xref: /netbsd-src/external/gpl3/gcc.old/dist/libstdc++-v3/include/bits/stl_vector.h (revision 76c7fc5f6b13ed0b1508e6b313e88e59977ed78e)
1 // Vector implementation -*- C++ -*-
2 
3 // Copyright (C) 2001-2017 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /*
26  *
27  * Copyright (c) 1994
28  * Hewlett-Packard Company
29  *
30  * Permission to use, copy, modify, distribute and sell this software
31  * and its documentation for any purpose is hereby granted without fee,
32  * provided that the above copyright notice appear in all copies and
33  * that both that copyright notice and this permission notice appear
34  * in supporting documentation.  Hewlett-Packard Company makes no
35  * representations about the suitability of this software for any
36  * purpose.  It is provided "as is" without express or implied warranty.
37  *
38  *
39  * Copyright (c) 1996
40  * Silicon Graphics Computer Systems, Inc.
41  *
42  * Permission to use, copy, modify, distribute and sell this software
43  * and its documentation for any purpose is hereby granted without fee,
44  * provided that the above copyright notice appear in all copies and
45  * that both that copyright notice and this permission notice appear
46  * in supporting documentation.  Silicon Graphics makes no
47  * representations about the suitability of this  software for any
48  * purpose.  It is provided "as is" without express or implied warranty.
49  */
50 
51 /** @file bits/stl_vector.h
52  *  This is an internal header file, included by other library headers.
53  *  Do not attempt to use it directly. @headername{vector}
54  */
55 
56 #ifndef _STL_VECTOR_H
57 #define _STL_VECTOR_H 1
58 
59 #include <bits/stl_iterator_base_funcs.h>
60 #include <bits/functexcept.h>
61 #include <bits/concept_check.h>
62 #if __cplusplus >= 201103L
63 #include <initializer_list>
64 #endif
65 
66 #include <debug/assertions.h>
67 
68 namespace std _GLIBCXX_VISIBILITY(default)
69 {
70 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
71 
72   /// See bits/stl_deque.h's _Deque_base for an explanation.
73   template<typename _Tp, typename _Alloc>
74     struct _Vector_base
75     {
76       typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
77 	rebind<_Tp>::other _Tp_alloc_type;
78       typedef typename __gnu_cxx::__alloc_traits<_Tp_alloc_type>::pointer
79        	pointer;
80 
81       struct _Vector_impl
82       : public _Tp_alloc_type
83       {
84 	pointer _M_start;
85 	pointer _M_finish;
86 	pointer _M_end_of_storage;
87 
88 	_Vector_impl()
89 	: _Tp_alloc_type(), _M_start(), _M_finish(), _M_end_of_storage()
90 	{ }
91 
92 	_Vector_impl(_Tp_alloc_type const& __a) _GLIBCXX_NOEXCEPT
93 	: _Tp_alloc_type(__a), _M_start(), _M_finish(), _M_end_of_storage()
94 	{ }
95 
96 #if __cplusplus >= 201103L
97 	_Vector_impl(_Tp_alloc_type&& __a) noexcept
98 	: _Tp_alloc_type(std::move(__a)),
99 	  _M_start(), _M_finish(), _M_end_of_storage()
100 	{ }
101 #endif
102 
103 	void _M_swap_data(_Vector_impl& __x) _GLIBCXX_NOEXCEPT
104 	{
105 	  std::swap(_M_start, __x._M_start);
106 	  std::swap(_M_finish, __x._M_finish);
107 	  std::swap(_M_end_of_storage, __x._M_end_of_storage);
108 	}
109       };
110 
111     public:
112       typedef _Alloc allocator_type;
113 
114       _Tp_alloc_type&
115       _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
116       { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
117 
118       const _Tp_alloc_type&
119       _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
120       { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
121 
122       allocator_type
123       get_allocator() const _GLIBCXX_NOEXCEPT
124       { return allocator_type(_M_get_Tp_allocator()); }
125 
126       _Vector_base()
127       : _M_impl() { }
128 
129       _Vector_base(const allocator_type& __a) _GLIBCXX_NOEXCEPT
130       : _M_impl(__a) { }
131 
132       _Vector_base(size_t __n)
133       : _M_impl()
134       { _M_create_storage(__n); }
135 
136       _Vector_base(size_t __n, const allocator_type& __a)
137       : _M_impl(__a)
138       { _M_create_storage(__n); }
139 
140 #if __cplusplus >= 201103L
141       _Vector_base(_Tp_alloc_type&& __a) noexcept
142       : _M_impl(std::move(__a)) { }
143 
144       _Vector_base(_Vector_base&& __x) noexcept
145       : _M_impl(std::move(__x._M_get_Tp_allocator()))
146       { this->_M_impl._M_swap_data(__x._M_impl); }
147 
148       _Vector_base(_Vector_base&& __x, const allocator_type& __a)
149       : _M_impl(__a)
150       {
151 	if (__x.get_allocator() == __a)
152 	  this->_M_impl._M_swap_data(__x._M_impl);
153 	else
154 	  {
155 	    size_t __n = __x._M_impl._M_finish - __x._M_impl._M_start;
156 	    _M_create_storage(__n);
157 	  }
158       }
159 #endif
160 
161       ~_Vector_base() _GLIBCXX_NOEXCEPT
162       { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
163 		      - this->_M_impl._M_start); }
164 
165     public:
166       _Vector_impl _M_impl;
167 
168       pointer
169       _M_allocate(size_t __n)
170       {
171 	typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Tr;
172 	return __n != 0 ? _Tr::allocate(_M_impl, __n) : pointer();
173       }
174 
175       void
176       _M_deallocate(pointer __p, size_t __n)
177       {
178 	typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Tr;
179 	if (__p)
180 	  _Tr::deallocate(_M_impl, __p, __n);
181       }
182 
183     private:
184       void
185       _M_create_storage(size_t __n)
186       {
187 	this->_M_impl._M_start = this->_M_allocate(__n);
188 	this->_M_impl._M_finish = this->_M_impl._M_start;
189 	this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
190       }
191     };
192 
193 
194   /**
195    *  @brief A standard container which offers fixed time access to
196    *  individual elements in any order.
197    *
198    *  @ingroup sequences
199    *
200    *  @tparam _Tp  Type of element.
201    *  @tparam _Alloc  Allocator type, defaults to allocator<_Tp>.
202    *
203    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
204    *  <a href="tables.html#66">reversible container</a>, and a
205    *  <a href="tables.html#67">sequence</a>, including the
206    *  <a href="tables.html#68">optional sequence requirements</a> with the
207    *  %exception of @c push_front and @c pop_front.
208    *
209    *  In some terminology a %vector can be described as a dynamic
210    *  C-style array, it offers fast and efficient access to individual
211    *  elements in any order and saves the user from worrying about
212    *  memory and size allocation.  Subscripting ( @c [] ) access is
213    *  also provided as with C-style arrays.
214   */
215   template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
216     class vector : protected _Vector_base<_Tp, _Alloc>
217     {
218 #ifdef _GLIBCXX_CONCEPT_CHECKS
219       // Concept requirements.
220       typedef typename _Alloc::value_type		_Alloc_value_type;
221 # if __cplusplus < 201103L
222       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
223 # endif
224       __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
225 #endif
226 
227       typedef _Vector_base<_Tp, _Alloc>			_Base;
228       typedef typename _Base::_Tp_alloc_type		_Tp_alloc_type;
229       typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type>	_Alloc_traits;
230 
231     public:
232       typedef _Tp					value_type;
233       typedef typename _Base::pointer			pointer;
234       typedef typename _Alloc_traits::const_pointer	const_pointer;
235       typedef typename _Alloc_traits::reference		reference;
236       typedef typename _Alloc_traits::const_reference	const_reference;
237       typedef __gnu_cxx::__normal_iterator<pointer, vector> iterator;
238       typedef __gnu_cxx::__normal_iterator<const_pointer, vector>
239       const_iterator;
240       typedef std::reverse_iterator<const_iterator>	const_reverse_iterator;
241       typedef std::reverse_iterator<iterator>		reverse_iterator;
242       typedef size_t					size_type;
243       typedef ptrdiff_t					difference_type;
244       typedef _Alloc					allocator_type;
245 
246     protected:
247       using _Base::_M_allocate;
248       using _Base::_M_deallocate;
249       using _Base::_M_impl;
250       using _Base::_M_get_Tp_allocator;
251 
252     public:
253       // [23.2.4.1] construct/copy/destroy
254       // (assign() and get_allocator() are also listed in this section)
255 
256       /**
257        *  @brief  Creates a %vector with no elements.
258        */
259       vector()
260 #if __cplusplus >= 201103L
261       noexcept(is_nothrow_default_constructible<_Alloc>::value)
262 #endif
263       : _Base() { }
264 
265       /**
266        *  @brief  Creates a %vector with no elements.
267        *  @param  __a  An allocator object.
268        */
269       explicit
270       vector(const allocator_type& __a) _GLIBCXX_NOEXCEPT
271       : _Base(__a) { }
272 
273 #if __cplusplus >= 201103L
274       /**
275        *  @brief  Creates a %vector with default constructed elements.
276        *  @param  __n  The number of elements to initially create.
277        *  @param  __a  An allocator.
278        *
279        *  This constructor fills the %vector with @a __n default
280        *  constructed elements.
281        */
282       explicit
283       vector(size_type __n, const allocator_type& __a = allocator_type())
284       : _Base(__n, __a)
285       { _M_default_initialize(__n); }
286 
287       /**
288        *  @brief  Creates a %vector with copies of an exemplar element.
289        *  @param  __n  The number of elements to initially create.
290        *  @param  __value  An element to copy.
291        *  @param  __a  An allocator.
292        *
293        *  This constructor fills the %vector with @a __n copies of @a __value.
294        */
295       vector(size_type __n, const value_type& __value,
296 	     const allocator_type& __a = allocator_type())
297       : _Base(__n, __a)
298       { _M_fill_initialize(__n, __value); }
299 #else
300       /**
301        *  @brief  Creates a %vector with copies of an exemplar element.
302        *  @param  __n  The number of elements to initially create.
303        *  @param  __value  An element to copy.
304        *  @param  __a  An allocator.
305        *
306        *  This constructor fills the %vector with @a __n copies of @a __value.
307        */
308       explicit
309       vector(size_type __n, const value_type& __value = value_type(),
310 	     const allocator_type& __a = allocator_type())
311       : _Base(__n, __a)
312       { _M_fill_initialize(__n, __value); }
313 #endif
314 
315       /**
316        *  @brief  %Vector copy constructor.
317        *  @param  __x  A %vector of identical element and allocator types.
318        *
319        *  All the elements of @a __x are copied, but any unused capacity in
320        *  @a __x  will not be copied
321        *  (i.e. capacity() == size() in the new %vector).
322        *
323        *  The newly-created %vector uses a copy of the allocator object used
324        *  by @a __x (unless the allocator traits dictate a different object).
325        */
326       vector(const vector& __x)
327       : _Base(__x.size(),
328 	_Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()))
329       {
330 	this->_M_impl._M_finish =
331 	  std::__uninitialized_copy_a(__x.begin(), __x.end(),
332 				      this->_M_impl._M_start,
333 				      _M_get_Tp_allocator());
334       }
335 
336 #if __cplusplus >= 201103L
337       /**
338        *  @brief  %Vector move constructor.
339        *  @param  __x  A %vector of identical element and allocator types.
340        *
341        *  The newly-created %vector contains the exact contents of @a __x.
342        *  The contents of @a __x are a valid, but unspecified %vector.
343        */
344       vector(vector&& __x) noexcept
345       : _Base(std::move(__x)) { }
346 
347       /// Copy constructor with alternative allocator
348       vector(const vector& __x, const allocator_type& __a)
349       : _Base(__x.size(), __a)
350       {
351 	this->_M_impl._M_finish =
352 	  std::__uninitialized_copy_a(__x.begin(), __x.end(),
353 				      this->_M_impl._M_start,
354 				      _M_get_Tp_allocator());
355       }
356 
357       /// Move constructor with alternative allocator
358       vector(vector&& __rv, const allocator_type& __m)
359       noexcept(_Alloc_traits::_S_always_equal())
360       : _Base(std::move(__rv), __m)
361       {
362 	if (__rv.get_allocator() != __m)
363 	  {
364 	    this->_M_impl._M_finish =
365 	      std::__uninitialized_move_a(__rv.begin(), __rv.end(),
366 					  this->_M_impl._M_start,
367 					  _M_get_Tp_allocator());
368 	    __rv.clear();
369 	  }
370       }
371 
372       /**
373        *  @brief  Builds a %vector from an initializer list.
374        *  @param  __l  An initializer_list.
375        *  @param  __a  An allocator.
376        *
377        *  Create a %vector consisting of copies of the elements in the
378        *  initializer_list @a __l.
379        *
380        *  This will call the element type's copy constructor N times
381        *  (where N is @a __l.size()) and do no memory reallocation.
382        */
383       vector(initializer_list<value_type> __l,
384 	     const allocator_type& __a = allocator_type())
385       : _Base(__a)
386       {
387 	_M_range_initialize(__l.begin(), __l.end(),
388 			    random_access_iterator_tag());
389       }
390 #endif
391 
392       /**
393        *  @brief  Builds a %vector from a range.
394        *  @param  __first  An input iterator.
395        *  @param  __last  An input iterator.
396        *  @param  __a  An allocator.
397        *
398        *  Create a %vector consisting of copies of the elements from
399        *  [first,last).
400        *
401        *  If the iterators are forward, bidirectional, or
402        *  random-access, then this will call the elements' copy
403        *  constructor N times (where N is distance(first,last)) and do
404        *  no memory reallocation.  But if only input iterators are
405        *  used, then this will do at most 2N calls to the copy
406        *  constructor, and logN memory reallocations.
407        */
408 #if __cplusplus >= 201103L
409       template<typename _InputIterator,
410 	       typename = std::_RequireInputIter<_InputIterator>>
411 	vector(_InputIterator __first, _InputIterator __last,
412 	       const allocator_type& __a = allocator_type())
413 	: _Base(__a)
414 	{ _M_initialize_dispatch(__first, __last, __false_type()); }
415 #else
416       template<typename _InputIterator>
417 	vector(_InputIterator __first, _InputIterator __last,
418 	       const allocator_type& __a = allocator_type())
419 	: _Base(__a)
420 	{
421 	  // Check whether it's an integral type.  If so, it's not an iterator.
422 	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
423 	  _M_initialize_dispatch(__first, __last, _Integral());
424 	}
425 #endif
426 
427       /**
428        *  The dtor only erases the elements, and note that if the
429        *  elements themselves are pointers, the pointed-to memory is
430        *  not touched in any way.  Managing the pointer is the user's
431        *  responsibility.
432        */
433       ~vector() _GLIBCXX_NOEXCEPT
434       { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
435 		      _M_get_Tp_allocator()); }
436 
437       /**
438        *  @brief  %Vector assignment operator.
439        *  @param  __x  A %vector of identical element and allocator types.
440        *
441        *  All the elements of @a __x are copied, but any unused capacity in
442        *  @a __x will not be copied.
443        *
444        *  Whether the allocator is copied depends on the allocator traits.
445        */
446       vector&
447       operator=(const vector& __x);
448 
449 #if __cplusplus >= 201103L
450       /**
451        *  @brief  %Vector move assignment operator.
452        *  @param  __x  A %vector of identical element and allocator types.
453        *
454        *  The contents of @a __x are moved into this %vector (without copying,
455        *  if the allocators permit it).
456        *  Afterwards @a __x is a valid, but unspecified %vector.
457        *
458        *  Whether the allocator is moved depends on the allocator traits.
459        */
460       vector&
461       operator=(vector&& __x) noexcept(_Alloc_traits::_S_nothrow_move())
462       {
463 	constexpr bool __move_storage =
464 	  _Alloc_traits::_S_propagate_on_move_assign()
465 	  || _Alloc_traits::_S_always_equal();
466 	_M_move_assign(std::move(__x), __bool_constant<__move_storage>());
467 	return *this;
468       }
469 
470       /**
471        *  @brief  %Vector list assignment operator.
472        *  @param  __l  An initializer_list.
473        *
474        *  This function fills a %vector with copies of the elements in the
475        *  initializer list @a __l.
476        *
477        *  Note that the assignment completely changes the %vector and
478        *  that the resulting %vector's size is the same as the number
479        *  of elements assigned.
480        */
481       vector&
482       operator=(initializer_list<value_type> __l)
483       {
484 	this->_M_assign_aux(__l.begin(), __l.end(),
485 			    random_access_iterator_tag());
486 	return *this;
487       }
488 #endif
489 
490       /**
491        *  @brief  Assigns a given value to a %vector.
492        *  @param  __n  Number of elements to be assigned.
493        *  @param  __val  Value to be assigned.
494        *
495        *  This function fills a %vector with @a __n copies of the given
496        *  value.  Note that the assignment completely changes the
497        *  %vector and that the resulting %vector's size is the same as
498        *  the number of elements assigned.
499        */
500       void
501       assign(size_type __n, const value_type& __val)
502       { _M_fill_assign(__n, __val); }
503 
504       /**
505        *  @brief  Assigns a range to a %vector.
506        *  @param  __first  An input iterator.
507        *  @param  __last   An input iterator.
508        *
509        *  This function fills a %vector with copies of the elements in the
510        *  range [__first,__last).
511        *
512        *  Note that the assignment completely changes the %vector and
513        *  that the resulting %vector's size is the same as the number
514        *  of elements assigned.
515        */
516 #if __cplusplus >= 201103L
517       template<typename _InputIterator,
518 	       typename = std::_RequireInputIter<_InputIterator>>
519 	void
520 	assign(_InputIterator __first, _InputIterator __last)
521 	{ _M_assign_dispatch(__first, __last, __false_type()); }
522 #else
523       template<typename _InputIterator>
524 	void
525 	assign(_InputIterator __first, _InputIterator __last)
526 	{
527 	  // Check whether it's an integral type.  If so, it's not an iterator.
528 	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
529 	  _M_assign_dispatch(__first, __last, _Integral());
530 	}
531 #endif
532 
533 #if __cplusplus >= 201103L
534       /**
535        *  @brief  Assigns an initializer list to a %vector.
536        *  @param  __l  An initializer_list.
537        *
538        *  This function fills a %vector with copies of the elements in the
539        *  initializer list @a __l.
540        *
541        *  Note that the assignment completely changes the %vector and
542        *  that the resulting %vector's size is the same as the number
543        *  of elements assigned.
544        */
545       void
546       assign(initializer_list<value_type> __l)
547       {
548 	this->_M_assign_aux(__l.begin(), __l.end(),
549 			    random_access_iterator_tag());
550       }
551 #endif
552 
553       /// Get a copy of the memory allocation object.
554       using _Base::get_allocator;
555 
556       // iterators
557       /**
558        *  Returns a read/write iterator that points to the first
559        *  element in the %vector.  Iteration is done in ordinary
560        *  element order.
561        */
562       iterator
563       begin() _GLIBCXX_NOEXCEPT
564       { return iterator(this->_M_impl._M_start); }
565 
566       /**
567        *  Returns a read-only (constant) iterator that points to the
568        *  first element in the %vector.  Iteration is done in ordinary
569        *  element order.
570        */
571       const_iterator
572       begin() const _GLIBCXX_NOEXCEPT
573       { return const_iterator(this->_M_impl._M_start); }
574 
575       /**
576        *  Returns a read/write iterator that points one past the last
577        *  element in the %vector.  Iteration is done in ordinary
578        *  element order.
579        */
580       iterator
581       end() _GLIBCXX_NOEXCEPT
582       { return iterator(this->_M_impl._M_finish); }
583 
584       /**
585        *  Returns a read-only (constant) iterator that points one past
586        *  the last element in the %vector.  Iteration is done in
587        *  ordinary element order.
588        */
589       const_iterator
590       end() const _GLIBCXX_NOEXCEPT
591       { return const_iterator(this->_M_impl._M_finish); }
592 
593       /**
594        *  Returns a read/write reverse iterator that points to the
595        *  last element in the %vector.  Iteration is done in reverse
596        *  element order.
597        */
598       reverse_iterator
599       rbegin() _GLIBCXX_NOEXCEPT
600       { return reverse_iterator(end()); }
601 
602       /**
603        *  Returns a read-only (constant) reverse iterator that points
604        *  to the last element in the %vector.  Iteration is done in
605        *  reverse element order.
606        */
607       const_reverse_iterator
608       rbegin() const _GLIBCXX_NOEXCEPT
609       { return const_reverse_iterator(end()); }
610 
611       /**
612        *  Returns a read/write reverse iterator that points to one
613        *  before the first element in the %vector.  Iteration is done
614        *  in reverse element order.
615        */
616       reverse_iterator
617       rend() _GLIBCXX_NOEXCEPT
618       { return reverse_iterator(begin()); }
619 
620       /**
621        *  Returns a read-only (constant) reverse iterator that points
622        *  to one before the first element in the %vector.  Iteration
623        *  is done in reverse element order.
624        */
625       const_reverse_iterator
626       rend() const _GLIBCXX_NOEXCEPT
627       { return const_reverse_iterator(begin()); }
628 
629 #if __cplusplus >= 201103L
630       /**
631        *  Returns a read-only (constant) iterator that points to the
632        *  first element in the %vector.  Iteration is done in ordinary
633        *  element order.
634        */
635       const_iterator
636       cbegin() const noexcept
637       { return const_iterator(this->_M_impl._M_start); }
638 
639       /**
640        *  Returns a read-only (constant) iterator that points one past
641        *  the last element in the %vector.  Iteration is done in
642        *  ordinary element order.
643        */
644       const_iterator
645       cend() const noexcept
646       { return const_iterator(this->_M_impl._M_finish); }
647 
648       /**
649        *  Returns a read-only (constant) reverse iterator that points
650        *  to the last element in the %vector.  Iteration is done in
651        *  reverse element order.
652        */
653       const_reverse_iterator
654       crbegin() const noexcept
655       { return const_reverse_iterator(end()); }
656 
657       /**
658        *  Returns a read-only (constant) reverse iterator that points
659        *  to one before the first element in the %vector.  Iteration
660        *  is done in reverse element order.
661        */
662       const_reverse_iterator
663       crend() const noexcept
664       { return const_reverse_iterator(begin()); }
665 #endif
666 
667       // [23.2.4.2] capacity
668       /**  Returns the number of elements in the %vector.  */
669       size_type
670       size() const _GLIBCXX_NOEXCEPT
671       { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
672 
673       /**  Returns the size() of the largest possible %vector.  */
674       size_type
675       max_size() const _GLIBCXX_NOEXCEPT
676       { return _Alloc_traits::max_size(_M_get_Tp_allocator()); }
677 
678 #if __cplusplus >= 201103L
679       /**
680        *  @brief  Resizes the %vector to the specified number of elements.
681        *  @param  __new_size  Number of elements the %vector should contain.
682        *
683        *  This function will %resize the %vector to the specified
684        *  number of elements.  If the number is smaller than the
685        *  %vector's current size the %vector is truncated, otherwise
686        *  default constructed elements are appended.
687        */
688       void
689       resize(size_type __new_size)
690       {
691 	if (__new_size > size())
692 	  _M_default_append(__new_size - size());
693 	else if (__new_size < size())
694 	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
695       }
696 
697       /**
698        *  @brief  Resizes the %vector to the specified number of elements.
699        *  @param  __new_size  Number of elements the %vector should contain.
700        *  @param  __x  Data with which new elements should be populated.
701        *
702        *  This function will %resize the %vector to the specified
703        *  number of elements.  If the number is smaller than the
704        *  %vector's current size the %vector is truncated, otherwise
705        *  the %vector is extended and new elements are populated with
706        *  given data.
707        */
708       void
709       resize(size_type __new_size, const value_type& __x)
710       {
711 	if (__new_size > size())
712 	  _M_fill_insert(end(), __new_size - size(), __x);
713 	else if (__new_size < size())
714 	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
715       }
716 #else
717       /**
718        *  @brief  Resizes the %vector to the specified number of elements.
719        *  @param  __new_size  Number of elements the %vector should contain.
720        *  @param  __x  Data with which new elements should be populated.
721        *
722        *  This function will %resize the %vector to the specified
723        *  number of elements.  If the number is smaller than the
724        *  %vector's current size the %vector is truncated, otherwise
725        *  the %vector is extended and new elements are populated with
726        *  given data.
727        */
728       void
729       resize(size_type __new_size, value_type __x = value_type())
730       {
731 	if (__new_size > size())
732 	  _M_fill_insert(end(), __new_size - size(), __x);
733 	else if (__new_size < size())
734 	  _M_erase_at_end(this->_M_impl._M_start + __new_size);
735       }
736 #endif
737 
738 #if __cplusplus >= 201103L
739       /**  A non-binding request to reduce capacity() to size().  */
740       void
741       shrink_to_fit()
742       { _M_shrink_to_fit(); }
743 #endif
744 
745       /**
746        *  Returns the total number of elements that the %vector can
747        *  hold before needing to allocate more memory.
748        */
749       size_type
750       capacity() const _GLIBCXX_NOEXCEPT
751       { return size_type(this->_M_impl._M_end_of_storage
752 			 - this->_M_impl._M_start); }
753 
754       /**
755        *  Returns true if the %vector is empty.  (Thus begin() would
756        *  equal end().)
757        */
758       bool
759       empty() const _GLIBCXX_NOEXCEPT
760       { return begin() == end(); }
761 
762       /**
763        *  @brief  Attempt to preallocate enough memory for specified number of
764        *          elements.
765        *  @param  __n  Number of elements required.
766        *  @throw  std::length_error  If @a n exceeds @c max_size().
767        *
768        *  This function attempts to reserve enough memory for the
769        *  %vector to hold the specified number of elements.  If the
770        *  number requested is more than max_size(), length_error is
771        *  thrown.
772        *
773        *  The advantage of this function is that if optimal code is a
774        *  necessity and the user can determine the number of elements
775        *  that will be required, the user can reserve the memory in
776        *  %advance, and thus prevent a possible reallocation of memory
777        *  and copying of %vector data.
778        */
779       void
780       reserve(size_type __n);
781 
782       // element access
783       /**
784        *  @brief  Subscript access to the data contained in the %vector.
785        *  @param __n The index of the element for which data should be
786        *  accessed.
787        *  @return  Read/write reference to data.
788        *
789        *  This operator allows for easy, array-style, data access.
790        *  Note that data access with this operator is unchecked and
791        *  out_of_range lookups are not defined. (For checked lookups
792        *  see at().)
793        */
794       reference
795       operator[](size_type __n) _GLIBCXX_NOEXCEPT
796       {
797 	__glibcxx_requires_subscript(__n);
798 	return *(this->_M_impl._M_start + __n);
799       }
800 
801       /**
802        *  @brief  Subscript access to the data contained in the %vector.
803        *  @param __n The index of the element for which data should be
804        *  accessed.
805        *  @return  Read-only (constant) reference to data.
806        *
807        *  This operator allows for easy, array-style, data access.
808        *  Note that data access with this operator is unchecked and
809        *  out_of_range lookups are not defined. (For checked lookups
810        *  see at().)
811        */
812       const_reference
813       operator[](size_type __n) const _GLIBCXX_NOEXCEPT
814       {
815 	__glibcxx_requires_subscript(__n);
816 	return *(this->_M_impl._M_start + __n);
817       }
818 
819     protected:
820       /// Safety check used only from at().
821       void
822       _M_range_check(size_type __n) const
823       {
824 	if (__n >= this->size())
825 	  __throw_out_of_range_fmt(__N("vector::_M_range_check: __n "
826 				       "(which is %zu) >= this->size() "
827 				       "(which is %zu)"),
828 				   __n, this->size());
829       }
830 
831     public:
832       /**
833        *  @brief  Provides access to the data contained in the %vector.
834        *  @param __n The index of the element for which data should be
835        *  accessed.
836        *  @return  Read/write reference to data.
837        *  @throw  std::out_of_range  If @a __n is an invalid index.
838        *
839        *  This function provides for safer data access.  The parameter
840        *  is first checked that it is in the range of the vector.  The
841        *  function throws out_of_range if the check fails.
842        */
843       reference
844       at(size_type __n)
845       {
846 	_M_range_check(__n);
847 	return (*this)[__n];
848       }
849 
850       /**
851        *  @brief  Provides access to the data contained in the %vector.
852        *  @param __n The index of the element for which data should be
853        *  accessed.
854        *  @return  Read-only (constant) reference to data.
855        *  @throw  std::out_of_range  If @a __n is an invalid index.
856        *
857        *  This function provides for safer data access.  The parameter
858        *  is first checked that it is in the range of the vector.  The
859        *  function throws out_of_range if the check fails.
860        */
861       const_reference
862       at(size_type __n) const
863       {
864 	_M_range_check(__n);
865 	return (*this)[__n];
866       }
867 
868       /**
869        *  Returns a read/write reference to the data at the first
870        *  element of the %vector.
871        */
872       reference
873       front() _GLIBCXX_NOEXCEPT
874       {
875 	__glibcxx_requires_nonempty();
876 	return *begin();
877       }
878 
879       /**
880        *  Returns a read-only (constant) reference to the data at the first
881        *  element of the %vector.
882        */
883       const_reference
884       front() const _GLIBCXX_NOEXCEPT
885       {
886 	__glibcxx_requires_nonempty();
887 	return *begin();
888       }
889 
890       /**
891        *  Returns a read/write reference to the data at the last
892        *  element of the %vector.
893        */
894       reference
895       back() _GLIBCXX_NOEXCEPT
896       {
897 	__glibcxx_requires_nonempty();
898 	return *(end() - 1);
899       }
900 
901       /**
902        *  Returns a read-only (constant) reference to the data at the
903        *  last element of the %vector.
904        */
905       const_reference
906       back() const _GLIBCXX_NOEXCEPT
907       {
908 	__glibcxx_requires_nonempty();
909 	return *(end() - 1);
910       }
911 
912       // _GLIBCXX_RESOLVE_LIB_DEFECTS
913       // DR 464. Suggestion for new member functions in standard containers.
914       // data access
915       /**
916        *   Returns a pointer such that [data(), data() + size()) is a valid
917        *   range.  For a non-empty %vector, data() == &front().
918        */
919       _Tp*
920       data() _GLIBCXX_NOEXCEPT
921       { return _M_data_ptr(this->_M_impl._M_start); }
922 
923       const _Tp*
924       data() const _GLIBCXX_NOEXCEPT
925       { return _M_data_ptr(this->_M_impl._M_start); }
926 
927       // [23.2.4.3] modifiers
928       /**
929        *  @brief  Add data to the end of the %vector.
930        *  @param  __x  Data to be added.
931        *
932        *  This is a typical stack operation.  The function creates an
933        *  element at the end of the %vector and assigns the given data
934        *  to it.  Due to the nature of a %vector this operation can be
935        *  done in constant time if the %vector has preallocated space
936        *  available.
937        */
938       void
939       push_back(const value_type& __x)
940       {
941 	if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
942 	  {
943 	    _Alloc_traits::construct(this->_M_impl, this->_M_impl._M_finish,
944 				     __x);
945 	    ++this->_M_impl._M_finish;
946 	  }
947 	else
948 	  _M_realloc_insert(end(), __x);
949       }
950 
951 #if __cplusplus >= 201103L
952       void
953       push_back(value_type&& __x)
954       { emplace_back(std::move(__x)); }
955 
956       template<typename... _Args>
957 #if __cplusplus > 201402L
958 	reference
959 #else
960 	void
961 #endif
962 	emplace_back(_Args&&... __args);
963 #endif
964 
965       /**
966        *  @brief  Removes last element.
967        *
968        *  This is a typical stack operation. It shrinks the %vector by one.
969        *
970        *  Note that no data is returned, and if the last element's
971        *  data is needed, it should be retrieved before pop_back() is
972        *  called.
973        */
974       void
975       pop_back() _GLIBCXX_NOEXCEPT
976       {
977 	__glibcxx_requires_nonempty();
978 	--this->_M_impl._M_finish;
979 	_Alloc_traits::destroy(this->_M_impl, this->_M_impl._M_finish);
980       }
981 
982 #if __cplusplus >= 201103L
983       /**
984        *  @brief  Inserts an object in %vector before specified iterator.
985        *  @param  __position  A const_iterator into the %vector.
986        *  @param  __args  Arguments.
987        *  @return  An iterator that points to the inserted data.
988        *
989        *  This function will insert an object of type T constructed
990        *  with T(std::forward<Args>(args)...) before the specified location.
991        *  Note that this kind of operation could be expensive for a %vector
992        *  and if it is frequently used the user should consider using
993        *  std::list.
994        */
995       template<typename... _Args>
996 	iterator
997 	emplace(const_iterator __position, _Args&&... __args)
998 	{ return _M_emplace_aux(__position, std::forward<_Args>(__args)...); }
999 
1000       /**
1001        *  @brief  Inserts given value into %vector before specified iterator.
1002        *  @param  __position  A const_iterator into the %vector.
1003        *  @param  __x  Data to be inserted.
1004        *  @return  An iterator that points to the inserted data.
1005        *
1006        *  This function will insert a copy of the given value before
1007        *  the specified location.  Note that this kind of operation
1008        *  could be expensive for a %vector and if it is frequently
1009        *  used the user should consider using std::list.
1010        */
1011       iterator
1012       insert(const_iterator __position, const value_type& __x);
1013 #else
1014       /**
1015        *  @brief  Inserts given value into %vector before specified iterator.
1016        *  @param  __position  An iterator into the %vector.
1017        *  @param  __x  Data to be inserted.
1018        *  @return  An iterator that points to the inserted data.
1019        *
1020        *  This function will insert a copy of the given value before
1021        *  the specified location.  Note that this kind of operation
1022        *  could be expensive for a %vector and if it is frequently
1023        *  used the user should consider using std::list.
1024        */
1025       iterator
1026       insert(iterator __position, const value_type& __x);
1027 #endif
1028 
1029 #if __cplusplus >= 201103L
1030       /**
1031        *  @brief  Inserts given rvalue into %vector before specified iterator.
1032        *  @param  __position  A const_iterator into the %vector.
1033        *  @param  __x  Data to be inserted.
1034        *  @return  An iterator that points to the inserted data.
1035        *
1036        *  This function will insert a copy of the given rvalue before
1037        *  the specified location.  Note that this kind of operation
1038        *  could be expensive for a %vector and if it is frequently
1039        *  used the user should consider using std::list.
1040        */
1041       iterator
1042       insert(const_iterator __position, value_type&& __x)
1043       { return _M_insert_rval(__position, std::move(__x)); }
1044 
1045       /**
1046        *  @brief  Inserts an initializer_list into the %vector.
1047        *  @param  __position  An iterator into the %vector.
1048        *  @param  __l  An initializer_list.
1049        *
1050        *  This function will insert copies of the data in the
1051        *  initializer_list @a l into the %vector before the location
1052        *  specified by @a position.
1053        *
1054        *  Note that this kind of operation could be expensive for a
1055        *  %vector and if it is frequently used the user should
1056        *  consider using std::list.
1057        */
1058       iterator
1059       insert(const_iterator __position, initializer_list<value_type> __l)
1060       {
1061 	auto __offset = __position - cbegin();
1062 	_M_range_insert(begin() + __offset, __l.begin(), __l.end(),
1063 			std::random_access_iterator_tag());
1064 	return begin() + __offset;
1065       }
1066 #endif
1067 
1068 #if __cplusplus >= 201103L
1069       /**
1070        *  @brief  Inserts a number of copies of given data into the %vector.
1071        *  @param  __position  A const_iterator into the %vector.
1072        *  @param  __n  Number of elements to be inserted.
1073        *  @param  __x  Data to be inserted.
1074        *  @return  An iterator that points to the inserted data.
1075        *
1076        *  This function will insert a specified number of copies of
1077        *  the given data before the location specified by @a position.
1078        *
1079        *  Note that this kind of operation could be expensive for a
1080        *  %vector and if it is frequently used the user should
1081        *  consider using std::list.
1082        */
1083       iterator
1084       insert(const_iterator __position, size_type __n, const value_type& __x)
1085       {
1086 	difference_type __offset = __position - cbegin();
1087 	_M_fill_insert(begin() + __offset, __n, __x);
1088 	return begin() + __offset;
1089       }
1090 #else
1091       /**
1092        *  @brief  Inserts a number of copies of given data into the %vector.
1093        *  @param  __position  An iterator into the %vector.
1094        *  @param  __n  Number of elements to be inserted.
1095        *  @param  __x  Data to be inserted.
1096        *
1097        *  This function will insert a specified number of copies of
1098        *  the given data before the location specified by @a position.
1099        *
1100        *  Note that this kind of operation could be expensive for a
1101        *  %vector and if it is frequently used the user should
1102        *  consider using std::list.
1103        */
1104       void
1105       insert(iterator __position, size_type __n, const value_type& __x)
1106       { _M_fill_insert(__position, __n, __x); }
1107 #endif
1108 
1109 #if __cplusplus >= 201103L
1110       /**
1111        *  @brief  Inserts a range into the %vector.
1112        *  @param  __position  A const_iterator into the %vector.
1113        *  @param  __first  An input iterator.
1114        *  @param  __last   An input iterator.
1115        *  @return  An iterator that points to the inserted data.
1116        *
1117        *  This function will insert copies of the data in the range
1118        *  [__first,__last) into the %vector before the location specified
1119        *  by @a pos.
1120        *
1121        *  Note that this kind of operation could be expensive for a
1122        *  %vector and if it is frequently used the user should
1123        *  consider using std::list.
1124        */
1125       template<typename _InputIterator,
1126 	       typename = std::_RequireInputIter<_InputIterator>>
1127 	iterator
1128 	insert(const_iterator __position, _InputIterator __first,
1129 	       _InputIterator __last)
1130 	{
1131 	  difference_type __offset = __position - cbegin();
1132 	  _M_insert_dispatch(begin() + __offset,
1133 			     __first, __last, __false_type());
1134 	  return begin() + __offset;
1135 	}
1136 #else
1137       /**
1138        *  @brief  Inserts a range into the %vector.
1139        *  @param  __position  An iterator into the %vector.
1140        *  @param  __first  An input iterator.
1141        *  @param  __last   An input iterator.
1142        *
1143        *  This function will insert copies of the data in the range
1144        *  [__first,__last) into the %vector before the location specified
1145        *  by @a pos.
1146        *
1147        *  Note that this kind of operation could be expensive for a
1148        *  %vector and if it is frequently used the user should
1149        *  consider using std::list.
1150        */
1151       template<typename _InputIterator>
1152 	void
1153 	insert(iterator __position, _InputIterator __first,
1154 	       _InputIterator __last)
1155 	{
1156 	  // Check whether it's an integral type.  If so, it's not an iterator.
1157 	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1158 	  _M_insert_dispatch(__position, __first, __last, _Integral());
1159 	}
1160 #endif
1161 
1162       /**
1163        *  @brief  Remove element at given position.
1164        *  @param  __position  Iterator pointing to element to be erased.
1165        *  @return  An iterator pointing to the next element (or end()).
1166        *
1167        *  This function will erase the element at the given position and thus
1168        *  shorten the %vector by one.
1169        *
1170        *  Note This operation could be expensive and if it is
1171        *  frequently used the user should consider using std::list.
1172        *  The user is also cautioned that this function only erases
1173        *  the element, and that if the element is itself a pointer,
1174        *  the pointed-to memory is not touched in any way.  Managing
1175        *  the pointer is the user's responsibility.
1176        */
1177       iterator
1178 #if __cplusplus >= 201103L
1179       erase(const_iterator __position)
1180       { return _M_erase(begin() + (__position - cbegin())); }
1181 #else
1182       erase(iterator __position)
1183       { return _M_erase(__position); }
1184 #endif
1185 
1186       /**
1187        *  @brief  Remove a range of elements.
1188        *  @param  __first  Iterator pointing to the first element to be erased.
1189        *  @param  __last  Iterator pointing to one past the last element to be
1190        *                  erased.
1191        *  @return  An iterator pointing to the element pointed to by @a __last
1192        *           prior to erasing (or end()).
1193        *
1194        *  This function will erase the elements in the range
1195        *  [__first,__last) and shorten the %vector accordingly.
1196        *
1197        *  Note This operation could be expensive and if it is
1198        *  frequently used the user should consider using std::list.
1199        *  The user is also cautioned that this function only erases
1200        *  the elements, and that if the elements themselves are
1201        *  pointers, the pointed-to memory is not touched in any way.
1202        *  Managing the pointer is the user's responsibility.
1203        */
1204       iterator
1205 #if __cplusplus >= 201103L
1206       erase(const_iterator __first, const_iterator __last)
1207       {
1208 	const auto __beg = begin();
1209 	const auto __cbeg = cbegin();
1210 	return _M_erase(__beg + (__first - __cbeg), __beg + (__last - __cbeg));
1211       }
1212 #else
1213       erase(iterator __first, iterator __last)
1214       { return _M_erase(__first, __last); }
1215 #endif
1216 
1217       /**
1218        *  @brief  Swaps data with another %vector.
1219        *  @param  __x  A %vector of the same element and allocator types.
1220        *
1221        *  This exchanges the elements between two vectors in constant time.
1222        *  (Three pointers, so it should be quite fast.)
1223        *  Note that the global std::swap() function is specialized such that
1224        *  std::swap(v1,v2) will feed to this function.
1225        *
1226        *  Whether the allocators are swapped depends on the allocator traits.
1227        */
1228       void
1229       swap(vector& __x) _GLIBCXX_NOEXCEPT
1230       {
1231 #if __cplusplus >= 201103L
1232 	__glibcxx_assert(_Alloc_traits::propagate_on_container_swap::value
1233 			 || _M_get_Tp_allocator() == __x._M_get_Tp_allocator());
1234 #endif
1235 	this->_M_impl._M_swap_data(__x._M_impl);
1236 	_Alloc_traits::_S_on_swap(_M_get_Tp_allocator(),
1237 				  __x._M_get_Tp_allocator());
1238       }
1239 
1240       /**
1241        *  Erases all the elements.  Note that this function only erases the
1242        *  elements, and that if the elements themselves are pointers, the
1243        *  pointed-to memory is not touched in any way.  Managing the pointer is
1244        *  the user's responsibility.
1245        */
1246       void
1247       clear() _GLIBCXX_NOEXCEPT
1248       { _M_erase_at_end(this->_M_impl._M_start); }
1249 
1250     protected:
1251       /**
1252        *  Memory expansion handler.  Uses the member allocation function to
1253        *  obtain @a n bytes of memory, and then copies [first,last) into it.
1254        */
1255       template<typename _ForwardIterator>
1256 	pointer
1257 	_M_allocate_and_copy(size_type __n,
1258 			     _ForwardIterator __first, _ForwardIterator __last)
1259 	{
1260 	  pointer __result = this->_M_allocate(__n);
1261 	  __try
1262 	    {
1263 	      std::__uninitialized_copy_a(__first, __last, __result,
1264 					  _M_get_Tp_allocator());
1265 	      return __result;
1266 	    }
1267 	  __catch(...)
1268 	    {
1269 	      _M_deallocate(__result, __n);
1270 	      __throw_exception_again;
1271 	    }
1272 	}
1273 
1274 
1275       // Internal constructor functions follow.
1276 
1277       // Called by the range constructor to implement [23.1.1]/9
1278 
1279       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1280       // 438. Ambiguity in the "do the right thing" clause
1281       template<typename _Integer>
1282 	void
1283 	_M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
1284 	{
1285 	  this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));
1286 	  this->_M_impl._M_end_of_storage =
1287 	    this->_M_impl._M_start + static_cast<size_type>(__n);
1288 	  _M_fill_initialize(static_cast<size_type>(__n), __value);
1289 	}
1290 
1291       // Called by the range constructor to implement [23.1.1]/9
1292       template<typename _InputIterator>
1293 	void
1294 	_M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1295 			       __false_type)
1296 	{
1297 	  typedef typename std::iterator_traits<_InputIterator>::
1298 	    iterator_category _IterCategory;
1299 	  _M_range_initialize(__first, __last, _IterCategory());
1300 	}
1301 
1302       // Called by the second initialize_dispatch above
1303       template<typename _InputIterator>
1304 	void
1305 	_M_range_initialize(_InputIterator __first, _InputIterator __last,
1306 			    std::input_iterator_tag)
1307 	{
1308 	  __try {
1309 	    for (; __first != __last; ++__first)
1310 #if __cplusplus >= 201103L
1311 	      emplace_back(*__first);
1312 #else
1313 	      push_back(*__first);
1314 #endif
1315 	  } __catch(...) {
1316 	    clear();
1317 	    __throw_exception_again;
1318 	  }
1319 	}
1320 
1321       // Called by the second initialize_dispatch above
1322       template<typename _ForwardIterator>
1323 	void
1324 	_M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1325 			    std::forward_iterator_tag)
1326 	{
1327 	  const size_type __n = std::distance(__first, __last);
1328 	  this->_M_impl._M_start = this->_M_allocate(__n);
1329 	  this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
1330 	  this->_M_impl._M_finish =
1331 	    std::__uninitialized_copy_a(__first, __last,
1332 					this->_M_impl._M_start,
1333 					_M_get_Tp_allocator());
1334 	}
1335 
1336       // Called by the first initialize_dispatch above and by the
1337       // vector(n,value,a) constructor.
1338       void
1339       _M_fill_initialize(size_type __n, const value_type& __value)
1340       {
1341 	this->_M_impl._M_finish =
1342 	  std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
1343 					_M_get_Tp_allocator());
1344       }
1345 
1346 #if __cplusplus >= 201103L
1347       // Called by the vector(n) constructor.
1348       void
1349       _M_default_initialize(size_type __n)
1350       {
1351 	this->_M_impl._M_finish =
1352 	  std::__uninitialized_default_n_a(this->_M_impl._M_start, __n,
1353 					   _M_get_Tp_allocator());
1354       }
1355 #endif
1356 
1357       // Internal assign functions follow.  The *_aux functions do the actual
1358       // assignment work for the range versions.
1359 
1360       // Called by the range assign to implement [23.1.1]/9
1361 
1362       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1363       // 438. Ambiguity in the "do the right thing" clause
1364       template<typename _Integer>
1365 	void
1366 	_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1367 	{ _M_fill_assign(__n, __val); }
1368 
1369       // Called by the range assign to implement [23.1.1]/9
1370       template<typename _InputIterator>
1371 	void
1372 	_M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1373 			   __false_type)
1374 	{ _M_assign_aux(__first, __last, std::__iterator_category(__first)); }
1375 
1376       // Called by the second assign_dispatch above
1377       template<typename _InputIterator>
1378 	void
1379 	_M_assign_aux(_InputIterator __first, _InputIterator __last,
1380 		      std::input_iterator_tag);
1381 
1382       // Called by the second assign_dispatch above
1383       template<typename _ForwardIterator>
1384 	void
1385 	_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1386 		      std::forward_iterator_tag);
1387 
1388       // Called by assign(n,t), and the range assign when it turns out
1389       // to be the same thing.
1390       void
1391       _M_fill_assign(size_type __n, const value_type& __val);
1392 
1393       // Internal insert functions follow.
1394 
1395       // Called by the range insert to implement [23.1.1]/9
1396 
1397       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1398       // 438. Ambiguity in the "do the right thing" clause
1399       template<typename _Integer>
1400 	void
1401 	_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
1402 			   __true_type)
1403 	{ _M_fill_insert(__pos, __n, __val); }
1404 
1405       // Called by the range insert to implement [23.1.1]/9
1406       template<typename _InputIterator>
1407 	void
1408 	_M_insert_dispatch(iterator __pos, _InputIterator __first,
1409 			   _InputIterator __last, __false_type)
1410 	{
1411 	  _M_range_insert(__pos, __first, __last,
1412 			  std::__iterator_category(__first));
1413 	}
1414 
1415       // Called by the second insert_dispatch above
1416       template<typename _InputIterator>
1417 	void
1418 	_M_range_insert(iterator __pos, _InputIterator __first,
1419 			_InputIterator __last, std::input_iterator_tag);
1420 
1421       // Called by the second insert_dispatch above
1422       template<typename _ForwardIterator>
1423 	void
1424 	_M_range_insert(iterator __pos, _ForwardIterator __first,
1425 			_ForwardIterator __last, std::forward_iterator_tag);
1426 
1427       // Called by insert(p,n,x), and the range insert when it turns out to be
1428       // the same thing.
1429       void
1430       _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1431 
1432 #if __cplusplus >= 201103L
1433       // Called by resize(n).
1434       void
1435       _M_default_append(size_type __n);
1436 
1437       bool
1438       _M_shrink_to_fit();
1439 #endif
1440 
1441 #if __cplusplus < 201103L
1442       // Called by insert(p,x)
1443       void
1444       _M_insert_aux(iterator __position, const value_type& __x);
1445 
1446       void
1447       _M_realloc_insert(iterator __position, const value_type& __x);
1448 #else
1449       // A value_type object constructed with _Alloc_traits::construct()
1450       // and destroyed with _Alloc_traits::destroy().
1451       struct _Temporary_value
1452       {
1453 	template<typename... _Args>
1454 	  explicit
1455 	  _Temporary_value(vector* __vec, _Args&&... __args) : _M_this(__vec)
1456 	  {
1457 	    _Alloc_traits::construct(_M_this->_M_impl, _M_ptr(),
1458 				     std::forward<_Args>(__args)...);
1459 	  }
1460 
1461 	~_Temporary_value()
1462 	{ _Alloc_traits::destroy(_M_this->_M_impl, _M_ptr()); }
1463 
1464 	value_type&
1465 	_M_val() { return *reinterpret_cast<_Tp*>(&__buf); }
1466 
1467       private:
1468 	pointer
1469 	_M_ptr() { return pointer_traits<pointer>::pointer_to(_M_val()); }
1470 
1471 	vector* _M_this;
1472 	typename aligned_storage<sizeof(_Tp), alignof(_Tp)>::type __buf;
1473       };
1474 
1475       // Called by insert(p,x) and other functions when insertion needs to
1476       // reallocate or move existing elements. _Arg is either _Tp& or _Tp.
1477       template<typename _Arg>
1478 	void
1479 	_M_insert_aux(iterator __position, _Arg&& __arg);
1480 
1481       template<typename... _Args>
1482 	void
1483 	_M_realloc_insert(iterator __position, _Args&&... __args);
1484 
1485       // Either move-construct at the end, or forward to _M_insert_aux.
1486       iterator
1487       _M_insert_rval(const_iterator __position, value_type&& __v);
1488 
1489       // Try to emplace at the end, otherwise forward to _M_insert_aux.
1490       template<typename... _Args>
1491 	iterator
1492 	_M_emplace_aux(const_iterator __position, _Args&&... __args);
1493 
1494       // Emplacing an rvalue of the correct type can use _M_insert_rval.
1495       iterator
1496       _M_emplace_aux(const_iterator __position, value_type&& __v)
1497       { return _M_insert_rval(__position, std::move(__v)); }
1498 #endif
1499 
1500       // Called by _M_fill_insert, _M_insert_aux etc.
1501       size_type
1502       _M_check_len(size_type __n, const char* __s) const
1503       {
1504 	if (max_size() - size() < __n)
1505 	  __throw_length_error(__N(__s));
1506 
1507 	const size_type __len = size() + std::max(size(), __n);
1508 	return (__len < size() || __len > max_size()) ? max_size() : __len;
1509       }
1510 
1511       // Internal erase functions follow.
1512 
1513       // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
1514       // _M_assign_aux.
1515       void
1516       _M_erase_at_end(pointer __pos) _GLIBCXX_NOEXCEPT
1517       {
1518 	std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
1519 	this->_M_impl._M_finish = __pos;
1520       }
1521 
1522       iterator
1523       _M_erase(iterator __position);
1524 
1525       iterator
1526       _M_erase(iterator __first, iterator __last);
1527 
1528 #if __cplusplus >= 201103L
1529     private:
1530       // Constant-time move assignment when source object's memory can be
1531       // moved, either because the source's allocator will move too
1532       // or because the allocators are equal.
1533       void
1534       _M_move_assign(vector&& __x, std::true_type) noexcept
1535       {
1536 	vector __tmp(get_allocator());
1537 	this->_M_impl._M_swap_data(__tmp._M_impl);
1538 	this->_M_impl._M_swap_data(__x._M_impl);
1539 	std::__alloc_on_move(_M_get_Tp_allocator(), __x._M_get_Tp_allocator());
1540       }
1541 
1542       // Do move assignment when it might not be possible to move source
1543       // object's memory, resulting in a linear-time operation.
1544       void
1545       _M_move_assign(vector&& __x, std::false_type)
1546       {
1547 	if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator())
1548 	  _M_move_assign(std::move(__x), std::true_type());
1549 	else
1550 	  {
1551 	    // The rvalue's allocator cannot be moved and is not equal,
1552 	    // so we need to individually move each element.
1553 	    this->assign(std::__make_move_if_noexcept_iterator(__x.begin()),
1554 			 std::__make_move_if_noexcept_iterator(__x.end()));
1555 	    __x.clear();
1556 	  }
1557       }
1558 #endif
1559 
1560       template<typename _Up>
1561 	_Up*
1562 	_M_data_ptr(_Up* __ptr) const _GLIBCXX_NOEXCEPT
1563 	{ return __ptr; }
1564 
1565 #if __cplusplus >= 201103L
1566       template<typename _Ptr>
1567 	typename std::pointer_traits<_Ptr>::element_type*
1568 	_M_data_ptr(_Ptr __ptr) const
1569 	{ return empty() ? nullptr : std::__addressof(*__ptr); }
1570 #else
1571       template<typename _Up>
1572 	_Up*
1573 	_M_data_ptr(_Up* __ptr) _GLIBCXX_NOEXCEPT
1574 	{ return __ptr; }
1575 
1576       template<typename _Ptr>
1577 	value_type*
1578 	_M_data_ptr(_Ptr __ptr)
1579 	{ return __ptr.operator->(); }
1580 
1581       template<typename _Ptr>
1582 	const value_type*
1583 	_M_data_ptr(_Ptr __ptr) const
1584 	{ return __ptr.operator->(); }
1585 #endif
1586     };
1587 
1588 
1589   /**
1590    *  @brief  Vector equality comparison.
1591    *  @param  __x  A %vector.
1592    *  @param  __y  A %vector of the same type as @a __x.
1593    *  @return  True iff the size and elements of the vectors are equal.
1594    *
1595    *  This is an equivalence relation.  It is linear in the size of the
1596    *  vectors.  Vectors are considered equivalent if their sizes are equal,
1597    *  and if corresponding elements compare equal.
1598   */
1599   template<typename _Tp, typename _Alloc>
1600     inline bool
1601     operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1602     { return (__x.size() == __y.size()
1603 	      && std::equal(__x.begin(), __x.end(), __y.begin())); }
1604 
1605   /**
1606    *  @brief  Vector ordering relation.
1607    *  @param  __x  A %vector.
1608    *  @param  __y  A %vector of the same type as @a __x.
1609    *  @return  True iff @a __x is lexicographically less than @a __y.
1610    *
1611    *  This is a total ordering relation.  It is linear in the size of the
1612    *  vectors.  The elements must be comparable with @c <.
1613    *
1614    *  See std::lexicographical_compare() for how the determination is made.
1615   */
1616   template<typename _Tp, typename _Alloc>
1617     inline bool
1618     operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1619     { return std::lexicographical_compare(__x.begin(), __x.end(),
1620 					  __y.begin(), __y.end()); }
1621 
1622   /// Based on operator==
1623   template<typename _Tp, typename _Alloc>
1624     inline bool
1625     operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1626     { return !(__x == __y); }
1627 
1628   /// Based on operator<
1629   template<typename _Tp, typename _Alloc>
1630     inline bool
1631     operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1632     { return __y < __x; }
1633 
1634   /// Based on operator<
1635   template<typename _Tp, typename _Alloc>
1636     inline bool
1637     operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1638     { return !(__y < __x); }
1639 
1640   /// Based on operator<
1641   template<typename _Tp, typename _Alloc>
1642     inline bool
1643     operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1644     { return !(__x < __y); }
1645 
1646   /// See std::vector::swap().
1647   template<typename _Tp, typename _Alloc>
1648     inline void
1649     swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
1650     _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
1651     { __x.swap(__y); }
1652 
1653 _GLIBCXX_END_NAMESPACE_CONTAINER
1654 } // namespace std
1655 
1656 #endif /* _STL_VECTOR_H */
1657