1 // Multimap implementation -*- C++ -*- 2 3 // Copyright (C) 2001-2015 Free Software Foundation, Inc. 4 // 5 // This file is part of the GNU ISO C++ Library. This library is free 6 // software; you can redistribute it and/or modify it under the 7 // terms of the GNU General Public License as published by the 8 // Free Software Foundation; either version 3, or (at your option) 9 // any later version. 10 11 // This library is distributed in the hope that it will be useful, 12 // but WITHOUT ANY WARRANTY; without even the implied warranty of 13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 // GNU General Public License for more details. 15 16 // Under Section 7 of GPL version 3, you are granted additional 17 // permissions described in the GCC Runtime Library Exception, version 18 // 3.1, as published by the Free Software Foundation. 19 20 // You should have received a copy of the GNU General Public License and 21 // a copy of the GCC Runtime Library Exception along with this program; 22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 23 // <http://www.gnu.org/licenses/>. 24 25 /* 26 * 27 * Copyright (c) 1994 28 * Hewlett-Packard Company 29 * 30 * Permission to use, copy, modify, distribute and sell this software 31 * and its documentation for any purpose is hereby granted without fee, 32 * provided that the above copyright notice appear in all copies and 33 * that both that copyright notice and this permission notice appear 34 * in supporting documentation. Hewlett-Packard Company makes no 35 * representations about the suitability of this software for any 36 * purpose. It is provided "as is" without express or implied warranty. 37 * 38 * 39 * Copyright (c) 1996,1997 40 * Silicon Graphics Computer Systems, Inc. 41 * 42 * Permission to use, copy, modify, distribute and sell this software 43 * and its documentation for any purpose is hereby granted without fee, 44 * provided that the above copyright notice appear in all copies and 45 * that both that copyright notice and this permission notice appear 46 * in supporting documentation. Silicon Graphics makes no 47 * representations about the suitability of this software for any 48 * purpose. It is provided "as is" without express or implied warranty. 49 */ 50 51 /** @file bits/stl_multimap.h 52 * This is an internal header file, included by other library headers. 53 * Do not attempt to use it directly. @headername{map} 54 */ 55 56 #ifndef _STL_MULTIMAP_H 57 #define _STL_MULTIMAP_H 1 58 59 #include <bits/concept_check.h> 60 #if __cplusplus >= 201103L 61 #include <initializer_list> 62 #endif 63 64 namespace std _GLIBCXX_VISIBILITY(default) 65 { 66 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER 67 68 /** 69 * @brief A standard container made up of (key,value) pairs, which can be 70 * retrieved based on a key, in logarithmic time. 71 * 72 * @ingroup associative_containers 73 * 74 * @tparam _Key Type of key objects. 75 * @tparam _Tp Type of mapped objects. 76 * @tparam _Compare Comparison function object type, defaults to less<_Key>. 77 * @tparam _Alloc Allocator type, defaults to 78 * allocator<pair<const _Key, _Tp>. 79 * 80 * Meets the requirements of a <a href="tables.html#65">container</a>, a 81 * <a href="tables.html#66">reversible container</a>, and an 82 * <a href="tables.html#69">associative container</a> (using equivalent 83 * keys). For a @c multimap<Key,T> the key_type is Key, the mapped_type 84 * is T, and the value_type is std::pair<const Key,T>. 85 * 86 * Multimaps support bidirectional iterators. 87 * 88 * The private tree data is declared exactly the same way for map and 89 * multimap; the distinction is made entirely in how the tree functions are 90 * called (*_unique versus *_equal, same as the standard). 91 */ 92 template <typename _Key, typename _Tp, 93 typename _Compare = std::less<_Key>, 94 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > > 95 class multimap 96 { 97 public: 98 typedef _Key key_type; 99 typedef _Tp mapped_type; 100 typedef std::pair<const _Key, _Tp> value_type; 101 typedef _Compare key_compare; 102 typedef _Alloc allocator_type; 103 104 private: 105 // concept requirements 106 typedef typename _Alloc::value_type _Alloc_value_type; 107 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 108 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 109 _BinaryFunctionConcept) 110 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept) 111 112 public: 113 class value_compare 114 : public std::binary_function<value_type, value_type, bool> 115 { 116 friend class multimap<_Key, _Tp, _Compare, _Alloc>; 117 protected: 118 _Compare comp; 119 120 value_compare(_Compare __c) 121 : comp(__c) { } 122 123 public: 124 bool operator()(const value_type& __x, const value_type& __y) const 125 { return comp(__x.first, __y.first); } 126 }; 127 128 private: 129 /// This turns a red-black tree into a [multi]map. 130 typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template 131 rebind<value_type>::other _Pair_alloc_type; 132 133 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>, 134 key_compare, _Pair_alloc_type> _Rep_type; 135 /// The actual tree structure. 136 _Rep_type _M_t; 137 138 typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits; 139 140 public: 141 // many of these are specified differently in ISO, but the following are 142 // "functionally equivalent" 143 typedef typename _Alloc_traits::pointer pointer; 144 typedef typename _Alloc_traits::const_pointer const_pointer; 145 typedef typename _Alloc_traits::reference reference; 146 typedef typename _Alloc_traits::const_reference const_reference; 147 typedef typename _Rep_type::iterator iterator; 148 typedef typename _Rep_type::const_iterator const_iterator; 149 typedef typename _Rep_type::size_type size_type; 150 typedef typename _Rep_type::difference_type difference_type; 151 typedef typename _Rep_type::reverse_iterator reverse_iterator; 152 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 153 154 // [23.3.2] construct/copy/destroy 155 // (get_allocator() is also listed in this section) 156 157 /** 158 * @brief Default constructor creates no elements. 159 */ 160 multimap() 161 #if __cplusplus >= 201103L 162 noexcept(is_nothrow_default_constructible<allocator_type>::value 163 && is_nothrow_default_constructible<key_compare>::value) 164 #endif 165 : _M_t() { } 166 167 /** 168 * @brief Creates a %multimap with no elements. 169 * @param __comp A comparison object. 170 * @param __a An allocator object. 171 */ 172 explicit 173 multimap(const _Compare& __comp, 174 const allocator_type& __a = allocator_type()) 175 : _M_t(__comp, _Pair_alloc_type(__a)) { } 176 177 /** 178 * @brief %Multimap copy constructor. 179 * @param __x A %multimap of identical element and allocator types. 180 * 181 * The newly-created %multimap uses a copy of the allocation object 182 * used by @a __x. 183 */ 184 multimap(const multimap& __x) 185 : _M_t(__x._M_t) { } 186 187 #if __cplusplus >= 201103L 188 /** 189 * @brief %Multimap move constructor. 190 * @param __x A %multimap of identical element and allocator types. 191 * 192 * The newly-created %multimap contains the exact contents of @a __x. 193 * The contents of @a __x are a valid, but unspecified %multimap. 194 */ 195 multimap(multimap&& __x) 196 noexcept(is_nothrow_copy_constructible<_Compare>::value) 197 : _M_t(std::move(__x._M_t)) { } 198 199 /** 200 * @brief Builds a %multimap from an initializer_list. 201 * @param __l An initializer_list. 202 * @param __comp A comparison functor. 203 * @param __a An allocator object. 204 * 205 * Create a %multimap consisting of copies of the elements from 206 * the initializer_list. This is linear in N if the list is already 207 * sorted, and NlogN otherwise (where N is @a __l.size()). 208 */ 209 multimap(initializer_list<value_type> __l, 210 const _Compare& __comp = _Compare(), 211 const allocator_type& __a = allocator_type()) 212 : _M_t(__comp, _Pair_alloc_type(__a)) 213 { _M_t._M_insert_equal(__l.begin(), __l.end()); } 214 215 /// Allocator-extended default constructor. 216 explicit 217 multimap(const allocator_type& __a) 218 : _M_t(_Compare(), _Pair_alloc_type(__a)) { } 219 220 /// Allocator-extended copy constructor. 221 multimap(const multimap& __m, const allocator_type& __a) 222 : _M_t(__m._M_t, _Pair_alloc_type(__a)) { } 223 224 /// Allocator-extended move constructor. 225 multimap(multimap&& __m, const allocator_type& __a) 226 noexcept(is_nothrow_copy_constructible<_Compare>::value 227 && _Alloc_traits::_S_always_equal()) 228 : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { } 229 230 /// Allocator-extended initialier-list constructor. 231 multimap(initializer_list<value_type> __l, const allocator_type& __a) 232 : _M_t(_Compare(), _Pair_alloc_type(__a)) 233 { _M_t._M_insert_equal(__l.begin(), __l.end()); } 234 235 /// Allocator-extended range constructor. 236 template<typename _InputIterator> 237 multimap(_InputIterator __first, _InputIterator __last, 238 const allocator_type& __a) 239 : _M_t(_Compare(), _Pair_alloc_type(__a)) 240 { _M_t._M_insert_equal(__first, __last); } 241 #endif 242 243 /** 244 * @brief Builds a %multimap from a range. 245 * @param __first An input iterator. 246 * @param __last An input iterator. 247 * 248 * Create a %multimap consisting of copies of the elements from 249 * [__first,__last). This is linear in N if the range is already sorted, 250 * and NlogN otherwise (where N is distance(__first,__last)). 251 */ 252 template<typename _InputIterator> 253 multimap(_InputIterator __first, _InputIterator __last) 254 : _M_t() 255 { _M_t._M_insert_equal(__first, __last); } 256 257 /** 258 * @brief Builds a %multimap from a range. 259 * @param __first An input iterator. 260 * @param __last An input iterator. 261 * @param __comp A comparison functor. 262 * @param __a An allocator object. 263 * 264 * Create a %multimap consisting of copies of the elements from 265 * [__first,__last). This is linear in N if the range is already sorted, 266 * and NlogN otherwise (where N is distance(__first,__last)). 267 */ 268 template<typename _InputIterator> 269 multimap(_InputIterator __first, _InputIterator __last, 270 const _Compare& __comp, 271 const allocator_type& __a = allocator_type()) 272 : _M_t(__comp, _Pair_alloc_type(__a)) 273 { _M_t._M_insert_equal(__first, __last); } 274 275 // FIXME There is no dtor declared, but we should have something generated 276 // by Doxygen. I don't know what tags to add to this paragraph to make 277 // that happen: 278 /** 279 * The dtor only erases the elements, and note that if the elements 280 * themselves are pointers, the pointed-to memory is not touched in any 281 * way. Managing the pointer is the user's responsibility. 282 */ 283 284 /** 285 * @brief %Multimap assignment operator. 286 * @param __x A %multimap of identical element and allocator types. 287 * 288 * All the elements of @a __x are copied, but unlike the copy 289 * constructor, the allocator object is not copied. 290 */ 291 multimap& 292 operator=(const multimap& __x) 293 { 294 _M_t = __x._M_t; 295 return *this; 296 } 297 298 #if __cplusplus >= 201103L 299 /// Move assignment operator. 300 multimap& 301 operator=(multimap&&) = default; 302 303 /** 304 * @brief %Multimap list assignment operator. 305 * @param __l An initializer_list. 306 * 307 * This function fills a %multimap with copies of the elements 308 * in the initializer list @a __l. 309 * 310 * Note that the assignment completely changes the %multimap and 311 * that the resulting %multimap's size is the same as the number 312 * of elements assigned. Old data may be lost. 313 */ 314 multimap& 315 operator=(initializer_list<value_type> __l) 316 { 317 _M_t._M_assign_equal(__l.begin(), __l.end()); 318 return *this; 319 } 320 #endif 321 322 /// Get a copy of the memory allocation object. 323 allocator_type 324 get_allocator() const _GLIBCXX_NOEXCEPT 325 { return allocator_type(_M_t.get_allocator()); } 326 327 // iterators 328 /** 329 * Returns a read/write iterator that points to the first pair in the 330 * %multimap. Iteration is done in ascending order according to the 331 * keys. 332 */ 333 iterator 334 begin() _GLIBCXX_NOEXCEPT 335 { return _M_t.begin(); } 336 337 /** 338 * Returns a read-only (constant) iterator that points to the first pair 339 * in the %multimap. Iteration is done in ascending order according to 340 * the keys. 341 */ 342 const_iterator 343 begin() const _GLIBCXX_NOEXCEPT 344 { return _M_t.begin(); } 345 346 /** 347 * Returns a read/write iterator that points one past the last pair in 348 * the %multimap. Iteration is done in ascending order according to the 349 * keys. 350 */ 351 iterator 352 end() _GLIBCXX_NOEXCEPT 353 { return _M_t.end(); } 354 355 /** 356 * Returns a read-only (constant) iterator that points one past the last 357 * pair in the %multimap. Iteration is done in ascending order according 358 * to the keys. 359 */ 360 const_iterator 361 end() const _GLIBCXX_NOEXCEPT 362 { return _M_t.end(); } 363 364 /** 365 * Returns a read/write reverse iterator that points to the last pair in 366 * the %multimap. Iteration is done in descending order according to the 367 * keys. 368 */ 369 reverse_iterator 370 rbegin() _GLIBCXX_NOEXCEPT 371 { return _M_t.rbegin(); } 372 373 /** 374 * Returns a read-only (constant) reverse iterator that points to the 375 * last pair in the %multimap. Iteration is done in descending order 376 * according to the keys. 377 */ 378 const_reverse_iterator 379 rbegin() const _GLIBCXX_NOEXCEPT 380 { return _M_t.rbegin(); } 381 382 /** 383 * Returns a read/write reverse iterator that points to one before the 384 * first pair in the %multimap. Iteration is done in descending order 385 * according to the keys. 386 */ 387 reverse_iterator 388 rend() _GLIBCXX_NOEXCEPT 389 { return _M_t.rend(); } 390 391 /** 392 * Returns a read-only (constant) reverse iterator that points to one 393 * before the first pair in the %multimap. Iteration is done in 394 * descending order according to the keys. 395 */ 396 const_reverse_iterator 397 rend() const _GLIBCXX_NOEXCEPT 398 { return _M_t.rend(); } 399 400 #if __cplusplus >= 201103L 401 /** 402 * Returns a read-only (constant) iterator that points to the first pair 403 * in the %multimap. Iteration is done in ascending order according to 404 * the keys. 405 */ 406 const_iterator 407 cbegin() const noexcept 408 { return _M_t.begin(); } 409 410 /** 411 * Returns a read-only (constant) iterator that points one past the last 412 * pair in the %multimap. Iteration is done in ascending order according 413 * to the keys. 414 */ 415 const_iterator 416 cend() const noexcept 417 { return _M_t.end(); } 418 419 /** 420 * Returns a read-only (constant) reverse iterator that points to the 421 * last pair in the %multimap. Iteration is done in descending order 422 * according to the keys. 423 */ 424 const_reverse_iterator 425 crbegin() const noexcept 426 { return _M_t.rbegin(); } 427 428 /** 429 * Returns a read-only (constant) reverse iterator that points to one 430 * before the first pair in the %multimap. Iteration is done in 431 * descending order according to the keys. 432 */ 433 const_reverse_iterator 434 crend() const noexcept 435 { return _M_t.rend(); } 436 #endif 437 438 // capacity 439 /** Returns true if the %multimap is empty. */ 440 bool 441 empty() const _GLIBCXX_NOEXCEPT 442 { return _M_t.empty(); } 443 444 /** Returns the size of the %multimap. */ 445 size_type 446 size() const _GLIBCXX_NOEXCEPT 447 { return _M_t.size(); } 448 449 /** Returns the maximum size of the %multimap. */ 450 size_type 451 max_size() const _GLIBCXX_NOEXCEPT 452 { return _M_t.max_size(); } 453 454 // modifiers 455 #if __cplusplus >= 201103L 456 /** 457 * @brief Build and insert a std::pair into the %multimap. 458 * 459 * @param __args Arguments used to generate a new pair instance (see 460 * std::piecewise_contruct for passing arguments to each 461 * part of the pair constructor). 462 * 463 * @return An iterator that points to the inserted (key,value) pair. 464 * 465 * This function builds and inserts a (key, value) %pair into the 466 * %multimap. 467 * Contrary to a std::map the %multimap does not rely on unique keys and 468 * thus multiple pairs with the same key can be inserted. 469 * 470 * Insertion requires logarithmic time. 471 */ 472 template<typename... _Args> 473 iterator 474 emplace(_Args&&... __args) 475 { return _M_t._M_emplace_equal(std::forward<_Args>(__args)...); } 476 477 /** 478 * @brief Builds and inserts a std::pair into the %multimap. 479 * 480 * @param __pos An iterator that serves as a hint as to where the pair 481 * should be inserted. 482 * @param __args Arguments used to generate a new pair instance (see 483 * std::piecewise_contruct for passing arguments to each 484 * part of the pair constructor). 485 * @return An iterator that points to the inserted (key,value) pair. 486 * 487 * This function inserts a (key, value) pair into the %multimap. 488 * Contrary to a std::map the %multimap does not rely on unique keys and 489 * thus multiple pairs with the same key can be inserted. 490 * Note that the first parameter is only a hint and can potentially 491 * improve the performance of the insertion process. A bad hint would 492 * cause no gains in efficiency. 493 * 494 * For more on @a hinting, see: 495 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints 496 * 497 * Insertion requires logarithmic time (if the hint is not taken). 498 */ 499 template<typename... _Args> 500 iterator 501 emplace_hint(const_iterator __pos, _Args&&... __args) 502 { 503 return _M_t._M_emplace_hint_equal(__pos, 504 std::forward<_Args>(__args)...); 505 } 506 #endif 507 508 /** 509 * @brief Inserts a std::pair into the %multimap. 510 * @param __x Pair to be inserted (see std::make_pair for easy creation 511 * of pairs). 512 * @return An iterator that points to the inserted (key,value) pair. 513 * 514 * This function inserts a (key, value) pair into the %multimap. 515 * Contrary to a std::map the %multimap does not rely on unique keys and 516 * thus multiple pairs with the same key can be inserted. 517 * 518 * Insertion requires logarithmic time. 519 */ 520 iterator 521 insert(const value_type& __x) 522 { return _M_t._M_insert_equal(__x); } 523 524 #if __cplusplus >= 201103L 525 template<typename _Pair, typename = typename 526 std::enable_if<std::is_constructible<value_type, 527 _Pair&&>::value>::type> 528 iterator 529 insert(_Pair&& __x) 530 { return _M_t._M_insert_equal(std::forward<_Pair>(__x)); } 531 #endif 532 533 /** 534 * @brief Inserts a std::pair into the %multimap. 535 * @param __position An iterator that serves as a hint as to where the 536 * pair should be inserted. 537 * @param __x Pair to be inserted (see std::make_pair for easy creation 538 * of pairs). 539 * @return An iterator that points to the inserted (key,value) pair. 540 * 541 * This function inserts a (key, value) pair into the %multimap. 542 * Contrary to a std::map the %multimap does not rely on unique keys and 543 * thus multiple pairs with the same key can be inserted. 544 * Note that the first parameter is only a hint and can potentially 545 * improve the performance of the insertion process. A bad hint would 546 * cause no gains in efficiency. 547 * 548 * For more on @a hinting, see: 549 * https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints 550 * 551 * Insertion requires logarithmic time (if the hint is not taken). 552 */ 553 iterator 554 #if __cplusplus >= 201103L 555 insert(const_iterator __position, const value_type& __x) 556 #else 557 insert(iterator __position, const value_type& __x) 558 #endif 559 { return _M_t._M_insert_equal_(__position, __x); } 560 561 #if __cplusplus >= 201103L 562 template<typename _Pair, typename = typename 563 std::enable_if<std::is_constructible<value_type, 564 _Pair&&>::value>::type> 565 iterator 566 insert(const_iterator __position, _Pair&& __x) 567 { return _M_t._M_insert_equal_(__position, 568 std::forward<_Pair>(__x)); } 569 #endif 570 571 /** 572 * @brief A template function that attempts to insert a range 573 * of elements. 574 * @param __first Iterator pointing to the start of the range to be 575 * inserted. 576 * @param __last Iterator pointing to the end of the range. 577 * 578 * Complexity similar to that of the range constructor. 579 */ 580 template<typename _InputIterator> 581 void 582 insert(_InputIterator __first, _InputIterator __last) 583 { _M_t._M_insert_equal(__first, __last); } 584 585 #if __cplusplus >= 201103L 586 /** 587 * @brief Attempts to insert a list of std::pairs into the %multimap. 588 * @param __l A std::initializer_list<value_type> of pairs to be 589 * inserted. 590 * 591 * Complexity similar to that of the range constructor. 592 */ 593 void 594 insert(initializer_list<value_type> __l) 595 { this->insert(__l.begin(), __l.end()); } 596 #endif 597 598 #if __cplusplus >= 201103L 599 // _GLIBCXX_RESOLVE_LIB_DEFECTS 600 // DR 130. Associative erase should return an iterator. 601 /** 602 * @brief Erases an element from a %multimap. 603 * @param __position An iterator pointing to the element to be erased. 604 * @return An iterator pointing to the element immediately following 605 * @a position prior to the element being erased. If no such 606 * element exists, end() is returned. 607 * 608 * This function erases an element, pointed to by the given iterator, 609 * from a %multimap. Note that this function only erases the element, 610 * and that if the element is itself a pointer, the pointed-to memory is 611 * not touched in any way. Managing the pointer is the user's 612 * responsibility. 613 */ 614 iterator 615 erase(const_iterator __position) 616 { return _M_t.erase(__position); } 617 618 // LWG 2059. 619 _GLIBCXX_ABI_TAG_CXX11 620 iterator 621 erase(iterator __position) 622 { return _M_t.erase(__position); } 623 #else 624 /** 625 * @brief Erases an element from a %multimap. 626 * @param __position An iterator pointing to the element to be erased. 627 * 628 * This function erases an element, pointed to by the given iterator, 629 * from a %multimap. Note that this function only erases the element, 630 * and that if the element is itself a pointer, the pointed-to memory is 631 * not touched in any way. Managing the pointer is the user's 632 * responsibility. 633 */ 634 void 635 erase(iterator __position) 636 { _M_t.erase(__position); } 637 #endif 638 639 /** 640 * @brief Erases elements according to the provided key. 641 * @param __x Key of element to be erased. 642 * @return The number of elements erased. 643 * 644 * This function erases all elements located by the given key from a 645 * %multimap. 646 * Note that this function only erases the element, and that if 647 * the element is itself a pointer, the pointed-to memory is not touched 648 * in any way. Managing the pointer is the user's responsibility. 649 */ 650 size_type 651 erase(const key_type& __x) 652 { return _M_t.erase(__x); } 653 654 #if __cplusplus >= 201103L 655 // _GLIBCXX_RESOLVE_LIB_DEFECTS 656 // DR 130. Associative erase should return an iterator. 657 /** 658 * @brief Erases a [first,last) range of elements from a %multimap. 659 * @param __first Iterator pointing to the start of the range to be 660 * erased. 661 * @param __last Iterator pointing to the end of the range to be 662 * erased . 663 * @return The iterator @a __last. 664 * 665 * This function erases a sequence of elements from a %multimap. 666 * Note that this function only erases the elements, and that if 667 * the elements themselves are pointers, the pointed-to memory is not 668 * touched in any way. Managing the pointer is the user's 669 * responsibility. 670 */ 671 iterator 672 erase(const_iterator __first, const_iterator __last) 673 { return _M_t.erase(__first, __last); } 674 #else 675 // _GLIBCXX_RESOLVE_LIB_DEFECTS 676 // DR 130. Associative erase should return an iterator. 677 /** 678 * @brief Erases a [first,last) range of elements from a %multimap. 679 * @param __first Iterator pointing to the start of the range to be 680 * erased. 681 * @param __last Iterator pointing to the end of the range to 682 * be erased. 683 * 684 * This function erases a sequence of elements from a %multimap. 685 * Note that this function only erases the elements, and that if 686 * the elements themselves are pointers, the pointed-to memory is not 687 * touched in any way. Managing the pointer is the user's 688 * responsibility. 689 */ 690 void 691 erase(iterator __first, iterator __last) 692 { _M_t.erase(__first, __last); } 693 #endif 694 695 /** 696 * @brief Swaps data with another %multimap. 697 * @param __x A %multimap of the same element and allocator types. 698 * 699 * This exchanges the elements between two multimaps in constant time. 700 * (It is only swapping a pointer, an integer, and an instance of 701 * the @c Compare type (which itself is often stateless and empty), so it 702 * should be quite fast.) 703 * Note that the global std::swap() function is specialized such that 704 * std::swap(m1,m2) will feed to this function. 705 */ 706 void 707 swap(multimap& __x) 708 #if __cplusplus >= 201103L 709 noexcept(_Alloc_traits::_S_nothrow_swap()) 710 #endif 711 { _M_t.swap(__x._M_t); } 712 713 /** 714 * Erases all elements in a %multimap. Note that this function only 715 * erases the elements, and that if the elements themselves are pointers, 716 * the pointed-to memory is not touched in any way. Managing the pointer 717 * is the user's responsibility. 718 */ 719 void 720 clear() _GLIBCXX_NOEXCEPT 721 { _M_t.clear(); } 722 723 // observers 724 /** 725 * Returns the key comparison object out of which the %multimap 726 * was constructed. 727 */ 728 key_compare 729 key_comp() const 730 { return _M_t.key_comp(); } 731 732 /** 733 * Returns a value comparison object, built from the key comparison 734 * object out of which the %multimap was constructed. 735 */ 736 value_compare 737 value_comp() const 738 { return value_compare(_M_t.key_comp()); } 739 740 // multimap operations 741 742 //@{ 743 /** 744 * @brief Tries to locate an element in a %multimap. 745 * @param __x Key of (key, value) pair to be located. 746 * @return Iterator pointing to sought-after element, 747 * or end() if not found. 748 * 749 * This function takes a key and tries to locate the element with which 750 * the key matches. If successful the function returns an iterator 751 * pointing to the sought after %pair. If unsuccessful it returns the 752 * past-the-end ( @c end() ) iterator. 753 */ 754 iterator 755 find(const key_type& __x) 756 { return _M_t.find(__x); } 757 758 #if __cplusplus > 201103L 759 template<typename _Kt> 760 auto 761 find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x)) 762 { return _M_t._M_find_tr(__x); } 763 #endif 764 //@} 765 766 //@{ 767 /** 768 * @brief Tries to locate an element in a %multimap. 769 * @param __x Key of (key, value) pair to be located. 770 * @return Read-only (constant) iterator pointing to sought-after 771 * element, or end() if not found. 772 * 773 * This function takes a key and tries to locate the element with which 774 * the key matches. If successful the function returns a constant 775 * iterator pointing to the sought after %pair. If unsuccessful it 776 * returns the past-the-end ( @c end() ) iterator. 777 */ 778 const_iterator 779 find(const key_type& __x) const 780 { return _M_t.find(__x); } 781 782 #if __cplusplus > 201103L 783 template<typename _Kt> 784 auto 785 find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x)) 786 { return _M_t._M_find_tr(__x); } 787 #endif 788 //@} 789 790 //@{ 791 /** 792 * @brief Finds the number of elements with given key. 793 * @param __x Key of (key, value) pairs to be located. 794 * @return Number of elements with specified key. 795 */ 796 size_type 797 count(const key_type& __x) const 798 { return _M_t.count(__x); } 799 800 #if __cplusplus > 201103L 801 template<typename _Kt> 802 auto 803 count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x)) 804 { return _M_t._M_count_tr(__x); } 805 #endif 806 //@} 807 808 //@{ 809 /** 810 * @brief Finds the beginning of a subsequence matching given key. 811 * @param __x Key of (key, value) pair to be located. 812 * @return Iterator pointing to first element equal to or greater 813 * than key, or end(). 814 * 815 * This function returns the first element of a subsequence of elements 816 * that matches the given key. If unsuccessful it returns an iterator 817 * pointing to the first element that has a greater value than given key 818 * or end() if no such element exists. 819 */ 820 iterator 821 lower_bound(const key_type& __x) 822 { return _M_t.lower_bound(__x); } 823 824 #if __cplusplus > 201103L 825 template<typename _Kt> 826 auto 827 lower_bound(const _Kt& __x) 828 -> decltype(iterator(_M_t._M_lower_bound_tr(__x))) 829 { return iterator(_M_t._M_lower_bound_tr(__x)); } 830 #endif 831 //@} 832 833 //@{ 834 /** 835 * @brief Finds the beginning of a subsequence matching given key. 836 * @param __x Key of (key, value) pair to be located. 837 * @return Read-only (constant) iterator pointing to first element 838 * equal to or greater than key, or end(). 839 * 840 * This function returns the first element of a subsequence of 841 * elements that matches the given key. If unsuccessful the 842 * iterator will point to the next greatest element or, if no 843 * such greater element exists, to end(). 844 */ 845 const_iterator 846 lower_bound(const key_type& __x) const 847 { return _M_t.lower_bound(__x); } 848 849 #if __cplusplus > 201103L 850 template<typename _Kt> 851 auto 852 lower_bound(const _Kt& __x) const 853 -> decltype(const_iterator(_M_t._M_lower_bound_tr(__x))) 854 { return const_iterator(_M_t._M_lower_bound_tr(__x)); } 855 #endif 856 //@} 857 858 //@{ 859 /** 860 * @brief Finds the end of a subsequence matching given key. 861 * @param __x Key of (key, value) pair to be located. 862 * @return Iterator pointing to the first element 863 * greater than key, or end(). 864 */ 865 iterator 866 upper_bound(const key_type& __x) 867 { return _M_t.upper_bound(__x); } 868 869 #if __cplusplus > 201103L 870 template<typename _Kt> 871 auto 872 upper_bound(const _Kt& __x) 873 -> decltype(iterator(_M_t._M_upper_bound_tr(__x))) 874 { return iterator(_M_t._M_upper_bound_tr(__x)); } 875 #endif 876 //@} 877 878 //@{ 879 /** 880 * @brief Finds the end of a subsequence matching given key. 881 * @param __x Key of (key, value) pair to be located. 882 * @return Read-only (constant) iterator pointing to first iterator 883 * greater than key, or end(). 884 */ 885 const_iterator 886 upper_bound(const key_type& __x) const 887 { return _M_t.upper_bound(__x); } 888 889 #if __cplusplus > 201103L 890 template<typename _Kt> 891 auto 892 upper_bound(const _Kt& __x) const 893 -> decltype(const_iterator(_M_t._M_upper_bound_tr(__x))) 894 { return const_iterator(_M_t._M_upper_bound_tr(__x)); } 895 #endif 896 //@} 897 898 //@{ 899 /** 900 * @brief Finds a subsequence matching given key. 901 * @param __x Key of (key, value) pairs to be located. 902 * @return Pair of iterators that possibly points to the subsequence 903 * matching given key. 904 * 905 * This function is equivalent to 906 * @code 907 * std::make_pair(c.lower_bound(val), 908 * c.upper_bound(val)) 909 * @endcode 910 * (but is faster than making the calls separately). 911 */ 912 std::pair<iterator, iterator> 913 equal_range(const key_type& __x) 914 { return _M_t.equal_range(__x); } 915 916 #if __cplusplus > 201103L 917 template<typename _Kt> 918 auto 919 equal_range(const _Kt& __x) 920 -> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x))) 921 { return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); } 922 #endif 923 //@} 924 925 //@{ 926 /** 927 * @brief Finds a subsequence matching given key. 928 * @param __x Key of (key, value) pairs to be located. 929 * @return Pair of read-only (constant) iterators that possibly points 930 * to the subsequence matching given key. 931 * 932 * This function is equivalent to 933 * @code 934 * std::make_pair(c.lower_bound(val), 935 * c.upper_bound(val)) 936 * @endcode 937 * (but is faster than making the calls separately). 938 */ 939 std::pair<const_iterator, const_iterator> 940 equal_range(const key_type& __x) const 941 { return _M_t.equal_range(__x); } 942 943 #if __cplusplus > 201103L 944 template<typename _Kt> 945 auto 946 equal_range(const _Kt& __x) const 947 -> decltype(pair<const_iterator, const_iterator>( 948 _M_t._M_equal_range_tr(__x))) 949 { 950 return pair<const_iterator, const_iterator>( 951 _M_t._M_equal_range_tr(__x)); 952 } 953 #endif 954 //@} 955 956 template<typename _K1, typename _T1, typename _C1, typename _A1> 957 friend bool 958 operator==(const multimap<_K1, _T1, _C1, _A1>&, 959 const multimap<_K1, _T1, _C1, _A1>&); 960 961 template<typename _K1, typename _T1, typename _C1, typename _A1> 962 friend bool 963 operator<(const multimap<_K1, _T1, _C1, _A1>&, 964 const multimap<_K1, _T1, _C1, _A1>&); 965 }; 966 967 /** 968 * @brief Multimap equality comparison. 969 * @param __x A %multimap. 970 * @param __y A %multimap of the same type as @a __x. 971 * @return True iff the size and elements of the maps are equal. 972 * 973 * This is an equivalence relation. It is linear in the size of the 974 * multimaps. Multimaps are considered equivalent if their sizes are equal, 975 * and if corresponding elements compare equal. 976 */ 977 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 978 inline bool 979 operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 980 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 981 { return __x._M_t == __y._M_t; } 982 983 /** 984 * @brief Multimap ordering relation. 985 * @param __x A %multimap. 986 * @param __y A %multimap of the same type as @a __x. 987 * @return True iff @a x is lexicographically less than @a y. 988 * 989 * This is a total ordering relation. It is linear in the size of the 990 * multimaps. The elements must be comparable with @c <. 991 * 992 * See std::lexicographical_compare() for how the determination is made. 993 */ 994 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 995 inline bool 996 operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 997 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 998 { return __x._M_t < __y._M_t; } 999 1000 /// Based on operator== 1001 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 1002 inline bool 1003 operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 1004 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 1005 { return !(__x == __y); } 1006 1007 /// Based on operator< 1008 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 1009 inline bool 1010 operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 1011 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 1012 { return __y < __x; } 1013 1014 /// Based on operator< 1015 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 1016 inline bool 1017 operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 1018 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 1019 { return !(__y < __x); } 1020 1021 /// Based on operator< 1022 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 1023 inline bool 1024 operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 1025 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 1026 { return !(__x < __y); } 1027 1028 /// See std::multimap::swap(). 1029 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 1030 inline void 1031 swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x, 1032 multimap<_Key, _Tp, _Compare, _Alloc>& __y) 1033 { __x.swap(__y); } 1034 1035 _GLIBCXX_END_NAMESPACE_CONTAINER 1036 } // namespace std 1037 1038 #endif /* _STL_MULTIMAP_H */ 1039