xref: /netbsd-src/external/gpl3/gcc.old/dist/libstdc++-v3/include/bits/stl_multimap.h (revision 76c7fc5f6b13ed0b1508e6b313e88e59977ed78e)
1 // Multimap implementation -*- C++ -*-
2 
3 // Copyright (C) 2001-2017 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /*
26  *
27  * Copyright (c) 1994
28  * Hewlett-Packard Company
29  *
30  * Permission to use, copy, modify, distribute and sell this software
31  * and its documentation for any purpose is hereby granted without fee,
32  * provided that the above copyright notice appear in all copies and
33  * that both that copyright notice and this permission notice appear
34  * in supporting documentation.  Hewlett-Packard Company makes no
35  * representations about the suitability of this software for any
36  * purpose.  It is provided "as is" without express or implied warranty.
37  *
38  *
39  * Copyright (c) 1996,1997
40  * Silicon Graphics Computer Systems, Inc.
41  *
42  * Permission to use, copy, modify, distribute and sell this software
43  * and its documentation for any purpose is hereby granted without fee,
44  * provided that the above copyright notice appear in all copies and
45  * that both that copyright notice and this permission notice appear
46  * in supporting documentation.  Silicon Graphics makes no
47  * representations about the suitability of this software for any
48  * purpose.  It is provided "as is" without express or implied warranty.
49  */
50 
51 /** @file bits/stl_multimap.h
52  *  This is an internal header file, included by other library headers.
53  *  Do not attempt to use it directly. @headername{map}
54  */
55 
56 #ifndef _STL_MULTIMAP_H
57 #define _STL_MULTIMAP_H 1
58 
59 #include <bits/concept_check.h>
60 #if __cplusplus >= 201103L
61 #include <initializer_list>
62 #endif
63 
64 namespace std _GLIBCXX_VISIBILITY(default)
65 {
66 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
67 
68   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
69     class map;
70 
71   /**
72    *  @brief A standard container made up of (key,value) pairs, which can be
73    *  retrieved based on a key, in logarithmic time.
74    *
75    *  @ingroup associative_containers
76    *
77    *  @tparam _Key  Type of key objects.
78    *  @tparam  _Tp  Type of mapped objects.
79    *  @tparam _Compare  Comparison function object type, defaults to less<_Key>.
80    *  @tparam _Alloc  Allocator type, defaults to
81    *                  allocator<pair<const _Key, _Tp>.
82    *
83    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
84    *  <a href="tables.html#66">reversible container</a>, and an
85    *  <a href="tables.html#69">associative container</a> (using equivalent
86    *  keys).  For a @c multimap<Key,T> the key_type is Key, the mapped_type
87    *  is T, and the value_type is std::pair<const Key,T>.
88    *
89    *  Multimaps support bidirectional iterators.
90    *
91    *  The private tree data is declared exactly the same way for map and
92    *  multimap; the distinction is made entirely in how the tree functions are
93    *  called (*_unique versus *_equal, same as the standard).
94   */
95   template <typename _Key, typename _Tp,
96 	    typename _Compare = std::less<_Key>,
97 	    typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > >
98     class multimap
99     {
100     public:
101       typedef _Key					key_type;
102       typedef _Tp					mapped_type;
103       typedef std::pair<const _Key, _Tp>		value_type;
104       typedef _Compare					key_compare;
105       typedef _Alloc					allocator_type;
106 
107     private:
108 #ifdef _GLIBCXX_CONCEPT_CHECKS
109       // concept requirements
110       typedef typename _Alloc::value_type		_Alloc_value_type;
111 # if __cplusplus < 201103L
112       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
113 # endif
114       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
115 				_BinaryFunctionConcept)
116       __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept)
117 #endif
118 
119     public:
120       class value_compare
121       : public std::binary_function<value_type, value_type, bool>
122       {
123 	friend class multimap<_Key, _Tp, _Compare, _Alloc>;
124       protected:
125 	_Compare comp;
126 
127 	value_compare(_Compare __c)
128 	: comp(__c) { }
129 
130       public:
131 	bool operator()(const value_type& __x, const value_type& __y) const
132 	{ return comp(__x.first, __y.first); }
133       };
134 
135     private:
136       /// This turns a red-black tree into a [multi]map.
137       typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
138 	rebind<value_type>::other _Pair_alloc_type;
139 
140       typedef _Rb_tree<key_type, value_type, _Select1st<value_type>,
141 		       key_compare, _Pair_alloc_type> _Rep_type;
142       /// The actual tree structure.
143       _Rep_type _M_t;
144 
145       typedef __gnu_cxx::__alloc_traits<_Pair_alloc_type> _Alloc_traits;
146 
147     public:
148       // many of these are specified differently in ISO, but the following are
149       // "functionally equivalent"
150       typedef typename _Alloc_traits::pointer		 pointer;
151       typedef typename _Alloc_traits::const_pointer	 const_pointer;
152       typedef typename _Alloc_traits::reference		 reference;
153       typedef typename _Alloc_traits::const_reference	 const_reference;
154       typedef typename _Rep_type::iterator		 iterator;
155       typedef typename _Rep_type::const_iterator	 const_iterator;
156       typedef typename _Rep_type::size_type		 size_type;
157       typedef typename _Rep_type::difference_type	 difference_type;
158       typedef typename _Rep_type::reverse_iterator	 reverse_iterator;
159       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
160 
161 #if __cplusplus > 201402L
162       using node_type = typename _Rep_type::node_type;
163 #endif
164 
165       // [23.3.2] construct/copy/destroy
166       // (get_allocator() is also listed in this section)
167 
168       /**
169        *  @brief  Default constructor creates no elements.
170        */
171 #if __cplusplus < 201103L
172       multimap() : _M_t() { }
173 #else
174       multimap() = default;
175 #endif
176 
177       /**
178        *  @brief  Creates a %multimap with no elements.
179        *  @param  __comp  A comparison object.
180        *  @param  __a  An allocator object.
181        */
182       explicit
183       multimap(const _Compare& __comp,
184 	       const allocator_type& __a = allocator_type())
185       : _M_t(__comp, _Pair_alloc_type(__a)) { }
186 
187       /**
188        *  @brief  %Multimap copy constructor.
189        *
190        *  Whether the allocator is copied depends on the allocator traits.
191        */
192 #if __cplusplus < 201103L
193       multimap(const multimap& __x)
194       : _M_t(__x._M_t) { }
195 #else
196       multimap(const multimap&) = default;
197 
198       /**
199        *  @brief  %Multimap move constructor.
200        *
201        *  The newly-created %multimap contains the exact contents of the
202        *  moved instance. The moved instance is a valid, but unspecified
203        *  %multimap.
204        */
205       multimap(multimap&&) = default;
206 
207       /**
208        *  @brief  Builds a %multimap from an initializer_list.
209        *  @param  __l  An initializer_list.
210        *  @param  __comp  A comparison functor.
211        *  @param  __a  An allocator object.
212        *
213        *  Create a %multimap consisting of copies of the elements from
214        *  the initializer_list.  This is linear in N if the list is already
215        *  sorted, and NlogN otherwise (where N is @a __l.size()).
216        */
217       multimap(initializer_list<value_type> __l,
218 	       const _Compare& __comp = _Compare(),
219 	       const allocator_type& __a = allocator_type())
220       : _M_t(__comp, _Pair_alloc_type(__a))
221       { _M_t._M_insert_equal(__l.begin(), __l.end()); }
222 
223       /// Allocator-extended default constructor.
224       explicit
225       multimap(const allocator_type& __a)
226       : _M_t(_Compare(), _Pair_alloc_type(__a)) { }
227 
228       /// Allocator-extended copy constructor.
229       multimap(const multimap& __m, const allocator_type& __a)
230       : _M_t(__m._M_t, _Pair_alloc_type(__a)) { }
231 
232       /// Allocator-extended move constructor.
233       multimap(multimap&& __m, const allocator_type& __a)
234       noexcept(is_nothrow_copy_constructible<_Compare>::value
235 	       && _Alloc_traits::_S_always_equal())
236       : _M_t(std::move(__m._M_t), _Pair_alloc_type(__a)) { }
237 
238       /// Allocator-extended initialier-list constructor.
239       multimap(initializer_list<value_type> __l, const allocator_type& __a)
240       : _M_t(_Compare(), _Pair_alloc_type(__a))
241       { _M_t._M_insert_equal(__l.begin(), __l.end()); }
242 
243       /// Allocator-extended range constructor.
244       template<typename _InputIterator>
245 	multimap(_InputIterator __first, _InputIterator __last,
246 		 const allocator_type& __a)
247 	: _M_t(_Compare(), _Pair_alloc_type(__a))
248 	{ _M_t._M_insert_equal(__first, __last); }
249 #endif
250 
251       /**
252        *  @brief  Builds a %multimap from a range.
253        *  @param  __first  An input iterator.
254        *  @param  __last  An input iterator.
255        *
256        *  Create a %multimap consisting of copies of the elements from
257        *  [__first,__last).  This is linear in N if the range is already sorted,
258        *  and NlogN otherwise (where N is distance(__first,__last)).
259        */
260       template<typename _InputIterator>
261 	multimap(_InputIterator __first, _InputIterator __last)
262 	: _M_t()
263 	{ _M_t._M_insert_equal(__first, __last); }
264 
265       /**
266        *  @brief  Builds a %multimap from a range.
267        *  @param  __first  An input iterator.
268        *  @param  __last  An input iterator.
269        *  @param  __comp  A comparison functor.
270        *  @param  __a  An allocator object.
271        *
272        *  Create a %multimap consisting of copies of the elements from
273        *  [__first,__last).  This is linear in N if the range is already sorted,
274        *  and NlogN otherwise (where N is distance(__first,__last)).
275        */
276       template<typename _InputIterator>
277 	multimap(_InputIterator __first, _InputIterator __last,
278 		 const _Compare& __comp,
279 		 const allocator_type& __a = allocator_type())
280 	: _M_t(__comp, _Pair_alloc_type(__a))
281 	{ _M_t._M_insert_equal(__first, __last); }
282 
283 #if __cplusplus >= 201103L
284       /**
285        *  The dtor only erases the elements, and note that if the elements
286        *  themselves are pointers, the pointed-to memory is not touched in any
287        *  way. Managing the pointer is the user's responsibility.
288        */
289       ~multimap() = default;
290 #endif
291 
292       /**
293        *  @brief  %Multimap assignment operator.
294        *
295        *  Whether the allocator is copied depends on the allocator traits.
296        */
297 #if __cplusplus < 201103L
298       multimap&
299       operator=(const multimap& __x)
300       {
301 	_M_t = __x._M_t;
302 	return *this;
303       }
304 #else
305       multimap&
306       operator=(const multimap&) = default;
307 
308       /// Move assignment operator.
309       multimap&
310       operator=(multimap&&) = default;
311 
312       /**
313        *  @brief  %Multimap list assignment operator.
314        *  @param  __l  An initializer_list.
315        *
316        *  This function fills a %multimap with copies of the elements
317        *  in the initializer list @a __l.
318        *
319        *  Note that the assignment completely changes the %multimap and
320        *  that the resulting %multimap's size is the same as the number
321        *  of elements assigned.
322        */
323       multimap&
324       operator=(initializer_list<value_type> __l)
325       {
326 	_M_t._M_assign_equal(__l.begin(), __l.end());
327 	return *this;
328       }
329 #endif
330 
331       /// Get a copy of the memory allocation object.
332       allocator_type
333       get_allocator() const _GLIBCXX_NOEXCEPT
334       { return allocator_type(_M_t.get_allocator()); }
335 
336       // iterators
337       /**
338        *  Returns a read/write iterator that points to the first pair in the
339        *  %multimap.  Iteration is done in ascending order according to the
340        *  keys.
341        */
342       iterator
343       begin() _GLIBCXX_NOEXCEPT
344       { return _M_t.begin(); }
345 
346       /**
347        *  Returns a read-only (constant) iterator that points to the first pair
348        *  in the %multimap.  Iteration is done in ascending order according to
349        *  the keys.
350        */
351       const_iterator
352       begin() const _GLIBCXX_NOEXCEPT
353       { return _M_t.begin(); }
354 
355       /**
356        *  Returns a read/write iterator that points one past the last pair in
357        *  the %multimap.  Iteration is done in ascending order according to the
358        *  keys.
359        */
360       iterator
361       end() _GLIBCXX_NOEXCEPT
362       { return _M_t.end(); }
363 
364       /**
365        *  Returns a read-only (constant) iterator that points one past the last
366        *  pair in the %multimap.  Iteration is done in ascending order according
367        *  to the keys.
368        */
369       const_iterator
370       end() const _GLIBCXX_NOEXCEPT
371       { return _M_t.end(); }
372 
373       /**
374        *  Returns a read/write reverse iterator that points to the last pair in
375        *  the %multimap.  Iteration is done in descending order according to the
376        *  keys.
377        */
378       reverse_iterator
379       rbegin() _GLIBCXX_NOEXCEPT
380       { return _M_t.rbegin(); }
381 
382       /**
383        *  Returns a read-only (constant) reverse iterator that points to the
384        *  last pair in the %multimap.  Iteration is done in descending order
385        *  according to the keys.
386        */
387       const_reverse_iterator
388       rbegin() const _GLIBCXX_NOEXCEPT
389       { return _M_t.rbegin(); }
390 
391       /**
392        *  Returns a read/write reverse iterator that points to one before the
393        *  first pair in the %multimap.  Iteration is done in descending order
394        *  according to the keys.
395        */
396       reverse_iterator
397       rend() _GLIBCXX_NOEXCEPT
398       { return _M_t.rend(); }
399 
400       /**
401        *  Returns a read-only (constant) reverse iterator that points to one
402        *  before the first pair in the %multimap.  Iteration is done in
403        *  descending order according to the keys.
404        */
405       const_reverse_iterator
406       rend() const _GLIBCXX_NOEXCEPT
407       { return _M_t.rend(); }
408 
409 #if __cplusplus >= 201103L
410       /**
411        *  Returns a read-only (constant) iterator that points to the first pair
412        *  in the %multimap.  Iteration is done in ascending order according to
413        *  the keys.
414        */
415       const_iterator
416       cbegin() const noexcept
417       { return _M_t.begin(); }
418 
419       /**
420        *  Returns a read-only (constant) iterator that points one past the last
421        *  pair in the %multimap.  Iteration is done in ascending order according
422        *  to the keys.
423        */
424       const_iterator
425       cend() const noexcept
426       { return _M_t.end(); }
427 
428       /**
429        *  Returns a read-only (constant) reverse iterator that points to the
430        *  last pair in the %multimap.  Iteration is done in descending order
431        *  according to the keys.
432        */
433       const_reverse_iterator
434       crbegin() const noexcept
435       { return _M_t.rbegin(); }
436 
437       /**
438        *  Returns a read-only (constant) reverse iterator that points to one
439        *  before the first pair in the %multimap.  Iteration is done in
440        *  descending order according to the keys.
441        */
442       const_reverse_iterator
443       crend() const noexcept
444       { return _M_t.rend(); }
445 #endif
446 
447       // capacity
448       /** Returns true if the %multimap is empty.  */
449       bool
450       empty() const _GLIBCXX_NOEXCEPT
451       { return _M_t.empty(); }
452 
453       /** Returns the size of the %multimap.  */
454       size_type
455       size() const _GLIBCXX_NOEXCEPT
456       { return _M_t.size(); }
457 
458       /** Returns the maximum size of the %multimap.  */
459       size_type
460       max_size() const _GLIBCXX_NOEXCEPT
461       { return _M_t.max_size(); }
462 
463       // modifiers
464 #if __cplusplus >= 201103L
465       /**
466        *  @brief Build and insert a std::pair into the %multimap.
467        *
468        *  @param __args  Arguments used to generate a new pair instance (see
469        *	        std::piecewise_contruct for passing arguments to each
470        *	        part of the pair constructor).
471        *
472        *  @return An iterator that points to the inserted (key,value) pair.
473        *
474        *  This function builds and inserts a (key, value) %pair into the
475        *  %multimap.
476        *  Contrary to a std::map the %multimap does not rely on unique keys and
477        *  thus multiple pairs with the same key can be inserted.
478        *
479        *  Insertion requires logarithmic time.
480        */
481       template<typename... _Args>
482 	iterator
483 	emplace(_Args&&... __args)
484 	{ return _M_t._M_emplace_equal(std::forward<_Args>(__args)...); }
485 
486       /**
487        *  @brief Builds and inserts a std::pair into the %multimap.
488        *
489        *  @param  __pos  An iterator that serves as a hint as to where the pair
490        *                should be inserted.
491        *  @param  __args  Arguments used to generate a new pair instance (see
492        *	         std::piecewise_contruct for passing arguments to each
493        *	         part of the pair constructor).
494        *  @return An iterator that points to the inserted (key,value) pair.
495        *
496        *  This function inserts a (key, value) pair into the %multimap.
497        *  Contrary to a std::map the %multimap does not rely on unique keys and
498        *  thus multiple pairs with the same key can be inserted.
499        *  Note that the first parameter is only a hint and can potentially
500        *  improve the performance of the insertion process.  A bad hint would
501        *  cause no gains in efficiency.
502        *
503        *  For more on @a hinting, see:
504        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
505        *
506        *  Insertion requires logarithmic time (if the hint is not taken).
507        */
508       template<typename... _Args>
509 	iterator
510 	emplace_hint(const_iterator __pos, _Args&&... __args)
511 	{
512 	  return _M_t._M_emplace_hint_equal(__pos,
513 					    std::forward<_Args>(__args)...);
514 	}
515 #endif
516 
517       /**
518        *  @brief Inserts a std::pair into the %multimap.
519        *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
520        *             of pairs).
521        *  @return An iterator that points to the inserted (key,value) pair.
522        *
523        *  This function inserts a (key, value) pair into the %multimap.
524        *  Contrary to a std::map the %multimap does not rely on unique keys and
525        *  thus multiple pairs with the same key can be inserted.
526        *
527        *  Insertion requires logarithmic time.
528        *  @{
529        */
530       iterator
531       insert(const value_type& __x)
532       { return _M_t._M_insert_equal(__x); }
533 
534 #if __cplusplus >= 201103L
535       // _GLIBCXX_RESOLVE_LIB_DEFECTS
536       // 2354. Unnecessary copying when inserting into maps with braced-init
537       iterator
538       insert(value_type&& __x)
539       { return _M_t._M_insert_equal(std::move(__x)); }
540 
541       template<typename _Pair>
542 	__enable_if_t<is_constructible<value_type, _Pair>::value, iterator>
543 	insert(_Pair&& __x)
544 	{ return _M_t._M_emplace_equal(std::forward<_Pair>(__x)); }
545 #endif
546       // @}
547 
548       /**
549        *  @brief Inserts a std::pair into the %multimap.
550        *  @param  __position  An iterator that serves as a hint as to where the
551        *                      pair should be inserted.
552        *  @param  __x  Pair to be inserted (see std::make_pair for easy creation
553        *               of pairs).
554        *  @return An iterator that points to the inserted (key,value) pair.
555        *
556        *  This function inserts a (key, value) pair into the %multimap.
557        *  Contrary to a std::map the %multimap does not rely on unique keys and
558        *  thus multiple pairs with the same key can be inserted.
559        *  Note that the first parameter is only a hint and can potentially
560        *  improve the performance of the insertion process.  A bad hint would
561        *  cause no gains in efficiency.
562        *
563        *  For more on @a hinting, see:
564        *  https://gcc.gnu.org/onlinedocs/libstdc++/manual/associative.html#containers.associative.insert_hints
565        *
566        *  Insertion requires logarithmic time (if the hint is not taken).
567        * @{
568        */
569       iterator
570 #if __cplusplus >= 201103L
571       insert(const_iterator __position, const value_type& __x)
572 #else
573       insert(iterator __position, const value_type& __x)
574 #endif
575       { return _M_t._M_insert_equal_(__position, __x); }
576 
577 #if __cplusplus >= 201103L
578       // _GLIBCXX_RESOLVE_LIB_DEFECTS
579       // 2354. Unnecessary copying when inserting into maps with braced-init
580       iterator
581       insert(const_iterator __position, value_type&& __x)
582       { return _M_t._M_insert_equal_(__position, std::move(__x)); }
583 
584       template<typename _Pair>
585 	__enable_if_t<is_constructible<value_type, _Pair&&>::value, iterator>
586 	insert(const_iterator __position, _Pair&& __x)
587 	{
588 	  return _M_t._M_emplace_hint_equal(__position,
589 					    std::forward<_Pair>(__x));
590 	}
591 #endif
592       // @}
593 
594       /**
595        *  @brief A template function that attempts to insert a range
596        *  of elements.
597        *  @param  __first  Iterator pointing to the start of the range to be
598        *                   inserted.
599        *  @param  __last  Iterator pointing to the end of the range.
600        *
601        *  Complexity similar to that of the range constructor.
602        */
603       template<typename _InputIterator>
604 	void
605 	insert(_InputIterator __first, _InputIterator __last)
606 	{ _M_t._M_insert_equal(__first, __last); }
607 
608 #if __cplusplus >= 201103L
609       /**
610        *  @brief Attempts to insert a list of std::pairs into the %multimap.
611        *  @param  __l  A std::initializer_list<value_type> of pairs to be
612        *               inserted.
613        *
614        *  Complexity similar to that of the range constructor.
615        */
616       void
617       insert(initializer_list<value_type> __l)
618       { this->insert(__l.begin(), __l.end()); }
619 #endif
620 
621 #if __cplusplus > 201402L
622       /// Extract a node.
623       node_type
624       extract(const_iterator __pos)
625       {
626 	__glibcxx_assert(__pos != end());
627 	return _M_t.extract(__pos);
628       }
629 
630       /// Extract a node.
631       node_type
632       extract(const key_type& __x)
633       { return _M_t.extract(__x); }
634 
635       /// Re-insert an extracted node.
636       iterator
637       insert(node_type&& __nh)
638       { return _M_t._M_reinsert_node_equal(std::move(__nh)); }
639 
640       /// Re-insert an extracted node.
641       iterator
642       insert(const_iterator __hint, node_type&& __nh)
643       { return _M_t._M_reinsert_node_hint_equal(__hint, std::move(__nh)); }
644 
645       template<typename, typename>
646 	friend class _Rb_tree_merge_helper;
647 
648       template<typename _C2>
649 	void
650 	merge(multimap<_Key, _Tp, _C2, _Alloc>& __source)
651 	{
652 	  using _Merge_helper = _Rb_tree_merge_helper<multimap, _C2>;
653 	  _M_t._M_merge_equal(_Merge_helper::_S_get_tree(__source));
654 	}
655 
656       template<typename _C2>
657 	void
658 	merge(multimap<_Key, _Tp, _C2, _Alloc>&& __source)
659 	{ merge(__source); }
660 
661       template<typename _C2>
662 	void
663 	merge(map<_Key, _Tp, _C2, _Alloc>& __source)
664 	{
665 	  using _Merge_helper = _Rb_tree_merge_helper<multimap, _C2>;
666 	  _M_t._M_merge_equal(_Merge_helper::_S_get_tree(__source));
667 	}
668 
669       template<typename _C2>
670 	void
671 	merge(map<_Key, _Tp, _C2, _Alloc>&& __source)
672 	{ merge(__source); }
673 #endif // C++17
674 
675 #if __cplusplus >= 201103L
676       // _GLIBCXX_RESOLVE_LIB_DEFECTS
677       // DR 130. Associative erase should return an iterator.
678       /**
679        *  @brief Erases an element from a %multimap.
680        *  @param  __position  An iterator pointing to the element to be erased.
681        *  @return An iterator pointing to the element immediately following
682        *          @a position prior to the element being erased. If no such
683        *          element exists, end() is returned.
684        *
685        *  This function erases an element, pointed to by the given iterator,
686        *  from a %multimap.  Note that this function only erases the element,
687        *  and that if the element is itself a pointer, the pointed-to memory is
688        *  not touched in any way.  Managing the pointer is the user's
689        *  responsibility.
690        *
691        * @{
692        */
693       iterator
694       erase(const_iterator __position)
695       { return _M_t.erase(__position); }
696 
697       // LWG 2059.
698       _GLIBCXX_ABI_TAG_CXX11
699       iterator
700       erase(iterator __position)
701       { return _M_t.erase(__position); }
702       // @}
703 #else
704       /**
705        *  @brief Erases an element from a %multimap.
706        *  @param  __position  An iterator pointing to the element to be erased.
707        *
708        *  This function erases an element, pointed to by the given iterator,
709        *  from a %multimap.  Note that this function only erases the element,
710        *  and that if the element is itself a pointer, the pointed-to memory is
711        *  not touched in any way.  Managing the pointer is the user's
712        *  responsibility.
713        */
714       void
715       erase(iterator __position)
716       { _M_t.erase(__position); }
717 #endif
718 
719       /**
720        *  @brief Erases elements according to the provided key.
721        *  @param  __x  Key of element to be erased.
722        *  @return  The number of elements erased.
723        *
724        *  This function erases all elements located by the given key from a
725        *  %multimap.
726        *  Note that this function only erases the element, and that if
727        *  the element is itself a pointer, the pointed-to memory is not touched
728        *  in any way.  Managing the pointer is the user's responsibility.
729        */
730       size_type
731       erase(const key_type& __x)
732       { return _M_t.erase(__x); }
733 
734 #if __cplusplus >= 201103L
735       // _GLIBCXX_RESOLVE_LIB_DEFECTS
736       // DR 130. Associative erase should return an iterator.
737       /**
738        *  @brief Erases a [first,last) range of elements from a %multimap.
739        *  @param  __first  Iterator pointing to the start of the range to be
740        *                   erased.
741        *  @param __last Iterator pointing to the end of the range to be
742        *                erased .
743        *  @return The iterator @a __last.
744        *
745        *  This function erases a sequence of elements from a %multimap.
746        *  Note that this function only erases the elements, and that if
747        *  the elements themselves are pointers, the pointed-to memory is not
748        *  touched in any way.  Managing the pointer is the user's
749        *  responsibility.
750        */
751       iterator
752       erase(const_iterator __first, const_iterator __last)
753       { return _M_t.erase(__first, __last); }
754 #else
755       // _GLIBCXX_RESOLVE_LIB_DEFECTS
756       // DR 130. Associative erase should return an iterator.
757       /**
758        *  @brief Erases a [first,last) range of elements from a %multimap.
759        *  @param  __first  Iterator pointing to the start of the range to be
760        *                 erased.
761        *  @param __last Iterator pointing to the end of the range to
762        *                be erased.
763        *
764        *  This function erases a sequence of elements from a %multimap.
765        *  Note that this function only erases the elements, and that if
766        *  the elements themselves are pointers, the pointed-to memory is not
767        *  touched in any way.  Managing the pointer is the user's
768        *  responsibility.
769        */
770       void
771       erase(iterator __first, iterator __last)
772       { _M_t.erase(__first, __last); }
773 #endif
774 
775       /**
776        *  @brief  Swaps data with another %multimap.
777        *  @param  __x  A %multimap of the same element and allocator types.
778        *
779        *  This exchanges the elements between two multimaps in constant time.
780        *  (It is only swapping a pointer, an integer, and an instance of
781        *  the @c Compare type (which itself is often stateless and empty), so it
782        *  should be quite fast.)
783        *  Note that the global std::swap() function is specialized such that
784        *  std::swap(m1,m2) will feed to this function.
785        *
786        *  Whether the allocators are swapped depends on the allocator traits.
787        */
788       void
789       swap(multimap& __x)
790       _GLIBCXX_NOEXCEPT_IF(__is_nothrow_swappable<_Compare>::value)
791       { _M_t.swap(__x._M_t); }
792 
793       /**
794        *  Erases all elements in a %multimap.  Note that this function only
795        *  erases the elements, and that if the elements themselves are pointers,
796        *  the pointed-to memory is not touched in any way.  Managing the pointer
797        *  is the user's responsibility.
798        */
799       void
800       clear() _GLIBCXX_NOEXCEPT
801       { _M_t.clear(); }
802 
803       // observers
804       /**
805        *  Returns the key comparison object out of which the %multimap
806        *  was constructed.
807        */
808       key_compare
809       key_comp() const
810       { return _M_t.key_comp(); }
811 
812       /**
813        *  Returns a value comparison object, built from the key comparison
814        *  object out of which the %multimap was constructed.
815        */
816       value_compare
817       value_comp() const
818       { return value_compare(_M_t.key_comp()); }
819 
820       // multimap operations
821 
822       //@{
823       /**
824        *  @brief Tries to locate an element in a %multimap.
825        *  @param  __x  Key of (key, value) pair to be located.
826        *  @return  Iterator pointing to sought-after element,
827        *           or end() if not found.
828        *
829        *  This function takes a key and tries to locate the element with which
830        *  the key matches.  If successful the function returns an iterator
831        *  pointing to the sought after %pair.  If unsuccessful it returns the
832        *  past-the-end ( @c end() ) iterator.
833        */
834       iterator
835       find(const key_type& __x)
836       { return _M_t.find(__x); }
837 
838 #if __cplusplus > 201103L
839       template<typename _Kt>
840 	auto
841 	find(const _Kt& __x) -> decltype(_M_t._M_find_tr(__x))
842 	{ return _M_t._M_find_tr(__x); }
843 #endif
844       //@}
845 
846       //@{
847       /**
848        *  @brief Tries to locate an element in a %multimap.
849        *  @param  __x  Key of (key, value) pair to be located.
850        *  @return  Read-only (constant) iterator pointing to sought-after
851        *           element, or end() if not found.
852        *
853        *  This function takes a key and tries to locate the element with which
854        *  the key matches.  If successful the function returns a constant
855        *  iterator pointing to the sought after %pair.  If unsuccessful it
856        *  returns the past-the-end ( @c end() ) iterator.
857        */
858       const_iterator
859       find(const key_type& __x) const
860       { return _M_t.find(__x); }
861 
862 #if __cplusplus > 201103L
863       template<typename _Kt>
864 	auto
865 	find(const _Kt& __x) const -> decltype(_M_t._M_find_tr(__x))
866 	{ return _M_t._M_find_tr(__x); }
867 #endif
868       //@}
869 
870       //@{
871       /**
872        *  @brief Finds the number of elements with given key.
873        *  @param  __x  Key of (key, value) pairs to be located.
874        *  @return Number of elements with specified key.
875        */
876       size_type
877       count(const key_type& __x) const
878       { return _M_t.count(__x); }
879 
880 #if __cplusplus > 201103L
881       template<typename _Kt>
882 	auto
883 	count(const _Kt& __x) const -> decltype(_M_t._M_count_tr(__x))
884 	{ return _M_t._M_count_tr(__x); }
885 #endif
886       //@}
887 
888       //@{
889       /**
890        *  @brief Finds the beginning of a subsequence matching given key.
891        *  @param  __x  Key of (key, value) pair to be located.
892        *  @return  Iterator pointing to first element equal to or greater
893        *           than key, or end().
894        *
895        *  This function returns the first element of a subsequence of elements
896        *  that matches the given key.  If unsuccessful it returns an iterator
897        *  pointing to the first element that has a greater value than given key
898        *  or end() if no such element exists.
899        */
900       iterator
901       lower_bound(const key_type& __x)
902       { return _M_t.lower_bound(__x); }
903 
904 #if __cplusplus > 201103L
905       template<typename _Kt>
906 	auto
907 	lower_bound(const _Kt& __x)
908 	-> decltype(iterator(_M_t._M_lower_bound_tr(__x)))
909 	{ return iterator(_M_t._M_lower_bound_tr(__x)); }
910 #endif
911       //@}
912 
913       //@{
914       /**
915        *  @brief Finds the beginning of a subsequence matching given key.
916        *  @param  __x  Key of (key, value) pair to be located.
917        *  @return  Read-only (constant) iterator pointing to first element
918        *           equal to or greater than key, or end().
919        *
920        *  This function returns the first element of a subsequence of
921        *  elements that matches the given key.  If unsuccessful the
922        *  iterator will point to the next greatest element or, if no
923        *  such greater element exists, to end().
924        */
925       const_iterator
926       lower_bound(const key_type& __x) const
927       { return _M_t.lower_bound(__x); }
928 
929 #if __cplusplus > 201103L
930       template<typename _Kt>
931 	auto
932 	lower_bound(const _Kt& __x) const
933 	-> decltype(const_iterator(_M_t._M_lower_bound_tr(__x)))
934 	{ return const_iterator(_M_t._M_lower_bound_tr(__x)); }
935 #endif
936       //@}
937 
938       //@{
939       /**
940        *  @brief Finds the end of a subsequence matching given key.
941        *  @param  __x  Key of (key, value) pair to be located.
942        *  @return Iterator pointing to the first element
943        *          greater than key, or end().
944        */
945       iterator
946       upper_bound(const key_type& __x)
947       { return _M_t.upper_bound(__x); }
948 
949 #if __cplusplus > 201103L
950       template<typename _Kt>
951 	auto
952 	upper_bound(const _Kt& __x)
953 	-> decltype(iterator(_M_t._M_upper_bound_tr(__x)))
954 	{ return iterator(_M_t._M_upper_bound_tr(__x)); }
955 #endif
956       //@}
957 
958       //@{
959       /**
960        *  @brief Finds the end of a subsequence matching given key.
961        *  @param  __x  Key of (key, value) pair to be located.
962        *  @return  Read-only (constant) iterator pointing to first iterator
963        *           greater than key, or end().
964        */
965       const_iterator
966       upper_bound(const key_type& __x) const
967       { return _M_t.upper_bound(__x); }
968 
969 #if __cplusplus > 201103L
970       template<typename _Kt>
971 	auto
972 	upper_bound(const _Kt& __x) const
973 	-> decltype(const_iterator(_M_t._M_upper_bound_tr(__x)))
974 	{ return const_iterator(_M_t._M_upper_bound_tr(__x)); }
975 #endif
976       //@}
977 
978       //@{
979       /**
980        *  @brief Finds a subsequence matching given key.
981        *  @param  __x  Key of (key, value) pairs to be located.
982        *  @return  Pair of iterators that possibly points to the subsequence
983        *           matching given key.
984        *
985        *  This function is equivalent to
986        *  @code
987        *    std::make_pair(c.lower_bound(val),
988        *                   c.upper_bound(val))
989        *  @endcode
990        *  (but is faster than making the calls separately).
991        */
992       std::pair<iterator, iterator>
993       equal_range(const key_type& __x)
994       { return _M_t.equal_range(__x); }
995 
996 #if __cplusplus > 201103L
997       template<typename _Kt>
998 	auto
999 	equal_range(const _Kt& __x)
1000 	-> decltype(pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)))
1001 	{ return pair<iterator, iterator>(_M_t._M_equal_range_tr(__x)); }
1002 #endif
1003       //@}
1004 
1005       //@{
1006       /**
1007        *  @brief Finds a subsequence matching given key.
1008        *  @param  __x  Key of (key, value) pairs to be located.
1009        *  @return  Pair of read-only (constant) iterators that possibly points
1010        *           to the subsequence matching given key.
1011        *
1012        *  This function is equivalent to
1013        *  @code
1014        *    std::make_pair(c.lower_bound(val),
1015        *                   c.upper_bound(val))
1016        *  @endcode
1017        *  (but is faster than making the calls separately).
1018        */
1019       std::pair<const_iterator, const_iterator>
1020       equal_range(const key_type& __x) const
1021       { return _M_t.equal_range(__x); }
1022 
1023 #if __cplusplus > 201103L
1024       template<typename _Kt>
1025 	auto
1026 	equal_range(const _Kt& __x) const
1027 	-> decltype(pair<const_iterator, const_iterator>(
1028 	      _M_t._M_equal_range_tr(__x)))
1029 	{
1030 	  return pair<const_iterator, const_iterator>(
1031 	      _M_t._M_equal_range_tr(__x));
1032 	}
1033 #endif
1034       //@}
1035 
1036       template<typename _K1, typename _T1, typename _C1, typename _A1>
1037 	friend bool
1038 	operator==(const multimap<_K1, _T1, _C1, _A1>&,
1039 		   const multimap<_K1, _T1, _C1, _A1>&);
1040 
1041       template<typename _K1, typename _T1, typename _C1, typename _A1>
1042 	friend bool
1043 	operator<(const multimap<_K1, _T1, _C1, _A1>&,
1044 		  const multimap<_K1, _T1, _C1, _A1>&);
1045   };
1046 
1047   /**
1048    *  @brief  Multimap equality comparison.
1049    *  @param  __x  A %multimap.
1050    *  @param  __y  A %multimap of the same type as @a __x.
1051    *  @return  True iff the size and elements of the maps are equal.
1052    *
1053    *  This is an equivalence relation.  It is linear in the size of the
1054    *  multimaps.  Multimaps are considered equivalent if their sizes are equal,
1055    *  and if corresponding elements compare equal.
1056   */
1057   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1058     inline bool
1059     operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1060 	       const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1061     { return __x._M_t == __y._M_t; }
1062 
1063   /**
1064    *  @brief  Multimap ordering relation.
1065    *  @param  __x  A %multimap.
1066    *  @param  __y  A %multimap of the same type as @a __x.
1067    *  @return  True iff @a x is lexicographically less than @a y.
1068    *
1069    *  This is a total ordering relation.  It is linear in the size of the
1070    *  multimaps.  The elements must be comparable with @c <.
1071    *
1072    *  See std::lexicographical_compare() for how the determination is made.
1073   */
1074   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1075     inline bool
1076     operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1077 	      const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1078     { return __x._M_t < __y._M_t; }
1079 
1080   /// Based on operator==
1081   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1082     inline bool
1083     operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1084 	       const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1085     { return !(__x == __y); }
1086 
1087   /// Based on operator<
1088   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1089     inline bool
1090     operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1091 	      const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1092     { return __y < __x; }
1093 
1094   /// Based on operator<
1095   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1096     inline bool
1097     operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1098 	       const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1099     { return !(__y < __x); }
1100 
1101   /// Based on operator<
1102   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1103     inline bool
1104     operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1105 	       const multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1106     { return !(__x < __y); }
1107 
1108   /// See std::multimap::swap().
1109   template<typename _Key, typename _Tp, typename _Compare, typename _Alloc>
1110     inline void
1111     swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x,
1112 	 multimap<_Key, _Tp, _Compare, _Alloc>& __y)
1113     _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
1114     { __x.swap(__y); }
1115 
1116 _GLIBCXX_END_NAMESPACE_CONTAINER
1117 
1118 #if __cplusplus > 201402L
1119 _GLIBCXX_BEGIN_NAMESPACE_VERSION
1120   // Allow std::multimap access to internals of compatible maps.
1121   template<typename _Key, typename _Val, typename _Cmp1, typename _Alloc,
1122 	   typename _Cmp2>
1123     struct
1124     _Rb_tree_merge_helper<_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp1, _Alloc>,
1125 			  _Cmp2>
1126     {
1127     private:
1128       friend class _GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp1, _Alloc>;
1129 
1130       static auto&
1131       _S_get_tree(_GLIBCXX_STD_C::map<_Key, _Val, _Cmp2, _Alloc>& __map)
1132       { return __map._M_t; }
1133 
1134       static auto&
1135       _S_get_tree(_GLIBCXX_STD_C::multimap<_Key, _Val, _Cmp2, _Alloc>& __map)
1136       { return __map._M_t; }
1137     };
1138 _GLIBCXX_END_NAMESPACE_VERSION
1139 #endif // C++17
1140 
1141 } // namespace std
1142 
1143 #endif /* _STL_MULTIMAP_H */
1144