xref: /netbsd-src/external/gpl3/gcc.old/dist/libstdc++-v3/include/bits/stl_deque.h (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 // Deque implementation -*- C++ -*-
2 
3 // Copyright (C) 2001-2017 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /*
26  *
27  * Copyright (c) 1994
28  * Hewlett-Packard Company
29  *
30  * Permission to use, copy, modify, distribute and sell this software
31  * and its documentation for any purpose is hereby granted without fee,
32  * provided that the above copyright notice appear in all copies and
33  * that both that copyright notice and this permission notice appear
34  * in supporting documentation.  Hewlett-Packard Company makes no
35  * representations about the suitability of this software for any
36  * purpose.  It is provided "as is" without express or implied warranty.
37  *
38  *
39  * Copyright (c) 1997
40  * Silicon Graphics Computer Systems, Inc.
41  *
42  * Permission to use, copy, modify, distribute and sell this software
43  * and its documentation for any purpose is hereby granted without fee,
44  * provided that the above copyright notice appear in all copies and
45  * that both that copyright notice and this permission notice appear
46  * in supporting documentation.  Silicon Graphics makes no
47  * representations about the suitability of this software for any
48  * purpose.  It is provided "as is" without express or implied warranty.
49  */
50 
51 /** @file bits/stl_deque.h
52  *  This is an internal header file, included by other library headers.
53  *  Do not attempt to use it directly. @headername{deque}
54  */
55 
56 #ifndef _STL_DEQUE_H
57 #define _STL_DEQUE_H 1
58 
59 #include <bits/concept_check.h>
60 #include <bits/stl_iterator_base_types.h>
61 #include <bits/stl_iterator_base_funcs.h>
62 #if __cplusplus >= 201103L
63 #include <initializer_list>
64 #endif
65 
66 #include <debug/assertions.h>
67 
68 namespace std _GLIBCXX_VISIBILITY(default)
69 {
70 _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
71 
72   /**
73    *  @brief This function controls the size of memory nodes.
74    *  @param  __size  The size of an element.
75    *  @return   The number (not byte size) of elements per node.
76    *
77    *  This function started off as a compiler kludge from SGI, but
78    *  seems to be a useful wrapper around a repeated constant
79    *  expression.  The @b 512 is tunable (and no other code needs to
80    *  change), but no investigation has been done since inheriting the
81    *  SGI code.  Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what
82    *  you are doing, however: changing it breaks the binary
83    *  compatibility!!
84   */
85 
86 #ifndef _GLIBCXX_DEQUE_BUF_SIZE
87 #define _GLIBCXX_DEQUE_BUF_SIZE 512
88 #endif
89 
90   _GLIBCXX_CONSTEXPR inline size_t
91   __deque_buf_size(size_t __size)
92   { return (__size < _GLIBCXX_DEQUE_BUF_SIZE
93 	    ? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); }
94 
95 
96   /**
97    *  @brief A deque::iterator.
98    *
99    *  Quite a bit of intelligence here.  Much of the functionality of
100    *  deque is actually passed off to this class.  A deque holds two
101    *  of these internally, marking its valid range.  Access to
102    *  elements is done as offsets of either of those two, relying on
103    *  operator overloading in this class.
104    *
105    *  All the functions are op overloads except for _M_set_node.
106   */
107   template<typename _Tp, typename _Ref, typename _Ptr>
108     struct _Deque_iterator
109     {
110 #if __cplusplus < 201103L
111       typedef _Deque_iterator<_Tp, _Tp&, _Tp*>	     iterator;
112       typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
113       typedef _Tp*					 _Elt_pointer;
114       typedef _Tp**					_Map_pointer;
115 #else
116     private:
117       template<typename _Up>
118 	using __ptr_to = typename pointer_traits<_Ptr>::template rebind<_Up>;
119       template<typename _CvTp>
120 	using __iter = _Deque_iterator<_Tp, _CvTp&, __ptr_to<_CvTp>>;
121     public:
122       typedef __iter<_Tp>		iterator;
123       typedef __iter<const _Tp>		const_iterator;
124       typedef __ptr_to<_Tp>		_Elt_pointer;
125       typedef __ptr_to<_Elt_pointer>	_Map_pointer;
126 #endif
127 
128       static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT
129       { return __deque_buf_size(sizeof(_Tp)); }
130 
131       typedef std::random_access_iterator_tag	iterator_category;
132       typedef _Tp				value_type;
133       typedef _Ptr				pointer;
134       typedef _Ref				reference;
135       typedef size_t				size_type;
136       typedef ptrdiff_t				difference_type;
137       typedef _Deque_iterator			_Self;
138 
139       _Elt_pointer _M_cur;
140       _Elt_pointer _M_first;
141       _Elt_pointer _M_last;
142       _Map_pointer _M_node;
143 
144       _Deque_iterator(_Elt_pointer __x, _Map_pointer __y) _GLIBCXX_NOEXCEPT
145       : _M_cur(__x), _M_first(*__y),
146 	_M_last(*__y + _S_buffer_size()), _M_node(__y) { }
147 
148       _Deque_iterator() _GLIBCXX_NOEXCEPT
149       : _M_cur(), _M_first(), _M_last(), _M_node() { }
150 
151       _Deque_iterator(const iterator& __x) _GLIBCXX_NOEXCEPT
152       : _M_cur(__x._M_cur), _M_first(__x._M_first),
153 	_M_last(__x._M_last), _M_node(__x._M_node) { }
154 
155       iterator
156       _M_const_cast() const _GLIBCXX_NOEXCEPT
157       { return iterator(_M_cur, _M_node); }
158 
159       reference
160       operator*() const _GLIBCXX_NOEXCEPT
161       { return *_M_cur; }
162 
163       pointer
164       operator->() const _GLIBCXX_NOEXCEPT
165       { return _M_cur; }
166 
167       _Self&
168       operator++() _GLIBCXX_NOEXCEPT
169       {
170 	++_M_cur;
171 	if (_M_cur == _M_last)
172 	  {
173 	    _M_set_node(_M_node + 1);
174 	    _M_cur = _M_first;
175 	  }
176 	return *this;
177       }
178 
179       _Self
180       operator++(int) _GLIBCXX_NOEXCEPT
181       {
182 	_Self __tmp = *this;
183 	++*this;
184 	return __tmp;
185       }
186 
187       _Self&
188       operator--() _GLIBCXX_NOEXCEPT
189       {
190 	if (_M_cur == _M_first)
191 	  {
192 	    _M_set_node(_M_node - 1);
193 	    _M_cur = _M_last;
194 	  }
195 	--_M_cur;
196 	return *this;
197       }
198 
199       _Self
200       operator--(int) _GLIBCXX_NOEXCEPT
201       {
202 	_Self __tmp = *this;
203 	--*this;
204 	return __tmp;
205       }
206 
207       _Self&
208       operator+=(difference_type __n) _GLIBCXX_NOEXCEPT
209       {
210 	const difference_type __offset = __n + (_M_cur - _M_first);
211 	if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
212 	  _M_cur += __n;
213 	else
214 	  {
215 	    const difference_type __node_offset =
216 	      __offset > 0 ? __offset / difference_type(_S_buffer_size())
217 			   : -difference_type((-__offset - 1)
218 					      / _S_buffer_size()) - 1;
219 	    _M_set_node(_M_node + __node_offset);
220 	    _M_cur = _M_first + (__offset - __node_offset
221 				 * difference_type(_S_buffer_size()));
222 	  }
223 	return *this;
224       }
225 
226       _Self
227       operator+(difference_type __n) const _GLIBCXX_NOEXCEPT
228       {
229 	_Self __tmp = *this;
230 	return __tmp += __n;
231       }
232 
233       _Self&
234       operator-=(difference_type __n) _GLIBCXX_NOEXCEPT
235       { return *this += -__n; }
236 
237       _Self
238       operator-(difference_type __n) const _GLIBCXX_NOEXCEPT
239       {
240 	_Self __tmp = *this;
241 	return __tmp -= __n;
242       }
243 
244       reference
245       operator[](difference_type __n) const _GLIBCXX_NOEXCEPT
246       { return *(*this + __n); }
247 
248       /**
249        *  Prepares to traverse new_node.  Sets everything except
250        *  _M_cur, which should therefore be set by the caller
251        *  immediately afterwards, based on _M_first and _M_last.
252        */
253       void
254       _M_set_node(_Map_pointer __new_node) _GLIBCXX_NOEXCEPT
255       {
256 	_M_node = __new_node;
257 	_M_first = *__new_node;
258 	_M_last = _M_first + difference_type(_S_buffer_size());
259       }
260     };
261 
262   // Note: we also provide overloads whose operands are of the same type in
263   // order to avoid ambiguous overload resolution when std::rel_ops operators
264   // are in scope (for additional details, see libstdc++/3628)
265   template<typename _Tp, typename _Ref, typename _Ptr>
266     inline bool
267     operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
268 	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
269     { return __x._M_cur == __y._M_cur; }
270 
271   template<typename _Tp, typename _RefL, typename _PtrL,
272 	   typename _RefR, typename _PtrR>
273     inline bool
274     operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
275 	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
276     { return __x._M_cur == __y._M_cur; }
277 
278   template<typename _Tp, typename _Ref, typename _Ptr>
279     inline bool
280     operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
281 	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
282     { return !(__x == __y); }
283 
284   template<typename _Tp, typename _RefL, typename _PtrL,
285 	   typename _RefR, typename _PtrR>
286     inline bool
287     operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
288 	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
289     { return !(__x == __y); }
290 
291   template<typename _Tp, typename _Ref, typename _Ptr>
292     inline bool
293     operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
294 	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
295     { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
296 					  : (__x._M_node < __y._M_node); }
297 
298   template<typename _Tp, typename _RefL, typename _PtrL,
299 	   typename _RefR, typename _PtrR>
300     inline bool
301     operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
302 	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
303     { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
304 					  : (__x._M_node < __y._M_node); }
305 
306   template<typename _Tp, typename _Ref, typename _Ptr>
307     inline bool
308     operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
309 	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
310     { return __y < __x; }
311 
312   template<typename _Tp, typename _RefL, typename _PtrL,
313 	   typename _RefR, typename _PtrR>
314     inline bool
315     operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
316 	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
317     { return __y < __x; }
318 
319   template<typename _Tp, typename _Ref, typename _Ptr>
320     inline bool
321     operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
322 	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
323     { return !(__y < __x); }
324 
325   template<typename _Tp, typename _RefL, typename _PtrL,
326 	   typename _RefR, typename _PtrR>
327     inline bool
328     operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
329 	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
330     { return !(__y < __x); }
331 
332   template<typename _Tp, typename _Ref, typename _Ptr>
333     inline bool
334     operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
335 	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
336     { return !(__x < __y); }
337 
338   template<typename _Tp, typename _RefL, typename _PtrL,
339 	   typename _RefR, typename _PtrR>
340     inline bool
341     operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
342 	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
343     { return !(__x < __y); }
344 
345   // _GLIBCXX_RESOLVE_LIB_DEFECTS
346   // According to the resolution of DR179 not only the various comparison
347   // operators but also operator- must accept mixed iterator/const_iterator
348   // parameters.
349   template<typename _Tp, typename _Ref, typename _Ptr>
350     inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
351     operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
352 	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
353     {
354       return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
355 	(_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size())
356 	* (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
357 	+ (__y._M_last - __y._M_cur);
358     }
359 
360   template<typename _Tp, typename _RefL, typename _PtrL,
361 	   typename _RefR, typename _PtrR>
362     inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
363     operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
364 	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
365     {
366       return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
367 	(_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
368 	* (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
369 	+ (__y._M_last - __y._M_cur);
370     }
371 
372   template<typename _Tp, typename _Ref, typename _Ptr>
373     inline _Deque_iterator<_Tp, _Ref, _Ptr>
374     operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
375     _GLIBCXX_NOEXCEPT
376     { return __x + __n; }
377 
378   template<typename _Tp>
379     void
380     fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>&,
381 	 const _Deque_iterator<_Tp, _Tp&, _Tp*>&, const _Tp&);
382 
383   template<typename _Tp>
384     _Deque_iterator<_Tp, _Tp&, _Tp*>
385     copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
386 	 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
387 	 _Deque_iterator<_Tp, _Tp&, _Tp*>);
388 
389   template<typename _Tp>
390     inline _Deque_iterator<_Tp, _Tp&, _Tp*>
391     copy(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
392 	 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
393 	 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
394     { return std::copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
395 		       _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
396 		       __result); }
397 
398   template<typename _Tp>
399     _Deque_iterator<_Tp, _Tp&, _Tp*>
400     copy_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
401 		  _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
402 		  _Deque_iterator<_Tp, _Tp&, _Tp*>);
403 
404   template<typename _Tp>
405     inline _Deque_iterator<_Tp, _Tp&, _Tp*>
406     copy_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
407 		  _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
408 		  _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
409     { return std::copy_backward(_Deque_iterator<_Tp,
410 				const _Tp&, const _Tp*>(__first),
411 				_Deque_iterator<_Tp,
412 				const _Tp&, const _Tp*>(__last),
413 				__result); }
414 
415 #if __cplusplus >= 201103L
416   template<typename _Tp>
417     _Deque_iterator<_Tp, _Tp&, _Tp*>
418     move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
419 	 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
420 	 _Deque_iterator<_Tp, _Tp&, _Tp*>);
421 
422   template<typename _Tp>
423     inline _Deque_iterator<_Tp, _Tp&, _Tp*>
424     move(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
425 	 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
426 	 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
427     { return std::move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
428 		       _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
429 		       __result); }
430 
431   template<typename _Tp>
432     _Deque_iterator<_Tp, _Tp&, _Tp*>
433     move_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
434 		  _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
435 		  _Deque_iterator<_Tp, _Tp&, _Tp*>);
436 
437   template<typename _Tp>
438     inline _Deque_iterator<_Tp, _Tp&, _Tp*>
439     move_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
440 		  _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
441 		  _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
442     { return std::move_backward(_Deque_iterator<_Tp,
443 				const _Tp&, const _Tp*>(__first),
444 				_Deque_iterator<_Tp,
445 				const _Tp&, const _Tp*>(__last),
446 				__result); }
447 #endif
448 
449   /**
450    *  Deque base class.  This class provides the unified face for %deque's
451    *  allocation.  This class's constructor and destructor allocate and
452    *  deallocate (but do not initialize) storage.  This makes %exception
453    *  safety easier.
454    *
455    *  Nothing in this class ever constructs or destroys an actual Tp element.
456    *  (Deque handles that itself.)  Only/All memory management is performed
457    *  here.
458   */
459   template<typename _Tp, typename _Alloc>
460     class _Deque_base
461     {
462     protected:
463       typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
464 	rebind<_Tp>::other _Tp_alloc_type;
465       typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type>	 _Alloc_traits;
466 
467 #if __cplusplus < 201103L
468       typedef _Tp*					_Ptr;
469       typedef const _Tp*				_Ptr_const;
470 #else
471       typedef typename _Alloc_traits::pointer		_Ptr;
472       typedef typename _Alloc_traits::const_pointer	_Ptr_const;
473 #endif
474 
475       typedef typename _Alloc_traits::template rebind<_Ptr>::other
476 	_Map_alloc_type;
477       typedef __gnu_cxx::__alloc_traits<_Map_alloc_type> _Map_alloc_traits;
478 
479     public:
480       typedef _Alloc		  allocator_type;
481       typedef typename _Alloc_traits::size_type size_type;
482 
483       allocator_type
484       get_allocator() const _GLIBCXX_NOEXCEPT
485       { return allocator_type(_M_get_Tp_allocator()); }
486 
487       typedef _Deque_iterator<_Tp, _Tp&, _Ptr>	  iterator;
488       typedef _Deque_iterator<_Tp, const _Tp&, _Ptr_const>   const_iterator;
489 
490       _Deque_base()
491       : _M_impl()
492       { _M_initialize_map(0); }
493 
494       _Deque_base(size_t __num_elements)
495       : _M_impl()
496       { _M_initialize_map(__num_elements); }
497 
498       _Deque_base(const allocator_type& __a, size_t __num_elements)
499       : _M_impl(__a)
500       { _M_initialize_map(__num_elements); }
501 
502       _Deque_base(const allocator_type& __a)
503       : _M_impl(__a)
504       { /* Caller must initialize map. */ }
505 
506 #if __cplusplus >= 201103L
507       _Deque_base(_Deque_base&& __x, false_type)
508       : _M_impl(__x._M_move_impl())
509       { }
510 
511       _Deque_base(_Deque_base&& __x, true_type)
512       : _M_impl(std::move(__x._M_get_Tp_allocator()))
513       {
514 	_M_initialize_map(0);
515 	if (__x._M_impl._M_map)
516 	  this->_M_impl._M_swap_data(__x._M_impl);
517       }
518 
519       _Deque_base(_Deque_base&& __x)
520       : _Deque_base(std::move(__x), typename _Alloc_traits::is_always_equal{})
521       { }
522 
523       _Deque_base(_Deque_base&& __x, const allocator_type& __a, size_type __n)
524       : _M_impl(__a)
525       {
526 	if (__x.get_allocator() == __a)
527 	  {
528 	    if (__x._M_impl._M_map)
529 	      {
530 		_M_initialize_map(0);
531 		this->_M_impl._M_swap_data(__x._M_impl);
532 	      }
533 	  }
534 	else
535 	  {
536 	    _M_initialize_map(__n);
537 	  }
538       }
539 #endif
540 
541       ~_Deque_base() _GLIBCXX_NOEXCEPT;
542 
543     protected:
544       typedef typename iterator::_Map_pointer _Map_pointer;
545 
546       //This struct encapsulates the implementation of the std::deque
547       //standard container and at the same time makes use of the EBO
548       //for empty allocators.
549       struct _Deque_impl
550       : public _Tp_alloc_type
551       {
552 	_Map_pointer _M_map;
553 	size_t _M_map_size;
554 	iterator _M_start;
555 	iterator _M_finish;
556 
557 	_Deque_impl()
558 	: _Tp_alloc_type(), _M_map(), _M_map_size(0),
559 	  _M_start(), _M_finish()
560 	{ }
561 
562 	_Deque_impl(const _Tp_alloc_type& __a) _GLIBCXX_NOEXCEPT
563 	: _Tp_alloc_type(__a), _M_map(), _M_map_size(0),
564 	  _M_start(), _M_finish()
565 	{ }
566 
567 #if __cplusplus >= 201103L
568 	_Deque_impl(_Deque_impl&&) = default;
569 
570 	_Deque_impl(_Tp_alloc_type&& __a) noexcept
571 	: _Tp_alloc_type(std::move(__a)), _M_map(), _M_map_size(0),
572 	  _M_start(), _M_finish()
573 	{ }
574 #endif
575 
576 	void _M_swap_data(_Deque_impl& __x) _GLIBCXX_NOEXCEPT
577 	{
578 	  using std::swap;
579 	  swap(this->_M_start, __x._M_start);
580 	  swap(this->_M_finish, __x._M_finish);
581 	  swap(this->_M_map, __x._M_map);
582 	  swap(this->_M_map_size, __x._M_map_size);
583 	}
584       };
585 
586       _Tp_alloc_type&
587       _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
588       { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
589 
590       const _Tp_alloc_type&
591       _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
592       { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
593 
594       _Map_alloc_type
595       _M_get_map_allocator() const _GLIBCXX_NOEXCEPT
596       { return _Map_alloc_type(_M_get_Tp_allocator()); }
597 
598       _Ptr
599       _M_allocate_node()
600       {
601 	typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Traits;
602 	return _Traits::allocate(_M_impl, __deque_buf_size(sizeof(_Tp)));
603       }
604 
605       void
606       _M_deallocate_node(_Ptr __p) _GLIBCXX_NOEXCEPT
607       {
608 	typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Traits;
609 	_Traits::deallocate(_M_impl, __p, __deque_buf_size(sizeof(_Tp)));
610       }
611 
612       _Map_pointer
613       _M_allocate_map(size_t __n)
614       {
615 	_Map_alloc_type __map_alloc = _M_get_map_allocator();
616 	return _Map_alloc_traits::allocate(__map_alloc, __n);
617       }
618 
619       void
620       _M_deallocate_map(_Map_pointer __p, size_t __n) _GLIBCXX_NOEXCEPT
621       {
622 	_Map_alloc_type __map_alloc = _M_get_map_allocator();
623 	_Map_alloc_traits::deallocate(__map_alloc, __p, __n);
624       }
625 
626     protected:
627       void _M_initialize_map(size_t);
628       void _M_create_nodes(_Map_pointer __nstart, _Map_pointer __nfinish);
629       void _M_destroy_nodes(_Map_pointer __nstart,
630 			    _Map_pointer __nfinish) _GLIBCXX_NOEXCEPT;
631       enum { _S_initial_map_size = 8 };
632 
633       _Deque_impl _M_impl;
634 
635 #if __cplusplus >= 201103L
636     private:
637       _Deque_impl
638       _M_move_impl()
639       {
640 	if (!_M_impl._M_map)
641 	  return std::move(_M_impl);
642 
643 	// Create a copy of the current allocator.
644 	_Tp_alloc_type __alloc{_M_get_Tp_allocator()};
645 	// Put that copy in a moved-from state.
646 	_Tp_alloc_type __sink __attribute((__unused__)) {std::move(__alloc)};
647 	// Create an empty map that allocates using the moved-from allocator.
648 	_Deque_base __empty{__alloc};
649 	__empty._M_initialize_map(0);
650 	// Now safe to modify current allocator and perform non-throwing swaps.
651 	_Deque_impl __ret{std::move(_M_get_Tp_allocator())};
652 	_M_impl._M_swap_data(__ret);
653 	_M_impl._M_swap_data(__empty._M_impl);
654 	return __ret;
655       }
656 #endif
657     };
658 
659   template<typename _Tp, typename _Alloc>
660     _Deque_base<_Tp, _Alloc>::
661     ~_Deque_base() _GLIBCXX_NOEXCEPT
662     {
663       if (this->_M_impl._M_map)
664 	{
665 	  _M_destroy_nodes(this->_M_impl._M_start._M_node,
666 			   this->_M_impl._M_finish._M_node + 1);
667 	  _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
668 	}
669     }
670 
671   /**
672    *  @brief Layout storage.
673    *  @param  __num_elements  The count of T's for which to allocate space
674    *                          at first.
675    *  @return   Nothing.
676    *
677    *  The initial underlying memory layout is a bit complicated...
678   */
679   template<typename _Tp, typename _Alloc>
680     void
681     _Deque_base<_Tp, _Alloc>::
682     _M_initialize_map(size_t __num_elements)
683     {
684       const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
685 				  + 1);
686 
687       this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
688 					   size_t(__num_nodes + 2));
689       this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
690 
691       // For "small" maps (needing less than _M_map_size nodes), allocation
692       // starts in the middle elements and grows outwards.  So nstart may be
693       // the beginning of _M_map, but for small maps it may be as far in as
694       // _M_map+3.
695 
696       _Map_pointer __nstart = (this->_M_impl._M_map
697 			       + (this->_M_impl._M_map_size - __num_nodes) / 2);
698       _Map_pointer __nfinish = __nstart + __num_nodes;
699 
700       __try
701 	{ _M_create_nodes(__nstart, __nfinish); }
702       __catch(...)
703 	{
704 	  _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
705 	  this->_M_impl._M_map = _Map_pointer();
706 	  this->_M_impl._M_map_size = 0;
707 	  __throw_exception_again;
708 	}
709 
710       this->_M_impl._M_start._M_set_node(__nstart);
711       this->_M_impl._M_finish._M_set_node(__nfinish - 1);
712       this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
713       this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
714 					+ __num_elements
715 					% __deque_buf_size(sizeof(_Tp)));
716     }
717 
718   template<typename _Tp, typename _Alloc>
719     void
720     _Deque_base<_Tp, _Alloc>::
721     _M_create_nodes(_Map_pointer __nstart, _Map_pointer __nfinish)
722     {
723       _Map_pointer __cur;
724       __try
725 	{
726 	  for (__cur = __nstart; __cur < __nfinish; ++__cur)
727 	    *__cur = this->_M_allocate_node();
728 	}
729       __catch(...)
730 	{
731 	  _M_destroy_nodes(__nstart, __cur);
732 	  __throw_exception_again;
733 	}
734     }
735 
736   template<typename _Tp, typename _Alloc>
737     void
738     _Deque_base<_Tp, _Alloc>::
739     _M_destroy_nodes(_Map_pointer __nstart,
740 		     _Map_pointer __nfinish) _GLIBCXX_NOEXCEPT
741     {
742       for (_Map_pointer __n = __nstart; __n < __nfinish; ++__n)
743 	_M_deallocate_node(*__n);
744     }
745 
746   /**
747    *  @brief  A standard container using fixed-size memory allocation and
748    *  constant-time manipulation of elements at either end.
749    *
750    *  @ingroup sequences
751    *
752    *  @tparam _Tp  Type of element.
753    *  @tparam _Alloc  Allocator type, defaults to allocator<_Tp>.
754    *
755    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
756    *  <a href="tables.html#66">reversible container</a>, and a
757    *  <a href="tables.html#67">sequence</a>, including the
758    *  <a href="tables.html#68">optional sequence requirements</a>.
759    *
760    *  In previous HP/SGI versions of deque, there was an extra template
761    *  parameter so users could control the node size.  This extension turned
762    *  out to violate the C++ standard (it can be detected using template
763    *  template parameters), and it was removed.
764    *
765    *  Here's how a deque<Tp> manages memory.  Each deque has 4 members:
766    *
767    *  - Tp**        _M_map
768    *  - size_t      _M_map_size
769    *  - iterator    _M_start, _M_finish
770    *
771    *  map_size is at least 8.  %map is an array of map_size
772    *  pointers-to-@a nodes.  (The name %map has nothing to do with the
773    *  std::map class, and @b nodes should not be confused with
774    *  std::list's usage of @a node.)
775    *
776    *  A @a node has no specific type name as such, but it is referred
777    *  to as @a node in this file.  It is a simple array-of-Tp.  If Tp
778    *  is very large, there will be one Tp element per node (i.e., an
779    *  @a array of one).  For non-huge Tp's, node size is inversely
780    *  related to Tp size: the larger the Tp, the fewer Tp's will fit
781    *  in a node.  The goal here is to keep the total size of a node
782    *  relatively small and constant over different Tp's, to improve
783    *  allocator efficiency.
784    *
785    *  Not every pointer in the %map array will point to a node.  If
786    *  the initial number of elements in the deque is small, the
787    *  /middle/ %map pointers will be valid, and the ones at the edges
788    *  will be unused.  This same situation will arise as the %map
789    *  grows: available %map pointers, if any, will be on the ends.  As
790    *  new nodes are created, only a subset of the %map's pointers need
791    *  to be copied @a outward.
792    *
793    *  Class invariants:
794    * - For any nonsingular iterator i:
795    *    - i.node points to a member of the %map array.  (Yes, you read that
796    *      correctly:  i.node does not actually point to a node.)  The member of
797    *      the %map array is what actually points to the node.
798    *    - i.first == *(i.node)    (This points to the node (first Tp element).)
799    *    - i.last  == i.first + node_size
800    *    - i.cur is a pointer in the range [i.first, i.last).  NOTE:
801    *      the implication of this is that i.cur is always a dereferenceable
802    *      pointer, even if i is a past-the-end iterator.
803    * - Start and Finish are always nonsingular iterators.  NOTE: this
804    * means that an empty deque must have one node, a deque with <N
805    * elements (where N is the node buffer size) must have one node, a
806    * deque with N through (2N-1) elements must have two nodes, etc.
807    * - For every node other than start.node and finish.node, every
808    * element in the node is an initialized object.  If start.node ==
809    * finish.node, then [start.cur, finish.cur) are initialized
810    * objects, and the elements outside that range are uninitialized
811    * storage.  Otherwise, [start.cur, start.last) and [finish.first,
812    * finish.cur) are initialized objects, and [start.first, start.cur)
813    * and [finish.cur, finish.last) are uninitialized storage.
814    * - [%map, %map + map_size) is a valid, non-empty range.
815    * - [start.node, finish.node] is a valid range contained within
816    *   [%map, %map + map_size).
817    * - A pointer in the range [%map, %map + map_size) points to an allocated
818    *   node if and only if the pointer is in the range
819    *   [start.node, finish.node].
820    *
821    *  Here's the magic:  nothing in deque is @b aware of the discontiguous
822    *  storage!
823    *
824    *  The memory setup and layout occurs in the parent, _Base, and the iterator
825    *  class is entirely responsible for @a leaping from one node to the next.
826    *  All the implementation routines for deque itself work only through the
827    *  start and finish iterators.  This keeps the routines simple and sane,
828    *  and we can use other standard algorithms as well.
829   */
830   template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
831     class deque : protected _Deque_base<_Tp, _Alloc>
832     {
833 #ifdef _GLIBCXX_CONCEPT_CHECKS
834       // concept requirements
835       typedef typename _Alloc::value_type	_Alloc_value_type;
836 # if __cplusplus < 201103L
837       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
838 # endif
839       __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
840 #endif
841 
842       typedef _Deque_base<_Tp, _Alloc>			_Base;
843       typedef typename _Base::_Tp_alloc_type		_Tp_alloc_type;
844       typedef typename _Base::_Alloc_traits		_Alloc_traits;
845       typedef typename _Base::_Map_pointer		_Map_pointer;
846 
847     public:
848       typedef _Tp					value_type;
849       typedef typename _Alloc_traits::pointer		pointer;
850       typedef typename _Alloc_traits::const_pointer	const_pointer;
851       typedef typename _Alloc_traits::reference		reference;
852       typedef typename _Alloc_traits::const_reference	const_reference;
853       typedef typename _Base::iterator			iterator;
854       typedef typename _Base::const_iterator		const_iterator;
855       typedef std::reverse_iterator<const_iterator>	const_reverse_iterator;
856       typedef std::reverse_iterator<iterator>		reverse_iterator;
857       typedef size_t					size_type;
858       typedef ptrdiff_t					difference_type;
859       typedef _Alloc					allocator_type;
860 
861     protected:
862       static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT
863       { return __deque_buf_size(sizeof(_Tp)); }
864 
865       // Functions controlling memory layout, and nothing else.
866       using _Base::_M_initialize_map;
867       using _Base::_M_create_nodes;
868       using _Base::_M_destroy_nodes;
869       using _Base::_M_allocate_node;
870       using _Base::_M_deallocate_node;
871       using _Base::_M_allocate_map;
872       using _Base::_M_deallocate_map;
873       using _Base::_M_get_Tp_allocator;
874 
875       /**
876        *  A total of four data members accumulated down the hierarchy.
877        *  May be accessed via _M_impl.*
878        */
879       using _Base::_M_impl;
880 
881     public:
882       // [23.2.1.1] construct/copy/destroy
883       // (assign() and get_allocator() are also listed in this section)
884 
885       /**
886        *  @brief  Creates a %deque with no elements.
887        */
888       deque() : _Base() { }
889 
890       /**
891        *  @brief  Creates a %deque with no elements.
892        *  @param  __a  An allocator object.
893        */
894       explicit
895       deque(const allocator_type& __a)
896       : _Base(__a, 0) { }
897 
898 #if __cplusplus >= 201103L
899       /**
900        *  @brief  Creates a %deque with default constructed elements.
901        *  @param  __n  The number of elements to initially create.
902        *  @param  __a  An allocator.
903        *
904        *  This constructor fills the %deque with @a n default
905        *  constructed elements.
906        */
907       explicit
908       deque(size_type __n, const allocator_type& __a = allocator_type())
909       : _Base(__a, __n)
910       { _M_default_initialize(); }
911 
912       /**
913        *  @brief  Creates a %deque with copies of an exemplar element.
914        *  @param  __n  The number of elements to initially create.
915        *  @param  __value  An element to copy.
916        *  @param  __a  An allocator.
917        *
918        *  This constructor fills the %deque with @a __n copies of @a __value.
919        */
920       deque(size_type __n, const value_type& __value,
921 	    const allocator_type& __a = allocator_type())
922       : _Base(__a, __n)
923       { _M_fill_initialize(__value); }
924 #else
925       /**
926        *  @brief  Creates a %deque with copies of an exemplar element.
927        *  @param  __n  The number of elements to initially create.
928        *  @param  __value  An element to copy.
929        *  @param  __a  An allocator.
930        *
931        *  This constructor fills the %deque with @a __n copies of @a __value.
932        */
933       explicit
934       deque(size_type __n, const value_type& __value = value_type(),
935 	    const allocator_type& __a = allocator_type())
936       : _Base(__a, __n)
937       { _M_fill_initialize(__value); }
938 #endif
939 
940       /**
941        *  @brief  %Deque copy constructor.
942        *  @param  __x  A %deque of identical element and allocator types.
943        *
944        *  The newly-created %deque uses a copy of the allocator object used
945        *  by @a __x (unless the allocator traits dictate a different object).
946        */
947       deque(const deque& __x)
948       : _Base(_Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()),
949 	      __x.size())
950       { std::__uninitialized_copy_a(__x.begin(), __x.end(),
951 				    this->_M_impl._M_start,
952 				    _M_get_Tp_allocator()); }
953 
954 #if __cplusplus >= 201103L
955       /**
956        *  @brief  %Deque move constructor.
957        *  @param  __x  A %deque of identical element and allocator types.
958        *
959        *  The newly-created %deque contains the exact contents of @a __x.
960        *  The contents of @a __x are a valid, but unspecified %deque.
961        */
962       deque(deque&& __x)
963       : _Base(std::move(__x)) { }
964 
965       /// Copy constructor with alternative allocator
966       deque(const deque& __x, const allocator_type& __a)
967       : _Base(__a, __x.size())
968       { std::__uninitialized_copy_a(__x.begin(), __x.end(),
969 				    this->_M_impl._M_start,
970 				    _M_get_Tp_allocator()); }
971 
972       /// Move constructor with alternative allocator
973       deque(deque&& __x, const allocator_type& __a)
974       : _Base(std::move(__x), __a, __x.size())
975       {
976 	if (__x.get_allocator() != __a)
977 	  {
978 	    std::__uninitialized_move_a(__x.begin(), __x.end(),
979 					this->_M_impl._M_start,
980 					_M_get_Tp_allocator());
981 	    __x.clear();
982 	  }
983       }
984 
985       /**
986        *  @brief  Builds a %deque from an initializer list.
987        *  @param  __l  An initializer_list.
988        *  @param  __a  An allocator object.
989        *
990        *  Create a %deque consisting of copies of the elements in the
991        *  initializer_list @a __l.
992        *
993        *  This will call the element type's copy constructor N times
994        *  (where N is __l.size()) and do no memory reallocation.
995        */
996       deque(initializer_list<value_type> __l,
997 	    const allocator_type& __a = allocator_type())
998       : _Base(__a)
999       {
1000 	_M_range_initialize(__l.begin(), __l.end(),
1001 			    random_access_iterator_tag());
1002       }
1003 #endif
1004 
1005       /**
1006        *  @brief  Builds a %deque from a range.
1007        *  @param  __first  An input iterator.
1008        *  @param  __last  An input iterator.
1009        *  @param  __a  An allocator object.
1010        *
1011        *  Create a %deque consisting of copies of the elements from [__first,
1012        *  __last).
1013        *
1014        *  If the iterators are forward, bidirectional, or random-access, then
1015        *  this will call the elements' copy constructor N times (where N is
1016        *  distance(__first,__last)) and do no memory reallocation.  But if only
1017        *  input iterators are used, then this will do at most 2N calls to the
1018        *  copy constructor, and logN memory reallocations.
1019        */
1020 #if __cplusplus >= 201103L
1021       template<typename _InputIterator,
1022 	       typename = std::_RequireInputIter<_InputIterator>>
1023 	deque(_InputIterator __first, _InputIterator __last,
1024 	      const allocator_type& __a = allocator_type())
1025 	: _Base(__a)
1026 	{ _M_initialize_dispatch(__first, __last, __false_type()); }
1027 #else
1028       template<typename _InputIterator>
1029 	deque(_InputIterator __first, _InputIterator __last,
1030 	      const allocator_type& __a = allocator_type())
1031 	: _Base(__a)
1032 	{
1033 	  // Check whether it's an integral type.  If so, it's not an iterator.
1034 	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1035 	  _M_initialize_dispatch(__first, __last, _Integral());
1036 	}
1037 #endif
1038 
1039       /**
1040        *  The dtor only erases the elements, and note that if the elements
1041        *  themselves are pointers, the pointed-to memory is not touched in any
1042        *  way.  Managing the pointer is the user's responsibility.
1043        */
1044       ~deque()
1045       { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }
1046 
1047       /**
1048        *  @brief  %Deque assignment operator.
1049        *  @param  __x  A %deque of identical element and allocator types.
1050        *
1051        *  All the elements of @a x are copied.
1052        *
1053        *  The newly-created %deque uses a copy of the allocator object used
1054        *  by @a __x (unless the allocator traits dictate a different object).
1055        */
1056       deque&
1057       operator=(const deque& __x);
1058 
1059 #if __cplusplus >= 201103L
1060       /**
1061        *  @brief  %Deque move assignment operator.
1062        *  @param  __x  A %deque of identical element and allocator types.
1063        *
1064        *  The contents of @a __x are moved into this deque (without copying,
1065        *  if the allocators permit it).
1066        *  @a __x is a valid, but unspecified %deque.
1067        */
1068       deque&
1069       operator=(deque&& __x) noexcept(_Alloc_traits::_S_always_equal())
1070       {
1071 	using __always_equal = typename _Alloc_traits::is_always_equal;
1072 	_M_move_assign1(std::move(__x), __always_equal{});
1073 	return *this;
1074       }
1075 
1076       /**
1077        *  @brief  Assigns an initializer list to a %deque.
1078        *  @param  __l  An initializer_list.
1079        *
1080        *  This function fills a %deque with copies of the elements in the
1081        *  initializer_list @a __l.
1082        *
1083        *  Note that the assignment completely changes the %deque and that the
1084        *  resulting %deque's size is the same as the number of elements
1085        *  assigned.
1086        */
1087       deque&
1088       operator=(initializer_list<value_type> __l)
1089       {
1090 	_M_assign_aux(__l.begin(), __l.end(),
1091 		      random_access_iterator_tag());
1092 	return *this;
1093       }
1094 #endif
1095 
1096       /**
1097        *  @brief  Assigns a given value to a %deque.
1098        *  @param  __n  Number of elements to be assigned.
1099        *  @param  __val  Value to be assigned.
1100        *
1101        *  This function fills a %deque with @a n copies of the given
1102        *  value.  Note that the assignment completely changes the
1103        *  %deque and that the resulting %deque's size is the same as
1104        *  the number of elements assigned.
1105        */
1106       void
1107       assign(size_type __n, const value_type& __val)
1108       { _M_fill_assign(__n, __val); }
1109 
1110       /**
1111        *  @brief  Assigns a range to a %deque.
1112        *  @param  __first  An input iterator.
1113        *  @param  __last   An input iterator.
1114        *
1115        *  This function fills a %deque with copies of the elements in the
1116        *  range [__first,__last).
1117        *
1118        *  Note that the assignment completely changes the %deque and that the
1119        *  resulting %deque's size is the same as the number of elements
1120        *  assigned.
1121        */
1122 #if __cplusplus >= 201103L
1123       template<typename _InputIterator,
1124 	       typename = std::_RequireInputIter<_InputIterator>>
1125 	void
1126 	assign(_InputIterator __first, _InputIterator __last)
1127 	{ _M_assign_dispatch(__first, __last, __false_type()); }
1128 #else
1129       template<typename _InputIterator>
1130 	void
1131 	assign(_InputIterator __first, _InputIterator __last)
1132 	{
1133 	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1134 	  _M_assign_dispatch(__first, __last, _Integral());
1135 	}
1136 #endif
1137 
1138 #if __cplusplus >= 201103L
1139       /**
1140        *  @brief  Assigns an initializer list to a %deque.
1141        *  @param  __l  An initializer_list.
1142        *
1143        *  This function fills a %deque with copies of the elements in the
1144        *  initializer_list @a __l.
1145        *
1146        *  Note that the assignment completely changes the %deque and that the
1147        *  resulting %deque's size is the same as the number of elements
1148        *  assigned.
1149        */
1150       void
1151       assign(initializer_list<value_type> __l)
1152       { _M_assign_aux(__l.begin(), __l.end(), random_access_iterator_tag()); }
1153 #endif
1154 
1155       /// Get a copy of the memory allocation object.
1156       allocator_type
1157       get_allocator() const _GLIBCXX_NOEXCEPT
1158       { return _Base::get_allocator(); }
1159 
1160       // iterators
1161       /**
1162        *  Returns a read/write iterator that points to the first element in the
1163        *  %deque.  Iteration is done in ordinary element order.
1164        */
1165       iterator
1166       begin() _GLIBCXX_NOEXCEPT
1167       { return this->_M_impl._M_start; }
1168 
1169       /**
1170        *  Returns a read-only (constant) iterator that points to the first
1171        *  element in the %deque.  Iteration is done in ordinary element order.
1172        */
1173       const_iterator
1174       begin() const _GLIBCXX_NOEXCEPT
1175       { return this->_M_impl._M_start; }
1176 
1177       /**
1178        *  Returns a read/write iterator that points one past the last
1179        *  element in the %deque.  Iteration is done in ordinary
1180        *  element order.
1181        */
1182       iterator
1183       end() _GLIBCXX_NOEXCEPT
1184       { return this->_M_impl._M_finish; }
1185 
1186       /**
1187        *  Returns a read-only (constant) iterator that points one past
1188        *  the last element in the %deque.  Iteration is done in
1189        *  ordinary element order.
1190        */
1191       const_iterator
1192       end() const _GLIBCXX_NOEXCEPT
1193       { return this->_M_impl._M_finish; }
1194 
1195       /**
1196        *  Returns a read/write reverse iterator that points to the
1197        *  last element in the %deque.  Iteration is done in reverse
1198        *  element order.
1199        */
1200       reverse_iterator
1201       rbegin() _GLIBCXX_NOEXCEPT
1202       { return reverse_iterator(this->_M_impl._M_finish); }
1203 
1204       /**
1205        *  Returns a read-only (constant) reverse iterator that points
1206        *  to the last element in the %deque.  Iteration is done in
1207        *  reverse element order.
1208        */
1209       const_reverse_iterator
1210       rbegin() const _GLIBCXX_NOEXCEPT
1211       { return const_reverse_iterator(this->_M_impl._M_finish); }
1212 
1213       /**
1214        *  Returns a read/write reverse iterator that points to one
1215        *  before the first element in the %deque.  Iteration is done
1216        *  in reverse element order.
1217        */
1218       reverse_iterator
1219       rend() _GLIBCXX_NOEXCEPT
1220       { return reverse_iterator(this->_M_impl._M_start); }
1221 
1222       /**
1223        *  Returns a read-only (constant) reverse iterator that points
1224        *  to one before the first element in the %deque.  Iteration is
1225        *  done in reverse element order.
1226        */
1227       const_reverse_iterator
1228       rend() const _GLIBCXX_NOEXCEPT
1229       { return const_reverse_iterator(this->_M_impl._M_start); }
1230 
1231 #if __cplusplus >= 201103L
1232       /**
1233        *  Returns a read-only (constant) iterator that points to the first
1234        *  element in the %deque.  Iteration is done in ordinary element order.
1235        */
1236       const_iterator
1237       cbegin() const noexcept
1238       { return this->_M_impl._M_start; }
1239 
1240       /**
1241        *  Returns a read-only (constant) iterator that points one past
1242        *  the last element in the %deque.  Iteration is done in
1243        *  ordinary element order.
1244        */
1245       const_iterator
1246       cend() const noexcept
1247       { return this->_M_impl._M_finish; }
1248 
1249       /**
1250        *  Returns a read-only (constant) reverse iterator that points
1251        *  to the last element in the %deque.  Iteration is done in
1252        *  reverse element order.
1253        */
1254       const_reverse_iterator
1255       crbegin() const noexcept
1256       { return const_reverse_iterator(this->_M_impl._M_finish); }
1257 
1258       /**
1259        *  Returns a read-only (constant) reverse iterator that points
1260        *  to one before the first element in the %deque.  Iteration is
1261        *  done in reverse element order.
1262        */
1263       const_reverse_iterator
1264       crend() const noexcept
1265       { return const_reverse_iterator(this->_M_impl._M_start); }
1266 #endif
1267 
1268       // [23.2.1.2] capacity
1269       /**  Returns the number of elements in the %deque.  */
1270       size_type
1271       size() const _GLIBCXX_NOEXCEPT
1272       { return this->_M_impl._M_finish - this->_M_impl._M_start; }
1273 
1274       /**  Returns the size() of the largest possible %deque.  */
1275       size_type
1276       max_size() const _GLIBCXX_NOEXCEPT
1277       { return _Alloc_traits::max_size(_M_get_Tp_allocator()); }
1278 
1279 #if __cplusplus >= 201103L
1280       /**
1281        *  @brief  Resizes the %deque to the specified number of elements.
1282        *  @param  __new_size  Number of elements the %deque should contain.
1283        *
1284        *  This function will %resize the %deque to the specified
1285        *  number of elements.  If the number is smaller than the
1286        *  %deque's current size the %deque is truncated, otherwise
1287        *  default constructed elements are appended.
1288        */
1289       void
1290       resize(size_type __new_size)
1291       {
1292 	const size_type __len = size();
1293 	if (__new_size > __len)
1294 	  _M_default_append(__new_size - __len);
1295 	else if (__new_size < __len)
1296 	  _M_erase_at_end(this->_M_impl._M_start
1297 			  + difference_type(__new_size));
1298       }
1299 
1300       /**
1301        *  @brief  Resizes the %deque to the specified number of elements.
1302        *  @param  __new_size  Number of elements the %deque should contain.
1303        *  @param  __x  Data with which new elements should be populated.
1304        *
1305        *  This function will %resize the %deque to the specified
1306        *  number of elements.  If the number is smaller than the
1307        *  %deque's current size the %deque is truncated, otherwise the
1308        *  %deque is extended and new elements are populated with given
1309        *  data.
1310        */
1311       void
1312       resize(size_type __new_size, const value_type& __x)
1313       {
1314 	const size_type __len = size();
1315 	if (__new_size > __len)
1316 	  _M_fill_insert(this->_M_impl._M_finish, __new_size - __len, __x);
1317 	else if (__new_size < __len)
1318 	  _M_erase_at_end(this->_M_impl._M_start
1319 			  + difference_type(__new_size));
1320       }
1321 #else
1322       /**
1323        *  @brief  Resizes the %deque to the specified number of elements.
1324        *  @param  __new_size  Number of elements the %deque should contain.
1325        *  @param  __x  Data with which new elements should be populated.
1326        *
1327        *  This function will %resize the %deque to the specified
1328        *  number of elements.  If the number is smaller than the
1329        *  %deque's current size the %deque is truncated, otherwise the
1330        *  %deque is extended and new elements are populated with given
1331        *  data.
1332        */
1333       void
1334       resize(size_type __new_size, value_type __x = value_type())
1335       {
1336 	const size_type __len = size();
1337 	if (__new_size > __len)
1338 	  _M_fill_insert(this->_M_impl._M_finish, __new_size - __len, __x);
1339 	else if (__new_size < __len)
1340 	  _M_erase_at_end(this->_M_impl._M_start
1341 			  + difference_type(__new_size));
1342       }
1343 #endif
1344 
1345 #if __cplusplus >= 201103L
1346       /**  A non-binding request to reduce memory use.  */
1347       void
1348       shrink_to_fit() noexcept
1349       { _M_shrink_to_fit(); }
1350 #endif
1351 
1352       /**
1353        *  Returns true if the %deque is empty.  (Thus begin() would
1354        *  equal end().)
1355        */
1356       bool
1357       empty() const _GLIBCXX_NOEXCEPT
1358       { return this->_M_impl._M_finish == this->_M_impl._M_start; }
1359 
1360       // element access
1361       /**
1362        *  @brief Subscript access to the data contained in the %deque.
1363        *  @param __n The index of the element for which data should be
1364        *  accessed.
1365        *  @return  Read/write reference to data.
1366        *
1367        *  This operator allows for easy, array-style, data access.
1368        *  Note that data access with this operator is unchecked and
1369        *  out_of_range lookups are not defined. (For checked lookups
1370        *  see at().)
1371        */
1372       reference
1373       operator[](size_type __n) _GLIBCXX_NOEXCEPT
1374       {
1375 	__glibcxx_requires_subscript(__n);
1376 	return this->_M_impl._M_start[difference_type(__n)];
1377       }
1378 
1379       /**
1380        *  @brief Subscript access to the data contained in the %deque.
1381        *  @param __n The index of the element for which data should be
1382        *  accessed.
1383        *  @return  Read-only (constant) reference to data.
1384        *
1385        *  This operator allows for easy, array-style, data access.
1386        *  Note that data access with this operator is unchecked and
1387        *  out_of_range lookups are not defined. (For checked lookups
1388        *  see at().)
1389        */
1390       const_reference
1391       operator[](size_type __n) const _GLIBCXX_NOEXCEPT
1392       {
1393 	__glibcxx_requires_subscript(__n);
1394 	return this->_M_impl._M_start[difference_type(__n)];
1395       }
1396 
1397     protected:
1398       /// Safety check used only from at().
1399       void
1400       _M_range_check(size_type __n) const
1401       {
1402 	if (__n >= this->size())
1403 	  __throw_out_of_range_fmt(__N("deque::_M_range_check: __n "
1404 				       "(which is %zu)>= this->size() "
1405 				       "(which is %zu)"),
1406 				   __n, this->size());
1407       }
1408 
1409     public:
1410       /**
1411        *  @brief  Provides access to the data contained in the %deque.
1412        *  @param __n The index of the element for which data should be
1413        *  accessed.
1414        *  @return  Read/write reference to data.
1415        *  @throw  std::out_of_range  If @a __n is an invalid index.
1416        *
1417        *  This function provides for safer data access.  The parameter
1418        *  is first checked that it is in the range of the deque.  The
1419        *  function throws out_of_range if the check fails.
1420        */
1421       reference
1422       at(size_type __n)
1423       {
1424 	_M_range_check(__n);
1425 	return (*this)[__n];
1426       }
1427 
1428       /**
1429        *  @brief  Provides access to the data contained in the %deque.
1430        *  @param __n The index of the element for which data should be
1431        *  accessed.
1432        *  @return  Read-only (constant) reference to data.
1433        *  @throw  std::out_of_range  If @a __n is an invalid index.
1434        *
1435        *  This function provides for safer data access.  The parameter is first
1436        *  checked that it is in the range of the deque.  The function throws
1437        *  out_of_range if the check fails.
1438        */
1439       const_reference
1440       at(size_type __n) const
1441       {
1442 	_M_range_check(__n);
1443 	return (*this)[__n];
1444       }
1445 
1446       /**
1447        *  Returns a read/write reference to the data at the first
1448        *  element of the %deque.
1449        */
1450       reference
1451       front() _GLIBCXX_NOEXCEPT
1452       {
1453 	__glibcxx_requires_nonempty();
1454 	return *begin();
1455       }
1456 
1457       /**
1458        *  Returns a read-only (constant) reference to the data at the first
1459        *  element of the %deque.
1460        */
1461       const_reference
1462       front() const _GLIBCXX_NOEXCEPT
1463       {
1464 	__glibcxx_requires_nonempty();
1465 	return *begin();
1466       }
1467 
1468       /**
1469        *  Returns a read/write reference to the data at the last element of the
1470        *  %deque.
1471        */
1472       reference
1473       back() _GLIBCXX_NOEXCEPT
1474       {
1475 	__glibcxx_requires_nonempty();
1476 	iterator __tmp = end();
1477 	--__tmp;
1478 	return *__tmp;
1479       }
1480 
1481       /**
1482        *  Returns a read-only (constant) reference to the data at the last
1483        *  element of the %deque.
1484        */
1485       const_reference
1486       back() const _GLIBCXX_NOEXCEPT
1487       {
1488 	__glibcxx_requires_nonempty();
1489 	const_iterator __tmp = end();
1490 	--__tmp;
1491 	return *__tmp;
1492       }
1493 
1494       // [23.2.1.2] modifiers
1495       /**
1496        *  @brief  Add data to the front of the %deque.
1497        *  @param  __x  Data to be added.
1498        *
1499        *  This is a typical stack operation.  The function creates an
1500        *  element at the front of the %deque and assigns the given
1501        *  data to it.  Due to the nature of a %deque this operation
1502        *  can be done in constant time.
1503        */
1504       void
1505       push_front(const value_type& __x)
1506       {
1507 	if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
1508 	  {
1509 	    _Alloc_traits::construct(this->_M_impl,
1510 				     this->_M_impl._M_start._M_cur - 1,
1511 				     __x);
1512 	    --this->_M_impl._M_start._M_cur;
1513 	  }
1514 	else
1515 	  _M_push_front_aux(__x);
1516       }
1517 
1518 #if __cplusplus >= 201103L
1519       void
1520       push_front(value_type&& __x)
1521       { emplace_front(std::move(__x)); }
1522 
1523       template<typename... _Args>
1524 #if __cplusplus > 201402L
1525 	reference
1526 #else
1527 	void
1528 #endif
1529 	emplace_front(_Args&&... __args);
1530 #endif
1531 
1532       /**
1533        *  @brief  Add data to the end of the %deque.
1534        *  @param  __x  Data to be added.
1535        *
1536        *  This is a typical stack operation.  The function creates an
1537        *  element at the end of the %deque and assigns the given data
1538        *  to it.  Due to the nature of a %deque this operation can be
1539        *  done in constant time.
1540        */
1541       void
1542       push_back(const value_type& __x)
1543       {
1544 	if (this->_M_impl._M_finish._M_cur
1545 	    != this->_M_impl._M_finish._M_last - 1)
1546 	  {
1547 	    _Alloc_traits::construct(this->_M_impl,
1548 				     this->_M_impl._M_finish._M_cur, __x);
1549 	    ++this->_M_impl._M_finish._M_cur;
1550 	  }
1551 	else
1552 	  _M_push_back_aux(__x);
1553       }
1554 
1555 #if __cplusplus >= 201103L
1556       void
1557       push_back(value_type&& __x)
1558       { emplace_back(std::move(__x)); }
1559 
1560       template<typename... _Args>
1561 #if __cplusplus > 201402L
1562 	reference
1563 #else
1564 	void
1565 #endif
1566 	emplace_back(_Args&&... __args);
1567 #endif
1568 
1569       /**
1570        *  @brief  Removes first element.
1571        *
1572        *  This is a typical stack operation.  It shrinks the %deque by one.
1573        *
1574        *  Note that no data is returned, and if the first element's data is
1575        *  needed, it should be retrieved before pop_front() is called.
1576        */
1577       void
1578       pop_front() _GLIBCXX_NOEXCEPT
1579       {
1580 	__glibcxx_requires_nonempty();
1581 	if (this->_M_impl._M_start._M_cur
1582 	    != this->_M_impl._M_start._M_last - 1)
1583 	  {
1584 	    _Alloc_traits::destroy(this->_M_impl,
1585 				   this->_M_impl._M_start._M_cur);
1586 	    ++this->_M_impl._M_start._M_cur;
1587 	  }
1588 	else
1589 	  _M_pop_front_aux();
1590       }
1591 
1592       /**
1593        *  @brief  Removes last element.
1594        *
1595        *  This is a typical stack operation.  It shrinks the %deque by one.
1596        *
1597        *  Note that no data is returned, and if the last element's data is
1598        *  needed, it should be retrieved before pop_back() is called.
1599        */
1600       void
1601       pop_back() _GLIBCXX_NOEXCEPT
1602       {
1603 	__glibcxx_requires_nonempty();
1604 	if (this->_M_impl._M_finish._M_cur
1605 	    != this->_M_impl._M_finish._M_first)
1606 	  {
1607 	    --this->_M_impl._M_finish._M_cur;
1608 	    _Alloc_traits::destroy(this->_M_impl,
1609 				   this->_M_impl._M_finish._M_cur);
1610 	  }
1611 	else
1612 	  _M_pop_back_aux();
1613       }
1614 
1615 #if __cplusplus >= 201103L
1616       /**
1617        *  @brief  Inserts an object in %deque before specified iterator.
1618        *  @param  __position  A const_iterator into the %deque.
1619        *  @param  __args  Arguments.
1620        *  @return  An iterator that points to the inserted data.
1621        *
1622        *  This function will insert an object of type T constructed
1623        *  with T(std::forward<Args>(args)...) before the specified location.
1624        */
1625       template<typename... _Args>
1626 	iterator
1627 	emplace(const_iterator __position, _Args&&... __args);
1628 
1629       /**
1630        *  @brief  Inserts given value into %deque before specified iterator.
1631        *  @param  __position  A const_iterator into the %deque.
1632        *  @param  __x  Data to be inserted.
1633        *  @return  An iterator that points to the inserted data.
1634        *
1635        *  This function will insert a copy of the given value before the
1636        *  specified location.
1637        */
1638       iterator
1639       insert(const_iterator __position, const value_type& __x);
1640 #else
1641       /**
1642        *  @brief  Inserts given value into %deque before specified iterator.
1643        *  @param  __position  An iterator into the %deque.
1644        *  @param  __x  Data to be inserted.
1645        *  @return  An iterator that points to the inserted data.
1646        *
1647        *  This function will insert a copy of the given value before the
1648        *  specified location.
1649        */
1650       iterator
1651       insert(iterator __position, const value_type& __x);
1652 #endif
1653 
1654 #if __cplusplus >= 201103L
1655       /**
1656        *  @brief  Inserts given rvalue into %deque before specified iterator.
1657        *  @param  __position  A const_iterator into the %deque.
1658        *  @param  __x  Data to be inserted.
1659        *  @return  An iterator that points to the inserted data.
1660        *
1661        *  This function will insert a copy of the given rvalue before the
1662        *  specified location.
1663        */
1664       iterator
1665       insert(const_iterator __position, value_type&& __x)
1666       { return emplace(__position, std::move(__x)); }
1667 
1668       /**
1669        *  @brief  Inserts an initializer list into the %deque.
1670        *  @param  __p  An iterator into the %deque.
1671        *  @param  __l  An initializer_list.
1672        *
1673        *  This function will insert copies of the data in the
1674        *  initializer_list @a __l into the %deque before the location
1675        *  specified by @a __p.  This is known as <em>list insert</em>.
1676        */
1677       iterator
1678       insert(const_iterator __p, initializer_list<value_type> __l)
1679       {
1680 	auto __offset = __p - cbegin();
1681 	_M_range_insert_aux(__p._M_const_cast(), __l.begin(), __l.end(),
1682 			    std::random_access_iterator_tag());
1683 	return begin() + __offset;
1684       }
1685 #endif
1686 
1687 #if __cplusplus >= 201103L
1688       /**
1689        *  @brief  Inserts a number of copies of given data into the %deque.
1690        *  @param  __position  A const_iterator into the %deque.
1691        *  @param  __n  Number of elements to be inserted.
1692        *  @param  __x  Data to be inserted.
1693        *  @return  An iterator that points to the inserted data.
1694        *
1695        *  This function will insert a specified number of copies of the given
1696        *  data before the location specified by @a __position.
1697        */
1698       iterator
1699       insert(const_iterator __position, size_type __n, const value_type& __x)
1700       {
1701 	difference_type __offset = __position - cbegin();
1702 	_M_fill_insert(__position._M_const_cast(), __n, __x);
1703 	return begin() + __offset;
1704       }
1705 #else
1706       /**
1707        *  @brief  Inserts a number of copies of given data into the %deque.
1708        *  @param  __position  An iterator into the %deque.
1709        *  @param  __n  Number of elements to be inserted.
1710        *  @param  __x  Data to be inserted.
1711        *
1712        *  This function will insert a specified number of copies of the given
1713        *  data before the location specified by @a __position.
1714        */
1715       void
1716       insert(iterator __position, size_type __n, const value_type& __x)
1717       { _M_fill_insert(__position, __n, __x); }
1718 #endif
1719 
1720 #if __cplusplus >= 201103L
1721       /**
1722        *  @brief  Inserts a range into the %deque.
1723        *  @param  __position  A const_iterator into the %deque.
1724        *  @param  __first  An input iterator.
1725        *  @param  __last   An input iterator.
1726        *  @return  An iterator that points to the inserted data.
1727        *
1728        *  This function will insert copies of the data in the range
1729        *  [__first,__last) into the %deque before the location specified
1730        *  by @a __position.  This is known as <em>range insert</em>.
1731        */
1732       template<typename _InputIterator,
1733 	       typename = std::_RequireInputIter<_InputIterator>>
1734 	iterator
1735 	insert(const_iterator __position, _InputIterator __first,
1736 	       _InputIterator __last)
1737 	{
1738 	  difference_type __offset = __position - cbegin();
1739 	  _M_insert_dispatch(__position._M_const_cast(),
1740 			     __first, __last, __false_type());
1741 	  return begin() + __offset;
1742 	}
1743 #else
1744       /**
1745        *  @brief  Inserts a range into the %deque.
1746        *  @param  __position  An iterator into the %deque.
1747        *  @param  __first  An input iterator.
1748        *  @param  __last   An input iterator.
1749        *
1750        *  This function will insert copies of the data in the range
1751        *  [__first,__last) into the %deque before the location specified
1752        *  by @a __position.  This is known as <em>range insert</em>.
1753        */
1754       template<typename _InputIterator>
1755 	void
1756 	insert(iterator __position, _InputIterator __first,
1757 	       _InputIterator __last)
1758 	{
1759 	  // Check whether it's an integral type.  If so, it's not an iterator.
1760 	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1761 	  _M_insert_dispatch(__position, __first, __last, _Integral());
1762 	}
1763 #endif
1764 
1765       /**
1766        *  @brief  Remove element at given position.
1767        *  @param  __position  Iterator pointing to element to be erased.
1768        *  @return  An iterator pointing to the next element (or end()).
1769        *
1770        *  This function will erase the element at the given position and thus
1771        *  shorten the %deque by one.
1772        *
1773        *  The user is cautioned that
1774        *  this function only erases the element, and that if the element is
1775        *  itself a pointer, the pointed-to memory is not touched in any way.
1776        *  Managing the pointer is the user's responsibility.
1777        */
1778       iterator
1779 #if __cplusplus >= 201103L
1780       erase(const_iterator __position)
1781 #else
1782       erase(iterator __position)
1783 #endif
1784       { return _M_erase(__position._M_const_cast()); }
1785 
1786       /**
1787        *  @brief  Remove a range of elements.
1788        *  @param  __first  Iterator pointing to the first element to be erased.
1789        *  @param  __last  Iterator pointing to one past the last element to be
1790        *                erased.
1791        *  @return  An iterator pointing to the element pointed to by @a last
1792        *           prior to erasing (or end()).
1793        *
1794        *  This function will erase the elements in the range
1795        *  [__first,__last) and shorten the %deque accordingly.
1796        *
1797        *  The user is cautioned that
1798        *  this function only erases the elements, and that if the elements
1799        *  themselves are pointers, the pointed-to memory is not touched in any
1800        *  way.  Managing the pointer is the user's responsibility.
1801        */
1802       iterator
1803 #if __cplusplus >= 201103L
1804       erase(const_iterator __first, const_iterator __last)
1805 #else
1806       erase(iterator __first, iterator __last)
1807 #endif
1808       { return _M_erase(__first._M_const_cast(), __last._M_const_cast()); }
1809 
1810       /**
1811        *  @brief  Swaps data with another %deque.
1812        *  @param  __x  A %deque of the same element and allocator types.
1813        *
1814        *  This exchanges the elements between two deques in constant time.
1815        *  (Four pointers, so it should be quite fast.)
1816        *  Note that the global std::swap() function is specialized such that
1817        *  std::swap(d1,d2) will feed to this function.
1818        *
1819        *  Whether the allocators are swapped depends on the allocator traits.
1820        */
1821       void
1822       swap(deque& __x) _GLIBCXX_NOEXCEPT
1823       {
1824 #if __cplusplus >= 201103L
1825 	__glibcxx_assert(_Alloc_traits::propagate_on_container_swap::value
1826 			 || _M_get_Tp_allocator() == __x._M_get_Tp_allocator());
1827 #endif
1828 	_M_impl._M_swap_data(__x._M_impl);
1829 	_Alloc_traits::_S_on_swap(_M_get_Tp_allocator(),
1830 				  __x._M_get_Tp_allocator());
1831       }
1832 
1833       /**
1834        *  Erases all the elements.  Note that this function only erases the
1835        *  elements, and that if the elements themselves are pointers, the
1836        *  pointed-to memory is not touched in any way.  Managing the pointer is
1837        *  the user's responsibility.
1838        */
1839       void
1840       clear() _GLIBCXX_NOEXCEPT
1841       { _M_erase_at_end(begin()); }
1842 
1843     protected:
1844       // Internal constructor functions follow.
1845 
1846       // called by the range constructor to implement [23.1.1]/9
1847 
1848       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1849       // 438. Ambiguity in the "do the right thing" clause
1850       template<typename _Integer>
1851 	void
1852 	_M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1853 	{
1854 	  _M_initialize_map(static_cast<size_type>(__n));
1855 	  _M_fill_initialize(__x);
1856 	}
1857 
1858       // called by the range constructor to implement [23.1.1]/9
1859       template<typename _InputIterator>
1860 	void
1861 	_M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1862 			       __false_type)
1863 	{
1864 	  _M_range_initialize(__first, __last,
1865 			      std::__iterator_category(__first));
1866 	}
1867 
1868       // called by the second initialize_dispatch above
1869       //@{
1870       /**
1871        *  @brief Fills the deque with whatever is in [first,last).
1872        *  @param  __first  An input iterator.
1873        *  @param  __last  An input iterator.
1874        *  @return   Nothing.
1875        *
1876        *  If the iterators are actually forward iterators (or better), then the
1877        *  memory layout can be done all at once.  Else we move forward using
1878        *  push_back on each value from the iterator.
1879        */
1880       template<typename _InputIterator>
1881 	void
1882 	_M_range_initialize(_InputIterator __first, _InputIterator __last,
1883 			    std::input_iterator_tag);
1884 
1885       // called by the second initialize_dispatch above
1886       template<typename _ForwardIterator>
1887 	void
1888 	_M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1889 			    std::forward_iterator_tag);
1890       //@}
1891 
1892       /**
1893        *  @brief Fills the %deque with copies of value.
1894        *  @param  __value  Initial value.
1895        *  @return   Nothing.
1896        *  @pre _M_start and _M_finish have already been initialized,
1897        *  but none of the %deque's elements have yet been constructed.
1898        *
1899        *  This function is called only when the user provides an explicit size
1900        *  (with or without an explicit exemplar value).
1901        */
1902       void
1903       _M_fill_initialize(const value_type& __value);
1904 
1905 #if __cplusplus >= 201103L
1906       // called by deque(n).
1907       void
1908       _M_default_initialize();
1909 #endif
1910 
1911       // Internal assign functions follow.  The *_aux functions do the actual
1912       // assignment work for the range versions.
1913 
1914       // called by the range assign to implement [23.1.1]/9
1915 
1916       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1917       // 438. Ambiguity in the "do the right thing" clause
1918       template<typename _Integer>
1919 	void
1920 	_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1921 	{ _M_fill_assign(__n, __val); }
1922 
1923       // called by the range assign to implement [23.1.1]/9
1924       template<typename _InputIterator>
1925 	void
1926 	_M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1927 			   __false_type)
1928 	{ _M_assign_aux(__first, __last, std::__iterator_category(__first)); }
1929 
1930       // called by the second assign_dispatch above
1931       template<typename _InputIterator>
1932 	void
1933 	_M_assign_aux(_InputIterator __first, _InputIterator __last,
1934 		      std::input_iterator_tag);
1935 
1936       // called by the second assign_dispatch above
1937       template<typename _ForwardIterator>
1938 	void
1939 	_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1940 		      std::forward_iterator_tag)
1941 	{
1942 	  const size_type __len = std::distance(__first, __last);
1943 	  if (__len > size())
1944 	    {
1945 	      _ForwardIterator __mid = __first;
1946 	      std::advance(__mid, size());
1947 	      std::copy(__first, __mid, begin());
1948 	      _M_range_insert_aux(end(), __mid, __last,
1949 				  std::__iterator_category(__first));
1950 	    }
1951 	  else
1952 	    _M_erase_at_end(std::copy(__first, __last, begin()));
1953 	}
1954 
1955       // Called by assign(n,t), and the range assign when it turns out
1956       // to be the same thing.
1957       void
1958       _M_fill_assign(size_type __n, const value_type& __val)
1959       {
1960 	if (__n > size())
1961 	  {
1962 	    std::fill(begin(), end(), __val);
1963 	    _M_fill_insert(end(), __n - size(), __val);
1964 	  }
1965 	else
1966 	  {
1967 	    _M_erase_at_end(begin() + difference_type(__n));
1968 	    std::fill(begin(), end(), __val);
1969 	  }
1970       }
1971 
1972       //@{
1973       /// Helper functions for push_* and pop_*.
1974 #if __cplusplus < 201103L
1975       void _M_push_back_aux(const value_type&);
1976 
1977       void _M_push_front_aux(const value_type&);
1978 #else
1979       template<typename... _Args>
1980 	void _M_push_back_aux(_Args&&... __args);
1981 
1982       template<typename... _Args>
1983 	void _M_push_front_aux(_Args&&... __args);
1984 #endif
1985 
1986       void _M_pop_back_aux();
1987 
1988       void _M_pop_front_aux();
1989       //@}
1990 
1991       // Internal insert functions follow.  The *_aux functions do the actual
1992       // insertion work when all shortcuts fail.
1993 
1994       // called by the range insert to implement [23.1.1]/9
1995 
1996       // _GLIBCXX_RESOLVE_LIB_DEFECTS
1997       // 438. Ambiguity in the "do the right thing" clause
1998       template<typename _Integer>
1999 	void
2000 	_M_insert_dispatch(iterator __pos,
2001 			   _Integer __n, _Integer __x, __true_type)
2002 	{ _M_fill_insert(__pos, __n, __x); }
2003 
2004       // called by the range insert to implement [23.1.1]/9
2005       template<typename _InputIterator>
2006 	void
2007 	_M_insert_dispatch(iterator __pos,
2008 			   _InputIterator __first, _InputIterator __last,
2009 			   __false_type)
2010 	{
2011 	  _M_range_insert_aux(__pos, __first, __last,
2012 			      std::__iterator_category(__first));
2013 	}
2014 
2015       // called by the second insert_dispatch above
2016       template<typename _InputIterator>
2017 	void
2018 	_M_range_insert_aux(iterator __pos, _InputIterator __first,
2019 			    _InputIterator __last, std::input_iterator_tag);
2020 
2021       // called by the second insert_dispatch above
2022       template<typename _ForwardIterator>
2023 	void
2024 	_M_range_insert_aux(iterator __pos, _ForwardIterator __first,
2025 			    _ForwardIterator __last, std::forward_iterator_tag);
2026 
2027       // Called by insert(p,n,x), and the range insert when it turns out to be
2028       // the same thing.  Can use fill functions in optimal situations,
2029       // otherwise passes off to insert_aux(p,n,x).
2030       void
2031       _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
2032 
2033       // called by insert(p,x)
2034 #if __cplusplus < 201103L
2035       iterator
2036       _M_insert_aux(iterator __pos, const value_type& __x);
2037 #else
2038       template<typename... _Args>
2039 	iterator
2040 	_M_insert_aux(iterator __pos, _Args&&... __args);
2041 #endif
2042 
2043       // called by insert(p,n,x) via fill_insert
2044       void
2045       _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
2046 
2047       // called by range_insert_aux for forward iterators
2048       template<typename _ForwardIterator>
2049 	void
2050 	_M_insert_aux(iterator __pos,
2051 		      _ForwardIterator __first, _ForwardIterator __last,
2052 		      size_type __n);
2053 
2054 
2055       // Internal erase functions follow.
2056 
2057       void
2058       _M_destroy_data_aux(iterator __first, iterator __last);
2059 
2060       // Called by ~deque().
2061       // NB: Doesn't deallocate the nodes.
2062       template<typename _Alloc1>
2063 	void
2064 	_M_destroy_data(iterator __first, iterator __last, const _Alloc1&)
2065 	{ _M_destroy_data_aux(__first, __last); }
2066 
2067       void
2068       _M_destroy_data(iterator __first, iterator __last,
2069 		      const std::allocator<_Tp>&)
2070       {
2071 	if (!__has_trivial_destructor(value_type))
2072 	  _M_destroy_data_aux(__first, __last);
2073       }
2074 
2075       // Called by erase(q1, q2).
2076       void
2077       _M_erase_at_begin(iterator __pos)
2078       {
2079 	_M_destroy_data(begin(), __pos, _M_get_Tp_allocator());
2080 	_M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);
2081 	this->_M_impl._M_start = __pos;
2082       }
2083 
2084       // Called by erase(q1, q2), resize(), clear(), _M_assign_aux,
2085       // _M_fill_assign, operator=.
2086       void
2087       _M_erase_at_end(iterator __pos)
2088       {
2089 	_M_destroy_data(__pos, end(), _M_get_Tp_allocator());
2090 	_M_destroy_nodes(__pos._M_node + 1,
2091 			 this->_M_impl._M_finish._M_node + 1);
2092 	this->_M_impl._M_finish = __pos;
2093       }
2094 
2095       iterator
2096       _M_erase(iterator __pos);
2097 
2098       iterator
2099       _M_erase(iterator __first, iterator __last);
2100 
2101 #if __cplusplus >= 201103L
2102       // Called by resize(sz).
2103       void
2104       _M_default_append(size_type __n);
2105 
2106       bool
2107       _M_shrink_to_fit();
2108 #endif
2109 
2110       //@{
2111       /// Memory-handling helpers for the previous internal insert functions.
2112       iterator
2113       _M_reserve_elements_at_front(size_type __n)
2114       {
2115 	const size_type __vacancies = this->_M_impl._M_start._M_cur
2116 				      - this->_M_impl._M_start._M_first;
2117 	if (__n > __vacancies)
2118 	  _M_new_elements_at_front(__n - __vacancies);
2119 	return this->_M_impl._M_start - difference_type(__n);
2120       }
2121 
2122       iterator
2123       _M_reserve_elements_at_back(size_type __n)
2124       {
2125 	const size_type __vacancies = (this->_M_impl._M_finish._M_last
2126 				       - this->_M_impl._M_finish._M_cur) - 1;
2127 	if (__n > __vacancies)
2128 	  _M_new_elements_at_back(__n - __vacancies);
2129 	return this->_M_impl._M_finish + difference_type(__n);
2130       }
2131 
2132       void
2133       _M_new_elements_at_front(size_type __new_elements);
2134 
2135       void
2136       _M_new_elements_at_back(size_type __new_elements);
2137       //@}
2138 
2139 
2140       //@{
2141       /**
2142        *  @brief Memory-handling helpers for the major %map.
2143        *
2144        *  Makes sure the _M_map has space for new nodes.  Does not
2145        *  actually add the nodes.  Can invalidate _M_map pointers.
2146        *  (And consequently, %deque iterators.)
2147        */
2148       void
2149       _M_reserve_map_at_back(size_type __nodes_to_add = 1)
2150       {
2151 	if (__nodes_to_add + 1 > this->_M_impl._M_map_size
2152 	    - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
2153 	  _M_reallocate_map(__nodes_to_add, false);
2154       }
2155 
2156       void
2157       _M_reserve_map_at_front(size_type __nodes_to_add = 1)
2158       {
2159 	if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
2160 				       - this->_M_impl._M_map))
2161 	  _M_reallocate_map(__nodes_to_add, true);
2162       }
2163 
2164       void
2165       _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
2166       //@}
2167 
2168 #if __cplusplus >= 201103L
2169       // Constant-time, nothrow move assignment when source object's memory
2170       // can be moved because the allocators are equal.
2171       void
2172       _M_move_assign1(deque&& __x, /* always equal: */ true_type) noexcept
2173       {
2174 	this->_M_impl._M_swap_data(__x._M_impl);
2175 	__x.clear();
2176 	std::__alloc_on_move(_M_get_Tp_allocator(), __x._M_get_Tp_allocator());
2177       }
2178 
2179       // When the allocators are not equal the operation could throw, because
2180       // we might need to allocate a new map for __x after moving from it
2181       // or we might need to allocate new elements for *this.
2182       void
2183       _M_move_assign1(deque&& __x, /* always equal: */ false_type)
2184       {
2185 	constexpr bool __move_storage =
2186 	  _Alloc_traits::_S_propagate_on_move_assign();
2187 	_M_move_assign2(std::move(__x), __bool_constant<__move_storage>());
2188       }
2189 
2190       // Destroy all elements and deallocate all memory, then replace
2191       // with elements created from __args.
2192       template<typename... _Args>
2193       void
2194       _M_replace_map(_Args&&... __args)
2195       {
2196 	// Create new data first, so if allocation fails there are no effects.
2197 	deque __newobj(std::forward<_Args>(__args)...);
2198 	// Free existing storage using existing allocator.
2199 	clear();
2200 	_M_deallocate_node(*begin()._M_node); // one node left after clear()
2201 	_M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
2202 	this->_M_impl._M_map = nullptr;
2203 	this->_M_impl._M_map_size = 0;
2204 	// Take ownership of replacement memory.
2205 	this->_M_impl._M_swap_data(__newobj._M_impl);
2206       }
2207 
2208       // Do move assignment when the allocator propagates.
2209       void
2210       _M_move_assign2(deque&& __x, /* propagate: */ true_type)
2211       {
2212 	// Make a copy of the original allocator state.
2213 	auto __alloc = __x._M_get_Tp_allocator();
2214 	// The allocator propagates so storage can be moved from __x,
2215 	// leaving __x in a valid empty state with a moved-from allocator.
2216 	_M_replace_map(std::move(__x));
2217 	// Move the corresponding allocator state too.
2218 	_M_get_Tp_allocator() = std::move(__alloc);
2219       }
2220 
2221       // Do move assignment when it may not be possible to move source
2222       // object's memory, resulting in a linear-time operation.
2223       void
2224       _M_move_assign2(deque&& __x, /* propagate: */ false_type)
2225       {
2226 	if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator())
2227 	  {
2228 	    // The allocators are equal so storage can be moved from __x,
2229 	    // leaving __x in a valid empty state with its current allocator.
2230 	    _M_replace_map(std::move(__x), __x.get_allocator());
2231 	  }
2232 	else
2233 	  {
2234 	    // The rvalue's allocator cannot be moved and is not equal,
2235 	    // so we need to individually move each element.
2236 	    _M_assign_aux(std::__make_move_if_noexcept_iterator(__x.begin()),
2237 			  std::__make_move_if_noexcept_iterator(__x.end()),
2238 			  std::random_access_iterator_tag());
2239 	    __x.clear();
2240 	  }
2241       }
2242 #endif
2243     };
2244 
2245 
2246   /**
2247    *  @brief  Deque equality comparison.
2248    *  @param  __x  A %deque.
2249    *  @param  __y  A %deque of the same type as @a __x.
2250    *  @return  True iff the size and elements of the deques are equal.
2251    *
2252    *  This is an equivalence relation.  It is linear in the size of the
2253    *  deques.  Deques are considered equivalent if their sizes are equal,
2254    *  and if corresponding elements compare equal.
2255   */
2256   template<typename _Tp, typename _Alloc>
2257     inline bool
2258     operator==(const deque<_Tp, _Alloc>& __x,
2259                          const deque<_Tp, _Alloc>& __y)
2260     { return __x.size() == __y.size()
2261 	     && std::equal(__x.begin(), __x.end(), __y.begin()); }
2262 
2263   /**
2264    *  @brief  Deque ordering relation.
2265    *  @param  __x  A %deque.
2266    *  @param  __y  A %deque of the same type as @a __x.
2267    *  @return  True iff @a x is lexicographically less than @a __y.
2268    *
2269    *  This is a total ordering relation.  It is linear in the size of the
2270    *  deques.  The elements must be comparable with @c <.
2271    *
2272    *  See std::lexicographical_compare() for how the determination is made.
2273   */
2274   template<typename _Tp, typename _Alloc>
2275     inline bool
2276     operator<(const deque<_Tp, _Alloc>& __x,
2277 	      const deque<_Tp, _Alloc>& __y)
2278     { return std::lexicographical_compare(__x.begin(), __x.end(),
2279 					  __y.begin(), __y.end()); }
2280 
2281   /// Based on operator==
2282   template<typename _Tp, typename _Alloc>
2283     inline bool
2284     operator!=(const deque<_Tp, _Alloc>& __x,
2285 	       const deque<_Tp, _Alloc>& __y)
2286     { return !(__x == __y); }
2287 
2288   /// Based on operator<
2289   template<typename _Tp, typename _Alloc>
2290     inline bool
2291     operator>(const deque<_Tp, _Alloc>& __x,
2292 	      const deque<_Tp, _Alloc>& __y)
2293     { return __y < __x; }
2294 
2295   /// Based on operator<
2296   template<typename _Tp, typename _Alloc>
2297     inline bool
2298     operator<=(const deque<_Tp, _Alloc>& __x,
2299 	       const deque<_Tp, _Alloc>& __y)
2300     { return !(__y < __x); }
2301 
2302   /// Based on operator<
2303   template<typename _Tp, typename _Alloc>
2304     inline bool
2305     operator>=(const deque<_Tp, _Alloc>& __x,
2306 	       const deque<_Tp, _Alloc>& __y)
2307     { return !(__x < __y); }
2308 
2309   /// See std::deque::swap().
2310   template<typename _Tp, typename _Alloc>
2311     inline void
2312     swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
2313     _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
2314     { __x.swap(__y); }
2315 
2316 #undef _GLIBCXX_DEQUE_BUF_SIZE
2317 
2318 _GLIBCXX_END_NAMESPACE_CONTAINER
2319 } // namespace std
2320 
2321 #endif /* _STL_DEQUE_H */
2322