xref: /netbsd-src/external/gpl3/gcc.old/dist/libstdc++-v3/include/bits/hashtable_policy.h (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 // Internal policy header for unordered_set and unordered_map -*- C++ -*-
2 
3 // Copyright (C) 2010-2013 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable_policy.h
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly.
28  *  @headername{unordered_map,unordered_set}
29  */
30 
31 #ifndef _HASHTABLE_POLICY_H
32 #define _HASHTABLE_POLICY_H 1
33 
34 namespace std _GLIBCXX_VISIBILITY(default)
35 {
36 _GLIBCXX_BEGIN_NAMESPACE_VERSION
37 
38   template<typename _Key, typename _Value, typename _Alloc,
39 	   typename _ExtractKey, typename _Equal,
40 	   typename _H1, typename _H2, typename _Hash,
41 	   typename _RehashPolicy, typename _Traits>
42     class _Hashtable;
43 
44 _GLIBCXX_END_NAMESPACE_VERSION
45 
46 namespace __detail
47 {
48 _GLIBCXX_BEGIN_NAMESPACE_VERSION
49 
50   /**
51    *  @defgroup hashtable-detail Base and Implementation Classes
52    *  @ingroup unordered_associative_containers
53    *  @{
54    */
55   template<typename _Key, typename _Value,
56 	   typename _ExtractKey, typename _Equal,
57 	   typename _H1, typename _H2, typename _Hash, typename _Traits>
58     struct _Hashtable_base;
59 
60   // Helper function: return distance(first, last) for forward
61   // iterators, or 0 for input iterators.
62   template<class _Iterator>
63     inline typename std::iterator_traits<_Iterator>::difference_type
64     __distance_fw(_Iterator __first, _Iterator __last,
65 		  std::input_iterator_tag)
66     { return 0; }
67 
68   template<class _Iterator>
69     inline typename std::iterator_traits<_Iterator>::difference_type
70     __distance_fw(_Iterator __first, _Iterator __last,
71 		  std::forward_iterator_tag)
72     { return std::distance(__first, __last); }
73 
74   template<class _Iterator>
75     inline typename std::iterator_traits<_Iterator>::difference_type
76     __distance_fw(_Iterator __first, _Iterator __last)
77     {
78       typedef typename std::iterator_traits<_Iterator>::iterator_category _Tag;
79       return __distance_fw(__first, __last, _Tag());
80     }
81 
82   // Helper type used to detect whether the hash functor is noexcept.
83   template <typename _Key, typename _Hash>
84     struct __is_noexcept_hash : std::integral_constant<bool,
85 	noexcept(declval<const _Hash&>()(declval<const _Key&>()))>
86     { };
87 
88   struct _Identity
89   {
90     template<typename _Tp>
91       _Tp&&
92       operator()(_Tp&& __x) const
93       { return std::forward<_Tp>(__x); }
94   };
95 
96   struct _Select1st
97   {
98     template<typename _Tp>
99       auto
100       operator()(_Tp&& __x) const
101       -> decltype(std::get<0>(std::forward<_Tp>(__x)))
102       { return std::get<0>(std::forward<_Tp>(__x)); }
103   };
104 
105   // Auxiliary types used for all instantiations of _Hashtable nodes
106   // and iterators.
107 
108   /**
109    *  struct _Hashtable_traits
110    *
111    *  Important traits for hash tables.
112    *
113    *  @tparam _Cache_hash_code  Boolean value. True if the value of
114    *  the hash function is stored along with the value. This is a
115    *  time-space tradeoff.  Storing it may improve lookup speed by
116    *  reducing the number of times we need to call the _Equal
117    *  function.
118    *
119    *  @tparam _Constant_iterators  Boolean value. True if iterator and
120    *  const_iterator are both constant iterator types. This is true
121    *  for unordered_set and unordered_multiset, false for
122    *  unordered_map and unordered_multimap.
123    *
124    *  @tparam _Unique_keys  Boolean value. True if the return value
125    *  of _Hashtable::count(k) is always at most one, false if it may
126    *  be an arbitrary number. This is true for unordered_set and
127    *  unordered_map, false for unordered_multiset and
128    *  unordered_multimap.
129    */
130   template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
131     struct _Hashtable_traits
132     {
133       template<bool _Cond>
134 	using __bool_constant = integral_constant<bool, _Cond>;
135 
136       using __hash_cached = __bool_constant<_Cache_hash_code>;
137       using __constant_iterators = __bool_constant<_Constant_iterators>;
138       using __unique_keys = __bool_constant<_Unique_keys>;
139     };
140 
141   /**
142    *  struct _Hash_node_base
143    *
144    *  Nodes, used to wrap elements stored in the hash table.  A policy
145    *  template parameter of class template _Hashtable controls whether
146    *  nodes also store a hash code. In some cases (e.g. strings) this
147    *  may be a performance win.
148    */
149   struct _Hash_node_base
150   {
151     _Hash_node_base* _M_nxt;
152 
153     _Hash_node_base() : _M_nxt() { }
154 
155     _Hash_node_base(_Hash_node_base* __next) : _M_nxt(__next) { }
156   };
157 
158   /**
159    *  Primary template struct _Hash_node.
160    */
161   template<typename _Value, bool _Cache_hash_code>
162     struct _Hash_node;
163 
164   /**
165    *  Specialization for nodes with caches, struct _Hash_node.
166    *
167    *  Base class is __detail::_Hash_node_base.
168    */
169   template<typename _Value>
170     struct _Hash_node<_Value, true> : _Hash_node_base
171     {
172       _Value       _M_v;
173       std::size_t  _M_hash_code;
174 
175       template<typename... _Args>
176 	_Hash_node(_Args&&... __args)
177 	: _M_v(std::forward<_Args>(__args)...), _M_hash_code() { }
178 
179       _Hash_node*
180       _M_next() const { return static_cast<_Hash_node*>(_M_nxt); }
181     };
182 
183   /**
184    *  Specialization for nodes without caches, struct _Hash_node.
185    *
186    *  Base class is __detail::_Hash_node_base.
187    */
188   template<typename _Value>
189     struct _Hash_node<_Value, false> : _Hash_node_base
190     {
191       _Value       _M_v;
192 
193       template<typename... _Args>
194 	_Hash_node(_Args&&... __args)
195 	: _M_v(std::forward<_Args>(__args)...) { }
196 
197       _Hash_node*
198       _M_next() const { return static_cast<_Hash_node*>(_M_nxt); }
199     };
200 
201   /// Base class for node iterators.
202   template<typename _Value, bool _Cache_hash_code>
203     struct _Node_iterator_base
204     {
205       using __node_type = _Hash_node<_Value, _Cache_hash_code>;
206 
207       __node_type*  _M_cur;
208 
209       _Node_iterator_base(__node_type* __p)
210       : _M_cur(__p) { }
211 
212       void
213       _M_incr()
214       { _M_cur = _M_cur->_M_next(); }
215     };
216 
217   template<typename _Value, bool _Cache_hash_code>
218     inline bool
219     operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
220 	       const _Node_iterator_base<_Value, _Cache_hash_code >& __y)
221     { return __x._M_cur == __y._M_cur; }
222 
223   template<typename _Value, bool _Cache_hash_code>
224     inline bool
225     operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
226 	       const _Node_iterator_base<_Value, _Cache_hash_code>& __y)
227     { return __x._M_cur != __y._M_cur; }
228 
229   /// Node iterators, used to iterate through all the hashtable.
230   template<typename _Value, bool __constant_iterators, bool __cache>
231     struct _Node_iterator
232     : public _Node_iterator_base<_Value, __cache>
233     {
234     private:
235       using __base_type = _Node_iterator_base<_Value, __cache>;
236       using __node_type = typename __base_type::__node_type;
237 
238     public:
239       typedef _Value                                   value_type;
240       typedef std::ptrdiff_t                           difference_type;
241       typedef std::forward_iterator_tag                iterator_category;
242 
243       using pointer = typename std::conditional<__constant_iterators,
244 						const _Value*, _Value*>::type;
245 
246       using reference = typename std::conditional<__constant_iterators,
247 						  const _Value&, _Value&>::type;
248 
249       _Node_iterator()
250       : __base_type(0) { }
251 
252       explicit
253       _Node_iterator(__node_type* __p)
254       : __base_type(__p) { }
255 
256       reference
257       operator*() const
258       { return this->_M_cur->_M_v; }
259 
260       pointer
261       operator->() const
262       { return std::__addressof(this->_M_cur->_M_v); }
263 
264       _Node_iterator&
265       operator++()
266       {
267 	this->_M_incr();
268 	return *this;
269       }
270 
271       _Node_iterator
272       operator++(int)
273       {
274 	_Node_iterator __tmp(*this);
275 	this->_M_incr();
276 	return __tmp;
277       }
278     };
279 
280   /// Node const_iterators, used to iterate through all the hashtable.
281   template<typename _Value, bool __constant_iterators, bool __cache>
282     struct _Node_const_iterator
283     : public _Node_iterator_base<_Value, __cache>
284     {
285     private:
286       using __base_type = _Node_iterator_base<_Value, __cache>;
287       using __node_type = typename __base_type::__node_type;
288 
289     public:
290       typedef _Value                                   value_type;
291       typedef std::ptrdiff_t                           difference_type;
292       typedef std::forward_iterator_tag                iterator_category;
293 
294       typedef const _Value*                            pointer;
295       typedef const _Value&                            reference;
296 
297       _Node_const_iterator()
298       : __base_type(0) { }
299 
300       explicit
301       _Node_const_iterator(__node_type* __p)
302       : __base_type(__p) { }
303 
304       _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
305 			   __cache>& __x)
306       : __base_type(__x._M_cur) { }
307 
308       reference
309       operator*() const
310       { return this->_M_cur->_M_v; }
311 
312       pointer
313       operator->() const
314       { return std::__addressof(this->_M_cur->_M_v); }
315 
316       _Node_const_iterator&
317       operator++()
318       {
319 	this->_M_incr();
320 	return *this;
321       }
322 
323       _Node_const_iterator
324       operator++(int)
325       {
326 	_Node_const_iterator __tmp(*this);
327 	this->_M_incr();
328 	return __tmp;
329       }
330     };
331 
332   // Many of class template _Hashtable's template parameters are policy
333   // classes.  These are defaults for the policies.
334 
335   /// Default range hashing function: use division to fold a large number
336   /// into the range [0, N).
337   struct _Mod_range_hashing
338   {
339     typedef std::size_t first_argument_type;
340     typedef std::size_t second_argument_type;
341     typedef std::size_t result_type;
342 
343     result_type
344     operator()(first_argument_type __num, second_argument_type __den) const
345     { return __num % __den; }
346   };
347 
348   /// Default ranged hash function H.  In principle it should be a
349   /// function object composed from objects of type H1 and H2 such that
350   /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
351   /// h1 and h2.  So instead we'll just use a tag to tell class template
352   /// hashtable to do that composition.
353   struct _Default_ranged_hash { };
354 
355   /// Default value for rehash policy.  Bucket size is (usually) the
356   /// smallest prime that keeps the load factor small enough.
357   struct _Prime_rehash_policy
358   {
359     _Prime_rehash_policy(float __z = 1.0)
360     : _M_max_load_factor(__z), _M_next_resize(0) { }
361 
362     float
363     max_load_factor() const noexcept
364     { return _M_max_load_factor; }
365 
366     // Return a bucket size no smaller than n.
367     std::size_t
368     _M_next_bkt(std::size_t __n) const;
369 
370     // Return a bucket count appropriate for n elements
371     std::size_t
372     _M_bkt_for_elements(std::size_t __n) const
373     { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
374 
375     // __n_bkt is current bucket count, __n_elt is current element count,
376     // and __n_ins is number of elements to be inserted.  Do we need to
377     // increase bucket count?  If so, return make_pair(true, n), where n
378     // is the new bucket count.  If not, return make_pair(false, 0).
379     std::pair<bool, std::size_t>
380     _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
381 		   std::size_t __n_ins) const;
382 
383     typedef std::size_t _State;
384 
385     _State
386     _M_state() const
387     { return _M_next_resize; }
388 
389     void
390     _M_reset(_State __state)
391     { _M_next_resize = __state; }
392 
393     enum { _S_n_primes = sizeof(unsigned long) != 8 ? 256 : 256 + 48 };
394 
395     static const std::size_t _S_growth_factor = 2;
396 
397     float                _M_max_load_factor;
398     mutable std::size_t  _M_next_resize;
399   };
400 
401   // Base classes for std::_Hashtable.  We define these base classes
402   // because in some cases we want to do different things depending on
403   // the value of a policy class.  In some cases the policy class
404   // affects which member functions and nested typedefs are defined;
405   // we handle that by specializing base class templates.  Several of
406   // the base class templates need to access other members of class
407   // template _Hashtable, so we use a variant of the "Curiously
408   // Recurring Template Pattern" (CRTP) technique.
409 
410   /**
411    *  Primary class template _Map_base.
412    *
413    *  If the hashtable has a value type of the form pair<T1, T2> and a
414    *  key extraction policy (_ExtractKey) that returns the first part
415    *  of the pair, the hashtable gets a mapped_type typedef.  If it
416    *  satisfies those criteria and also has unique keys, then it also
417    *  gets an operator[].
418    */
419   template<typename _Key, typename _Value, typename _Alloc,
420 	   typename _ExtractKey, typename _Equal,
421 	   typename _H1, typename _H2, typename _Hash,
422 	   typename _RehashPolicy, typename _Traits,
423 	   bool _Unique_keys = _Traits::__unique_keys::value>
424     struct _Map_base { };
425 
426   /// Partial specialization, __unique_keys set to false.
427   template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
428 	   typename _H1, typename _H2, typename _Hash,
429 	   typename _RehashPolicy, typename _Traits>
430     struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
431 		     _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
432     {
433       using mapped_type = typename std::tuple_element<1, _Pair>::type;
434     };
435 
436   /// Partial specialization, __unique_keys set to true.
437   template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
438 	   typename _H1, typename _H2, typename _Hash,
439 	   typename _RehashPolicy, typename _Traits>
440     struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
441 		     _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
442     {
443     private:
444       using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair,
445 							 _Select1st,
446 							_Equal, _H1, _H2, _Hash,
447 							  _Traits>;
448 
449       using __hashtable = _Hashtable<_Key, _Pair, _Alloc,
450 				     _Select1st, _Equal,
451 				     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
452 
453       using __hash_code = typename __hashtable_base::__hash_code;
454       using __node_type = typename __hashtable_base::__node_type;
455 
456     public:
457       using key_type = typename __hashtable_base::key_type;
458       using iterator = typename __hashtable_base::iterator;
459       using mapped_type = typename std::tuple_element<1, _Pair>::type;
460 
461       mapped_type&
462       operator[](const key_type& __k);
463 
464       mapped_type&
465       operator[](key_type&& __k);
466 
467       // _GLIBCXX_RESOLVE_LIB_DEFECTS
468       // DR 761. unordered_map needs an at() member function.
469       mapped_type&
470       at(const key_type& __k);
471 
472       const mapped_type&
473       at(const key_type& __k) const;
474     };
475 
476   template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
477 	   typename _H1, typename _H2, typename _Hash,
478 	   typename _RehashPolicy, typename _Traits>
479     typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
480 		       _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
481 		       ::mapped_type&
482     _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
483 	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
484     operator[](const key_type& __k)
485     {
486       __hashtable* __h = static_cast<__hashtable*>(this);
487       __hash_code __code = __h->_M_hash_code(__k);
488       std::size_t __n = __h->_M_bucket_index(__k, __code);
489       __node_type* __p = __h->_M_find_node(__n, __k, __code);
490 
491       if (!__p)
492 	{
493 	  __p = __h->_M_allocate_node(std::piecewise_construct,
494 				      std::tuple<const key_type&>(__k),
495 				      std::tuple<>());
496 	  return __h->_M_insert_unique_node(__n, __code, __p)->second;
497 	}
498 
499       return (__p->_M_v).second;
500     }
501 
502   template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
503 	   typename _H1, typename _H2, typename _Hash,
504 	   typename _RehashPolicy, typename _Traits>
505     typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
506 		       _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
507 		       ::mapped_type&
508     _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
509 	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
510     operator[](key_type&& __k)
511     {
512       __hashtable* __h = static_cast<__hashtable*>(this);
513       __hash_code __code = __h->_M_hash_code(__k);
514       std::size_t __n = __h->_M_bucket_index(__k, __code);
515       __node_type* __p = __h->_M_find_node(__n, __k, __code);
516 
517       if (!__p)
518 	{
519 	  __p = __h->_M_allocate_node(std::piecewise_construct,
520 				      std::forward_as_tuple(std::move(__k)),
521 				      std::tuple<>());
522 	  return __h->_M_insert_unique_node(__n, __code, __p)->second;
523 	}
524 
525       return (__p->_M_v).second;
526     }
527 
528   template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
529 	   typename _H1, typename _H2, typename _Hash,
530 	   typename _RehashPolicy, typename _Traits>
531     typename _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
532 		       _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
533 		       ::mapped_type&
534     _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
535 	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
536     at(const key_type& __k)
537     {
538       __hashtable* __h = static_cast<__hashtable*>(this);
539       __hash_code __code = __h->_M_hash_code(__k);
540       std::size_t __n = __h->_M_bucket_index(__k, __code);
541       __node_type* __p = __h->_M_find_node(__n, __k, __code);
542 
543       if (!__p)
544 	__throw_out_of_range(__N("_Map_base::at"));
545       return (__p->_M_v).second;
546     }
547 
548   template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
549 	   typename _H1, typename _H2, typename _Hash,
550 	   typename _RehashPolicy, typename _Traits>
551     const typename _Map_base<_Key, _Pair, _Alloc, _Select1st,
552 			     _Equal, _H1, _H2, _Hash, _RehashPolicy,
553 			     _Traits, true>::mapped_type&
554     _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
555 	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
556     at(const key_type& __k) const
557     {
558       const __hashtable* __h = static_cast<const __hashtable*>(this);
559       __hash_code __code = __h->_M_hash_code(__k);
560       std::size_t __n = __h->_M_bucket_index(__k, __code);
561       __node_type* __p = __h->_M_find_node(__n, __k, __code);
562 
563       if (!__p)
564 	__throw_out_of_range(__N("_Map_base::at"));
565       return (__p->_M_v).second;
566     }
567 
568   /**
569    *  Primary class template _Insert_base.
570    *
571    *  insert member functions appropriate to all _Hashtables.
572    */
573   template<typename _Key, typename _Value, typename _Alloc,
574 	   typename _ExtractKey, typename _Equal,
575 	   typename _H1, typename _H2, typename _Hash,
576 	   typename _RehashPolicy, typename _Traits>
577     struct _Insert_base
578     {
579       using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
580 				     _Equal, _H1, _H2, _Hash,
581 				     _RehashPolicy, _Traits>;
582 
583       using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
584 					       _Equal, _H1, _H2, _Hash,
585 					       _Traits>;
586 
587       using value_type = typename __hashtable_base::value_type;
588       using iterator = typename __hashtable_base::iterator;
589       using const_iterator =  typename __hashtable_base::const_iterator;
590       using size_type = typename __hashtable_base::size_type;
591 
592       using __unique_keys = typename __hashtable_base::__unique_keys;
593       using __ireturn_type = typename __hashtable_base::__ireturn_type;
594       using __iconv_type = typename __hashtable_base::__iconv_type;
595 
596       __hashtable&
597       _M_conjure_hashtable()
598       { return *(static_cast<__hashtable*>(this)); }
599 
600       __ireturn_type
601       insert(const value_type& __v)
602       {
603 	__hashtable& __h = _M_conjure_hashtable();
604 	return __h._M_insert(__v, __unique_keys());
605       }
606 
607       iterator
608       insert(const_iterator, const value_type& __v)
609       { return __iconv_type()(insert(__v)); }
610 
611       void
612       insert(initializer_list<value_type> __l)
613       { this->insert(__l.begin(), __l.end()); }
614 
615       template<typename _InputIterator>
616 	void
617 	insert(_InputIterator __first, _InputIterator __last);
618     };
619 
620   template<typename _Key, typename _Value, typename _Alloc,
621 	   typename _ExtractKey, typename _Equal,
622 	   typename _H1, typename _H2, typename _Hash,
623 	   typename _RehashPolicy, typename _Traits>
624     template<typename _InputIterator>
625       void
626       _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
627 		    _RehashPolicy, _Traits>::
628       insert(_InputIterator __first, _InputIterator __last)
629       {
630 	using __rehash_type = typename __hashtable::__rehash_type;
631 	using __rehash_state = typename __hashtable::__rehash_state;
632 	using pair_type = std::pair<bool, std::size_t>;
633 
634 	size_type __n_elt = __detail::__distance_fw(__first, __last);
635 
636 	__hashtable& __h = _M_conjure_hashtable();
637 	__rehash_type& __rehash = __h._M_rehash_policy;
638 	const __rehash_state& __saved_state = __rehash._M_state();
639 	pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
640 							__h._M_element_count,
641 							__n_elt);
642 
643 	if (__do_rehash.first)
644 	  __h._M_rehash(__do_rehash.second, __saved_state);
645 
646 	for (; __first != __last; ++__first)
647 	  __h._M_insert(*__first, __unique_keys());
648       }
649 
650   /**
651    *  Primary class template _Insert.
652    *
653    *  Select insert member functions appropriate to _Hashtable policy choices.
654    */
655   template<typename _Key, typename _Value, typename _Alloc,
656 	   typename _ExtractKey, typename _Equal,
657 	   typename _H1, typename _H2, typename _Hash,
658 	   typename _RehashPolicy, typename _Traits,
659 	   bool _Constant_iterators = _Traits::__constant_iterators::value,
660 	   bool _Unique_keys = _Traits::__unique_keys::value>
661     struct _Insert;
662 
663   /// Specialization.
664   template<typename _Key, typename _Value, typename _Alloc,
665 	   typename _ExtractKey, typename _Equal,
666 	   typename _H1, typename _H2, typename _Hash,
667 	   typename _RehashPolicy, typename _Traits>
668     struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
669 		   _RehashPolicy, _Traits, true, true>
670     : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
671 			   _H1, _H2, _Hash, _RehashPolicy, _Traits>
672     {
673       using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
674 					_Equal, _H1, _H2, _Hash,
675 					_RehashPolicy, _Traits>;
676       using value_type = typename __base_type::value_type;
677       using iterator = typename __base_type::iterator;
678       using const_iterator =  typename __base_type::const_iterator;
679 
680       using __unique_keys = typename __base_type::__unique_keys;
681       using __hashtable = typename __base_type::__hashtable;
682 
683       using __base_type::insert;
684 
685       std::pair<iterator, bool>
686       insert(value_type&& __v)
687       {
688 	__hashtable& __h = this->_M_conjure_hashtable();
689 	return __h._M_insert(std::move(__v), __unique_keys());
690       }
691 
692       iterator
693       insert(const_iterator, value_type&& __v)
694       { return insert(std::move(__v)).first; }
695     };
696 
697   /// Specialization.
698   template<typename _Key, typename _Value, typename _Alloc,
699 	   typename _ExtractKey, typename _Equal,
700 	   typename _H1, typename _H2, typename _Hash,
701 	   typename _RehashPolicy, typename _Traits>
702     struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
703 		   _RehashPolicy, _Traits, true, false>
704     : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
705 			   _H1, _H2, _Hash, _RehashPolicy, _Traits>
706     {
707       using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
708 					_Equal, _H1, _H2, _Hash,
709 					_RehashPolicy, _Traits>;
710       using value_type = typename __base_type::value_type;
711       using iterator = typename __base_type::iterator;
712       using const_iterator =  typename __base_type::const_iterator;
713 
714       using __unique_keys = typename __base_type::__unique_keys;
715       using __hashtable = typename __base_type::__hashtable;
716 
717       using __base_type::insert;
718 
719       iterator
720       insert(value_type&& __v)
721       {
722 	__hashtable& __h = this->_M_conjure_hashtable();
723 	return __h._M_insert(std::move(__v), __unique_keys());
724       }
725 
726       iterator
727       insert(const_iterator, value_type&& __v)
728       { return insert(std::move(__v)); }
729      };
730 
731   /// Specialization.
732   template<typename _Key, typename _Value, typename _Alloc,
733 	   typename _ExtractKey, typename _Equal,
734 	   typename _H1, typename _H2, typename _Hash,
735 	   typename _RehashPolicy, typename _Traits, bool _Unique_keys>
736     struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
737 		   _RehashPolicy, _Traits, false, _Unique_keys>
738     : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
739 			   _H1, _H2, _Hash, _RehashPolicy, _Traits>
740     {
741       using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
742 				       _Equal, _H1, _H2, _Hash,
743 				       _RehashPolicy, _Traits>;
744       using value_type = typename __base_type::value_type;
745       using iterator = typename __base_type::iterator;
746       using const_iterator =  typename __base_type::const_iterator;
747 
748       using __unique_keys = typename __base_type::__unique_keys;
749       using __hashtable = typename __base_type::__hashtable;
750       using __ireturn_type = typename __base_type::__ireturn_type;
751       using __iconv_type = typename __base_type::__iconv_type;
752 
753       using __base_type::insert;
754 
755       template<typename _Pair>
756 	using __is_cons = std::is_constructible<value_type, _Pair&&>;
757 
758       template<typename _Pair>
759 	using _IFcons = std::enable_if<__is_cons<_Pair>::value>;
760 
761       template<typename _Pair>
762 	using _IFconsp = typename _IFcons<_Pair>::type;
763 
764       template<typename _Pair, typename = _IFconsp<_Pair>>
765 	__ireturn_type
766 	insert(_Pair&& __v)
767 	{
768 	  __hashtable& __h = this->_M_conjure_hashtable();
769 	  return __h._M_emplace(__unique_keys(), std::forward<_Pair>(__v));
770 	}
771 
772       template<typename _Pair, typename = _IFconsp<_Pair>>
773 	iterator
774 	insert(const_iterator, _Pair&& __v)
775 	{ return __iconv_type()(insert(std::forward<_Pair>(__v))); }
776    };
777 
778   /**
779    *  Primary class template  _Rehash_base.
780    *
781    *  Give hashtable the max_load_factor functions and reserve iff the
782    *  rehash policy is _Prime_rehash_policy.
783   */
784   template<typename _Key, typename _Value, typename _Alloc,
785 	   typename _ExtractKey, typename _Equal,
786 	   typename _H1, typename _H2, typename _Hash,
787 	   typename _RehashPolicy, typename _Traits>
788     struct _Rehash_base;
789 
790   /// Specialization.
791   template<typename _Key, typename _Value, typename _Alloc,
792 	   typename _ExtractKey, typename _Equal,
793 	   typename _H1, typename _H2, typename _Hash, typename _Traits>
794     struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
795 			_H1, _H2, _Hash, _Prime_rehash_policy, _Traits>
796     {
797       using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
798 				     _Equal, _H1, _H2, _Hash,
799 				     _Prime_rehash_policy, _Traits>;
800 
801       float
802       max_load_factor() const noexcept
803       {
804 	const __hashtable* __this = static_cast<const __hashtable*>(this);
805 	return __this->__rehash_policy().max_load_factor();
806       }
807 
808       void
809       max_load_factor(float __z)
810       {
811 	__hashtable* __this = static_cast<__hashtable*>(this);
812 	__this->__rehash_policy(_Prime_rehash_policy(__z));
813       }
814 
815       void
816       reserve(std::size_t __n)
817       {
818 	__hashtable* __this = static_cast<__hashtable*>(this);
819 	__this->rehash(__builtin_ceil(__n / max_load_factor()));
820       }
821     };
822 
823   /**
824    *  Primary class template _Hashtable_ebo_helper.
825    *
826    *  Helper class using EBO when it is not forbidden, type is not
827    *  final, and when it worth it, type is empty.
828    */
829   template<int _Nm, typename _Tp,
830 	   bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
831     struct _Hashtable_ebo_helper;
832 
833   /// Specialization using EBO.
834   template<int _Nm, typename _Tp>
835     struct _Hashtable_ebo_helper<_Nm, _Tp, true>
836     : private _Tp
837     {
838       _Hashtable_ebo_helper() = default;
839 
840       _Hashtable_ebo_helper(const _Tp& __tp) : _Tp(__tp)
841       { }
842 
843       static const _Tp&
844       _S_cget(const _Hashtable_ebo_helper& __eboh)
845       { return static_cast<const _Tp&>(__eboh); }
846 
847       static _Tp&
848       _S_get(_Hashtable_ebo_helper& __eboh)
849       { return static_cast<_Tp&>(__eboh); }
850     };
851 
852   /// Specialization not using EBO.
853   template<int _Nm, typename _Tp>
854     struct _Hashtable_ebo_helper<_Nm, _Tp, false>
855     {
856       _Hashtable_ebo_helper() = default;
857 
858       _Hashtable_ebo_helper(const _Tp& __tp) : _M_tp(__tp)
859       { }
860 
861       static const _Tp&
862       _S_cget(const _Hashtable_ebo_helper& __eboh)
863       { return __eboh._M_tp; }
864 
865       static _Tp&
866       _S_get(_Hashtable_ebo_helper& __eboh)
867       { return __eboh._M_tp; }
868 
869     private:
870       _Tp _M_tp;
871     };
872 
873   /**
874    *  Primary class template _Local_iterator_base.
875    *
876    *  Base class for local iterators, used to iterate within a bucket
877    *  but not between buckets.
878    */
879   template<typename _Key, typename _Value, typename _ExtractKey,
880 	   typename _H1, typename _H2, typename _Hash,
881 	   bool __cache_hash_code>
882     struct _Local_iterator_base;
883 
884   /**
885    *  Primary class template _Hash_code_base.
886    *
887    *  Encapsulates two policy issues that aren't quite orthogonal.
888    *   (1) the difference between using a ranged hash function and using
889    *       the combination of a hash function and a range-hashing function.
890    *       In the former case we don't have such things as hash codes, so
891    *       we have a dummy type as placeholder.
892    *   (2) Whether or not we cache hash codes.  Caching hash codes is
893    *       meaningless if we have a ranged hash function.
894    *
895    *  We also put the key extraction objects here, for convenience.
896    *  Each specialization derives from one or more of the template
897    *  parameters to benefit from Ebo. This is important as this type
898    *  is inherited in some cases by the _Local_iterator_base type used
899    *  to implement local_iterator and const_local_iterator. As with
900    *  any iterator type we prefer to make it as small as possible.
901    *
902    *  Primary template is unused except as a hook for specializations.
903    */
904   template<typename _Key, typename _Value, typename _ExtractKey,
905 	   typename _H1, typename _H2, typename _Hash,
906 	   bool __cache_hash_code>
907     struct _Hash_code_base;
908 
909   /// Specialization: ranged hash function, no caching hash codes.  H1
910   /// and H2 are provided but ignored.  We define a dummy hash code type.
911   template<typename _Key, typename _Value, typename _ExtractKey,
912 	   typename _H1, typename _H2, typename _Hash>
913     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false>
914     : private _Hashtable_ebo_helper<0, _ExtractKey>,
915       private _Hashtable_ebo_helper<1, _Hash>
916     {
917     private:
918       using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
919       using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>;
920 
921     protected:
922       typedef void* 					__hash_code;
923       typedef _Hash_node<_Value, false>			__node_type;
924 
925       // We need the default constructor for the local iterators.
926       _Hash_code_base() = default;
927 
928       _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&,
929 		      const _Hash& __h)
930       : __ebo_extract_key(__ex), __ebo_hash(__h) { }
931 
932       __hash_code
933       _M_hash_code(const _Key& __key) const
934       { return 0; }
935 
936       std::size_t
937       _M_bucket_index(const _Key& __k, __hash_code, std::size_t __n) const
938       { return _M_ranged_hash()(__k, __n); }
939 
940       std::size_t
941       _M_bucket_index(const __node_type* __p, std::size_t __n) const
942       { return _M_ranged_hash()(_M_extract()(__p->_M_v), __n); }
943 
944       void
945       _M_store_code(__node_type*, __hash_code) const
946       { }
947 
948       void
949       _M_copy_code(__node_type*, const __node_type*) const
950       { }
951 
952       void
953       _M_swap(_Hash_code_base& __x)
954       {
955 	std::swap(_M_extract(), __x._M_extract());
956 	std::swap(_M_ranged_hash(), __x._M_ranged_hash());
957       }
958 
959       const _ExtractKey&
960       _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
961 
962       _ExtractKey&
963       _M_extract() { return __ebo_extract_key::_S_get(*this); }
964 
965       const _Hash&
966       _M_ranged_hash() const { return __ebo_hash::_S_cget(*this); }
967 
968       _Hash&
969       _M_ranged_hash() { return __ebo_hash::_S_get(*this); }
970     };
971 
972   // No specialization for ranged hash function while caching hash codes.
973   // That combination is meaningless, and trying to do it is an error.
974 
975   /// Specialization: ranged hash function, cache hash codes.  This
976   /// combination is meaningless, so we provide only a declaration
977   /// and no definition.
978   template<typename _Key, typename _Value, typename _ExtractKey,
979 	   typename _H1, typename _H2, typename _Hash>
980     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>;
981 
982   /// Specialization: hash function and range-hashing function, no
983   /// caching of hash codes.
984   /// Provides typedef and accessor required by C++ 11.
985   template<typename _Key, typename _Value, typename _ExtractKey,
986 	   typename _H1, typename _H2>
987     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
988 			   _Default_ranged_hash, false>
989     : private _Hashtable_ebo_helper<0, _ExtractKey>,
990       private _Hashtable_ebo_helper<1, _H1>,
991       private _Hashtable_ebo_helper<2, _H2>
992     {
993     private:
994       using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
995       using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
996       using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;
997 
998     public:
999       typedef _H1 					hasher;
1000 
1001       hasher
1002       hash_function() const
1003       { return _M_h1(); }
1004 
1005     protected:
1006       typedef std::size_t 				__hash_code;
1007       typedef _Hash_node<_Value, false>			__node_type;
1008 
1009       // We need the default constructor for the local iterators.
1010       _Hash_code_base() = default;
1011 
1012       _Hash_code_base(const _ExtractKey& __ex,
1013 		      const _H1& __h1, const _H2& __h2,
1014 		      const _Default_ranged_hash&)
1015       : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1016 
1017       __hash_code
1018       _M_hash_code(const _Key& __k) const
1019       { return _M_h1()(__k); }
1020 
1021       std::size_t
1022       _M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const
1023       { return _M_h2()(__c, __n); }
1024 
1025       std::size_t
1026       _M_bucket_index(const __node_type* __p,
1027 		      std::size_t __n) const
1028       { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v)), __n); }
1029 
1030       void
1031       _M_store_code(__node_type*, __hash_code) const
1032       { }
1033 
1034       void
1035       _M_copy_code(__node_type*, const __node_type*) const
1036       { }
1037 
1038       void
1039       _M_swap(_Hash_code_base& __x)
1040       {
1041 	std::swap(_M_extract(), __x._M_extract());
1042 	std::swap(_M_h1(), __x._M_h1());
1043 	std::swap(_M_h2(), __x._M_h2());
1044       }
1045 
1046       const _ExtractKey&
1047       _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1048 
1049       _ExtractKey&
1050       _M_extract() { return __ebo_extract_key::_S_get(*this); }
1051 
1052       const _H1&
1053       _M_h1() const { return __ebo_h1::_S_cget(*this); }
1054 
1055       _H1&
1056       _M_h1() { return __ebo_h1::_S_get(*this); }
1057 
1058       const _H2&
1059       _M_h2() const { return __ebo_h2::_S_cget(*this); }
1060 
1061       _H2&
1062       _M_h2() { return __ebo_h2::_S_get(*this); }
1063     };
1064 
1065   /// Specialization: hash function and range-hashing function,
1066   /// caching hash codes.  H is provided but ignored.  Provides
1067   /// typedef and accessor required by C++ 11.
1068   template<typename _Key, typename _Value, typename _ExtractKey,
1069 	   typename _H1, typename _H2>
1070     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1071 			   _Default_ranged_hash, true>
1072     : private _Hashtable_ebo_helper<0, _ExtractKey>,
1073       private _Hashtable_ebo_helper<1, _H1>,
1074       private _Hashtable_ebo_helper<2, _H2>
1075     {
1076     private:
1077       // Gives access to _M_h2() to the local iterator implementation.
1078       friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1079 					 _Default_ranged_hash, true>;
1080 
1081       using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1082       using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
1083       using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;
1084 
1085     public:
1086       typedef _H1 					hasher;
1087 
1088       hasher
1089       hash_function() const
1090       { return _M_h1(); }
1091 
1092     protected:
1093       typedef std::size_t 				__hash_code;
1094       typedef _Hash_node<_Value, true>			__node_type;
1095 
1096       _Hash_code_base(const _ExtractKey& __ex,
1097 		      const _H1& __h1, const _H2& __h2,
1098 		      const _Default_ranged_hash&)
1099       : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1100 
1101       __hash_code
1102       _M_hash_code(const _Key& __k) const
1103       { return _M_h1()(__k); }
1104 
1105       std::size_t
1106       _M_bucket_index(const _Key&, __hash_code __c,
1107 		      std::size_t __n) const
1108       { return _M_h2()(__c, __n); }
1109 
1110       std::size_t
1111       _M_bucket_index(const __node_type* __p, std::size_t __n) const
1112       { return _M_h2()(__p->_M_hash_code, __n); }
1113 
1114       void
1115       _M_store_code(__node_type* __n, __hash_code __c) const
1116       { __n->_M_hash_code = __c; }
1117 
1118       void
1119       _M_copy_code(__node_type* __to, const __node_type* __from) const
1120       { __to->_M_hash_code = __from->_M_hash_code; }
1121 
1122       void
1123       _M_swap(_Hash_code_base& __x)
1124       {
1125 	std::swap(_M_extract(), __x._M_extract());
1126 	std::swap(_M_h1(), __x._M_h1());
1127 	std::swap(_M_h2(), __x._M_h2());
1128       }
1129 
1130       const _ExtractKey&
1131       _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1132 
1133       _ExtractKey&
1134       _M_extract() { return __ebo_extract_key::_S_get(*this); }
1135 
1136       const _H1&
1137       _M_h1() const { return __ebo_h1::_S_cget(*this); }
1138 
1139       _H1&
1140       _M_h1() { return __ebo_h1::_S_get(*this); }
1141 
1142       const _H2&
1143       _M_h2() const { return __ebo_h2::_S_cget(*this); }
1144 
1145       _H2&
1146       _M_h2() { return __ebo_h2::_S_get(*this); }
1147     };
1148 
1149   /**
1150    *  Primary class template _Equal_helper.
1151    *
1152    */
1153   template <typename _Key, typename _Value, typename _ExtractKey,
1154 	    typename _Equal, typename _HashCodeType,
1155 	    bool __cache_hash_code>
1156   struct _Equal_helper;
1157 
1158   /// Specialization.
1159   template<typename _Key, typename _Value, typename _ExtractKey,
1160 	   typename _Equal, typename _HashCodeType>
1161   struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true>
1162   {
1163     static bool
1164     _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1165 	      const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n)
1166     { return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v)); }
1167   };
1168 
1169   /// Specialization.
1170   template<typename _Key, typename _Value, typename _ExtractKey,
1171 	   typename _Equal, typename _HashCodeType>
1172   struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false>
1173   {
1174     static bool
1175     _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1176 	      const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n)
1177     { return __eq(__k, __extract(__n->_M_v)); }
1178   };
1179 
1180 
1181   /// Specialization.
1182   template<typename _Key, typename _Value, typename _ExtractKey,
1183 	   typename _H1, typename _H2, typename _Hash>
1184     struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1185 				_H1, _H2, _Hash, true>
1186     : private _Hashtable_ebo_helper<0, _H2>
1187     {
1188     protected:
1189       using __base_type = _Hashtable_ebo_helper<0, _H2>;
1190       using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1191 					       _H1, _H2, _Hash, true>;
1192 
1193     public:
1194       _Local_iterator_base() = default;
1195       _Local_iterator_base(const __hash_code_base& __base,
1196 			   _Hash_node<_Value, true>* __p,
1197 			   std::size_t __bkt, std::size_t __bkt_count)
1198       : __base_type(__base._M_h2()),
1199 	_M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
1200 
1201       void
1202       _M_incr()
1203       {
1204 	_M_cur = _M_cur->_M_next();
1205 	if (_M_cur)
1206 	  {
1207 	    std::size_t __bkt
1208 	      = __base_type::_S_get(*this)(_M_cur->_M_hash_code,
1209 					   _M_bucket_count);
1210 	    if (__bkt != _M_bucket)
1211 	      _M_cur = nullptr;
1212 	  }
1213       }
1214 
1215       _Hash_node<_Value, true>*  _M_cur;
1216       std::size_t _M_bucket;
1217       std::size_t _M_bucket_count;
1218     };
1219 
1220   /// Specialization.
1221   template<typename _Key, typename _Value, typename _ExtractKey,
1222 	   typename _H1, typename _H2, typename _Hash>
1223     struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1224 				_H1, _H2, _Hash, false>
1225     : private _Hash_code_base<_Key, _Value, _ExtractKey,
1226 			      _H1, _H2, _Hash, false>
1227     {
1228     protected:
1229       using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1230 					       _H1, _H2, _Hash, false>;
1231 
1232     public:
1233       _Local_iterator_base() = default;
1234       _Local_iterator_base(const __hash_code_base& __base,
1235 			   _Hash_node<_Value, false>* __p,
1236 			   std::size_t __bkt, std::size_t __bkt_count)
1237 	: __hash_code_base(__base),
1238 	  _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
1239 
1240       void
1241       _M_incr()
1242       {
1243 	_M_cur = _M_cur->_M_next();
1244 	if (_M_cur)
1245 	  {
1246 	    std::size_t __bkt = this->_M_bucket_index(_M_cur, _M_bucket_count);
1247 	    if (__bkt != _M_bucket)
1248 	      _M_cur = nullptr;
1249 	  }
1250       }
1251 
1252       _Hash_node<_Value, false>*  _M_cur;
1253       std::size_t _M_bucket;
1254       std::size_t _M_bucket_count;
1255     };
1256 
1257   template<typename _Key, typename _Value, typename _ExtractKey,
1258 	   typename _H1, typename _H2, typename _Hash, bool __cache>
1259     inline bool
1260     operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1261 					  _H1, _H2, _Hash, __cache>& __x,
1262 	       const _Local_iterator_base<_Key, _Value, _ExtractKey,
1263 					  _H1, _H2, _Hash, __cache>& __y)
1264     { return __x._M_cur == __y._M_cur; }
1265 
1266   template<typename _Key, typename _Value, typename _ExtractKey,
1267 	   typename _H1, typename _H2, typename _Hash, bool __cache>
1268     inline bool
1269     operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1270 					  _H1, _H2, _Hash, __cache>& __x,
1271 	       const _Local_iterator_base<_Key, _Value, _ExtractKey,
1272 					  _H1, _H2, _Hash, __cache>& __y)
1273     { return __x._M_cur != __y._M_cur; }
1274 
1275   /// local iterators
1276   template<typename _Key, typename _Value, typename _ExtractKey,
1277 	   typename _H1, typename _H2, typename _Hash,
1278 	   bool __constant_iterators, bool __cache>
1279     struct _Local_iterator
1280     : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1281 				  _H1, _H2, _Hash, __cache>
1282     {
1283     private:
1284       using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1285 					       _H1, _H2, _Hash, __cache>;
1286       using __hash_code_base = typename __base_type::__hash_code_base;
1287     public:
1288       typedef _Value                                   value_type;
1289       typedef typename std::conditional<__constant_iterators,
1290 					const _Value*, _Value*>::type
1291 						       pointer;
1292       typedef typename std::conditional<__constant_iterators,
1293 					const _Value&, _Value&>::type
1294 						       reference;
1295       typedef std::ptrdiff_t                           difference_type;
1296       typedef std::forward_iterator_tag                iterator_category;
1297 
1298       _Local_iterator() = default;
1299 
1300       _Local_iterator(const __hash_code_base& __base,
1301 		      _Hash_node<_Value, __cache>* __p,
1302 		      std::size_t __bkt, std::size_t __bkt_count)
1303 	: __base_type(__base, __p, __bkt, __bkt_count)
1304       { }
1305 
1306       reference
1307       operator*() const
1308       { return this->_M_cur->_M_v; }
1309 
1310       pointer
1311       operator->() const
1312       { return std::__addressof(this->_M_cur->_M_v); }
1313 
1314       _Local_iterator&
1315       operator++()
1316       {
1317 	this->_M_incr();
1318 	return *this;
1319       }
1320 
1321       _Local_iterator
1322       operator++(int)
1323       {
1324 	_Local_iterator __tmp(*this);
1325 	this->_M_incr();
1326 	return __tmp;
1327       }
1328     };
1329 
1330   /// local const_iterators
1331   template<typename _Key, typename _Value, typename _ExtractKey,
1332 	   typename _H1, typename _H2, typename _Hash,
1333 	   bool __constant_iterators, bool __cache>
1334     struct _Local_const_iterator
1335     : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1336 				  _H1, _H2, _Hash, __cache>
1337     {
1338     private:
1339       using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1340 					       _H1, _H2, _Hash, __cache>;
1341       using __hash_code_base = typename __base_type::__hash_code_base;
1342 
1343     public:
1344       typedef _Value                                   value_type;
1345       typedef const _Value*                            pointer;
1346       typedef const _Value&                            reference;
1347       typedef std::ptrdiff_t                           difference_type;
1348       typedef std::forward_iterator_tag                iterator_category;
1349 
1350       _Local_const_iterator() = default;
1351 
1352       _Local_const_iterator(const __hash_code_base& __base,
1353 			    _Hash_node<_Value, __cache>* __p,
1354 			    std::size_t __bkt, std::size_t __bkt_count)
1355 	: __base_type(__base, __p, __bkt, __bkt_count)
1356       { }
1357 
1358       _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1359 						  _H1, _H2, _Hash,
1360 						  __constant_iterators,
1361 						  __cache>& __x)
1362 	: __base_type(__x)
1363       { }
1364 
1365       reference
1366       operator*() const
1367       { return this->_M_cur->_M_v; }
1368 
1369       pointer
1370       operator->() const
1371       { return std::__addressof(this->_M_cur->_M_v); }
1372 
1373       _Local_const_iterator&
1374       operator++()
1375       {
1376 	this->_M_incr();
1377 	return *this;
1378       }
1379 
1380       _Local_const_iterator
1381       operator++(int)
1382       {
1383 	_Local_const_iterator __tmp(*this);
1384 	this->_M_incr();
1385 	return __tmp;
1386       }
1387     };
1388 
1389   /**
1390    *  Primary class template _Hashtable_base.
1391    *
1392    *  Helper class adding management of _Equal functor to
1393    *  _Hash_code_base type.
1394    *
1395    *  Base class templates are:
1396    *    - __detail::_Hash_code_base
1397    *    - __detail::_Hashtable_ebo_helper
1398    */
1399   template<typename _Key, typename _Value,
1400 	   typename _ExtractKey, typename _Equal,
1401 	   typename _H1, typename _H2, typename _Hash, typename _Traits>
1402   struct _Hashtable_base
1403   : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1404 			   _Traits::__hash_cached::value>,
1405     private _Hashtable_ebo_helper<0, _Equal>
1406   {
1407   public:
1408     typedef _Key                                    key_type;
1409     typedef _Value                                  value_type;
1410     typedef _Equal                                  key_equal;
1411     typedef std::size_t                             size_type;
1412     typedef std::ptrdiff_t                          difference_type;
1413 
1414     using __traits_type = _Traits;
1415     using __hash_cached = typename __traits_type::__hash_cached;
1416     using __constant_iterators = typename __traits_type::__constant_iterators;
1417     using __unique_keys = typename __traits_type::__unique_keys;
1418 
1419     using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1420 					     _H1, _H2, _Hash,
1421 					     __hash_cached::value>;
1422 
1423     using __hash_code = typename __hash_code_base::__hash_code;
1424     using __node_type = typename __hash_code_base::__node_type;
1425 
1426     using iterator = __detail::_Node_iterator<value_type,
1427 					      __constant_iterators::value,
1428 					      __hash_cached::value>;
1429 
1430     using const_iterator = __detail::_Node_const_iterator<value_type,
1431 						   __constant_iterators::value,
1432 						   __hash_cached::value>;
1433 
1434     using local_iterator = __detail::_Local_iterator<key_type, value_type,
1435 						  _ExtractKey, _H1, _H2, _Hash,
1436 						  __constant_iterators::value,
1437 						     __hash_cached::value>;
1438 
1439     using const_local_iterator = __detail::_Local_const_iterator<key_type,
1440 								 value_type,
1441 					_ExtractKey, _H1, _H2, _Hash,
1442 					__constant_iterators::value,
1443 					__hash_cached::value>;
1444 
1445     using __ireturn_type = typename std::conditional<__unique_keys::value,
1446 						     std::pair<iterator, bool>,
1447 						     iterator>::type;
1448 
1449     using __iconv_type = typename  std::conditional<__unique_keys::value,
1450 						    _Select1st, _Identity
1451 						    >::type;
1452   private:
1453     using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
1454     using _EqualHelper =  _Equal_helper<_Key, _Value, _ExtractKey, _Equal,
1455 					__hash_code, __hash_cached::value>;
1456 
1457   protected:
1458     using __node_base = __detail::_Hash_node_base;
1459     using __bucket_type = __node_base*;
1460 
1461     _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2,
1462 		    const _Hash& __hash, const _Equal& __eq)
1463     : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq)
1464     { }
1465 
1466     bool
1467     _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const
1468     {
1469       return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(),
1470 				     __k, __c, __n);
1471     }
1472 
1473     void
1474     _M_swap(_Hashtable_base& __x)
1475     {
1476       __hash_code_base::_M_swap(__x);
1477       std::swap(_M_eq(), __x._M_eq());
1478     }
1479 
1480     const _Equal&
1481     _M_eq() const { return _EqualEBO::_S_cget(*this); }
1482 
1483     _Equal&
1484     _M_eq() { return _EqualEBO::_S_get(*this); }
1485   };
1486 
1487   /**
1488    *  struct _Equality_base.
1489    *
1490    *  Common types and functions for class _Equality.
1491    */
1492   struct _Equality_base
1493   {
1494   protected:
1495     template<typename _Uiterator>
1496       static bool
1497       _S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
1498   };
1499 
1500   // See std::is_permutation in N3068.
1501   template<typename _Uiterator>
1502     bool
1503     _Equality_base::
1504     _S_is_permutation(_Uiterator __first1, _Uiterator __last1,
1505 		      _Uiterator __first2)
1506     {
1507       for (; __first1 != __last1; ++__first1, ++__first2)
1508 	if (!(*__first1 == *__first2))
1509 	  break;
1510 
1511       if (__first1 == __last1)
1512 	return true;
1513 
1514       _Uiterator __last2 = __first2;
1515       std::advance(__last2, std::distance(__first1, __last1));
1516 
1517       for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
1518 	{
1519 	  _Uiterator __tmp =  __first1;
1520 	  while (__tmp != __it1 && !bool(*__tmp == *__it1))
1521 	    ++__tmp;
1522 
1523 	  // We've seen this one before.
1524 	  if (__tmp != __it1)
1525 	    continue;
1526 
1527 	  std::ptrdiff_t __n2 = 0;
1528 	  for (__tmp = __first2; __tmp != __last2; ++__tmp)
1529 	    if (*__tmp == *__it1)
1530 	      ++__n2;
1531 
1532 	  if (!__n2)
1533 	    return false;
1534 
1535 	  std::ptrdiff_t __n1 = 0;
1536 	  for (__tmp = __it1; __tmp != __last1; ++__tmp)
1537 	    if (*__tmp == *__it1)
1538 	      ++__n1;
1539 
1540 	  if (__n1 != __n2)
1541 	    return false;
1542 	}
1543       return true;
1544     }
1545 
1546   /**
1547    *  Primary class template  _Equality.
1548    *
1549    *  This is for implementing equality comparison for unordered
1550    *  containers, per N3068, by John Lakos and Pablo Halpern.
1551    *  Algorithmically, we follow closely the reference implementations
1552    *  therein.
1553    */
1554   template<typename _Key, typename _Value, typename _Alloc,
1555 	   typename _ExtractKey, typename _Equal,
1556 	   typename _H1, typename _H2, typename _Hash,
1557 	   typename _RehashPolicy, typename _Traits,
1558 	   bool _Unique_keys = _Traits::__unique_keys::value>
1559     struct _Equality;
1560 
1561   /// Specialization.
1562   template<typename _Key, typename _Value, typename _Alloc,
1563 	   typename _ExtractKey, typename _Equal,
1564 	   typename _H1, typename _H2, typename _Hash,
1565 	   typename _RehashPolicy, typename _Traits>
1566     struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1567 		     _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
1568     {
1569       using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1570 				     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1571 
1572       bool
1573       _M_equal(const __hashtable&) const;
1574     };
1575 
1576   template<typename _Key, typename _Value, typename _Alloc,
1577 	   typename _ExtractKey, typename _Equal,
1578 	   typename _H1, typename _H2, typename _Hash,
1579 	   typename _RehashPolicy, typename _Traits>
1580     bool
1581     _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1582 	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
1583     _M_equal(const __hashtable& __other) const
1584     {
1585       const __hashtable* __this = static_cast<const __hashtable*>(this);
1586 
1587       if (__this->size() != __other.size())
1588 	return false;
1589 
1590       for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1591 	{
1592 	  const auto __ity = __other.find(_ExtractKey()(*__itx));
1593 	  if (__ity == __other.end() || !bool(*__ity == *__itx))
1594 	    return false;
1595 	}
1596       return true;
1597     }
1598 
1599   /// Specialization.
1600   template<typename _Key, typename _Value, typename _Alloc,
1601 	   typename _ExtractKey, typename _Equal,
1602 	   typename _H1, typename _H2, typename _Hash,
1603 	   typename _RehashPolicy, typename _Traits>
1604     struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1605 		     _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
1606     : public _Equality_base
1607     {
1608       using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1609 				     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1610 
1611       bool
1612       _M_equal(const __hashtable&) const;
1613     };
1614 
1615   template<typename _Key, typename _Value, typename _Alloc,
1616 	   typename _ExtractKey, typename _Equal,
1617 	   typename _H1, typename _H2, typename _Hash,
1618 	   typename _RehashPolicy, typename _Traits>
1619     bool
1620     _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1621 	      _H1, _H2, _Hash, _RehashPolicy, _Traits, false>::
1622     _M_equal(const __hashtable& __other) const
1623     {
1624       const __hashtable* __this = static_cast<const __hashtable*>(this);
1625 
1626       if (__this->size() != __other.size())
1627 	return false;
1628 
1629       for (auto __itx = __this->begin(); __itx != __this->end();)
1630 	{
1631 	  const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
1632 	  const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
1633 
1634 	  if (std::distance(__xrange.first, __xrange.second)
1635 	      != std::distance(__yrange.first, __yrange.second))
1636 	    return false;
1637 
1638 	  if (!_S_is_permutation(__xrange.first, __xrange.second,
1639 				 __yrange.first))
1640 	    return false;
1641 
1642 	  __itx = __xrange.second;
1643 	}
1644       return true;
1645     }
1646 
1647   /**
1648    * This type is to combine a _Hash_node_base instance with an allocator
1649    * instance through inheritance to benefit from EBO when possible.
1650    */
1651   template<typename _NodeAlloc>
1652     struct _Before_begin : public _NodeAlloc
1653     {
1654       _Hash_node_base _M_node;
1655 
1656       _Before_begin(const _Before_begin&) = default;
1657       _Before_begin(_Before_begin&&) = default;
1658 
1659       template<typename _Alloc>
1660 	_Before_begin(_Alloc&& __a)
1661 	  : _NodeAlloc(std::forward<_Alloc>(__a))
1662 	{ }
1663     };
1664 
1665  //@} hashtable-detail
1666 _GLIBCXX_END_NAMESPACE_VERSION
1667 } // namespace __detail
1668 } // namespace std
1669 
1670 #endif // _HASHTABLE_POLICY_H
1671