xref: /netbsd-src/external/gpl3/gcc.old/dist/libstdc++-v3/doc/xml/manual/debug.xml (revision 7330f729ccf0bd976a06f95fad452fe774fc7fd1)
1<section xmlns="http://docbook.org/ns/docbook" version="5.0"
2	 xml:id="manual.intro.using.debug" xreflabel="Debugging Support">
3<?dbhtml filename="debug.html"?>
4
5<info><title>Debugging Support</title>
6  <keywordset>
7    <keyword>C++</keyword>
8    <keyword>debug</keyword>
9  </keywordset>
10</info>
11
12
13
14<para>
15  There are numerous things that can be done to improve the ease with
16  which C++ binaries are debugged when using the GNU tool chain. Here
17  are some of them.
18</para>
19
20<section xml:id="debug.compiler"><info><title>Using <command>g++</command></title></info>
21
22  <para>
23    Compiler flags determine how debug information is transmitted
24    between compilation and debug or analysis tools.
25  </para>
26
27  <para>
28    The default optimizations and debug flags for a libstdc++ build
29    are <code>-g -O2</code>. However, both debug and optimization
30    flags can be varied to change debugging characteristics. For
31    instance, turning off all optimization via the <code>-g -O0
32    -fno-inline</code> flags will disable inlining and optimizations,
33    and add debugging information, so that stepping through all functions,
34    (including inlined constructors and destructors) is possible. In
35    addition, <code>-fno-eliminate-unused-debug-types</code> can be
36    used when additional debug information, such as nested class info,
37    is desired.
38</para>
39
40<para>
41  Or, the debug format that the compiler and debugger use to
42  communicate information about source constructs can be changed via
43  <code>-gdwarf-2</code> or <code>-gstabs</code> flags: some debugging
44  formats permit more expressive type and scope information to be
45  shown in GDB. Expressiveness can be enhanced by flags like
46  <code>-g3</code>. The default debug information for a particular
47  platform can be identified via the value set by the
48  PREFERRED_DEBUGGING_TYPE macro in the GCC sources.
49</para>
50
51<para>
52  Many other options are available: please see <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html#Debugging%20Options">"Options
53  for Debugging Your Program"</link> in Using the GNU Compiler
54  Collection (GCC) for a complete list.
55</para>
56</section>
57
58<section xml:id="debug.req"><info><title>Debug Versions of Library Binary Files</title></info>
59
60
61<para>
62  If you would like debug symbols in libstdc++, there are two ways to
63  build libstdc++ with debug flags. The first is to create a separate
64  debug build by running make from the top-level of a tree
65  freshly-configured with
66</para>
67<programlisting>
68     --enable-libstdcxx-debug
69</programlisting>
70<para>and perhaps</para>
71<programlisting>
72     --enable-libstdcxx-debug-flags='...'
73</programlisting>
74<para>
75  Both the normal build and the debug build will persist, without
76  having to specify <code>CXXFLAGS</code>, and the debug library will
77  be installed in a separate directory tree, in <code>(prefix)/lib/debug</code>.
78  For more information, look at the
79  <link linkend="manual.intro.setup.configure">configuration</link> section.
80</para>
81
82<para>
83  A second approach is to use the configuration flags
84</para>
85<programlisting>
86     make CXXFLAGS='-g3 -fno-inline -O0' all
87</programlisting>
88
89<para>
90  This quick and dirty approach is often sufficient for quick
91  debugging tasks, when you cannot or don't want to recompile your
92  application to use the <link linkend="manual.ext.debug_mode">debug mode</link>.</para>
93</section>
94
95<section xml:id="debug.memory"><info><title>Memory Leak Hunting</title></info>
96
97
98<para>
99  There are various third party memory tracing and debug utilities
100  that can be used to provide detailed memory allocation information
101  about C++ code. An exhaustive list of tools is not going to be
102  attempted, but includes <code>mtrace</code>, <code>valgrind</code>,
103  <code>mudflap</code>, and the non-free commercial product
104  <code>purify</code>. In addition, <code>libcwd</code> has a
105  replacement for the global new and delete operators that can track
106  memory allocation and deallocation and provide useful memory
107  statistics.
108</para>
109
110<para>
111  Regardless of the memory debugging tool being used, there is one
112  thing of great importance to keep in mind when debugging C++ code
113  that uses <code>new</code> and <code>delete</code>: there are
114  different kinds of allocation schemes that can be used by <code>
115  std::allocator</code>. For implementation details, see the <link linkend="manual.ext.allocator.mt">mt allocator</link> documentation and
116  look specifically for <code>GLIBCXX_FORCE_NEW</code>.
117</para>
118
119<para>
120  In a nutshell, the optional <classname>mt_allocator</classname>
121  is a high-performance pool allocator, and can
122  give the mistaken impression that in a suspect executable, memory is
123  being leaked, when in reality the memory "leak" is a pool being used
124  by the library's allocator and is reclaimed after program
125  termination.
126</para>
127
128<para>
129  For valgrind, there are some specific items to keep in mind. First
130  of all, use a version of valgrind that will work with current GNU
131  C++ tools: the first that can do this is valgrind 1.0.4, but later
132  versions should work at least as well. Second of all, use a
133  completely unoptimized build to avoid confusing valgrind. Third, use
134  GLIBCXX_FORCE_NEW to keep extraneous pool allocation noise from
135  cluttering debug information.
136</para>
137
138<para>
139  Fourth, it may be necessary to force deallocation in other libraries
140  as well, namely the "C" library. On linux, this can be accomplished
141  with the appropriate use of the <code>__cxa_atexit</code> or
142  <code>atexit</code> functions.
143</para>
144
145<programlisting>
146   #include &lt;cstdlib&gt;
147
148   extern "C" void __libc_freeres(void);
149
150   void do_something() { }
151
152   int main()
153   {
154     atexit(__libc_freeres);
155     do_something();
156     return 0;
157   }
158</programlisting>
159
160
161<para>or, using <code>__cxa_atexit</code>:</para>
162
163<programlisting>
164   extern "C" void __libc_freeres(void);
165   extern "C" int __cxa_atexit(void (*func) (void *), void *arg, void *d);
166
167   void do_something() { }
168
169   int main()
170   {
171      extern void* __dso_handle __attribute__ ((__weak__));
172      __cxa_atexit((void (*) (void *)) __libc_freeres, NULL,
173		   &amp;__dso_handle ? __dso_handle : NULL);
174      do_test();
175      return 0;
176   }
177</programlisting>
178
179<para>
180  Suggested valgrind flags, given the suggestions above about setting
181  up the runtime environment, library, and test file, might be:
182</para>
183<programlisting>
184   valgrind -v --num-callers=20 --leak-check=yes --leak-resolution=high --show-reachable=yes a.out
185</programlisting>
186
187</section>
188
189<section xml:id="debug.races"><info><title>Data Race Hunting</title></info>
190<para>
191  All synchronization primitives used in the library internals need to be
192  understood by race detectors so that they do not produce false reports.
193</para>
194
195<para>
196  Two annotation macros are used to explain low-level synchronization
197  to race detectors:
198  <code>_GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE()</code> and
199  <code> _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER()</code>.
200  By default, these macros are defined empty -- anyone who wants
201  to use a race detector needs to redefine them to call an
202  appropriate API.
203  Since these macros are empty by default when the library is built,
204  redefining them will only affect inline functions and template
205  instantiations which are compiled in user code. This allows annotation
206  of templates such as <code>shared_ptr</code>, but not code which is
207  only instantiated in the library.  Code which is only instantiated in
208  the library needs to be recompiled with the annotation macros defined.
209  That can be done by rebuilding the entire
210  <filename class="libraryfile">libstdc++.so</filename> file but a simpler
211  alternative exists for ELF platforms such as GNU/Linux, because ELF
212  symbol interposition allows symbols defined in the shared library to be
213  overridden by symbols with the same name that appear earlier in the
214  runtime search path. This means you only need to recompile the functions
215  that are affected by the annotation macros, which can be done by
216  recompiling individual files.
217  Annotating <code>std::string</code> and <code>std::wstring</code>
218  reference counting can be done by disabling extern templates (by defining
219  <code>_GLIBCXX_EXTERN_TEMPLATE=-1</code>) or by rebuilding the
220  <filename>src/string-inst.cc</filename> file.
221  Annotating the remaining atomic operations (at the time of writing these
222  are in <code>ios_base::Init::~Init</code>, <code>locale::_Impl</code>,
223  <code>locale::facet</code> and <code>thread::_M_start_thread</code>)
224  requires rebuilding the relevant source files.
225</para>
226
227<para>
228  The approach described above is known to work with the following race
229  detection tools:
230  <link xmlns:xlink="http://www.w3.org/1999/xlink"
231  xlink:href="http://valgrind.org/docs/manual/drd-manual.html">
232  DRD</link>,
233  <link xmlns:xlink="http://www.w3.org/1999/xlink"
234  xlink:href="http://valgrind.org/docs/manual/hg-manual.html">
235  Helgrind</link>, and
236  <link xmlns:xlink="http://www.w3.org/1999/xlink"
237  xlink:href="https://github.com/google/sanitizers">
238  ThreadSanitizer</link> (this refers to ThreadSanitizer v1, not the
239  new "tsan" feature built-in to GCC itself).
240</para>
241
242<para>
243  With DRD, Helgrind and ThreadSanitizer you will need to define
244  the macros like this:
245<programlisting>
246  #define _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(A) ANNOTATE_HAPPENS_BEFORE(A)
247  #define _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(A)  ANNOTATE_HAPPENS_AFTER(A)
248</programlisting>
249  Refer to the documentation of each particular tool for details.
250</para>
251
252</section>
253
254<section xml:id="debug.gdb"><info><title>Using <command>gdb</command></title></info>
255
256  <para>
257  </para>
258
259<para>
260  Many options are available for GDB itself: please see <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://sourceware.org/gdb/current/onlinedocs/gdb/">
261  "GDB features for C++" </link> in the GDB documentation. Also
262  recommended: the other parts of this manual.
263</para>
264
265<para>
266  These settings can either be switched on in at the GDB command line,
267  or put into a <filename>.gdbinit</filename> file to establish default
268  debugging characteristics, like so:
269</para>
270
271<programlisting>
272   set print pretty on
273   set print object on
274   set print static-members on
275   set print vtbl on
276   set print demangle on
277   set demangle-style gnu-v3
278</programlisting>
279
280<para>
281  Starting with version 7.0, GDB includes support for writing
282  pretty-printers in Python.  Pretty printers for containers and other
283  classes are distributed with GCC from version 4.5.0 and should be installed
284  alongside the libstdc++ shared library files and found automatically by
285  GDB.
286</para>
287
288<para>
289  Depending where libstdc++ is installed, GDB might refuse to auto-load
290  the python printers and print a warning instead.
291  If this happens the python printers can be enabled by following the
292  instructions GDB gives for setting your <code>auto-load safe-path</code>
293  in your <filename>.gdbinit</filename> configuration file.
294</para>
295
296<para>
297  Once loaded, standard library classes that the printers support
298  should print in a more human-readable format.  To print the classes
299  in the old style, use the <userinput>/r</userinput> (raw) switch in the
300  print command (i.e., <userinput>print /r foo</userinput>).  This will
301  print the classes as if the Python pretty-printers were not loaded.
302</para>
303
304<para>
305  For additional information on STL support and GDB please visit:
306  <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://sourceware.org/gdb/wiki/STLSupport"> "GDB Support
307  for STL" </link> in the GDB wiki.  Additionally, in-depth
308  documentation and discussion of the pretty printing feature can be
309  found in "Pretty Printing" node in the GDB manual.  You can find
310  on-line versions of the GDB user manual in GDB's homepage, at
311  <link xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="http://sourceware.org/gdb/"> "GDB: The GNU Project
312  Debugger" </link>.
313</para>
314
315</section>
316
317<section xml:id="debug.exceptions"><info><title>Tracking uncaught exceptions</title></info>
318
319<para>
320  The <link linkend="support.termination.verbose">verbose
321  termination handler</link> gives information about uncaught
322  exceptions which kill the program.
323</para>
324</section>
325
326<section xml:id="debug.debug_mode"><info><title>Debug Mode</title></info>
327
328  <para> The <link linkend="manual.ext.debug_mode">Debug Mode</link>
329  has compile and run-time checks for many containers.
330  </para>
331</section>
332
333<section xml:id="debug.compile_time_checks"><info><title>Compile Time Checking</title></info>
334
335  <para> The <link linkend="manual.ext.compile_checks">Compile-Time
336  Checks</link> extension has compile-time checks for many algorithms.
337  </para>
338</section>
339
340<section xml:id="debug.profile_mode" xreflabel="debug.profile_mode"><info><title>Profile-based Performance Analysis</title></info>
341
342  <para> The <link linkend="manual.ext.profile_mode">Profile-based
343  Performance Analysis</link> extension has performance checks for many
344  algorithms.
345  </para>
346</section>
347
348</section>
349