Alloc>			 _Base;
218       typedef typename _Base::_Tp_alloc_type		 _Tp_alloc_type;
219       typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type>  _Alloc_traits;
220 
221     public:
222       typedef _Tp					 value_type;
223       typedef typename _Base::pointer                    pointer;
224       typedef typename _Alloc_traits::const_pointer      const_pointer;
225       typedef typename _Alloc_traits::reference          reference;
226       typedef typename _Alloc_traits::const_reference    const_reference;
227       typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
228       typedef __gnu_cxx::__normal_iterator<const_pointer, vector>
229       const_iterator;
230       typedef std::reverse_iterator<const_iterator>  const_reverse_iterator;
231       typedef std::reverse_iterator<iterator>		 reverse_iterator;
232       typedef size_t					 size_type;
233       typedef ptrdiff_t					 difference_type;
234       typedef _Alloc                        		 allocator_type;
235 
236     protected:
237       using _Base::_M_allocate;
238       using _Base::_M_deallocate;
239       using _Base::_M_impl;
240       using _Base::_M_get_Tp_allocator;
241 
242     public:
243       // [23.2.4.1] construct/copy/destroy
244       // (assign() and get_allocator() are also listed in this section)
245       /**
246        *  @brief  Default constructor creates no elements.
247        */
248       vector()
249       : _Base() { }
250 
251       /**
252        *  @brief  Creates a %vector with no elements.
253        *  @param  __a  An allocator object.
254        */
255       explicit
256       vector(const allocator_type& __a)
257       : _Base(__a) { }
258 
259 #if __cplusplus >= 201103L
260       /**
261        *  @brief  Creates a %vector with default constructed elements.
262        *  @param  __n  The number of elements to initially create.
263        *  @param  __a  An allocator.
264        *
265        *  This constructor fills the %vector with @a __n default
266        *  constructed elements.
267        */
268       explicit
269       vector(size_type __n, const allocator_type& __a = allocator_type())
270       : _Base(__n, __a)
271       { _M_default_initialize(__n); }
272 
273       /**
274        *  @brief  Creates a %vector with copies of an exemplar element.
275        *  @param  __n  The number of elements to initially create.
276        *  @param  __value  An element to copy.
277        *  @param  __a  An allocator.
278        *
279        *  This constructor fills the %vector with @a __n copies of @a __value.
280        */
281       vector(size_type __n, const value_type& __value,
282 	     const allocator_type& __a = allocator_type())
283       : _Base(__n, __a)
284       { _M_fill_initialize(__n, __value); }
285 #else
286       /**
287        *  @brief  Creates a %vector with copies of an exemplar element.
288        *  @param  __n  The number of elements to initially create.
289        *  @param  __value  An element to copy.
290        *  @param  __a  An allocator.
291        *
292        *  This constructor fills the %vector with @a __n copies of @a __value.
293        */
294       explicit
295       vector(size_type __n, const value_type& __value = value_type(),
296 	     const allocator_type& __a = allocator_type())
297       : _Base(__n, __a)
298       { _M_fill_initialize(__n, __value); }
299 #endif
300 
301       /**
302        *  @brief  %Vector copy constructor.
303        *  @param  __x  A %vector of identical element and allocator types.
304        *
305        *  The newly-created %vector uses a copy of the allocation
306        *  object used by @a __x.  All the elements of @a __x are copied,
307        *  but any extra memory in
308        *  @a __x (for fast expansion) will not be copied.
309        */
310       vector(const vector& __x)
311       : _Base(__x.size(),
312         _Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()))
313       { this->_M_impl._M_finish =
314 	  std::__uninitialized_copy_a(__x.begin(), __x.end(),
315 				      this->_M_impl._M_start,
316 				      _M_get_Tp_allocator());
317       }
318 
319 #if __cplusplus >= 201103L
320       /**
321        *  @brief  %Vector move constructor.
322        *  @param  __x  A %vector of identical element and allocator types.
323        *
324        *  The newly-created %vector contains the exact contents of @a __x.
325        *  The contents of @a __x are a valid, but unspecified %vector.
326        */
327       vector(vector&& __x) noexcept
328       : _Base(std::move(__x)) { }
329 
330       /// Copy constructor with alternative allocator
331       vector(const vector& __x, const allocator_type& __a)
332       : _Base(__x.size(), __a)
333       { this->_M_impl._M_finish =
334 	  std::__uninitialized_copy_a(__x.begin(), __x.end(),
335 				      this->_M_impl._M_start,
336 				      _M_get_Tp_allocator());
337       }
338 
339       /// Move constructor with alternative allocator
340       vector(vector&& __rv, const allocator_type& __m)
341       : _Base(std::move(__rv), __m)
342       {
343 	if (__rv.get_allocator() != __m)
344 	  {
345 	    this->_M_impl._M_finish =
346 	      std::__uninitialized_move_a(__rv.begin(), __rv.end(),
347 					  this->_M_impl._M_start,
348 					  _M_get_Tp_allocator());
349 	    __rv.clear();
350 	  }
351       }
352 
353       /**
354        *  @brief  Builds a %vector from an initializer list.
355        *  @param  __l  An initializer_list.
356        *  @param  __a  An allocator.
357        *
358        *  Create a %vector consisting of copies of the elements in the
359        *  initializer_list @a __l.
360        *
361        *  This will call the element type's copy constructor N times
362        *  (where N is @a __l.size()) and do no memory reallocation.
363        */
364       vector(initializer_list<value_type> __l,
365 	     const allocator_type& __a = allocator_type())
366       : _Base(__a)
367       {
368 	_M_range_initialize(__l.begin(), __l.end(),
369 			    random_access_iterator_tag());
370       }
371 #endif
372 
373       /**
374        *  @brief  Builds a %vector from a range.
375        *  @param  __first  An input iterator.
376        *  @param  __last  An input iterator.
377        *  @param  __a  An allocator.
378        *
379        *  Create a %vector consisting of copies of the elements from
380        *  [first,last).
381        *
382        *  If the iterators are forward, bidirectional, or
383        *  random-access, then this will call the elements' copy
384        *  constructor N times (where N is distance(first,last)) and do
385        *  no memory reallocation.  But if only input iterators are
386        *  used, then this will do at most 2N calls to the copy
387        *  constructor, and logN memory reallocations.
388        */
389 #if __cplusplus >= 201103L
390       template<typename _InputIterator,
391 	       typename = std::_RequireInputIter<_InputIterator>>
392         vector(_InputIterator __first, _InputIterator __last,
393 	       const allocator_type& __a = allocator_type())
394 	: _Base(__a)
395         { _M_initialize_dispatch(__first, __last, __false_type()); }
396 #else
397       template<typename _InputIterator>
398         vector(_InputIterator __first, _InputIterator __last,
399 	       const allocator_type& __a = allocator_type())
400 	: _Base(__a)
401         {
402 	  // Check whether it's an integral type.  If so, it's not an iterator.
403 	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
404 	  _M_initialize_dispatch(__first, __last, _Integral());
405 	}
406 #endif
407 
408       /**
409        *  The dtor only erases the elements, and note that if the
410        *  elements themselves are pointers, the pointed-to memory is
411        *  not touched in any way.  Managing the pointer is the user's
412        *  responsibility.
413        */
414       ~vector() _GLIBCXX_NOEXCEPT
415       { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
416 		      _M_get_Tp_allocator()); }
417 
418       /**
419        *  @brief  %Vector assignment operator.
420        *  @param  __x  A %vector of identical element and allocator types.
421        *
422        *  All the elements of @a __x are copied, but any extra memory in
423        *  @a __x (for fast expansion) will not be copied.  Unlike the
424        *  copy constructor, the allocator object is not copied.
425        */
426       vector&
427       operator=(const vector& __x);
428 
429 #if __cplusplus >= 201103L
430       /**
431        *  @brief  %Vector move assignment operator.
432        *  @param  __x  A %vector of identical element and allocator types.
433        *
434        *  The contents of @a __x are moved into this %vector (without copying,
435        *  if the allocators permit it).
436        *  @a __x is a valid, but unspecified %vector.
437        */
438       vector&
439       operator=(vector&& __x) noexcept(_Alloc_traits::_S_nothrow_move())
440       {
441         constexpr bool __move_storage =
442           _Alloc_traits::_S_propagate_on_move_assign()
443           || _Alloc_traits::_S_always_equal();
444         _M_move_assign(std::move(__x),
445                        integral_constant<bool, __move_storage>());
446 	return *this;
447       }
448 
449       /**
450        *  @brief  %Vector list assignment operator.
451        *  @param  __l  An initializer_list.
452        *
453        *  This function fills a %vector with copies of the elements in the
454        *  initializer list @a __l.
455        *
456        *  Note that the assignment completely changes the %vector and
457        *  that the resulting %vector's size is the same as the number
458        *  of elements assigned.  Old data may be lost.
459        */
460       vector&
461       operator=(initializer_list<value_type> __l)
462       {
463 	this->assign(__l.begin(), __l.end());
464 	return *this;
465       }
466 #endif
467 
468       /**
469        *  @brief  Assigns a given value to a %vector.
470        *  @param  __n  Number of elements to be assigned.
471        *  @param  __val  Value to be assigned.
472        *
473        *  This function fills a %vector with @a __n copies of the given
474        *  value.  Note that the assignment completely changes the
475        *  %vector and that the resulting %vector's size is the same as
476        *  the number of elements assigned.  Old data may be lost.
477        */
478       void
479       assign(size_type __n, const value_type& __val)
480       { _M_fill_assign(__n, __val); }
481 
482       /**
483        *  @brief  Assigns a range to a %vector.
484        *  @param  __first  An input iterator.
485        *  @param  __last   An input iterator.
486        *
487        *  This function fills a %vector with copies of the elements in the
488        *  range [__first,__last).
489        *
490        *  Note that the assignment completely changes the %vector and
491        *  that the resulting %vector's size is the same as the number
492        *  of elements assigned.  Old data may be lost.
493        */
494 #if __cplusplus >= 201103L
495       template<typename _InputIterator,
496 	       typename = std::_RequireInputIter<_InputIterator>>
497         void
498         assign(_InputIterator __first, _InputIterator __last)
499         { _M_assign_dispatch(__first, __last, __false_type()); }
500 #else
501       template<typename _InputIterator>
502         void
503         assign(_InputIterator __first, _InputIterator __last)
504         {
505 	  // Check whether it's an integral type.  If so, it's not an iterator.
506 	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
507 	  _M_assign_dispatch(__first, __last, _Integral());
508 	}
509 #endif
510 
511 #if __cplusplus >= 201103L
512       /**
513        *  @brief  Assigns an initializer list to a %vector.
514        *  @param  __l  An initializer_list.
515        *
516        *  This function fills a %vector with copies of the elements in the
517        *  initializer list @a __l.
518        *
519        *  Note that the assignment completely changes the %vector and
520        *  that the resulting %vector's size is the same as the number
521        *  of elements assigned.  Old data may be lost.
522        */
523       void
524       assign(initializer_list<value_type> __l)
525       { this->assign(__l.begin(), __l.end()); }
526 #endif
527 
528       /// Get a copy of the memory allocation object.
529       using _Base::get_allocator;
530 
531       // iterators
532       /**
533        *  Returns a read/write iterator that points to the first
534        *  element in the %vector.  Iteration is done in ordinary
535        *  element order.
536        */
537       iterator
538       begin() _GLIBCXX_NOEXCEPT
539       { return iterator(this->_M_impl._M_start); }
540 
541       /**
542        *  Returns a read-only (constant) iterator that points to the
543        *  first element in the %vector.  Iteration is done in ordinary
544        *  element order.
545        */
546       const_iterator
547       begin() const _GLIBCXX_NOEXCEPT
548       { return const_iterator(this->_M_impl._M_start); }
549 
550       /**
551        *  Returns a read/write iterator that points one past the last
552        *  element in the %vector.  Iteration is done in ordinary
553        *  element order.
554        */
555       iterator
556       end() _GLIBCXX_NOEXCEPT
557       { return iterator(this->_M_impl._M_finish); }
558 
559       /**
560        *  Returns a read-only (constant) iterator that points one past
561        *  the last element in the %vector.  Iteration is done in
562        *  ordinary element order.
563        */
564       const_iterator
565       end() const _GLIBCXX_NOEXCEPT
566       { return const_iterator(this->_M_impl._M_finish); }
567 
568       /**
569        *  Returns a read/write reverse iterator that points to the
570        *  last element in the %vector.  Iteration is done in reverse
571        *  element order.
572        */
573       reverse_iterator
574       rbegin() _GLIBCXX_NOEXCEPT
575       { return reverse_iterator(end()); }
576 
577       /**
578        *  Returns a read-only (constant) reverse iterator that points
579        *  to the last element in the %vector.  Iteration is done in
580        *  reverse element order.
581        */
582       const_reverse_iterator
583       rbegin() const _GLIBCXX_NOEXCEPT
584       { return const_reverse_iterator(end()); }
585 
586       /**
587        *  Returns a read/write reverse iterator that points to one
588        *  before the first element in the %vector.  Iteration is done
589        *  in reverse element order.
590        */
591       reverse_iterator
592       rend() _GLIBCXX_NOEXCEPT
593       { return reverse_iterator(begin()); }
594 
595       /**
596        *  Returns a read-only (constant) reverse iterator that points
597        *  to one before the first element in the %vector.  Iteration
598        *  is done in reverse element order.
599        */
600       const_reverse_iterator
601       rend() const _GLIBCXX_NOEXCEPT
602       { return const_reverse_iterator(begin()); }
603 
604 #if __cplusplus >= 201103L
605       /**
606        *  Returns a read-only (constant) iterator that points to the
607        *  first element in the %vector.  Iteration is done in ordinary
608        *  element order.
609        */
610       const_iterator
611       cbegin() const noexcept
612       { return const_iterator(this->_M_impl._M_start); }
613 
614       /**
615        *  Returns a read-only (constant) iterator that points one past
616        *  the last element in the %vector.  Iteration is done in
617        *  ordinary element order.
618        */
619       const_iterator
620       cend() const noexcept
621       { return const_iterator(this->_M_impl._M_finish); }
622 
623       /**
624        *  Returns a read-only (constant) reverse iterator that points
625        *  to the last element in the %vector.  Iteration is done in
626        *  reverse element order.
627        */
628       const_reverse_iterator
629       crbegin() const noexcept
630       { return const_reverse_iterator(end()); }
631 
632       /**
633        *  Returns a read-only (constant) reverse iterator that points
634        *  to one before the first element in the %vector.  Iteration
635        *  is done in reverse element order.
636        */
637       const_reverse_iterator
638       crend() const noexcept
639       { return const_reverse_iterator(begin()); }
640 #endif
641 
642       // [23.2.4.2] capacity
643       /**  Returns the number of elements in the %vector.  */
644       size_type
645       size() const _GLIBCXX_NOEXCEPT
646       { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
647 
648       /**  Returns the size() of the largest possible %vector.  */
649       size_type
650       max_size() const _GLIBCXX_NOEXCEPT
651       { return _Alloc_traits::max_size(_M_get_Tp_allocator()); }
652 
653 #if __cplusplus >= 201103L
654       /**
655        *  @brief  Resizes the %vector to the specified number of elements.
656        *  @param  __new_size  Number of elements the %vector should contain.
657        *
658        *  This function will %resize the %vector to the specified
659        *  number of elements.  If the number is smaller than the
660        *  %vector's current size the %vector is truncated, otherwise
661        *  default constructed elements are appended.
662        */
663       void
664       resize(size_type __new_size)
665       {
666 	if (__new_size > size())
667 	  _M_default_append(__new_size - size());
668 	else if (__new_size < size())
669 	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
670       }
671 
672       /**
673        *  @brief  Resizes the %vector to the specified number of elements.
674        *  @param  __new_size  Number of elements the %vector should contain.
675        *  @param  __x  Data with which new elements should be populated.
676        *
677        *  This function will %resize the %vector to the specified
678        *  number of elements.  If the number is smaller than the
679        *  %vector's current size the %vector is truncated, otherwise
680        *  the %vector is extended and new elements are populated with
681        *  given data.
682        */
683       void
684       resize(size_type __new_size, const value_type& __x)
685       {
686 	if (__new_size > size())
687 	  insert(end(), __new_size - size(), __x);
688 	else if (__new_size < size())
689 	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
690       }
691 #else
692       /**
693        *  @brief  Resizes the %vector to the specified number of elements.
694        *  @param  __new_size  Number of elements the %vector should contain.
695        *  @param  __x  Data with which new elements should be populated.
696        *
697        *  This function will %resize the %vector to the specified
698        *  number of elements.  If the number is smaller than the
699        *  %vector's current size the %vector is truncated, otherwise
700        *  the %vector is extended and new elements are populated with
701        *  given data.
702        */
703       void
704       resize(size_type __new_size, value_type __x = value_type())
705       {
706 	if (__new_size > size())
707 	  insert(end(), __new_size - size(), __x);
708 	else if (__new_size < size())
709 	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
710       }
711 #endif
712 
713 #if __cplusplus >= 201103L
714       /**  A non-binding request to reduce capacity() to size().  */
715       void
716       shrink_to_fit()
717       { _M_shrink_to_fit(); }
718 #endif
719 
720       /**
721        *  Returns the total number of elements that the %vector can
722        *  hold before needing to allocate more memory.
723        */
724       size_type
725       capacity() const _GLIBCXX_NOEXCEPT
726       { return size_type(this->_M_impl._M_end_of_storage
727 			 - this->_M_impl._M_start); }
728 
729       /**
730        *  Returns true if the %vector is empty.  (Thus begin() would
731        *  equal end().)
732        */
733       bool
734       empty() const _GLIBCXX_NOEXCEPT
735       { return begin() == end(); }
736 
737       /**
738        *  @brief  Attempt to preallocate enough memory for specified number of
739        *          elements.
740        *  @param  __n  Number of elements required.
741        *  @throw  std::length_error  If @a n exceeds @c max_size().
742        *
743        *  This function attempts to reserve enough memory for the
744        *  %vector to hold the specified number of elements.  If the
745        *  number requested is more than max_size(), length_error is
746        *  thrown.
747        *
748        *  The advantage of this function is that if optimal code is a
749        *  necessity and the user can determine the number of elements
750        *  that will be required, the user can reserve the memory in
751        *  %advance, and thus prevent a possible reallocation of memory
752        *  and copying of %vector data.
753        */
754       void
755       reserve(size_type __n);
756 
757       // element access
758       /**
759        *  @brief  Subscript access to the data contained in the %vector.
760        *  @param __n The index of the element for which data should be
761        *  accessed.
762        *  @return  Read/write reference to data.
763        *
764        *  This operator allows for easy, array-style, data access.
765        *  Note that data access with this operator is unchecked and
766        *  out_of_range lookups are not defined. (For checked lookups
767        *  see at().)
768        */
769       reference
770       operator[](size_type __n)
771       { return *(this->_M_impl._M_start + __n); }
772 
773       /**
774        *  @brief  Subscript access to the data contained in the %vector.
775        *  @param __n The index of the element for which data should be
776        *  accessed.
777        *  @return  Read-only (constant) reference to data.
778        *
779        *  This operator allows for easy, array-style, data access.
780        *  Note that data access with this operator is unchecked and
781        *  out_of_range lookups are not defined. (For checked lookups
782        *  see at().)
783        */
784       const_reference
785       operator[](size_type __n) const
786       { return *(this->_M_impl._M_start + __n); }
787 
788     protected:
789       /// Safety check used only from at().
790       void
791       _M_range_check(size_type __n) const
792       {
793 	if (__n >= this->size())
794 	  __throw_out_of_range(__N("vector::_M_range_check"));
795       }
796 
797     public:
798       /**
799        *  @brief  Provides access to the data contained in the %vector.
800        *  @param __n The index of the element for which data should be
801        *  accessed.
802        *  @return  Read/write reference to data.
803        *  @throw  std::out_of_range  If @a __n is an invalid index.
804        *
805        *  This function provides for safer data access.  The parameter
806        *  is first checked that it is in the range of the vector.  The
807        *  function throws out_of_range if the check fails.
808        */
809       reference
810       at(size_type __n)
811       {
812 	_M_range_check(__n);
813 	return (*this)[__n];
814       }
815 
816       /**
817        *  @brief  Provides access to the data contained in the %vector.
818        *  @param __n The index of the element for which data should be
819        *  accessed.
820        *  @return  Read-only (constant) reference to data.
821        *  @throw  std::out_of_range  If @a __n is an invalid index.
822        *
823        *  This function provides for safer data access.  The parameter
824        *  is first checked that it is in the range of the vector.  The
825        *  function throws out_of_range if the check fails.
826        */
827       const_reference
828       at(size_type __n) const
829       {
830 	_M_range_check(__n);
831 	return (*this)[__n];
832       }
833 
834       /**
835        *  Returns a read/write reference to the data at the first
836        *  element of the %vector.
837        */
838       reference
839       front()
840       { return *begin(); }
841 
842       /**
843        *  Returns a read-only (constant) reference to the data at the first
844        *  element of the %vector.
845        */
846       const_reference
847       front() const
848       { return *begin(); }
849 
850       /**
851        *  Returns a read/write reference to the data at the last
852        *  element of the %vector.
853        */
854       reference
855       back()
856       { return *(end() - 1); }
857 
858       /**
859        *  Returns a read-only (constant) reference to the data at the
860        *  last element of the %vector.
861        */
862       const_reference
863       back() const
864       { return *(end() - 1); }
865 
866       // _GLIBCXX_RESOLVE_LIB_DEFECTS
867       // DR 464. Suggestion for new member functions in standard containers.
868       // data access
869       /**
870        *   Returns a pointer such that [data(), data() + size()) is a valid
871        *   range.  For a non-empty %vector, data() == &front().
872        */
873 #if __cplusplus >= 201103L
874       _Tp*
875 #else
876       pointer
877 #endif
878       data() _GLIBCXX_NOEXCEPT
879       { return std::__addressof(front()); }
880 
881 #if __cplusplus >= 201103L
882       const _Tp*
883 #else
884       const_pointer
885 #endif
886       data() const _GLIBCXX_NOEXCEPT
887       { return std::__addressof(front()); }
888 
889       // [23.2.4.3] modifiers
890       /**
891        *  @brief  Add data to the end of the %vector.
892        *  @param  __x  Data to be added.
893        *
894        *  This is a typical stack operation.  The function creates an
895        *  element at the end of the %vector and assigns the given data
896        *  to it.  Due to the nature of a %vector this operation can be
897        *  done in constant time if the %vector has preallocated space
898        *  available.
899        */
900       void
901       push_back(const value_type& __x)
902       {
903 	if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
904 	  {
905 	    _Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish,
906 	                             __x);
907 	    ++this->_M_impl._M_finish;
908 	  }
909 	else
910 #if __cplusplus >= 201103L
911 	  _M_emplace_back_aux(__x);
912 #else
913 	  _M_insert_aux(end(), __x);
914 #endif
915       }
916 
917 #if __cplusplus >= 201103L
918       void
919       push_back(value_type&& __x)
920       { emplace_back(std::move(__x)); }
921 
922       template<typename... _Args>
923         void
924         emplace_back(_Args&&... __args);
925 #endif
926 
927       /**
928        *  @brief  Removes last element.
929        *
930        *  This is a typical stack operation. It shrinks the %vector by one.
931        *
932        *  Note that no data is returned, and if the last element's
933        *  data is needed, it should be retrieved before pop_back() is
934        *  called.
935        */
936       void
937       pop_back()
938       {
939 	--this->_M_impl._M_finish;
940 	_Alloc_traits::destroy(this->_M_impl, this->_M_impl._M_finish);
941       }
942 
943 #if __cplusplus >= 201103L
944       /**
945        *  @brief  Inserts an object in %vector before specified iterator.
946        *  @param  __position  An iterator into the %vector.
947        *  @param  __args  Arguments.
948        *  @return  An iterator that points to the inserted data.
949        *
950        *  This function will insert an object of type T constructed
951        *  with T(std::forward<Args>(args)...) before the specified location.
952        *  Note that this kind of operation could be expensive for a %vector
953        *  and if it is frequently used the user should consider using
954        *  std::list.
955        */
956       template<typename... _Args>
957         iterator
958         emplace(iterator __position, _Args&&... __args);
959 #endif
960 
961       /**
962        *  @brief  Inserts given value into %vector before specified iterator.
963        *  @param  __position  An iterator into the %vector.
964        *  @param  __x  Data to be inserted.
965        *  @return  An iterator that points to the inserted data.
966        *
967        *  This function will insert a copy of the given value before
968        *  the specified location.  Note that this kind of operation
969        *  could be expensive for a %vector and if it is frequently
970        *  used the user should consider using std::list.
971        */
972       iterator
973       insert(iterator __position, const value_type& __x);
974 
975 #if __cplusplus >= 201103L
976       /**
977        *  @brief  Inserts given rvalue into %vector before specified iterator.
978        *  @param  __position  An iterator into the %vector.
979        *  @param  __x  Data to be inserted.
980        *  @return  An iterator that points to the inserted data.
981        *
982        *  This function will insert a copy of the given rvalue before
983        *  the specified location.  Note that this kind of operation
984        *  could be expensive for a %vector and if it is frequently
985        *  used the user should consider using std::list.
986        */
987       iterator
988       insert(iterator __position, value_type&& __x)
989       { return emplace(__position, std::move(__x)); }
990 
991       /**
992        *  @brief  Inserts an initializer_list into the %vector.
993        *  @param  __position  An iterator into the %vector.
994        *  @param  __l  An initializer_list.
995        *
996        *  This function will insert copies of the data in the
997        *  initializer_list @a l into the %vector before the location
998        *  specified by @a position.
999        *
1000        *  Note that this kind of operation could be expensive for a
1001        *  %vector and if it is frequently used the user should
1002        *  consider using std::list.
1003        */
1004       void
1005       insert(iterator __position, initializer_list<value_type> __l)
1006       { this->insert(__position, __l.begin(), __l.end()); }
1007 #endif
1008 
1009       /**
1010        *  @brief  Inserts a number of copies of given data into the %vector.
1011        *  @param  __position  An iterator into the %vector.
1012        *  @param  __n  Number of elements to be inserted.
1013        *  @param  __x  Data to be inserted.
1014        *
1015        *  This function will insert a specified number of copies of
1016        *  the given data before the location specified by @a position.
1017        *
1018        *  Note that this kind of operation could be expensive for a
1019        *  %vector and if it is frequently used the user should
1020        *  consider using std::list.
1021        */
1022       void
1023       insert(iterator __position, size_type __n, const value_type& __x)
1024       { _M_fill_insert(__position, __n, __x); }
1025 
1026       /**
1027        *  @brief  Inserts a range into the %vector.
1028        *  @param  __position  An iterator into the %vector.
1029        *  @param  __first  An input iterator.
1030        *  @param  __last   An input iterator.
1031        *
1032        *  This function will insert copies of the data in the range
1033        *  [__first,__last) into the %vector before the location specified
1034        *  by @a pos.
1035        *
1036        *  Note that this kind of operation could be expensive for a
1037        *  %vector and if it is frequently used the user should
1038        *  consider using std::list.
1039        */
1040 #if __cplusplus >= 201103L
1041       template<typename _InputIterator,
1042 	       typename = std::_RequireInputIter<_InputIterator>>
1043         void
1044         insert(iterator __position, _InputIterator __first,
1045 	       _InputIterator __last)
1046         { _M_insert_dispatch(__position, __first, __last, __false_type()); }
1047 #else
1048       template<typename _InputIterator>
1049         void
1050         insert(iterator __position, _InputIterator __first,
1051 	       _InputIterator __last)
1052         {
1053 	  // Check whether it's an integral type.  If so, it's not an iterator.
1054 	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1055 	  _M_insert_dispatch(__position, __first, __last, _Integral());
1056 	}
1057 #endif
1058 
1059       /**
1060        *  @brief  Remove element at given position.
1061        *  @param  __position  Iterator pointing to element to be erased.
1062        *  @return  An iterator pointing to the next element (or end()).
1063        *
1064        *  This function will erase the element at the given position and thus
1065        *  shorten the %vector by one.
1066        *
1067        *  Note This operation could be expensive and if it is
1068        *  frequently used the user should consider using std::list.
1069        *  The user is also cautioned that this function only erases
1070        *  the element, and that if the element is itself a pointer,
1071        *  the pointed-to memory is not touched in any way.  Managing
1072        *  the pointer is the user's responsibility.
1073        */
1074       iterator
1075       erase(iterator __position);
1076 
1077       /**
1078        *  @brief  Remove a range of elements.
1079        *  @param  __first  Iterator pointing to the first element to be erased.
1080        *  @param  __last  Iterator pointing to one past the last element to be
1081        *                  erased.
1082        *  @return  An iterator pointing to the element pointed to by @a __last
1083        *           prior to erasing (or end()).
1084        *
1085        *  This function will erase the elements in the range
1086        *  [__first,__last) and shorten the %vector accordingly.
1087        *
1088        *  Note This operation could be expensive and if it is
1089        *  frequently used the user should consider using std::list.
1090        *  The user is also cautioned that this function only erases
1091        *  the elements, and that if the elements themselves are
1092        *  pointers, the pointed-to memory is not touched in any way.
1093        *  Managing the pointer is the user's responsibility.
1094        */
1095       iterator
1096       erase(iterator __first, iterator __last);
1097 
1098       /**
1099        *  @brief  Swaps data with another %vector.
1100        *  @param  __x  A %vector of the same element and allocator types.
1101        *
1102        *  This exchanges the elements between two vectors in constant time.
1103        *  (Three pointers, so it should be quite fast.)
1104        *  Note that the global std::swap() function is specialized such that
1105        *  std::swap(v1,v2) will feed to this function.
1106        */
1107       void
1108       swap(vector& __x)
1109 #if __cplusplus >= 201103L
1110 			noexcept(_Alloc_traits::_S_nothrow_swap())
1111 #endif
1112       {
1113 	this->_M_impl._M_swap_data(__x._M_impl);
1114 	_Alloc_traits::_S_on_swap(_M_get_Tp_allocator(),
1115 	                          __x._M_get_Tp_allocator());
1116       }
1117 
1118       /**
1119        *  Erases all the elements.  Note that this function only erases the
1120        *  elements, and that if the elements themselves are pointers, the
1121        *  pointed-to memory is not touched in any way.  Managing the pointer is
1122        *  the user's responsibility.
1123        */
1124       void
1125       clear() _GLIBCXX_NOEXCEPT
1126       { _M_erase_at_end(this->_M_impl._M_start); }
1127 
1128     protected:
1129       /**
1130        *  Memory expansion handler.  Uses the member allocation function to
1131        *  obtain @a n bytes of memory, and then copies [first,last) into it.
1132        */
1133       template<typename _ForwardIterator>
1134         pointer
1135         _M_allocate_and_copy(size_type __n,
1136 			     _ForwardIterator __first, _ForwardIterator __last)
1137         {
1138 	  pointer __result = this->_M_allocate(__n);
1139 	  __try
1140 	    {
1141 	      std::__uninitialized_copy_a(__first, __last, __result,
1142 					  _M_get_Tp_allocator());
1143 	      return __result;
1144 	    }
1145 	  __catch(...)
1146 	    {
1147 	      _M_deallocate(__result, __n);
1148 	      __throw_exception_again;
1149 	    }
1150 	}
1151 
1152 
1153       // Internal constructor functions follow.
1154 
1155       // Called by the range constructor to implement [23.1.1]/9
1156 
1157       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1158       // 438. Ambiguity in the "do the right thing" clause
1159       template<typename _Integer>
1160         void
1161         _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
1162         {
1163 	  this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));
1164 	  this->_M_impl._M_end_of_storage =
1165 	    this->_M_impl._M_start + static_cast<size_type>(__n);
1166 	  _M_fill_initialize(static_cast<size_type>(__n), __value);
1167 	}
1168 
1169       // Called by the range constructor to implement [23.1.1]/9
1170       template<typename _InputIterator>
1171         void
1172         _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1173 			       __false_type)
1174         {
1175 	  typedef typename std::iterator_traits<_InputIterator>::
1176 	    iterator_category _IterCategory;
1177 	  _M_range_initialize(__first, __last, _IterCategory());
1178 	}
1179 
1180       // Called by the second initialize_dispatch above
1181       template<typename _InputIterator>
1182         void
1183         _M_range_initialize(_InputIterator __first,
1184 			    _InputIterator __last, std::input_iterator_tag)
1185         {
1186 	  for (; __first != __last; ++__first)
1187 #if __cplusplus >= 201103L
1188 	    emplace_back(*__first);
1189 #else
1190 	    push_back(*__first);
1191 #endif
1192 	}
1193 
1194       // Called by the second initialize_dispatch above
1195       template<typename _ForwardIterator>
1196         void
1197         _M_range_initialize(_ForwardIterator __first,
1198 			    _ForwardIterator __last, std::forward_iterator_tag)
1199         {
1200 	  const size_type __n = std::distance(__first, __last);
1201 	  this->_M_impl._M_start = this->_M_allocate(__n);
1202 	  this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
1203 	  this->_M_impl._M_finish =
1204 	    std::__uninitialized_copy_a(__first, __last,
1205 					this->_M_impl._M_start,
1206 					_M_get_Tp_allocator());
1207 	}
1208 
1209       // Called by the first initialize_dispatch above and by the
1210       // vector(n,value,a) constructor.
1211       void
1212       _M_fill_initialize(size_type __n, const value_type& __value)
1213       {
1214 	std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
1215 				      _M_get_Tp_allocator());
1216 	this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
1217       }
1218 
1219 #if __cplusplus >= 201103L
1220       // Called by the vector(n) constructor.
1221       void
1222       _M_default_initialize(size_type __n)
1223       {
1224 	std::__uninitialized_default_n_a(this->_M_impl._M_start, __n,
1225 					 _M_get_Tp_allocator());
1226 	this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
1227       }
1228 #endif
1229 
1230       // Internal assign functions follow.  The *_aux functions do the actual
1231       // assignment work for the range versions.
1232 
1233       // Called by the range assign to implement [23.1.1]/9
1234 
1235       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1236       // 438. Ambiguity in the "do the right thing" clause
1237       template<typename _Integer>
1238         void
1239         _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1240         { _M_fill_assign(__n, __val); }
1241 
1242       // Called by the range assign to implement [23.1.1]/9
1243       template<typename _InputIterator>
1244         void
1245         _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1246 			   __false_type)
1247         {
1248 	  typedef typename std::iterator_traits<_InputIterator>::
1249 	    iterator_category _IterCategory;
1250 	  _M_assign_aux(__first, __last, _IterCategory());
1251 	}
1252 
1253       // Called by the second assign_dispatch above
1254       template<typename _InputIterator>
1255         void
1256         _M_assign_aux(_InputIterator __first, _InputIterator __last,
1257 		      std::input_iterator_tag);
1258 
1259       // Called by the second assign_dispatch above
1260       template<typename _ForwardIterator>
1261         void
1262         _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1263 		      std::forward_iterator_tag);
1264 
1265       // Called by assign(n,t), and the range assign when it turns out
1266       // to be the same thing.
1267       void
1268       _M_fill_assign(size_type __n, const value_type& __val);
1269 
1270 
1271       // Internal insert functions follow.
1272 
1273       // Called by the range insert to implement [23.1.1]/9
1274 
1275       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1276       // 438. Ambiguity in the "do the right thing" clause
1277       template<typename _Integer>
1278         void
1279         _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
1280 			   __true_type)
1281         { _M_fill_insert(__pos, __n, __val); }
1282 
1283       // Called by the range insert to implement [23.1.1]/9
1284       template<typename _InputIterator>
1285         void
1286         _M_insert_dispatch(iterator __pos, _InputIterator __first,
1287 			   _InputIterator __last, __false_type)
1288         {
1289 	  typedef typename std::iterator_traits<_InputIterator>::
1290 	    iterator_category _IterCategory;
1291 	  _M_range_insert(__pos, __first, __last, _IterCategory());
1292 	}
1293 
1294       // Called by the second insert_dispatch above
1295       template<typename _InputIterator>
1296         void
1297         _M_range_insert(iterator __pos, _InputIterator __first,
1298 			_InputIterator __last, std::input_iterator_tag);
1299 
1300       // Called by the second insert_dispatch above
1301       template<typename _ForwardIterator>
1302         void
1303         _M_range_insert(iterator __pos, _ForwardIterator __first,
1304 			_ForwardIterator __last, std::forward_iterator_tag);
1305 
1306       // Called by insert(p,n,x), and the range insert when it turns out to be
1307       // the same thing.
1308       void
1309       _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1310 
1311 #if __cplusplus >= 201103L
1312       // Called by resize(n).
1313       void
1314       _M_default_append(size_type __n);
1315 
1316       bool
1317       _M_shrink_to_fit();
1318 #endif
1319 
1320       // Called by insert(p,x)
1321 #if __cplusplus < 201103L
1322       void
1323       _M_insert_aux(iterator __position, const value_type& __x);
1324 #else
1325       template<typename... _Args>
1326         void
1327         _M_insert_aux(iterator __position, _Args&&... __args);
1328 
1329       template<typename... _Args>
1330         void
1331         _M_emplace_back_aux(_Args&&... __args);
1332 #endif
1333 
1334       // Called by the latter.
1335       size_type
1336       _M_check_len(size_type __n, const char* __s) const
1337       {
1338 	if (max_size() - size() < __n)
1339 	  __throw_length_error(__N(__s));
1340 
1341 	const size_type __len = size() + std::max(size(), __n);
1342 	return (__len < size() || __len > max_size()) ? max_size() : __len;
1343       }
1344 
1345       // Internal erase functions follow.
1346 
1347       // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
1348       // _M_assign_aux.
1349       void
1350       _M_erase_at_end(pointer __pos)
1351       {
1352 	std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
1353 	this->_M_impl._M_finish = __pos;
1354       }
1355 
1356 #if __cplusplus >= 201103L
1357     private:
1358       // Constant-time move assignment when source object's memory can be
1359       // moved, either because the source's allocator will move too
1360       // or because the allocators are equal.
1361       void
1362       _M_move_assign(vector&& __x, std::true_type) noexcept
1363       {
1364 	vector __tmp(get_allocator());
1365 	this->_M_impl._M_swap_data(__tmp._M_impl);
1366 	this->_M_impl._M_swap_data(__x._M_impl);
1367 	if (_Alloc_traits::_S_propagate_on_move_assign())
1368 	  std::__alloc_on_move(_M_get_Tp_allocator(),
1369 			       __x._M_get_Tp_allocator());
1370       }
1371 
1372       // Do move assignment when it might not be possible to move source
1373       // object's memory, resulting in a linear-time operation.
1374       void
1375       _M_move_assign(vector&& __x, std::false_type)
1376       {
1377 	if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator())
1378 	  _M_move_assign(std::move(__x), std::true_type());
1379 	else
1380 	  {
1381 	    // The rvalue's allocator cannot be moved and is not equal,
1382 	    // so we need to individually move each element.
1383 	    this->assign(std::__make_move_if_noexcept_iterator(__x.begin()),
1384 			 std::__make_move_if_noexcept_iterator(__x.end()));
1385 	    __x.clear();
1386 	  }
1387       }
1388 #endif
1389     };
1390 
1391 
1392   /**
1393    *  @brief  Vector equality comparison.
1394    *  @param  __x  A %vector.
1395    *  @param  __y  A %vector of the same type as @a __x.
1396    *  @return  True iff the size and elements of the vectors are equal.
1397    *
1398    *  This is an equivalence relation.  It is linear in the size of the
1399    *  vectors.  Vectors are considered equivalent if their sizes are equal,
1400    *  and if corresponding elements compare equal.
1401   */
1402   template<typename _Tp, typename _Alloc>
1403     inline bool
1404     operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1405     { return (__x.size() == __y.size()
1406 	      && std::equal(__x.begin(), __x.end(), __y.begin())); }
1407 
1408   /**
1409    *  @brief  Vector ordering relation.
1410    *  @param  __x  A %vector.
1411    *  @param  __y  A %vector of the same type as @a __x.
1412    *  @return  True iff @a __x is lexicographically less than @a __y.
1413    *
1414    *  This is a total ordering relation.  It is linear in the size of the
1415    *  vectors.  The elements must be comparable with @c <.
1416    *
1417    *  See std::lexicographical_compare() for how the determination is made.
1418   */
1419   template<typename _Tp, typename _Alloc>
1420     inline bool
1421     operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1422     { return std::lexicographical_compare(__x.begin(), __x.end(),
1423 					  __y.begin(), __y.end()); }
1424 
1425   /// Based on operator==
1426   template<typename _Tp, typename _Alloc>
1427     inline bool
1428     operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1429     { return !(__x == __y); }
1430 
1431   /// Based on operator<
1432   template<typename _Tp, typename _Alloc>
1433     inline bool
1434     operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1435     { return __y < __x; }
1436 
1437   /// Based on operator<
1438   template<typename _Tp, typename _Alloc>
1439     inline bool
1440     operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1441     { return !(__y < __x); }
1442 
1443   /// Based on operator<
1444   template<typename _Tp, typename _Alloc>
1445     inline bool
1446     operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1447     { return !(__x < __y); }
1448 
1449   /// See std::vector::swap().
1450   template<typename _Tp, typename _Alloc>
1451     inline void
1452     swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
1453     { __x.swap(__y); }
1454 
1455 _GLIBCXX_END_NAMESPACE_CONTAINER
1456 } // namespace std
1457 
1458 #endif /* _STL_VECTOR_H */
1459