xref: /netbsd-src/external/gpl3/gcc.old/dist/libstdc++-v3/include/bits/hashtable_policy.h (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 // Internal policy header for unordered_set and unordered_map -*- C++ -*-
2 
3 // Copyright (C) 2010-2019 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file bits/hashtable_policy.h
26  *  This is an internal header file, included by other library headers.
27  *  Do not attempt to use it directly.
28  *  @headername{unordered_map,unordered_set}
29  */
30 
31 #ifndef _HASHTABLE_POLICY_H
32 #define _HASHTABLE_POLICY_H 1
33 
34 #include <tuple>		// for std::tuple, std::forward_as_tuple
35 #include <limits>		// for std::numeric_limits
36 #include <bits/stl_algobase.h>	// for std::min.
37 
38 namespace std _GLIBCXX_VISIBILITY(default)
39 {
40 _GLIBCXX_BEGIN_NAMESPACE_VERSION
41 
42   template<typename _Key, typename _Value, typename _Alloc,
43 	   typename _ExtractKey, typename _Equal,
44 	   typename _H1, typename _H2, typename _Hash,
45 	   typename _RehashPolicy, typename _Traits>
46     class _Hashtable;
47 
48 namespace __detail
49 {
50   /**
51    *  @defgroup hashtable-detail Base and Implementation Classes
52    *  @ingroup unordered_associative_containers
53    *  @{
54    */
55   template<typename _Key, typename _Value,
56 	   typename _ExtractKey, typename _Equal,
57 	   typename _H1, typename _H2, typename _Hash, typename _Traits>
58     struct _Hashtable_base;
59 
60   // Helper function: return distance(first, last) for forward
61   // iterators, or 0/1 for input iterators.
62   template<class _Iterator>
63     inline typename std::iterator_traits<_Iterator>::difference_type
64     __distance_fw(_Iterator __first, _Iterator __last,
65 		  std::input_iterator_tag)
66     { return __first != __last ? 1 : 0; }
67 
68   template<class _Iterator>
69     inline typename std::iterator_traits<_Iterator>::difference_type
70     __distance_fw(_Iterator __first, _Iterator __last,
71 		  std::forward_iterator_tag)
72     { return std::distance(__first, __last); }
73 
74   template<class _Iterator>
75     inline typename std::iterator_traits<_Iterator>::difference_type
76     __distance_fw(_Iterator __first, _Iterator __last)
77     { return __distance_fw(__first, __last,
78 			   std::__iterator_category(__first)); }
79 
80   struct _Identity
81   {
82     template<typename _Tp>
83       _Tp&&
84       operator()(_Tp&& __x) const
85       { return std::forward<_Tp>(__x); }
86   };
87 
88   struct _Select1st
89   {
90     template<typename _Tp>
91       auto
92       operator()(_Tp&& __x) const
93       -> decltype(std::get<0>(std::forward<_Tp>(__x)))
94       { return std::get<0>(std::forward<_Tp>(__x)); }
95   };
96 
97   template<typename _NodeAlloc>
98     struct _Hashtable_alloc;
99 
100   // Functor recycling a pool of nodes and using allocation once the pool is
101   // empty.
102   template<typename _NodeAlloc>
103     struct _ReuseOrAllocNode
104     {
105     private:
106       using __node_alloc_type = _NodeAlloc;
107       using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>;
108       using __node_alloc_traits =
109 	typename __hashtable_alloc::__node_alloc_traits;
110       using __node_type = typename __hashtable_alloc::__node_type;
111 
112     public:
113       _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h)
114 	: _M_nodes(__nodes), _M_h(__h) { }
115       _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete;
116 
117       ~_ReuseOrAllocNode()
118       { _M_h._M_deallocate_nodes(_M_nodes); }
119 
120       template<typename _Arg>
121 	__node_type*
122 	operator()(_Arg&& __arg) const
123 	{
124 	  if (_M_nodes)
125 	    {
126 	      __node_type* __node = _M_nodes;
127 	      _M_nodes = _M_nodes->_M_next();
128 	      __node->_M_nxt = nullptr;
129 	      auto& __a = _M_h._M_node_allocator();
130 	      __node_alloc_traits::destroy(__a, __node->_M_valptr());
131 	      __try
132 		{
133 		  __node_alloc_traits::construct(__a, __node->_M_valptr(),
134 						 std::forward<_Arg>(__arg));
135 		}
136 	      __catch(...)
137 		{
138 		  _M_h._M_deallocate_node_ptr(__node);
139 		  __throw_exception_again;
140 		}
141 	      return __node;
142 	    }
143 	  return _M_h._M_allocate_node(std::forward<_Arg>(__arg));
144 	}
145 
146     private:
147       mutable __node_type* _M_nodes;
148       __hashtable_alloc& _M_h;
149     };
150 
151   // Functor similar to the previous one but without any pool of nodes to
152   // recycle.
153   template<typename _NodeAlloc>
154     struct _AllocNode
155     {
156     private:
157       using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>;
158       using __node_type = typename __hashtable_alloc::__node_type;
159 
160     public:
161       _AllocNode(__hashtable_alloc& __h)
162 	: _M_h(__h) { }
163 
164       template<typename _Arg>
165 	__node_type*
166 	operator()(_Arg&& __arg) const
167 	{ return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); }
168 
169     private:
170       __hashtable_alloc& _M_h;
171     };
172 
173   // Auxiliary types used for all instantiations of _Hashtable nodes
174   // and iterators.
175 
176   /**
177    *  struct _Hashtable_traits
178    *
179    *  Important traits for hash tables.
180    *
181    *  @tparam _Cache_hash_code  Boolean value. True if the value of
182    *  the hash function is stored along with the value. This is a
183    *  time-space tradeoff.  Storing it may improve lookup speed by
184    *  reducing the number of times we need to call the _Equal
185    *  function.
186    *
187    *  @tparam _Constant_iterators  Boolean value. True if iterator and
188    *  const_iterator are both constant iterator types. This is true
189    *  for unordered_set and unordered_multiset, false for
190    *  unordered_map and unordered_multimap.
191    *
192    *  @tparam _Unique_keys  Boolean value. True if the return value
193    *  of _Hashtable::count(k) is always at most one, false if it may
194    *  be an arbitrary number. This is true for unordered_set and
195    *  unordered_map, false for unordered_multiset and
196    *  unordered_multimap.
197    */
198   template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys>
199     struct _Hashtable_traits
200     {
201       using __hash_cached = __bool_constant<_Cache_hash_code>;
202       using __constant_iterators = __bool_constant<_Constant_iterators>;
203       using __unique_keys = __bool_constant<_Unique_keys>;
204     };
205 
206   /**
207    *  struct _Hash_node_base
208    *
209    *  Nodes, used to wrap elements stored in the hash table.  A policy
210    *  template parameter of class template _Hashtable controls whether
211    *  nodes also store a hash code. In some cases (e.g. strings) this
212    *  may be a performance win.
213    */
214   struct _Hash_node_base
215   {
216     _Hash_node_base* _M_nxt;
217 
218     _Hash_node_base() noexcept : _M_nxt() { }
219 
220     _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { }
221   };
222 
223   /**
224    *  struct _Hash_node_value_base
225    *
226    *  Node type with the value to store.
227    */
228   template<typename _Value>
229     struct _Hash_node_value_base : _Hash_node_base
230     {
231       typedef _Value value_type;
232 
233       __gnu_cxx::__aligned_buffer<_Value> _M_storage;
234 
235       _Value*
236       _M_valptr() noexcept
237       { return _M_storage._M_ptr(); }
238 
239       const _Value*
240       _M_valptr() const noexcept
241       { return _M_storage._M_ptr(); }
242 
243       _Value&
244       _M_v() noexcept
245       { return *_M_valptr(); }
246 
247       const _Value&
248       _M_v() const noexcept
249       { return *_M_valptr(); }
250     };
251 
252   /**
253    *  Primary template struct _Hash_node.
254    */
255   template<typename _Value, bool _Cache_hash_code>
256     struct _Hash_node;
257 
258   /**
259    *  Specialization for nodes with caches, struct _Hash_node.
260    *
261    *  Base class is __detail::_Hash_node_value_base.
262    */
263   template<typename _Value>
264     struct _Hash_node<_Value, true> : _Hash_node_value_base<_Value>
265     {
266       std::size_t  _M_hash_code;
267 
268       _Hash_node*
269       _M_next() const noexcept
270       { return static_cast<_Hash_node*>(this->_M_nxt); }
271     };
272 
273   /**
274    *  Specialization for nodes without caches, struct _Hash_node.
275    *
276    *  Base class is __detail::_Hash_node_value_base.
277    */
278   template<typename _Value>
279     struct _Hash_node<_Value, false> : _Hash_node_value_base<_Value>
280     {
281       _Hash_node*
282       _M_next() const noexcept
283       { return static_cast<_Hash_node*>(this->_M_nxt); }
284     };
285 
286   /// Base class for node iterators.
287   template<typename _Value, bool _Cache_hash_code>
288     struct _Node_iterator_base
289     {
290       using __node_type = _Hash_node<_Value, _Cache_hash_code>;
291 
292       __node_type*  _M_cur;
293 
294       _Node_iterator_base(__node_type* __p) noexcept
295       : _M_cur(__p) { }
296 
297       void
298       _M_incr() noexcept
299       { _M_cur = _M_cur->_M_next(); }
300     };
301 
302   template<typename _Value, bool _Cache_hash_code>
303     inline bool
304     operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
305 	       const _Node_iterator_base<_Value, _Cache_hash_code >& __y)
306     noexcept
307     { return __x._M_cur == __y._M_cur; }
308 
309   template<typename _Value, bool _Cache_hash_code>
310     inline bool
311     operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x,
312 	       const _Node_iterator_base<_Value, _Cache_hash_code>& __y)
313     noexcept
314     { return __x._M_cur != __y._M_cur; }
315 
316   /// Node iterators, used to iterate through all the hashtable.
317   template<typename _Value, bool __constant_iterators, bool __cache>
318     struct _Node_iterator
319     : public _Node_iterator_base<_Value, __cache>
320     {
321     private:
322       using __base_type = _Node_iterator_base<_Value, __cache>;
323       using __node_type = typename __base_type::__node_type;
324 
325     public:
326       typedef _Value					value_type;
327       typedef std::ptrdiff_t				difference_type;
328       typedef std::forward_iterator_tag			iterator_category;
329 
330       using pointer = typename std::conditional<__constant_iterators,
331 						const _Value*, _Value*>::type;
332 
333       using reference = typename std::conditional<__constant_iterators,
334 						  const _Value&, _Value&>::type;
335 
336       _Node_iterator() noexcept
337       : __base_type(0) { }
338 
339       explicit
340       _Node_iterator(__node_type* __p) noexcept
341       : __base_type(__p) { }
342 
343       reference
344       operator*() const noexcept
345       { return this->_M_cur->_M_v(); }
346 
347       pointer
348       operator->() const noexcept
349       { return this->_M_cur->_M_valptr(); }
350 
351       _Node_iterator&
352       operator++() noexcept
353       {
354 	this->_M_incr();
355 	return *this;
356       }
357 
358       _Node_iterator
359       operator++(int) noexcept
360       {
361 	_Node_iterator __tmp(*this);
362 	this->_M_incr();
363 	return __tmp;
364       }
365     };
366 
367   /// Node const_iterators, used to iterate through all the hashtable.
368   template<typename _Value, bool __constant_iterators, bool __cache>
369     struct _Node_const_iterator
370     : public _Node_iterator_base<_Value, __cache>
371     {
372     private:
373       using __base_type = _Node_iterator_base<_Value, __cache>;
374       using __node_type = typename __base_type::__node_type;
375 
376     public:
377       typedef _Value					value_type;
378       typedef std::ptrdiff_t				difference_type;
379       typedef std::forward_iterator_tag			iterator_category;
380 
381       typedef const _Value*				pointer;
382       typedef const _Value&				reference;
383 
384       _Node_const_iterator() noexcept
385       : __base_type(0) { }
386 
387       explicit
388       _Node_const_iterator(__node_type* __p) noexcept
389       : __base_type(__p) { }
390 
391       _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators,
392 			   __cache>& __x) noexcept
393       : __base_type(__x._M_cur) { }
394 
395       reference
396       operator*() const noexcept
397       { return this->_M_cur->_M_v(); }
398 
399       pointer
400       operator->() const noexcept
401       { return this->_M_cur->_M_valptr(); }
402 
403       _Node_const_iterator&
404       operator++() noexcept
405       {
406 	this->_M_incr();
407 	return *this;
408       }
409 
410       _Node_const_iterator
411       operator++(int) noexcept
412       {
413 	_Node_const_iterator __tmp(*this);
414 	this->_M_incr();
415 	return __tmp;
416       }
417     };
418 
419   // Many of class template _Hashtable's template parameters are policy
420   // classes.  These are defaults for the policies.
421 
422   /// Default range hashing function: use division to fold a large number
423   /// into the range [0, N).
424   struct _Mod_range_hashing
425   {
426     typedef std::size_t first_argument_type;
427     typedef std::size_t second_argument_type;
428     typedef std::size_t result_type;
429 
430     result_type
431     operator()(first_argument_type __num,
432 	       second_argument_type __den) const noexcept
433     { return __num % __den; }
434   };
435 
436   /// Default ranged hash function H.  In principle it should be a
437   /// function object composed from objects of type H1 and H2 such that
438   /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of
439   /// h1 and h2.  So instead we'll just use a tag to tell class template
440   /// hashtable to do that composition.
441   struct _Default_ranged_hash { };
442 
443   /// Default value for rehash policy.  Bucket size is (usually) the
444   /// smallest prime that keeps the load factor small enough.
445   struct _Prime_rehash_policy
446   {
447     using __has_load_factor = std::true_type;
448 
449     _Prime_rehash_policy(float __z = 1.0) noexcept
450     : _M_max_load_factor(__z), _M_next_resize(0) { }
451 
452     float
453     max_load_factor() const noexcept
454     { return _M_max_load_factor; }
455 
456     // Return a bucket size no smaller than n.
457     std::size_t
458     _M_next_bkt(std::size_t __n) const;
459 
460     // Return a bucket count appropriate for n elements
461     std::size_t
462     _M_bkt_for_elements(std::size_t __n) const
463     { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
464 
465     // __n_bkt is current bucket count, __n_elt is current element count,
466     // and __n_ins is number of elements to be inserted.  Do we need to
467     // increase bucket count?  If so, return make_pair(true, n), where n
468     // is the new bucket count.  If not, return make_pair(false, 0).
469     std::pair<bool, std::size_t>
470     _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
471 		   std::size_t __n_ins) const;
472 
473     typedef std::size_t _State;
474 
475     _State
476     _M_state() const
477     { return _M_next_resize; }
478 
479     void
480     _M_reset() noexcept
481     { _M_next_resize = 0; }
482 
483     void
484     _M_reset(_State __state)
485     { _M_next_resize = __state; }
486 
487     static const std::size_t _S_growth_factor = 2;
488 
489     float		_M_max_load_factor;
490     mutable std::size_t	_M_next_resize;
491   };
492 
493   /// Range hashing function assuming that second arg is a power of 2.
494   struct _Mask_range_hashing
495   {
496     typedef std::size_t first_argument_type;
497     typedef std::size_t second_argument_type;
498     typedef std::size_t result_type;
499 
500     result_type
501     operator()(first_argument_type __num,
502 	       second_argument_type __den) const noexcept
503     { return __num & (__den - 1); }
504   };
505 
506   /// Compute closest power of 2 not less than __n
507   inline std::size_t
508   __clp2(std::size_t __n) noexcept
509   {
510     // Equivalent to return __n ? std::ceil2(__n) : 0;
511     if (__n < 2)
512       return __n;
513     const unsigned __lz = sizeof(size_t) > sizeof(long)
514       ? __builtin_clzll(__n - 1ull)
515       : __builtin_clzl(__n - 1ul);
516     // Doing two shifts avoids undefined behaviour when __lz == 0.
517     return (size_t(1) << (numeric_limits<size_t>::digits - __lz - 1)) << 1;
518   }
519 
520   /// Rehash policy providing power of 2 bucket numbers. Avoids modulo
521   /// operations.
522   struct _Power2_rehash_policy
523   {
524     using __has_load_factor = std::true_type;
525 
526     _Power2_rehash_policy(float __z = 1.0) noexcept
527     : _M_max_load_factor(__z), _M_next_resize(0) { }
528 
529     float
530     max_load_factor() const noexcept
531     { return _M_max_load_factor; }
532 
533     // Return a bucket size no smaller than n (as long as n is not above the
534     // highest power of 2).
535     std::size_t
536     _M_next_bkt(std::size_t __n) noexcept
537     {
538       const auto __max_width = std::min<size_t>(sizeof(size_t), 8);
539       const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1);
540       std::size_t __res = __clp2(__n);
541 
542       if (__res == __n)
543 	__res <<= 1;
544 
545       if (__res == 0)
546 	__res = __max_bkt;
547 
548       if (__res == __max_bkt)
549 	// Set next resize to the max value so that we never try to rehash again
550 	// as we already reach the biggest possible bucket number.
551 	// Note that it might result in max_load_factor not being respected.
552 	_M_next_resize = std::size_t(-1);
553       else
554 	_M_next_resize
555 	  = __builtin_ceil(__res * (long double)_M_max_load_factor);
556 
557       return __res;
558     }
559 
560     // Return a bucket count appropriate for n elements
561     std::size_t
562     _M_bkt_for_elements(std::size_t __n) const noexcept
563     { return __builtin_ceil(__n / (long double)_M_max_load_factor); }
564 
565     // __n_bkt is current bucket count, __n_elt is current element count,
566     // and __n_ins is number of elements to be inserted.  Do we need to
567     // increase bucket count?  If so, return make_pair(true, n), where n
568     // is the new bucket count.  If not, return make_pair(false, 0).
569     std::pair<bool, std::size_t>
570     _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt,
571 		   std::size_t __n_ins) noexcept
572     {
573       if (__n_elt + __n_ins >= _M_next_resize)
574 	{
575 	  long double __min_bkts = (__n_elt + __n_ins)
576 					/ (long double)_M_max_load_factor;
577 	  if (__min_bkts >= __n_bkt)
578 	    return std::make_pair(true,
579 	      _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1,
580 						__n_bkt * _S_growth_factor)));
581 
582 	  _M_next_resize
583 	    = __builtin_floor(__n_bkt * (long double)_M_max_load_factor);
584 	  return std::make_pair(false, 0);
585 	}
586       else
587 	return std::make_pair(false, 0);
588     }
589 
590     typedef std::size_t _State;
591 
592     _State
593     _M_state() const noexcept
594     { return _M_next_resize; }
595 
596     void
597     _M_reset() noexcept
598     { _M_next_resize = 0; }
599 
600     void
601     _M_reset(_State __state) noexcept
602     { _M_next_resize = __state; }
603 
604     static const std::size_t _S_growth_factor = 2;
605 
606     float	_M_max_load_factor;
607     std::size_t	_M_next_resize;
608   };
609 
610   // Base classes for std::_Hashtable.  We define these base classes
611   // because in some cases we want to do different things depending on
612   // the value of a policy class.  In some cases the policy class
613   // affects which member functions and nested typedefs are defined;
614   // we handle that by specializing base class templates.  Several of
615   // the base class templates need to access other members of class
616   // template _Hashtable, so we use a variant of the "Curiously
617   // Recurring Template Pattern" (CRTP) technique.
618 
619   /**
620    *  Primary class template _Map_base.
621    *
622    *  If the hashtable has a value type of the form pair<T1, T2> and a
623    *  key extraction policy (_ExtractKey) that returns the first part
624    *  of the pair, the hashtable gets a mapped_type typedef.  If it
625    *  satisfies those criteria and also has unique keys, then it also
626    *  gets an operator[].
627    */
628   template<typename _Key, typename _Value, typename _Alloc,
629 	   typename _ExtractKey, typename _Equal,
630 	   typename _H1, typename _H2, typename _Hash,
631 	   typename _RehashPolicy, typename _Traits,
632 	   bool _Unique_keys = _Traits::__unique_keys::value>
633     struct _Map_base { };
634 
635   /// Partial specialization, __unique_keys set to false.
636   template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
637 	   typename _H1, typename _H2, typename _Hash,
638 	   typename _RehashPolicy, typename _Traits>
639     struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
640 		     _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
641     {
642       using mapped_type = typename std::tuple_element<1, _Pair>::type;
643     };
644 
645   /// Partial specialization, __unique_keys set to true.
646   template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
647 	   typename _H1, typename _H2, typename _Hash,
648 	   typename _RehashPolicy, typename _Traits>
649     struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
650 		     _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
651     {
652     private:
653       using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair,
654 							 _Select1st,
655 							_Equal, _H1, _H2, _Hash,
656 							  _Traits>;
657 
658       using __hashtable = _Hashtable<_Key, _Pair, _Alloc,
659 				     _Select1st, _Equal,
660 				     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
661 
662       using __hash_code = typename __hashtable_base::__hash_code;
663       using __node_type = typename __hashtable_base::__node_type;
664 
665     public:
666       using key_type = typename __hashtable_base::key_type;
667       using iterator = typename __hashtable_base::iterator;
668       using mapped_type = typename std::tuple_element<1, _Pair>::type;
669 
670       mapped_type&
671       operator[](const key_type& __k);
672 
673       mapped_type&
674       operator[](key_type&& __k);
675 
676       // _GLIBCXX_RESOLVE_LIB_DEFECTS
677       // DR 761. unordered_map needs an at() member function.
678       mapped_type&
679       at(const key_type& __k);
680 
681       const mapped_type&
682       at(const key_type& __k) const;
683     };
684 
685   template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
686 	   typename _H1, typename _H2, typename _Hash,
687 	   typename _RehashPolicy, typename _Traits>
688     auto
689     _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
690 	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
691     operator[](const key_type& __k)
692     -> mapped_type&
693     {
694       __hashtable* __h = static_cast<__hashtable*>(this);
695       __hash_code __code = __h->_M_hash_code(__k);
696       std::size_t __n = __h->_M_bucket_index(__k, __code);
697       __node_type* __p = __h->_M_find_node(__n, __k, __code);
698 
699       if (!__p)
700 	{
701 	  __p = __h->_M_allocate_node(std::piecewise_construct,
702 				      std::tuple<const key_type&>(__k),
703 				      std::tuple<>());
704 	  return __h->_M_insert_unique_node(__n, __code, __p)->second;
705 	}
706 
707       return __p->_M_v().second;
708     }
709 
710   template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
711 	   typename _H1, typename _H2, typename _Hash,
712 	   typename _RehashPolicy, typename _Traits>
713     auto
714     _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
715 	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
716     operator[](key_type&& __k)
717     -> mapped_type&
718     {
719       __hashtable* __h = static_cast<__hashtable*>(this);
720       __hash_code __code = __h->_M_hash_code(__k);
721       std::size_t __n = __h->_M_bucket_index(__k, __code);
722       __node_type* __p = __h->_M_find_node(__n, __k, __code);
723 
724       if (!__p)
725 	{
726 	  __p = __h->_M_allocate_node(std::piecewise_construct,
727 				      std::forward_as_tuple(std::move(__k)),
728 				      std::tuple<>());
729 	  return __h->_M_insert_unique_node(__n, __code, __p)->second;
730 	}
731 
732       return __p->_M_v().second;
733     }
734 
735   template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
736 	   typename _H1, typename _H2, typename _Hash,
737 	   typename _RehashPolicy, typename _Traits>
738     auto
739     _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
740 	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
741     at(const key_type& __k)
742     -> mapped_type&
743     {
744       __hashtable* __h = static_cast<__hashtable*>(this);
745       __hash_code __code = __h->_M_hash_code(__k);
746       std::size_t __n = __h->_M_bucket_index(__k, __code);
747       __node_type* __p = __h->_M_find_node(__n, __k, __code);
748 
749       if (!__p)
750 	__throw_out_of_range(__N("_Map_base::at"));
751       return __p->_M_v().second;
752     }
753 
754   template<typename _Key, typename _Pair, typename _Alloc, typename _Equal,
755 	   typename _H1, typename _H2, typename _Hash,
756 	   typename _RehashPolicy, typename _Traits>
757     auto
758     _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal,
759 	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
760     at(const key_type& __k) const
761     -> const mapped_type&
762     {
763       const __hashtable* __h = static_cast<const __hashtable*>(this);
764       __hash_code __code = __h->_M_hash_code(__k);
765       std::size_t __n = __h->_M_bucket_index(__k, __code);
766       __node_type* __p = __h->_M_find_node(__n, __k, __code);
767 
768       if (!__p)
769 	__throw_out_of_range(__N("_Map_base::at"));
770       return __p->_M_v().second;
771     }
772 
773   /**
774    *  Primary class template _Insert_base.
775    *
776    *  Defines @c insert member functions appropriate to all _Hashtables.
777    */
778   template<typename _Key, typename _Value, typename _Alloc,
779 	   typename _ExtractKey, typename _Equal,
780 	   typename _H1, typename _H2, typename _Hash,
781 	   typename _RehashPolicy, typename _Traits>
782     struct _Insert_base
783     {
784     protected:
785       using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
786 				     _Equal, _H1, _H2, _Hash,
787 				     _RehashPolicy, _Traits>;
788 
789       using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
790 					       _Equal, _H1, _H2, _Hash,
791 					       _Traits>;
792 
793       using value_type = typename __hashtable_base::value_type;
794       using iterator = typename __hashtable_base::iterator;
795       using const_iterator =  typename __hashtable_base::const_iterator;
796       using size_type = typename __hashtable_base::size_type;
797 
798       using __unique_keys = typename __hashtable_base::__unique_keys;
799       using __ireturn_type = typename __hashtable_base::__ireturn_type;
800       using __node_type = _Hash_node<_Value, _Traits::__hash_cached::value>;
801       using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>;
802       using __node_gen_type = _AllocNode<__node_alloc_type>;
803 
804       __hashtable&
805       _M_conjure_hashtable()
806       { return *(static_cast<__hashtable*>(this)); }
807 
808       template<typename _InputIterator, typename _NodeGetter>
809 	void
810 	_M_insert_range(_InputIterator __first, _InputIterator __last,
811 			const _NodeGetter&, true_type);
812 
813       template<typename _InputIterator, typename _NodeGetter>
814 	void
815 	_M_insert_range(_InputIterator __first, _InputIterator __last,
816 			const _NodeGetter&, false_type);
817 
818     public:
819       __ireturn_type
820       insert(const value_type& __v)
821       {
822 	__hashtable& __h = _M_conjure_hashtable();
823 	__node_gen_type __node_gen(__h);
824 	return __h._M_insert(__v, __node_gen, __unique_keys());
825       }
826 
827       iterator
828       insert(const_iterator __hint, const value_type& __v)
829       {
830 	__hashtable& __h = _M_conjure_hashtable();
831 	__node_gen_type __node_gen(__h);
832 	return __h._M_insert(__hint, __v, __node_gen, __unique_keys());
833       }
834 
835       void
836       insert(initializer_list<value_type> __l)
837       { this->insert(__l.begin(), __l.end()); }
838 
839       template<typename _InputIterator>
840 	void
841 	insert(_InputIterator __first, _InputIterator __last)
842 	{
843 	  __hashtable& __h = _M_conjure_hashtable();
844 	  __node_gen_type __node_gen(__h);
845 	  return _M_insert_range(__first, __last, __node_gen, __unique_keys());
846 	}
847     };
848 
849   template<typename _Key, typename _Value, typename _Alloc,
850 	   typename _ExtractKey, typename _Equal,
851 	   typename _H1, typename _H2, typename _Hash,
852 	   typename _RehashPolicy, typename _Traits>
853     template<typename _InputIterator, typename _NodeGetter>
854       void
855       _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
856 		    _RehashPolicy, _Traits>::
857       _M_insert_range(_InputIterator __first, _InputIterator __last,
858 		      const _NodeGetter& __node_gen, true_type)
859       {
860 	size_type __n_elt = __detail::__distance_fw(__first, __last);
861 	if (__n_elt == 0)
862 	  return;
863 
864 	__hashtable& __h = _M_conjure_hashtable();
865 	for (; __first != __last; ++__first)
866 	  {
867 	    if (__h._M_insert(*__first, __node_gen, __unique_keys(),
868 			      __n_elt).second)
869 	      __n_elt = 1;
870 	    else if (__n_elt != 1)
871 	      --__n_elt;
872 	  }
873       }
874 
875   template<typename _Key, typename _Value, typename _Alloc,
876 	   typename _ExtractKey, typename _Equal,
877 	   typename _H1, typename _H2, typename _Hash,
878 	   typename _RehashPolicy, typename _Traits>
879     template<typename _InputIterator, typename _NodeGetter>
880       void
881       _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
882 		    _RehashPolicy, _Traits>::
883       _M_insert_range(_InputIterator __first, _InputIterator __last,
884 		      const _NodeGetter& __node_gen, false_type)
885       {
886 	using __rehash_type = typename __hashtable::__rehash_type;
887 	using __rehash_state = typename __hashtable::__rehash_state;
888 	using pair_type = std::pair<bool, std::size_t>;
889 
890 	size_type __n_elt = __detail::__distance_fw(__first, __last);
891 	if (__n_elt == 0)
892 	  return;
893 
894 	__hashtable& __h = _M_conjure_hashtable();
895 	__rehash_type& __rehash = __h._M_rehash_policy;
896 	const __rehash_state& __saved_state = __rehash._M_state();
897 	pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count,
898 							__h._M_element_count,
899 							__n_elt);
900 
901 	if (__do_rehash.first)
902 	  __h._M_rehash(__do_rehash.second, __saved_state);
903 
904 	for (; __first != __last; ++__first)
905 	  __h._M_insert(*__first, __node_gen, __unique_keys());
906       }
907 
908   /**
909    *  Primary class template _Insert.
910    *
911    *  Defines @c insert member functions that depend on _Hashtable policies,
912    *  via partial specializations.
913    */
914   template<typename _Key, typename _Value, typename _Alloc,
915 	   typename _ExtractKey, typename _Equal,
916 	   typename _H1, typename _H2, typename _Hash,
917 	   typename _RehashPolicy, typename _Traits,
918 	   bool _Constant_iterators = _Traits::__constant_iterators::value>
919     struct _Insert;
920 
921   /// Specialization.
922   template<typename _Key, typename _Value, typename _Alloc,
923 	   typename _ExtractKey, typename _Equal,
924 	   typename _H1, typename _H2, typename _Hash,
925 	   typename _RehashPolicy, typename _Traits>
926     struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
927 		   _RehashPolicy, _Traits, true>
928     : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
929 			   _H1, _H2, _Hash, _RehashPolicy, _Traits>
930     {
931       using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
932 					_Equal, _H1, _H2, _Hash,
933 					_RehashPolicy, _Traits>;
934 
935       using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey,
936 					       _Equal, _H1, _H2, _Hash,
937 					       _Traits>;
938 
939       using value_type = typename __base_type::value_type;
940       using iterator = typename __base_type::iterator;
941       using const_iterator =  typename __base_type::const_iterator;
942 
943       using __unique_keys = typename __base_type::__unique_keys;
944       using __ireturn_type = typename __hashtable_base::__ireturn_type;
945       using __hashtable = typename __base_type::__hashtable;
946       using __node_gen_type = typename __base_type::__node_gen_type;
947 
948       using __base_type::insert;
949 
950       __ireturn_type
951       insert(value_type&& __v)
952       {
953 	__hashtable& __h = this->_M_conjure_hashtable();
954 	__node_gen_type __node_gen(__h);
955 	return __h._M_insert(std::move(__v), __node_gen, __unique_keys());
956       }
957 
958       iterator
959       insert(const_iterator __hint, value_type&& __v)
960       {
961 	__hashtable& __h = this->_M_conjure_hashtable();
962 	__node_gen_type __node_gen(__h);
963 	return __h._M_insert(__hint, std::move(__v), __node_gen,
964 			     __unique_keys());
965       }
966     };
967 
968   /// Specialization.
969   template<typename _Key, typename _Value, typename _Alloc,
970 	   typename _ExtractKey, typename _Equal,
971 	   typename _H1, typename _H2, typename _Hash,
972 	   typename _RehashPolicy, typename _Traits>
973     struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash,
974 		   _RehashPolicy, _Traits, false>
975     : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
976 			   _H1, _H2, _Hash, _RehashPolicy, _Traits>
977     {
978       using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey,
979 				       _Equal, _H1, _H2, _Hash,
980 				       _RehashPolicy, _Traits>;
981       using value_type = typename __base_type::value_type;
982       using iterator = typename __base_type::iterator;
983       using const_iterator =  typename __base_type::const_iterator;
984 
985       using __unique_keys = typename __base_type::__unique_keys;
986       using __hashtable = typename __base_type::__hashtable;
987       using __ireturn_type = typename __base_type::__ireturn_type;
988 
989       using __base_type::insert;
990 
991       template<typename _Pair>
992 	using __is_cons = std::is_constructible<value_type, _Pair&&>;
993 
994       template<typename _Pair>
995 	using _IFcons = std::enable_if<__is_cons<_Pair>::value>;
996 
997       template<typename _Pair>
998 	using _IFconsp = typename _IFcons<_Pair>::type;
999 
1000       template<typename _Pair, typename = _IFconsp<_Pair>>
1001 	__ireturn_type
1002 	insert(_Pair&& __v)
1003 	{
1004 	  __hashtable& __h = this->_M_conjure_hashtable();
1005 	  return __h._M_emplace(__unique_keys(), std::forward<_Pair>(__v));
1006 	}
1007 
1008       template<typename _Pair, typename = _IFconsp<_Pair>>
1009 	iterator
1010 	insert(const_iterator __hint, _Pair&& __v)
1011 	{
1012 	  __hashtable& __h = this->_M_conjure_hashtable();
1013 	  return __h._M_emplace(__hint, __unique_keys(),
1014 				std::forward<_Pair>(__v));
1015 	}
1016    };
1017 
1018   template<typename _Policy>
1019     using __has_load_factor = typename _Policy::__has_load_factor;
1020 
1021   /**
1022    *  Primary class template  _Rehash_base.
1023    *
1024    *  Give hashtable the max_load_factor functions and reserve iff the
1025    *  rehash policy supports it.
1026   */
1027   template<typename _Key, typename _Value, typename _Alloc,
1028 	   typename _ExtractKey, typename _Equal,
1029 	   typename _H1, typename _H2, typename _Hash,
1030 	   typename _RehashPolicy, typename _Traits,
1031 	   typename =
1032 	     __detected_or_t<std::false_type, __has_load_factor, _RehashPolicy>>
1033     struct _Rehash_base;
1034 
1035   /// Specialization when rehash policy doesn't provide load factor management.
1036   template<typename _Key, typename _Value, typename _Alloc,
1037 	   typename _ExtractKey, typename _Equal,
1038 	   typename _H1, typename _H2, typename _Hash,
1039 	   typename _RehashPolicy, typename _Traits>
1040     struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1041 		      _H1, _H2, _Hash, _RehashPolicy, _Traits,
1042 		      std::false_type>
1043     {
1044     };
1045 
1046   /// Specialization when rehash policy provide load factor management.
1047   template<typename _Key, typename _Value, typename _Alloc,
1048 	   typename _ExtractKey, typename _Equal,
1049 	   typename _H1, typename _H2, typename _Hash,
1050 	   typename _RehashPolicy, typename _Traits>
1051     struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1052 			_H1, _H2, _Hash, _RehashPolicy, _Traits,
1053 			std::true_type>
1054     {
1055       using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey,
1056 				     _Equal, _H1, _H2, _Hash,
1057 				     _RehashPolicy, _Traits>;
1058 
1059       float
1060       max_load_factor() const noexcept
1061       {
1062 	const __hashtable* __this = static_cast<const __hashtable*>(this);
1063 	return __this->__rehash_policy().max_load_factor();
1064       }
1065 
1066       void
1067       max_load_factor(float __z)
1068       {
1069 	__hashtable* __this = static_cast<__hashtable*>(this);
1070 	__this->__rehash_policy(_RehashPolicy(__z));
1071       }
1072 
1073       void
1074       reserve(std::size_t __n)
1075       {
1076 	__hashtable* __this = static_cast<__hashtable*>(this);
1077 	__this->rehash(__builtin_ceil(__n / max_load_factor()));
1078       }
1079     };
1080 
1081   /**
1082    *  Primary class template _Hashtable_ebo_helper.
1083    *
1084    *  Helper class using EBO when it is not forbidden (the type is not
1085    *  final) and when it is worth it (the type is empty.)
1086    */
1087   template<int _Nm, typename _Tp,
1088 	   bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)>
1089     struct _Hashtable_ebo_helper;
1090 
1091   /// Specialization using EBO.
1092   template<int _Nm, typename _Tp>
1093     struct _Hashtable_ebo_helper<_Nm, _Tp, true>
1094     : private _Tp
1095     {
1096       _Hashtable_ebo_helper() = default;
1097 
1098       template<typename _OtherTp>
1099 	_Hashtable_ebo_helper(_OtherTp&& __tp)
1100 	  : _Tp(std::forward<_OtherTp>(__tp))
1101 	{ }
1102 
1103       static const _Tp&
1104       _S_cget(const _Hashtable_ebo_helper& __eboh)
1105       { return static_cast<const _Tp&>(__eboh); }
1106 
1107       static _Tp&
1108       _S_get(_Hashtable_ebo_helper& __eboh)
1109       { return static_cast<_Tp&>(__eboh); }
1110     };
1111 
1112   /// Specialization not using EBO.
1113   template<int _Nm, typename _Tp>
1114     struct _Hashtable_ebo_helper<_Nm, _Tp, false>
1115     {
1116       _Hashtable_ebo_helper() = default;
1117 
1118       template<typename _OtherTp>
1119 	_Hashtable_ebo_helper(_OtherTp&& __tp)
1120 	  : _M_tp(std::forward<_OtherTp>(__tp))
1121 	{ }
1122 
1123       static const _Tp&
1124       _S_cget(const _Hashtable_ebo_helper& __eboh)
1125       { return __eboh._M_tp; }
1126 
1127       static _Tp&
1128       _S_get(_Hashtable_ebo_helper& __eboh)
1129       { return __eboh._M_tp; }
1130 
1131     private:
1132       _Tp _M_tp;
1133     };
1134 
1135   /**
1136    *  Primary class template _Local_iterator_base.
1137    *
1138    *  Base class for local iterators, used to iterate within a bucket
1139    *  but not between buckets.
1140    */
1141   template<typename _Key, typename _Value, typename _ExtractKey,
1142 	   typename _H1, typename _H2, typename _Hash,
1143 	   bool __cache_hash_code>
1144     struct _Local_iterator_base;
1145 
1146   /**
1147    *  Primary class template _Hash_code_base.
1148    *
1149    *  Encapsulates two policy issues that aren't quite orthogonal.
1150    *   (1) the difference between using a ranged hash function and using
1151    *       the combination of a hash function and a range-hashing function.
1152    *       In the former case we don't have such things as hash codes, so
1153    *       we have a dummy type as placeholder.
1154    *   (2) Whether or not we cache hash codes.  Caching hash codes is
1155    *       meaningless if we have a ranged hash function.
1156    *
1157    *  We also put the key extraction objects here, for convenience.
1158    *  Each specialization derives from one or more of the template
1159    *  parameters to benefit from Ebo. This is important as this type
1160    *  is inherited in some cases by the _Local_iterator_base type used
1161    *  to implement local_iterator and const_local_iterator. As with
1162    *  any iterator type we prefer to make it as small as possible.
1163    *
1164    *  Primary template is unused except as a hook for specializations.
1165    */
1166   template<typename _Key, typename _Value, typename _ExtractKey,
1167 	   typename _H1, typename _H2, typename _Hash,
1168 	   bool __cache_hash_code>
1169     struct _Hash_code_base;
1170 
1171   /// Specialization: ranged hash function, no caching hash codes.  H1
1172   /// and H2 are provided but ignored.  We define a dummy hash code type.
1173   template<typename _Key, typename _Value, typename _ExtractKey,
1174 	   typename _H1, typename _H2, typename _Hash>
1175     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false>
1176     : private _Hashtable_ebo_helper<0, _ExtractKey>,
1177       private _Hashtable_ebo_helper<1, _Hash>
1178     {
1179     private:
1180       using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1181       using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>;
1182 
1183     protected:
1184       typedef void* 					__hash_code;
1185       typedef _Hash_node<_Value, false>			__node_type;
1186 
1187       // We need the default constructor for the local iterators and _Hashtable
1188       // default constructor.
1189       _Hash_code_base() = default;
1190 
1191       _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&,
1192 		      const _Hash& __h)
1193       : __ebo_extract_key(__ex), __ebo_hash(__h) { }
1194 
1195       __hash_code
1196       _M_hash_code(const _Key& __key) const
1197       { return 0; }
1198 
1199       std::size_t
1200       _M_bucket_index(const _Key& __k, __hash_code, std::size_t __n) const
1201       { return _M_ranged_hash()(__k, __n); }
1202 
1203       std::size_t
1204       _M_bucket_index(const __node_type* __p, std::size_t __n) const
1205 	noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>(),
1206 						   (std::size_t)0)) )
1207       { return _M_ranged_hash()(_M_extract()(__p->_M_v()), __n); }
1208 
1209       void
1210       _M_store_code(__node_type*, __hash_code) const
1211       { }
1212 
1213       void
1214       _M_copy_code(__node_type*, const __node_type*) const
1215       { }
1216 
1217       void
1218       _M_swap(_Hash_code_base& __x)
1219       {
1220 	std::swap(_M_extract(), __x._M_extract());
1221 	std::swap(_M_ranged_hash(), __x._M_ranged_hash());
1222       }
1223 
1224       const _ExtractKey&
1225       _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1226 
1227       _ExtractKey&
1228       _M_extract() { return __ebo_extract_key::_S_get(*this); }
1229 
1230       const _Hash&
1231       _M_ranged_hash() const { return __ebo_hash::_S_cget(*this); }
1232 
1233       _Hash&
1234       _M_ranged_hash() { return __ebo_hash::_S_get(*this); }
1235     };
1236 
1237   // No specialization for ranged hash function while caching hash codes.
1238   // That combination is meaningless, and trying to do it is an error.
1239 
1240   /// Specialization: ranged hash function, cache hash codes.  This
1241   /// combination is meaningless, so we provide only a declaration
1242   /// and no definition.
1243   template<typename _Key, typename _Value, typename _ExtractKey,
1244 	   typename _H1, typename _H2, typename _Hash>
1245     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>;
1246 
1247   /// Specialization: hash function and range-hashing function, no
1248   /// caching of hash codes.
1249   /// Provides typedef and accessor required by C++ 11.
1250   template<typename _Key, typename _Value, typename _ExtractKey,
1251 	   typename _H1, typename _H2>
1252     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1253 			   _Default_ranged_hash, false>
1254     : private _Hashtable_ebo_helper<0, _ExtractKey>,
1255       private _Hashtable_ebo_helper<1, _H1>,
1256       private _Hashtable_ebo_helper<2, _H2>
1257     {
1258     private:
1259       using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1260       using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
1261       using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;
1262 
1263       // Gives the local iterator implementation access to _M_bucket_index().
1264       friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1265 					 _Default_ranged_hash, false>;
1266 
1267     public:
1268       typedef _H1 					hasher;
1269 
1270       hasher
1271       hash_function() const
1272       { return _M_h1(); }
1273 
1274     protected:
1275       typedef std::size_t 				__hash_code;
1276       typedef _Hash_node<_Value, false>			__node_type;
1277 
1278       // We need the default constructor for the local iterators and _Hashtable
1279       // default constructor.
1280       _Hash_code_base() = default;
1281 
1282       _Hash_code_base(const _ExtractKey& __ex,
1283 		      const _H1& __h1, const _H2& __h2,
1284 		      const _Default_ranged_hash&)
1285       : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1286 
1287       __hash_code
1288       _M_hash_code(const _Key& __k) const
1289       {
1290 	static_assert(__is_invocable<const _H1&, const _Key&>{},
1291 	    "hash function must be invocable with an argument of key type");
1292 	return _M_h1()(__k);
1293       }
1294 
1295       std::size_t
1296       _M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const
1297       { return _M_h2()(__c, __n); }
1298 
1299       std::size_t
1300       _M_bucket_index(const __node_type* __p, std::size_t __n) const
1301 	noexcept( noexcept(declval<const _H1&>()(declval<const _Key&>()))
1302 		  && noexcept(declval<const _H2&>()((__hash_code)0,
1303 						    (std::size_t)0)) )
1304       { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v())), __n); }
1305 
1306       void
1307       _M_store_code(__node_type*, __hash_code) const
1308       { }
1309 
1310       void
1311       _M_copy_code(__node_type*, const __node_type*) const
1312       { }
1313 
1314       void
1315       _M_swap(_Hash_code_base& __x)
1316       {
1317 	std::swap(_M_extract(), __x._M_extract());
1318 	std::swap(_M_h1(), __x._M_h1());
1319 	std::swap(_M_h2(), __x._M_h2());
1320       }
1321 
1322       const _ExtractKey&
1323       _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1324 
1325       _ExtractKey&
1326       _M_extract() { return __ebo_extract_key::_S_get(*this); }
1327 
1328       const _H1&
1329       _M_h1() const { return __ebo_h1::_S_cget(*this); }
1330 
1331       _H1&
1332       _M_h1() { return __ebo_h1::_S_get(*this); }
1333 
1334       const _H2&
1335       _M_h2() const { return __ebo_h2::_S_cget(*this); }
1336 
1337       _H2&
1338       _M_h2() { return __ebo_h2::_S_get(*this); }
1339     };
1340 
1341   /// Specialization: hash function and range-hashing function,
1342   /// caching hash codes.  H is provided but ignored.  Provides
1343   /// typedef and accessor required by C++ 11.
1344   template<typename _Key, typename _Value, typename _ExtractKey,
1345 	   typename _H1, typename _H2>
1346     struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2,
1347 			   _Default_ranged_hash, true>
1348     : private _Hashtable_ebo_helper<0, _ExtractKey>,
1349       private _Hashtable_ebo_helper<1, _H1>,
1350       private _Hashtable_ebo_helper<2, _H2>
1351     {
1352     private:
1353       // Gives the local iterator implementation access to _M_h2().
1354       friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2,
1355 					 _Default_ranged_hash, true>;
1356 
1357       using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>;
1358       using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>;
1359       using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>;
1360 
1361     public:
1362       typedef _H1 					hasher;
1363 
1364       hasher
1365       hash_function() const
1366       { return _M_h1(); }
1367 
1368     protected:
1369       typedef std::size_t 				__hash_code;
1370       typedef _Hash_node<_Value, true>			__node_type;
1371 
1372       // We need the default constructor for _Hashtable default constructor.
1373       _Hash_code_base() = default;
1374       _Hash_code_base(const _ExtractKey& __ex,
1375 		      const _H1& __h1, const _H2& __h2,
1376 		      const _Default_ranged_hash&)
1377       : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { }
1378 
1379       __hash_code
1380       _M_hash_code(const _Key& __k) const
1381       {
1382 	static_assert(__is_invocable<const _H1&, const _Key&>{},
1383 	    "hash function must be invocable with an argument of key type");
1384 	return _M_h1()(__k);
1385       }
1386 
1387       std::size_t
1388       _M_bucket_index(const _Key&, __hash_code __c,
1389 		      std::size_t __n) const
1390       { return _M_h2()(__c, __n); }
1391 
1392       std::size_t
1393       _M_bucket_index(const __node_type* __p, std::size_t __n) const
1394 	noexcept( noexcept(declval<const _H2&>()((__hash_code)0,
1395 						 (std::size_t)0)) )
1396       { return _M_h2()(__p->_M_hash_code, __n); }
1397 
1398       void
1399       _M_store_code(__node_type* __n, __hash_code __c) const
1400       { __n->_M_hash_code = __c; }
1401 
1402       void
1403       _M_copy_code(__node_type* __to, const __node_type* __from) const
1404       { __to->_M_hash_code = __from->_M_hash_code; }
1405 
1406       void
1407       _M_swap(_Hash_code_base& __x)
1408       {
1409 	std::swap(_M_extract(), __x._M_extract());
1410 	std::swap(_M_h1(), __x._M_h1());
1411 	std::swap(_M_h2(), __x._M_h2());
1412       }
1413 
1414       const _ExtractKey&
1415       _M_extract() const { return __ebo_extract_key::_S_cget(*this); }
1416 
1417       _ExtractKey&
1418       _M_extract() { return __ebo_extract_key::_S_get(*this); }
1419 
1420       const _H1&
1421       _M_h1() const { return __ebo_h1::_S_cget(*this); }
1422 
1423       _H1&
1424       _M_h1() { return __ebo_h1::_S_get(*this); }
1425 
1426       const _H2&
1427       _M_h2() const { return __ebo_h2::_S_cget(*this); }
1428 
1429       _H2&
1430       _M_h2() { return __ebo_h2::_S_get(*this); }
1431     };
1432 
1433   /**
1434    *  Primary class template _Equal_helper.
1435    *
1436    */
1437   template <typename _Key, typename _Value, typename _ExtractKey,
1438 	    typename _Equal, typename _HashCodeType,
1439 	    bool __cache_hash_code>
1440   struct _Equal_helper;
1441 
1442   /// Specialization.
1443   template<typename _Key, typename _Value, typename _ExtractKey,
1444 	   typename _Equal, typename _HashCodeType>
1445   struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true>
1446   {
1447     static bool
1448     _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1449 	      const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n)
1450     { return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v())); }
1451   };
1452 
1453   /// Specialization.
1454   template<typename _Key, typename _Value, typename _ExtractKey,
1455 	   typename _Equal, typename _HashCodeType>
1456   struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false>
1457   {
1458     static bool
1459     _S_equals(const _Equal& __eq, const _ExtractKey& __extract,
1460 	      const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n)
1461     { return __eq(__k, __extract(__n->_M_v())); }
1462   };
1463 
1464 
1465   /// Partial specialization used when nodes contain a cached hash code.
1466   template<typename _Key, typename _Value, typename _ExtractKey,
1467 	   typename _H1, typename _H2, typename _Hash>
1468     struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1469 				_H1, _H2, _Hash, true>
1470     : private _Hashtable_ebo_helper<0, _H2>
1471     {
1472     protected:
1473       using __base_type = _Hashtable_ebo_helper<0, _H2>;
1474       using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1475 					       _H1, _H2, _Hash, true>;
1476 
1477       _Local_iterator_base() = default;
1478       _Local_iterator_base(const __hash_code_base& __base,
1479 			   _Hash_node<_Value, true>* __p,
1480 			   std::size_t __bkt, std::size_t __bkt_count)
1481       : __base_type(__base._M_h2()),
1482 	_M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { }
1483 
1484       void
1485       _M_incr()
1486       {
1487 	_M_cur = _M_cur->_M_next();
1488 	if (_M_cur)
1489 	  {
1490 	    std::size_t __bkt
1491 	      = __base_type::_S_get(*this)(_M_cur->_M_hash_code,
1492 					   _M_bucket_count);
1493 	    if (__bkt != _M_bucket)
1494 	      _M_cur = nullptr;
1495 	  }
1496       }
1497 
1498       _Hash_node<_Value, true>*  _M_cur;
1499       std::size_t _M_bucket;
1500       std::size_t _M_bucket_count;
1501 
1502     public:
1503       const void*
1504       _M_curr() const { return _M_cur; }  // for equality ops
1505 
1506       std::size_t
1507       _M_get_bucket() const { return _M_bucket; }  // for debug mode
1508     };
1509 
1510   // Uninitialized storage for a _Hash_code_base.
1511   // This type is DefaultConstructible and Assignable even if the
1512   // _Hash_code_base type isn't, so that _Local_iterator_base<..., false>
1513   // can be DefaultConstructible and Assignable.
1514   template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value>
1515     struct _Hash_code_storage
1516     {
1517       __gnu_cxx::__aligned_buffer<_Tp> _M_storage;
1518 
1519       _Tp*
1520       _M_h() { return _M_storage._M_ptr(); }
1521 
1522       const _Tp*
1523       _M_h() const { return _M_storage._M_ptr(); }
1524     };
1525 
1526   // Empty partial specialization for empty _Hash_code_base types.
1527   template<typename _Tp>
1528     struct _Hash_code_storage<_Tp, true>
1529     {
1530       static_assert( std::is_empty<_Tp>::value, "Type must be empty" );
1531 
1532       // As _Tp is an empty type there will be no bytes written/read through
1533       // the cast pointer, so no strict-aliasing violation.
1534       _Tp*
1535       _M_h() { return reinterpret_cast<_Tp*>(this); }
1536 
1537       const _Tp*
1538       _M_h() const { return reinterpret_cast<const _Tp*>(this); }
1539     };
1540 
1541   template<typename _Key, typename _Value, typename _ExtractKey,
1542 	   typename _H1, typename _H2, typename _Hash>
1543     using __hash_code_for_local_iter
1544       = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey,
1545 					   _H1, _H2, _Hash, false>>;
1546 
1547   // Partial specialization used when hash codes are not cached
1548   template<typename _Key, typename _Value, typename _ExtractKey,
1549 	   typename _H1, typename _H2, typename _Hash>
1550     struct _Local_iterator_base<_Key, _Value, _ExtractKey,
1551 				_H1, _H2, _Hash, false>
1552     : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _H1, _H2, _Hash>
1553     {
1554     protected:
1555       using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1556 					       _H1, _H2, _Hash, false>;
1557 
1558       _Local_iterator_base() : _M_bucket_count(-1) { }
1559 
1560       _Local_iterator_base(const __hash_code_base& __base,
1561 			   _Hash_node<_Value, false>* __p,
1562 			   std::size_t __bkt, std::size_t __bkt_count)
1563       : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count)
1564       { _M_init(__base); }
1565 
1566       ~_Local_iterator_base()
1567       {
1568 	if (_M_bucket_count != -1)
1569 	  _M_destroy();
1570       }
1571 
1572       _Local_iterator_base(const _Local_iterator_base& __iter)
1573       : _M_cur(__iter._M_cur), _M_bucket(__iter._M_bucket),
1574         _M_bucket_count(__iter._M_bucket_count)
1575       {
1576 	if (_M_bucket_count != -1)
1577 	  _M_init(*__iter._M_h());
1578       }
1579 
1580       _Local_iterator_base&
1581       operator=(const _Local_iterator_base& __iter)
1582       {
1583 	if (_M_bucket_count != -1)
1584 	  _M_destroy();
1585 	_M_cur = __iter._M_cur;
1586 	_M_bucket = __iter._M_bucket;
1587 	_M_bucket_count = __iter._M_bucket_count;
1588 	if (_M_bucket_count != -1)
1589 	  _M_init(*__iter._M_h());
1590 	return *this;
1591       }
1592 
1593       void
1594       _M_incr()
1595       {
1596 	_M_cur = _M_cur->_M_next();
1597 	if (_M_cur)
1598 	  {
1599 	    std::size_t __bkt = this->_M_h()->_M_bucket_index(_M_cur,
1600 							      _M_bucket_count);
1601 	    if (__bkt != _M_bucket)
1602 	      _M_cur = nullptr;
1603 	  }
1604       }
1605 
1606       _Hash_node<_Value, false>*  _M_cur;
1607       std::size_t _M_bucket;
1608       std::size_t _M_bucket_count;
1609 
1610       void
1611       _M_init(const __hash_code_base& __base)
1612       { ::new(this->_M_h()) __hash_code_base(__base); }
1613 
1614       void
1615       _M_destroy() { this->_M_h()->~__hash_code_base(); }
1616 
1617     public:
1618       const void*
1619       _M_curr() const { return _M_cur; }  // for equality ops and debug mode
1620 
1621       std::size_t
1622       _M_get_bucket() const { return _M_bucket; }  // for debug mode
1623     };
1624 
1625   template<typename _Key, typename _Value, typename _ExtractKey,
1626 	   typename _H1, typename _H2, typename _Hash, bool __cache>
1627     inline bool
1628     operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1629 					  _H1, _H2, _Hash, __cache>& __x,
1630 	       const _Local_iterator_base<_Key, _Value, _ExtractKey,
1631 					  _H1, _H2, _Hash, __cache>& __y)
1632     { return __x._M_curr() == __y._M_curr(); }
1633 
1634   template<typename _Key, typename _Value, typename _ExtractKey,
1635 	   typename _H1, typename _H2, typename _Hash, bool __cache>
1636     inline bool
1637     operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey,
1638 					  _H1, _H2, _Hash, __cache>& __x,
1639 	       const _Local_iterator_base<_Key, _Value, _ExtractKey,
1640 					  _H1, _H2, _Hash, __cache>& __y)
1641     { return __x._M_curr() != __y._M_curr(); }
1642 
1643   /// local iterators
1644   template<typename _Key, typename _Value, typename _ExtractKey,
1645 	   typename _H1, typename _H2, typename _Hash,
1646 	   bool __constant_iterators, bool __cache>
1647     struct _Local_iterator
1648     : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1649 				  _H1, _H2, _Hash, __cache>
1650     {
1651     private:
1652       using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1653 					       _H1, _H2, _Hash, __cache>;
1654       using __hash_code_base = typename __base_type::__hash_code_base;
1655     public:
1656       typedef _Value					value_type;
1657       typedef typename std::conditional<__constant_iterators,
1658 					const _Value*, _Value*>::type
1659 						       pointer;
1660       typedef typename std::conditional<__constant_iterators,
1661 					const _Value&, _Value&>::type
1662 						       reference;
1663       typedef std::ptrdiff_t				difference_type;
1664       typedef std::forward_iterator_tag			iterator_category;
1665 
1666       _Local_iterator() = default;
1667 
1668       _Local_iterator(const __hash_code_base& __base,
1669 		      _Hash_node<_Value, __cache>* __p,
1670 		      std::size_t __bkt, std::size_t __bkt_count)
1671 	: __base_type(__base, __p, __bkt, __bkt_count)
1672       { }
1673 
1674       reference
1675       operator*() const
1676       { return this->_M_cur->_M_v(); }
1677 
1678       pointer
1679       operator->() const
1680       { return this->_M_cur->_M_valptr(); }
1681 
1682       _Local_iterator&
1683       operator++()
1684       {
1685 	this->_M_incr();
1686 	return *this;
1687       }
1688 
1689       _Local_iterator
1690       operator++(int)
1691       {
1692 	_Local_iterator __tmp(*this);
1693 	this->_M_incr();
1694 	return __tmp;
1695       }
1696     };
1697 
1698   /// local const_iterators
1699   template<typename _Key, typename _Value, typename _ExtractKey,
1700 	   typename _H1, typename _H2, typename _Hash,
1701 	   bool __constant_iterators, bool __cache>
1702     struct _Local_const_iterator
1703     : public _Local_iterator_base<_Key, _Value, _ExtractKey,
1704 				  _H1, _H2, _Hash, __cache>
1705     {
1706     private:
1707       using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey,
1708 					       _H1, _H2, _Hash, __cache>;
1709       using __hash_code_base = typename __base_type::__hash_code_base;
1710 
1711     public:
1712       typedef _Value					value_type;
1713       typedef const _Value*				pointer;
1714       typedef const _Value&				reference;
1715       typedef std::ptrdiff_t				difference_type;
1716       typedef std::forward_iterator_tag			iterator_category;
1717 
1718       _Local_const_iterator() = default;
1719 
1720       _Local_const_iterator(const __hash_code_base& __base,
1721 			    _Hash_node<_Value, __cache>* __p,
1722 			    std::size_t __bkt, std::size_t __bkt_count)
1723 	: __base_type(__base, __p, __bkt, __bkt_count)
1724       { }
1725 
1726       _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey,
1727 						  _H1, _H2, _Hash,
1728 						  __constant_iterators,
1729 						  __cache>& __x)
1730 	: __base_type(__x)
1731       { }
1732 
1733       reference
1734       operator*() const
1735       { return this->_M_cur->_M_v(); }
1736 
1737       pointer
1738       operator->() const
1739       { return this->_M_cur->_M_valptr(); }
1740 
1741       _Local_const_iterator&
1742       operator++()
1743       {
1744 	this->_M_incr();
1745 	return *this;
1746       }
1747 
1748       _Local_const_iterator
1749       operator++(int)
1750       {
1751 	_Local_const_iterator __tmp(*this);
1752 	this->_M_incr();
1753 	return __tmp;
1754       }
1755     };
1756 
1757   /**
1758    *  Primary class template _Hashtable_base.
1759    *
1760    *  Helper class adding management of _Equal functor to
1761    *  _Hash_code_base type.
1762    *
1763    *  Base class templates are:
1764    *    - __detail::_Hash_code_base
1765    *    - __detail::_Hashtable_ebo_helper
1766    */
1767   template<typename _Key, typename _Value,
1768 	   typename _ExtractKey, typename _Equal,
1769 	   typename _H1, typename _H2, typename _Hash, typename _Traits>
1770   struct _Hashtable_base
1771   : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash,
1772 			   _Traits::__hash_cached::value>,
1773     private _Hashtable_ebo_helper<0, _Equal>
1774   {
1775   public:
1776     typedef _Key					key_type;
1777     typedef _Value					value_type;
1778     typedef _Equal					key_equal;
1779     typedef std::size_t					size_type;
1780     typedef std::ptrdiff_t				difference_type;
1781 
1782     using __traits_type = _Traits;
1783     using __hash_cached = typename __traits_type::__hash_cached;
1784     using __constant_iterators = typename __traits_type::__constant_iterators;
1785     using __unique_keys = typename __traits_type::__unique_keys;
1786 
1787     using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey,
1788 					     _H1, _H2, _Hash,
1789 					     __hash_cached::value>;
1790 
1791     using __hash_code = typename __hash_code_base::__hash_code;
1792     using __node_type = typename __hash_code_base::__node_type;
1793 
1794     using iterator = __detail::_Node_iterator<value_type,
1795 					      __constant_iterators::value,
1796 					      __hash_cached::value>;
1797 
1798     using const_iterator = __detail::_Node_const_iterator<value_type,
1799 						   __constant_iterators::value,
1800 						   __hash_cached::value>;
1801 
1802     using local_iterator = __detail::_Local_iterator<key_type, value_type,
1803 						  _ExtractKey, _H1, _H2, _Hash,
1804 						  __constant_iterators::value,
1805 						     __hash_cached::value>;
1806 
1807     using const_local_iterator = __detail::_Local_const_iterator<key_type,
1808 								 value_type,
1809 					_ExtractKey, _H1, _H2, _Hash,
1810 					__constant_iterators::value,
1811 					__hash_cached::value>;
1812 
1813     using __ireturn_type = typename std::conditional<__unique_keys::value,
1814 						     std::pair<iterator, bool>,
1815 						     iterator>::type;
1816   private:
1817     using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>;
1818     using _EqualHelper =  _Equal_helper<_Key, _Value, _ExtractKey, _Equal,
1819 					__hash_code, __hash_cached::value>;
1820 
1821   protected:
1822     _Hashtable_base() = default;
1823     _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2,
1824 		    const _Hash& __hash, const _Equal& __eq)
1825     : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq)
1826     { }
1827 
1828     bool
1829     _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const
1830     {
1831       static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{},
1832 	  "key equality predicate must be invocable with two arguments of "
1833 	  "key type");
1834       return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(),
1835 				     __k, __c, __n);
1836     }
1837 
1838     void
1839     _M_swap(_Hashtable_base& __x)
1840     {
1841       __hash_code_base::_M_swap(__x);
1842       std::swap(_M_eq(), __x._M_eq());
1843     }
1844 
1845     const _Equal&
1846     _M_eq() const { return _EqualEBO::_S_cget(*this); }
1847 
1848     _Equal&
1849     _M_eq() { return _EqualEBO::_S_get(*this); }
1850   };
1851 
1852   /**
1853    *  struct _Equality_base.
1854    *
1855    *  Common types and functions for class _Equality.
1856    */
1857   struct _Equality_base
1858   {
1859   protected:
1860     template<typename _Uiterator>
1861       static bool
1862       _S_is_permutation(_Uiterator, _Uiterator, _Uiterator);
1863   };
1864 
1865   // See std::is_permutation in N3068.
1866   template<typename _Uiterator>
1867     bool
1868     _Equality_base::
1869     _S_is_permutation(_Uiterator __first1, _Uiterator __last1,
1870 		      _Uiterator __first2)
1871     {
1872       for (; __first1 != __last1; ++__first1, ++__first2)
1873 	if (!(*__first1 == *__first2))
1874 	  break;
1875 
1876       if (__first1 == __last1)
1877 	return true;
1878 
1879       _Uiterator __last2 = __first2;
1880       std::advance(__last2, std::distance(__first1, __last1));
1881 
1882       for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1)
1883 	{
1884 	  _Uiterator __tmp =  __first1;
1885 	  while (__tmp != __it1 && !bool(*__tmp == *__it1))
1886 	    ++__tmp;
1887 
1888 	  // We've seen this one before.
1889 	  if (__tmp != __it1)
1890 	    continue;
1891 
1892 	  std::ptrdiff_t __n2 = 0;
1893 	  for (__tmp = __first2; __tmp != __last2; ++__tmp)
1894 	    if (*__tmp == *__it1)
1895 	      ++__n2;
1896 
1897 	  if (!__n2)
1898 	    return false;
1899 
1900 	  std::ptrdiff_t __n1 = 0;
1901 	  for (__tmp = __it1; __tmp != __last1; ++__tmp)
1902 	    if (*__tmp == *__it1)
1903 	      ++__n1;
1904 
1905 	  if (__n1 != __n2)
1906 	    return false;
1907 	}
1908       return true;
1909     }
1910 
1911   /**
1912    *  Primary class template  _Equality.
1913    *
1914    *  This is for implementing equality comparison for unordered
1915    *  containers, per N3068, by John Lakos and Pablo Halpern.
1916    *  Algorithmically, we follow closely the reference implementations
1917    *  therein.
1918    */
1919   template<typename _Key, typename _Value, typename _Alloc,
1920 	   typename _ExtractKey, typename _Equal,
1921 	   typename _H1, typename _H2, typename _Hash,
1922 	   typename _RehashPolicy, typename _Traits,
1923 	   bool _Unique_keys = _Traits::__unique_keys::value>
1924     struct _Equality;
1925 
1926   /// Specialization.
1927   template<typename _Key, typename _Value, typename _Alloc,
1928 	   typename _ExtractKey, typename _Equal,
1929 	   typename _H1, typename _H2, typename _Hash,
1930 	   typename _RehashPolicy, typename _Traits>
1931     struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1932 		     _H1, _H2, _Hash, _RehashPolicy, _Traits, true>
1933     {
1934       using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1935 				     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1936 
1937       bool
1938       _M_equal(const __hashtable&) const;
1939     };
1940 
1941   template<typename _Key, typename _Value, typename _Alloc,
1942 	   typename _ExtractKey, typename _Equal,
1943 	   typename _H1, typename _H2, typename _Hash,
1944 	   typename _RehashPolicy, typename _Traits>
1945     bool
1946     _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1947 	      _H1, _H2, _Hash, _RehashPolicy, _Traits, true>::
1948     _M_equal(const __hashtable& __other) const
1949     {
1950       const __hashtable* __this = static_cast<const __hashtable*>(this);
1951 
1952       if (__this->size() != __other.size())
1953 	return false;
1954 
1955       for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx)
1956 	{
1957 	  const auto __ity = __other.find(_ExtractKey()(*__itx));
1958 	  if (__ity == __other.end() || !bool(*__ity == *__itx))
1959 	    return false;
1960 	}
1961       return true;
1962     }
1963 
1964   /// Specialization.
1965   template<typename _Key, typename _Value, typename _Alloc,
1966 	   typename _ExtractKey, typename _Equal,
1967 	   typename _H1, typename _H2, typename _Hash,
1968 	   typename _RehashPolicy, typename _Traits>
1969     struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1970 		     _H1, _H2, _Hash, _RehashPolicy, _Traits, false>
1971     : public _Equality_base
1972     {
1973       using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1974 				     _H1, _H2, _Hash, _RehashPolicy, _Traits>;
1975 
1976       bool
1977       _M_equal(const __hashtable&) const;
1978     };
1979 
1980   template<typename _Key, typename _Value, typename _Alloc,
1981 	   typename _ExtractKey, typename _Equal,
1982 	   typename _H1, typename _H2, typename _Hash,
1983 	   typename _RehashPolicy, typename _Traits>
1984     bool
1985     _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal,
1986 	      _H1, _H2, _Hash, _RehashPolicy, _Traits, false>::
1987     _M_equal(const __hashtable& __other) const
1988     {
1989       const __hashtable* __this = static_cast<const __hashtable*>(this);
1990 
1991       if (__this->size() != __other.size())
1992 	return false;
1993 
1994       for (auto __itx = __this->begin(); __itx != __this->end();)
1995 	{
1996 	  const auto __xrange = __this->equal_range(_ExtractKey()(*__itx));
1997 	  const auto __yrange = __other.equal_range(_ExtractKey()(*__itx));
1998 
1999 	  if (std::distance(__xrange.first, __xrange.second)
2000 	      != std::distance(__yrange.first, __yrange.second))
2001 	    return false;
2002 
2003 	  if (!_S_is_permutation(__xrange.first, __xrange.second,
2004 				 __yrange.first))
2005 	    return false;
2006 
2007 	  __itx = __xrange.second;
2008 	}
2009       return true;
2010     }
2011 
2012   /**
2013    * This type deals with all allocation and keeps an allocator instance through
2014    * inheritance to benefit from EBO when possible.
2015    */
2016   template<typename _NodeAlloc>
2017     struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc>
2018     {
2019     private:
2020       using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>;
2021     public:
2022       using __node_type = typename _NodeAlloc::value_type;
2023       using __node_alloc_type = _NodeAlloc;
2024       // Use __gnu_cxx to benefit from _S_always_equal and al.
2025       using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>;
2026 
2027       using __value_alloc_traits = typename __node_alloc_traits::template
2028 	rebind_traits<typename __node_type::value_type>;
2029 
2030       using __node_base = __detail::_Hash_node_base;
2031       using __bucket_type = __node_base*;
2032       using __bucket_alloc_type =
2033 	__alloc_rebind<__node_alloc_type, __bucket_type>;
2034       using __bucket_alloc_traits = std::allocator_traits<__bucket_alloc_type>;
2035 
2036       _Hashtable_alloc() = default;
2037       _Hashtable_alloc(const _Hashtable_alloc&) = default;
2038       _Hashtable_alloc(_Hashtable_alloc&&) = default;
2039 
2040       template<typename _Alloc>
2041 	_Hashtable_alloc(_Alloc&& __a)
2042 	  : __ebo_node_alloc(std::forward<_Alloc>(__a))
2043 	{ }
2044 
2045       __node_alloc_type&
2046       _M_node_allocator()
2047       { return __ebo_node_alloc::_S_get(*this); }
2048 
2049       const __node_alloc_type&
2050       _M_node_allocator() const
2051       { return __ebo_node_alloc::_S_cget(*this); }
2052 
2053       template<typename... _Args>
2054 	__node_type*
2055 	_M_allocate_node(_Args&&... __args);
2056 
2057       void
2058       _M_deallocate_node(__node_type* __n);
2059 
2060       void
2061       _M_deallocate_node_ptr(__node_type* __n);
2062 
2063       // Deallocate the linked list of nodes pointed to by __n
2064       void
2065       _M_deallocate_nodes(__node_type* __n);
2066 
2067       __bucket_type*
2068       _M_allocate_buckets(std::size_t __n);
2069 
2070       void
2071       _M_deallocate_buckets(__bucket_type*, std::size_t __n);
2072     };
2073 
2074   // Definitions of class template _Hashtable_alloc's out-of-line member
2075   // functions.
2076   template<typename _NodeAlloc>
2077     template<typename... _Args>
2078       typename _Hashtable_alloc<_NodeAlloc>::__node_type*
2079       _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args)
2080       {
2081 	auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1);
2082 	__node_type* __n = std::__to_address(__nptr);
2083 	__try
2084 	  {
2085 	    ::new ((void*)__n) __node_type;
2086 	    __node_alloc_traits::construct(_M_node_allocator(),
2087 					   __n->_M_valptr(),
2088 					   std::forward<_Args>(__args)...);
2089 	    return __n;
2090 	  }
2091 	__catch(...)
2092 	  {
2093 	    __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1);
2094 	    __throw_exception_again;
2095 	  }
2096       }
2097 
2098   template<typename _NodeAlloc>
2099     void
2100     _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_type* __n)
2101     {
2102       __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr());
2103       _M_deallocate_node_ptr(__n);
2104     }
2105 
2106   template<typename _NodeAlloc>
2107     void
2108     _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node_ptr(__node_type* __n)
2109     {
2110       typedef typename __node_alloc_traits::pointer _Ptr;
2111       auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n);
2112       __n->~__node_type();
2113       __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1);
2114     }
2115 
2116   template<typename _NodeAlloc>
2117     void
2118     _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_type* __n)
2119     {
2120       while (__n)
2121 	{
2122 	  __node_type* __tmp = __n;
2123 	  __n = __n->_M_next();
2124 	  _M_deallocate_node(__tmp);
2125 	}
2126     }
2127 
2128   template<typename _NodeAlloc>
2129     typename _Hashtable_alloc<_NodeAlloc>::__bucket_type*
2130     _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __n)
2131     {
2132       __bucket_alloc_type __alloc(_M_node_allocator());
2133 
2134       auto __ptr = __bucket_alloc_traits::allocate(__alloc, __n);
2135       __bucket_type* __p = std::__to_address(__ptr);
2136       __builtin_memset(__p, 0, __n * sizeof(__bucket_type));
2137       return __p;
2138     }
2139 
2140   template<typename _NodeAlloc>
2141     void
2142     _Hashtable_alloc<_NodeAlloc>::_M_deallocate_buckets(__bucket_type* __bkts,
2143 							std::size_t __n)
2144     {
2145       typedef typename __bucket_alloc_traits::pointer _Ptr;
2146       auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts);
2147       __bucket_alloc_type __alloc(_M_node_allocator());
2148       __bucket_alloc_traits::deallocate(__alloc, __ptr, __n);
2149     }
2150 
2151  //@} hashtable-detail
2152 } // namespace __detail
2153 _GLIBCXX_END_NAMESPACE_VERSION
2154 } // namespace std
2155 
2156 #endif // _HASHTABLE_POLICY_H
2157