xref: /netbsd-src/external/gpl3/gcc.old/dist/libsanitizer/tsan/tsan_sync.cc (revision 73d56d5b0be8704e4f0a7e8221a2c7309572c9a1)
1 //===-- tsan_sync.cc ------------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 //===----------------------------------------------------------------------===//
11 #include "sanitizer_common/sanitizer_placement_new.h"
12 #include "tsan_sync.h"
13 #include "tsan_rtl.h"
14 #include "tsan_mman.h"
15 
16 namespace __tsan {
17 
18 void DDMutexInit(ThreadState *thr, uptr pc, SyncVar *s);
19 
20 SyncVar::SyncVar()
21     : mtx(MutexTypeSyncVar, StatMtxSyncVar) {
22   Reset(0);
23 }
24 
25 void SyncVar::Init(ThreadState *thr, uptr pc, uptr addr, u64 uid) {
26   this->addr = addr;
27   this->uid = uid;
28   this->next = 0;
29 
30   creation_stack_id = 0;
31   if (!SANITIZER_GO)  // Go does not use them
32     creation_stack_id = CurrentStackId(thr, pc);
33   if (common_flags()->detect_deadlocks)
34     DDMutexInit(thr, pc, this);
35 }
36 
37 void SyncVar::Reset(Processor *proc) {
38   uid = 0;
39   creation_stack_id = 0;
40   owner_tid = kInvalidTid;
41   last_lock = 0;
42   recursion = 0;
43   atomic_store_relaxed(&flags, 0);
44 
45   if (proc == 0) {
46     CHECK_EQ(clock.size(), 0);
47     CHECK_EQ(read_clock.size(), 0);
48   } else {
49     clock.Reset(&proc->clock_cache);
50     read_clock.Reset(&proc->clock_cache);
51   }
52 }
53 
54 MetaMap::MetaMap()
55     : block_alloc_("heap block allocator")
56     , sync_alloc_("sync allocator") {
57   atomic_store(&uid_gen_, 0, memory_order_relaxed);
58 }
59 
60 void MetaMap::AllocBlock(ThreadState *thr, uptr pc, uptr p, uptr sz) {
61   u32 idx = block_alloc_.Alloc(&thr->proc()->block_cache);
62   MBlock *b = block_alloc_.Map(idx);
63   b->siz = sz;
64   b->tag = 0;
65   b->tid = thr->tid;
66   b->stk = CurrentStackId(thr, pc);
67   u32 *meta = MemToMeta(p);
68   DCHECK_EQ(*meta, 0);
69   *meta = idx | kFlagBlock;
70 }
71 
72 uptr MetaMap::FreeBlock(Processor *proc, uptr p) {
73   MBlock* b = GetBlock(p);
74   if (b == 0)
75     return 0;
76   uptr sz = RoundUpTo(b->siz, kMetaShadowCell);
77   FreeRange(proc, p, sz);
78   return sz;
79 }
80 
81 bool MetaMap::FreeRange(Processor *proc, uptr p, uptr sz) {
82   bool has_something = false;
83   u32 *meta = MemToMeta(p);
84   u32 *end = MemToMeta(p + sz);
85   if (end == meta)
86     end++;
87   for (; meta < end; meta++) {
88     u32 idx = *meta;
89     if (idx == 0) {
90       // Note: don't write to meta in this case -- the block can be huge.
91       continue;
92     }
93     *meta = 0;
94     has_something = true;
95     while (idx != 0) {
96       if (idx & kFlagBlock) {
97         block_alloc_.Free(&proc->block_cache, idx & ~kFlagMask);
98         break;
99       } else if (idx & kFlagSync) {
100         DCHECK(idx & kFlagSync);
101         SyncVar *s = sync_alloc_.Map(idx & ~kFlagMask);
102         u32 next = s->next;
103         s->Reset(proc);
104         sync_alloc_.Free(&proc->sync_cache, idx & ~kFlagMask);
105         idx = next;
106       } else {
107         CHECK(0);
108       }
109     }
110   }
111   return has_something;
112 }
113 
114 // ResetRange removes all meta objects from the range.
115 // It is called for large mmap-ed regions. The function is best-effort wrt
116 // freeing of meta objects, because we don't want to page in the whole range
117 // which can be huge. The function probes pages one-by-one until it finds a page
118 // without meta objects, at this point it stops freeing meta objects. Because
119 // thread stacks grow top-down, we do the same starting from end as well.
120 void MetaMap::ResetRange(Processor *proc, uptr p, uptr sz) {
121   if (SANITIZER_GO) {
122     // UnmapOrDie/MmapFixedNoReserve does not work on Windows,
123     // so we do the optimization only for C/C++.
124     FreeRange(proc, p, sz);
125     return;
126   }
127   const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize;
128   const uptr kPageSize = GetPageSizeCached() * kMetaRatio;
129   if (sz <= 4 * kPageSize) {
130     // If the range is small, just do the normal free procedure.
131     FreeRange(proc, p, sz);
132     return;
133   }
134   // First, round both ends of the range to page size.
135   uptr diff = RoundUp(p, kPageSize) - p;
136   if (diff != 0) {
137     FreeRange(proc, p, diff);
138     p += diff;
139     sz -= diff;
140   }
141   diff = p + sz - RoundDown(p + sz, kPageSize);
142   if (diff != 0) {
143     FreeRange(proc, p + sz - diff, diff);
144     sz -= diff;
145   }
146   // Now we must have a non-empty page-aligned range.
147   CHECK_GT(sz, 0);
148   CHECK_EQ(p, RoundUp(p, kPageSize));
149   CHECK_EQ(sz, RoundUp(sz, kPageSize));
150   const uptr p0 = p;
151   const uptr sz0 = sz;
152   // Probe start of the range.
153   for (uptr checked = 0; sz > 0; checked += kPageSize) {
154     bool has_something = FreeRange(proc, p, kPageSize);
155     p += kPageSize;
156     sz -= kPageSize;
157     if (!has_something && checked > (128 << 10))
158       break;
159   }
160   // Probe end of the range.
161   for (uptr checked = 0; sz > 0; checked += kPageSize) {
162     bool has_something = FreeRange(proc, p + sz - kPageSize, kPageSize);
163     sz -= kPageSize;
164     // Stacks grow down, so sync object are most likely at the end of the region
165     // (if it is a stack). The very end of the stack is TLS and tsan increases
166     // TLS by at least 256K, so check at least 512K.
167     if (!has_something && checked > (512 << 10))
168       break;
169   }
170   // Finally, page out the whole range (including the parts that we've just
171   // freed). Note: we can't simply madvise, because we need to leave a zeroed
172   // range (otherwise __tsan_java_move can crash if it encounters a left-over
173   // meta objects in java heap).
174   uptr metap = (uptr)MemToMeta(p0);
175   uptr metasz = sz0 / kMetaRatio;
176   UnmapOrDie((void*)metap, metasz);
177   MmapFixedNoReserve(metap, metasz);
178 }
179 
180 MBlock* MetaMap::GetBlock(uptr p) {
181   u32 *meta = MemToMeta(p);
182   u32 idx = *meta;
183   for (;;) {
184     if (idx == 0)
185       return 0;
186     if (idx & kFlagBlock)
187       return block_alloc_.Map(idx & ~kFlagMask);
188     DCHECK(idx & kFlagSync);
189     SyncVar * s = sync_alloc_.Map(idx & ~kFlagMask);
190     idx = s->next;
191   }
192 }
193 
194 SyncVar* MetaMap::GetOrCreateAndLock(ThreadState *thr, uptr pc,
195                               uptr addr, bool write_lock) {
196   return GetAndLock(thr, pc, addr, write_lock, true);
197 }
198 
199 SyncVar* MetaMap::GetIfExistsAndLock(uptr addr, bool write_lock) {
200   return GetAndLock(0, 0, addr, write_lock, false);
201 }
202 
203 SyncVar* MetaMap::GetAndLock(ThreadState *thr, uptr pc,
204                              uptr addr, bool write_lock, bool create) {
205   u32 *meta = MemToMeta(addr);
206   u32 idx0 = *meta;
207   u32 myidx = 0;
208   SyncVar *mys = 0;
209   for (;;) {
210     u32 idx = idx0;
211     for (;;) {
212       if (idx == 0)
213         break;
214       if (idx & kFlagBlock)
215         break;
216       DCHECK(idx & kFlagSync);
217       SyncVar * s = sync_alloc_.Map(idx & ~kFlagMask);
218       if (s->addr == addr) {
219         if (myidx != 0) {
220           mys->Reset(thr->proc());
221           sync_alloc_.Free(&thr->proc()->sync_cache, myidx);
222         }
223         if (write_lock)
224           s->mtx.Lock();
225         else
226           s->mtx.ReadLock();
227         return s;
228       }
229       idx = s->next;
230     }
231     if (!create)
232       return 0;
233     if (*meta != idx0) {
234       idx0 = *meta;
235       continue;
236     }
237 
238     if (myidx == 0) {
239       const u64 uid = atomic_fetch_add(&uid_gen_, 1, memory_order_relaxed);
240       myidx = sync_alloc_.Alloc(&thr->proc()->sync_cache);
241       mys = sync_alloc_.Map(myidx);
242       mys->Init(thr, pc, addr, uid);
243     }
244     mys->next = idx0;
245     if (atomic_compare_exchange_strong((atomic_uint32_t*)meta, &idx0,
246         myidx | kFlagSync, memory_order_release)) {
247       if (write_lock)
248         mys->mtx.Lock();
249       else
250         mys->mtx.ReadLock();
251       return mys;
252     }
253   }
254 }
255 
256 void MetaMap::MoveMemory(uptr src, uptr dst, uptr sz) {
257   // src and dst can overlap,
258   // there are no concurrent accesses to the regions (e.g. stop-the-world).
259   CHECK_NE(src, dst);
260   CHECK_NE(sz, 0);
261   uptr diff = dst - src;
262   u32 *src_meta = MemToMeta(src);
263   u32 *dst_meta = MemToMeta(dst);
264   u32 *src_meta_end = MemToMeta(src + sz);
265   uptr inc = 1;
266   if (dst > src) {
267     src_meta = MemToMeta(src + sz) - 1;
268     dst_meta = MemToMeta(dst + sz) - 1;
269     src_meta_end = MemToMeta(src) - 1;
270     inc = -1;
271   }
272   for (; src_meta != src_meta_end; src_meta += inc, dst_meta += inc) {
273     CHECK_EQ(*dst_meta, 0);
274     u32 idx = *src_meta;
275     *src_meta = 0;
276     *dst_meta = idx;
277     // Patch the addresses in sync objects.
278     while (idx != 0) {
279       if (idx & kFlagBlock)
280         break;
281       CHECK(idx & kFlagSync);
282       SyncVar *s = sync_alloc_.Map(idx & ~kFlagMask);
283       s->addr += diff;
284       idx = s->next;
285     }
286   }
287 }
288 
289 void MetaMap::OnProcIdle(Processor *proc) {
290   block_alloc_.FlushCache(&proc->block_cache);
291   sync_alloc_.FlushCache(&proc->sync_cache);
292 }
293 
294 }  // namespace __tsan
295