xref: /netbsd-src/external/gpl3/gcc.old/dist/libstdc++-v3/doc/xml/manual/debug_mode.xml (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1<chapter xmlns="http://docbook.org/ns/docbook" version="5.0"
2	 xml:id="manual.ext.debug_mode" xreflabel="Debug Mode">
3<?dbhtml filename="debug_mode.html"?>
4
5<info><title>Debug Mode</title>
6  <keywordset>
7    <keyword>C++</keyword>
8    <keyword>library</keyword>
9    <keyword>debug</keyword>
10  </keywordset>
11</info>
12
13
14
15<section xml:id="manual.ext.debug_mode.intro" xreflabel="Intro"><info><title>Intro</title></info>
16
17  <para>
18    By default, libstdc++ is built with efficiency in mind, and
19    therefore performs little or no error checking that is not
20    required by the C++ standard. This means that programs that
21    incorrectly use the C++ standard library will exhibit behavior
22    that is not portable and may not even be predictable, because they
23    tread into implementation-specific or undefined behavior. To
24    detect some of these errors before they can become problematic,
25    libstdc++ offers a debug mode that provides additional checking of
26    library facilities, and will report errors in the use of libstdc++
27    as soon as they can be detected by emitting a description of the
28    problem to standard error and aborting the program.  This debug
29    mode is available with GCC 3.4.0 and later versions.
30  </para>
31
32  <para>
33    The libstdc++ debug mode performs checking for many areas of the
34    C++ standard, but the focus is on checking interactions among
35    standard iterators, containers, and algorithms, including:
36  </para>
37
38  <itemizedlist>
39    <listitem><para><emphasis>Safe iterators</emphasis>: Iterators keep track of the
40    container whose elements they reference, so errors such as
41    incrementing a past-the-end iterator or dereferencing an iterator
42    that points to a container that has been destructed are diagnosed
43    immediately.</para></listitem>
44
45    <listitem><para><emphasis>Algorithm preconditions</emphasis>: Algorithms attempt to
46    validate their input parameters to detect errors as early as
47    possible. For instance, the <code>set_intersection</code>
48    algorithm requires that its iterator
49    parameters <code>first1</code> and <code>last1</code> form a valid
50    iterator range, and that the sequence
51    [<code>first1</code>, <code>last1</code>) is sorted according to
52    the same predicate that was passed
53    to <code>set_intersection</code>; the libstdc++ debug mode will
54    detect an error if the sequence is not sorted or was sorted by a
55    different predicate.</para></listitem>
56  </itemizedlist>
57
58</section>
59
60<section xml:id="manual.ext.debug_mode.semantics" xreflabel="Semantics"><info><title>Semantics</title></info>
61  <?dbhtml filename="debug_mode_semantics.html"?>
62
63  <para>
64  </para>
65
66<para>A program that uses the C++ standard library correctly
67  will maintain the same semantics under debug mode as it had with
68  the normal (release) library. All functional and exception-handling
69  guarantees made by the normal library also hold for the debug mode
70  library, with one exception: performance guarantees made by the
71  normal library may not hold in the debug mode library. For
72  instance, erasing an element in a <code>std::list</code> is a
73  constant-time operation in normal library, but in debug mode it is
74  linear in the number of iterators that reference that particular
75  list. So while your (correct) program won't change its results, it
76  is likely to execute more slowly.</para>
77
78<para>libstdc++ includes many extensions to the C++ standard library. In
79  some cases the extensions are obvious, such as the hashed
80  associative containers, whereas other extensions give predictable
81  results to behavior that would otherwise be undefined, such as
82  throwing an exception when a <code>std::basic_string</code> is
83  constructed from a NULL character pointer. This latter category also
84  includes implementation-defined and unspecified semantics, such as
85  the growth rate of a vector. Use of these extensions is not
86  considered incorrect, so code that relies on them will not be
87  rejected by debug mode. However, use of these extensions may affect
88  the portability of code to other implementations of the C++ standard
89  library, and is therefore somewhat hazardous. For this reason, the
90  libstdc++ debug mode offers a "pedantic" mode (similar to
91  GCC's <code>-pedantic</code> compiler flag) that attempts to emulate
92  the semantics guaranteed by the C++ standard. For
93  instance, constructing a <code>std::basic_string</code> with a NULL
94  character pointer would result in an exception under normal mode or
95  non-pedantic debug mode (this is a libstdc++ extension), whereas
96  under pedantic debug mode libstdc++ would signal an error. To enable
97  the pedantic debug mode, compile your program with
98  both <code>-D_GLIBCXX_DEBUG</code>
99  and <code>-D_GLIBCXX_DEBUG_PEDANTIC</code> .
100  (N.B. In GCC 3.4.x and 4.0.0, due to a bug,
101  <code>-D_GLIBXX_DEBUG_PEDANTIC</code> was also needed. The problem has
102  been fixed in GCC 4.0.1 and later versions.) </para>
103
104<para>The following library components provide extra debugging
105  capabilities in debug mode:</para>
106<itemizedlist>
107  <listitem><para><code>std::basic_string</code> (no safe iterators and see note below)</para></listitem>
108  <listitem><para><code>std::bitset</code></para></listitem>
109  <listitem><para><code>std::deque</code></para></listitem>
110  <listitem><para><code>std::list</code></para></listitem>
111  <listitem><para><code>std::map</code></para></listitem>
112  <listitem><para><code>std::multimap</code></para></listitem>
113  <listitem><para><code>std::multiset</code></para></listitem>
114  <listitem><para><code>std::set</code></para></listitem>
115  <listitem><para><code>std::vector</code></para></listitem>
116  <listitem><para><code>std::unordered_map</code></para></listitem>
117  <listitem><para><code>std::unordered_multimap</code></para></listitem>
118  <listitem><para><code>std::unordered_set</code></para></listitem>
119  <listitem><para><code>std::unordered_multiset</code></para></listitem>
120</itemizedlist>
121
122<para>N.B. although there are precondition checks for some string operations,
123e.g.  <code>operator[]</code>,
124they will not always be run when using the <code>char</code> and
125<code>wchar_t</code> specialisations (<code>std::string</code> and
126<code>std::wstring</code>).  This is because libstdc++ uses GCC's
127<code>extern template</code> extension to provide explicit instantiations
128of <code>std::string</code> and <code>std::wstring</code>, and those
129explicit instantiations don't include the debug-mode checks.  If the
130containing functions are inlined then the checks will run, so compiling
131with <code>-O1</code> might be enough to enable them.  Alternatively
132<code>-D_GLIBCXX_EXTERN_TEMPLATE=0</code> will suppress the declarations
133of the explicit instantiations and cause the functions to be instantiated
134with the debug-mode checks included, but this is unsupported and not
135guaranteed to work.  For full debug-mode support you can use the
136<code>__gnu_debug::basic_string</code> debugging container directly,
137which always works correctly.
138</para>
139
140</section>
141
142<section xml:id="manual.ext.debug_mode.using" xreflabel="Using"><info><title>Using</title></info>
143  <?dbhtml filename="debug_mode_using.html"?>
144
145  <para>
146  </para>
147<section xml:id="debug_mode.using.mode" xreflabel="Using Mode"><info><title>Using the Debug Mode</title></info>
148
149
150<para>To use the libstdc++ debug mode, compile your application with the
151  compiler flag <code>-D_GLIBCXX_DEBUG</code>. Note that this flag
152  changes the sizes and behavior of standard class templates such
153  as <code>std::vector</code>, and therefore you can only link code
154  compiled with debug mode and code compiled without debug mode if no
155  instantiation of a container is passed between the two translation
156  units.</para>
157
158<para>By default, error messages are formatted to fit on lines of about
159  78 characters.  The environment variable
160  <code>GLIBCXX_DEBUG_MESSAGE_LENGTH</code> can be used to request a
161  different length.</para>
162
163</section>
164
165<section xml:id="debug_mode.using.specific" xreflabel="Using Specific"><info><title>Using a Specific Debug Container</title></info>
166
167<para>When it is not feasible to recompile your entire application, or
168  only specific containers need checking, debugging containers are
169  available as GNU extensions. These debugging containers are
170  functionally equivalent to the standard drop-in containers used in
171  debug mode, but they are available in a separate namespace as GNU
172  extensions and may be used in programs compiled with either release
173  mode or with debug mode. The
174  following table provides the names and headers of the debugging
175  containers:
176</para>
177
178<table frame="all">
179<title>Debugging Containers</title>
180
181<tgroup cols="4" align="left" colsep="1" rowsep="1">
182<colspec colname="c1"/>
183<colspec colname="c2"/>
184<colspec colname="c3"/>
185<colspec colname="c4"/>
186
187<thead>
188  <row>
189    <entry>Container</entry>
190    <entry>Header</entry>
191    <entry>Debug container</entry>
192    <entry>Debug header</entry>
193  </row>
194</thead>
195<tbody>
196  <row>
197    <entry><classname>std::bitset</classname></entry>
198    <entry><filename class="headerfile">bitset</filename></entry>
199    <entry><classname>__gnu_debug::bitset</classname></entry>
200    <entry><filename class="headerfile">&lt;debug/bitset&gt;</filename></entry>
201  </row>
202  <row>
203    <entry><classname>std::deque</classname></entry>
204    <entry><filename class="headerfile">deque</filename></entry>
205    <entry><classname>__gnu_debug::deque</classname></entry>
206    <entry><filename class="headerfile">&lt;debug/deque&gt;</filename></entry>
207  </row>
208  <row>
209    <entry><classname>std::list</classname></entry>
210    <entry><filename class="headerfile">list</filename></entry>
211    <entry><classname>__gnu_debug::list</classname></entry>
212    <entry><filename class="headerfile">&lt;debug/list&gt;</filename></entry>
213  </row>
214  <row>
215    <entry><classname>std::map</classname></entry>
216    <entry><filename class="headerfile">map</filename></entry>
217    <entry><classname>__gnu_debug::map</classname></entry>
218    <entry><filename class="headerfile">&lt;debug/map&gt;</filename></entry>
219  </row>
220  <row>
221    <entry><classname>std::multimap</classname></entry>
222    <entry><filename class="headerfile">map</filename></entry>
223    <entry><classname>__gnu_debug::multimap</classname></entry>
224    <entry><filename class="headerfile">&lt;debug/map&gt;</filename></entry>
225  </row>
226  <row>
227    <entry><classname>std::multiset</classname></entry>
228    <entry><filename class="headerfile">set</filename></entry>
229    <entry><classname>__gnu_debug::multiset</classname></entry>
230    <entry><filename class="headerfile">&lt;debug/set&gt;</filename></entry>
231  </row>
232  <row>
233    <entry><classname>std::set</classname></entry>
234    <entry><filename class="headerfile">set</filename></entry>
235    <entry><classname>__gnu_debug::set</classname></entry>
236    <entry><filename class="headerfile">&lt;debug/set&gt;</filename></entry>
237  </row>
238  <row>
239    <entry><classname>std::string</classname></entry>
240    <entry><filename class="headerfile">string</filename></entry>
241    <entry><classname>__gnu_debug::string</classname></entry>
242    <entry><filename class="headerfile">&lt;debug/string&gt;</filename></entry>
243  </row>
244  <row>
245    <entry><classname>std::wstring</classname></entry>
246    <entry><filename class="headerfile">string</filename></entry>
247    <entry><classname>__gnu_debug::wstring</classname></entry>
248    <entry><filename class="headerfile">&lt;debug/string&gt;</filename></entry>
249  </row>
250  <row>
251    <entry><classname>std::basic_string</classname></entry>
252    <entry><filename class="headerfile">string</filename></entry>
253    <entry><classname>__gnu_debug::basic_string</classname></entry>
254    <entry><filename class="headerfile">&lt;debug/string&gt;</filename></entry>
255  </row>
256  <row>
257    <entry><classname>std::vector</classname></entry>
258    <entry><filename class="headerfile">vector</filename></entry>
259    <entry><classname>__gnu_debug::vector</classname></entry>
260    <entry><filename class="headerfile">&lt;debug/vector&gt;</filename></entry>
261  </row>
262</tbody>
263</tgroup>
264</table>
265
266<para>In addition, when compiling in C++11 mode, these additional
267containers have additional debug capability.
268</para>
269
270<table frame="all">
271<title>Debugging Containers C++11</title>
272
273<tgroup cols="4" align="left" colsep="1" rowsep="1">
274<colspec colname="c1"/>
275<colspec colname="c2"/>
276<colspec colname="c3"/>
277<colspec colname="c4"/>
278
279<thead>
280  <row>
281    <entry>Container</entry>
282    <entry>Header</entry>
283    <entry>Debug container</entry>
284    <entry>Debug header</entry>
285  </row>
286</thead>
287<tbody>
288    <row>
289    <entry><classname>std::unordered_map</classname></entry>
290    <entry><filename class="headerfile">unordered_map</filename></entry>
291    <entry><classname>__gnu_debug::unordered_map</classname></entry>
292    <entry><filename class="headerfile">&lt;debug/unordered_map&gt;</filename></entry>
293  </row>
294  <row>
295    <entry><classname>std::unordered_multimap</classname></entry>
296    <entry><filename class="headerfile">unordered_map</filename></entry>
297    <entry><classname>__gnu_debug::unordered_multimap</classname></entry>
298    <entry><filename class="headerfile">&lt;debug/unordered_map&gt;</filename></entry>
299  </row>
300  <row>
301    <entry><classname>std::unordered_set</classname></entry>
302    <entry><filename class="headerfile">unordered_set</filename></entry>
303    <entry><classname>__gnu_debug::unordered_set</classname></entry>
304    <entry><filename class="headerfile">&lt;debug/unordered_set&gt;</filename></entry>
305  </row>
306  <row>
307    <entry><classname>std::unordered_multiset</classname></entry>
308    <entry><filename class="headerfile">unordered_set</filename></entry>
309    <entry><classname>__gnu_debug::unordered_multiset</classname></entry>
310    <entry><filename class="headerfile">&lt;debug/unordered_set&gt;</filename></entry>
311  </row>
312</tbody>
313</tgroup>
314</table>
315</section>
316</section>
317
318<section xml:id="manual.ext.debug_mode.design" xreflabel="Design"><info><title>Design</title></info>
319  <?dbhtml filename="debug_mode_design.html"?>
320
321  <para>
322  </para>
323  <section xml:id="debug_mode.design.goals" xreflabel="Goals"><info><title>Goals</title></info>
324
325    <para>
326    </para>
327<para> The libstdc++ debug mode replaces unsafe (but efficient) standard
328  containers and iterators with semantically equivalent safe standard
329  containers and iterators to aid in debugging user programs. The
330  following goals directed the design of the libstdc++ debug mode:</para>
331
332  <itemizedlist>
333
334    <listitem><para><emphasis>Correctness</emphasis>: the libstdc++ debug mode must not change
335    the semantics of the standard library for all cases specified in
336    the ANSI/ISO C++ standard. The essence of this constraint is that
337    any valid C++ program should behave in the same manner regardless
338    of whether it is compiled with debug mode or release mode. In
339    particular, entities that are defined in namespace std in release
340    mode should remain defined in namespace std in debug mode, so that
341    legal specializations of namespace std entities will remain
342    valid. A program that is not valid C++ (e.g., invokes undefined
343    behavior) is not required to behave similarly, although the debug
344    mode will abort with a diagnostic when it detects undefined
345    behavior.</para></listitem>
346
347    <listitem><para><emphasis>Performance</emphasis>: the additional of the libstdc++ debug mode
348    must not affect the performance of the library when it is compiled
349    in release mode. Performance of the libstdc++ debug mode is
350    secondary (and, in fact, will be worse than the release
351    mode).</para></listitem>
352
353    <listitem><para><emphasis>Usability</emphasis>: the libstdc++ debug mode should be easy to
354    use. It should be easily incorporated into the user's development
355    environment (e.g., by requiring only a single new compiler switch)
356    and should produce reasonable diagnostics when it detects a
357    problem with the user program. Usability also involves detection
358    of errors when using the debug mode incorrectly, e.g., by linking
359    a release-compiled object against a debug-compiled object if in
360    fact the resulting program will not run correctly.</para></listitem>
361
362    <listitem><para><emphasis>Minimize recompilation</emphasis>: While it is expected that
363    users recompile at least part of their program to use debug
364    mode, the amount of recompilation affects the
365    detect-compile-debug turnaround time. This indirectly affects the
366    usefulness of the debug mode, because debugging some applications
367    may require rebuilding a large amount of code, which may not be
368    feasible when the suspect code may be very localized. There are
369    several levels of conformance to this requirement, each with its
370    own usability and implementation characteristics. In general, the
371    higher-numbered conformance levels are more usable (i.e., require
372    less recompilation) but are more complicated to implement than
373    the lower-numbered conformance levels.
374      <orderedlist inheritnum="ignore" continuation="restarts">
375	<listitem><para><emphasis>Full recompilation</emphasis>: The user must recompile his or
376	her entire application and all C++ libraries it depends on,
377	including the C++ standard library that ships with the
378	compiler. This must be done even if only a small part of the
379	program can use debugging features.</para></listitem>
380
381	<listitem><para><emphasis>Full user recompilation</emphasis>: The user must recompile
382	his or her entire application and all C++ libraries it depends
383	on, but not the C++ standard library itself. This must be done
384	even if only a small part of the program can use debugging
385	features. This can be achieved given a full recompilation
386	system by compiling two versions of the standard library when
387	the compiler is installed and linking against the appropriate
388	one, e.g., a multilibs approach.</para></listitem>
389
390	<listitem><para><emphasis>Partial recompilation</emphasis>: The user must recompile the
391	parts of his or her application and the C++ libraries it
392	depends on that will use the debugging facilities
393	directly. This means that any code that uses the debuggable
394	standard containers would need to be recompiled, but code
395	that does not use them (but may, for instance, use IOStreams)
396	would not have to be recompiled.</para></listitem>
397
398	<listitem><para><emphasis>Per-use recompilation</emphasis>: The user must recompile the
399	parts of his or her application and the C++ libraries it
400	depends on where debugging should occur, and any other code
401	that interacts with those containers. This means that a set of
402	translation units that accesses a particular standard
403	container instance may either be compiled in release mode (no
404	checking) or debug mode (full checking), but must all be
405	compiled in the same way; a translation unit that does not see
406	that standard container instance need not be recompiled. This
407	also means that a translation unit <emphasis>A</emphasis> that contains a
408	particular instantiation
409	(say, <code>std::vector&lt;int&gt;</code>) compiled in release
410	mode can be linked against a translation unit <emphasis>B</emphasis> that
411	contains the same instantiation compiled in debug mode (a
412	feature not present with partial recompilation). While this
413	behavior is technically a violation of the One Definition
414	Rule, this ability tends to be very important in
415	practice. The libstdc++ debug mode supports this level of
416	recompilation. </para></listitem>
417
418	<listitem><para><emphasis>Per-unit recompilation</emphasis>: The user must only
419	recompile the translation units where checking should occur,
420	regardless of where debuggable standard containers are
421	used. This has also been dubbed "<code>-g</code> mode",
422	because the <code>-g</code> compiler switch works in this way,
423	emitting debugging information at a per--translation-unit
424	granularity. We believe that this level of recompilation is in
425	fact not possible if we intend to supply safe iterators, leave
426	the program semantics unchanged, and not regress in
427	performance under release mode because we cannot associate
428	extra information with an iterator (to form a safe iterator)
429	without either reserving that space in release mode
430	(performance regression) or allocating extra memory associated
431	with each iterator with <code>new</code> (changes the program
432	semantics).</para></listitem>
433      </orderedlist>
434    </para></listitem>
435  </itemizedlist>
436  </section>
437
438  <section xml:id="debug_mode.design.methods" xreflabel="Methods"><info><title>Methods</title></info>
439
440    <para>
441    </para>
442<para>This section provides an overall view of the design of the
443  libstdc++ debug mode and details the relationship between design
444  decisions and the stated design goals.</para>
445
446  <section xml:id="debug_mode.design.methods.wrappers" xreflabel="Method Wrapper"><info><title>The Wrapper Model</title></info>
447
448<para>The libstdc++ debug mode uses a wrapper model where the
449  debugging versions of library components (e.g., iterators and
450  containers) form a layer on top of the release versions of the
451  library components. The debugging components first verify that the
452  operation is correct (aborting with a diagnostic if an error is
453  found) and will then forward to the underlying release-mode
454  container that will perform the actual work. This design decision
455  ensures that we cannot regress release-mode performance (because the
456  release-mode containers are left untouched) and partially
457  enables <link linkend="methods.coexistence.link">mixing debug and
458  release code</link> at link time, although that will not be
459  discussed at this time.</para>
460
461<para>Two types of wrappers are used in the implementation of the debug
462  mode: container wrappers and iterator wrappers. The two types of
463  wrappers interact to maintain relationships between iterators and
464  their associated containers, which are necessary to detect certain
465  types of standard library usage errors such as dereferencing
466  past-the-end iterators or inserting into a container using an
467  iterator from a different container.</para>
468
469  <section xml:id="debug_mode.design.methods.safe_iter" xreflabel="Method Safe Iter"><info><title>Safe Iterators</title></info>
470
471<para>Iterator wrappers provide a debugging layer over any iterator that
472  is attached to a particular container, and will manage the
473  information detailing the iterator's state (singular,
474  dereferenceable, etc.) and tracking the container to which the
475  iterator is attached. Because iterators have a well-defined, common
476  interface the iterator wrapper is implemented with the iterator
477  adaptor class template <code>__gnu_debug::_Safe_iterator</code>,
478  which takes two template parameters:</para>
479
480<itemizedlist>
481  <listitem><para><code>Iterator</code>: The underlying iterator type, which must
482    be either the <code>iterator</code> or <code>const_iterator</code>
483    typedef from the sequence type this iterator can reference.</para></listitem>
484
485  <listitem><para><code>Sequence</code>: The type of sequence that this iterator
486  references. This sequence must be a safe sequence (discussed below)
487  whose <code>iterator</code> or <code>const_iterator</code> typedef
488  is the type of the safe iterator.</para></listitem>
489</itemizedlist>
490  </section>
491
492  <section xml:id="debug_mode.design.methods.safe_seq" xreflabel="Method Safe Seq"><info><title>Safe Sequences (Containers)</title></info>
493
494
495<para>Container wrappers provide a debugging layer over a particular
496  container type. Because containers vary greatly in the member
497  functions they support and the semantics of those member functions
498  (especially in the area of iterator invalidation), container
499  wrappers are tailored to the container they reference, e.g., the
500  debugging version of <code>std::list</code> duplicates the entire
501  interface of <code>std::list</code>, adding additional semantic
502  checks and then forwarding operations to the
503  real <code>std::list</code> (a public base class of the debugging
504  version) as appropriate. However, all safe containers inherit from
505  the class template <code>__gnu_debug::_Safe_sequence</code>,
506  instantiated with the type of the safe container itself (an instance
507  of the curiously recurring template pattern).</para>
508
509<para>The iterators of a container wrapper will be
510  <link linkend="debug_mode.design.methods.safe_iter">safe
511  iterators</link> that reference sequences of this type and wrap the
512  iterators provided by the release-mode base class. The debugging
513  container will use only the safe iterators within its own interface
514  (therefore requiring the user to use safe iterators, although this
515  does not change correct user code) and will communicate with the
516  release-mode base class with only the underlying, unsafe,
517  release-mode iterators that the base class exports.</para>
518
519<para> The debugging version of <code>std::list</code> will have the
520  following basic structure:</para>
521
522<programlisting>
523template&lt;typename _Tp, typename _Allocator = allocator&lt;_Tp&gt;
524  class debug-list :
525    public release-list&lt;_Tp, _Allocator&gt;,
526    public __gnu_debug::_Safe_sequence&lt;debug-list&lt;_Tp, _Allocator&gt; &gt;
527  {
528    typedef release-list&lt;_Tp, _Allocator&gt; _Base;
529    typedef debug-list&lt;_Tp, _Allocator&gt;   _Self;
530
531  public:
532    typedef __gnu_debug::_Safe_iterator&lt;typename _Base::iterator, _Self&gt;       iterator;
533    typedef __gnu_debug::_Safe_iterator&lt;typename _Base::const_iterator, _Self&gt; const_iterator;
534
535    // duplicate std::list interface with debugging semantics
536  };
537</programlisting>
538  </section>
539  </section>
540
541  <section xml:id="debug_mode.design.methods.precond" xreflabel="Precondition check"><info><title>Precondition Checking</title></info>
542
543<para>The debug mode operates primarily by checking the preconditions of
544  all standard library operations that it supports. Preconditions that
545  are always checked (regardless of whether or not we are in debug
546  mode) are checked via the <code>__check_xxx</code> macros defined
547  and documented in the source
548  file <code>include/debug/debug.h</code>. Preconditions that may or
549  may not be checked, depending on the debug-mode
550  macro <code>_GLIBCXX_DEBUG</code>, are checked via
551  the <code>__requires_xxx</code> macros defined and documented in the
552  same source file. Preconditions are validated using any additional
553  information available at run-time, e.g., the containers that are
554  associated with a particular iterator, the position of the iterator
555  within those containers, the distance between two iterators that may
556  form a valid range, etc. In the absence of suitable information,
557  e.g., an input iterator that is not a safe iterator, these
558  precondition checks will silently succeed.</para>
559
560<para>The majority of precondition checks use the aforementioned macros,
561  which have the secondary benefit of having prewritten debug
562  messages that use information about the current status of the
563  objects involved (e.g., whether an iterator is singular or what
564  sequence it is attached to) along with some static information
565  (e.g., the names of the function parameters corresponding to the
566  objects involved). When not using these macros, the debug mode uses
567  either the debug-mode assertion
568  macro <code>_GLIBCXX_DEBUG_ASSERT</code> , its pedantic
569  cousin <code>_GLIBCXX_DEBUG_PEDASSERT</code>, or the assertion
570  check macro that supports more advance formulation of error
571  messages, <code>_GLIBCXX_DEBUG_VERIFY</code>. These macros are
572  documented more thoroughly in the debug mode source code.</para>
573  </section>
574
575  <section xml:id="debug_mode.design.methods.coexistence" xreflabel="Coexistence"><info><title>Release- and debug-mode coexistence</title></info>
576
577<para>The libstdc++ debug mode is the first debug mode we know of that
578  is able to provide the "Per-use recompilation" (4) guarantee, that
579  allows release-compiled and debug-compiled code to be linked and
580  executed together without causing unpredictable behavior. This
581  guarantee minimizes the recompilation that users are required to
582  perform, shortening the detect-compile-debug bug hunting cycle
583  and making the debug mode easier to incorporate into development
584  environments by minimizing dependencies.</para>
585
586<para>Achieving link- and run-time coexistence is not a trivial
587  implementation task. To achieve this goal we required a small
588  extension to the GNU C++ compiler (since incorporated into the C++11 language specification, described in the GCC Manual for the C++ language as
589  <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/onlinedocs/gcc/Namespace-Association.html#Namespace-Association">namespace
590  association</link>), and a complex organization of debug- and
591  release-modes. The end result is that we have achieved per-use
592  recompilation but have had to give up some checking of the
593  <code>std::basic_string</code> class template (namely, safe
594  iterators).
595</para>
596
597 <section xml:id="methods.coexistence.compile" xreflabel="Compile"><info><title>Compile-time coexistence of release- and debug-mode components</title></info>
598
599
600<para>Both the release-mode components and the debug-mode
601  components need to exist within a single translation unit so that
602  the debug versions can wrap the release versions. However, only one
603  of these components should be user-visible at any particular
604  time with the standard name, e.g., <code>std::list</code>. </para>
605
606<para>In release mode, we define only the release-mode version of the
607  component with its standard name and do not include the debugging
608  component at all. The release mode version is defined within the
609  namespace <code>std</code>. Minus the namespace associations, this
610  method leaves the behavior of release mode completely unchanged from
611  its behavior prior to the introduction of the libstdc++ debug
612  mode. Here's an example of what this ends up looking like, in
613  C++.</para>
614
615<programlisting>
616namespace std
617{
618  template&lt;typename _Tp, typename _Alloc = allocator&lt;_Tp&gt; &gt;
619    class list
620    {
621      // ...
622     };
623} // namespace std
624</programlisting>
625
626<para>In debug mode we include the release-mode container (which is now
627defined in the namespace <code>__cxx1998</code>) and also the
628debug-mode container. The debug-mode container is defined within the
629namespace <code>__debug</code>, which is associated with namespace
630<code>std</code> via the C++11 namespace association language feature.  This
631method allows the debug and release versions of the same component to
632coexist at compile-time and link-time without causing an unreasonable
633maintenance burden, while minimizing confusion. Again, this boils down
634to C++ code as follows:</para>
635
636<programlisting>
637namespace std
638{
639  namespace __cxx1998
640  {
641    template&lt;typename _Tp, typename _Alloc = allocator&lt;_Tp&gt; &gt;
642      class list
643      {
644	// ...
645      };
646  } // namespace __gnu_norm
647
648  namespace __debug
649  {
650    template&lt;typename _Tp, typename _Alloc = allocator&lt;_Tp&gt; &gt;
651      class list
652      : public __cxx1998::list&lt;_Tp, _Alloc&gt;,
653	public __gnu_debug::_Safe_sequence&lt;list&lt;_Tp, _Alloc&gt; &gt;
654      {
655	// ...
656      };
657  } // namespace __cxx1998
658
659  // namespace __debug __attribute__ ((strong));
660  inline namespace __debug { }
661}
662</programlisting>
663 </section>
664
665 <section xml:id="methods.coexistence.link" xreflabel="Link"><info><title>Link- and run-time coexistence of release- and
666    debug-mode components</title></info>
667
668
669<para>Because each component has a distinct and separate release and
670debug implementation, there is no issue with link-time
671coexistence: the separate namespaces result in different mangled
672names, and thus unique linkage.</para>
673
674<para>However, components that are defined and used within the C++
675standard library itself face additional constraints. For instance,
676some of the member functions of <code> std::moneypunct</code> return
677<code>std::basic_string</code>. Normally, this is not a problem, but
678with a mixed mode standard library that could be using either
679debug-mode or release-mode <code> basic_string</code> objects, things
680get more complicated.  As the return value of a function is not
681encoded into the mangled name, there is no way to specify a
682release-mode or a debug-mode string. In practice, this results in
683runtime errors. A simplified example of this problem is as follows.
684</para>
685
686<para> Take this translation unit, compiled in debug-mode: </para>
687<programlisting>
688// -D_GLIBCXX_DEBUG
689#include &lt;string&gt;
690
691std::string test02();
692
693std::string test01()
694{
695  return test02();
696}
697
698int main()
699{
700  test01();
701  return 0;
702}
703</programlisting>
704
705<para> ... and linked to this translation unit, compiled in release mode:</para>
706
707<programlisting>
708#include &lt;string&gt;
709
710std::string
711test02()
712{
713  return std::string("toast");
714}
715</programlisting>
716
717<para> For this reason we cannot easily provide safe iterators for
718  the <code>std::basic_string</code> class template, as it is present
719  throughout the C++ standard library. For instance, locale facets
720  define typedefs that include <code>basic_string</code>: in a mixed
721  debug/release program, should that typedef be based on the
722  debug-mode <code>basic_string</code> or the
723  release-mode <code>basic_string</code>? While the answer could be
724  "both", and the difference hidden via renaming a la the
725  debug/release containers, we must note two things about locale
726  facets:</para>
727
728<orderedlist inheritnum="ignore" continuation="restarts">
729  <listitem><para>They exist as shared state: one can create a facet in one
730  translation unit and access the facet via the same type name in a
731  different translation unit. This means that we cannot have two
732  different versions of locale facets, because the types would not be
733  the same across debug/release-mode translation unit barriers.</para></listitem>
734
735  <listitem><para>They have virtual functions returning strings: these functions
736  mangle in the same way regardless of the mangling of their return
737  types (see above), and their precise signatures can be relied upon
738  by users because they may be overridden in derived classes.</para></listitem>
739</orderedlist>
740
741<para>With the design of libstdc++ debug mode, we cannot effectively hide
742  the differences between debug and release-mode strings from the
743  user. Failure to hide the differences may result in unpredictable
744  behavior, and for this reason we have opted to only
745  perform <code>basic_string</code> changes that do not require ABI
746  changes. The effect on users is expected to be minimal, as there are
747  simple alternatives (e.g., <code>__gnu_debug::basic_string</code>),
748  and the usability benefit we gain from the ability to mix debug- and
749  release-compiled translation units is enormous.</para>
750 </section>
751
752 <section xml:id="methods.coexistence.alt" xreflabel="Alternatives"><info><title>Alternatives for Coexistence</title></info>
753
754
755<para>The coexistence scheme above was chosen over many alternatives,
756  including language-only solutions and solutions that also required
757  extensions to the C++ front end. The following is a partial list of
758  solutions, with justifications for our rejection of each.</para>
759
760<itemizedlist>
761  <listitem><para><emphasis>Completely separate debug/release libraries</emphasis>: This is by
762  far the simplest implementation option, where we do not allow any
763  coexistence of debug- and release-compiled translation units in a
764  program. This solution has an extreme negative affect on usability,
765  because it is quite likely that some libraries an application
766  depends on cannot be recompiled easily. This would not meet
767  our <emphasis>usability</emphasis> or <emphasis>minimize recompilation</emphasis> criteria
768  well.</para></listitem>
769
770  <listitem><para><emphasis>Add a <code>Debug</code> boolean template parameter</emphasis>:
771  Partial specialization could be used to select the debug
772  implementation when <code>Debug == true</code>, and the state
773  of <code>_GLIBCXX_DEBUG</code> could decide whether the
774  default <code>Debug</code> argument is <code>true</code>
775  or <code>false</code>. This option would break conformance with the
776  C++ standard in both debug <emphasis>and</emphasis> release modes. This would
777  not meet our <emphasis>correctness</emphasis> criteria. </para></listitem>
778
779  <listitem><para><emphasis>Packaging a debug flag in the allocators</emphasis>: We could
780    reuse the <code>Allocator</code> template parameter of containers
781    by adding a sentinel wrapper <code>debug&lt;&gt;</code> that
782    signals the user's intention to use debugging, and pick up
783    the <code>debug&lt;&gt;</code> allocator wrapper in a partial
784    specialization. However, this has two drawbacks: first, there is a
785    conformance issue because the default allocator would not be the
786    standard-specified <code>std::allocator&lt;T&gt;</code>. Secondly
787    (and more importantly), users that specify allocators instead of
788    implicitly using the default allocator would not get debugging
789    containers. Thus this solution fails the <emphasis>correctness</emphasis>
790    criteria.</para></listitem>
791
792  <listitem><para><emphasis>Define debug containers in another namespace, and employ
793      a <code>using</code> declaration (or directive)</emphasis>: This is an
794      enticing option, because it would eliminate the need for
795      the <code>link_name</code> extension by aliasing the
796      templates. However, there is no true template aliasing mechanism
797      in C++, because both <code>using</code> directives and using
798      declarations disallow specialization. This method fails
799      the <emphasis>correctness</emphasis> criteria.</para></listitem>
800
801  <listitem><para><emphasis> Use implementation-specific properties of anonymous
802    namespaces. </emphasis>
803    See <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/ml/libstdc++/2003-08/msg00004.html"> this post
804    </link>
805    This method fails the <emphasis>correctness</emphasis> criteria.</para></listitem>
806
807  <listitem><para><emphasis>Extension: allow reopening on namespaces</emphasis>: This would
808    allow the debug mode to effectively alias the
809    namespace <code>std</code> to an internal namespace, such
810    as <code>__gnu_std_debug</code>, so that it is completely
811    separate from the release-mode <code>std</code> namespace. While
812    this will solve some renaming problems and ensure that
813    debug- and release-compiled code cannot be mixed unsafely, it ensures that
814    debug- and release-compiled code cannot be mixed at all. For
815    instance, the program would have two <code>std::cout</code>
816    objects! This solution would fails the <emphasis>minimize
817    recompilation</emphasis> requirement, because we would only be able to
818    support option (1) or (2).</para></listitem>
819
820  <listitem><para><emphasis>Extension: use link name</emphasis>: This option involves
821    complicated re-naming between debug-mode and release-mode
822    components at compile time, and then a g++ extension called <emphasis>
823    link name </emphasis> to recover the original names at link time. There
824    are two drawbacks to this approach. One, it's very verbose,
825    relying on macro renaming at compile time and several levels of
826    include ordering. Two, ODR issues remained with container member
827    functions taking no arguments in mixed-mode settings resulting in
828    equivalent link names, <code> vector::push_back() </code> being
829    one example.
830    See <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/ml/libstdc++/2003-08/msg00177.html">link
831    name</link> </para></listitem>
832</itemizedlist>
833
834<para>Other options may exist for implementing the debug mode, many of
835  which have probably been considered and others that may still be
836  lurking. This list may be expanded over time to include other
837  options that we could have implemented, but in all cases the full
838  ramifications of the approach (as measured against the design goals
839  for a libstdc++ debug mode) should be considered first. The DejaGNU
840  testsuite includes some testcases that check for known problems with
841  some solutions (e.g., the <code>using</code> declaration solution
842  that breaks user specialization), and additional testcases will be
843  added as we are able to identify other typical problem cases. These
844  test cases will serve as a benchmark by which we can compare debug
845  mode implementations.</para>
846 </section>
847  </section>
848  </section>
849
850  <section xml:id="debug_mode.design.other" xreflabel="Other"><info><title>Other Implementations</title></info>
851
852    <para>
853    </para>
854<para> There are several existing implementations of debug modes for C++
855  standard library implementations, although none of them directly
856  supports debugging for programs using libstdc++. The existing
857  implementations include:</para>
858<itemizedlist>
859  <listitem><para><link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.cs.sjsu.edu/faculty/horstman/safestl.html">SafeSTL</link>:
860  SafeSTL was the original debugging version of the Standard Template
861  Library (STL), implemented by Cay S. Horstmann on top of the
862  Hewlett-Packard STL. Though it inspired much work in this area, it
863  has not been kept up-to-date for use with modern compilers or C++
864  standard library implementations.</para></listitem>
865
866  <listitem><para><link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.stlport.org/">STLport</link>: STLport is a free
867  implementation of the C++ standard library derived from the <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://www.sgi.com/tech/stl/">SGI implementation</link>, and
868  ported to many other platforms. It includes a debug mode that uses a
869  wrapper model (that in some ways inspired the libstdc++ debug mode
870  design), although at the time of this writing the debug mode is
871  somewhat incomplete and meets only the "Full user recompilation" (2)
872  recompilation guarantee by requiring the user to link against a
873  different library in debug mode vs. release mode.</para></listitem>
874
875  <listitem><para>Metrowerks CodeWarrior: The C++ standard library
876  that ships with Metrowerks CodeWarrior includes a debug mode. It is
877  a full debug-mode implementation (including debugging for
878  CodeWarrior extensions) and is easy to use, although it meets only
879  the "Full recompilation" (1) recompilation
880  guarantee.</para></listitem>
881</itemizedlist>
882
883  </section>
884</section>
885
886</chapter>
887