xref: /netbsd-src/external/gpl3/gcc.old/dist/libstdc++-v3/doc/xml/manual/debug_mode.xml (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1<?xml version='1.0'?>
2<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
3 "http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd"
4[ ]>
5
6<chapter id="manual.ext.debug_mode" xreflabel="Debug Mode">
7<?dbhtml filename="debug_mode.html"?>
8
9<chapterinfo>
10  <keywordset>
11    <keyword>
12      C++
13    </keyword>
14    <keyword>
15      library
16    </keyword>
17    <keyword>
18      debug
19    </keyword>
20  </keywordset>
21</chapterinfo>
22
23<title>Debug Mode</title>
24
25<sect1 id="manual.ext.debug_mode.intro" xreflabel="Intro">
26  <title>Intro</title>
27  <para>
28    By default, libstdc++ is built with efficiency in mind, and
29    therefore performs little or no error checking that is not
30    required by the C++ standard. This means that programs that
31    incorrectly use the C++ standard library will exhibit behavior
32    that is not portable and may not even be predictable, because they
33    tread into implementation-specific or undefined behavior. To
34    detect some of these errors before they can become problematic,
35    libstdc++ offers a debug mode that provides additional checking of
36    library facilities, and will report errors in the use of libstdc++
37    as soon as they can be detected by emitting a description of the
38    problem to standard error and aborting the program.  This debug
39    mode is available with GCC 3.4.0 and later versions.
40  </para>
41
42  <para>
43    The libstdc++ debug mode performs checking for many areas of the
44    C++ standard, but the focus is on checking interactions among
45    standard iterators, containers, and algorithms, including:
46  </para>
47
48  <itemizedlist>
49    <listitem><para><emphasis>Safe iterators</emphasis>: Iterators keep track of the
50    container whose elements they reference, so errors such as
51    incrementing a past-the-end iterator or dereferencing an iterator
52    that points to a container that has been destructed are diagnosed
53    immediately.</para></listitem>
54
55    <listitem><para><emphasis>Algorithm preconditions</emphasis>: Algorithms attempt to
56    validate their input parameters to detect errors as early as
57    possible. For instance, the <code>set_intersection</code>
58    algorithm requires that its iterator
59    parameters <code>first1</code> and <code>last1</code> form a valid
60    iterator range, and that the sequence
61    [<code>first1</code>, <code>last1</code>) is sorted according to
62    the same predicate that was passed
63    to <code>set_intersection</code>; the libstdc++ debug mode will
64    detect an error if the sequence is not sorted or was sorted by a
65    different predicate.</para></listitem>
66  </itemizedlist>
67
68</sect1>
69
70<sect1 id="manual.ext.debug_mode.semantics" xreflabel="Semantics">
71  <title>Semantics</title>
72  <para>
73  </para>
74
75<para>A program that uses the C++ standard library correctly
76  will maintain the same semantics under debug mode as it had with
77  the normal (release) library. All functional and exception-handling
78  guarantees made by the normal library also hold for the debug mode
79  library, with one exception: performance guarantees made by the
80  normal library may not hold in the debug mode library. For
81  instance, erasing an element in a <code>std::list</code> is a
82  constant-time operation in normal library, but in debug mode it is
83  linear in the number of iterators that reference that particular
84  list. So while your (correct) program won't change its results, it
85  is likely to execute more slowly.</para>
86
87<para>libstdc++ includes many extensions to the C++ standard library. In
88  some cases the extensions are obvious, such as the hashed
89  associative containers, whereas other extensions give predictable
90  results to behavior that would otherwise be undefined, such as
91  throwing an exception when a <code>std::basic_string</code> is
92  constructed from a NULL character pointer. This latter category also
93  includes implementation-defined and unspecified semantics, such as
94  the growth rate of a vector. Use of these extensions is not
95  considered incorrect, so code that relies on them will not be
96  rejected by debug mode. However, use of these extensions may affect
97  the portability of code to other implementations of the C++ standard
98  library, and is therefore somewhat hazardous. For this reason, the
99  libstdc++ debug mode offers a "pedantic" mode (similar to
100  GCC's <code>-pedantic</code> compiler flag) that attempts to emulate
101  the semantics guaranteed by the C++ standard. For
102  instance, constructing a <code>std::basic_string</code> with a NULL
103  character pointer would result in an exception under normal mode or
104  non-pedantic debug mode (this is a libstdc++ extension), whereas
105  under pedantic debug mode libstdc++ would signal an error. To enable
106  the pedantic debug mode, compile your program with
107  both <code>-D_GLIBCXX_DEBUG</code>
108  and <code>-D_GLIBCXX_DEBUG_PEDANTIC</code> .
109  (N.B. In GCC 3.4.x and 4.0.0, due to a bug,
110  <code>-D_GLIBXX_DEBUG_PEDANTIC</code> was also needed. The problem has
111  been fixed in GCC 4.0.1 and later versions.) </para>
112
113<para>The following library components provide extra debugging
114  capabilities in debug mode:</para>
115<itemizedlist>
116  <listitem><para><code>std::basic_string</code> (no safe iterators and see note below)</para></listitem>
117  <listitem><para><code>std::bitset</code></para></listitem>
118  <listitem><para><code>std::deque</code></para></listitem>
119  <listitem><para><code>std::list</code></para></listitem>
120  <listitem><para><code>std::map</code></para></listitem>
121  <listitem><para><code>std::multimap</code></para></listitem>
122  <listitem><para><code>std::multiset</code></para></listitem>
123  <listitem><para><code>std::set</code></para></listitem>
124  <listitem><para><code>std::vector</code></para></listitem>
125  <listitem><para><code>std::unordered_map</code></para></listitem>
126  <listitem><para><code>std::unordered_multimap</code></para></listitem>
127  <listitem><para><code>std::unordered_set</code></para></listitem>
128  <listitem><para><code>std::unordered_multiset</code></para></listitem>
129</itemizedlist>
130
131<para>N.B. although there are precondition checks for some string operations,
132e.g.  <code>operator[]</code>,
133they will not always be run when using the <code>char</code> and
134<code>wchar_t</code> specialisations (<code>std::string</code> and
135<code>std::wstring</code>).  This is because libstdc++ uses GCC's
136<code>extern template</code> extension to provide explicit instantiations
137of <code>std::string</code> and <code>std::wstring</code>, and those
138explicit instantiations don't include the debug-mode checks.  If the
139containing functions are inlined then the checks will run, so compiling
140with <code>-O1</code> might be enough to enable them.  Alternatively
141<code>-D_GLIBCXX_EXTERN_TEMPLATE=0</code> will suppress the declarations
142of the explicit instantiations and cause the functions to be instantiated
143with the debug-mode checks included, but this is unsupported and not
144guaranteed to work.  For full debug-mode support you can use the
145<code>__gnu_debug::basic_string</code> debugging container directly,
146which always works correctly.
147</para>
148
149</sect1>
150
151<sect1 id="manual.ext.debug_mode.using" xreflabel="Using">
152  <title>Using</title>
153  <para>
154  </para>
155<sect2 id="debug_mode.using.mode" xreflabel="Using Mode">
156  <title>Using the Debug Mode</title>
157
158<para>To use the libstdc++ debug mode, compile your application with the
159  compiler flag <code>-D_GLIBCXX_DEBUG</code>. Note that this flag
160  changes the sizes and behavior of standard class templates such
161  as <code>std::vector</code>, and therefore you can only link code
162  compiled with debug mode and code compiled without debug mode if no
163  instantiation of a container is passed between the two translation
164  units.</para>
165
166<para>By default, error messages are formatted to fit on lines of about
167  78 characters.  The environment variable
168  <code>GLIBCXX_DEBUG_MESSAGE_LENGTH</code> can be used to request a
169  different length.</para>
170
171</sect2>
172
173<sect2 id="debug_mode.using.specific" xreflabel="Using Specific">
174  <title>Using a Specific Debug Container</title>
175<para>When it is not feasible to recompile your entire application, or
176  only specific containers need checking, debugging containers are
177  available as GNU extensions. These debugging containers are
178  functionally equivalent to the standard drop-in containers used in
179  debug mode, but they are available in a separate namespace as GNU
180  extensions and may be used in programs compiled with either release
181  mode or with debug mode. The
182  following table provides the names and headers of the debugging
183  containers:
184</para>
185
186<table frame='all'>
187<title>Debugging Containers</title>
188<tgroup cols='4' align='left' colsep='1' rowsep='1'>
189<colspec colname='c1'></colspec>
190<colspec colname='c2'></colspec>
191<colspec colname='c3'></colspec>
192<colspec colname='c4'></colspec>
193
194<thead>
195  <row>
196    <entry>Container</entry>
197    <entry>Header</entry>
198    <entry>Debug container</entry>
199    <entry>Debug header</entry>
200  </row>
201</thead>
202<tbody>
203  <row>
204    <entry><classname>std::bitset</classname></entry>
205    <entry><filename class="headerfile">bitset</filename></entry>
206    <entry><classname>__gnu_debug::bitset</classname></entry>
207    <entry><filename class="headerfile">&lt;debug/bitset&gt;</filename></entry>
208  </row>
209  <row>
210    <entry><classname>std::deque</classname></entry>
211    <entry><filename class="headerfile">deque</filename></entry>
212    <entry><classname>__gnu_debug::deque</classname></entry>
213    <entry><filename class="headerfile">&lt;debug/deque&gt;</filename></entry>
214  </row>
215  <row>
216    <entry><classname>std::list</classname></entry>
217    <entry><filename class="headerfile">list</filename></entry>
218    <entry><classname>__gnu_debug::list</classname></entry>
219    <entry><filename class="headerfile">&lt;debug/list&gt;</filename></entry>
220  </row>
221  <row>
222    <entry><classname>std::map</classname></entry>
223    <entry><filename class="headerfile">map</filename></entry>
224    <entry><classname>__gnu_debug::map</classname></entry>
225    <entry><filename class="headerfile">&lt;debug/map&gt;</filename></entry>
226  </row>
227  <row>
228    <entry><classname>std::multimap</classname></entry>
229    <entry><filename class="headerfile">map</filename></entry>
230    <entry><classname>__gnu_debug::multimap</classname></entry>
231    <entry><filename class="headerfile">&lt;debug/map&gt;</filename></entry>
232  </row>
233  <row>
234    <entry><classname>std::multiset</classname></entry>
235    <entry><filename class="headerfile">set</filename></entry>
236    <entry><classname>__gnu_debug::multiset</classname></entry>
237    <entry><filename class="headerfile">&lt;debug/set&gt;</filename></entry>
238  </row>
239  <row>
240    <entry><classname>std::set</classname></entry>
241    <entry><filename class="headerfile">set</filename></entry>
242    <entry><classname>__gnu_debug::set</classname></entry>
243    <entry><filename class="headerfile">&lt;debug/set&gt;</filename></entry>
244  </row>
245  <row>
246    <entry><classname>std::string</classname></entry>
247    <entry><filename class="headerfile">string</filename></entry>
248    <entry><classname>__gnu_debug::string</classname></entry>
249    <entry><filename class="headerfile">&lt;debug/string&gt;</filename></entry>
250  </row>
251  <row>
252    <entry><classname>std::wstring</classname></entry>
253    <entry><filename class="headerfile">string</filename></entry>
254    <entry><classname>__gnu_debug::wstring</classname></entry>
255    <entry><filename class="headerfile">&lt;debug/string&gt;</filename></entry>
256  </row>
257  <row>
258    <entry><classname>std::basic_string</classname></entry>
259    <entry><filename class="headerfile">string</filename></entry>
260    <entry><classname>__gnu_debug::basic_string</classname></entry>
261    <entry><filename class="headerfile">&lt;debug/string&gt;</filename></entry>
262  </row>
263  <row>
264    <entry><classname>std::vector</classname></entry>
265    <entry><filename class="headerfile">vector</filename></entry>
266    <entry><classname>__gnu_debug::vector</classname></entry>
267    <entry><filename class="headerfile">&lt;debug/vector&gt;</filename></entry>
268  </row>
269</tbody>
270</tgroup>
271</table>
272
273<para>In addition, when compiling in C++0x mode, these additional
274containers have additional debug capability.
275</para>
276
277<table frame='all'>
278<title>Debugging Containers C++0x</title>
279<tgroup cols='4' align='left' colsep='1' rowsep='1'>
280<colspec colname='c1'></colspec>
281<colspec colname='c2'></colspec>
282<colspec colname='c3'></colspec>
283<colspec colname='c4'></colspec>
284
285<thead>
286  <row>
287    <entry>Container</entry>
288    <entry>Header</entry>
289    <entry>Debug container</entry>
290    <entry>Debug header</entry>
291  </row>
292</thead>
293<tbody>
294    <row>
295    <entry><classname>std::unordered_map</classname></entry>
296    <entry><filename class="headerfile">unordered_map</filename></entry>
297    <entry><classname>__gnu_debug::unordered_map</classname></entry>
298    <entry><filename class="headerfile">&lt;debug/unordered_map&gt;</filename></entry>
299  </row>
300  <row>
301    <entry><classname>std::unordered_multimap</classname></entry>
302    <entry><filename class="headerfile">unordered_map</filename></entry>
303    <entry><classname>__gnu_debug::unordered_multimap</classname></entry>
304    <entry><filename class="headerfile">&lt;debug/unordered_map&gt;</filename></entry>
305  </row>
306  <row>
307    <entry><classname>std::unordered_set</classname></entry>
308    <entry><filename class="headerfile">unordered_set</filename></entry>
309    <entry><classname>__gnu_debug::unordered_set</classname></entry>
310    <entry><filename class="headerfile">&lt;debug/unordered_set&gt;</filename></entry>
311  </row>
312  <row>
313    <entry><classname>std::unordered_multiset</classname></entry>
314    <entry><filename class="headerfile">unordered_set</filename></entry>
315    <entry><classname>__gnu_debug::unordered_multiset</classname></entry>
316    <entry><filename class="headerfile">&lt;debug/unordered_set&gt;</filename></entry>
317  </row>
318</tbody>
319</tgroup>
320</table>
321</sect2>
322</sect1>
323
324<sect1 id="manual.ext.debug_mode.design" xreflabel="Design">
325  <title>Design</title>
326  <para>
327  </para>
328  <sect2 id="debug_mode.design.goals" xreflabel="Goals">
329    <title>Goals</title>
330    <para>
331    </para>
332<para> The libstdc++ debug mode replaces unsafe (but efficient) standard
333  containers and iterators with semantically equivalent safe standard
334  containers and iterators to aid in debugging user programs. The
335  following goals directed the design of the libstdc++ debug mode:</para>
336
337  <itemizedlist>
338
339    <listitem><para><emphasis>Correctness</emphasis>: the libstdc++ debug mode must not change
340    the semantics of the standard library for all cases specified in
341    the ANSI/ISO C++ standard. The essence of this constraint is that
342    any valid C++ program should behave in the same manner regardless
343    of whether it is compiled with debug mode or release mode. In
344    particular, entities that are defined in namespace std in release
345    mode should remain defined in namespace std in debug mode, so that
346    legal specializations of namespace std entities will remain
347    valid. A program that is not valid C++ (e.g., invokes undefined
348    behavior) is not required to behave similarly, although the debug
349    mode will abort with a diagnostic when it detects undefined
350    behavior.</para></listitem>
351
352    <listitem><para><emphasis>Performance</emphasis>: the additional of the libstdc++ debug mode
353    must not affect the performance of the library when it is compiled
354    in release mode. Performance of the libstdc++ debug mode is
355    secondary (and, in fact, will be worse than the release
356    mode).</para></listitem>
357
358    <listitem><para><emphasis>Usability</emphasis>: the libstdc++ debug mode should be easy to
359    use. It should be easily incorporated into the user's development
360    environment (e.g., by requiring only a single new compiler switch)
361    and should produce reasonable diagnostics when it detects a
362    problem with the user program. Usability also involves detection
363    of errors when using the debug mode incorrectly, e.g., by linking
364    a release-compiled object against a debug-compiled object if in
365    fact the resulting program will not run correctly.</para></listitem>
366
367    <listitem><para><emphasis>Minimize recompilation</emphasis>: While it is expected that
368    users recompile at least part of their program to use debug
369    mode, the amount of recompilation affects the
370    detect-compile-debug turnaround time. This indirectly affects the
371    usefulness of the debug mode, because debugging some applications
372    may require rebuilding a large amount of code, which may not be
373    feasible when the suspect code may be very localized. There are
374    several levels of conformance to this requirement, each with its
375    own usability and implementation characteristics. In general, the
376    higher-numbered conformance levels are more usable (i.e., require
377    less recompilation) but are more complicated to implement than
378    the lower-numbered conformance levels.
379      <orderedlist>
380	<listitem><para><emphasis>Full recompilation</emphasis>: The user must recompile his or
381	her entire application and all C++ libraries it depends on,
382	including the C++ standard library that ships with the
383	compiler. This must be done even if only a small part of the
384	program can use debugging features.</para></listitem>
385
386	<listitem><para><emphasis>Full user recompilation</emphasis>: The user must recompile
387	his or her entire application and all C++ libraries it depends
388	on, but not the C++ standard library itself. This must be done
389	even if only a small part of the program can use debugging
390	features. This can be achieved given a full recompilation
391	system by compiling two versions of the standard library when
392	the compiler is installed and linking against the appropriate
393	one, e.g., a multilibs approach.</para></listitem>
394
395	<listitem><para><emphasis>Partial recompilation</emphasis>: The user must recompile the
396	parts of his or her application and the C++ libraries it
397	depends on that will use the debugging facilities
398	directly. This means that any code that uses the debuggable
399	standard containers would need to be recompiled, but code
400	that does not use them (but may, for instance, use IOStreams)
401	would not have to be recompiled.</para></listitem>
402
403	<listitem><para><emphasis>Per-use recompilation</emphasis>: The user must recompile the
404	parts of his or her application and the C++ libraries it
405	depends on where debugging should occur, and any other code
406	that interacts with those containers. This means that a set of
407	translation units that accesses a particular standard
408	container instance may either be compiled in release mode (no
409	checking) or debug mode (full checking), but must all be
410	compiled in the same way; a translation unit that does not see
411	that standard container instance need not be recompiled. This
412	also means that a translation unit <emphasis>A</emphasis> that contains a
413	particular instantiation
414	(say, <code>std::vector&lt;int&gt;</code>) compiled in release
415	mode can be linked against a translation unit <emphasis>B</emphasis> that
416	contains the same instantiation compiled in debug mode (a
417	feature not present with partial recompilation). While this
418	behavior is technically a violation of the One Definition
419	Rule, this ability tends to be very important in
420	practice. The libstdc++ debug mode supports this level of
421	recompilation. </para></listitem>
422
423	<listitem><para><emphasis>Per-unit recompilation</emphasis>: The user must only
424	recompile the translation units where checking should occur,
425	regardless of where debuggable standard containers are
426	used. This has also been dubbed "<code>-g</code> mode",
427	because the <code>-g</code> compiler switch works in this way,
428	emitting debugging information at a per--translation-unit
429	granularity. We believe that this level of recompilation is in
430	fact not possible if we intend to supply safe iterators, leave
431	the program semantics unchanged, and not regress in
432	performance under release mode because we cannot associate
433	extra information with an iterator (to form a safe iterator)
434	without either reserving that space in release mode
435	(performance regression) or allocating extra memory associated
436	with each iterator with <code>new</code> (changes the program
437	semantics).</para></listitem>
438      </orderedlist>
439    </para></listitem>
440  </itemizedlist>
441  </sect2>
442
443  <sect2 id="debug_mode.design.methods" xreflabel="Methods">
444    <title>Methods</title>
445    <para>
446    </para>
447<para>This section provides an overall view of the design of the
448  libstdc++ debug mode and details the relationship between design
449  decisions and the stated design goals.</para>
450
451  <sect3 id="debug_mode.design.methods.wrappers" xreflabel="Method Wrapper">
452    <title>The Wrapper Model</title>
453<para>The libstdc++ debug mode uses a wrapper model where the
454  debugging versions of library components (e.g., iterators and
455  containers) form a layer on top of the release versions of the
456  library components. The debugging components first verify that the
457  operation is correct (aborting with a diagnostic if an error is
458  found) and will then forward to the underlying release-mode
459  container that will perform the actual work. This design decision
460  ensures that we cannot regress release-mode performance (because the
461  release-mode containers are left untouched) and partially
462  enables <link linkend="methods.coexistence.link">mixing debug and
463  release code</link> at link time, although that will not be
464  discussed at this time.</para>
465
466<para>Two types of wrappers are used in the implementation of the debug
467  mode: container wrappers and iterator wrappers. The two types of
468  wrappers interact to maintain relationships between iterators and
469  their associated containers, which are necessary to detect certain
470  types of standard library usage errors such as dereferencing
471  past-the-end iterators or inserting into a container using an
472  iterator from a different container.</para>
473
474  <sect4 id="debug_mode.design.methods.safe_iter" xreflabel="Method Safe Iter">
475    <title>Safe Iterators</title>
476<para>Iterator wrappers provide a debugging layer over any iterator that
477  is attached to a particular container, and will manage the
478  information detailing the iterator's state (singular,
479  dereferenceable, etc.) and tracking the container to which the
480  iterator is attached. Because iterators have a well-defined, common
481  interface the iterator wrapper is implemented with the iterator
482  adaptor class template <code>__gnu_debug::_Safe_iterator</code>,
483  which takes two template parameters:</para>
484
485<itemizedlist>
486  <listitem><para><code>Iterator</code>: The underlying iterator type, which must
487    be either the <code>iterator</code> or <code>const_iterator</code>
488    typedef from the sequence type this iterator can reference.</para></listitem>
489
490  <listitem><para><code>Sequence</code>: The type of sequence that this iterator
491  references. This sequence must be a safe sequence (discussed below)
492  whose <code>iterator</code> or <code>const_iterator</code> typedef
493  is the type of the safe iterator.</para></listitem>
494</itemizedlist>
495  </sect4>
496
497  <sect4 id="debug_mode.design.methods.safe_seq" xreflabel="Method Safe Seq">
498    <title>Safe Sequences (Containers)</title>
499
500<para>Container wrappers provide a debugging layer over a particular
501  container type. Because containers vary greatly in the member
502  functions they support and the semantics of those member functions
503  (especially in the area of iterator invalidation), container
504  wrappers are tailored to the container they reference, e.g., the
505  debugging version of <code>std::list</code> duplicates the entire
506  interface of <code>std::list</code>, adding additional semantic
507  checks and then forwarding operations to the
508  real <code>std::list</code> (a public base class of the debugging
509  version) as appropriate. However, all safe containers inherit from
510  the class template <code>__gnu_debug::_Safe_sequence</code>,
511  instantiated with the type of the safe container itself (an instance
512  of the curiously recurring template pattern).</para>
513
514<para>The iterators of a container wrapper will be
515  <link linkend="debug_mode.design.methods.safe_iter">safe
516  iterators</link> that reference sequences of this type and wrap the
517  iterators provided by the release-mode base class. The debugging
518  container will use only the safe iterators within its own interface
519  (therefore requiring the user to use safe iterators, although this
520  does not change correct user code) and will communicate with the
521  release-mode base class with only the underlying, unsafe,
522  release-mode iterators that the base class exports.</para>
523
524<para> The debugging version of <code>std::list</code> will have the
525  following basic structure:</para>
526
527<programlisting>
528template&lt;typename _Tp, typename _Allocator = allocator&lt;_Tp&gt;
529  class debug-list :
530    public release-list&lt;_Tp, _Allocator&gt;,
531    public __gnu_debug::_Safe_sequence&lt;debug-list&lt;_Tp, _Allocator&gt; &gt;
532  {
533    typedef release-list&lt;_Tp, _Allocator&gt; _Base;
534    typedef debug-list&lt;_Tp, _Allocator&gt;   _Self;
535
536  public:
537    typedef __gnu_debug::_Safe_iterator&lt;typename _Base::iterator, _Self&gt;       iterator;
538    typedef __gnu_debug::_Safe_iterator&lt;typename _Base::const_iterator, _Self&gt; const_iterator;
539
540    // duplicate std::list interface with debugging semantics
541  };
542</programlisting>
543  </sect4>
544  </sect3>
545
546  <sect3 id="debug_mode.design.methods.precond" xreflabel="Precondition check">
547    <title>Precondition Checking</title>
548<para>The debug mode operates primarily by checking the preconditions of
549  all standard library operations that it supports. Preconditions that
550  are always checked (regardless of whether or not we are in debug
551  mode) are checked via the <code>__check_xxx</code> macros defined
552  and documented in the source
553  file <code>include/debug/debug.h</code>. Preconditions that may or
554  may not be checked, depending on the debug-mode
555  macro <code>_GLIBCXX_DEBUG</code>, are checked via
556  the <code>__requires_xxx</code> macros defined and documented in the
557  same source file. Preconditions are validated using any additional
558  information available at run-time, e.g., the containers that are
559  associated with a particular iterator, the position of the iterator
560  within those containers, the distance between two iterators that may
561  form a valid range, etc. In the absence of suitable information,
562  e.g., an input iterator that is not a safe iterator, these
563  precondition checks will silently succeed.</para>
564
565<para>The majority of precondition checks use the aforementioned macros,
566  which have the secondary benefit of having prewritten debug
567  messages that use information about the current status of the
568  objects involved (e.g., whether an iterator is singular or what
569  sequence it is attached to) along with some static information
570  (e.g., the names of the function parameters corresponding to the
571  objects involved). When not using these macros, the debug mode uses
572  either the debug-mode assertion
573  macro <code>_GLIBCXX_DEBUG_ASSERT</code> , its pedantic
574  cousin <code>_GLIBCXX_DEBUG_PEDASSERT</code>, or the assertion
575  check macro that supports more advance formulation of error
576  messages, <code>_GLIBCXX_DEBUG_VERIFY</code>. These macros are
577  documented more thoroughly in the debug mode source code.</para>
578  </sect3>
579
580  <sect3 id="debug_mode.design.methods.coexistence" xreflabel="Coexistence">
581    <title>Release- and debug-mode coexistence</title>
582<para>The libstdc++ debug mode is the first debug mode we know of that
583  is able to provide the "Per-use recompilation" (4) guarantee, that
584  allows release-compiled and debug-compiled code to be linked and
585  executed together without causing unpredictable behavior. This
586  guarantee minimizes the recompilation that users are required to
587  perform, shortening the detect-compile-debug bug hunting cycle
588  and making the debug mode easier to incorporate into development
589  environments by minimizing dependencies.</para>
590
591<para>Achieving link- and run-time coexistence is not a trivial
592  implementation task. To achieve this goal we required a small
593  extension to the GNU C++ compiler (since incorporated into the C++0x language specification, described in the GCC Manual for the C++ language as
594  <ulink url="http://gcc.gnu.org/onlinedocs/gcc/Namespace-Association.html#Namespace-Association">namespace
595  association</ulink>), and a complex organization of debug- and
596  release-modes. The end result is that we have achieved per-use
597  recompilation but have had to give up some checking of the
598  <code>std::basic_string</code> class template (namely, safe
599  iterators).
600</para>
601
602 <sect4 id="methods.coexistence.compile" xreflabel="Compile">
603   <title>Compile-time coexistence of release- and debug-mode components</title>
604
605<para>Both the release-mode components and the debug-mode
606  components need to exist within a single translation unit so that
607  the debug versions can wrap the release versions. However, only one
608  of these components should be user-visible at any particular
609  time with the standard name, e.g., <code>std::list</code>. </para>
610
611<para>In release mode, we define only the release-mode version of the
612  component with its standard name and do not include the debugging
613  component at all. The release mode version is defined within the
614  namespace <code>std</code>. Minus the namespace associations, this
615  method leaves the behavior of release mode completely unchanged from
616  its behavior prior to the introduction of the libstdc++ debug
617  mode. Here's an example of what this ends up looking like, in
618  C++.</para>
619
620<programlisting>
621namespace std
622{
623  template&lt;typename _Tp, typename _Alloc = allocator&lt;_Tp&gt; &gt;
624    class list
625    {
626      // ...
627     };
628} // namespace std
629</programlisting>
630
631<para>In debug mode we include the release-mode container (which is now
632defined in the namespace <code>__norm</code>) and also the
633debug-mode container. The debug-mode container is defined within the
634namespace <code>__debug</code>, which is associated with namespace
635<code>std</code> via the C++0x namespace association language feature.  This
636method allows the debug and release versions of the same component to
637coexist at compile-time and link-time without causing an unreasonable
638maintenance burden, while minimizing confusion. Again, this boils down
639to C++ code as follows:</para>
640
641<programlisting>
642namespace std
643{
644  namespace __norm
645  {
646    template&lt;typename _Tp, typename _Alloc = allocator&lt;_Tp&gt; &gt;
647      class list
648      {
649	// ...
650      };
651  } // namespace __gnu_norm
652
653  namespace __debug
654  {
655    template&lt;typename _Tp, typename _Alloc = allocator&lt;_Tp&gt; &gt;
656      class list
657      : public __norm::list&lt;_Tp, _Alloc&gt;,
658	public __gnu_debug::_Safe_sequence&lt;list&lt;_Tp, _Alloc&gt; &gt;
659      {
660	// ...
661      };
662  } // namespace __norm
663
664  // namespace __debug __attribute__ ((strong));
665  inline namespace __debug { }
666}
667</programlisting>
668 </sect4>
669
670 <sect4 id="methods.coexistence.link" xreflabel="Link">
671   <title>Link- and run-time coexistence of release- and
672    debug-mode components</title>
673
674<para>Because each component has a distinct and separate release and
675debug implementation, there is no issue with link-time
676coexistence: the separate namespaces result in different mangled
677names, and thus unique linkage.</para>
678
679<para>However, components that are defined and used within the C++
680standard library itself face additional constraints. For instance,
681some of the member functions of <code> std::moneypunct</code> return
682<code>std::basic_string</code>. Normally, this is not a problem, but
683with a mixed mode standard library that could be using either
684debug-mode or release-mode <code> basic_string</code> objects, things
685get more complicated.  As the return value of a function is not
686encoded into the mangled name, there is no way to specify a
687release-mode or a debug-mode string. In practice, this results in
688runtime errors. A simplified example of this problem is as follows.
689</para>
690
691<para> Take this translation unit, compiled in debug-mode: </para>
692<programlisting>
693// -D_GLIBCXX_DEBUG
694#include &lt;string&gt;
695
696std::string test02();
697
698std::string test01()
699{
700  return test02();
701}
702
703int main()
704{
705  test01();
706  return 0;
707}
708</programlisting>
709
710<para> ... and linked to this translation unit, compiled in release mode:</para>
711
712<programlisting>
713#include &lt;string&gt;
714
715std::string
716test02()
717{
718  return std::string("toast");
719}
720</programlisting>
721
722<para> For this reason we cannot easily provide safe iterators for
723  the <code>std::basic_string</code> class template, as it is present
724  throughout the C++ standard library. For instance, locale facets
725  define typedefs that include <code>basic_string</code>: in a mixed
726  debug/release program, should that typedef be based on the
727  debug-mode <code>basic_string</code> or the
728  release-mode <code>basic_string</code>? While the answer could be
729  "both", and the difference hidden via renaming a la the
730  debug/release containers, we must note two things about locale
731  facets:</para>
732
733<orderedlist>
734  <listitem><para>They exist as shared state: one can create a facet in one
735  translation unit and access the facet via the same type name in a
736  different translation unit. This means that we cannot have two
737  different versions of locale facets, because the types would not be
738  the same across debug/release-mode translation unit barriers.</para></listitem>
739
740  <listitem><para>They have virtual functions returning strings: these functions
741  mangle in the same way regardless of the mangling of their return
742  types (see above), and their precise signatures can be relied upon
743  by users because they may be overridden in derived classes.</para></listitem>
744</orderedlist>
745
746<para>With the design of libstdc++ debug mode, we cannot effectively hide
747  the differences between debug and release-mode strings from the
748  user. Failure to hide the differences may result in unpredictable
749  behavior, and for this reason we have opted to only
750  perform <code>basic_string</code> changes that do not require ABI
751  changes. The effect on users is expected to be minimal, as there are
752  simple alternatives (e.g., <code>__gnu_debug::basic_string</code>),
753  and the usability benefit we gain from the ability to mix debug- and
754  release-compiled translation units is enormous.</para>
755 </sect4>
756
757 <sect4 id="methods.coexistence.alt" xreflabel="Alternatives">
758<title>Alternatives for Coexistence</title>
759
760<para>The coexistence scheme above was chosen over many alternatives,
761  including language-only solutions and solutions that also required
762  extensions to the C++ front end. The following is a partial list of
763  solutions, with justifications for our rejection of each.</para>
764
765<itemizedlist>
766  <listitem><para><emphasis>Completely separate debug/release libraries</emphasis>: This is by
767  far the simplest implementation option, where we do not allow any
768  coexistence of debug- and release-compiled translation units in a
769  program. This solution has an extreme negative affect on usability,
770  because it is quite likely that some libraries an application
771  depends on cannot be recompiled easily. This would not meet
772  our <emphasis>usability</emphasis> or <emphasis>minimize recompilation</emphasis> criteria
773  well.</para></listitem>
774
775  <listitem><para><emphasis>Add a <code>Debug</code> boolean template parameter</emphasis>:
776  Partial specialization could be used to select the debug
777  implementation when <code>Debug == true</code>, and the state
778  of <code>_GLIBCXX_DEBUG</code> could decide whether the
779  default <code>Debug</code> argument is <code>true</code>
780  or <code>false</code>. This option would break conformance with the
781  C++ standard in both debug <emphasis>and</emphasis> release modes. This would
782  not meet our <emphasis>correctness</emphasis> criteria. </para></listitem>
783
784  <listitem><para><emphasis>Packaging a debug flag in the allocators</emphasis>: We could
785    reuse the <code>Allocator</code> template parameter of containers
786    by adding a sentinel wrapper <code>debug&lt;&gt;</code> that
787    signals the user's intention to use debugging, and pick up
788    the <code>debug&lt;&gt;</code> allocator wrapper in a partial
789    specialization. However, this has two drawbacks: first, there is a
790    conformance issue because the default allocator would not be the
791    standard-specified <code>std::allocator&lt;T&gt;</code>. Secondly
792    (and more importantly), users that specify allocators instead of
793    implicitly using the default allocator would not get debugging
794    containers. Thus this solution fails the <emphasis>correctness</emphasis>
795    criteria.</para></listitem>
796
797  <listitem><para><emphasis>Define debug containers in another namespace, and employ
798      a <code>using</code> declaration (or directive)</emphasis>: This is an
799      enticing option, because it would eliminate the need for
800      the <code>link_name</code> extension by aliasing the
801      templates. However, there is no true template aliasing mechanism
802      in C++, because both <code>using</code> directives and using
803      declarations disallow specialization. This method fails
804      the <emphasis>correctness</emphasis> criteria.</para></listitem>
805
806  <listitem><para><emphasis> Use implementation-specific properties of anonymous
807    namespaces. </emphasis>
808    See <ulink url="http://gcc.gnu.org/ml/libstdc++/2003-08/msg00004.html"> this post
809    </ulink>
810    This method fails the <emphasis>correctness</emphasis> criteria.</para></listitem>
811
812  <listitem><para><emphasis>Extension: allow reopening on namespaces</emphasis>: This would
813    allow the debug mode to effectively alias the
814    namespace <code>std</code> to an internal namespace, such
815    as <code>__gnu_std_debug</code>, so that it is completely
816    separate from the release-mode <code>std</code> namespace. While
817    this will solve some renaming problems and ensure that
818    debug- and release-compiled code cannot be mixed unsafely, it ensures that
819    debug- and release-compiled code cannot be mixed at all. For
820    instance, the program would have two <code>std::cout</code>
821    objects! This solution would fails the <emphasis>minimize
822    recompilation</emphasis> requirement, because we would only be able to
823    support option (1) or (2).</para></listitem>
824
825  <listitem><para><emphasis>Extension: use link name</emphasis>: This option involves
826    complicated re-naming between debug-mode and release-mode
827    components at compile time, and then a g++ extension called <emphasis>
828    link name </emphasis> to recover the original names at link time. There
829    are two drawbacks to this approach. One, it's very verbose,
830    relying on macro renaming at compile time and several levels of
831    include ordering. Two, ODR issues remained with container member
832    functions taking no arguments in mixed-mode settings resulting in
833    equivalent link names, <code> vector::push_back() </code> being
834    one example.
835    See <ulink url="http://gcc.gnu.org/ml/libstdc++/2003-08/msg00177.html">link
836    name</ulink> </para></listitem>
837</itemizedlist>
838
839<para>Other options may exist for implementing the debug mode, many of
840  which have probably been considered and others that may still be
841  lurking. This list may be expanded over time to include other
842  options that we could have implemented, but in all cases the full
843  ramifications of the approach (as measured against the design goals
844  for a libstdc++ debug mode) should be considered first. The DejaGNU
845  testsuite includes some testcases that check for known problems with
846  some solutions (e.g., the <code>using</code> declaration solution
847  that breaks user specialization), and additional testcases will be
848  added as we are able to identify other typical problem cases. These
849  test cases will serve as a benchmark by which we can compare debug
850  mode implementations.</para>
851 </sect4>
852  </sect3>
853  </sect2>
854
855  <sect2 id="debug_mode.design.other" xreflabel="Other">
856    <title>Other Implementations</title>
857    <para>
858    </para>
859<para> There are several existing implementations of debug modes for C++
860  standard library implementations, although none of them directly
861  supports debugging for programs using libstdc++. The existing
862  implementations include:</para>
863<itemizedlist>
864  <listitem><para><ulink url="http://www.mathcs.sjsu.edu/faculty/horstman/safestl.html">SafeSTL</ulink>:
865  SafeSTL was the original debugging version of the Standard Template
866  Library (STL), implemented by Cay S. Horstmann on top of the
867  Hewlett-Packard STL. Though it inspired much work in this area, it
868  has not been kept up-to-date for use with modern compilers or C++
869  standard library implementations.</para></listitem>
870
871  <listitem><para><ulink url="http://www.stlport.org/">STLport</ulink>: STLport is a free
872  implementation of the C++ standard library derived from the <ulink url="http://www.sgi.com/tech/stl/">SGI implementation</ulink>, and
873  ported to many other platforms. It includes a debug mode that uses a
874  wrapper model (that in some ways inspired the libstdc++ debug mode
875  design), although at the time of this writing the debug mode is
876  somewhat incomplete and meets only the "Full user recompilation" (2)
877  recompilation guarantee by requiring the user to link against a
878  different library in debug mode vs. release mode.</para></listitem>
879
880  <listitem><para>Metrowerks CodeWarrior: The C++ standard library
881  that ships with Metrowerks CodeWarrior includes a debug mode. It is
882  a full debug-mode implementation (including debugging for
883  CodeWarrior extensions) and is easy to use, although it meets only
884  the "Full recompilation" (1) recompilation
885  guarantee.</para></listitem>
886</itemizedlist>
887
888  </sect2>
889</sect1>
890
891</chapter>
892