1 // Internal policy header for unordered_set and unordered_map -*- C++ -*- 2 3 // Copyright (C) 2010-2018 Free Software Foundation, Inc. 4 // 5 // This file is part of the GNU ISO C++ Library. This library is free 6 // software; you can redistribute it and/or modify it under the 7 // terms of the GNU General Public License as published by the 8 // Free Software Foundation; either version 3, or (at your option) 9 // any later version. 10 11 // This library is distributed in the hope that it will be useful, 12 // but WITHOUT ANY WARRANTY; without even the implied warranty of 13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 // GNU General Public License for more details. 15 16 // Under Section 7 of GPL version 3, you are granted additional 17 // permissions described in the GCC Runtime Library Exception, version 18 // 3.1, as published by the Free Software Foundation. 19 20 // You should have received a copy of the GNU General Public License and 21 // a copy of the GCC Runtime Library Exception along with this program; 22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see 23 // <http://www.gnu.org/licenses/>. 24 25 /** @file bits/hashtable_policy.h 26 * This is an internal header file, included by other library headers. 27 * Do not attempt to use it directly. 28 * @headername{unordered_map,unordered_set} 29 */ 30 31 #ifndef _HASHTABLE_POLICY_H 32 #define _HASHTABLE_POLICY_H 1 33 34 #include <tuple> // for std::tuple, std::forward_as_tuple 35 #include <cstdint> // for std::uint_fast64_t 36 #include <bits/stl_algobase.h> // for std::min. 37 38 namespace std _GLIBCXX_VISIBILITY(default) 39 { 40 _GLIBCXX_BEGIN_NAMESPACE_VERSION 41 42 template<typename _Key, typename _Value, typename _Alloc, 43 typename _ExtractKey, typename _Equal, 44 typename _H1, typename _H2, typename _Hash, 45 typename _RehashPolicy, typename _Traits> 46 class _Hashtable; 47 48 namespace __detail 49 { 50 /** 51 * @defgroup hashtable-detail Base and Implementation Classes 52 * @ingroup unordered_associative_containers 53 * @{ 54 */ 55 template<typename _Key, typename _Value, 56 typename _ExtractKey, typename _Equal, 57 typename _H1, typename _H2, typename _Hash, typename _Traits> 58 struct _Hashtable_base; 59 60 // Helper function: return distance(first, last) for forward 61 // iterators, or 0/1 for input iterators. 62 template<class _Iterator> 63 inline typename std::iterator_traits<_Iterator>::difference_type 64 __distance_fw(_Iterator __first, _Iterator __last, 65 std::input_iterator_tag) 66 { return __first != __last ? 1 : 0; } 67 68 template<class _Iterator> 69 inline typename std::iterator_traits<_Iterator>::difference_type 70 __distance_fw(_Iterator __first, _Iterator __last, 71 std::forward_iterator_tag) 72 { return std::distance(__first, __last); } 73 74 template<class _Iterator> 75 inline typename std::iterator_traits<_Iterator>::difference_type 76 __distance_fw(_Iterator __first, _Iterator __last) 77 { return __distance_fw(__first, __last, 78 std::__iterator_category(__first)); } 79 80 struct _Identity 81 { 82 template<typename _Tp> 83 _Tp&& 84 operator()(_Tp&& __x) const 85 { return std::forward<_Tp>(__x); } 86 }; 87 88 struct _Select1st 89 { 90 template<typename _Tp> 91 auto 92 operator()(_Tp&& __x) const 93 -> decltype(std::get<0>(std::forward<_Tp>(__x))) 94 { return std::get<0>(std::forward<_Tp>(__x)); } 95 }; 96 97 template<typename _NodeAlloc> 98 struct _Hashtable_alloc; 99 100 // Functor recycling a pool of nodes and using allocation once the pool is 101 // empty. 102 template<typename _NodeAlloc> 103 struct _ReuseOrAllocNode 104 { 105 private: 106 using __node_alloc_type = _NodeAlloc; 107 using __hashtable_alloc = _Hashtable_alloc<__node_alloc_type>; 108 using __node_alloc_traits = 109 typename __hashtable_alloc::__node_alloc_traits; 110 using __node_type = typename __hashtable_alloc::__node_type; 111 112 public: 113 _ReuseOrAllocNode(__node_type* __nodes, __hashtable_alloc& __h) 114 : _M_nodes(__nodes), _M_h(__h) { } 115 _ReuseOrAllocNode(const _ReuseOrAllocNode&) = delete; 116 117 ~_ReuseOrAllocNode() 118 { _M_h._M_deallocate_nodes(_M_nodes); } 119 120 template<typename _Arg> 121 __node_type* 122 operator()(_Arg&& __arg) const 123 { 124 if (_M_nodes) 125 { 126 __node_type* __node = _M_nodes; 127 _M_nodes = _M_nodes->_M_next(); 128 __node->_M_nxt = nullptr; 129 auto& __a = _M_h._M_node_allocator(); 130 __node_alloc_traits::destroy(__a, __node->_M_valptr()); 131 __try 132 { 133 __node_alloc_traits::construct(__a, __node->_M_valptr(), 134 std::forward<_Arg>(__arg)); 135 } 136 __catch(...) 137 { 138 __node->~__node_type(); 139 __node_alloc_traits::deallocate(__a, __node, 1); 140 __throw_exception_again; 141 } 142 return __node; 143 } 144 return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); 145 } 146 147 private: 148 mutable __node_type* _M_nodes; 149 __hashtable_alloc& _M_h; 150 }; 151 152 // Functor similar to the previous one but without any pool of nodes to 153 // recycle. 154 template<typename _NodeAlloc> 155 struct _AllocNode 156 { 157 private: 158 using __hashtable_alloc = _Hashtable_alloc<_NodeAlloc>; 159 using __node_type = typename __hashtable_alloc::__node_type; 160 161 public: 162 _AllocNode(__hashtable_alloc& __h) 163 : _M_h(__h) { } 164 165 template<typename _Arg> 166 __node_type* 167 operator()(_Arg&& __arg) const 168 { return _M_h._M_allocate_node(std::forward<_Arg>(__arg)); } 169 170 private: 171 __hashtable_alloc& _M_h; 172 }; 173 174 // Auxiliary types used for all instantiations of _Hashtable nodes 175 // and iterators. 176 177 /** 178 * struct _Hashtable_traits 179 * 180 * Important traits for hash tables. 181 * 182 * @tparam _Cache_hash_code Boolean value. True if the value of 183 * the hash function is stored along with the value. This is a 184 * time-space tradeoff. Storing it may improve lookup speed by 185 * reducing the number of times we need to call the _Equal 186 * function. 187 * 188 * @tparam _Constant_iterators Boolean value. True if iterator and 189 * const_iterator are both constant iterator types. This is true 190 * for unordered_set and unordered_multiset, false for 191 * unordered_map and unordered_multimap. 192 * 193 * @tparam _Unique_keys Boolean value. True if the return value 194 * of _Hashtable::count(k) is always at most one, false if it may 195 * be an arbitrary number. This is true for unordered_set and 196 * unordered_map, false for unordered_multiset and 197 * unordered_multimap. 198 */ 199 template<bool _Cache_hash_code, bool _Constant_iterators, bool _Unique_keys> 200 struct _Hashtable_traits 201 { 202 using __hash_cached = __bool_constant<_Cache_hash_code>; 203 using __constant_iterators = __bool_constant<_Constant_iterators>; 204 using __unique_keys = __bool_constant<_Unique_keys>; 205 }; 206 207 /** 208 * struct _Hash_node_base 209 * 210 * Nodes, used to wrap elements stored in the hash table. A policy 211 * template parameter of class template _Hashtable controls whether 212 * nodes also store a hash code. In some cases (e.g. strings) this 213 * may be a performance win. 214 */ 215 struct _Hash_node_base 216 { 217 _Hash_node_base* _M_nxt; 218 219 _Hash_node_base() noexcept : _M_nxt() { } 220 221 _Hash_node_base(_Hash_node_base* __next) noexcept : _M_nxt(__next) { } 222 }; 223 224 /** 225 * struct _Hash_node_value_base 226 * 227 * Node type with the value to store. 228 */ 229 template<typename _Value> 230 struct _Hash_node_value_base : _Hash_node_base 231 { 232 typedef _Value value_type; 233 234 __gnu_cxx::__aligned_buffer<_Value> _M_storage; 235 236 _Value* 237 _M_valptr() noexcept 238 { return _M_storage._M_ptr(); } 239 240 const _Value* 241 _M_valptr() const noexcept 242 { return _M_storage._M_ptr(); } 243 244 _Value& 245 _M_v() noexcept 246 { return *_M_valptr(); } 247 248 const _Value& 249 _M_v() const noexcept 250 { return *_M_valptr(); } 251 }; 252 253 /** 254 * Primary template struct _Hash_node. 255 */ 256 template<typename _Value, bool _Cache_hash_code> 257 struct _Hash_node; 258 259 /** 260 * Specialization for nodes with caches, struct _Hash_node. 261 * 262 * Base class is __detail::_Hash_node_value_base. 263 */ 264 template<typename _Value> 265 struct _Hash_node<_Value, true> : _Hash_node_value_base<_Value> 266 { 267 std::size_t _M_hash_code; 268 269 _Hash_node* 270 _M_next() const noexcept 271 { return static_cast<_Hash_node*>(this->_M_nxt); } 272 }; 273 274 /** 275 * Specialization for nodes without caches, struct _Hash_node. 276 * 277 * Base class is __detail::_Hash_node_value_base. 278 */ 279 template<typename _Value> 280 struct _Hash_node<_Value, false> : _Hash_node_value_base<_Value> 281 { 282 _Hash_node* 283 _M_next() const noexcept 284 { return static_cast<_Hash_node*>(this->_M_nxt); } 285 }; 286 287 /// Base class for node iterators. 288 template<typename _Value, bool _Cache_hash_code> 289 struct _Node_iterator_base 290 { 291 using __node_type = _Hash_node<_Value, _Cache_hash_code>; 292 293 __node_type* _M_cur; 294 295 _Node_iterator_base(__node_type* __p) noexcept 296 : _M_cur(__p) { } 297 298 void 299 _M_incr() noexcept 300 { _M_cur = _M_cur->_M_next(); } 301 }; 302 303 template<typename _Value, bool _Cache_hash_code> 304 inline bool 305 operator==(const _Node_iterator_base<_Value, _Cache_hash_code>& __x, 306 const _Node_iterator_base<_Value, _Cache_hash_code >& __y) 307 noexcept 308 { return __x._M_cur == __y._M_cur; } 309 310 template<typename _Value, bool _Cache_hash_code> 311 inline bool 312 operator!=(const _Node_iterator_base<_Value, _Cache_hash_code>& __x, 313 const _Node_iterator_base<_Value, _Cache_hash_code>& __y) 314 noexcept 315 { return __x._M_cur != __y._M_cur; } 316 317 /// Node iterators, used to iterate through all the hashtable. 318 template<typename _Value, bool __constant_iterators, bool __cache> 319 struct _Node_iterator 320 : public _Node_iterator_base<_Value, __cache> 321 { 322 private: 323 using __base_type = _Node_iterator_base<_Value, __cache>; 324 using __node_type = typename __base_type::__node_type; 325 326 public: 327 typedef _Value value_type; 328 typedef std::ptrdiff_t difference_type; 329 typedef std::forward_iterator_tag iterator_category; 330 331 using pointer = typename std::conditional<__constant_iterators, 332 const _Value*, _Value*>::type; 333 334 using reference = typename std::conditional<__constant_iterators, 335 const _Value&, _Value&>::type; 336 337 _Node_iterator() noexcept 338 : __base_type(0) { } 339 340 explicit 341 _Node_iterator(__node_type* __p) noexcept 342 : __base_type(__p) { } 343 344 reference 345 operator*() const noexcept 346 { return this->_M_cur->_M_v(); } 347 348 pointer 349 operator->() const noexcept 350 { return this->_M_cur->_M_valptr(); } 351 352 _Node_iterator& 353 operator++() noexcept 354 { 355 this->_M_incr(); 356 return *this; 357 } 358 359 _Node_iterator 360 operator++(int) noexcept 361 { 362 _Node_iterator __tmp(*this); 363 this->_M_incr(); 364 return __tmp; 365 } 366 }; 367 368 /// Node const_iterators, used to iterate through all the hashtable. 369 template<typename _Value, bool __constant_iterators, bool __cache> 370 struct _Node_const_iterator 371 : public _Node_iterator_base<_Value, __cache> 372 { 373 private: 374 using __base_type = _Node_iterator_base<_Value, __cache>; 375 using __node_type = typename __base_type::__node_type; 376 377 public: 378 typedef _Value value_type; 379 typedef std::ptrdiff_t difference_type; 380 typedef std::forward_iterator_tag iterator_category; 381 382 typedef const _Value* pointer; 383 typedef const _Value& reference; 384 385 _Node_const_iterator() noexcept 386 : __base_type(0) { } 387 388 explicit 389 _Node_const_iterator(__node_type* __p) noexcept 390 : __base_type(__p) { } 391 392 _Node_const_iterator(const _Node_iterator<_Value, __constant_iterators, 393 __cache>& __x) noexcept 394 : __base_type(__x._M_cur) { } 395 396 reference 397 operator*() const noexcept 398 { return this->_M_cur->_M_v(); } 399 400 pointer 401 operator->() const noexcept 402 { return this->_M_cur->_M_valptr(); } 403 404 _Node_const_iterator& 405 operator++() noexcept 406 { 407 this->_M_incr(); 408 return *this; 409 } 410 411 _Node_const_iterator 412 operator++(int) noexcept 413 { 414 _Node_const_iterator __tmp(*this); 415 this->_M_incr(); 416 return __tmp; 417 } 418 }; 419 420 // Many of class template _Hashtable's template parameters are policy 421 // classes. These are defaults for the policies. 422 423 /// Default range hashing function: use division to fold a large number 424 /// into the range [0, N). 425 struct _Mod_range_hashing 426 { 427 typedef std::size_t first_argument_type; 428 typedef std::size_t second_argument_type; 429 typedef std::size_t result_type; 430 431 result_type 432 operator()(first_argument_type __num, 433 second_argument_type __den) const noexcept 434 { return __num % __den; } 435 }; 436 437 /// Default ranged hash function H. In principle it should be a 438 /// function object composed from objects of type H1 and H2 such that 439 /// h(k, N) = h2(h1(k), N), but that would mean making extra copies of 440 /// h1 and h2. So instead we'll just use a tag to tell class template 441 /// hashtable to do that composition. 442 struct _Default_ranged_hash { }; 443 444 /// Default value for rehash policy. Bucket size is (usually) the 445 /// smallest prime that keeps the load factor small enough. 446 struct _Prime_rehash_policy 447 { 448 using __has_load_factor = std::true_type; 449 450 _Prime_rehash_policy(float __z = 1.0) noexcept 451 : _M_max_load_factor(__z), _M_next_resize(0) { } 452 453 float 454 max_load_factor() const noexcept 455 { return _M_max_load_factor; } 456 457 // Return a bucket size no smaller than n. 458 std::size_t 459 _M_next_bkt(std::size_t __n) const; 460 461 // Return a bucket count appropriate for n elements 462 std::size_t 463 _M_bkt_for_elements(std::size_t __n) const 464 { return __builtin_ceil(__n / (long double)_M_max_load_factor); } 465 466 // __n_bkt is current bucket count, __n_elt is current element count, 467 // and __n_ins is number of elements to be inserted. Do we need to 468 // increase bucket count? If so, return make_pair(true, n), where n 469 // is the new bucket count. If not, return make_pair(false, 0). 470 std::pair<bool, std::size_t> 471 _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, 472 std::size_t __n_ins) const; 473 474 typedef std::size_t _State; 475 476 _State 477 _M_state() const 478 { return _M_next_resize; } 479 480 void 481 _M_reset() noexcept 482 { _M_next_resize = 0; } 483 484 void 485 _M_reset(_State __state) 486 { _M_next_resize = __state; } 487 488 static const std::size_t _S_growth_factor = 2; 489 490 float _M_max_load_factor; 491 mutable std::size_t _M_next_resize; 492 }; 493 494 /// Range hashing function assuming that second arg is a power of 2. 495 struct _Mask_range_hashing 496 { 497 typedef std::size_t first_argument_type; 498 typedef std::size_t second_argument_type; 499 typedef std::size_t result_type; 500 501 result_type 502 operator()(first_argument_type __num, 503 second_argument_type __den) const noexcept 504 { return __num & (__den - 1); } 505 }; 506 507 /// Compute closest power of 2. 508 _GLIBCXX14_CONSTEXPR 509 inline std::size_t 510 __clp2(std::size_t __n) noexcept 511 { 512 #if __SIZEOF_SIZE_T__ >= 8 513 std::uint_fast64_t __x = __n; 514 #else 515 std::uint_fast32_t __x = __n; 516 #endif 517 // Algorithm from Hacker's Delight, Figure 3-3. 518 __x = __x - 1; 519 __x = __x | (__x >> 1); 520 __x = __x | (__x >> 2); 521 __x = __x | (__x >> 4); 522 __x = __x | (__x >> 8); 523 __x = __x | (__x >>16); 524 #if __SIZEOF_SIZE_T__ >= 8 525 __x = __x | (__x >>32); 526 #endif 527 return __x + 1; 528 } 529 530 /// Rehash policy providing power of 2 bucket numbers. Avoids modulo 531 /// operations. 532 struct _Power2_rehash_policy 533 { 534 using __has_load_factor = std::true_type; 535 536 _Power2_rehash_policy(float __z = 1.0) noexcept 537 : _M_max_load_factor(__z), _M_next_resize(0) { } 538 539 float 540 max_load_factor() const noexcept 541 { return _M_max_load_factor; } 542 543 // Return a bucket size no smaller than n (as long as n is not above the 544 // highest power of 2). 545 std::size_t 546 _M_next_bkt(std::size_t __n) noexcept 547 { 548 const auto __max_width = std::min<size_t>(sizeof(size_t), 8); 549 const auto __max_bkt = size_t(1) << (__max_width * __CHAR_BIT__ - 1); 550 std::size_t __res = __clp2(__n); 551 552 if (__res == __n) 553 __res <<= 1; 554 555 if (__res == 0) 556 __res = __max_bkt; 557 558 if (__res == __max_bkt) 559 // Set next resize to the max value so that we never try to rehash again 560 // as we already reach the biggest possible bucket number. 561 // Note that it might result in max_load_factor not being respected. 562 _M_next_resize = std::size_t(-1); 563 else 564 _M_next_resize 565 = __builtin_ceil(__res * (long double)_M_max_load_factor); 566 567 return __res; 568 } 569 570 // Return a bucket count appropriate for n elements 571 std::size_t 572 _M_bkt_for_elements(std::size_t __n) const noexcept 573 { return __builtin_ceil(__n / (long double)_M_max_load_factor); } 574 575 // __n_bkt is current bucket count, __n_elt is current element count, 576 // and __n_ins is number of elements to be inserted. Do we need to 577 // increase bucket count? If so, return make_pair(true, n), where n 578 // is the new bucket count. If not, return make_pair(false, 0). 579 std::pair<bool, std::size_t> 580 _M_need_rehash(std::size_t __n_bkt, std::size_t __n_elt, 581 std::size_t __n_ins) noexcept 582 { 583 if (__n_elt + __n_ins >= _M_next_resize) 584 { 585 long double __min_bkts = (__n_elt + __n_ins) 586 / (long double)_M_max_load_factor; 587 if (__min_bkts >= __n_bkt) 588 return std::make_pair(true, 589 _M_next_bkt(std::max<std::size_t>(__builtin_floor(__min_bkts) + 1, 590 __n_bkt * _S_growth_factor))); 591 592 _M_next_resize 593 = __builtin_floor(__n_bkt * (long double)_M_max_load_factor); 594 return std::make_pair(false, 0); 595 } 596 else 597 return std::make_pair(false, 0); 598 } 599 600 typedef std::size_t _State; 601 602 _State 603 _M_state() const noexcept 604 { return _M_next_resize; } 605 606 void 607 _M_reset() noexcept 608 { _M_next_resize = 0; } 609 610 void 611 _M_reset(_State __state) noexcept 612 { _M_next_resize = __state; } 613 614 static const std::size_t _S_growth_factor = 2; 615 616 float _M_max_load_factor; 617 std::size_t _M_next_resize; 618 }; 619 620 // Base classes for std::_Hashtable. We define these base classes 621 // because in some cases we want to do different things depending on 622 // the value of a policy class. In some cases the policy class 623 // affects which member functions and nested typedefs are defined; 624 // we handle that by specializing base class templates. Several of 625 // the base class templates need to access other members of class 626 // template _Hashtable, so we use a variant of the "Curiously 627 // Recurring Template Pattern" (CRTP) technique. 628 629 /** 630 * Primary class template _Map_base. 631 * 632 * If the hashtable has a value type of the form pair<T1, T2> and a 633 * key extraction policy (_ExtractKey) that returns the first part 634 * of the pair, the hashtable gets a mapped_type typedef. If it 635 * satisfies those criteria and also has unique keys, then it also 636 * gets an operator[]. 637 */ 638 template<typename _Key, typename _Value, typename _Alloc, 639 typename _ExtractKey, typename _Equal, 640 typename _H1, typename _H2, typename _Hash, 641 typename _RehashPolicy, typename _Traits, 642 bool _Unique_keys = _Traits::__unique_keys::value> 643 struct _Map_base { }; 644 645 /// Partial specialization, __unique_keys set to false. 646 template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, 647 typename _H1, typename _H2, typename _Hash, 648 typename _RehashPolicy, typename _Traits> 649 struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, 650 _H1, _H2, _Hash, _RehashPolicy, _Traits, false> 651 { 652 using mapped_type = typename std::tuple_element<1, _Pair>::type; 653 }; 654 655 /// Partial specialization, __unique_keys set to true. 656 template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, 657 typename _H1, typename _H2, typename _Hash, 658 typename _RehashPolicy, typename _Traits> 659 struct _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, 660 _H1, _H2, _Hash, _RehashPolicy, _Traits, true> 661 { 662 private: 663 using __hashtable_base = __detail::_Hashtable_base<_Key, _Pair, 664 _Select1st, 665 _Equal, _H1, _H2, _Hash, 666 _Traits>; 667 668 using __hashtable = _Hashtable<_Key, _Pair, _Alloc, 669 _Select1st, _Equal, 670 _H1, _H2, _Hash, _RehashPolicy, _Traits>; 671 672 using __hash_code = typename __hashtable_base::__hash_code; 673 using __node_type = typename __hashtable_base::__node_type; 674 675 public: 676 using key_type = typename __hashtable_base::key_type; 677 using iterator = typename __hashtable_base::iterator; 678 using mapped_type = typename std::tuple_element<1, _Pair>::type; 679 680 mapped_type& 681 operator[](const key_type& __k); 682 683 mapped_type& 684 operator[](key_type&& __k); 685 686 // _GLIBCXX_RESOLVE_LIB_DEFECTS 687 // DR 761. unordered_map needs an at() member function. 688 mapped_type& 689 at(const key_type& __k); 690 691 const mapped_type& 692 at(const key_type& __k) const; 693 }; 694 695 template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, 696 typename _H1, typename _H2, typename _Hash, 697 typename _RehashPolicy, typename _Traits> 698 auto 699 _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, 700 _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: 701 operator[](const key_type& __k) 702 -> mapped_type& 703 { 704 __hashtable* __h = static_cast<__hashtable*>(this); 705 __hash_code __code = __h->_M_hash_code(__k); 706 std::size_t __n = __h->_M_bucket_index(__k, __code); 707 __node_type* __p = __h->_M_find_node(__n, __k, __code); 708 709 if (!__p) 710 { 711 __p = __h->_M_allocate_node(std::piecewise_construct, 712 std::tuple<const key_type&>(__k), 713 std::tuple<>()); 714 return __h->_M_insert_unique_node(__n, __code, __p)->second; 715 } 716 717 return __p->_M_v().second; 718 } 719 720 template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, 721 typename _H1, typename _H2, typename _Hash, 722 typename _RehashPolicy, typename _Traits> 723 auto 724 _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, 725 _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: 726 operator[](key_type&& __k) 727 -> mapped_type& 728 { 729 __hashtable* __h = static_cast<__hashtable*>(this); 730 __hash_code __code = __h->_M_hash_code(__k); 731 std::size_t __n = __h->_M_bucket_index(__k, __code); 732 __node_type* __p = __h->_M_find_node(__n, __k, __code); 733 734 if (!__p) 735 { 736 __p = __h->_M_allocate_node(std::piecewise_construct, 737 std::forward_as_tuple(std::move(__k)), 738 std::tuple<>()); 739 return __h->_M_insert_unique_node(__n, __code, __p)->second; 740 } 741 742 return __p->_M_v().second; 743 } 744 745 template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, 746 typename _H1, typename _H2, typename _Hash, 747 typename _RehashPolicy, typename _Traits> 748 auto 749 _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, 750 _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: 751 at(const key_type& __k) 752 -> mapped_type& 753 { 754 __hashtable* __h = static_cast<__hashtable*>(this); 755 __hash_code __code = __h->_M_hash_code(__k); 756 std::size_t __n = __h->_M_bucket_index(__k, __code); 757 __node_type* __p = __h->_M_find_node(__n, __k, __code); 758 759 if (!__p) 760 __throw_out_of_range(__N("_Map_base::at")); 761 return __p->_M_v().second; 762 } 763 764 template<typename _Key, typename _Pair, typename _Alloc, typename _Equal, 765 typename _H1, typename _H2, typename _Hash, 766 typename _RehashPolicy, typename _Traits> 767 auto 768 _Map_base<_Key, _Pair, _Alloc, _Select1st, _Equal, 769 _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: 770 at(const key_type& __k) const 771 -> const mapped_type& 772 { 773 const __hashtable* __h = static_cast<const __hashtable*>(this); 774 __hash_code __code = __h->_M_hash_code(__k); 775 std::size_t __n = __h->_M_bucket_index(__k, __code); 776 __node_type* __p = __h->_M_find_node(__n, __k, __code); 777 778 if (!__p) 779 __throw_out_of_range(__N("_Map_base::at")); 780 return __p->_M_v().second; 781 } 782 783 /** 784 * Primary class template _Insert_base. 785 * 786 * Defines @c insert member functions appropriate to all _Hashtables. 787 */ 788 template<typename _Key, typename _Value, typename _Alloc, 789 typename _ExtractKey, typename _Equal, 790 typename _H1, typename _H2, typename _Hash, 791 typename _RehashPolicy, typename _Traits> 792 struct _Insert_base 793 { 794 protected: 795 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, 796 _Equal, _H1, _H2, _Hash, 797 _RehashPolicy, _Traits>; 798 799 using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey, 800 _Equal, _H1, _H2, _Hash, 801 _Traits>; 802 803 using value_type = typename __hashtable_base::value_type; 804 using iterator = typename __hashtable_base::iterator; 805 using const_iterator = typename __hashtable_base::const_iterator; 806 using size_type = typename __hashtable_base::size_type; 807 808 using __unique_keys = typename __hashtable_base::__unique_keys; 809 using __ireturn_type = typename __hashtable_base::__ireturn_type; 810 using __node_type = _Hash_node<_Value, _Traits::__hash_cached::value>; 811 using __node_alloc_type = __alloc_rebind<_Alloc, __node_type>; 812 using __node_gen_type = _AllocNode<__node_alloc_type>; 813 814 __hashtable& 815 _M_conjure_hashtable() 816 { return *(static_cast<__hashtable*>(this)); } 817 818 template<typename _InputIterator, typename _NodeGetter> 819 void 820 _M_insert_range(_InputIterator __first, _InputIterator __last, 821 const _NodeGetter&, true_type); 822 823 template<typename _InputIterator, typename _NodeGetter> 824 void 825 _M_insert_range(_InputIterator __first, _InputIterator __last, 826 const _NodeGetter&, false_type); 827 828 public: 829 __ireturn_type 830 insert(const value_type& __v) 831 { 832 __hashtable& __h = _M_conjure_hashtable(); 833 __node_gen_type __node_gen(__h); 834 return __h._M_insert(__v, __node_gen, __unique_keys()); 835 } 836 837 iterator 838 insert(const_iterator __hint, const value_type& __v) 839 { 840 __hashtable& __h = _M_conjure_hashtable(); 841 __node_gen_type __node_gen(__h); 842 return __h._M_insert(__hint, __v, __node_gen, __unique_keys()); 843 } 844 845 void 846 insert(initializer_list<value_type> __l) 847 { this->insert(__l.begin(), __l.end()); } 848 849 template<typename _InputIterator> 850 void 851 insert(_InputIterator __first, _InputIterator __last) 852 { 853 __hashtable& __h = _M_conjure_hashtable(); 854 __node_gen_type __node_gen(__h); 855 return _M_insert_range(__first, __last, __node_gen, __unique_keys()); 856 } 857 }; 858 859 template<typename _Key, typename _Value, typename _Alloc, 860 typename _ExtractKey, typename _Equal, 861 typename _H1, typename _H2, typename _Hash, 862 typename _RehashPolicy, typename _Traits> 863 template<typename _InputIterator, typename _NodeGetter> 864 void 865 _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, 866 _RehashPolicy, _Traits>:: 867 _M_insert_range(_InputIterator __first, _InputIterator __last, 868 const _NodeGetter& __node_gen, true_type) 869 { 870 size_type __n_elt = __detail::__distance_fw(__first, __last); 871 if (__n_elt == 0) 872 return; 873 874 __hashtable& __h = _M_conjure_hashtable(); 875 for (; __first != __last; ++__first) 876 { 877 if (__h._M_insert(*__first, __node_gen, __unique_keys(), 878 __n_elt).second) 879 __n_elt = 1; 880 else if (__n_elt != 1) 881 --__n_elt; 882 } 883 } 884 885 template<typename _Key, typename _Value, typename _Alloc, 886 typename _ExtractKey, typename _Equal, 887 typename _H1, typename _H2, typename _Hash, 888 typename _RehashPolicy, typename _Traits> 889 template<typename _InputIterator, typename _NodeGetter> 890 void 891 _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, 892 _RehashPolicy, _Traits>:: 893 _M_insert_range(_InputIterator __first, _InputIterator __last, 894 const _NodeGetter& __node_gen, false_type) 895 { 896 using __rehash_type = typename __hashtable::__rehash_type; 897 using __rehash_state = typename __hashtable::__rehash_state; 898 using pair_type = std::pair<bool, std::size_t>; 899 900 size_type __n_elt = __detail::__distance_fw(__first, __last); 901 if (__n_elt == 0) 902 return; 903 904 __hashtable& __h = _M_conjure_hashtable(); 905 __rehash_type& __rehash = __h._M_rehash_policy; 906 const __rehash_state& __saved_state = __rehash._M_state(); 907 pair_type __do_rehash = __rehash._M_need_rehash(__h._M_bucket_count, 908 __h._M_element_count, 909 __n_elt); 910 911 if (__do_rehash.first) 912 __h._M_rehash(__do_rehash.second, __saved_state); 913 914 for (; __first != __last; ++__first) 915 __h._M_insert(*__first, __node_gen, __unique_keys()); 916 } 917 918 /** 919 * Primary class template _Insert. 920 * 921 * Defines @c insert member functions that depend on _Hashtable policies, 922 * via partial specializations. 923 */ 924 template<typename _Key, typename _Value, typename _Alloc, 925 typename _ExtractKey, typename _Equal, 926 typename _H1, typename _H2, typename _Hash, 927 typename _RehashPolicy, typename _Traits, 928 bool _Constant_iterators = _Traits::__constant_iterators::value> 929 struct _Insert; 930 931 /// Specialization. 932 template<typename _Key, typename _Value, typename _Alloc, 933 typename _ExtractKey, typename _Equal, 934 typename _H1, typename _H2, typename _Hash, 935 typename _RehashPolicy, typename _Traits> 936 struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, 937 _RehashPolicy, _Traits, true> 938 : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, 939 _H1, _H2, _Hash, _RehashPolicy, _Traits> 940 { 941 using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, 942 _Equal, _H1, _H2, _Hash, 943 _RehashPolicy, _Traits>; 944 945 using __hashtable_base = _Hashtable_base<_Key, _Value, _ExtractKey, 946 _Equal, _H1, _H2, _Hash, 947 _Traits>; 948 949 using value_type = typename __base_type::value_type; 950 using iterator = typename __base_type::iterator; 951 using const_iterator = typename __base_type::const_iterator; 952 953 using __unique_keys = typename __base_type::__unique_keys; 954 using __ireturn_type = typename __hashtable_base::__ireturn_type; 955 using __hashtable = typename __base_type::__hashtable; 956 using __node_gen_type = typename __base_type::__node_gen_type; 957 958 using __base_type::insert; 959 960 __ireturn_type 961 insert(value_type&& __v) 962 { 963 __hashtable& __h = this->_M_conjure_hashtable(); 964 __node_gen_type __node_gen(__h); 965 return __h._M_insert(std::move(__v), __node_gen, __unique_keys()); 966 } 967 968 iterator 969 insert(const_iterator __hint, value_type&& __v) 970 { 971 __hashtable& __h = this->_M_conjure_hashtable(); 972 __node_gen_type __node_gen(__h); 973 return __h._M_insert(__hint, std::move(__v), __node_gen, 974 __unique_keys()); 975 } 976 }; 977 978 /// Specialization. 979 template<typename _Key, typename _Value, typename _Alloc, 980 typename _ExtractKey, typename _Equal, 981 typename _H1, typename _H2, typename _Hash, 982 typename _RehashPolicy, typename _Traits> 983 struct _Insert<_Key, _Value, _Alloc, _ExtractKey, _Equal, _H1, _H2, _Hash, 984 _RehashPolicy, _Traits, false> 985 : public _Insert_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, 986 _H1, _H2, _Hash, _RehashPolicy, _Traits> 987 { 988 using __base_type = _Insert_base<_Key, _Value, _Alloc, _ExtractKey, 989 _Equal, _H1, _H2, _Hash, 990 _RehashPolicy, _Traits>; 991 using value_type = typename __base_type::value_type; 992 using iterator = typename __base_type::iterator; 993 using const_iterator = typename __base_type::const_iterator; 994 995 using __unique_keys = typename __base_type::__unique_keys; 996 using __hashtable = typename __base_type::__hashtable; 997 using __ireturn_type = typename __base_type::__ireturn_type; 998 999 using __base_type::insert; 1000 1001 template<typename _Pair> 1002 using __is_cons = std::is_constructible<value_type, _Pair&&>; 1003 1004 template<typename _Pair> 1005 using _IFcons = std::enable_if<__is_cons<_Pair>::value>; 1006 1007 template<typename _Pair> 1008 using _IFconsp = typename _IFcons<_Pair>::type; 1009 1010 template<typename _Pair, typename = _IFconsp<_Pair>> 1011 __ireturn_type 1012 insert(_Pair&& __v) 1013 { 1014 __hashtable& __h = this->_M_conjure_hashtable(); 1015 return __h._M_emplace(__unique_keys(), std::forward<_Pair>(__v)); 1016 } 1017 1018 template<typename _Pair, typename = _IFconsp<_Pair>> 1019 iterator 1020 insert(const_iterator __hint, _Pair&& __v) 1021 { 1022 __hashtable& __h = this->_M_conjure_hashtable(); 1023 return __h._M_emplace(__hint, __unique_keys(), 1024 std::forward<_Pair>(__v)); 1025 } 1026 }; 1027 1028 template<typename _Policy> 1029 using __has_load_factor = typename _Policy::__has_load_factor; 1030 1031 /** 1032 * Primary class template _Rehash_base. 1033 * 1034 * Give hashtable the max_load_factor functions and reserve iff the 1035 * rehash policy supports it. 1036 */ 1037 template<typename _Key, typename _Value, typename _Alloc, 1038 typename _ExtractKey, typename _Equal, 1039 typename _H1, typename _H2, typename _Hash, 1040 typename _RehashPolicy, typename _Traits, 1041 typename = 1042 __detected_or_t<std::false_type, __has_load_factor, _RehashPolicy>> 1043 struct _Rehash_base; 1044 1045 /// Specialization when rehash policy doesn't provide load factor management. 1046 template<typename _Key, typename _Value, typename _Alloc, 1047 typename _ExtractKey, typename _Equal, 1048 typename _H1, typename _H2, typename _Hash, 1049 typename _RehashPolicy, typename _Traits> 1050 struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1051 _H1, _H2, _Hash, _RehashPolicy, _Traits, 1052 std::false_type> 1053 { 1054 }; 1055 1056 /// Specialization when rehash policy provide load factor management. 1057 template<typename _Key, typename _Value, typename _Alloc, 1058 typename _ExtractKey, typename _Equal, 1059 typename _H1, typename _H2, typename _Hash, 1060 typename _RehashPolicy, typename _Traits> 1061 struct _Rehash_base<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1062 _H1, _H2, _Hash, _RehashPolicy, _Traits, 1063 std::true_type> 1064 { 1065 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, 1066 _Equal, _H1, _H2, _Hash, 1067 _RehashPolicy, _Traits>; 1068 1069 float 1070 max_load_factor() const noexcept 1071 { 1072 const __hashtable* __this = static_cast<const __hashtable*>(this); 1073 return __this->__rehash_policy().max_load_factor(); 1074 } 1075 1076 void 1077 max_load_factor(float __z) 1078 { 1079 __hashtable* __this = static_cast<__hashtable*>(this); 1080 __this->__rehash_policy(_RehashPolicy(__z)); 1081 } 1082 1083 void 1084 reserve(std::size_t __n) 1085 { 1086 __hashtable* __this = static_cast<__hashtable*>(this); 1087 __this->rehash(__builtin_ceil(__n / max_load_factor())); 1088 } 1089 }; 1090 1091 /** 1092 * Primary class template _Hashtable_ebo_helper. 1093 * 1094 * Helper class using EBO when it is not forbidden (the type is not 1095 * final) and when it is worth it (the type is empty.) 1096 */ 1097 template<int _Nm, typename _Tp, 1098 bool __use_ebo = !__is_final(_Tp) && __is_empty(_Tp)> 1099 struct _Hashtable_ebo_helper; 1100 1101 /// Specialization using EBO. 1102 template<int _Nm, typename _Tp> 1103 struct _Hashtable_ebo_helper<_Nm, _Tp, true> 1104 : private _Tp 1105 { 1106 _Hashtable_ebo_helper() = default; 1107 1108 template<typename _OtherTp> 1109 _Hashtable_ebo_helper(_OtherTp&& __tp) 1110 : _Tp(std::forward<_OtherTp>(__tp)) 1111 { } 1112 1113 static const _Tp& 1114 _S_cget(const _Hashtable_ebo_helper& __eboh) 1115 { return static_cast<const _Tp&>(__eboh); } 1116 1117 static _Tp& 1118 _S_get(_Hashtable_ebo_helper& __eboh) 1119 { return static_cast<_Tp&>(__eboh); } 1120 }; 1121 1122 /// Specialization not using EBO. 1123 template<int _Nm, typename _Tp> 1124 struct _Hashtable_ebo_helper<_Nm, _Tp, false> 1125 { 1126 _Hashtable_ebo_helper() = default; 1127 1128 template<typename _OtherTp> 1129 _Hashtable_ebo_helper(_OtherTp&& __tp) 1130 : _M_tp(std::forward<_OtherTp>(__tp)) 1131 { } 1132 1133 static const _Tp& 1134 _S_cget(const _Hashtable_ebo_helper& __eboh) 1135 { return __eboh._M_tp; } 1136 1137 static _Tp& 1138 _S_get(_Hashtable_ebo_helper& __eboh) 1139 { return __eboh._M_tp; } 1140 1141 private: 1142 _Tp _M_tp; 1143 }; 1144 1145 /** 1146 * Primary class template _Local_iterator_base. 1147 * 1148 * Base class for local iterators, used to iterate within a bucket 1149 * but not between buckets. 1150 */ 1151 template<typename _Key, typename _Value, typename _ExtractKey, 1152 typename _H1, typename _H2, typename _Hash, 1153 bool __cache_hash_code> 1154 struct _Local_iterator_base; 1155 1156 /** 1157 * Primary class template _Hash_code_base. 1158 * 1159 * Encapsulates two policy issues that aren't quite orthogonal. 1160 * (1) the difference between using a ranged hash function and using 1161 * the combination of a hash function and a range-hashing function. 1162 * In the former case we don't have such things as hash codes, so 1163 * we have a dummy type as placeholder. 1164 * (2) Whether or not we cache hash codes. Caching hash codes is 1165 * meaningless if we have a ranged hash function. 1166 * 1167 * We also put the key extraction objects here, for convenience. 1168 * Each specialization derives from one or more of the template 1169 * parameters to benefit from Ebo. This is important as this type 1170 * is inherited in some cases by the _Local_iterator_base type used 1171 * to implement local_iterator and const_local_iterator. As with 1172 * any iterator type we prefer to make it as small as possible. 1173 * 1174 * Primary template is unused except as a hook for specializations. 1175 */ 1176 template<typename _Key, typename _Value, typename _ExtractKey, 1177 typename _H1, typename _H2, typename _Hash, 1178 bool __cache_hash_code> 1179 struct _Hash_code_base; 1180 1181 /// Specialization: ranged hash function, no caching hash codes. H1 1182 /// and H2 are provided but ignored. We define a dummy hash code type. 1183 template<typename _Key, typename _Value, typename _ExtractKey, 1184 typename _H1, typename _H2, typename _Hash> 1185 struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, false> 1186 : private _Hashtable_ebo_helper<0, _ExtractKey>, 1187 private _Hashtable_ebo_helper<1, _Hash> 1188 { 1189 private: 1190 using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>; 1191 using __ebo_hash = _Hashtable_ebo_helper<1, _Hash>; 1192 1193 protected: 1194 typedef void* __hash_code; 1195 typedef _Hash_node<_Value, false> __node_type; 1196 1197 // We need the default constructor for the local iterators and _Hashtable 1198 // default constructor. 1199 _Hash_code_base() = default; 1200 1201 _Hash_code_base(const _ExtractKey& __ex, const _H1&, const _H2&, 1202 const _Hash& __h) 1203 : __ebo_extract_key(__ex), __ebo_hash(__h) { } 1204 1205 __hash_code 1206 _M_hash_code(const _Key& __key) const 1207 { return 0; } 1208 1209 std::size_t 1210 _M_bucket_index(const _Key& __k, __hash_code, std::size_t __n) const 1211 { return _M_ranged_hash()(__k, __n); } 1212 1213 std::size_t 1214 _M_bucket_index(const __node_type* __p, std::size_t __n) const 1215 noexcept( noexcept(declval<const _Hash&>()(declval<const _Key&>(), 1216 (std::size_t)0)) ) 1217 { return _M_ranged_hash()(_M_extract()(__p->_M_v()), __n); } 1218 1219 void 1220 _M_store_code(__node_type*, __hash_code) const 1221 { } 1222 1223 void 1224 _M_copy_code(__node_type*, const __node_type*) const 1225 { } 1226 1227 void 1228 _M_swap(_Hash_code_base& __x) 1229 { 1230 std::swap(_M_extract(), __x._M_extract()); 1231 std::swap(_M_ranged_hash(), __x._M_ranged_hash()); 1232 } 1233 1234 const _ExtractKey& 1235 _M_extract() const { return __ebo_extract_key::_S_cget(*this); } 1236 1237 _ExtractKey& 1238 _M_extract() { return __ebo_extract_key::_S_get(*this); } 1239 1240 const _Hash& 1241 _M_ranged_hash() const { return __ebo_hash::_S_cget(*this); } 1242 1243 _Hash& 1244 _M_ranged_hash() { return __ebo_hash::_S_get(*this); } 1245 }; 1246 1247 // No specialization for ranged hash function while caching hash codes. 1248 // That combination is meaningless, and trying to do it is an error. 1249 1250 /// Specialization: ranged hash function, cache hash codes. This 1251 /// combination is meaningless, so we provide only a declaration 1252 /// and no definition. 1253 template<typename _Key, typename _Value, typename _ExtractKey, 1254 typename _H1, typename _H2, typename _Hash> 1255 struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, true>; 1256 1257 /// Specialization: hash function and range-hashing function, no 1258 /// caching of hash codes. 1259 /// Provides typedef and accessor required by C++ 11. 1260 template<typename _Key, typename _Value, typename _ExtractKey, 1261 typename _H1, typename _H2> 1262 struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, 1263 _Default_ranged_hash, false> 1264 : private _Hashtable_ebo_helper<0, _ExtractKey>, 1265 private _Hashtable_ebo_helper<1, _H1>, 1266 private _Hashtable_ebo_helper<2, _H2> 1267 { 1268 private: 1269 using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>; 1270 using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>; 1271 using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>; 1272 1273 // Gives the local iterator implementation access to _M_bucket_index(). 1274 friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, 1275 _Default_ranged_hash, false>; 1276 1277 public: 1278 typedef _H1 hasher; 1279 1280 hasher 1281 hash_function() const 1282 { return _M_h1(); } 1283 1284 protected: 1285 typedef std::size_t __hash_code; 1286 typedef _Hash_node<_Value, false> __node_type; 1287 1288 // We need the default constructor for the local iterators and _Hashtable 1289 // default constructor. 1290 _Hash_code_base() = default; 1291 1292 _Hash_code_base(const _ExtractKey& __ex, 1293 const _H1& __h1, const _H2& __h2, 1294 const _Default_ranged_hash&) 1295 : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { } 1296 1297 __hash_code 1298 _M_hash_code(const _Key& __k) const 1299 { 1300 static_assert(__is_invocable<const _H1&, const _Key&>{}, 1301 "hash function must be invocable with an argument of key type"); 1302 return _M_h1()(__k); 1303 } 1304 1305 std::size_t 1306 _M_bucket_index(const _Key&, __hash_code __c, std::size_t __n) const 1307 { return _M_h2()(__c, __n); } 1308 1309 std::size_t 1310 _M_bucket_index(const __node_type* __p, std::size_t __n) const 1311 noexcept( noexcept(declval<const _H1&>()(declval<const _Key&>())) 1312 && noexcept(declval<const _H2&>()((__hash_code)0, 1313 (std::size_t)0)) ) 1314 { return _M_h2()(_M_h1()(_M_extract()(__p->_M_v())), __n); } 1315 1316 void 1317 _M_store_code(__node_type*, __hash_code) const 1318 { } 1319 1320 void 1321 _M_copy_code(__node_type*, const __node_type*) const 1322 { } 1323 1324 void 1325 _M_swap(_Hash_code_base& __x) 1326 { 1327 std::swap(_M_extract(), __x._M_extract()); 1328 std::swap(_M_h1(), __x._M_h1()); 1329 std::swap(_M_h2(), __x._M_h2()); 1330 } 1331 1332 const _ExtractKey& 1333 _M_extract() const { return __ebo_extract_key::_S_cget(*this); } 1334 1335 _ExtractKey& 1336 _M_extract() { return __ebo_extract_key::_S_get(*this); } 1337 1338 const _H1& 1339 _M_h1() const { return __ebo_h1::_S_cget(*this); } 1340 1341 _H1& 1342 _M_h1() { return __ebo_h1::_S_get(*this); } 1343 1344 const _H2& 1345 _M_h2() const { return __ebo_h2::_S_cget(*this); } 1346 1347 _H2& 1348 _M_h2() { return __ebo_h2::_S_get(*this); } 1349 }; 1350 1351 /// Specialization: hash function and range-hashing function, 1352 /// caching hash codes. H is provided but ignored. Provides 1353 /// typedef and accessor required by C++ 11. 1354 template<typename _Key, typename _Value, typename _ExtractKey, 1355 typename _H1, typename _H2> 1356 struct _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, 1357 _Default_ranged_hash, true> 1358 : private _Hashtable_ebo_helper<0, _ExtractKey>, 1359 private _Hashtable_ebo_helper<1, _H1>, 1360 private _Hashtable_ebo_helper<2, _H2> 1361 { 1362 private: 1363 // Gives the local iterator implementation access to _M_h2(). 1364 friend struct _Local_iterator_base<_Key, _Value, _ExtractKey, _H1, _H2, 1365 _Default_ranged_hash, true>; 1366 1367 using __ebo_extract_key = _Hashtable_ebo_helper<0, _ExtractKey>; 1368 using __ebo_h1 = _Hashtable_ebo_helper<1, _H1>; 1369 using __ebo_h2 = _Hashtable_ebo_helper<2, _H2>; 1370 1371 public: 1372 typedef _H1 hasher; 1373 1374 hasher 1375 hash_function() const 1376 { return _M_h1(); } 1377 1378 protected: 1379 typedef std::size_t __hash_code; 1380 typedef _Hash_node<_Value, true> __node_type; 1381 1382 // We need the default constructor for _Hashtable default constructor. 1383 _Hash_code_base() = default; 1384 _Hash_code_base(const _ExtractKey& __ex, 1385 const _H1& __h1, const _H2& __h2, 1386 const _Default_ranged_hash&) 1387 : __ebo_extract_key(__ex), __ebo_h1(__h1), __ebo_h2(__h2) { } 1388 1389 __hash_code 1390 _M_hash_code(const _Key& __k) const 1391 { 1392 static_assert(__is_invocable<const _H1&, const _Key&>{}, 1393 "hash function must be invocable with an argument of key type"); 1394 return _M_h1()(__k); 1395 } 1396 1397 std::size_t 1398 _M_bucket_index(const _Key&, __hash_code __c, 1399 std::size_t __n) const 1400 { return _M_h2()(__c, __n); } 1401 1402 std::size_t 1403 _M_bucket_index(const __node_type* __p, std::size_t __n) const 1404 noexcept( noexcept(declval<const _H2&>()((__hash_code)0, 1405 (std::size_t)0)) ) 1406 { return _M_h2()(__p->_M_hash_code, __n); } 1407 1408 void 1409 _M_store_code(__node_type* __n, __hash_code __c) const 1410 { __n->_M_hash_code = __c; } 1411 1412 void 1413 _M_copy_code(__node_type* __to, const __node_type* __from) const 1414 { __to->_M_hash_code = __from->_M_hash_code; } 1415 1416 void 1417 _M_swap(_Hash_code_base& __x) 1418 { 1419 std::swap(_M_extract(), __x._M_extract()); 1420 std::swap(_M_h1(), __x._M_h1()); 1421 std::swap(_M_h2(), __x._M_h2()); 1422 } 1423 1424 const _ExtractKey& 1425 _M_extract() const { return __ebo_extract_key::_S_cget(*this); } 1426 1427 _ExtractKey& 1428 _M_extract() { return __ebo_extract_key::_S_get(*this); } 1429 1430 const _H1& 1431 _M_h1() const { return __ebo_h1::_S_cget(*this); } 1432 1433 _H1& 1434 _M_h1() { return __ebo_h1::_S_get(*this); } 1435 1436 const _H2& 1437 _M_h2() const { return __ebo_h2::_S_cget(*this); } 1438 1439 _H2& 1440 _M_h2() { return __ebo_h2::_S_get(*this); } 1441 }; 1442 1443 /** 1444 * Primary class template _Equal_helper. 1445 * 1446 */ 1447 template <typename _Key, typename _Value, typename _ExtractKey, 1448 typename _Equal, typename _HashCodeType, 1449 bool __cache_hash_code> 1450 struct _Equal_helper; 1451 1452 /// Specialization. 1453 template<typename _Key, typename _Value, typename _ExtractKey, 1454 typename _Equal, typename _HashCodeType> 1455 struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, true> 1456 { 1457 static bool 1458 _S_equals(const _Equal& __eq, const _ExtractKey& __extract, 1459 const _Key& __k, _HashCodeType __c, _Hash_node<_Value, true>* __n) 1460 { return __c == __n->_M_hash_code && __eq(__k, __extract(__n->_M_v())); } 1461 }; 1462 1463 /// Specialization. 1464 template<typename _Key, typename _Value, typename _ExtractKey, 1465 typename _Equal, typename _HashCodeType> 1466 struct _Equal_helper<_Key, _Value, _ExtractKey, _Equal, _HashCodeType, false> 1467 { 1468 static bool 1469 _S_equals(const _Equal& __eq, const _ExtractKey& __extract, 1470 const _Key& __k, _HashCodeType, _Hash_node<_Value, false>* __n) 1471 { return __eq(__k, __extract(__n->_M_v())); } 1472 }; 1473 1474 1475 /// Partial specialization used when nodes contain a cached hash code. 1476 template<typename _Key, typename _Value, typename _ExtractKey, 1477 typename _H1, typename _H2, typename _Hash> 1478 struct _Local_iterator_base<_Key, _Value, _ExtractKey, 1479 _H1, _H2, _Hash, true> 1480 : private _Hashtable_ebo_helper<0, _H2> 1481 { 1482 protected: 1483 using __base_type = _Hashtable_ebo_helper<0, _H2>; 1484 using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, 1485 _H1, _H2, _Hash, true>; 1486 1487 _Local_iterator_base() = default; 1488 _Local_iterator_base(const __hash_code_base& __base, 1489 _Hash_node<_Value, true>* __p, 1490 std::size_t __bkt, std::size_t __bkt_count) 1491 : __base_type(__base._M_h2()), 1492 _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) { } 1493 1494 void 1495 _M_incr() 1496 { 1497 _M_cur = _M_cur->_M_next(); 1498 if (_M_cur) 1499 { 1500 std::size_t __bkt 1501 = __base_type::_S_get(*this)(_M_cur->_M_hash_code, 1502 _M_bucket_count); 1503 if (__bkt != _M_bucket) 1504 _M_cur = nullptr; 1505 } 1506 } 1507 1508 _Hash_node<_Value, true>* _M_cur; 1509 std::size_t _M_bucket; 1510 std::size_t _M_bucket_count; 1511 1512 public: 1513 const void* 1514 _M_curr() const { return _M_cur; } // for equality ops 1515 1516 std::size_t 1517 _M_get_bucket() const { return _M_bucket; } // for debug mode 1518 }; 1519 1520 // Uninitialized storage for a _Hash_code_base. 1521 // This type is DefaultConstructible and Assignable even if the 1522 // _Hash_code_base type isn't, so that _Local_iterator_base<..., false> 1523 // can be DefaultConstructible and Assignable. 1524 template<typename _Tp, bool _IsEmpty = std::is_empty<_Tp>::value> 1525 struct _Hash_code_storage 1526 { 1527 __gnu_cxx::__aligned_buffer<_Tp> _M_storage; 1528 1529 _Tp* 1530 _M_h() { return _M_storage._M_ptr(); } 1531 1532 const _Tp* 1533 _M_h() const { return _M_storage._M_ptr(); } 1534 }; 1535 1536 // Empty partial specialization for empty _Hash_code_base types. 1537 template<typename _Tp> 1538 struct _Hash_code_storage<_Tp, true> 1539 { 1540 static_assert( std::is_empty<_Tp>::value, "Type must be empty" ); 1541 1542 // As _Tp is an empty type there will be no bytes written/read through 1543 // the cast pointer, so no strict-aliasing violation. 1544 _Tp* 1545 _M_h() { return reinterpret_cast<_Tp*>(this); } 1546 1547 const _Tp* 1548 _M_h() const { return reinterpret_cast<const _Tp*>(this); } 1549 }; 1550 1551 template<typename _Key, typename _Value, typename _ExtractKey, 1552 typename _H1, typename _H2, typename _Hash> 1553 using __hash_code_for_local_iter 1554 = _Hash_code_storage<_Hash_code_base<_Key, _Value, _ExtractKey, 1555 _H1, _H2, _Hash, false>>; 1556 1557 // Partial specialization used when hash codes are not cached 1558 template<typename _Key, typename _Value, typename _ExtractKey, 1559 typename _H1, typename _H2, typename _Hash> 1560 struct _Local_iterator_base<_Key, _Value, _ExtractKey, 1561 _H1, _H2, _Hash, false> 1562 : __hash_code_for_local_iter<_Key, _Value, _ExtractKey, _H1, _H2, _Hash> 1563 { 1564 protected: 1565 using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, 1566 _H1, _H2, _Hash, false>; 1567 1568 _Local_iterator_base() : _M_bucket_count(-1) { } 1569 1570 _Local_iterator_base(const __hash_code_base& __base, 1571 _Hash_node<_Value, false>* __p, 1572 std::size_t __bkt, std::size_t __bkt_count) 1573 : _M_cur(__p), _M_bucket(__bkt), _M_bucket_count(__bkt_count) 1574 { _M_init(__base); } 1575 1576 ~_Local_iterator_base() 1577 { 1578 if (_M_bucket_count != -1) 1579 _M_destroy(); 1580 } 1581 1582 _Local_iterator_base(const _Local_iterator_base& __iter) 1583 : _M_cur(__iter._M_cur), _M_bucket(__iter._M_bucket), 1584 _M_bucket_count(__iter._M_bucket_count) 1585 { 1586 if (_M_bucket_count != -1) 1587 _M_init(*__iter._M_h()); 1588 } 1589 1590 _Local_iterator_base& 1591 operator=(const _Local_iterator_base& __iter) 1592 { 1593 if (_M_bucket_count != -1) 1594 _M_destroy(); 1595 _M_cur = __iter._M_cur; 1596 _M_bucket = __iter._M_bucket; 1597 _M_bucket_count = __iter._M_bucket_count; 1598 if (_M_bucket_count != -1) 1599 _M_init(*__iter._M_h()); 1600 return *this; 1601 } 1602 1603 void 1604 _M_incr() 1605 { 1606 _M_cur = _M_cur->_M_next(); 1607 if (_M_cur) 1608 { 1609 std::size_t __bkt = this->_M_h()->_M_bucket_index(_M_cur, 1610 _M_bucket_count); 1611 if (__bkt != _M_bucket) 1612 _M_cur = nullptr; 1613 } 1614 } 1615 1616 _Hash_node<_Value, false>* _M_cur; 1617 std::size_t _M_bucket; 1618 std::size_t _M_bucket_count; 1619 1620 void 1621 _M_init(const __hash_code_base& __base) 1622 { ::new(this->_M_h()) __hash_code_base(__base); } 1623 1624 void 1625 _M_destroy() { this->_M_h()->~__hash_code_base(); } 1626 1627 public: 1628 const void* 1629 _M_curr() const { return _M_cur; } // for equality ops and debug mode 1630 1631 std::size_t 1632 _M_get_bucket() const { return _M_bucket; } // for debug mode 1633 }; 1634 1635 template<typename _Key, typename _Value, typename _ExtractKey, 1636 typename _H1, typename _H2, typename _Hash, bool __cache> 1637 inline bool 1638 operator==(const _Local_iterator_base<_Key, _Value, _ExtractKey, 1639 _H1, _H2, _Hash, __cache>& __x, 1640 const _Local_iterator_base<_Key, _Value, _ExtractKey, 1641 _H1, _H2, _Hash, __cache>& __y) 1642 { return __x._M_curr() == __y._M_curr(); } 1643 1644 template<typename _Key, typename _Value, typename _ExtractKey, 1645 typename _H1, typename _H2, typename _Hash, bool __cache> 1646 inline bool 1647 operator!=(const _Local_iterator_base<_Key, _Value, _ExtractKey, 1648 _H1, _H2, _Hash, __cache>& __x, 1649 const _Local_iterator_base<_Key, _Value, _ExtractKey, 1650 _H1, _H2, _Hash, __cache>& __y) 1651 { return __x._M_curr() != __y._M_curr(); } 1652 1653 /// local iterators 1654 template<typename _Key, typename _Value, typename _ExtractKey, 1655 typename _H1, typename _H2, typename _Hash, 1656 bool __constant_iterators, bool __cache> 1657 struct _Local_iterator 1658 : public _Local_iterator_base<_Key, _Value, _ExtractKey, 1659 _H1, _H2, _Hash, __cache> 1660 { 1661 private: 1662 using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, 1663 _H1, _H2, _Hash, __cache>; 1664 using __hash_code_base = typename __base_type::__hash_code_base; 1665 public: 1666 typedef _Value value_type; 1667 typedef typename std::conditional<__constant_iterators, 1668 const _Value*, _Value*>::type 1669 pointer; 1670 typedef typename std::conditional<__constant_iterators, 1671 const _Value&, _Value&>::type 1672 reference; 1673 typedef std::ptrdiff_t difference_type; 1674 typedef std::forward_iterator_tag iterator_category; 1675 1676 _Local_iterator() = default; 1677 1678 _Local_iterator(const __hash_code_base& __base, 1679 _Hash_node<_Value, __cache>* __p, 1680 std::size_t __bkt, std::size_t __bkt_count) 1681 : __base_type(__base, __p, __bkt, __bkt_count) 1682 { } 1683 1684 reference 1685 operator*() const 1686 { return this->_M_cur->_M_v(); } 1687 1688 pointer 1689 operator->() const 1690 { return this->_M_cur->_M_valptr(); } 1691 1692 _Local_iterator& 1693 operator++() 1694 { 1695 this->_M_incr(); 1696 return *this; 1697 } 1698 1699 _Local_iterator 1700 operator++(int) 1701 { 1702 _Local_iterator __tmp(*this); 1703 this->_M_incr(); 1704 return __tmp; 1705 } 1706 }; 1707 1708 /// local const_iterators 1709 template<typename _Key, typename _Value, typename _ExtractKey, 1710 typename _H1, typename _H2, typename _Hash, 1711 bool __constant_iterators, bool __cache> 1712 struct _Local_const_iterator 1713 : public _Local_iterator_base<_Key, _Value, _ExtractKey, 1714 _H1, _H2, _Hash, __cache> 1715 { 1716 private: 1717 using __base_type = _Local_iterator_base<_Key, _Value, _ExtractKey, 1718 _H1, _H2, _Hash, __cache>; 1719 using __hash_code_base = typename __base_type::__hash_code_base; 1720 1721 public: 1722 typedef _Value value_type; 1723 typedef const _Value* pointer; 1724 typedef const _Value& reference; 1725 typedef std::ptrdiff_t difference_type; 1726 typedef std::forward_iterator_tag iterator_category; 1727 1728 _Local_const_iterator() = default; 1729 1730 _Local_const_iterator(const __hash_code_base& __base, 1731 _Hash_node<_Value, __cache>* __p, 1732 std::size_t __bkt, std::size_t __bkt_count) 1733 : __base_type(__base, __p, __bkt, __bkt_count) 1734 { } 1735 1736 _Local_const_iterator(const _Local_iterator<_Key, _Value, _ExtractKey, 1737 _H1, _H2, _Hash, 1738 __constant_iterators, 1739 __cache>& __x) 1740 : __base_type(__x) 1741 { } 1742 1743 reference 1744 operator*() const 1745 { return this->_M_cur->_M_v(); } 1746 1747 pointer 1748 operator->() const 1749 { return this->_M_cur->_M_valptr(); } 1750 1751 _Local_const_iterator& 1752 operator++() 1753 { 1754 this->_M_incr(); 1755 return *this; 1756 } 1757 1758 _Local_const_iterator 1759 operator++(int) 1760 { 1761 _Local_const_iterator __tmp(*this); 1762 this->_M_incr(); 1763 return __tmp; 1764 } 1765 }; 1766 1767 /** 1768 * Primary class template _Hashtable_base. 1769 * 1770 * Helper class adding management of _Equal functor to 1771 * _Hash_code_base type. 1772 * 1773 * Base class templates are: 1774 * - __detail::_Hash_code_base 1775 * - __detail::_Hashtable_ebo_helper 1776 */ 1777 template<typename _Key, typename _Value, 1778 typename _ExtractKey, typename _Equal, 1779 typename _H1, typename _H2, typename _Hash, typename _Traits> 1780 struct _Hashtable_base 1781 : public _Hash_code_base<_Key, _Value, _ExtractKey, _H1, _H2, _Hash, 1782 _Traits::__hash_cached::value>, 1783 private _Hashtable_ebo_helper<0, _Equal> 1784 { 1785 public: 1786 typedef _Key key_type; 1787 typedef _Value value_type; 1788 typedef _Equal key_equal; 1789 typedef std::size_t size_type; 1790 typedef std::ptrdiff_t difference_type; 1791 1792 using __traits_type = _Traits; 1793 using __hash_cached = typename __traits_type::__hash_cached; 1794 using __constant_iterators = typename __traits_type::__constant_iterators; 1795 using __unique_keys = typename __traits_type::__unique_keys; 1796 1797 using __hash_code_base = _Hash_code_base<_Key, _Value, _ExtractKey, 1798 _H1, _H2, _Hash, 1799 __hash_cached::value>; 1800 1801 using __hash_code = typename __hash_code_base::__hash_code; 1802 using __node_type = typename __hash_code_base::__node_type; 1803 1804 using iterator = __detail::_Node_iterator<value_type, 1805 __constant_iterators::value, 1806 __hash_cached::value>; 1807 1808 using const_iterator = __detail::_Node_const_iterator<value_type, 1809 __constant_iterators::value, 1810 __hash_cached::value>; 1811 1812 using local_iterator = __detail::_Local_iterator<key_type, value_type, 1813 _ExtractKey, _H1, _H2, _Hash, 1814 __constant_iterators::value, 1815 __hash_cached::value>; 1816 1817 using const_local_iterator = __detail::_Local_const_iterator<key_type, 1818 value_type, 1819 _ExtractKey, _H1, _H2, _Hash, 1820 __constant_iterators::value, 1821 __hash_cached::value>; 1822 1823 using __ireturn_type = typename std::conditional<__unique_keys::value, 1824 std::pair<iterator, bool>, 1825 iterator>::type; 1826 private: 1827 using _EqualEBO = _Hashtable_ebo_helper<0, _Equal>; 1828 using _EqualHelper = _Equal_helper<_Key, _Value, _ExtractKey, _Equal, 1829 __hash_code, __hash_cached::value>; 1830 1831 protected: 1832 _Hashtable_base() = default; 1833 _Hashtable_base(const _ExtractKey& __ex, const _H1& __h1, const _H2& __h2, 1834 const _Hash& __hash, const _Equal& __eq) 1835 : __hash_code_base(__ex, __h1, __h2, __hash), _EqualEBO(__eq) 1836 { } 1837 1838 bool 1839 _M_equals(const _Key& __k, __hash_code __c, __node_type* __n) const 1840 { 1841 static_assert(__is_invocable<const _Equal&, const _Key&, const _Key&>{}, 1842 "key equality predicate must be invocable with two arguments of " 1843 "key type"); 1844 return _EqualHelper::_S_equals(_M_eq(), this->_M_extract(), 1845 __k, __c, __n); 1846 } 1847 1848 void 1849 _M_swap(_Hashtable_base& __x) 1850 { 1851 __hash_code_base::_M_swap(__x); 1852 std::swap(_M_eq(), __x._M_eq()); 1853 } 1854 1855 const _Equal& 1856 _M_eq() const { return _EqualEBO::_S_cget(*this); } 1857 1858 _Equal& 1859 _M_eq() { return _EqualEBO::_S_get(*this); } 1860 }; 1861 1862 /** 1863 * struct _Equality_base. 1864 * 1865 * Common types and functions for class _Equality. 1866 */ 1867 struct _Equality_base 1868 { 1869 protected: 1870 template<typename _Uiterator> 1871 static bool 1872 _S_is_permutation(_Uiterator, _Uiterator, _Uiterator); 1873 }; 1874 1875 // See std::is_permutation in N3068. 1876 template<typename _Uiterator> 1877 bool 1878 _Equality_base:: 1879 _S_is_permutation(_Uiterator __first1, _Uiterator __last1, 1880 _Uiterator __first2) 1881 { 1882 for (; __first1 != __last1; ++__first1, ++__first2) 1883 if (!(*__first1 == *__first2)) 1884 break; 1885 1886 if (__first1 == __last1) 1887 return true; 1888 1889 _Uiterator __last2 = __first2; 1890 std::advance(__last2, std::distance(__first1, __last1)); 1891 1892 for (_Uiterator __it1 = __first1; __it1 != __last1; ++__it1) 1893 { 1894 _Uiterator __tmp = __first1; 1895 while (__tmp != __it1 && !bool(*__tmp == *__it1)) 1896 ++__tmp; 1897 1898 // We've seen this one before. 1899 if (__tmp != __it1) 1900 continue; 1901 1902 std::ptrdiff_t __n2 = 0; 1903 for (__tmp = __first2; __tmp != __last2; ++__tmp) 1904 if (*__tmp == *__it1) 1905 ++__n2; 1906 1907 if (!__n2) 1908 return false; 1909 1910 std::ptrdiff_t __n1 = 0; 1911 for (__tmp = __it1; __tmp != __last1; ++__tmp) 1912 if (*__tmp == *__it1) 1913 ++__n1; 1914 1915 if (__n1 != __n2) 1916 return false; 1917 } 1918 return true; 1919 } 1920 1921 /** 1922 * Primary class template _Equality. 1923 * 1924 * This is for implementing equality comparison for unordered 1925 * containers, per N3068, by John Lakos and Pablo Halpern. 1926 * Algorithmically, we follow closely the reference implementations 1927 * therein. 1928 */ 1929 template<typename _Key, typename _Value, typename _Alloc, 1930 typename _ExtractKey, typename _Equal, 1931 typename _H1, typename _H2, typename _Hash, 1932 typename _RehashPolicy, typename _Traits, 1933 bool _Unique_keys = _Traits::__unique_keys::value> 1934 struct _Equality; 1935 1936 /// Specialization. 1937 template<typename _Key, typename _Value, typename _Alloc, 1938 typename _ExtractKey, typename _Equal, 1939 typename _H1, typename _H2, typename _Hash, 1940 typename _RehashPolicy, typename _Traits> 1941 struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1942 _H1, _H2, _Hash, _RehashPolicy, _Traits, true> 1943 { 1944 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1945 _H1, _H2, _Hash, _RehashPolicy, _Traits>; 1946 1947 bool 1948 _M_equal(const __hashtable&) const; 1949 }; 1950 1951 template<typename _Key, typename _Value, typename _Alloc, 1952 typename _ExtractKey, typename _Equal, 1953 typename _H1, typename _H2, typename _Hash, 1954 typename _RehashPolicy, typename _Traits> 1955 bool 1956 _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1957 _H1, _H2, _Hash, _RehashPolicy, _Traits, true>:: 1958 _M_equal(const __hashtable& __other) const 1959 { 1960 const __hashtable* __this = static_cast<const __hashtable*>(this); 1961 1962 if (__this->size() != __other.size()) 1963 return false; 1964 1965 for (auto __itx = __this->begin(); __itx != __this->end(); ++__itx) 1966 { 1967 const auto __ity = __other.find(_ExtractKey()(*__itx)); 1968 if (__ity == __other.end() || !bool(*__ity == *__itx)) 1969 return false; 1970 } 1971 return true; 1972 } 1973 1974 /// Specialization. 1975 template<typename _Key, typename _Value, typename _Alloc, 1976 typename _ExtractKey, typename _Equal, 1977 typename _H1, typename _H2, typename _Hash, 1978 typename _RehashPolicy, typename _Traits> 1979 struct _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1980 _H1, _H2, _Hash, _RehashPolicy, _Traits, false> 1981 : public _Equality_base 1982 { 1983 using __hashtable = _Hashtable<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1984 _H1, _H2, _Hash, _RehashPolicy, _Traits>; 1985 1986 bool 1987 _M_equal(const __hashtable&) const; 1988 }; 1989 1990 template<typename _Key, typename _Value, typename _Alloc, 1991 typename _ExtractKey, typename _Equal, 1992 typename _H1, typename _H2, typename _Hash, 1993 typename _RehashPolicy, typename _Traits> 1994 bool 1995 _Equality<_Key, _Value, _Alloc, _ExtractKey, _Equal, 1996 _H1, _H2, _Hash, _RehashPolicy, _Traits, false>:: 1997 _M_equal(const __hashtable& __other) const 1998 { 1999 const __hashtable* __this = static_cast<const __hashtable*>(this); 2000 2001 if (__this->size() != __other.size()) 2002 return false; 2003 2004 for (auto __itx = __this->begin(); __itx != __this->end();) 2005 { 2006 const auto __xrange = __this->equal_range(_ExtractKey()(*__itx)); 2007 const auto __yrange = __other.equal_range(_ExtractKey()(*__itx)); 2008 2009 if (std::distance(__xrange.first, __xrange.second) 2010 != std::distance(__yrange.first, __yrange.second)) 2011 return false; 2012 2013 if (!_S_is_permutation(__xrange.first, __xrange.second, 2014 __yrange.first)) 2015 return false; 2016 2017 __itx = __xrange.second; 2018 } 2019 return true; 2020 } 2021 2022 /** 2023 * This type deals with all allocation and keeps an allocator instance through 2024 * inheritance to benefit from EBO when possible. 2025 */ 2026 template<typename _NodeAlloc> 2027 struct _Hashtable_alloc : private _Hashtable_ebo_helper<0, _NodeAlloc> 2028 { 2029 private: 2030 using __ebo_node_alloc = _Hashtable_ebo_helper<0, _NodeAlloc>; 2031 public: 2032 using __node_type = typename _NodeAlloc::value_type; 2033 using __node_alloc_type = _NodeAlloc; 2034 // Use __gnu_cxx to benefit from _S_always_equal and al. 2035 using __node_alloc_traits = __gnu_cxx::__alloc_traits<__node_alloc_type>; 2036 2037 using __value_alloc_traits = typename __node_alloc_traits::template 2038 rebind_traits<typename __node_type::value_type>; 2039 2040 using __node_base = __detail::_Hash_node_base; 2041 using __bucket_type = __node_base*; 2042 using __bucket_alloc_type = 2043 __alloc_rebind<__node_alloc_type, __bucket_type>; 2044 using __bucket_alloc_traits = std::allocator_traits<__bucket_alloc_type>; 2045 2046 _Hashtable_alloc() = default; 2047 _Hashtable_alloc(const _Hashtable_alloc&) = default; 2048 _Hashtable_alloc(_Hashtable_alloc&&) = default; 2049 2050 template<typename _Alloc> 2051 _Hashtable_alloc(_Alloc&& __a) 2052 : __ebo_node_alloc(std::forward<_Alloc>(__a)) 2053 { } 2054 2055 __node_alloc_type& 2056 _M_node_allocator() 2057 { return __ebo_node_alloc::_S_get(*this); } 2058 2059 const __node_alloc_type& 2060 _M_node_allocator() const 2061 { return __ebo_node_alloc::_S_cget(*this); } 2062 2063 template<typename... _Args> 2064 __node_type* 2065 _M_allocate_node(_Args&&... __args); 2066 2067 void 2068 _M_deallocate_node(__node_type* __n); 2069 2070 // Deallocate the linked list of nodes pointed to by __n 2071 void 2072 _M_deallocate_nodes(__node_type* __n); 2073 2074 __bucket_type* 2075 _M_allocate_buckets(std::size_t __n); 2076 2077 void 2078 _M_deallocate_buckets(__bucket_type*, std::size_t __n); 2079 }; 2080 2081 // Definitions of class template _Hashtable_alloc's out-of-line member 2082 // functions. 2083 template<typename _NodeAlloc> 2084 template<typename... _Args> 2085 typename _Hashtable_alloc<_NodeAlloc>::__node_type* 2086 _Hashtable_alloc<_NodeAlloc>::_M_allocate_node(_Args&&... __args) 2087 { 2088 auto __nptr = __node_alloc_traits::allocate(_M_node_allocator(), 1); 2089 __node_type* __n = std::__to_address(__nptr); 2090 __try 2091 { 2092 ::new ((void*)__n) __node_type; 2093 __node_alloc_traits::construct(_M_node_allocator(), 2094 __n->_M_valptr(), 2095 std::forward<_Args>(__args)...); 2096 return __n; 2097 } 2098 __catch(...) 2099 { 2100 __node_alloc_traits::deallocate(_M_node_allocator(), __nptr, 1); 2101 __throw_exception_again; 2102 } 2103 } 2104 2105 template<typename _NodeAlloc> 2106 void 2107 _Hashtable_alloc<_NodeAlloc>::_M_deallocate_node(__node_type* __n) 2108 { 2109 typedef typename __node_alloc_traits::pointer _Ptr; 2110 auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__n); 2111 __node_alloc_traits::destroy(_M_node_allocator(), __n->_M_valptr()); 2112 __n->~__node_type(); 2113 __node_alloc_traits::deallocate(_M_node_allocator(), __ptr, 1); 2114 } 2115 2116 template<typename _NodeAlloc> 2117 void 2118 _Hashtable_alloc<_NodeAlloc>::_M_deallocate_nodes(__node_type* __n) 2119 { 2120 while (__n) 2121 { 2122 __node_type* __tmp = __n; 2123 __n = __n->_M_next(); 2124 _M_deallocate_node(__tmp); 2125 } 2126 } 2127 2128 template<typename _NodeAlloc> 2129 typename _Hashtable_alloc<_NodeAlloc>::__bucket_type* 2130 _Hashtable_alloc<_NodeAlloc>::_M_allocate_buckets(std::size_t __n) 2131 { 2132 __bucket_alloc_type __alloc(_M_node_allocator()); 2133 2134 auto __ptr = __bucket_alloc_traits::allocate(__alloc, __n); 2135 __bucket_type* __p = std::__to_address(__ptr); 2136 __builtin_memset(__p, 0, __n * sizeof(__bucket_type)); 2137 return __p; 2138 } 2139 2140 template<typename _NodeAlloc> 2141 void 2142 _Hashtable_alloc<_NodeAlloc>::_M_deallocate_buckets(__bucket_type* __bkts, 2143 std::size_t __n) 2144 { 2145 typedef typename __bucket_alloc_traits::pointer _Ptr; 2146 auto __ptr = std::pointer_traits<_Ptr>::pointer_to(*__bkts); 2147 __bucket_alloc_type __alloc(_M_node_allocator()); 2148 __bucket_alloc_traits::deallocate(__alloc, __ptr, __n); 2149 } 2150 2151 //@} hashtable-detail 2152 } // namespace __detail 2153 _GLIBCXX_END_NAMESPACE_VERSION 2154 } // namespace std 2155 2156 #endif // _HASHTABLE_POLICY_H 2157