1<?xml version='1.0'?> 2<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN" 3 "http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" 4[ ]> 5 6<chapter id="manual.ext.debug_mode" xreflabel="Debug Mode"> 7<?dbhtml filename="debug_mode.html"?> 8 9<chapterinfo> 10 <keywordset> 11 <keyword> 12 C++ 13 </keyword> 14 <keyword> 15 library 16 </keyword> 17 <keyword> 18 debug 19 </keyword> 20 </keywordset> 21</chapterinfo> 22 23<title>Debug Mode</title> 24 25<sect1 id="manual.ext.debug_mode.intro" xreflabel="Intro"> 26 <title>Intro</title> 27 <para> 28 By default, libstdc++ is built with efficiency in mind, and 29 therefore performs little or no error checking that is not 30 required by the C++ standard. This means that programs that 31 incorrectly use the C++ standard library will exhibit behavior 32 that is not portable and may not even be predictable, because they 33 tread into implementation-specific or undefined behavior. To 34 detect some of these errors before they can become problematic, 35 libstdc++ offers a debug mode that provides additional checking of 36 library facilities, and will report errors in the use of libstdc++ 37 as soon as they can be detected by emitting a description of the 38 problem to standard error and aborting the program. This debug 39 mode is available with GCC 3.4.0 and later versions. 40 </para> 41 42 <para> 43 The libstdc++ debug mode performs checking for many areas of the 44 C++ standard, but the focus is on checking interactions among 45 standard iterators, containers, and algorithms, including: 46 </para> 47 48 <itemizedlist> 49 <listitem><para><emphasis>Safe iterators</emphasis>: Iterators keep track of the 50 container whose elements they reference, so errors such as 51 incrementing a past-the-end iterator or dereferencing an iterator 52 that points to a container that has been destructed are diagnosed 53 immediately.</para></listitem> 54 55 <listitem><para><emphasis>Algorithm preconditions</emphasis>: Algorithms attempt to 56 validate their input parameters to detect errors as early as 57 possible. For instance, the <code>set_intersection</code> 58 algorithm requires that its iterator 59 parameters <code>first1</code> and <code>last1</code> form a valid 60 iterator range, and that the sequence 61 [<code>first1</code>, <code>last1</code>) is sorted according to 62 the same predicate that was passed 63 to <code>set_intersection</code>; the libstdc++ debug mode will 64 detect an error if the sequence is not sorted or was sorted by a 65 different predicate.</para></listitem> 66 </itemizedlist> 67 68</sect1> 69 70<sect1 id="manual.ext.debug_mode.semantics" xreflabel="Semantics"> 71 <title>Semantics</title> 72 <para> 73 </para> 74 75<para>A program that uses the C++ standard library correctly 76 will maintain the same semantics under debug mode as it had with 77 the normal (release) library. All functional and exception-handling 78 guarantees made by the normal library also hold for the debug mode 79 library, with one exception: performance guarantees made by the 80 normal library may not hold in the debug mode library. For 81 instance, erasing an element in a <code>std::list</code> is a 82 constant-time operation in normal library, but in debug mode it is 83 linear in the number of iterators that reference that particular 84 list. So while your (correct) program won't change its results, it 85 is likely to execute more slowly.</para> 86 87<para>libstdc++ includes many extensions to the C++ standard library. In 88 some cases the extensions are obvious, such as the hashed 89 associative containers, whereas other extensions give predictable 90 results to behavior that would otherwise be undefined, such as 91 throwing an exception when a <code>std::basic_string</code> is 92 constructed from a NULL character pointer. This latter category also 93 includes implementation-defined and unspecified semantics, such as 94 the growth rate of a vector. Use of these extensions is not 95 considered incorrect, so code that relies on them will not be 96 rejected by debug mode. However, use of these extensions may affect 97 the portability of code to other implementations of the C++ standard 98 library, and is therefore somewhat hazardous. For this reason, the 99 libstdc++ debug mode offers a "pedantic" mode (similar to 100 GCC's <code>-pedantic</code> compiler flag) that attempts to emulate 101 the semantics guaranteed by the C++ standard. For 102 instance, constructing a <code>std::basic_string</code> with a NULL 103 character pointer would result in an exception under normal mode or 104 non-pedantic debug mode (this is a libstdc++ extension), whereas 105 under pedantic debug mode libstdc++ would signal an error. To enable 106 the pedantic debug mode, compile your program with 107 both <code>-D_GLIBCXX_DEBUG</code> 108 and <code>-D_GLIBCXX_DEBUG_PEDANTIC</code> . 109 (N.B. In GCC 3.4.x and 4.0.0, due to a bug, 110 <code>-D_GLIBXX_DEBUG_PEDANTIC</code> was also needed. The problem has 111 been fixed in GCC 4.0.1 and later versions.) </para> 112 113<para>The following library components provide extra debugging 114 capabilities in debug mode:</para> 115<itemizedlist> 116 <listitem><para><code>std::basic_string</code> (no safe iterators and see note below)</para></listitem> 117 <listitem><para><code>std::bitset</code></para></listitem> 118 <listitem><para><code>std::deque</code></para></listitem> 119 <listitem><para><code>std::list</code></para></listitem> 120 <listitem><para><code>std::map</code></para></listitem> 121 <listitem><para><code>std::multimap</code></para></listitem> 122 <listitem><para><code>std::multiset</code></para></listitem> 123 <listitem><para><code>std::set</code></para></listitem> 124 <listitem><para><code>std::vector</code></para></listitem> 125 <listitem><para><code>std::unordered_map</code></para></listitem> 126 <listitem><para><code>std::unordered_multimap</code></para></listitem> 127 <listitem><para><code>std::unordered_set</code></para></listitem> 128 <listitem><para><code>std::unordered_multiset</code></para></listitem> 129</itemizedlist> 130 131<para>N.B. although there are precondition checks for some string operations, 132e.g. <code>operator[]</code>, 133they will not always be run when using the <code>char</code> and 134<code>wchar_t</code> specialisations (<code>std::string</code> and 135<code>std::wstring</code>). This is because libstdc++ uses GCC's 136<code>extern template</code> extension to provide explicit instantiations 137of <code>std::string</code> and <code>std::wstring</code>, and those 138explicit instantiations don't include the debug-mode checks. If the 139containing functions are inlined then the checks will run, so compiling 140with <code>-O1</code> might be enough to enable them. Alternatively 141<code>-D_GLIBCXX_EXTERN_TEMPLATE=0</code> will suppress the declarations 142of the explicit instantiations and cause the functions to be instantiated 143with the debug-mode checks included, but this is unsupported and not 144guaranteed to work. For full debug-mode support you can use the 145<code>__gnu_debug::basic_string</code> debugging container directly, 146which always works correctly. 147</para> 148 149</sect1> 150 151<sect1 id="manual.ext.debug_mode.using" xreflabel="Using"> 152 <title>Using</title> 153 <para> 154 </para> 155<sect2 id="debug_mode.using.mode" xreflabel="Using Mode"> 156 <title>Using the Debug Mode</title> 157 158<para>To use the libstdc++ debug mode, compile your application with the 159 compiler flag <code>-D_GLIBCXX_DEBUG</code>. Note that this flag 160 changes the sizes and behavior of standard class templates such 161 as <code>std::vector</code>, and therefore you can only link code 162 compiled with debug mode and code compiled without debug mode if no 163 instantiation of a container is passed between the two translation 164 units.</para> 165 166<para>By default, error messages are formatted to fit on lines of about 167 78 characters. The environment variable 168 <code>GLIBCXX_DEBUG_MESSAGE_LENGTH</code> can be used to request a 169 different length.</para> 170 171</sect2> 172 173<sect2 id="debug_mode.using.specific" xreflabel="Using Specific"> 174 <title>Using a Specific Debug Container</title> 175<para>When it is not feasible to recompile your entire application, or 176 only specific containers need checking, debugging containers are 177 available as GNU extensions. These debugging containers are 178 functionally equivalent to the standard drop-in containers used in 179 debug mode, but they are available in a separate namespace as GNU 180 extensions and may be used in programs compiled with either release 181 mode or with debug mode. The 182 following table provides the names and headers of the debugging 183 containers: 184</para> 185 186<table frame='all'> 187<title>Debugging Containers</title> 188<tgroup cols='4' align='left' colsep='1' rowsep='1'> 189<colspec colname='c1'></colspec> 190<colspec colname='c2'></colspec> 191<colspec colname='c3'></colspec> 192<colspec colname='c4'></colspec> 193 194<thead> 195 <row> 196 <entry>Container</entry> 197 <entry>Header</entry> 198 <entry>Debug container</entry> 199 <entry>Debug header</entry> 200 </row> 201</thead> 202<tbody> 203 <row> 204 <entry><classname>std::bitset</classname></entry> 205 <entry><filename class="headerfile">bitset</filename></entry> 206 <entry><classname>__gnu_debug::bitset</classname></entry> 207 <entry><filename class="headerfile"><debug/bitset></filename></entry> 208 </row> 209 <row> 210 <entry><classname>std::deque</classname></entry> 211 <entry><filename class="headerfile">deque</filename></entry> 212 <entry><classname>__gnu_debug::deque</classname></entry> 213 <entry><filename class="headerfile"><debug/deque></filename></entry> 214 </row> 215 <row> 216 <entry><classname>std::list</classname></entry> 217 <entry><filename class="headerfile">list</filename></entry> 218 <entry><classname>__gnu_debug::list</classname></entry> 219 <entry><filename class="headerfile"><debug/list></filename></entry> 220 </row> 221 <row> 222 <entry><classname>std::map</classname></entry> 223 <entry><filename class="headerfile">map</filename></entry> 224 <entry><classname>__gnu_debug::map</classname></entry> 225 <entry><filename class="headerfile"><debug/map></filename></entry> 226 </row> 227 <row> 228 <entry><classname>std::multimap</classname></entry> 229 <entry><filename class="headerfile">map</filename></entry> 230 <entry><classname>__gnu_debug::multimap</classname></entry> 231 <entry><filename class="headerfile"><debug/map></filename></entry> 232 </row> 233 <row> 234 <entry><classname>std::multiset</classname></entry> 235 <entry><filename class="headerfile">set</filename></entry> 236 <entry><classname>__gnu_debug::multiset</classname></entry> 237 <entry><filename class="headerfile"><debug/set></filename></entry> 238 </row> 239 <row> 240 <entry><classname>std::set</classname></entry> 241 <entry><filename class="headerfile">set</filename></entry> 242 <entry><classname>__gnu_debug::set</classname></entry> 243 <entry><filename class="headerfile"><debug/set></filename></entry> 244 </row> 245 <row> 246 <entry><classname>std::string</classname></entry> 247 <entry><filename class="headerfile">string</filename></entry> 248 <entry><classname>__gnu_debug::string</classname></entry> 249 <entry><filename class="headerfile"><debug/string></filename></entry> 250 </row> 251 <row> 252 <entry><classname>std::wstring</classname></entry> 253 <entry><filename class="headerfile">string</filename></entry> 254 <entry><classname>__gnu_debug::wstring</classname></entry> 255 <entry><filename class="headerfile"><debug/string></filename></entry> 256 </row> 257 <row> 258 <entry><classname>std::basic_string</classname></entry> 259 <entry><filename class="headerfile">string</filename></entry> 260 <entry><classname>__gnu_debug::basic_string</classname></entry> 261 <entry><filename class="headerfile"><debug/string></filename></entry> 262 </row> 263 <row> 264 <entry><classname>std::vector</classname></entry> 265 <entry><filename class="headerfile">vector</filename></entry> 266 <entry><classname>__gnu_debug::vector</classname></entry> 267 <entry><filename class="headerfile"><debug/vector></filename></entry> 268 </row> 269</tbody> 270</tgroup> 271</table> 272 273<para>In addition, when compiling in C++0x mode, these additional 274containers have additional debug capability. 275</para> 276 277<table frame='all'> 278<title>Debugging Containers C++0x</title> 279<tgroup cols='4' align='left' colsep='1' rowsep='1'> 280<colspec colname='c1'></colspec> 281<colspec colname='c2'></colspec> 282<colspec colname='c3'></colspec> 283<colspec colname='c4'></colspec> 284 285<thead> 286 <row> 287 <entry>Container</entry> 288 <entry>Header</entry> 289 <entry>Debug container</entry> 290 <entry>Debug header</entry> 291 </row> 292</thead> 293<tbody> 294 <row> 295 <entry><classname>std::unordered_map</classname></entry> 296 <entry><filename class="headerfile">unordered_map</filename></entry> 297 <entry><classname>__gnu_debug::unordered_map</classname></entry> 298 <entry><filename class="headerfile"><debug/unordered_map></filename></entry> 299 </row> 300 <row> 301 <entry><classname>std::unordered_multimap</classname></entry> 302 <entry><filename class="headerfile">unordered_map</filename></entry> 303 <entry><classname>__gnu_debug::unordered_multimap</classname></entry> 304 <entry><filename class="headerfile"><debug/unordered_map></filename></entry> 305 </row> 306 <row> 307 <entry><classname>std::unordered_set</classname></entry> 308 <entry><filename class="headerfile">unordered_set</filename></entry> 309 <entry><classname>__gnu_debug::unordered_set</classname></entry> 310 <entry><filename class="headerfile"><debug/unordered_set></filename></entry> 311 </row> 312 <row> 313 <entry><classname>std::unordered_multiset</classname></entry> 314 <entry><filename class="headerfile">unordered_set</filename></entry> 315 <entry><classname>__gnu_debug::unordered_multiset</classname></entry> 316 <entry><filename class="headerfile"><debug/unordered_set></filename></entry> 317 </row> 318</tbody> 319</tgroup> 320</table> 321</sect2> 322</sect1> 323 324<sect1 id="manual.ext.debug_mode.design" xreflabel="Design"> 325 <title>Design</title> 326 <para> 327 </para> 328 <sect2 id="debug_mode.design.goals" xreflabel="Goals"> 329 <title>Goals</title> 330 <para> 331 </para> 332<para> The libstdc++ debug mode replaces unsafe (but efficient) standard 333 containers and iterators with semantically equivalent safe standard 334 containers and iterators to aid in debugging user programs. The 335 following goals directed the design of the libstdc++ debug mode:</para> 336 337 <itemizedlist> 338 339 <listitem><para><emphasis>Correctness</emphasis>: the libstdc++ debug mode must not change 340 the semantics of the standard library for all cases specified in 341 the ANSI/ISO C++ standard. The essence of this constraint is that 342 any valid C++ program should behave in the same manner regardless 343 of whether it is compiled with debug mode or release mode. In 344 particular, entities that are defined in namespace std in release 345 mode should remain defined in namespace std in debug mode, so that 346 legal specializations of namespace std entities will remain 347 valid. A program that is not valid C++ (e.g., invokes undefined 348 behavior) is not required to behave similarly, although the debug 349 mode will abort with a diagnostic when it detects undefined 350 behavior.</para></listitem> 351 352 <listitem><para><emphasis>Performance</emphasis>: the additional of the libstdc++ debug mode 353 must not affect the performance of the library when it is compiled 354 in release mode. Performance of the libstdc++ debug mode is 355 secondary (and, in fact, will be worse than the release 356 mode).</para></listitem> 357 358 <listitem><para><emphasis>Usability</emphasis>: the libstdc++ debug mode should be easy to 359 use. It should be easily incorporated into the user's development 360 environment (e.g., by requiring only a single new compiler switch) 361 and should produce reasonable diagnostics when it detects a 362 problem with the user program. Usability also involves detection 363 of errors when using the debug mode incorrectly, e.g., by linking 364 a release-compiled object against a debug-compiled object if in 365 fact the resulting program will not run correctly.</para></listitem> 366 367 <listitem><para><emphasis>Minimize recompilation</emphasis>: While it is expected that 368 users recompile at least part of their program to use debug 369 mode, the amount of recompilation affects the 370 detect-compile-debug turnaround time. This indirectly affects the 371 usefulness of the debug mode, because debugging some applications 372 may require rebuilding a large amount of code, which may not be 373 feasible when the suspect code may be very localized. There are 374 several levels of conformance to this requirement, each with its 375 own usability and implementation characteristics. In general, the 376 higher-numbered conformance levels are more usable (i.e., require 377 less recompilation) but are more complicated to implement than 378 the lower-numbered conformance levels. 379 <orderedlist> 380 <listitem><para><emphasis>Full recompilation</emphasis>: The user must recompile his or 381 her entire application and all C++ libraries it depends on, 382 including the C++ standard library that ships with the 383 compiler. This must be done even if only a small part of the 384 program can use debugging features.</para></listitem> 385 386 <listitem><para><emphasis>Full user recompilation</emphasis>: The user must recompile 387 his or her entire application and all C++ libraries it depends 388 on, but not the C++ standard library itself. This must be done 389 even if only a small part of the program can use debugging 390 features. This can be achieved given a full recompilation 391 system by compiling two versions of the standard library when 392 the compiler is installed and linking against the appropriate 393 one, e.g., a multilibs approach.</para></listitem> 394 395 <listitem><para><emphasis>Partial recompilation</emphasis>: The user must recompile the 396 parts of his or her application and the C++ libraries it 397 depends on that will use the debugging facilities 398 directly. This means that any code that uses the debuggable 399 standard containers would need to be recompiled, but code 400 that does not use them (but may, for instance, use IOStreams) 401 would not have to be recompiled.</para></listitem> 402 403 <listitem><para><emphasis>Per-use recompilation</emphasis>: The user must recompile the 404 parts of his or her application and the C++ libraries it 405 depends on where debugging should occur, and any other code 406 that interacts with those containers. This means that a set of 407 translation units that accesses a particular standard 408 container instance may either be compiled in release mode (no 409 checking) or debug mode (full checking), but must all be 410 compiled in the same way; a translation unit that does not see 411 that standard container instance need not be recompiled. This 412 also means that a translation unit <emphasis>A</emphasis> that contains a 413 particular instantiation 414 (say, <code>std::vector<int></code>) compiled in release 415 mode can be linked against a translation unit <emphasis>B</emphasis> that 416 contains the same instantiation compiled in debug mode (a 417 feature not present with partial recompilation). While this 418 behavior is technically a violation of the One Definition 419 Rule, this ability tends to be very important in 420 practice. The libstdc++ debug mode supports this level of 421 recompilation. </para></listitem> 422 423 <listitem><para><emphasis>Per-unit recompilation</emphasis>: The user must only 424 recompile the translation units where checking should occur, 425 regardless of where debuggable standard containers are 426 used. This has also been dubbed "<code>-g</code> mode", 427 because the <code>-g</code> compiler switch works in this way, 428 emitting debugging information at a per--translation-unit 429 granularity. We believe that this level of recompilation is in 430 fact not possible if we intend to supply safe iterators, leave 431 the program semantics unchanged, and not regress in 432 performance under release mode because we cannot associate 433 extra information with an iterator (to form a safe iterator) 434 without either reserving that space in release mode 435 (performance regression) or allocating extra memory associated 436 with each iterator with <code>new</code> (changes the program 437 semantics).</para></listitem> 438 </orderedlist> 439 </para></listitem> 440 </itemizedlist> 441 </sect2> 442 443 <sect2 id="debug_mode.design.methods" xreflabel="Methods"> 444 <title>Methods</title> 445 <para> 446 </para> 447<para>This section provides an overall view of the design of the 448 libstdc++ debug mode and details the relationship between design 449 decisions and the stated design goals.</para> 450 451 <sect3 id="debug_mode.design.methods.wrappers" xreflabel="Method Wrapper"> 452 <title>The Wrapper Model</title> 453<para>The libstdc++ debug mode uses a wrapper model where the 454 debugging versions of library components (e.g., iterators and 455 containers) form a layer on top of the release versions of the 456 library components. The debugging components first verify that the 457 operation is correct (aborting with a diagnostic if an error is 458 found) and will then forward to the underlying release-mode 459 container that will perform the actual work. This design decision 460 ensures that we cannot regress release-mode performance (because the 461 release-mode containers are left untouched) and partially 462 enables <link linkend="methods.coexistence.link">mixing debug and 463 release code</link> at link time, although that will not be 464 discussed at this time.</para> 465 466<para>Two types of wrappers are used in the implementation of the debug 467 mode: container wrappers and iterator wrappers. The two types of 468 wrappers interact to maintain relationships between iterators and 469 their associated containers, which are necessary to detect certain 470 types of standard library usage errors such as dereferencing 471 past-the-end iterators or inserting into a container using an 472 iterator from a different container.</para> 473 474 <sect4 id="debug_mode.design.methods.safe_iter" xreflabel="Method Safe Iter"> 475 <title>Safe Iterators</title> 476<para>Iterator wrappers provide a debugging layer over any iterator that 477 is attached to a particular container, and will manage the 478 information detailing the iterator's state (singular, 479 dereferenceable, etc.) and tracking the container to which the 480 iterator is attached. Because iterators have a well-defined, common 481 interface the iterator wrapper is implemented with the iterator 482 adaptor class template <code>__gnu_debug::_Safe_iterator</code>, 483 which takes two template parameters:</para> 484 485<itemizedlist> 486 <listitem><para><code>Iterator</code>: The underlying iterator type, which must 487 be either the <code>iterator</code> or <code>const_iterator</code> 488 typedef from the sequence type this iterator can reference.</para></listitem> 489 490 <listitem><para><code>Sequence</code>: The type of sequence that this iterator 491 references. This sequence must be a safe sequence (discussed below) 492 whose <code>iterator</code> or <code>const_iterator</code> typedef 493 is the type of the safe iterator.</para></listitem> 494</itemizedlist> 495 </sect4> 496 497 <sect4 id="debug_mode.design.methods.safe_seq" xreflabel="Method Safe Seq"> 498 <title>Safe Sequences (Containers)</title> 499 500<para>Container wrappers provide a debugging layer over a particular 501 container type. Because containers vary greatly in the member 502 functions they support and the semantics of those member functions 503 (especially in the area of iterator invalidation), container 504 wrappers are tailored to the container they reference, e.g., the 505 debugging version of <code>std::list</code> duplicates the entire 506 interface of <code>std::list</code>, adding additional semantic 507 checks and then forwarding operations to the 508 real <code>std::list</code> (a public base class of the debugging 509 version) as appropriate. However, all safe containers inherit from 510 the class template <code>__gnu_debug::_Safe_sequence</code>, 511 instantiated with the type of the safe container itself (an instance 512 of the curiously recurring template pattern).</para> 513 514<para>The iterators of a container wrapper will be 515 <link linkend="debug_mode.design.methods.safe_iter">safe 516 iterators</link> that reference sequences of this type and wrap the 517 iterators provided by the release-mode base class. The debugging 518 container will use only the safe iterators within its own interface 519 (therefore requiring the user to use safe iterators, although this 520 does not change correct user code) and will communicate with the 521 release-mode base class with only the underlying, unsafe, 522 release-mode iterators that the base class exports.</para> 523 524<para> The debugging version of <code>std::list</code> will have the 525 following basic structure:</para> 526 527<programlisting> 528template<typename _Tp, typename _Allocator = allocator<_Tp> 529 class debug-list : 530 public release-list<_Tp, _Allocator>, 531 public __gnu_debug::_Safe_sequence<debug-list<_Tp, _Allocator> > 532 { 533 typedef release-list<_Tp, _Allocator> _Base; 534 typedef debug-list<_Tp, _Allocator> _Self; 535 536 public: 537 typedef __gnu_debug::_Safe_iterator<typename _Base::iterator, _Self> iterator; 538 typedef __gnu_debug::_Safe_iterator<typename _Base::const_iterator, _Self> const_iterator; 539 540 // duplicate std::list interface with debugging semantics 541 }; 542</programlisting> 543 </sect4> 544 </sect3> 545 546 <sect3 id="debug_mode.design.methods.precond" xreflabel="Precondition check"> 547 <title>Precondition Checking</title> 548<para>The debug mode operates primarily by checking the preconditions of 549 all standard library operations that it supports. Preconditions that 550 are always checked (regardless of whether or not we are in debug 551 mode) are checked via the <code>__check_xxx</code> macros defined 552 and documented in the source 553 file <code>include/debug/debug.h</code>. Preconditions that may or 554 may not be checked, depending on the debug-mode 555 macro <code>_GLIBCXX_DEBUG</code>, are checked via 556 the <code>__requires_xxx</code> macros defined and documented in the 557 same source file. Preconditions are validated using any additional 558 information available at run-time, e.g., the containers that are 559 associated with a particular iterator, the position of the iterator 560 within those containers, the distance between two iterators that may 561 form a valid range, etc. In the absence of suitable information, 562 e.g., an input iterator that is not a safe iterator, these 563 precondition checks will silently succeed.</para> 564 565<para>The majority of precondition checks use the aforementioned macros, 566 which have the secondary benefit of having prewritten debug 567 messages that use information about the current status of the 568 objects involved (e.g., whether an iterator is singular or what 569 sequence it is attached to) along with some static information 570 (e.g., the names of the function parameters corresponding to the 571 objects involved). When not using these macros, the debug mode uses 572 either the debug-mode assertion 573 macro <code>_GLIBCXX_DEBUG_ASSERT</code> , its pedantic 574 cousin <code>_GLIBCXX_DEBUG_PEDASSERT</code>, or the assertion 575 check macro that supports more advance formulation of error 576 messages, <code>_GLIBCXX_DEBUG_VERIFY</code>. These macros are 577 documented more thoroughly in the debug mode source code.</para> 578 </sect3> 579 580 <sect3 id="debug_mode.design.methods.coexistence" xreflabel="Coexistence"> 581 <title>Release- and debug-mode coexistence</title> 582<para>The libstdc++ debug mode is the first debug mode we know of that 583 is able to provide the "Per-use recompilation" (4) guarantee, that 584 allows release-compiled and debug-compiled code to be linked and 585 executed together without causing unpredictable behavior. This 586 guarantee minimizes the recompilation that users are required to 587 perform, shortening the detect-compile-debug bug hunting cycle 588 and making the debug mode easier to incorporate into development 589 environments by minimizing dependencies.</para> 590 591<para>Achieving link- and run-time coexistence is not a trivial 592 implementation task. To achieve this goal we required a small 593 extension to the GNU C++ compiler (since incorporated into the C++0x language specification, described in the GCC Manual for the C++ language as 594 <ulink url="http://gcc.gnu.org/onlinedocs/gcc/Namespace-Association.html#Namespace-Association">namespace 595 association</ulink>), and a complex organization of debug- and 596 release-modes. The end result is that we have achieved per-use 597 recompilation but have had to give up some checking of the 598 <code>std::basic_string</code> class template (namely, safe 599 iterators). 600</para> 601 602 <sect4 id="methods.coexistence.compile" xreflabel="Compile"> 603 <title>Compile-time coexistence of release- and debug-mode components</title> 604 605<para>Both the release-mode components and the debug-mode 606 components need to exist within a single translation unit so that 607 the debug versions can wrap the release versions. However, only one 608 of these components should be user-visible at any particular 609 time with the standard name, e.g., <code>std::list</code>. </para> 610 611<para>In release mode, we define only the release-mode version of the 612 component with its standard name and do not include the debugging 613 component at all. The release mode version is defined within the 614 namespace <code>std</code>. Minus the namespace associations, this 615 method leaves the behavior of release mode completely unchanged from 616 its behavior prior to the introduction of the libstdc++ debug 617 mode. Here's an example of what this ends up looking like, in 618 C++.</para> 619 620<programlisting> 621namespace std 622{ 623 template<typename _Tp, typename _Alloc = allocator<_Tp> > 624 class list 625 { 626 // ... 627 }; 628} // namespace std 629</programlisting> 630 631<para>In debug mode we include the release-mode container (which is now 632defined in the namespace <code>__norm</code>) and also the 633debug-mode container. The debug-mode container is defined within the 634namespace <code>__debug</code>, which is associated with namespace 635<code>std</code> via the C++0x namespace association language feature. This 636method allows the debug and release versions of the same component to 637coexist at compile-time and link-time without causing an unreasonable 638maintenance burden, while minimizing confusion. Again, this boils down 639to C++ code as follows:</para> 640 641<programlisting> 642namespace std 643{ 644 namespace __norm 645 { 646 template<typename _Tp, typename _Alloc = allocator<_Tp> > 647 class list 648 { 649 // ... 650 }; 651 } // namespace __gnu_norm 652 653 namespace __debug 654 { 655 template<typename _Tp, typename _Alloc = allocator<_Tp> > 656 class list 657 : public __norm::list<_Tp, _Alloc>, 658 public __gnu_debug::_Safe_sequence<list<_Tp, _Alloc> > 659 { 660 // ... 661 }; 662 } // namespace __norm 663 664 // namespace __debug __attribute__ ((strong)); 665 inline namespace __debug { } 666} 667</programlisting> 668 </sect4> 669 670 <sect4 id="methods.coexistence.link" xreflabel="Link"> 671 <title>Link- and run-time coexistence of release- and 672 debug-mode components</title> 673 674<para>Because each component has a distinct and separate release and 675debug implementation, there is no issue with link-time 676coexistence: the separate namespaces result in different mangled 677names, and thus unique linkage.</para> 678 679<para>However, components that are defined and used within the C++ 680standard library itself face additional constraints. For instance, 681some of the member functions of <code> std::moneypunct</code> return 682<code>std::basic_string</code>. Normally, this is not a problem, but 683with a mixed mode standard library that could be using either 684debug-mode or release-mode <code> basic_string</code> objects, things 685get more complicated. As the return value of a function is not 686encoded into the mangled name, there is no way to specify a 687release-mode or a debug-mode string. In practice, this results in 688runtime errors. A simplified example of this problem is as follows. 689</para> 690 691<para> Take this translation unit, compiled in debug-mode: </para> 692<programlisting> 693// -D_GLIBCXX_DEBUG 694#include <string> 695 696std::string test02(); 697 698std::string test01() 699{ 700 return test02(); 701} 702 703int main() 704{ 705 test01(); 706 return 0; 707} 708</programlisting> 709 710<para> ... and linked to this translation unit, compiled in release mode:</para> 711 712<programlisting> 713#include <string> 714 715std::string 716test02() 717{ 718 return std::string("toast"); 719} 720</programlisting> 721 722<para> For this reason we cannot easily provide safe iterators for 723 the <code>std::basic_string</code> class template, as it is present 724 throughout the C++ standard library. For instance, locale facets 725 define typedefs that include <code>basic_string</code>: in a mixed 726 debug/release program, should that typedef be based on the 727 debug-mode <code>basic_string</code> or the 728 release-mode <code>basic_string</code>? While the answer could be 729 "both", and the difference hidden via renaming a la the 730 debug/release containers, we must note two things about locale 731 facets:</para> 732 733<orderedlist> 734 <listitem><para>They exist as shared state: one can create a facet in one 735 translation unit and access the facet via the same type name in a 736 different translation unit. This means that we cannot have two 737 different versions of locale facets, because the types would not be 738 the same across debug/release-mode translation unit barriers.</para></listitem> 739 740 <listitem><para>They have virtual functions returning strings: these functions 741 mangle in the same way regardless of the mangling of their return 742 types (see above), and their precise signatures can be relied upon 743 by users because they may be overridden in derived classes.</para></listitem> 744</orderedlist> 745 746<para>With the design of libstdc++ debug mode, we cannot effectively hide 747 the differences between debug and release-mode strings from the 748 user. Failure to hide the differences may result in unpredictable 749 behavior, and for this reason we have opted to only 750 perform <code>basic_string</code> changes that do not require ABI 751 changes. The effect on users is expected to be minimal, as there are 752 simple alternatives (e.g., <code>__gnu_debug::basic_string</code>), 753 and the usability benefit we gain from the ability to mix debug- and 754 release-compiled translation units is enormous.</para> 755 </sect4> 756 757 <sect4 id="methods.coexistence.alt" xreflabel="Alternatives"> 758<title>Alternatives for Coexistence</title> 759 760<para>The coexistence scheme above was chosen over many alternatives, 761 including language-only solutions and solutions that also required 762 extensions to the C++ front end. The following is a partial list of 763 solutions, with justifications for our rejection of each.</para> 764 765<itemizedlist> 766 <listitem><para><emphasis>Completely separate debug/release libraries</emphasis>: This is by 767 far the simplest implementation option, where we do not allow any 768 coexistence of debug- and release-compiled translation units in a 769 program. This solution has an extreme negative affect on usability, 770 because it is quite likely that some libraries an application 771 depends on cannot be recompiled easily. This would not meet 772 our <emphasis>usability</emphasis> or <emphasis>minimize recompilation</emphasis> criteria 773 well.</para></listitem> 774 775 <listitem><para><emphasis>Add a <code>Debug</code> boolean template parameter</emphasis>: 776 Partial specialization could be used to select the debug 777 implementation when <code>Debug == true</code>, and the state 778 of <code>_GLIBCXX_DEBUG</code> could decide whether the 779 default <code>Debug</code> argument is <code>true</code> 780 or <code>false</code>. This option would break conformance with the 781 C++ standard in both debug <emphasis>and</emphasis> release modes. This would 782 not meet our <emphasis>correctness</emphasis> criteria. </para></listitem> 783 784 <listitem><para><emphasis>Packaging a debug flag in the allocators</emphasis>: We could 785 reuse the <code>Allocator</code> template parameter of containers 786 by adding a sentinel wrapper <code>debug<></code> that 787 signals the user's intention to use debugging, and pick up 788 the <code>debug<></code> allocator wrapper in a partial 789 specialization. However, this has two drawbacks: first, there is a 790 conformance issue because the default allocator would not be the 791 standard-specified <code>std::allocator<T></code>. Secondly 792 (and more importantly), users that specify allocators instead of 793 implicitly using the default allocator would not get debugging 794 containers. Thus this solution fails the <emphasis>correctness</emphasis> 795 criteria.</para></listitem> 796 797 <listitem><para><emphasis>Define debug containers in another namespace, and employ 798 a <code>using</code> declaration (or directive)</emphasis>: This is an 799 enticing option, because it would eliminate the need for 800 the <code>link_name</code> extension by aliasing the 801 templates. However, there is no true template aliasing mechanism 802 in C++, because both <code>using</code> directives and using 803 declarations disallow specialization. This method fails 804 the <emphasis>correctness</emphasis> criteria.</para></listitem> 805 806 <listitem><para><emphasis> Use implementation-specific properties of anonymous 807 namespaces. </emphasis> 808 See <ulink url="http://gcc.gnu.org/ml/libstdc++/2003-08/msg00004.html"> this post 809 </ulink> 810 This method fails the <emphasis>correctness</emphasis> criteria.</para></listitem> 811 812 <listitem><para><emphasis>Extension: allow reopening on namespaces</emphasis>: This would 813 allow the debug mode to effectively alias the 814 namespace <code>std</code> to an internal namespace, such 815 as <code>__gnu_std_debug</code>, so that it is completely 816 separate from the release-mode <code>std</code> namespace. While 817 this will solve some renaming problems and ensure that 818 debug- and release-compiled code cannot be mixed unsafely, it ensures that 819 debug- and release-compiled code cannot be mixed at all. For 820 instance, the program would have two <code>std::cout</code> 821 objects! This solution would fails the <emphasis>minimize 822 recompilation</emphasis> requirement, because we would only be able to 823 support option (1) or (2).</para></listitem> 824 825 <listitem><para><emphasis>Extension: use link name</emphasis>: This option involves 826 complicated re-naming between debug-mode and release-mode 827 components at compile time, and then a g++ extension called <emphasis> 828 link name </emphasis> to recover the original names at link time. There 829 are two drawbacks to this approach. One, it's very verbose, 830 relying on macro renaming at compile time and several levels of 831 include ordering. Two, ODR issues remained with container member 832 functions taking no arguments in mixed-mode settings resulting in 833 equivalent link names, <code> vector::push_back() </code> being 834 one example. 835 See <ulink url="http://gcc.gnu.org/ml/libstdc++/2003-08/msg00177.html">link 836 name</ulink> </para></listitem> 837</itemizedlist> 838 839<para>Other options may exist for implementing the debug mode, many of 840 which have probably been considered and others that may still be 841 lurking. This list may be expanded over time to include other 842 options that we could have implemented, but in all cases the full 843 ramifications of the approach (as measured against the design goals 844 for a libstdc++ debug mode) should be considered first. The DejaGNU 845 testsuite includes some testcases that check for known problems with 846 some solutions (e.g., the <code>using</code> declaration solution 847 that breaks user specialization), and additional testcases will be 848 added as we are able to identify other typical problem cases. These 849 test cases will serve as a benchmark by which we can compare debug 850 mode implementations.</para> 851 </sect4> 852 </sect3> 853 </sect2> 854 855 <sect2 id="debug_mode.design.other" xreflabel="Other"> 856 <title>Other Implementations</title> 857 <para> 858 </para> 859<para> There are several existing implementations of debug modes for C++ 860 standard library implementations, although none of them directly 861 supports debugging for programs using libstdc++. The existing 862 implementations include:</para> 863<itemizedlist> 864 <listitem><para><ulink url="http://www.mathcs.sjsu.edu/faculty/horstman/safestl.html">SafeSTL</ulink>: 865 SafeSTL was the original debugging version of the Standard Template 866 Library (STL), implemented by Cay S. Horstmann on top of the 867 Hewlett-Packard STL. Though it inspired much work in this area, it 868 has not been kept up-to-date for use with modern compilers or C++ 869 standard library implementations.</para></listitem> 870 871 <listitem><para><ulink url="http://www.stlport.org/">STLport</ulink>: STLport is a free 872 implementation of the C++ standard library derived from the <ulink url="http://www.sgi.com/tech/stl/">SGI implementation</ulink>, and 873 ported to many other platforms. It includes a debug mode that uses a 874 wrapper model (that in some ways inspired the libstdc++ debug mode 875 design), although at the time of this writing the debug mode is 876 somewhat incomplete and meets only the "Full user recompilation" (2) 877 recompilation guarantee by requiring the user to link against a 878 different library in debug mode vs. release mode.</para></listitem> 879 880 <listitem><para>Metrowerks CodeWarrior: The C++ standard library 881 that ships with Metrowerks CodeWarrior includes a debug mode. It is 882 a full debug-mode implementation (including debugging for 883 CodeWarrior extensions) and is easy to use, although it meets only 884 the "Full recompilation" (1) recompilation 885 guarantee.</para></listitem> 886</itemizedlist> 887 888 </sect2> 889</sect1> 890 891</chapter> 892